Make test.test_support.catch_warning() take an argument specifying if any
[python.git] / Modules / datetimemodule.c
blob3f9e78b0abd77f00f5d353969c82c7bc5f253b48
1 /* C implementation for the date/time type documented at
2 * http://www.zope.org/Members/fdrake/DateTimeWiki/FrontPage
3 */
5 #include "Python.h"
6 #include "modsupport.h"
7 #include "structmember.h"
9 #include <time.h>
11 #include "timefuncs.h"
13 /* Differentiate between building the core module and building extension
14 * modules.
16 #ifndef Py_BUILD_CORE
17 #define Py_BUILD_CORE
18 #endif
19 #include "datetime.h"
20 #undef Py_BUILD_CORE
22 /* We require that C int be at least 32 bits, and use int virtually
23 * everywhere. In just a few cases we use a temp long, where a Python
24 * API returns a C long. In such cases, we have to ensure that the
25 * final result fits in a C int (this can be an issue on 64-bit boxes).
27 #if SIZEOF_INT < 4
28 # error "datetime.c requires that C int have at least 32 bits"
29 #endif
31 #define MINYEAR 1
32 #define MAXYEAR 9999
34 /* Nine decimal digits is easy to communicate, and leaves enough room
35 * so that two delta days can be added w/o fear of overflowing a signed
36 * 32-bit int, and with plenty of room left over to absorb any possible
37 * carries from adding seconds.
39 #define MAX_DELTA_DAYS 999999999
41 /* Rename the long macros in datetime.h to more reasonable short names. */
42 #define GET_YEAR PyDateTime_GET_YEAR
43 #define GET_MONTH PyDateTime_GET_MONTH
44 #define GET_DAY PyDateTime_GET_DAY
45 #define DATE_GET_HOUR PyDateTime_DATE_GET_HOUR
46 #define DATE_GET_MINUTE PyDateTime_DATE_GET_MINUTE
47 #define DATE_GET_SECOND PyDateTime_DATE_GET_SECOND
48 #define DATE_GET_MICROSECOND PyDateTime_DATE_GET_MICROSECOND
50 /* Date accessors for date and datetime. */
51 #define SET_YEAR(o, v) (((o)->data[0] = ((v) & 0xff00) >> 8), \
52 ((o)->data[1] = ((v) & 0x00ff)))
53 #define SET_MONTH(o, v) (PyDateTime_GET_MONTH(o) = (v))
54 #define SET_DAY(o, v) (PyDateTime_GET_DAY(o) = (v))
56 /* Date/Time accessors for datetime. */
57 #define DATE_SET_HOUR(o, v) (PyDateTime_DATE_GET_HOUR(o) = (v))
58 #define DATE_SET_MINUTE(o, v) (PyDateTime_DATE_GET_MINUTE(o) = (v))
59 #define DATE_SET_SECOND(o, v) (PyDateTime_DATE_GET_SECOND(o) = (v))
60 #define DATE_SET_MICROSECOND(o, v) \
61 (((o)->data[7] = ((v) & 0xff0000) >> 16), \
62 ((o)->data[8] = ((v) & 0x00ff00) >> 8), \
63 ((o)->data[9] = ((v) & 0x0000ff)))
65 /* Time accessors for time. */
66 #define TIME_GET_HOUR PyDateTime_TIME_GET_HOUR
67 #define TIME_GET_MINUTE PyDateTime_TIME_GET_MINUTE
68 #define TIME_GET_SECOND PyDateTime_TIME_GET_SECOND
69 #define TIME_GET_MICROSECOND PyDateTime_TIME_GET_MICROSECOND
70 #define TIME_SET_HOUR(o, v) (PyDateTime_TIME_GET_HOUR(o) = (v))
71 #define TIME_SET_MINUTE(o, v) (PyDateTime_TIME_GET_MINUTE(o) = (v))
72 #define TIME_SET_SECOND(o, v) (PyDateTime_TIME_GET_SECOND(o) = (v))
73 #define TIME_SET_MICROSECOND(o, v) \
74 (((o)->data[3] = ((v) & 0xff0000) >> 16), \
75 ((o)->data[4] = ((v) & 0x00ff00) >> 8), \
76 ((o)->data[5] = ((v) & 0x0000ff)))
78 /* Delta accessors for timedelta. */
79 #define GET_TD_DAYS(o) (((PyDateTime_Delta *)(o))->days)
80 #define GET_TD_SECONDS(o) (((PyDateTime_Delta *)(o))->seconds)
81 #define GET_TD_MICROSECONDS(o) (((PyDateTime_Delta *)(o))->microseconds)
83 #define SET_TD_DAYS(o, v) ((o)->days = (v))
84 #define SET_TD_SECONDS(o, v) ((o)->seconds = (v))
85 #define SET_TD_MICROSECONDS(o, v) ((o)->microseconds = (v))
87 /* p is a pointer to a time or a datetime object; HASTZINFO(p) returns
88 * p->hastzinfo.
90 #define HASTZINFO(p) (((_PyDateTime_BaseTZInfo *)(p))->hastzinfo)
92 /* M is a char or int claiming to be a valid month. The macro is equivalent
93 * to the two-sided Python test
94 * 1 <= M <= 12
96 #define MONTH_IS_SANE(M) ((unsigned int)(M) - 1 < 12)
98 /* Forward declarations. */
99 static PyTypeObject PyDateTime_DateType;
100 static PyTypeObject PyDateTime_DateTimeType;
101 static PyTypeObject PyDateTime_DeltaType;
102 static PyTypeObject PyDateTime_TimeType;
103 static PyTypeObject PyDateTime_TZInfoType;
105 /* ---------------------------------------------------------------------------
106 * Math utilities.
109 /* k = i+j overflows iff k differs in sign from both inputs,
110 * iff k^i has sign bit set and k^j has sign bit set,
111 * iff (k^i)&(k^j) has sign bit set.
113 #define SIGNED_ADD_OVERFLOWED(RESULT, I, J) \
114 ((((RESULT) ^ (I)) & ((RESULT) ^ (J))) < 0)
116 /* Compute Python divmod(x, y), returning the quotient and storing the
117 * remainder into *r. The quotient is the floor of x/y, and that's
118 * the real point of this. C will probably truncate instead (C99
119 * requires truncation; C89 left it implementation-defined).
120 * Simplification: we *require* that y > 0 here. That's appropriate
121 * for all the uses made of it. This simplifies the code and makes
122 * the overflow case impossible (divmod(LONG_MIN, -1) is the only
123 * overflow case).
125 static int
126 divmod(int x, int y, int *r)
128 int quo;
130 assert(y > 0);
131 quo = x / y;
132 *r = x - quo * y;
133 if (*r < 0) {
134 --quo;
135 *r += y;
137 assert(0 <= *r && *r < y);
138 return quo;
141 /* Round a double to the nearest long. |x| must be small enough to fit
142 * in a C long; this is not checked.
144 static long
145 round_to_long(double x)
147 if (x >= 0.0)
148 x = floor(x + 0.5);
149 else
150 x = ceil(x - 0.5);
151 return (long)x;
154 /* ---------------------------------------------------------------------------
155 * General calendrical helper functions
158 /* For each month ordinal in 1..12, the number of days in that month,
159 * and the number of days before that month in the same year. These
160 * are correct for non-leap years only.
162 static int _days_in_month[] = {
163 0, /* unused; this vector uses 1-based indexing */
164 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
167 static int _days_before_month[] = {
168 0, /* unused; this vector uses 1-based indexing */
169 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
172 /* year -> 1 if leap year, else 0. */
173 static int
174 is_leap(int year)
176 /* Cast year to unsigned. The result is the same either way, but
177 * C can generate faster code for unsigned mod than for signed
178 * mod (especially for % 4 -- a good compiler should just grab
179 * the last 2 bits when the LHS is unsigned).
181 const unsigned int ayear = (unsigned int)year;
182 return ayear % 4 == 0 && (ayear % 100 != 0 || ayear % 400 == 0);
185 /* year, month -> number of days in that month in that year */
186 static int
187 days_in_month(int year, int month)
189 assert(month >= 1);
190 assert(month <= 12);
191 if (month == 2 && is_leap(year))
192 return 29;
193 else
194 return _days_in_month[month];
197 /* year, month -> number of days in year preceeding first day of month */
198 static int
199 days_before_month(int year, int month)
201 int days;
203 assert(month >= 1);
204 assert(month <= 12);
205 days = _days_before_month[month];
206 if (month > 2 && is_leap(year))
207 ++days;
208 return days;
211 /* year -> number of days before January 1st of year. Remember that we
212 * start with year 1, so days_before_year(1) == 0.
214 static int
215 days_before_year(int year)
217 int y = year - 1;
218 /* This is incorrect if year <= 0; we really want the floor
219 * here. But so long as MINYEAR is 1, the smallest year this
220 * can see is 0 (this can happen in some normalization endcases),
221 * so we'll just special-case that.
223 assert (year >= 0);
224 if (y >= 0)
225 return y*365 + y/4 - y/100 + y/400;
226 else {
227 assert(y == -1);
228 return -366;
232 /* Number of days in 4, 100, and 400 year cycles. That these have
233 * the correct values is asserted in the module init function.
235 #define DI4Y 1461 /* days_before_year(5); days in 4 years */
236 #define DI100Y 36524 /* days_before_year(101); days in 100 years */
237 #define DI400Y 146097 /* days_before_year(401); days in 400 years */
239 /* ordinal -> year, month, day, considering 01-Jan-0001 as day 1. */
240 static void
241 ord_to_ymd(int ordinal, int *year, int *month, int *day)
243 int n, n1, n4, n100, n400, leapyear, preceding;
245 /* ordinal is a 1-based index, starting at 1-Jan-1. The pattern of
246 * leap years repeats exactly every 400 years. The basic strategy is
247 * to find the closest 400-year boundary at or before ordinal, then
248 * work with the offset from that boundary to ordinal. Life is much
249 * clearer if we subtract 1 from ordinal first -- then the values
250 * of ordinal at 400-year boundaries are exactly those divisible
251 * by DI400Y:
253 * D M Y n n-1
254 * -- --- ---- ---------- ----------------
255 * 31 Dec -400 -DI400Y -DI400Y -1
256 * 1 Jan -399 -DI400Y +1 -DI400Y 400-year boundary
257 * ...
258 * 30 Dec 000 -1 -2
259 * 31 Dec 000 0 -1
260 * 1 Jan 001 1 0 400-year boundary
261 * 2 Jan 001 2 1
262 * 3 Jan 001 3 2
263 * ...
264 * 31 Dec 400 DI400Y DI400Y -1
265 * 1 Jan 401 DI400Y +1 DI400Y 400-year boundary
267 assert(ordinal >= 1);
268 --ordinal;
269 n400 = ordinal / DI400Y;
270 n = ordinal % DI400Y;
271 *year = n400 * 400 + 1;
273 /* Now n is the (non-negative) offset, in days, from January 1 of
274 * year, to the desired date. Now compute how many 100-year cycles
275 * precede n.
276 * Note that it's possible for n100 to equal 4! In that case 4 full
277 * 100-year cycles precede the desired day, which implies the
278 * desired day is December 31 at the end of a 400-year cycle.
280 n100 = n / DI100Y;
281 n = n % DI100Y;
283 /* Now compute how many 4-year cycles precede it. */
284 n4 = n / DI4Y;
285 n = n % DI4Y;
287 /* And now how many single years. Again n1 can be 4, and again
288 * meaning that the desired day is December 31 at the end of the
289 * 4-year cycle.
291 n1 = n / 365;
292 n = n % 365;
294 *year += n100 * 100 + n4 * 4 + n1;
295 if (n1 == 4 || n100 == 4) {
296 assert(n == 0);
297 *year -= 1;
298 *month = 12;
299 *day = 31;
300 return;
303 /* Now the year is correct, and n is the offset from January 1. We
304 * find the month via an estimate that's either exact or one too
305 * large.
307 leapyear = n1 == 3 && (n4 != 24 || n100 == 3);
308 assert(leapyear == is_leap(*year));
309 *month = (n + 50) >> 5;
310 preceding = (_days_before_month[*month] + (*month > 2 && leapyear));
311 if (preceding > n) {
312 /* estimate is too large */
313 *month -= 1;
314 preceding -= days_in_month(*year, *month);
316 n -= preceding;
317 assert(0 <= n);
318 assert(n < days_in_month(*year, *month));
320 *day = n + 1;
323 /* year, month, day -> ordinal, considering 01-Jan-0001 as day 1. */
324 static int
325 ymd_to_ord(int year, int month, int day)
327 return days_before_year(year) + days_before_month(year, month) + day;
330 /* Day of week, where Monday==0, ..., Sunday==6. 1/1/1 was a Monday. */
331 static int
332 weekday(int year, int month, int day)
334 return (ymd_to_ord(year, month, day) + 6) % 7;
337 /* Ordinal of the Monday starting week 1 of the ISO year. Week 1 is the
338 * first calendar week containing a Thursday.
340 static int
341 iso_week1_monday(int year)
343 int first_day = ymd_to_ord(year, 1, 1); /* ord of 1/1 */
344 /* 0 if 1/1 is a Monday, 1 if a Tue, etc. */
345 int first_weekday = (first_day + 6) % 7;
346 /* ordinal of closest Monday at or before 1/1 */
347 int week1_monday = first_day - first_weekday;
349 if (first_weekday > 3) /* if 1/1 was Fri, Sat, Sun */
350 week1_monday += 7;
351 return week1_monday;
354 /* ---------------------------------------------------------------------------
355 * Range checkers.
358 /* Check that -MAX_DELTA_DAYS <= days <= MAX_DELTA_DAYS. If so, return 0.
359 * If not, raise OverflowError and return -1.
361 static int
362 check_delta_day_range(int days)
364 if (-MAX_DELTA_DAYS <= days && days <= MAX_DELTA_DAYS)
365 return 0;
366 PyErr_Format(PyExc_OverflowError,
367 "days=%d; must have magnitude <= %d",
368 days, MAX_DELTA_DAYS);
369 return -1;
372 /* Check that date arguments are in range. Return 0 if they are. If they
373 * aren't, raise ValueError and return -1.
375 static int
376 check_date_args(int year, int month, int day)
379 if (year < MINYEAR || year > MAXYEAR) {
380 PyErr_SetString(PyExc_ValueError,
381 "year is out of range");
382 return -1;
384 if (month < 1 || month > 12) {
385 PyErr_SetString(PyExc_ValueError,
386 "month must be in 1..12");
387 return -1;
389 if (day < 1 || day > days_in_month(year, month)) {
390 PyErr_SetString(PyExc_ValueError,
391 "day is out of range for month");
392 return -1;
394 return 0;
397 /* Check that time arguments are in range. Return 0 if they are. If they
398 * aren't, raise ValueError and return -1.
400 static int
401 check_time_args(int h, int m, int s, int us)
403 if (h < 0 || h > 23) {
404 PyErr_SetString(PyExc_ValueError,
405 "hour must be in 0..23");
406 return -1;
408 if (m < 0 || m > 59) {
409 PyErr_SetString(PyExc_ValueError,
410 "minute must be in 0..59");
411 return -1;
413 if (s < 0 || s > 59) {
414 PyErr_SetString(PyExc_ValueError,
415 "second must be in 0..59");
416 return -1;
418 if (us < 0 || us > 999999) {
419 PyErr_SetString(PyExc_ValueError,
420 "microsecond must be in 0..999999");
421 return -1;
423 return 0;
426 /* ---------------------------------------------------------------------------
427 * Normalization utilities.
430 /* One step of a mixed-radix conversion. A "hi" unit is equivalent to
431 * factor "lo" units. factor must be > 0. If *lo is less than 0, or
432 * at least factor, enough of *lo is converted into "hi" units so that
433 * 0 <= *lo < factor. The input values must be such that int overflow
434 * is impossible.
436 static void
437 normalize_pair(int *hi, int *lo, int factor)
439 assert(factor > 0);
440 assert(lo != hi);
441 if (*lo < 0 || *lo >= factor) {
442 const int num_hi = divmod(*lo, factor, lo);
443 const int new_hi = *hi + num_hi;
444 assert(! SIGNED_ADD_OVERFLOWED(new_hi, *hi, num_hi));
445 *hi = new_hi;
447 assert(0 <= *lo && *lo < factor);
450 /* Fiddle days (d), seconds (s), and microseconds (us) so that
451 * 0 <= *s < 24*3600
452 * 0 <= *us < 1000000
453 * The input values must be such that the internals don't overflow.
454 * The way this routine is used, we don't get close.
456 static void
457 normalize_d_s_us(int *d, int *s, int *us)
459 if (*us < 0 || *us >= 1000000) {
460 normalize_pair(s, us, 1000000);
461 /* |s| can't be bigger than about
462 * |original s| + |original us|/1000000 now.
466 if (*s < 0 || *s >= 24*3600) {
467 normalize_pair(d, s, 24*3600);
468 /* |d| can't be bigger than about
469 * |original d| +
470 * (|original s| + |original us|/1000000) / (24*3600) now.
473 assert(0 <= *s && *s < 24*3600);
474 assert(0 <= *us && *us < 1000000);
477 /* Fiddle years (y), months (m), and days (d) so that
478 * 1 <= *m <= 12
479 * 1 <= *d <= days_in_month(*y, *m)
480 * The input values must be such that the internals don't overflow.
481 * The way this routine is used, we don't get close.
483 static void
484 normalize_y_m_d(int *y, int *m, int *d)
486 int dim; /* # of days in month */
488 /* This gets muddy: the proper range for day can't be determined
489 * without knowing the correct month and year, but if day is, e.g.,
490 * plus or minus a million, the current month and year values make
491 * no sense (and may also be out of bounds themselves).
492 * Saying 12 months == 1 year should be non-controversial.
494 if (*m < 1 || *m > 12) {
495 --*m;
496 normalize_pair(y, m, 12);
497 ++*m;
498 /* |y| can't be bigger than about
499 * |original y| + |original m|/12 now.
502 assert(1 <= *m && *m <= 12);
504 /* Now only day can be out of bounds (year may also be out of bounds
505 * for a datetime object, but we don't care about that here).
506 * If day is out of bounds, what to do is arguable, but at least the
507 * method here is principled and explainable.
509 dim = days_in_month(*y, *m);
510 if (*d < 1 || *d > dim) {
511 /* Move day-1 days from the first of the month. First try to
512 * get off cheap if we're only one day out of range
513 * (adjustments for timezone alone can't be worse than that).
515 if (*d == 0) {
516 --*m;
517 if (*m > 0)
518 *d = days_in_month(*y, *m);
519 else {
520 --*y;
521 *m = 12;
522 *d = 31;
525 else if (*d == dim + 1) {
526 /* move forward a day */
527 ++*m;
528 *d = 1;
529 if (*m > 12) {
530 *m = 1;
531 ++*y;
534 else {
535 int ordinal = ymd_to_ord(*y, *m, 1) +
536 *d - 1;
537 ord_to_ymd(ordinal, y, m, d);
540 assert(*m > 0);
541 assert(*d > 0);
544 /* Fiddle out-of-bounds months and days so that the result makes some kind
545 * of sense. The parameters are both inputs and outputs. Returns < 0 on
546 * failure, where failure means the adjusted year is out of bounds.
548 static int
549 normalize_date(int *year, int *month, int *day)
551 int result;
553 normalize_y_m_d(year, month, day);
554 if (MINYEAR <= *year && *year <= MAXYEAR)
555 result = 0;
556 else {
557 PyErr_SetString(PyExc_OverflowError,
558 "date value out of range");
559 result = -1;
561 return result;
564 /* Force all the datetime fields into range. The parameters are both
565 * inputs and outputs. Returns < 0 on error.
567 static int
568 normalize_datetime(int *year, int *month, int *day,
569 int *hour, int *minute, int *second,
570 int *microsecond)
572 normalize_pair(second, microsecond, 1000000);
573 normalize_pair(minute, second, 60);
574 normalize_pair(hour, minute, 60);
575 normalize_pair(day, hour, 24);
576 return normalize_date(year, month, day);
579 /* ---------------------------------------------------------------------------
580 * Basic object allocation: tp_alloc implementations. These allocate
581 * Python objects of the right size and type, and do the Python object-
582 * initialization bit. If there's not enough memory, they return NULL after
583 * setting MemoryError. All data members remain uninitialized trash.
585 * We abuse the tp_alloc "nitems" argument to communicate whether a tzinfo
586 * member is needed. This is ugly, imprecise, and possibly insecure.
587 * tp_basicsize for the time and datetime types is set to the size of the
588 * struct that has room for the tzinfo member, so subclasses in Python will
589 * allocate enough space for a tzinfo member whether or not one is actually
590 * needed. That's the "ugly and imprecise" parts. The "possibly insecure"
591 * part is that PyType_GenericAlloc() (which subclasses in Python end up
592 * using) just happens today to effectively ignore the nitems argument
593 * when tp_itemsize is 0, which it is for these type objects. If that
594 * changes, perhaps the callers of tp_alloc slots in this file should
595 * be changed to force a 0 nitems argument unless the type being allocated
596 * is a base type implemented in this file (so that tp_alloc is time_alloc
597 * or datetime_alloc below, which know about the nitems abuse).
600 static PyObject *
601 time_alloc(PyTypeObject *type, Py_ssize_t aware)
603 PyObject *self;
605 self = (PyObject *)
606 PyObject_MALLOC(aware ?
607 sizeof(PyDateTime_Time) :
608 sizeof(_PyDateTime_BaseTime));
609 if (self == NULL)
610 return (PyObject *)PyErr_NoMemory();
611 PyObject_INIT(self, type);
612 return self;
615 static PyObject *
616 datetime_alloc(PyTypeObject *type, Py_ssize_t aware)
618 PyObject *self;
620 self = (PyObject *)
621 PyObject_MALLOC(aware ?
622 sizeof(PyDateTime_DateTime) :
623 sizeof(_PyDateTime_BaseDateTime));
624 if (self == NULL)
625 return (PyObject *)PyErr_NoMemory();
626 PyObject_INIT(self, type);
627 return self;
630 /* ---------------------------------------------------------------------------
631 * Helpers for setting object fields. These work on pointers to the
632 * appropriate base class.
635 /* For date and datetime. */
636 static void
637 set_date_fields(PyDateTime_Date *self, int y, int m, int d)
639 self->hashcode = -1;
640 SET_YEAR(self, y);
641 SET_MONTH(self, m);
642 SET_DAY(self, d);
645 /* ---------------------------------------------------------------------------
646 * Create various objects, mostly without range checking.
649 /* Create a date instance with no range checking. */
650 static PyObject *
651 new_date_ex(int year, int month, int day, PyTypeObject *type)
653 PyDateTime_Date *self;
655 self = (PyDateTime_Date *) (type->tp_alloc(type, 0));
656 if (self != NULL)
657 set_date_fields(self, year, month, day);
658 return (PyObject *) self;
661 #define new_date(year, month, day) \
662 new_date_ex(year, month, day, &PyDateTime_DateType)
664 /* Create a datetime instance with no range checking. */
665 static PyObject *
666 new_datetime_ex(int year, int month, int day, int hour, int minute,
667 int second, int usecond, PyObject *tzinfo, PyTypeObject *type)
669 PyDateTime_DateTime *self;
670 char aware = tzinfo != Py_None;
672 self = (PyDateTime_DateTime *) (type->tp_alloc(type, aware));
673 if (self != NULL) {
674 self->hastzinfo = aware;
675 set_date_fields((PyDateTime_Date *)self, year, month, day);
676 DATE_SET_HOUR(self, hour);
677 DATE_SET_MINUTE(self, minute);
678 DATE_SET_SECOND(self, second);
679 DATE_SET_MICROSECOND(self, usecond);
680 if (aware) {
681 Py_INCREF(tzinfo);
682 self->tzinfo = tzinfo;
685 return (PyObject *)self;
688 #define new_datetime(y, m, d, hh, mm, ss, us, tzinfo) \
689 new_datetime_ex(y, m, d, hh, mm, ss, us, tzinfo, \
690 &PyDateTime_DateTimeType)
692 /* Create a time instance with no range checking. */
693 static PyObject *
694 new_time_ex(int hour, int minute, int second, int usecond,
695 PyObject *tzinfo, PyTypeObject *type)
697 PyDateTime_Time *self;
698 char aware = tzinfo != Py_None;
700 self = (PyDateTime_Time *) (type->tp_alloc(type, aware));
701 if (self != NULL) {
702 self->hastzinfo = aware;
703 self->hashcode = -1;
704 TIME_SET_HOUR(self, hour);
705 TIME_SET_MINUTE(self, minute);
706 TIME_SET_SECOND(self, second);
707 TIME_SET_MICROSECOND(self, usecond);
708 if (aware) {
709 Py_INCREF(tzinfo);
710 self->tzinfo = tzinfo;
713 return (PyObject *)self;
716 #define new_time(hh, mm, ss, us, tzinfo) \
717 new_time_ex(hh, mm, ss, us, tzinfo, &PyDateTime_TimeType)
719 /* Create a timedelta instance. Normalize the members iff normalize is
720 * true. Passing false is a speed optimization, if you know for sure
721 * that seconds and microseconds are already in their proper ranges. In any
722 * case, raises OverflowError and returns NULL if the normalized days is out
723 * of range).
725 static PyObject *
726 new_delta_ex(int days, int seconds, int microseconds, int normalize,
727 PyTypeObject *type)
729 PyDateTime_Delta *self;
731 if (normalize)
732 normalize_d_s_us(&days, &seconds, &microseconds);
733 assert(0 <= seconds && seconds < 24*3600);
734 assert(0 <= microseconds && microseconds < 1000000);
736 if (check_delta_day_range(days) < 0)
737 return NULL;
739 self = (PyDateTime_Delta *) (type->tp_alloc(type, 0));
740 if (self != NULL) {
741 self->hashcode = -1;
742 SET_TD_DAYS(self, days);
743 SET_TD_SECONDS(self, seconds);
744 SET_TD_MICROSECONDS(self, microseconds);
746 return (PyObject *) self;
749 #define new_delta(d, s, us, normalize) \
750 new_delta_ex(d, s, us, normalize, &PyDateTime_DeltaType)
752 /* ---------------------------------------------------------------------------
753 * tzinfo helpers.
756 /* Ensure that p is None or of a tzinfo subclass. Return 0 if OK; if not
757 * raise TypeError and return -1.
759 static int
760 check_tzinfo_subclass(PyObject *p)
762 if (p == Py_None || PyTZInfo_Check(p))
763 return 0;
764 PyErr_Format(PyExc_TypeError,
765 "tzinfo argument must be None or of a tzinfo subclass, "
766 "not type '%s'",
767 Py_TYPE(p)->tp_name);
768 return -1;
771 /* Return tzinfo.methname(tzinfoarg), without any checking of results.
772 * If tzinfo is None, returns None.
774 static PyObject *
775 call_tzinfo_method(PyObject *tzinfo, char *methname, PyObject *tzinfoarg)
777 PyObject *result;
779 assert(tzinfo && methname && tzinfoarg);
780 assert(check_tzinfo_subclass(tzinfo) >= 0);
781 if (tzinfo == Py_None) {
782 result = Py_None;
783 Py_INCREF(result);
785 else
786 result = PyObject_CallMethod(tzinfo, methname, "O", tzinfoarg);
787 return result;
790 /* If self has a tzinfo member, return a BORROWED reference to it. Else
791 * return NULL, which is NOT AN ERROR. There are no error returns here,
792 * and the caller must not decref the result.
794 static PyObject *
795 get_tzinfo_member(PyObject *self)
797 PyObject *tzinfo = NULL;
799 if (PyDateTime_Check(self) && HASTZINFO(self))
800 tzinfo = ((PyDateTime_DateTime *)self)->tzinfo;
801 else if (PyTime_Check(self) && HASTZINFO(self))
802 tzinfo = ((PyDateTime_Time *)self)->tzinfo;
804 return tzinfo;
807 /* Call getattr(tzinfo, name)(tzinfoarg), and extract an int from the
808 * result. tzinfo must be an instance of the tzinfo class. If the method
809 * returns None, this returns 0 and sets *none to 1. If the method doesn't
810 * return None or timedelta, TypeError is raised and this returns -1. If it
811 * returnsa timedelta and the value is out of range or isn't a whole number
812 * of minutes, ValueError is raised and this returns -1.
813 * Else *none is set to 0 and the integer method result is returned.
815 static int
816 call_utc_tzinfo_method(PyObject *tzinfo, char *name, PyObject *tzinfoarg,
817 int *none)
819 PyObject *u;
820 int result = -1;
822 assert(tzinfo != NULL);
823 assert(PyTZInfo_Check(tzinfo));
824 assert(tzinfoarg != NULL);
826 *none = 0;
827 u = call_tzinfo_method(tzinfo, name, tzinfoarg);
828 if (u == NULL)
829 return -1;
831 else if (u == Py_None) {
832 result = 0;
833 *none = 1;
835 else if (PyDelta_Check(u)) {
836 const int days = GET_TD_DAYS(u);
837 if (days < -1 || days > 0)
838 result = 24*60; /* trigger ValueError below */
839 else {
840 /* next line can't overflow because we know days
841 * is -1 or 0 now
843 int ss = days * 24 * 3600 + GET_TD_SECONDS(u);
844 result = divmod(ss, 60, &ss);
845 if (ss || GET_TD_MICROSECONDS(u)) {
846 PyErr_Format(PyExc_ValueError,
847 "tzinfo.%s() must return a "
848 "whole number of minutes",
849 name);
850 result = -1;
854 else {
855 PyErr_Format(PyExc_TypeError,
856 "tzinfo.%s() must return None or "
857 "timedelta, not '%s'",
858 name, Py_TYPE(u)->tp_name);
861 Py_DECREF(u);
862 if (result < -1439 || result > 1439) {
863 PyErr_Format(PyExc_ValueError,
864 "tzinfo.%s() returned %d; must be in "
865 "-1439 .. 1439",
866 name, result);
867 result = -1;
869 return result;
872 /* Call tzinfo.utcoffset(tzinfoarg), and extract an integer from the
873 * result. tzinfo must be an instance of the tzinfo class. If utcoffset()
874 * returns None, call_utcoffset returns 0 and sets *none to 1. If uctoffset()
875 * doesn't return None or timedelta, TypeError is raised and this returns -1.
876 * If utcoffset() returns an invalid timedelta (out of range, or not a whole
877 * # of minutes), ValueError is raised and this returns -1. Else *none is
878 * set to 0 and the offset is returned (as int # of minutes east of UTC).
880 static int
881 call_utcoffset(PyObject *tzinfo, PyObject *tzinfoarg, int *none)
883 return call_utc_tzinfo_method(tzinfo, "utcoffset", tzinfoarg, none);
886 /* Call tzinfo.name(tzinfoarg), and return the offset as a timedelta or None.
888 static PyObject *
889 offset_as_timedelta(PyObject *tzinfo, char *name, PyObject *tzinfoarg) {
890 PyObject *result;
892 assert(tzinfo && name && tzinfoarg);
893 if (tzinfo == Py_None) {
894 result = Py_None;
895 Py_INCREF(result);
897 else {
898 int none;
899 int offset = call_utc_tzinfo_method(tzinfo, name, tzinfoarg,
900 &none);
901 if (offset < 0 && PyErr_Occurred())
902 return NULL;
903 if (none) {
904 result = Py_None;
905 Py_INCREF(result);
907 else
908 result = new_delta(0, offset * 60, 0, 1);
910 return result;
913 /* Call tzinfo.dst(tzinfoarg), and extract an integer from the
914 * result. tzinfo must be an instance of the tzinfo class. If dst()
915 * returns None, call_dst returns 0 and sets *none to 1. If dst()
916 & doesn't return None or timedelta, TypeError is raised and this
917 * returns -1. If dst() returns an invalid timedelta for a UTC offset,
918 * ValueError is raised and this returns -1. Else *none is set to 0 and
919 * the offset is returned (as an int # of minutes east of UTC).
921 static int
922 call_dst(PyObject *tzinfo, PyObject *tzinfoarg, int *none)
924 return call_utc_tzinfo_method(tzinfo, "dst", tzinfoarg, none);
927 /* Call tzinfo.tzname(tzinfoarg), and return the result. tzinfo must be
928 * an instance of the tzinfo class or None. If tzinfo isn't None, and
929 * tzname() doesn't return None or a string, TypeError is raised and this
930 * returns NULL.
932 static PyObject *
933 call_tzname(PyObject *tzinfo, PyObject *tzinfoarg)
935 PyObject *result;
937 assert(tzinfo != NULL);
938 assert(check_tzinfo_subclass(tzinfo) >= 0);
939 assert(tzinfoarg != NULL);
941 if (tzinfo == Py_None) {
942 result = Py_None;
943 Py_INCREF(result);
945 else
946 result = PyObject_CallMethod(tzinfo, "tzname", "O", tzinfoarg);
948 if (result != NULL && result != Py_None && ! PyString_Check(result)) {
949 PyErr_Format(PyExc_TypeError, "tzinfo.tzname() must "
950 "return None or a string, not '%s'",
951 Py_TYPE(result)->tp_name);
952 Py_DECREF(result);
953 result = NULL;
955 return result;
958 typedef enum {
959 /* an exception has been set; the caller should pass it on */
960 OFFSET_ERROR,
962 /* type isn't date, datetime, or time subclass */
963 OFFSET_UNKNOWN,
965 /* date,
966 * datetime with !hastzinfo
967 * datetime with None tzinfo,
968 * datetime where utcoffset() returns None
969 * time with !hastzinfo
970 * time with None tzinfo,
971 * time where utcoffset() returns None
973 OFFSET_NAIVE,
975 /* time or datetime where utcoffset() doesn't return None */
976 OFFSET_AWARE
977 } naivety;
979 /* Classify an object as to whether it's naive or offset-aware. See
980 * the "naivety" typedef for details. If the type is aware, *offset is set
981 * to minutes east of UTC (as returned by the tzinfo.utcoffset() method).
982 * If the type is offset-naive (or unknown, or error), *offset is set to 0.
983 * tzinfoarg is the argument to pass to the tzinfo.utcoffset() method.
985 static naivety
986 classify_utcoffset(PyObject *op, PyObject *tzinfoarg, int *offset)
988 int none;
989 PyObject *tzinfo;
991 assert(tzinfoarg != NULL);
992 *offset = 0;
993 tzinfo = get_tzinfo_member(op); /* NULL means no tzinfo, not error */
994 if (tzinfo == Py_None)
995 return OFFSET_NAIVE;
996 if (tzinfo == NULL) {
997 /* note that a datetime passes the PyDate_Check test */
998 return (PyTime_Check(op) || PyDate_Check(op)) ?
999 OFFSET_NAIVE : OFFSET_UNKNOWN;
1001 *offset = call_utcoffset(tzinfo, tzinfoarg, &none);
1002 if (*offset == -1 && PyErr_Occurred())
1003 return OFFSET_ERROR;
1004 return none ? OFFSET_NAIVE : OFFSET_AWARE;
1007 /* Classify two objects as to whether they're naive or offset-aware.
1008 * This isn't quite the same as calling classify_utcoffset() twice: for
1009 * binary operations (comparison and subtraction), we generally want to
1010 * ignore the tzinfo members if they're identical. This is by design,
1011 * so that results match "naive" expectations when mixing objects from a
1012 * single timezone. So in that case, this sets both offsets to 0 and
1013 * both naiveties to OFFSET_NAIVE.
1014 * The function returns 0 if everything's OK, and -1 on error.
1016 static int
1017 classify_two_utcoffsets(PyObject *o1, int *offset1, naivety *n1,
1018 PyObject *tzinfoarg1,
1019 PyObject *o2, int *offset2, naivety *n2,
1020 PyObject *tzinfoarg2)
1022 if (get_tzinfo_member(o1) == get_tzinfo_member(o2)) {
1023 *offset1 = *offset2 = 0;
1024 *n1 = *n2 = OFFSET_NAIVE;
1026 else {
1027 *n1 = classify_utcoffset(o1, tzinfoarg1, offset1);
1028 if (*n1 == OFFSET_ERROR)
1029 return -1;
1030 *n2 = classify_utcoffset(o2, tzinfoarg2, offset2);
1031 if (*n2 == OFFSET_ERROR)
1032 return -1;
1034 return 0;
1037 /* repr is like "someclass(arg1, arg2)". If tzinfo isn't None,
1038 * stuff
1039 * ", tzinfo=" + repr(tzinfo)
1040 * before the closing ")".
1042 static PyObject *
1043 append_keyword_tzinfo(PyObject *repr, PyObject *tzinfo)
1045 PyObject *temp;
1047 assert(PyString_Check(repr));
1048 assert(tzinfo);
1049 if (tzinfo == Py_None)
1050 return repr;
1051 /* Get rid of the trailing ')'. */
1052 assert(PyString_AsString(repr)[PyString_Size(repr)-1] == ')');
1053 temp = PyString_FromStringAndSize(PyString_AsString(repr),
1054 PyString_Size(repr) - 1);
1055 Py_DECREF(repr);
1056 if (temp == NULL)
1057 return NULL;
1058 repr = temp;
1060 /* Append ", tzinfo=". */
1061 PyString_ConcatAndDel(&repr, PyString_FromString(", tzinfo="));
1063 /* Append repr(tzinfo). */
1064 PyString_ConcatAndDel(&repr, PyObject_Repr(tzinfo));
1066 /* Add a closing paren. */
1067 PyString_ConcatAndDel(&repr, PyString_FromString(")"));
1068 return repr;
1071 /* ---------------------------------------------------------------------------
1072 * String format helpers.
1075 static PyObject *
1076 format_ctime(PyDateTime_Date *date, int hours, int minutes, int seconds)
1078 static const char *DayNames[] = {
1079 "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"
1081 static const char *MonthNames[] = {
1082 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1083 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
1086 char buffer[128];
1087 int wday = weekday(GET_YEAR(date), GET_MONTH(date), GET_DAY(date));
1089 PyOS_snprintf(buffer, sizeof(buffer), "%s %s %2d %02d:%02d:%02d %04d",
1090 DayNames[wday], MonthNames[GET_MONTH(date) - 1],
1091 GET_DAY(date), hours, minutes, seconds,
1092 GET_YEAR(date));
1093 return PyString_FromString(buffer);
1096 /* Add an hours & minutes UTC offset string to buf. buf has no more than
1097 * buflen bytes remaining. The UTC offset is gotten by calling
1098 * tzinfo.uctoffset(tzinfoarg). If that returns None, \0 is stored into
1099 * *buf, and that's all. Else the returned value is checked for sanity (an
1100 * integer in range), and if that's OK it's converted to an hours & minutes
1101 * string of the form
1102 * sign HH sep MM
1103 * Returns 0 if everything is OK. If the return value from utcoffset() is
1104 * bogus, an appropriate exception is set and -1 is returned.
1106 static int
1107 format_utcoffset(char *buf, size_t buflen, const char *sep,
1108 PyObject *tzinfo, PyObject *tzinfoarg)
1110 int offset;
1111 int hours;
1112 int minutes;
1113 char sign;
1114 int none;
1116 offset = call_utcoffset(tzinfo, tzinfoarg, &none);
1117 if (offset == -1 && PyErr_Occurred())
1118 return -1;
1119 if (none) {
1120 *buf = '\0';
1121 return 0;
1123 sign = '+';
1124 if (offset < 0) {
1125 sign = '-';
1126 offset = - offset;
1128 hours = divmod(offset, 60, &minutes);
1129 PyOS_snprintf(buf, buflen, "%c%02d%s%02d", sign, hours, sep, minutes);
1130 return 0;
1133 static PyObject *
1134 make_freplacement(PyObject *object)
1136 char freplacement[64];
1137 if (PyTime_Check(object))
1138 sprintf(freplacement, "%06d", TIME_GET_MICROSECOND(object));
1139 else if (PyDateTime_Check(object))
1140 sprintf(freplacement, "%06d", DATE_GET_MICROSECOND(object));
1141 else
1142 sprintf(freplacement, "%06d", 0);
1144 return PyString_FromStringAndSize(freplacement, strlen(freplacement));
1147 /* I sure don't want to reproduce the strftime code from the time module,
1148 * so this imports the module and calls it. All the hair is due to
1149 * giving special meanings to the %z, %Z and %f format codes via a
1150 * preprocessing step on the format string.
1151 * tzinfoarg is the argument to pass to the object's tzinfo method, if
1152 * needed.
1154 static PyObject *
1155 wrap_strftime(PyObject *object, PyObject *format, PyObject *timetuple,
1156 PyObject *tzinfoarg)
1158 PyObject *result = NULL; /* guilty until proved innocent */
1160 PyObject *zreplacement = NULL; /* py string, replacement for %z */
1161 PyObject *Zreplacement = NULL; /* py string, replacement for %Z */
1162 PyObject *freplacement = NULL; /* py string, replacement for %f */
1164 char *pin; /* pointer to next char in input format */
1165 char ch; /* next char in input format */
1167 PyObject *newfmt = NULL; /* py string, the output format */
1168 char *pnew; /* pointer to available byte in output format */
1169 int totalnew; /* number bytes total in output format buffer,
1170 exclusive of trailing \0 */
1171 int usednew; /* number bytes used so far in output format buffer */
1173 char *ptoappend; /* pointer to string to append to output buffer */
1174 int ntoappend; /* # of bytes to append to output buffer */
1176 assert(object && format && timetuple);
1177 assert(PyString_Check(format));
1179 /* Give up if the year is before 1900.
1180 * Python strftime() plays games with the year, and different
1181 * games depending on whether envar PYTHON2K is set. This makes
1182 * years before 1900 a nightmare, even if the platform strftime
1183 * supports them (and not all do).
1184 * We could get a lot farther here by avoiding Python's strftime
1185 * wrapper and calling the C strftime() directly, but that isn't
1186 * an option in the Python implementation of this module.
1189 long year;
1190 PyObject *pyyear = PySequence_GetItem(timetuple, 0);
1191 if (pyyear == NULL) return NULL;
1192 assert(PyInt_Check(pyyear));
1193 year = PyInt_AsLong(pyyear);
1194 Py_DECREF(pyyear);
1195 if (year < 1900) {
1196 PyErr_Format(PyExc_ValueError, "year=%ld is before "
1197 "1900; the datetime strftime() "
1198 "methods require year >= 1900",
1199 year);
1200 return NULL;
1204 /* Scan the input format, looking for %z/%Z/%f escapes, building
1205 * a new format. Since computing the replacements for those codes
1206 * is expensive, don't unless they're actually used.
1208 totalnew = PyString_Size(format) + 1; /* realistic if no %z/%Z/%f */
1209 newfmt = PyString_FromStringAndSize(NULL, totalnew);
1210 if (newfmt == NULL) goto Done;
1211 pnew = PyString_AsString(newfmt);
1212 usednew = 0;
1214 pin = PyString_AsString(format);
1215 while ((ch = *pin++) != '\0') {
1216 if (ch != '%') {
1217 ptoappend = pin - 1;
1218 ntoappend = 1;
1220 else if ((ch = *pin++) == '\0') {
1221 /* There's a lone trailing %; doesn't make sense. */
1222 PyErr_SetString(PyExc_ValueError, "strftime format "
1223 "ends with raw %");
1224 goto Done;
1226 /* A % has been seen and ch is the character after it. */
1227 else if (ch == 'z') {
1228 if (zreplacement == NULL) {
1229 /* format utcoffset */
1230 char buf[100];
1231 PyObject *tzinfo = get_tzinfo_member(object);
1232 zreplacement = PyString_FromString("");
1233 if (zreplacement == NULL) goto Done;
1234 if (tzinfo != Py_None && tzinfo != NULL) {
1235 assert(tzinfoarg != NULL);
1236 if (format_utcoffset(buf,
1237 sizeof(buf),
1239 tzinfo,
1240 tzinfoarg) < 0)
1241 goto Done;
1242 Py_DECREF(zreplacement);
1243 zreplacement = PyString_FromString(buf);
1244 if (zreplacement == NULL) goto Done;
1247 assert(zreplacement != NULL);
1248 ptoappend = PyString_AS_STRING(zreplacement);
1249 ntoappend = PyString_GET_SIZE(zreplacement);
1251 else if (ch == 'Z') {
1252 /* format tzname */
1253 if (Zreplacement == NULL) {
1254 PyObject *tzinfo = get_tzinfo_member(object);
1255 Zreplacement = PyString_FromString("");
1256 if (Zreplacement == NULL) goto Done;
1257 if (tzinfo != Py_None && tzinfo != NULL) {
1258 PyObject *temp;
1259 assert(tzinfoarg != NULL);
1260 temp = call_tzname(tzinfo, tzinfoarg);
1261 if (temp == NULL) goto Done;
1262 if (temp != Py_None) {
1263 assert(PyString_Check(temp));
1264 /* Since the tzname is getting
1265 * stuffed into the format, we
1266 * have to double any % signs
1267 * so that strftime doesn't
1268 * treat them as format codes.
1270 Py_DECREF(Zreplacement);
1271 Zreplacement = PyObject_CallMethod(
1272 temp, "replace",
1273 "ss", "%", "%%");
1274 Py_DECREF(temp);
1275 if (Zreplacement == NULL)
1276 goto Done;
1277 if (!PyString_Check(Zreplacement)) {
1278 PyErr_SetString(PyExc_TypeError, "tzname.replace() did not return a string");
1279 goto Done;
1282 else
1283 Py_DECREF(temp);
1286 assert(Zreplacement != NULL);
1287 ptoappend = PyString_AS_STRING(Zreplacement);
1288 ntoappend = PyString_GET_SIZE(Zreplacement);
1290 else if (ch == 'f') {
1291 /* format microseconds */
1292 if (freplacement == NULL) {
1293 freplacement = make_freplacement(object);
1294 if (freplacement == NULL)
1295 goto Done;
1297 assert(freplacement != NULL);
1298 assert(PyString_Check(freplacement));
1299 ptoappend = PyString_AS_STRING(freplacement);
1300 ntoappend = PyString_GET_SIZE(freplacement);
1302 else {
1303 /* percent followed by neither z nor Z */
1304 ptoappend = pin - 2;
1305 ntoappend = 2;
1308 /* Append the ntoappend chars starting at ptoappend to
1309 * the new format.
1311 assert(ptoappend != NULL);
1312 assert(ntoappend >= 0);
1313 if (ntoappend == 0)
1314 continue;
1315 while (usednew + ntoappend > totalnew) {
1316 int bigger = totalnew << 1;
1317 if ((bigger >> 1) != totalnew) { /* overflow */
1318 PyErr_NoMemory();
1319 goto Done;
1321 if (_PyString_Resize(&newfmt, bigger) < 0)
1322 goto Done;
1323 totalnew = bigger;
1324 pnew = PyString_AsString(newfmt) + usednew;
1326 memcpy(pnew, ptoappend, ntoappend);
1327 pnew += ntoappend;
1328 usednew += ntoappend;
1329 assert(usednew <= totalnew);
1330 } /* end while() */
1332 if (_PyString_Resize(&newfmt, usednew) < 0)
1333 goto Done;
1335 PyObject *time = PyImport_ImportModuleNoBlock("time");
1336 if (time == NULL)
1337 goto Done;
1338 result = PyObject_CallMethod(time, "strftime", "OO",
1339 newfmt, timetuple);
1340 Py_DECREF(time);
1342 Done:
1343 Py_XDECREF(freplacement);
1344 Py_XDECREF(zreplacement);
1345 Py_XDECREF(Zreplacement);
1346 Py_XDECREF(newfmt);
1347 return result;
1350 static char *
1351 isoformat_date(PyDateTime_Date *dt, char buffer[], int bufflen)
1353 int x;
1354 x = PyOS_snprintf(buffer, bufflen,
1355 "%04d-%02d-%02d",
1356 GET_YEAR(dt), GET_MONTH(dt), GET_DAY(dt));
1357 return buffer + x;
1360 static void
1361 isoformat_time(PyDateTime_DateTime *dt, char buffer[], int bufflen)
1363 int us = DATE_GET_MICROSECOND(dt);
1365 PyOS_snprintf(buffer, bufflen,
1366 "%02d:%02d:%02d", /* 8 characters */
1367 DATE_GET_HOUR(dt),
1368 DATE_GET_MINUTE(dt),
1369 DATE_GET_SECOND(dt));
1370 if (us)
1371 PyOS_snprintf(buffer + 8, bufflen - 8, ".%06d", us);
1374 /* ---------------------------------------------------------------------------
1375 * Wrap functions from the time module. These aren't directly available
1376 * from C. Perhaps they should be.
1379 /* Call time.time() and return its result (a Python float). */
1380 static PyObject *
1381 time_time(void)
1383 PyObject *result = NULL;
1384 PyObject *time = PyImport_ImportModuleNoBlock("time");
1386 if (time != NULL) {
1387 result = PyObject_CallMethod(time, "time", "()");
1388 Py_DECREF(time);
1390 return result;
1393 /* Build a time.struct_time. The weekday and day number are automatically
1394 * computed from the y,m,d args.
1396 static PyObject *
1397 build_struct_time(int y, int m, int d, int hh, int mm, int ss, int dstflag)
1399 PyObject *time;
1400 PyObject *result = NULL;
1402 time = PyImport_ImportModuleNoBlock("time");
1403 if (time != NULL) {
1404 result = PyObject_CallMethod(time, "struct_time",
1405 "((iiiiiiiii))",
1406 y, m, d,
1407 hh, mm, ss,
1408 weekday(y, m, d),
1409 days_before_month(y, m) + d,
1410 dstflag);
1411 Py_DECREF(time);
1413 return result;
1416 /* ---------------------------------------------------------------------------
1417 * Miscellaneous helpers.
1420 /* For obscure reasons, we need to use tp_richcompare instead of tp_compare.
1421 * The comparisons here all most naturally compute a cmp()-like result.
1422 * This little helper turns that into a bool result for rich comparisons.
1424 static PyObject *
1425 diff_to_bool(int diff, int op)
1427 PyObject *result;
1428 int istrue;
1430 switch (op) {
1431 case Py_EQ: istrue = diff == 0; break;
1432 case Py_NE: istrue = diff != 0; break;
1433 case Py_LE: istrue = diff <= 0; break;
1434 case Py_GE: istrue = diff >= 0; break;
1435 case Py_LT: istrue = diff < 0; break;
1436 case Py_GT: istrue = diff > 0; break;
1437 default:
1438 assert(! "op unknown");
1439 istrue = 0; /* To shut up compiler */
1441 result = istrue ? Py_True : Py_False;
1442 Py_INCREF(result);
1443 return result;
1446 /* Raises a "can't compare" TypeError and returns NULL. */
1447 static PyObject *
1448 cmperror(PyObject *a, PyObject *b)
1450 PyErr_Format(PyExc_TypeError,
1451 "can't compare %s to %s",
1452 Py_TYPE(a)->tp_name, Py_TYPE(b)->tp_name);
1453 return NULL;
1456 /* ---------------------------------------------------------------------------
1457 * Cached Python objects; these are set by the module init function.
1460 /* Conversion factors. */
1461 static PyObject *us_per_us = NULL; /* 1 */
1462 static PyObject *us_per_ms = NULL; /* 1000 */
1463 static PyObject *us_per_second = NULL; /* 1000000 */
1464 static PyObject *us_per_minute = NULL; /* 1e6 * 60 as Python int */
1465 static PyObject *us_per_hour = NULL; /* 1e6 * 3600 as Python long */
1466 static PyObject *us_per_day = NULL; /* 1e6 * 3600 * 24 as Python long */
1467 static PyObject *us_per_week = NULL; /* 1e6*3600*24*7 as Python long */
1468 static PyObject *seconds_per_day = NULL; /* 3600*24 as Python int */
1470 /* ---------------------------------------------------------------------------
1471 * Class implementations.
1475 * PyDateTime_Delta implementation.
1478 /* Convert a timedelta to a number of us,
1479 * (24*3600*self.days + self.seconds)*1000000 + self.microseconds
1480 * as a Python int or long.
1481 * Doing mixed-radix arithmetic by hand instead is excruciating in C,
1482 * due to ubiquitous overflow possibilities.
1484 static PyObject *
1485 delta_to_microseconds(PyDateTime_Delta *self)
1487 PyObject *x1 = NULL;
1488 PyObject *x2 = NULL;
1489 PyObject *x3 = NULL;
1490 PyObject *result = NULL;
1492 x1 = PyInt_FromLong(GET_TD_DAYS(self));
1493 if (x1 == NULL)
1494 goto Done;
1495 x2 = PyNumber_Multiply(x1, seconds_per_day); /* days in seconds */
1496 if (x2 == NULL)
1497 goto Done;
1498 Py_DECREF(x1);
1499 x1 = NULL;
1501 /* x2 has days in seconds */
1502 x1 = PyInt_FromLong(GET_TD_SECONDS(self)); /* seconds */
1503 if (x1 == NULL)
1504 goto Done;
1505 x3 = PyNumber_Add(x1, x2); /* days and seconds in seconds */
1506 if (x3 == NULL)
1507 goto Done;
1508 Py_DECREF(x1);
1509 Py_DECREF(x2);
1510 x1 = x2 = NULL;
1512 /* x3 has days+seconds in seconds */
1513 x1 = PyNumber_Multiply(x3, us_per_second); /* us */
1514 if (x1 == NULL)
1515 goto Done;
1516 Py_DECREF(x3);
1517 x3 = NULL;
1519 /* x1 has days+seconds in us */
1520 x2 = PyInt_FromLong(GET_TD_MICROSECONDS(self));
1521 if (x2 == NULL)
1522 goto Done;
1523 result = PyNumber_Add(x1, x2);
1525 Done:
1526 Py_XDECREF(x1);
1527 Py_XDECREF(x2);
1528 Py_XDECREF(x3);
1529 return result;
1532 /* Convert a number of us (as a Python int or long) to a timedelta.
1534 static PyObject *
1535 microseconds_to_delta_ex(PyObject *pyus, PyTypeObject *type)
1537 int us;
1538 int s;
1539 int d;
1540 long temp;
1542 PyObject *tuple = NULL;
1543 PyObject *num = NULL;
1544 PyObject *result = NULL;
1546 tuple = PyNumber_Divmod(pyus, us_per_second);
1547 if (tuple == NULL)
1548 goto Done;
1550 num = PyTuple_GetItem(tuple, 1); /* us */
1551 if (num == NULL)
1552 goto Done;
1553 temp = PyLong_AsLong(num);
1554 num = NULL;
1555 if (temp == -1 && PyErr_Occurred())
1556 goto Done;
1557 assert(0 <= temp && temp < 1000000);
1558 us = (int)temp;
1559 if (us < 0) {
1560 /* The divisor was positive, so this must be an error. */
1561 assert(PyErr_Occurred());
1562 goto Done;
1565 num = PyTuple_GetItem(tuple, 0); /* leftover seconds */
1566 if (num == NULL)
1567 goto Done;
1568 Py_INCREF(num);
1569 Py_DECREF(tuple);
1571 tuple = PyNumber_Divmod(num, seconds_per_day);
1572 if (tuple == NULL)
1573 goto Done;
1574 Py_DECREF(num);
1576 num = PyTuple_GetItem(tuple, 1); /* seconds */
1577 if (num == NULL)
1578 goto Done;
1579 temp = PyLong_AsLong(num);
1580 num = NULL;
1581 if (temp == -1 && PyErr_Occurred())
1582 goto Done;
1583 assert(0 <= temp && temp < 24*3600);
1584 s = (int)temp;
1586 if (s < 0) {
1587 /* The divisor was positive, so this must be an error. */
1588 assert(PyErr_Occurred());
1589 goto Done;
1592 num = PyTuple_GetItem(tuple, 0); /* leftover days */
1593 if (num == NULL)
1594 goto Done;
1595 Py_INCREF(num);
1596 temp = PyLong_AsLong(num);
1597 if (temp == -1 && PyErr_Occurred())
1598 goto Done;
1599 d = (int)temp;
1600 if ((long)d != temp) {
1601 PyErr_SetString(PyExc_OverflowError, "normalized days too "
1602 "large to fit in a C int");
1603 goto Done;
1605 result = new_delta_ex(d, s, us, 0, type);
1607 Done:
1608 Py_XDECREF(tuple);
1609 Py_XDECREF(num);
1610 return result;
1613 #define microseconds_to_delta(pymicros) \
1614 microseconds_to_delta_ex(pymicros, &PyDateTime_DeltaType)
1616 static PyObject *
1617 multiply_int_timedelta(PyObject *intobj, PyDateTime_Delta *delta)
1619 PyObject *pyus_in;
1620 PyObject *pyus_out;
1621 PyObject *result;
1623 pyus_in = delta_to_microseconds(delta);
1624 if (pyus_in == NULL)
1625 return NULL;
1627 pyus_out = PyNumber_Multiply(pyus_in, intobj);
1628 Py_DECREF(pyus_in);
1629 if (pyus_out == NULL)
1630 return NULL;
1632 result = microseconds_to_delta(pyus_out);
1633 Py_DECREF(pyus_out);
1634 return result;
1637 static PyObject *
1638 divide_timedelta_int(PyDateTime_Delta *delta, PyObject *intobj)
1640 PyObject *pyus_in;
1641 PyObject *pyus_out;
1642 PyObject *result;
1644 pyus_in = delta_to_microseconds(delta);
1645 if (pyus_in == NULL)
1646 return NULL;
1648 pyus_out = PyNumber_FloorDivide(pyus_in, intobj);
1649 Py_DECREF(pyus_in);
1650 if (pyus_out == NULL)
1651 return NULL;
1653 result = microseconds_to_delta(pyus_out);
1654 Py_DECREF(pyus_out);
1655 return result;
1658 static PyObject *
1659 delta_add(PyObject *left, PyObject *right)
1661 PyObject *result = Py_NotImplemented;
1663 if (PyDelta_Check(left) && PyDelta_Check(right)) {
1664 /* delta + delta */
1665 /* The C-level additions can't overflow because of the
1666 * invariant bounds.
1668 int days = GET_TD_DAYS(left) + GET_TD_DAYS(right);
1669 int seconds = GET_TD_SECONDS(left) + GET_TD_SECONDS(right);
1670 int microseconds = GET_TD_MICROSECONDS(left) +
1671 GET_TD_MICROSECONDS(right);
1672 result = new_delta(days, seconds, microseconds, 1);
1675 if (result == Py_NotImplemented)
1676 Py_INCREF(result);
1677 return result;
1680 static PyObject *
1681 delta_negative(PyDateTime_Delta *self)
1683 return new_delta(-GET_TD_DAYS(self),
1684 -GET_TD_SECONDS(self),
1685 -GET_TD_MICROSECONDS(self),
1689 static PyObject *
1690 delta_positive(PyDateTime_Delta *self)
1692 /* Could optimize this (by returning self) if this isn't a
1693 * subclass -- but who uses unary + ? Approximately nobody.
1695 return new_delta(GET_TD_DAYS(self),
1696 GET_TD_SECONDS(self),
1697 GET_TD_MICROSECONDS(self),
1701 static PyObject *
1702 delta_abs(PyDateTime_Delta *self)
1704 PyObject *result;
1706 assert(GET_TD_MICROSECONDS(self) >= 0);
1707 assert(GET_TD_SECONDS(self) >= 0);
1709 if (GET_TD_DAYS(self) < 0)
1710 result = delta_negative(self);
1711 else
1712 result = delta_positive(self);
1714 return result;
1717 static PyObject *
1718 delta_subtract(PyObject *left, PyObject *right)
1720 PyObject *result = Py_NotImplemented;
1722 if (PyDelta_Check(left) && PyDelta_Check(right)) {
1723 /* delta - delta */
1724 PyObject *minus_right = PyNumber_Negative(right);
1725 if (minus_right) {
1726 result = delta_add(left, minus_right);
1727 Py_DECREF(minus_right);
1729 else
1730 result = NULL;
1733 if (result == Py_NotImplemented)
1734 Py_INCREF(result);
1735 return result;
1738 /* This is more natural as a tp_compare, but doesn't work then: for whatever
1739 * reason, Python's try_3way_compare ignores tp_compare unless
1740 * PyInstance_Check returns true, but these aren't old-style classes.
1742 static PyObject *
1743 delta_richcompare(PyDateTime_Delta *self, PyObject *other, int op)
1745 int diff = 42; /* nonsense */
1747 if (PyDelta_Check(other)) {
1748 diff = GET_TD_DAYS(self) - GET_TD_DAYS(other);
1749 if (diff == 0) {
1750 diff = GET_TD_SECONDS(self) - GET_TD_SECONDS(other);
1751 if (diff == 0)
1752 diff = GET_TD_MICROSECONDS(self) -
1753 GET_TD_MICROSECONDS(other);
1756 else if (op == Py_EQ || op == Py_NE)
1757 diff = 1; /* any non-zero value will do */
1759 else /* stop this from falling back to address comparison */
1760 return cmperror((PyObject *)self, other);
1762 return diff_to_bool(diff, op);
1765 static PyObject *delta_getstate(PyDateTime_Delta *self);
1767 static long
1768 delta_hash(PyDateTime_Delta *self)
1770 if (self->hashcode == -1) {
1771 PyObject *temp = delta_getstate(self);
1772 if (temp != NULL) {
1773 self->hashcode = PyObject_Hash(temp);
1774 Py_DECREF(temp);
1777 return self->hashcode;
1780 static PyObject *
1781 delta_multiply(PyObject *left, PyObject *right)
1783 PyObject *result = Py_NotImplemented;
1785 if (PyDelta_Check(left)) {
1786 /* delta * ??? */
1787 if (PyInt_Check(right) || PyLong_Check(right))
1788 result = multiply_int_timedelta(right,
1789 (PyDateTime_Delta *) left);
1791 else if (PyInt_Check(left) || PyLong_Check(left))
1792 result = multiply_int_timedelta(left,
1793 (PyDateTime_Delta *) right);
1795 if (result == Py_NotImplemented)
1796 Py_INCREF(result);
1797 return result;
1800 static PyObject *
1801 delta_divide(PyObject *left, PyObject *right)
1803 PyObject *result = Py_NotImplemented;
1805 if (PyDelta_Check(left)) {
1806 /* delta * ??? */
1807 if (PyInt_Check(right) || PyLong_Check(right))
1808 result = divide_timedelta_int(
1809 (PyDateTime_Delta *)left,
1810 right);
1813 if (result == Py_NotImplemented)
1814 Py_INCREF(result);
1815 return result;
1818 /* Fold in the value of the tag ("seconds", "weeks", etc) component of a
1819 * timedelta constructor. sofar is the # of microseconds accounted for
1820 * so far, and there are factor microseconds per current unit, the number
1821 * of which is given by num. num * factor is added to sofar in a
1822 * numerically careful way, and that's the result. Any fractional
1823 * microseconds left over (this can happen if num is a float type) are
1824 * added into *leftover.
1825 * Note that there are many ways this can give an error (NULL) return.
1827 static PyObject *
1828 accum(const char* tag, PyObject *sofar, PyObject *num, PyObject *factor,
1829 double *leftover)
1831 PyObject *prod;
1832 PyObject *sum;
1834 assert(num != NULL);
1836 if (PyInt_Check(num) || PyLong_Check(num)) {
1837 prod = PyNumber_Multiply(num, factor);
1838 if (prod == NULL)
1839 return NULL;
1840 sum = PyNumber_Add(sofar, prod);
1841 Py_DECREF(prod);
1842 return sum;
1845 if (PyFloat_Check(num)) {
1846 double dnum;
1847 double fracpart;
1848 double intpart;
1849 PyObject *x;
1850 PyObject *y;
1852 /* The Plan: decompose num into an integer part and a
1853 * fractional part, num = intpart + fracpart.
1854 * Then num * factor ==
1855 * intpart * factor + fracpart * factor
1856 * and the LHS can be computed exactly in long arithmetic.
1857 * The RHS is again broken into an int part and frac part.
1858 * and the frac part is added into *leftover.
1860 dnum = PyFloat_AsDouble(num);
1861 if (dnum == -1.0 && PyErr_Occurred())
1862 return NULL;
1863 fracpart = modf(dnum, &intpart);
1864 x = PyLong_FromDouble(intpart);
1865 if (x == NULL)
1866 return NULL;
1868 prod = PyNumber_Multiply(x, factor);
1869 Py_DECREF(x);
1870 if (prod == NULL)
1871 return NULL;
1873 sum = PyNumber_Add(sofar, prod);
1874 Py_DECREF(prod);
1875 if (sum == NULL)
1876 return NULL;
1878 if (fracpart == 0.0)
1879 return sum;
1880 /* So far we've lost no information. Dealing with the
1881 * fractional part requires float arithmetic, and may
1882 * lose a little info.
1884 assert(PyInt_Check(factor) || PyLong_Check(factor));
1885 if (PyInt_Check(factor))
1886 dnum = (double)PyInt_AsLong(factor);
1887 else
1888 dnum = PyLong_AsDouble(factor);
1890 dnum *= fracpart;
1891 fracpart = modf(dnum, &intpart);
1892 x = PyLong_FromDouble(intpart);
1893 if (x == NULL) {
1894 Py_DECREF(sum);
1895 return NULL;
1898 y = PyNumber_Add(sum, x);
1899 Py_DECREF(sum);
1900 Py_DECREF(x);
1901 *leftover += fracpart;
1902 return y;
1905 PyErr_Format(PyExc_TypeError,
1906 "unsupported type for timedelta %s component: %s",
1907 tag, Py_TYPE(num)->tp_name);
1908 return NULL;
1911 static PyObject *
1912 delta_new(PyTypeObject *type, PyObject *args, PyObject *kw)
1914 PyObject *self = NULL;
1916 /* Argument objects. */
1917 PyObject *day = NULL;
1918 PyObject *second = NULL;
1919 PyObject *us = NULL;
1920 PyObject *ms = NULL;
1921 PyObject *minute = NULL;
1922 PyObject *hour = NULL;
1923 PyObject *week = NULL;
1925 PyObject *x = NULL; /* running sum of microseconds */
1926 PyObject *y = NULL; /* temp sum of microseconds */
1927 double leftover_us = 0.0;
1929 static char *keywords[] = {
1930 "days", "seconds", "microseconds", "milliseconds",
1931 "minutes", "hours", "weeks", NULL
1934 if (PyArg_ParseTupleAndKeywords(args, kw, "|OOOOOOO:__new__",
1935 keywords,
1936 &day, &second, &us,
1937 &ms, &minute, &hour, &week) == 0)
1938 goto Done;
1940 x = PyInt_FromLong(0);
1941 if (x == NULL)
1942 goto Done;
1944 #define CLEANUP \
1945 Py_DECREF(x); \
1946 x = y; \
1947 if (x == NULL) \
1948 goto Done
1950 if (us) {
1951 y = accum("microseconds", x, us, us_per_us, &leftover_us);
1952 CLEANUP;
1954 if (ms) {
1955 y = accum("milliseconds", x, ms, us_per_ms, &leftover_us);
1956 CLEANUP;
1958 if (second) {
1959 y = accum("seconds", x, second, us_per_second, &leftover_us);
1960 CLEANUP;
1962 if (minute) {
1963 y = accum("minutes", x, minute, us_per_minute, &leftover_us);
1964 CLEANUP;
1966 if (hour) {
1967 y = accum("hours", x, hour, us_per_hour, &leftover_us);
1968 CLEANUP;
1970 if (day) {
1971 y = accum("days", x, day, us_per_day, &leftover_us);
1972 CLEANUP;
1974 if (week) {
1975 y = accum("weeks", x, week, us_per_week, &leftover_us);
1976 CLEANUP;
1978 if (leftover_us) {
1979 /* Round to nearest whole # of us, and add into x. */
1980 PyObject *temp = PyLong_FromLong(round_to_long(leftover_us));
1981 if (temp == NULL) {
1982 Py_DECREF(x);
1983 goto Done;
1985 y = PyNumber_Add(x, temp);
1986 Py_DECREF(temp);
1987 CLEANUP;
1990 self = microseconds_to_delta_ex(x, type);
1991 Py_DECREF(x);
1992 Done:
1993 return self;
1995 #undef CLEANUP
1998 static int
1999 delta_nonzero(PyDateTime_Delta *self)
2001 return (GET_TD_DAYS(self) != 0
2002 || GET_TD_SECONDS(self) != 0
2003 || GET_TD_MICROSECONDS(self) != 0);
2006 static PyObject *
2007 delta_repr(PyDateTime_Delta *self)
2009 if (GET_TD_MICROSECONDS(self) != 0)
2010 return PyString_FromFormat("%s(%d, %d, %d)",
2011 Py_TYPE(self)->tp_name,
2012 GET_TD_DAYS(self),
2013 GET_TD_SECONDS(self),
2014 GET_TD_MICROSECONDS(self));
2015 if (GET_TD_SECONDS(self) != 0)
2016 return PyString_FromFormat("%s(%d, %d)",
2017 Py_TYPE(self)->tp_name,
2018 GET_TD_DAYS(self),
2019 GET_TD_SECONDS(self));
2021 return PyString_FromFormat("%s(%d)",
2022 Py_TYPE(self)->tp_name,
2023 GET_TD_DAYS(self));
2026 static PyObject *
2027 delta_str(PyDateTime_Delta *self)
2029 int days = GET_TD_DAYS(self);
2030 int seconds = GET_TD_SECONDS(self);
2031 int us = GET_TD_MICROSECONDS(self);
2032 int hours;
2033 int minutes;
2034 char buf[100];
2035 char *pbuf = buf;
2036 size_t buflen = sizeof(buf);
2037 int n;
2039 minutes = divmod(seconds, 60, &seconds);
2040 hours = divmod(minutes, 60, &minutes);
2042 if (days) {
2043 n = PyOS_snprintf(pbuf, buflen, "%d day%s, ", days,
2044 (days == 1 || days == -1) ? "" : "s");
2045 if (n < 0 || (size_t)n >= buflen)
2046 goto Fail;
2047 pbuf += n;
2048 buflen -= (size_t)n;
2051 n = PyOS_snprintf(pbuf, buflen, "%d:%02d:%02d",
2052 hours, minutes, seconds);
2053 if (n < 0 || (size_t)n >= buflen)
2054 goto Fail;
2055 pbuf += n;
2056 buflen -= (size_t)n;
2058 if (us) {
2059 n = PyOS_snprintf(pbuf, buflen, ".%06d", us);
2060 if (n < 0 || (size_t)n >= buflen)
2061 goto Fail;
2062 pbuf += n;
2065 return PyString_FromStringAndSize(buf, pbuf - buf);
2067 Fail:
2068 PyErr_SetString(PyExc_SystemError, "goofy result from PyOS_snprintf");
2069 return NULL;
2072 /* Pickle support, a simple use of __reduce__. */
2074 /* __getstate__ isn't exposed */
2075 static PyObject *
2076 delta_getstate(PyDateTime_Delta *self)
2078 return Py_BuildValue("iii", GET_TD_DAYS(self),
2079 GET_TD_SECONDS(self),
2080 GET_TD_MICROSECONDS(self));
2083 static PyObject *
2084 delta_reduce(PyDateTime_Delta* self)
2086 return Py_BuildValue("ON", Py_TYPE(self), delta_getstate(self));
2089 #define OFFSET(field) offsetof(PyDateTime_Delta, field)
2091 static PyMemberDef delta_members[] = {
2093 {"days", T_INT, OFFSET(days), READONLY,
2094 PyDoc_STR("Number of days.")},
2096 {"seconds", T_INT, OFFSET(seconds), READONLY,
2097 PyDoc_STR("Number of seconds (>= 0 and less than 1 day).")},
2099 {"microseconds", T_INT, OFFSET(microseconds), READONLY,
2100 PyDoc_STR("Number of microseconds (>= 0 and less than 1 second).")},
2101 {NULL}
2104 static PyMethodDef delta_methods[] = {
2105 {"__reduce__", (PyCFunction)delta_reduce, METH_NOARGS,
2106 PyDoc_STR("__reduce__() -> (cls, state)")},
2108 {NULL, NULL},
2111 static char delta_doc[] =
2112 PyDoc_STR("Difference between two datetime values.");
2114 static PyNumberMethods delta_as_number = {
2115 delta_add, /* nb_add */
2116 delta_subtract, /* nb_subtract */
2117 delta_multiply, /* nb_multiply */
2118 delta_divide, /* nb_divide */
2119 0, /* nb_remainder */
2120 0, /* nb_divmod */
2121 0, /* nb_power */
2122 (unaryfunc)delta_negative, /* nb_negative */
2123 (unaryfunc)delta_positive, /* nb_positive */
2124 (unaryfunc)delta_abs, /* nb_absolute */
2125 (inquiry)delta_nonzero, /* nb_nonzero */
2126 0, /*nb_invert*/
2127 0, /*nb_lshift*/
2128 0, /*nb_rshift*/
2129 0, /*nb_and*/
2130 0, /*nb_xor*/
2131 0, /*nb_or*/
2132 0, /*nb_coerce*/
2133 0, /*nb_int*/
2134 0, /*nb_long*/
2135 0, /*nb_float*/
2136 0, /*nb_oct*/
2137 0, /*nb_hex*/
2138 0, /*nb_inplace_add*/
2139 0, /*nb_inplace_subtract*/
2140 0, /*nb_inplace_multiply*/
2141 0, /*nb_inplace_divide*/
2142 0, /*nb_inplace_remainder*/
2143 0, /*nb_inplace_power*/
2144 0, /*nb_inplace_lshift*/
2145 0, /*nb_inplace_rshift*/
2146 0, /*nb_inplace_and*/
2147 0, /*nb_inplace_xor*/
2148 0, /*nb_inplace_or*/
2149 delta_divide, /* nb_floor_divide */
2150 0, /* nb_true_divide */
2151 0, /* nb_inplace_floor_divide */
2152 0, /* nb_inplace_true_divide */
2155 static PyTypeObject PyDateTime_DeltaType = {
2156 PyVarObject_HEAD_INIT(NULL, 0)
2157 "datetime.timedelta", /* tp_name */
2158 sizeof(PyDateTime_Delta), /* tp_basicsize */
2159 0, /* tp_itemsize */
2160 0, /* tp_dealloc */
2161 0, /* tp_print */
2162 0, /* tp_getattr */
2163 0, /* tp_setattr */
2164 0, /* tp_compare */
2165 (reprfunc)delta_repr, /* tp_repr */
2166 &delta_as_number, /* tp_as_number */
2167 0, /* tp_as_sequence */
2168 0, /* tp_as_mapping */
2169 (hashfunc)delta_hash, /* tp_hash */
2170 0, /* tp_call */
2171 (reprfunc)delta_str, /* tp_str */
2172 PyObject_GenericGetAttr, /* tp_getattro */
2173 0, /* tp_setattro */
2174 0, /* tp_as_buffer */
2175 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
2176 Py_TPFLAGS_BASETYPE, /* tp_flags */
2177 delta_doc, /* tp_doc */
2178 0, /* tp_traverse */
2179 0, /* tp_clear */
2180 (richcmpfunc)delta_richcompare, /* tp_richcompare */
2181 0, /* tp_weaklistoffset */
2182 0, /* tp_iter */
2183 0, /* tp_iternext */
2184 delta_methods, /* tp_methods */
2185 delta_members, /* tp_members */
2186 0, /* tp_getset */
2187 0, /* tp_base */
2188 0, /* tp_dict */
2189 0, /* tp_descr_get */
2190 0, /* tp_descr_set */
2191 0, /* tp_dictoffset */
2192 0, /* tp_init */
2193 0, /* tp_alloc */
2194 delta_new, /* tp_new */
2195 0, /* tp_free */
2199 * PyDateTime_Date implementation.
2202 /* Accessor properties. */
2204 static PyObject *
2205 date_year(PyDateTime_Date *self, void *unused)
2207 return PyInt_FromLong(GET_YEAR(self));
2210 static PyObject *
2211 date_month(PyDateTime_Date *self, void *unused)
2213 return PyInt_FromLong(GET_MONTH(self));
2216 static PyObject *
2217 date_day(PyDateTime_Date *self, void *unused)
2219 return PyInt_FromLong(GET_DAY(self));
2222 static PyGetSetDef date_getset[] = {
2223 {"year", (getter)date_year},
2224 {"month", (getter)date_month},
2225 {"day", (getter)date_day},
2226 {NULL}
2229 /* Constructors. */
2231 static char *date_kws[] = {"year", "month", "day", NULL};
2233 static PyObject *
2234 date_new(PyTypeObject *type, PyObject *args, PyObject *kw)
2236 PyObject *self = NULL;
2237 PyObject *state;
2238 int year;
2239 int month;
2240 int day;
2242 /* Check for invocation from pickle with __getstate__ state */
2243 if (PyTuple_GET_SIZE(args) == 1 &&
2244 PyString_Check(state = PyTuple_GET_ITEM(args, 0)) &&
2245 PyString_GET_SIZE(state) == _PyDateTime_DATE_DATASIZE &&
2246 MONTH_IS_SANE(PyString_AS_STRING(state)[2]))
2248 PyDateTime_Date *me;
2250 me = (PyDateTime_Date *) (type->tp_alloc(type, 0));
2251 if (me != NULL) {
2252 char *pdata = PyString_AS_STRING(state);
2253 memcpy(me->data, pdata, _PyDateTime_DATE_DATASIZE);
2254 me->hashcode = -1;
2256 return (PyObject *)me;
2259 if (PyArg_ParseTupleAndKeywords(args, kw, "iii", date_kws,
2260 &year, &month, &day)) {
2261 if (check_date_args(year, month, day) < 0)
2262 return NULL;
2263 self = new_date_ex(year, month, day, type);
2265 return self;
2268 /* Return new date from localtime(t). */
2269 static PyObject *
2270 date_local_from_time_t(PyObject *cls, double ts)
2272 struct tm *tm;
2273 time_t t;
2274 PyObject *result = NULL;
2276 t = _PyTime_DoubleToTimet(ts);
2277 if (t == (time_t)-1 && PyErr_Occurred())
2278 return NULL;
2279 tm = localtime(&t);
2280 if (tm)
2281 result = PyObject_CallFunction(cls, "iii",
2282 tm->tm_year + 1900,
2283 tm->tm_mon + 1,
2284 tm->tm_mday);
2285 else
2286 PyErr_SetString(PyExc_ValueError,
2287 "timestamp out of range for "
2288 "platform localtime() function");
2289 return result;
2292 /* Return new date from current time.
2293 * We say this is equivalent to fromtimestamp(time.time()), and the
2294 * only way to be sure of that is to *call* time.time(). That's not
2295 * generally the same as calling C's time.
2297 static PyObject *
2298 date_today(PyObject *cls, PyObject *dummy)
2300 PyObject *time;
2301 PyObject *result;
2303 time = time_time();
2304 if (time == NULL)
2305 return NULL;
2307 /* Note well: today() is a class method, so this may not call
2308 * date.fromtimestamp. For example, it may call
2309 * datetime.fromtimestamp. That's why we need all the accuracy
2310 * time.time() delivers; if someone were gonzo about optimization,
2311 * date.today() could get away with plain C time().
2313 result = PyObject_CallMethod(cls, "fromtimestamp", "O", time);
2314 Py_DECREF(time);
2315 return result;
2318 /* Return new date from given timestamp (Python timestamp -- a double). */
2319 static PyObject *
2320 date_fromtimestamp(PyObject *cls, PyObject *args)
2322 double timestamp;
2323 PyObject *result = NULL;
2325 if (PyArg_ParseTuple(args, "d:fromtimestamp", &timestamp))
2326 result = date_local_from_time_t(cls, timestamp);
2327 return result;
2330 /* Return new date from proleptic Gregorian ordinal. Raises ValueError if
2331 * the ordinal is out of range.
2333 static PyObject *
2334 date_fromordinal(PyObject *cls, PyObject *args)
2336 PyObject *result = NULL;
2337 int ordinal;
2339 if (PyArg_ParseTuple(args, "i:fromordinal", &ordinal)) {
2340 int year;
2341 int month;
2342 int day;
2344 if (ordinal < 1)
2345 PyErr_SetString(PyExc_ValueError, "ordinal must be "
2346 ">= 1");
2347 else {
2348 ord_to_ymd(ordinal, &year, &month, &day);
2349 result = PyObject_CallFunction(cls, "iii",
2350 year, month, day);
2353 return result;
2357 * Date arithmetic.
2360 /* date + timedelta -> date. If arg negate is true, subtract the timedelta
2361 * instead.
2363 static PyObject *
2364 add_date_timedelta(PyDateTime_Date *date, PyDateTime_Delta *delta, int negate)
2366 PyObject *result = NULL;
2367 int year = GET_YEAR(date);
2368 int month = GET_MONTH(date);
2369 int deltadays = GET_TD_DAYS(delta);
2370 /* C-level overflow is impossible because |deltadays| < 1e9. */
2371 int day = GET_DAY(date) + (negate ? -deltadays : deltadays);
2373 if (normalize_date(&year, &month, &day) >= 0)
2374 result = new_date(year, month, day);
2375 return result;
2378 static PyObject *
2379 date_add(PyObject *left, PyObject *right)
2381 if (PyDateTime_Check(left) || PyDateTime_Check(right)) {
2382 Py_INCREF(Py_NotImplemented);
2383 return Py_NotImplemented;
2385 if (PyDate_Check(left)) {
2386 /* date + ??? */
2387 if (PyDelta_Check(right))
2388 /* date + delta */
2389 return add_date_timedelta((PyDateTime_Date *) left,
2390 (PyDateTime_Delta *) right,
2393 else {
2394 /* ??? + date
2395 * 'right' must be one of us, or we wouldn't have been called
2397 if (PyDelta_Check(left))
2398 /* delta + date */
2399 return add_date_timedelta((PyDateTime_Date *) right,
2400 (PyDateTime_Delta *) left,
2403 Py_INCREF(Py_NotImplemented);
2404 return Py_NotImplemented;
2407 static PyObject *
2408 date_subtract(PyObject *left, PyObject *right)
2410 if (PyDateTime_Check(left) || PyDateTime_Check(right)) {
2411 Py_INCREF(Py_NotImplemented);
2412 return Py_NotImplemented;
2414 if (PyDate_Check(left)) {
2415 if (PyDate_Check(right)) {
2416 /* date - date */
2417 int left_ord = ymd_to_ord(GET_YEAR(left),
2418 GET_MONTH(left),
2419 GET_DAY(left));
2420 int right_ord = ymd_to_ord(GET_YEAR(right),
2421 GET_MONTH(right),
2422 GET_DAY(right));
2423 return new_delta(left_ord - right_ord, 0, 0, 0);
2425 if (PyDelta_Check(right)) {
2426 /* date - delta */
2427 return add_date_timedelta((PyDateTime_Date *) left,
2428 (PyDateTime_Delta *) right,
2432 Py_INCREF(Py_NotImplemented);
2433 return Py_NotImplemented;
2437 /* Various ways to turn a date into a string. */
2439 static PyObject *
2440 date_repr(PyDateTime_Date *self)
2442 char buffer[1028];
2443 const char *type_name;
2445 type_name = Py_TYPE(self)->tp_name;
2446 PyOS_snprintf(buffer, sizeof(buffer), "%s(%d, %d, %d)",
2447 type_name,
2448 GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
2450 return PyString_FromString(buffer);
2453 static PyObject *
2454 date_isoformat(PyDateTime_Date *self)
2456 char buffer[128];
2458 isoformat_date(self, buffer, sizeof(buffer));
2459 return PyString_FromString(buffer);
2462 /* str() calls the appropriate isoformat() method. */
2463 static PyObject *
2464 date_str(PyDateTime_Date *self)
2466 return PyObject_CallMethod((PyObject *)self, "isoformat", "()");
2470 static PyObject *
2471 date_ctime(PyDateTime_Date *self)
2473 return format_ctime(self, 0, 0, 0);
2476 static PyObject *
2477 date_strftime(PyDateTime_Date *self, PyObject *args, PyObject *kw)
2479 /* This method can be inherited, and needs to call the
2480 * timetuple() method appropriate to self's class.
2482 PyObject *result;
2483 PyObject *format;
2484 PyObject *tuple;
2485 static char *keywords[] = {"format", NULL};
2487 if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:strftime", keywords,
2488 &PyString_Type, &format))
2489 return NULL;
2491 tuple = PyObject_CallMethod((PyObject *)self, "timetuple", "()");
2492 if (tuple == NULL)
2493 return NULL;
2494 result = wrap_strftime((PyObject *)self, format, tuple,
2495 (PyObject *)self);
2496 Py_DECREF(tuple);
2497 return result;
2500 static PyObject *
2501 date_format(PyDateTime_Date *self, PyObject *args)
2503 PyObject *format;
2505 if (!PyArg_ParseTuple(args, "O:__format__", &format))
2506 return NULL;
2508 /* Check for str or unicode */
2509 if (PyString_Check(format)) {
2510 /* If format is zero length, return str(self) */
2511 if (PyString_GET_SIZE(format) == 0)
2512 return PyObject_Str((PyObject *)self);
2513 } else if (PyUnicode_Check(format)) {
2514 /* If format is zero length, return str(self) */
2515 if (PyUnicode_GET_SIZE(format) == 0)
2516 return PyObject_Unicode((PyObject *)self);
2517 } else {
2518 PyErr_Format(PyExc_ValueError,
2519 "__format__ expects str or unicode, not %.200s",
2520 Py_TYPE(format)->tp_name);
2521 return NULL;
2523 return PyObject_CallMethod((PyObject *)self, "strftime", "O", format);
2526 /* ISO methods. */
2528 static PyObject *
2529 date_isoweekday(PyDateTime_Date *self)
2531 int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
2533 return PyInt_FromLong(dow + 1);
2536 static PyObject *
2537 date_isocalendar(PyDateTime_Date *self)
2539 int year = GET_YEAR(self);
2540 int week1_monday = iso_week1_monday(year);
2541 int today = ymd_to_ord(year, GET_MONTH(self), GET_DAY(self));
2542 int week;
2543 int day;
2545 week = divmod(today - week1_monday, 7, &day);
2546 if (week < 0) {
2547 --year;
2548 week1_monday = iso_week1_monday(year);
2549 week = divmod(today - week1_monday, 7, &day);
2551 else if (week >= 52 && today >= iso_week1_monday(year + 1)) {
2552 ++year;
2553 week = 0;
2555 return Py_BuildValue("iii", year, week + 1, day + 1);
2558 /* Miscellaneous methods. */
2560 /* This is more natural as a tp_compare, but doesn't work then: for whatever
2561 * reason, Python's try_3way_compare ignores tp_compare unless
2562 * PyInstance_Check returns true, but these aren't old-style classes.
2564 static PyObject *
2565 date_richcompare(PyDateTime_Date *self, PyObject *other, int op)
2567 int diff = 42; /* nonsense */
2569 if (PyDate_Check(other))
2570 diff = memcmp(self->data, ((PyDateTime_Date *)other)->data,
2571 _PyDateTime_DATE_DATASIZE);
2573 else if (PyObject_HasAttrString(other, "timetuple")) {
2574 /* A hook for other kinds of date objects. */
2575 Py_INCREF(Py_NotImplemented);
2576 return Py_NotImplemented;
2578 else if (op == Py_EQ || op == Py_NE)
2579 diff = 1; /* any non-zero value will do */
2581 else /* stop this from falling back to address comparison */
2582 return cmperror((PyObject *)self, other);
2584 return diff_to_bool(diff, op);
2587 static PyObject *
2588 date_timetuple(PyDateTime_Date *self)
2590 return build_struct_time(GET_YEAR(self),
2591 GET_MONTH(self),
2592 GET_DAY(self),
2593 0, 0, 0, -1);
2596 static PyObject *
2597 date_replace(PyDateTime_Date *self, PyObject *args, PyObject *kw)
2599 PyObject *clone;
2600 PyObject *tuple;
2601 int year = GET_YEAR(self);
2602 int month = GET_MONTH(self);
2603 int day = GET_DAY(self);
2605 if (! PyArg_ParseTupleAndKeywords(args, kw, "|iii:replace", date_kws,
2606 &year, &month, &day))
2607 return NULL;
2608 tuple = Py_BuildValue("iii", year, month, day);
2609 if (tuple == NULL)
2610 return NULL;
2611 clone = date_new(Py_TYPE(self), tuple, NULL);
2612 Py_DECREF(tuple);
2613 return clone;
2616 static PyObject *date_getstate(PyDateTime_Date *self);
2618 static long
2619 date_hash(PyDateTime_Date *self)
2621 if (self->hashcode == -1) {
2622 PyObject *temp = date_getstate(self);
2623 if (temp != NULL) {
2624 self->hashcode = PyObject_Hash(temp);
2625 Py_DECREF(temp);
2628 return self->hashcode;
2631 static PyObject *
2632 date_toordinal(PyDateTime_Date *self)
2634 return PyInt_FromLong(ymd_to_ord(GET_YEAR(self), GET_MONTH(self),
2635 GET_DAY(self)));
2638 static PyObject *
2639 date_weekday(PyDateTime_Date *self)
2641 int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
2643 return PyInt_FromLong(dow);
2646 /* Pickle support, a simple use of __reduce__. */
2648 /* __getstate__ isn't exposed */
2649 static PyObject *
2650 date_getstate(PyDateTime_Date *self)
2652 return Py_BuildValue(
2653 "(N)",
2654 PyString_FromStringAndSize((char *)self->data,
2655 _PyDateTime_DATE_DATASIZE));
2658 static PyObject *
2659 date_reduce(PyDateTime_Date *self, PyObject *arg)
2661 return Py_BuildValue("(ON)", Py_TYPE(self), date_getstate(self));
2664 static PyMethodDef date_methods[] = {
2666 /* Class methods: */
2668 {"fromtimestamp", (PyCFunction)date_fromtimestamp, METH_VARARGS |
2669 METH_CLASS,
2670 PyDoc_STR("timestamp -> local date from a POSIX timestamp (like "
2671 "time.time()).")},
2673 {"fromordinal", (PyCFunction)date_fromordinal, METH_VARARGS |
2674 METH_CLASS,
2675 PyDoc_STR("int -> date corresponding to a proleptic Gregorian "
2676 "ordinal.")},
2678 {"today", (PyCFunction)date_today, METH_NOARGS | METH_CLASS,
2679 PyDoc_STR("Current date or datetime: same as "
2680 "self.__class__.fromtimestamp(time.time()).")},
2682 /* Instance methods: */
2684 {"ctime", (PyCFunction)date_ctime, METH_NOARGS,
2685 PyDoc_STR("Return ctime() style string.")},
2687 {"strftime", (PyCFunction)date_strftime, METH_VARARGS | METH_KEYWORDS,
2688 PyDoc_STR("format -> strftime() style string.")},
2690 {"__format__", (PyCFunction)date_format, METH_VARARGS,
2691 PyDoc_STR("Formats self with strftime.")},
2693 {"timetuple", (PyCFunction)date_timetuple, METH_NOARGS,
2694 PyDoc_STR("Return time tuple, compatible with time.localtime().")},
2696 {"isocalendar", (PyCFunction)date_isocalendar, METH_NOARGS,
2697 PyDoc_STR("Return a 3-tuple containing ISO year, week number, and "
2698 "weekday.")},
2700 {"isoformat", (PyCFunction)date_isoformat, METH_NOARGS,
2701 PyDoc_STR("Return string in ISO 8601 format, YYYY-MM-DD.")},
2703 {"isoweekday", (PyCFunction)date_isoweekday, METH_NOARGS,
2704 PyDoc_STR("Return the day of the week represented by the date.\n"
2705 "Monday == 1 ... Sunday == 7")},
2707 {"toordinal", (PyCFunction)date_toordinal, METH_NOARGS,
2708 PyDoc_STR("Return proleptic Gregorian ordinal. January 1 of year "
2709 "1 is day 1.")},
2711 {"weekday", (PyCFunction)date_weekday, METH_NOARGS,
2712 PyDoc_STR("Return the day of the week represented by the date.\n"
2713 "Monday == 0 ... Sunday == 6")},
2715 {"replace", (PyCFunction)date_replace, METH_VARARGS | METH_KEYWORDS,
2716 PyDoc_STR("Return date with new specified fields.")},
2718 {"__reduce__", (PyCFunction)date_reduce, METH_NOARGS,
2719 PyDoc_STR("__reduce__() -> (cls, state)")},
2721 {NULL, NULL}
2724 static char date_doc[] =
2725 PyDoc_STR("date(year, month, day) --> date object");
2727 static PyNumberMethods date_as_number = {
2728 date_add, /* nb_add */
2729 date_subtract, /* nb_subtract */
2730 0, /* nb_multiply */
2731 0, /* nb_divide */
2732 0, /* nb_remainder */
2733 0, /* nb_divmod */
2734 0, /* nb_power */
2735 0, /* nb_negative */
2736 0, /* nb_positive */
2737 0, /* nb_absolute */
2738 0, /* nb_nonzero */
2741 static PyTypeObject PyDateTime_DateType = {
2742 PyVarObject_HEAD_INIT(NULL, 0)
2743 "datetime.date", /* tp_name */
2744 sizeof(PyDateTime_Date), /* tp_basicsize */
2745 0, /* tp_itemsize */
2746 0, /* tp_dealloc */
2747 0, /* tp_print */
2748 0, /* tp_getattr */
2749 0, /* tp_setattr */
2750 0, /* tp_compare */
2751 (reprfunc)date_repr, /* tp_repr */
2752 &date_as_number, /* tp_as_number */
2753 0, /* tp_as_sequence */
2754 0, /* tp_as_mapping */
2755 (hashfunc)date_hash, /* tp_hash */
2756 0, /* tp_call */
2757 (reprfunc)date_str, /* tp_str */
2758 PyObject_GenericGetAttr, /* tp_getattro */
2759 0, /* tp_setattro */
2760 0, /* tp_as_buffer */
2761 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
2762 Py_TPFLAGS_BASETYPE, /* tp_flags */
2763 date_doc, /* tp_doc */
2764 0, /* tp_traverse */
2765 0, /* tp_clear */
2766 (richcmpfunc)date_richcompare, /* tp_richcompare */
2767 0, /* tp_weaklistoffset */
2768 0, /* tp_iter */
2769 0, /* tp_iternext */
2770 date_methods, /* tp_methods */
2771 0, /* tp_members */
2772 date_getset, /* tp_getset */
2773 0, /* tp_base */
2774 0, /* tp_dict */
2775 0, /* tp_descr_get */
2776 0, /* tp_descr_set */
2777 0, /* tp_dictoffset */
2778 0, /* tp_init */
2779 0, /* tp_alloc */
2780 date_new, /* tp_new */
2781 0, /* tp_free */
2785 * PyDateTime_TZInfo implementation.
2788 /* This is a pure abstract base class, so doesn't do anything beyond
2789 * raising NotImplemented exceptions. Real tzinfo classes need
2790 * to derive from this. This is mostly for clarity, and for efficiency in
2791 * datetime and time constructors (their tzinfo arguments need to
2792 * be subclasses of this tzinfo class, which is easy and quick to check).
2794 * Note: For reasons having to do with pickling of subclasses, we have
2795 * to allow tzinfo objects to be instantiated. This wasn't an issue
2796 * in the Python implementation (__init__() could raise NotImplementedError
2797 * there without ill effect), but doing so in the C implementation hit a
2798 * brick wall.
2801 static PyObject *
2802 tzinfo_nogo(const char* methodname)
2804 PyErr_Format(PyExc_NotImplementedError,
2805 "a tzinfo subclass must implement %s()",
2806 methodname);
2807 return NULL;
2810 /* Methods. A subclass must implement these. */
2812 static PyObject *
2813 tzinfo_tzname(PyDateTime_TZInfo *self, PyObject *dt)
2815 return tzinfo_nogo("tzname");
2818 static PyObject *
2819 tzinfo_utcoffset(PyDateTime_TZInfo *self, PyObject *dt)
2821 return tzinfo_nogo("utcoffset");
2824 static PyObject *
2825 tzinfo_dst(PyDateTime_TZInfo *self, PyObject *dt)
2827 return tzinfo_nogo("dst");
2830 static PyObject *
2831 tzinfo_fromutc(PyDateTime_TZInfo *self, PyDateTime_DateTime *dt)
2833 int y, m, d, hh, mm, ss, us;
2835 PyObject *result;
2836 int off, dst;
2837 int none;
2838 int delta;
2840 if (! PyDateTime_Check(dt)) {
2841 PyErr_SetString(PyExc_TypeError,
2842 "fromutc: argument must be a datetime");
2843 return NULL;
2845 if (! HASTZINFO(dt) || dt->tzinfo != (PyObject *)self) {
2846 PyErr_SetString(PyExc_ValueError, "fromutc: dt.tzinfo "
2847 "is not self");
2848 return NULL;
2851 off = call_utcoffset(dt->tzinfo, (PyObject *)dt, &none);
2852 if (off == -1 && PyErr_Occurred())
2853 return NULL;
2854 if (none) {
2855 PyErr_SetString(PyExc_ValueError, "fromutc: non-None "
2856 "utcoffset() result required");
2857 return NULL;
2860 dst = call_dst(dt->tzinfo, (PyObject *)dt, &none);
2861 if (dst == -1 && PyErr_Occurred())
2862 return NULL;
2863 if (none) {
2864 PyErr_SetString(PyExc_ValueError, "fromutc: non-None "
2865 "dst() result required");
2866 return NULL;
2869 y = GET_YEAR(dt);
2870 m = GET_MONTH(dt);
2871 d = GET_DAY(dt);
2872 hh = DATE_GET_HOUR(dt);
2873 mm = DATE_GET_MINUTE(dt);
2874 ss = DATE_GET_SECOND(dt);
2875 us = DATE_GET_MICROSECOND(dt);
2877 delta = off - dst;
2878 mm += delta;
2879 if ((mm < 0 || mm >= 60) &&
2880 normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
2881 return NULL;
2882 result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo);
2883 if (result == NULL)
2884 return result;
2886 dst = call_dst(dt->tzinfo, result, &none);
2887 if (dst == -1 && PyErr_Occurred())
2888 goto Fail;
2889 if (none)
2890 goto Inconsistent;
2891 if (dst == 0)
2892 return result;
2894 mm += dst;
2895 if ((mm < 0 || mm >= 60) &&
2896 normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
2897 goto Fail;
2898 Py_DECREF(result);
2899 result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo);
2900 return result;
2902 Inconsistent:
2903 PyErr_SetString(PyExc_ValueError, "fromutc: tz.dst() gave"
2904 "inconsistent results; cannot convert");
2906 /* fall thru to failure */
2907 Fail:
2908 Py_DECREF(result);
2909 return NULL;
2913 * Pickle support. This is solely so that tzinfo subclasses can use
2914 * pickling -- tzinfo itself is supposed to be uninstantiable.
2917 static PyObject *
2918 tzinfo_reduce(PyObject *self)
2920 PyObject *args, *state, *tmp;
2921 PyObject *getinitargs, *getstate;
2923 tmp = PyTuple_New(0);
2924 if (tmp == NULL)
2925 return NULL;
2927 getinitargs = PyObject_GetAttrString(self, "__getinitargs__");
2928 if (getinitargs != NULL) {
2929 args = PyObject_CallObject(getinitargs, tmp);
2930 Py_DECREF(getinitargs);
2931 if (args == NULL) {
2932 Py_DECREF(tmp);
2933 return NULL;
2936 else {
2937 PyErr_Clear();
2938 args = tmp;
2939 Py_INCREF(args);
2942 getstate = PyObject_GetAttrString(self, "__getstate__");
2943 if (getstate != NULL) {
2944 state = PyObject_CallObject(getstate, tmp);
2945 Py_DECREF(getstate);
2946 if (state == NULL) {
2947 Py_DECREF(args);
2948 Py_DECREF(tmp);
2949 return NULL;
2952 else {
2953 PyObject **dictptr;
2954 PyErr_Clear();
2955 state = Py_None;
2956 dictptr = _PyObject_GetDictPtr(self);
2957 if (dictptr && *dictptr && PyDict_Size(*dictptr))
2958 state = *dictptr;
2959 Py_INCREF(state);
2962 Py_DECREF(tmp);
2964 if (state == Py_None) {
2965 Py_DECREF(state);
2966 return Py_BuildValue("(ON)", Py_TYPE(self), args);
2968 else
2969 return Py_BuildValue("(ONN)", Py_TYPE(self), args, state);
2972 static PyMethodDef tzinfo_methods[] = {
2974 {"tzname", (PyCFunction)tzinfo_tzname, METH_O,
2975 PyDoc_STR("datetime -> string name of time zone.")},
2977 {"utcoffset", (PyCFunction)tzinfo_utcoffset, METH_O,
2978 PyDoc_STR("datetime -> minutes east of UTC (negative for "
2979 "west of UTC).")},
2981 {"dst", (PyCFunction)tzinfo_dst, METH_O,
2982 PyDoc_STR("datetime -> DST offset in minutes east of UTC.")},
2984 {"fromutc", (PyCFunction)tzinfo_fromutc, METH_O,
2985 PyDoc_STR("datetime in UTC -> datetime in local time.")},
2987 {"__reduce__", (PyCFunction)tzinfo_reduce, METH_NOARGS,
2988 PyDoc_STR("-> (cls, state)")},
2990 {NULL, NULL}
2993 static char tzinfo_doc[] =
2994 PyDoc_STR("Abstract base class for time zone info objects.");
2996 statichere PyTypeObject PyDateTime_TZInfoType = {
2997 PyObject_HEAD_INIT(NULL)
2998 0, /* ob_size */
2999 "datetime.tzinfo", /* tp_name */
3000 sizeof(PyDateTime_TZInfo), /* tp_basicsize */
3001 0, /* tp_itemsize */
3002 0, /* tp_dealloc */
3003 0, /* tp_print */
3004 0, /* tp_getattr */
3005 0, /* tp_setattr */
3006 0, /* tp_compare */
3007 0, /* tp_repr */
3008 0, /* tp_as_number */
3009 0, /* tp_as_sequence */
3010 0, /* tp_as_mapping */
3011 0, /* tp_hash */
3012 0, /* tp_call */
3013 0, /* tp_str */
3014 PyObject_GenericGetAttr, /* tp_getattro */
3015 0, /* tp_setattro */
3016 0, /* tp_as_buffer */
3017 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
3018 Py_TPFLAGS_BASETYPE, /* tp_flags */
3019 tzinfo_doc, /* tp_doc */
3020 0, /* tp_traverse */
3021 0, /* tp_clear */
3022 0, /* tp_richcompare */
3023 0, /* tp_weaklistoffset */
3024 0, /* tp_iter */
3025 0, /* tp_iternext */
3026 tzinfo_methods, /* tp_methods */
3027 0, /* tp_members */
3028 0, /* tp_getset */
3029 0, /* tp_base */
3030 0, /* tp_dict */
3031 0, /* tp_descr_get */
3032 0, /* tp_descr_set */
3033 0, /* tp_dictoffset */
3034 0, /* tp_init */
3035 0, /* tp_alloc */
3036 PyType_GenericNew, /* tp_new */
3037 0, /* tp_free */
3041 * PyDateTime_Time implementation.
3044 /* Accessor properties.
3047 static PyObject *
3048 time_hour(PyDateTime_Time *self, void *unused)
3050 return PyInt_FromLong(TIME_GET_HOUR(self));
3053 static PyObject *
3054 time_minute(PyDateTime_Time *self, void *unused)
3056 return PyInt_FromLong(TIME_GET_MINUTE(self));
3059 /* The name time_second conflicted with some platform header file. */
3060 static PyObject *
3061 py_time_second(PyDateTime_Time *self, void *unused)
3063 return PyInt_FromLong(TIME_GET_SECOND(self));
3066 static PyObject *
3067 time_microsecond(PyDateTime_Time *self, void *unused)
3069 return PyInt_FromLong(TIME_GET_MICROSECOND(self));
3072 static PyObject *
3073 time_tzinfo(PyDateTime_Time *self, void *unused)
3075 PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None;
3076 Py_INCREF(result);
3077 return result;
3080 static PyGetSetDef time_getset[] = {
3081 {"hour", (getter)time_hour},
3082 {"minute", (getter)time_minute},
3083 {"second", (getter)py_time_second},
3084 {"microsecond", (getter)time_microsecond},
3085 {"tzinfo", (getter)time_tzinfo},
3086 {NULL}
3090 * Constructors.
3093 static char *time_kws[] = {"hour", "minute", "second", "microsecond",
3094 "tzinfo", NULL};
3096 static PyObject *
3097 time_new(PyTypeObject *type, PyObject *args, PyObject *kw)
3099 PyObject *self = NULL;
3100 PyObject *state;
3101 int hour = 0;
3102 int minute = 0;
3103 int second = 0;
3104 int usecond = 0;
3105 PyObject *tzinfo = Py_None;
3107 /* Check for invocation from pickle with __getstate__ state */
3108 if (PyTuple_GET_SIZE(args) >= 1 &&
3109 PyTuple_GET_SIZE(args) <= 2 &&
3110 PyString_Check(state = PyTuple_GET_ITEM(args, 0)) &&
3111 PyString_GET_SIZE(state) == _PyDateTime_TIME_DATASIZE &&
3112 ((unsigned char) (PyString_AS_STRING(state)[0])) < 24)
3114 PyDateTime_Time *me;
3115 char aware;
3117 if (PyTuple_GET_SIZE(args) == 2) {
3118 tzinfo = PyTuple_GET_ITEM(args, 1);
3119 if (check_tzinfo_subclass(tzinfo) < 0) {
3120 PyErr_SetString(PyExc_TypeError, "bad "
3121 "tzinfo state arg");
3122 return NULL;
3125 aware = (char)(tzinfo != Py_None);
3126 me = (PyDateTime_Time *) (type->tp_alloc(type, aware));
3127 if (me != NULL) {
3128 char *pdata = PyString_AS_STRING(state);
3130 memcpy(me->data, pdata, _PyDateTime_TIME_DATASIZE);
3131 me->hashcode = -1;
3132 me->hastzinfo = aware;
3133 if (aware) {
3134 Py_INCREF(tzinfo);
3135 me->tzinfo = tzinfo;
3138 return (PyObject *)me;
3141 if (PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO", time_kws,
3142 &hour, &minute, &second, &usecond,
3143 &tzinfo)) {
3144 if (check_time_args(hour, minute, second, usecond) < 0)
3145 return NULL;
3146 if (check_tzinfo_subclass(tzinfo) < 0)
3147 return NULL;
3148 self = new_time_ex(hour, minute, second, usecond, tzinfo,
3149 type);
3151 return self;
3155 * Destructor.
3158 static void
3159 time_dealloc(PyDateTime_Time *self)
3161 if (HASTZINFO(self)) {
3162 Py_XDECREF(self->tzinfo);
3164 Py_TYPE(self)->tp_free((PyObject *)self);
3168 * Indirect access to tzinfo methods.
3171 /* These are all METH_NOARGS, so don't need to check the arglist. */
3172 static PyObject *
3173 time_utcoffset(PyDateTime_Time *self, PyObject *unused) {
3174 return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
3175 "utcoffset", Py_None);
3178 static PyObject *
3179 time_dst(PyDateTime_Time *self, PyObject *unused) {
3180 return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
3181 "dst", Py_None);
3184 static PyObject *
3185 time_tzname(PyDateTime_Time *self, PyObject *unused) {
3186 return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None,
3187 Py_None);
3191 * Various ways to turn a time into a string.
3194 static PyObject *
3195 time_repr(PyDateTime_Time *self)
3197 char buffer[100];
3198 const char *type_name = Py_TYPE(self)->tp_name;
3199 int h = TIME_GET_HOUR(self);
3200 int m = TIME_GET_MINUTE(self);
3201 int s = TIME_GET_SECOND(self);
3202 int us = TIME_GET_MICROSECOND(self);
3203 PyObject *result = NULL;
3205 if (us)
3206 PyOS_snprintf(buffer, sizeof(buffer),
3207 "%s(%d, %d, %d, %d)", type_name, h, m, s, us);
3208 else if (s)
3209 PyOS_snprintf(buffer, sizeof(buffer),
3210 "%s(%d, %d, %d)", type_name, h, m, s);
3211 else
3212 PyOS_snprintf(buffer, sizeof(buffer),
3213 "%s(%d, %d)", type_name, h, m);
3214 result = PyString_FromString(buffer);
3215 if (result != NULL && HASTZINFO(self))
3216 result = append_keyword_tzinfo(result, self->tzinfo);
3217 return result;
3220 static PyObject *
3221 time_str(PyDateTime_Time *self)
3223 return PyObject_CallMethod((PyObject *)self, "isoformat", "()");
3226 static PyObject *
3227 time_isoformat(PyDateTime_Time *self, PyObject *unused)
3229 char buf[100];
3230 PyObject *result;
3231 /* Reuse the time format code from the datetime type. */
3232 PyDateTime_DateTime datetime;
3233 PyDateTime_DateTime *pdatetime = &datetime;
3235 /* Copy over just the time bytes. */
3236 memcpy(pdatetime->data + _PyDateTime_DATE_DATASIZE,
3237 self->data,
3238 _PyDateTime_TIME_DATASIZE);
3240 isoformat_time(pdatetime, buf, sizeof(buf));
3241 result = PyString_FromString(buf);
3242 if (result == NULL || ! HASTZINFO(self) || self->tzinfo == Py_None)
3243 return result;
3245 /* We need to append the UTC offset. */
3246 if (format_utcoffset(buf, sizeof(buf), ":", self->tzinfo,
3247 Py_None) < 0) {
3248 Py_DECREF(result);
3249 return NULL;
3251 PyString_ConcatAndDel(&result, PyString_FromString(buf));
3252 return result;
3255 static PyObject *
3256 time_strftime(PyDateTime_Time *self, PyObject *args, PyObject *kw)
3258 PyObject *result;
3259 PyObject *format;
3260 PyObject *tuple;
3261 static char *keywords[] = {"format", NULL};
3263 if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:strftime", keywords,
3264 &PyString_Type, &format))
3265 return NULL;
3267 /* Python's strftime does insane things with the year part of the
3268 * timetuple. The year is forced to (the otherwise nonsensical)
3269 * 1900 to worm around that.
3271 tuple = Py_BuildValue("iiiiiiiii",
3272 1900, 1, 1, /* year, month, day */
3273 TIME_GET_HOUR(self),
3274 TIME_GET_MINUTE(self),
3275 TIME_GET_SECOND(self),
3276 0, 1, -1); /* weekday, daynum, dst */
3277 if (tuple == NULL)
3278 return NULL;
3279 assert(PyTuple_Size(tuple) == 9);
3280 result = wrap_strftime((PyObject *)self, format, tuple, Py_None);
3281 Py_DECREF(tuple);
3282 return result;
3286 * Miscellaneous methods.
3289 /* This is more natural as a tp_compare, but doesn't work then: for whatever
3290 * reason, Python's try_3way_compare ignores tp_compare unless
3291 * PyInstance_Check returns true, but these aren't old-style classes.
3293 static PyObject *
3294 time_richcompare(PyDateTime_Time *self, PyObject *other, int op)
3296 int diff;
3297 naivety n1, n2;
3298 int offset1, offset2;
3300 if (! PyTime_Check(other)) {
3301 if (op == Py_EQ || op == Py_NE) {
3302 PyObject *result = op == Py_EQ ? Py_False : Py_True;
3303 Py_INCREF(result);
3304 return result;
3306 /* Stop this from falling back to address comparison. */
3307 return cmperror((PyObject *)self, other);
3309 if (classify_two_utcoffsets((PyObject *)self, &offset1, &n1, Py_None,
3310 other, &offset2, &n2, Py_None) < 0)
3311 return NULL;
3312 assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
3313 /* If they're both naive, or both aware and have the same offsets,
3314 * we get off cheap. Note that if they're both naive, offset1 ==
3315 * offset2 == 0 at this point.
3317 if (n1 == n2 && offset1 == offset2) {
3318 diff = memcmp(self->data, ((PyDateTime_Time *)other)->data,
3319 _PyDateTime_TIME_DATASIZE);
3320 return diff_to_bool(diff, op);
3323 if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) {
3324 assert(offset1 != offset2); /* else last "if" handled it */
3325 /* Convert everything except microseconds to seconds. These
3326 * can't overflow (no more than the # of seconds in 2 days).
3328 offset1 = TIME_GET_HOUR(self) * 3600 +
3329 (TIME_GET_MINUTE(self) - offset1) * 60 +
3330 TIME_GET_SECOND(self);
3331 offset2 = TIME_GET_HOUR(other) * 3600 +
3332 (TIME_GET_MINUTE(other) - offset2) * 60 +
3333 TIME_GET_SECOND(other);
3334 diff = offset1 - offset2;
3335 if (diff == 0)
3336 diff = TIME_GET_MICROSECOND(self) -
3337 TIME_GET_MICROSECOND(other);
3338 return diff_to_bool(diff, op);
3341 assert(n1 != n2);
3342 PyErr_SetString(PyExc_TypeError,
3343 "can't compare offset-naive and "
3344 "offset-aware times");
3345 return NULL;
3348 static long
3349 time_hash(PyDateTime_Time *self)
3351 if (self->hashcode == -1) {
3352 naivety n;
3353 int offset;
3354 PyObject *temp;
3356 n = classify_utcoffset((PyObject *)self, Py_None, &offset);
3357 assert(n != OFFSET_UNKNOWN);
3358 if (n == OFFSET_ERROR)
3359 return -1;
3361 /* Reduce this to a hash of another object. */
3362 if (offset == 0)
3363 temp = PyString_FromStringAndSize((char *)self->data,
3364 _PyDateTime_TIME_DATASIZE);
3365 else {
3366 int hour;
3367 int minute;
3369 assert(n == OFFSET_AWARE);
3370 assert(HASTZINFO(self));
3371 hour = divmod(TIME_GET_HOUR(self) * 60 +
3372 TIME_GET_MINUTE(self) - offset,
3374 &minute);
3375 if (0 <= hour && hour < 24)
3376 temp = new_time(hour, minute,
3377 TIME_GET_SECOND(self),
3378 TIME_GET_MICROSECOND(self),
3379 Py_None);
3380 else
3381 temp = Py_BuildValue("iiii",
3382 hour, minute,
3383 TIME_GET_SECOND(self),
3384 TIME_GET_MICROSECOND(self));
3386 if (temp != NULL) {
3387 self->hashcode = PyObject_Hash(temp);
3388 Py_DECREF(temp);
3391 return self->hashcode;
3394 static PyObject *
3395 time_replace(PyDateTime_Time *self, PyObject *args, PyObject *kw)
3397 PyObject *clone;
3398 PyObject *tuple;
3399 int hh = TIME_GET_HOUR(self);
3400 int mm = TIME_GET_MINUTE(self);
3401 int ss = TIME_GET_SECOND(self);
3402 int us = TIME_GET_MICROSECOND(self);
3403 PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None;
3405 if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO:replace",
3406 time_kws,
3407 &hh, &mm, &ss, &us, &tzinfo))
3408 return NULL;
3409 tuple = Py_BuildValue("iiiiO", hh, mm, ss, us, tzinfo);
3410 if (tuple == NULL)
3411 return NULL;
3412 clone = time_new(Py_TYPE(self), tuple, NULL);
3413 Py_DECREF(tuple);
3414 return clone;
3417 static int
3418 time_nonzero(PyDateTime_Time *self)
3420 int offset;
3421 int none;
3423 if (TIME_GET_SECOND(self) || TIME_GET_MICROSECOND(self)) {
3424 /* Since utcoffset is in whole minutes, nothing can
3425 * alter the conclusion that this is nonzero.
3427 return 1;
3429 offset = 0;
3430 if (HASTZINFO(self) && self->tzinfo != Py_None) {
3431 offset = call_utcoffset(self->tzinfo, Py_None, &none);
3432 if (offset == -1 && PyErr_Occurred())
3433 return -1;
3435 return (TIME_GET_MINUTE(self) - offset + TIME_GET_HOUR(self)*60) != 0;
3438 /* Pickle support, a simple use of __reduce__. */
3440 /* Let basestate be the non-tzinfo data string.
3441 * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
3442 * So it's a tuple in any (non-error) case.
3443 * __getstate__ isn't exposed.
3445 static PyObject *
3446 time_getstate(PyDateTime_Time *self)
3448 PyObject *basestate;
3449 PyObject *result = NULL;
3451 basestate = PyString_FromStringAndSize((char *)self->data,
3452 _PyDateTime_TIME_DATASIZE);
3453 if (basestate != NULL) {
3454 if (! HASTZINFO(self) || self->tzinfo == Py_None)
3455 result = PyTuple_Pack(1, basestate);
3456 else
3457 result = PyTuple_Pack(2, basestate, self->tzinfo);
3458 Py_DECREF(basestate);
3460 return result;
3463 static PyObject *
3464 time_reduce(PyDateTime_Time *self, PyObject *arg)
3466 return Py_BuildValue("(ON)", Py_TYPE(self), time_getstate(self));
3469 static PyMethodDef time_methods[] = {
3471 {"isoformat", (PyCFunction)time_isoformat, METH_NOARGS,
3472 PyDoc_STR("Return string in ISO 8601 format, HH:MM:SS[.mmmmmm]"
3473 "[+HH:MM].")},
3475 {"strftime", (PyCFunction)time_strftime, METH_VARARGS | METH_KEYWORDS,
3476 PyDoc_STR("format -> strftime() style string.")},
3478 {"__format__", (PyCFunction)date_format, METH_VARARGS,
3479 PyDoc_STR("Formats self with strftime.")},
3481 {"utcoffset", (PyCFunction)time_utcoffset, METH_NOARGS,
3482 PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
3484 {"tzname", (PyCFunction)time_tzname, METH_NOARGS,
3485 PyDoc_STR("Return self.tzinfo.tzname(self).")},
3487 {"dst", (PyCFunction)time_dst, METH_NOARGS,
3488 PyDoc_STR("Return self.tzinfo.dst(self).")},
3490 {"replace", (PyCFunction)time_replace, METH_VARARGS | METH_KEYWORDS,
3491 PyDoc_STR("Return time with new specified fields.")},
3493 {"__reduce__", (PyCFunction)time_reduce, METH_NOARGS,
3494 PyDoc_STR("__reduce__() -> (cls, state)")},
3496 {NULL, NULL}
3499 static char time_doc[] =
3500 PyDoc_STR("time([hour[, minute[, second[, microsecond[, tzinfo]]]]]) --> a time object\n\
3502 All arguments are optional. tzinfo may be None, or an instance of\n\
3503 a tzinfo subclass. The remaining arguments may be ints or longs.\n");
3505 static PyNumberMethods time_as_number = {
3506 0, /* nb_add */
3507 0, /* nb_subtract */
3508 0, /* nb_multiply */
3509 0, /* nb_divide */
3510 0, /* nb_remainder */
3511 0, /* nb_divmod */
3512 0, /* nb_power */
3513 0, /* nb_negative */
3514 0, /* nb_positive */
3515 0, /* nb_absolute */
3516 (inquiry)time_nonzero, /* nb_nonzero */
3519 statichere PyTypeObject PyDateTime_TimeType = {
3520 PyObject_HEAD_INIT(NULL)
3521 0, /* ob_size */
3522 "datetime.time", /* tp_name */
3523 sizeof(PyDateTime_Time), /* tp_basicsize */
3524 0, /* tp_itemsize */
3525 (destructor)time_dealloc, /* tp_dealloc */
3526 0, /* tp_print */
3527 0, /* tp_getattr */
3528 0, /* tp_setattr */
3529 0, /* tp_compare */
3530 (reprfunc)time_repr, /* tp_repr */
3531 &time_as_number, /* tp_as_number */
3532 0, /* tp_as_sequence */
3533 0, /* tp_as_mapping */
3534 (hashfunc)time_hash, /* tp_hash */
3535 0, /* tp_call */
3536 (reprfunc)time_str, /* tp_str */
3537 PyObject_GenericGetAttr, /* tp_getattro */
3538 0, /* tp_setattro */
3539 0, /* tp_as_buffer */
3540 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
3541 Py_TPFLAGS_BASETYPE, /* tp_flags */
3542 time_doc, /* tp_doc */
3543 0, /* tp_traverse */
3544 0, /* tp_clear */
3545 (richcmpfunc)time_richcompare, /* tp_richcompare */
3546 0, /* tp_weaklistoffset */
3547 0, /* tp_iter */
3548 0, /* tp_iternext */
3549 time_methods, /* tp_methods */
3550 0, /* tp_members */
3551 time_getset, /* tp_getset */
3552 0, /* tp_base */
3553 0, /* tp_dict */
3554 0, /* tp_descr_get */
3555 0, /* tp_descr_set */
3556 0, /* tp_dictoffset */
3557 0, /* tp_init */
3558 time_alloc, /* tp_alloc */
3559 time_new, /* tp_new */
3560 0, /* tp_free */
3564 * PyDateTime_DateTime implementation.
3567 /* Accessor properties. Properties for day, month, and year are inherited
3568 * from date.
3571 static PyObject *
3572 datetime_hour(PyDateTime_DateTime *self, void *unused)
3574 return PyInt_FromLong(DATE_GET_HOUR(self));
3577 static PyObject *
3578 datetime_minute(PyDateTime_DateTime *self, void *unused)
3580 return PyInt_FromLong(DATE_GET_MINUTE(self));
3583 static PyObject *
3584 datetime_second(PyDateTime_DateTime *self, void *unused)
3586 return PyInt_FromLong(DATE_GET_SECOND(self));
3589 static PyObject *
3590 datetime_microsecond(PyDateTime_DateTime *self, void *unused)
3592 return PyInt_FromLong(DATE_GET_MICROSECOND(self));
3595 static PyObject *
3596 datetime_tzinfo(PyDateTime_DateTime *self, void *unused)
3598 PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None;
3599 Py_INCREF(result);
3600 return result;
3603 static PyGetSetDef datetime_getset[] = {
3604 {"hour", (getter)datetime_hour},
3605 {"minute", (getter)datetime_minute},
3606 {"second", (getter)datetime_second},
3607 {"microsecond", (getter)datetime_microsecond},
3608 {"tzinfo", (getter)datetime_tzinfo},
3609 {NULL}
3613 * Constructors.
3616 static char *datetime_kws[] = {
3617 "year", "month", "day", "hour", "minute", "second",
3618 "microsecond", "tzinfo", NULL
3621 static PyObject *
3622 datetime_new(PyTypeObject *type, PyObject *args, PyObject *kw)
3624 PyObject *self = NULL;
3625 PyObject *state;
3626 int year;
3627 int month;
3628 int day;
3629 int hour = 0;
3630 int minute = 0;
3631 int second = 0;
3632 int usecond = 0;
3633 PyObject *tzinfo = Py_None;
3635 /* Check for invocation from pickle with __getstate__ state */
3636 if (PyTuple_GET_SIZE(args) >= 1 &&
3637 PyTuple_GET_SIZE(args) <= 2 &&
3638 PyString_Check(state = PyTuple_GET_ITEM(args, 0)) &&
3639 PyString_GET_SIZE(state) == _PyDateTime_DATETIME_DATASIZE &&
3640 MONTH_IS_SANE(PyString_AS_STRING(state)[2]))
3642 PyDateTime_DateTime *me;
3643 char aware;
3645 if (PyTuple_GET_SIZE(args) == 2) {
3646 tzinfo = PyTuple_GET_ITEM(args, 1);
3647 if (check_tzinfo_subclass(tzinfo) < 0) {
3648 PyErr_SetString(PyExc_TypeError, "bad "
3649 "tzinfo state arg");
3650 return NULL;
3653 aware = (char)(tzinfo != Py_None);
3654 me = (PyDateTime_DateTime *) (type->tp_alloc(type , aware));
3655 if (me != NULL) {
3656 char *pdata = PyString_AS_STRING(state);
3658 memcpy(me->data, pdata, _PyDateTime_DATETIME_DATASIZE);
3659 me->hashcode = -1;
3660 me->hastzinfo = aware;
3661 if (aware) {
3662 Py_INCREF(tzinfo);
3663 me->tzinfo = tzinfo;
3666 return (PyObject *)me;
3669 if (PyArg_ParseTupleAndKeywords(args, kw, "iii|iiiiO", datetime_kws,
3670 &year, &month, &day, &hour, &minute,
3671 &second, &usecond, &tzinfo)) {
3672 if (check_date_args(year, month, day) < 0)
3673 return NULL;
3674 if (check_time_args(hour, minute, second, usecond) < 0)
3675 return NULL;
3676 if (check_tzinfo_subclass(tzinfo) < 0)
3677 return NULL;
3678 self = new_datetime_ex(year, month, day,
3679 hour, minute, second, usecond,
3680 tzinfo, type);
3682 return self;
3685 /* TM_FUNC is the shared type of localtime() and gmtime(). */
3686 typedef struct tm *(*TM_FUNC)(const time_t *timer);
3688 /* Internal helper.
3689 * Build datetime from a time_t and a distinct count of microseconds.
3690 * Pass localtime or gmtime for f, to control the interpretation of timet.
3692 static PyObject *
3693 datetime_from_timet_and_us(PyObject *cls, TM_FUNC f, time_t timet, int us,
3694 PyObject *tzinfo)
3696 struct tm *tm;
3697 PyObject *result = NULL;
3699 tm = f(&timet);
3700 if (tm) {
3701 /* The platform localtime/gmtime may insert leap seconds,
3702 * indicated by tm->tm_sec > 59. We don't care about them,
3703 * except to the extent that passing them on to the datetime
3704 * constructor would raise ValueError for a reason that
3705 * made no sense to the user.
3707 if (tm->tm_sec > 59)
3708 tm->tm_sec = 59;
3709 result = PyObject_CallFunction(cls, "iiiiiiiO",
3710 tm->tm_year + 1900,
3711 tm->tm_mon + 1,
3712 tm->tm_mday,
3713 tm->tm_hour,
3714 tm->tm_min,
3715 tm->tm_sec,
3717 tzinfo);
3719 else
3720 PyErr_SetString(PyExc_ValueError,
3721 "timestamp out of range for "
3722 "platform localtime()/gmtime() function");
3723 return result;
3726 /* Internal helper.
3727 * Build datetime from a Python timestamp. Pass localtime or gmtime for f,
3728 * to control the interpretation of the timestamp. Since a double doesn't
3729 * have enough bits to cover a datetime's full range of precision, it's
3730 * better to call datetime_from_timet_and_us provided you have a way
3731 * to get that much precision (e.g., C time() isn't good enough).
3733 static PyObject *
3734 datetime_from_timestamp(PyObject *cls, TM_FUNC f, double timestamp,
3735 PyObject *tzinfo)
3737 time_t timet;
3738 double fraction;
3739 int us;
3741 timet = _PyTime_DoubleToTimet(timestamp);
3742 if (timet == (time_t)-1 && PyErr_Occurred())
3743 return NULL;
3744 fraction = timestamp - (double)timet;
3745 us = (int)round_to_long(fraction * 1e6);
3746 if (us < 0) {
3747 /* Truncation towards zero is not what we wanted
3748 for negative numbers (Python's mod semantics) */
3749 timet -= 1;
3750 us += 1000000;
3752 /* If timestamp is less than one microsecond smaller than a
3753 * full second, round up. Otherwise, ValueErrors are raised
3754 * for some floats. */
3755 if (us == 1000000) {
3756 timet += 1;
3757 us = 0;
3759 return datetime_from_timet_and_us(cls, f, timet, us, tzinfo);
3762 /* Internal helper.
3763 * Build most accurate possible datetime for current time. Pass localtime or
3764 * gmtime for f as appropriate.
3766 static PyObject *
3767 datetime_best_possible(PyObject *cls, TM_FUNC f, PyObject *tzinfo)
3769 #ifdef HAVE_GETTIMEOFDAY
3770 struct timeval t;
3772 #ifdef GETTIMEOFDAY_NO_TZ
3773 gettimeofday(&t);
3774 #else
3775 gettimeofday(&t, (struct timezone *)NULL);
3776 #endif
3777 return datetime_from_timet_and_us(cls, f, t.tv_sec, (int)t.tv_usec,
3778 tzinfo);
3780 #else /* ! HAVE_GETTIMEOFDAY */
3781 /* No flavor of gettimeofday exists on this platform. Python's
3782 * time.time() does a lot of other platform tricks to get the
3783 * best time it can on the platform, and we're not going to do
3784 * better than that (if we could, the better code would belong
3785 * in time.time()!) We're limited by the precision of a double,
3786 * though.
3788 PyObject *time;
3789 double dtime;
3791 time = time_time();
3792 if (time == NULL)
3793 return NULL;
3794 dtime = PyFloat_AsDouble(time);
3795 Py_DECREF(time);
3796 if (dtime == -1.0 && PyErr_Occurred())
3797 return NULL;
3798 return datetime_from_timestamp(cls, f, dtime, tzinfo);
3799 #endif /* ! HAVE_GETTIMEOFDAY */
3802 /* Return best possible local time -- this isn't constrained by the
3803 * precision of a timestamp.
3805 static PyObject *
3806 datetime_now(PyObject *cls, PyObject *args, PyObject *kw)
3808 PyObject *self;
3809 PyObject *tzinfo = Py_None;
3810 static char *keywords[] = {"tz", NULL};
3812 if (! PyArg_ParseTupleAndKeywords(args, kw, "|O:now", keywords,
3813 &tzinfo))
3814 return NULL;
3815 if (check_tzinfo_subclass(tzinfo) < 0)
3816 return NULL;
3818 self = datetime_best_possible(cls,
3819 tzinfo == Py_None ? localtime : gmtime,
3820 tzinfo);
3821 if (self != NULL && tzinfo != Py_None) {
3822 /* Convert UTC to tzinfo's zone. */
3823 PyObject *temp = self;
3824 self = PyObject_CallMethod(tzinfo, "fromutc", "O", self);
3825 Py_DECREF(temp);
3827 return self;
3830 /* Return best possible UTC time -- this isn't constrained by the
3831 * precision of a timestamp.
3833 static PyObject *
3834 datetime_utcnow(PyObject *cls, PyObject *dummy)
3836 return datetime_best_possible(cls, gmtime, Py_None);
3839 /* Return new local datetime from timestamp (Python timestamp -- a double). */
3840 static PyObject *
3841 datetime_fromtimestamp(PyObject *cls, PyObject *args, PyObject *kw)
3843 PyObject *self;
3844 double timestamp;
3845 PyObject *tzinfo = Py_None;
3846 static char *keywords[] = {"timestamp", "tz", NULL};
3848 if (! PyArg_ParseTupleAndKeywords(args, kw, "d|O:fromtimestamp",
3849 keywords, &timestamp, &tzinfo))
3850 return NULL;
3851 if (check_tzinfo_subclass(tzinfo) < 0)
3852 return NULL;
3854 self = datetime_from_timestamp(cls,
3855 tzinfo == Py_None ? localtime : gmtime,
3856 timestamp,
3857 tzinfo);
3858 if (self != NULL && tzinfo != Py_None) {
3859 /* Convert UTC to tzinfo's zone. */
3860 PyObject *temp = self;
3861 self = PyObject_CallMethod(tzinfo, "fromutc", "O", self);
3862 Py_DECREF(temp);
3864 return self;
3867 /* Return new UTC datetime from timestamp (Python timestamp -- a double). */
3868 static PyObject *
3869 datetime_utcfromtimestamp(PyObject *cls, PyObject *args)
3871 double timestamp;
3872 PyObject *result = NULL;
3874 if (PyArg_ParseTuple(args, "d:utcfromtimestamp", &timestamp))
3875 result = datetime_from_timestamp(cls, gmtime, timestamp,
3876 Py_None);
3877 return result;
3880 /* Return new datetime from time.strptime(). */
3881 static PyObject *
3882 datetime_strptime(PyObject *cls, PyObject *args)
3884 static PyObject *module = NULL;
3885 PyObject *result = NULL, *obj, *st = NULL, *frac = NULL;
3886 const char *string, *format;
3888 if (!PyArg_ParseTuple(args, "ss:strptime", &string, &format))
3889 return NULL;
3891 if (module == NULL &&
3892 (module = PyImport_ImportModuleNoBlock("_strptime")) == NULL)
3893 return NULL;
3895 /* _strptime._strptime returns a two-element tuple. The first
3896 element is a time.struct_time object. The second is the
3897 microseconds (which are not defined for time.struct_time). */
3898 obj = PyObject_CallMethod(module, "_strptime", "ss", string, format);
3899 if (obj != NULL) {
3900 int i, good_timetuple = 1;
3901 long int ia[7];
3902 if (PySequence_Check(obj) && PySequence_Size(obj) == 2) {
3903 st = PySequence_GetItem(obj, 0);
3904 frac = PySequence_GetItem(obj, 1);
3905 if (st == NULL || frac == NULL)
3906 good_timetuple = 0;
3907 /* copy y/m/d/h/m/s values out of the
3908 time.struct_time */
3909 if (good_timetuple &&
3910 PySequence_Check(st) &&
3911 PySequence_Size(st) >= 6) {
3912 for (i=0; i < 6; i++) {
3913 PyObject *p = PySequence_GetItem(st, i);
3914 if (p == NULL) {
3915 good_timetuple = 0;
3916 break;
3918 if (PyInt_Check(p))
3919 ia[i] = PyInt_AsLong(p);
3920 else
3921 good_timetuple = 0;
3922 Py_DECREF(p);
3925 else
3926 good_timetuple = 0;
3927 /* follow that up with a little dose of microseconds */
3928 if (PyInt_Check(frac))
3929 ia[6] = PyInt_AsLong(frac);
3930 else
3931 good_timetuple = 0;
3933 else
3934 good_timetuple = 0;
3935 if (good_timetuple)
3936 result = PyObject_CallFunction(cls, "iiiiiii",
3937 ia[0], ia[1], ia[2],
3938 ia[3], ia[4], ia[5],
3939 ia[6]);
3940 else
3941 PyErr_SetString(PyExc_ValueError,
3942 "unexpected value from _strptime._strptime");
3944 Py_XDECREF(obj);
3945 Py_XDECREF(st);
3946 Py_XDECREF(frac);
3947 return result;
3950 /* Return new datetime from date/datetime and time arguments. */
3951 static PyObject *
3952 datetime_combine(PyObject *cls, PyObject *args, PyObject *kw)
3954 static char *keywords[] = {"date", "time", NULL};
3955 PyObject *date;
3956 PyObject *time;
3957 PyObject *result = NULL;
3959 if (PyArg_ParseTupleAndKeywords(args, kw, "O!O!:combine", keywords,
3960 &PyDateTime_DateType, &date,
3961 &PyDateTime_TimeType, &time)) {
3962 PyObject *tzinfo = Py_None;
3964 if (HASTZINFO(time))
3965 tzinfo = ((PyDateTime_Time *)time)->tzinfo;
3966 result = PyObject_CallFunction(cls, "iiiiiiiO",
3967 GET_YEAR(date),
3968 GET_MONTH(date),
3969 GET_DAY(date),
3970 TIME_GET_HOUR(time),
3971 TIME_GET_MINUTE(time),
3972 TIME_GET_SECOND(time),
3973 TIME_GET_MICROSECOND(time),
3974 tzinfo);
3976 return result;
3980 * Destructor.
3983 static void
3984 datetime_dealloc(PyDateTime_DateTime *self)
3986 if (HASTZINFO(self)) {
3987 Py_XDECREF(self->tzinfo);
3989 Py_TYPE(self)->tp_free((PyObject *)self);
3993 * Indirect access to tzinfo methods.
3996 /* These are all METH_NOARGS, so don't need to check the arglist. */
3997 static PyObject *
3998 datetime_utcoffset(PyDateTime_DateTime *self, PyObject *unused) {
3999 return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
4000 "utcoffset", (PyObject *)self);
4003 static PyObject *
4004 datetime_dst(PyDateTime_DateTime *self, PyObject *unused) {
4005 return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
4006 "dst", (PyObject *)self);
4009 static PyObject *
4010 datetime_tzname(PyDateTime_DateTime *self, PyObject *unused) {
4011 return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None,
4012 (PyObject *)self);
4016 * datetime arithmetic.
4019 /* factor must be 1 (to add) or -1 (to subtract). The result inherits
4020 * the tzinfo state of date.
4022 static PyObject *
4023 add_datetime_timedelta(PyDateTime_DateTime *date, PyDateTime_Delta *delta,
4024 int factor)
4026 /* Note that the C-level additions can't overflow, because of
4027 * invariant bounds on the member values.
4029 int year = GET_YEAR(date);
4030 int month = GET_MONTH(date);
4031 int day = GET_DAY(date) + GET_TD_DAYS(delta) * factor;
4032 int hour = DATE_GET_HOUR(date);
4033 int minute = DATE_GET_MINUTE(date);
4034 int second = DATE_GET_SECOND(date) + GET_TD_SECONDS(delta) * factor;
4035 int microsecond = DATE_GET_MICROSECOND(date) +
4036 GET_TD_MICROSECONDS(delta) * factor;
4038 assert(factor == 1 || factor == -1);
4039 if (normalize_datetime(&year, &month, &day,
4040 &hour, &minute, &second, &microsecond) < 0)
4041 return NULL;
4042 else
4043 return new_datetime(year, month, day,
4044 hour, minute, second, microsecond,
4045 HASTZINFO(date) ? date->tzinfo : Py_None);
4048 static PyObject *
4049 datetime_add(PyObject *left, PyObject *right)
4051 if (PyDateTime_Check(left)) {
4052 /* datetime + ??? */
4053 if (PyDelta_Check(right))
4054 /* datetime + delta */
4055 return add_datetime_timedelta(
4056 (PyDateTime_DateTime *)left,
4057 (PyDateTime_Delta *)right,
4060 else if (PyDelta_Check(left)) {
4061 /* delta + datetime */
4062 return add_datetime_timedelta((PyDateTime_DateTime *) right,
4063 (PyDateTime_Delta *) left,
4066 Py_INCREF(Py_NotImplemented);
4067 return Py_NotImplemented;
4070 static PyObject *
4071 datetime_subtract(PyObject *left, PyObject *right)
4073 PyObject *result = Py_NotImplemented;
4075 if (PyDateTime_Check(left)) {
4076 /* datetime - ??? */
4077 if (PyDateTime_Check(right)) {
4078 /* datetime - datetime */
4079 naivety n1, n2;
4080 int offset1, offset2;
4081 int delta_d, delta_s, delta_us;
4083 if (classify_two_utcoffsets(left, &offset1, &n1, left,
4084 right, &offset2, &n2,
4085 right) < 0)
4086 return NULL;
4087 assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
4088 if (n1 != n2) {
4089 PyErr_SetString(PyExc_TypeError,
4090 "can't subtract offset-naive and "
4091 "offset-aware datetimes");
4092 return NULL;
4094 delta_d = ymd_to_ord(GET_YEAR(left),
4095 GET_MONTH(left),
4096 GET_DAY(left)) -
4097 ymd_to_ord(GET_YEAR(right),
4098 GET_MONTH(right),
4099 GET_DAY(right));
4100 /* These can't overflow, since the values are
4101 * normalized. At most this gives the number of
4102 * seconds in one day.
4104 delta_s = (DATE_GET_HOUR(left) -
4105 DATE_GET_HOUR(right)) * 3600 +
4106 (DATE_GET_MINUTE(left) -
4107 DATE_GET_MINUTE(right)) * 60 +
4108 (DATE_GET_SECOND(left) -
4109 DATE_GET_SECOND(right));
4110 delta_us = DATE_GET_MICROSECOND(left) -
4111 DATE_GET_MICROSECOND(right);
4112 /* (left - offset1) - (right - offset2) =
4113 * (left - right) + (offset2 - offset1)
4115 delta_s += (offset2 - offset1) * 60;
4116 result = new_delta(delta_d, delta_s, delta_us, 1);
4118 else if (PyDelta_Check(right)) {
4119 /* datetime - delta */
4120 result = add_datetime_timedelta(
4121 (PyDateTime_DateTime *)left,
4122 (PyDateTime_Delta *)right,
4123 -1);
4127 if (result == Py_NotImplemented)
4128 Py_INCREF(result);
4129 return result;
4132 /* Various ways to turn a datetime into a string. */
4134 static PyObject *
4135 datetime_repr(PyDateTime_DateTime *self)
4137 char buffer[1000];
4138 const char *type_name = Py_TYPE(self)->tp_name;
4139 PyObject *baserepr;
4141 if (DATE_GET_MICROSECOND(self)) {
4142 PyOS_snprintf(buffer, sizeof(buffer),
4143 "%s(%d, %d, %d, %d, %d, %d, %d)",
4144 type_name,
4145 GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
4146 DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
4147 DATE_GET_SECOND(self),
4148 DATE_GET_MICROSECOND(self));
4150 else if (DATE_GET_SECOND(self)) {
4151 PyOS_snprintf(buffer, sizeof(buffer),
4152 "%s(%d, %d, %d, %d, %d, %d)",
4153 type_name,
4154 GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
4155 DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
4156 DATE_GET_SECOND(self));
4158 else {
4159 PyOS_snprintf(buffer, sizeof(buffer),
4160 "%s(%d, %d, %d, %d, %d)",
4161 type_name,
4162 GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
4163 DATE_GET_HOUR(self), DATE_GET_MINUTE(self));
4165 baserepr = PyString_FromString(buffer);
4166 if (baserepr == NULL || ! HASTZINFO(self))
4167 return baserepr;
4168 return append_keyword_tzinfo(baserepr, self->tzinfo);
4171 static PyObject *
4172 datetime_str(PyDateTime_DateTime *self)
4174 return PyObject_CallMethod((PyObject *)self, "isoformat", "(s)", " ");
4177 static PyObject *
4178 datetime_isoformat(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
4180 char sep = 'T';
4181 static char *keywords[] = {"sep", NULL};
4182 char buffer[100];
4183 char *cp;
4184 PyObject *result;
4186 if (!PyArg_ParseTupleAndKeywords(args, kw, "|c:isoformat", keywords,
4187 &sep))
4188 return NULL;
4189 cp = isoformat_date((PyDateTime_Date *)self, buffer, sizeof(buffer));
4190 assert(cp != NULL);
4191 *cp++ = sep;
4192 isoformat_time(self, cp, sizeof(buffer) - (cp - buffer));
4193 result = PyString_FromString(buffer);
4194 if (result == NULL || ! HASTZINFO(self))
4195 return result;
4197 /* We need to append the UTC offset. */
4198 if (format_utcoffset(buffer, sizeof(buffer), ":", self->tzinfo,
4199 (PyObject *)self) < 0) {
4200 Py_DECREF(result);
4201 return NULL;
4203 PyString_ConcatAndDel(&result, PyString_FromString(buffer));
4204 return result;
4207 static PyObject *
4208 datetime_ctime(PyDateTime_DateTime *self)
4210 return format_ctime((PyDateTime_Date *)self,
4211 DATE_GET_HOUR(self),
4212 DATE_GET_MINUTE(self),
4213 DATE_GET_SECOND(self));
4216 /* Miscellaneous methods. */
4218 /* This is more natural as a tp_compare, but doesn't work then: for whatever
4219 * reason, Python's try_3way_compare ignores tp_compare unless
4220 * PyInstance_Check returns true, but these aren't old-style classes.
4222 static PyObject *
4223 datetime_richcompare(PyDateTime_DateTime *self, PyObject *other, int op)
4225 int diff;
4226 naivety n1, n2;
4227 int offset1, offset2;
4229 if (! PyDateTime_Check(other)) {
4230 /* If other has a "timetuple" attr, that's an advertised
4231 * hook for other classes to ask to get comparison control.
4232 * However, date instances have a timetuple attr, and we
4233 * don't want to allow that comparison. Because datetime
4234 * is a subclass of date, when mixing date and datetime
4235 * in a comparison, Python gives datetime the first shot
4236 * (it's the more specific subtype). So we can stop that
4237 * combination here reliably.
4239 if (PyObject_HasAttrString(other, "timetuple") &&
4240 ! PyDate_Check(other)) {
4241 /* A hook for other kinds of datetime objects. */
4242 Py_INCREF(Py_NotImplemented);
4243 return Py_NotImplemented;
4245 if (op == Py_EQ || op == Py_NE) {
4246 PyObject *result = op == Py_EQ ? Py_False : Py_True;
4247 Py_INCREF(result);
4248 return result;
4250 /* Stop this from falling back to address comparison. */
4251 return cmperror((PyObject *)self, other);
4254 if (classify_two_utcoffsets((PyObject *)self, &offset1, &n1,
4255 (PyObject *)self,
4256 other, &offset2, &n2,
4257 other) < 0)
4258 return NULL;
4259 assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
4260 /* If they're both naive, or both aware and have the same offsets,
4261 * we get off cheap. Note that if they're both naive, offset1 ==
4262 * offset2 == 0 at this point.
4264 if (n1 == n2 && offset1 == offset2) {
4265 diff = memcmp(self->data, ((PyDateTime_DateTime *)other)->data,
4266 _PyDateTime_DATETIME_DATASIZE);
4267 return diff_to_bool(diff, op);
4270 if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) {
4271 PyDateTime_Delta *delta;
4273 assert(offset1 != offset2); /* else last "if" handled it */
4274 delta = (PyDateTime_Delta *)datetime_subtract((PyObject *)self,
4275 other);
4276 if (delta == NULL)
4277 return NULL;
4278 diff = GET_TD_DAYS(delta);
4279 if (diff == 0)
4280 diff = GET_TD_SECONDS(delta) |
4281 GET_TD_MICROSECONDS(delta);
4282 Py_DECREF(delta);
4283 return diff_to_bool(diff, op);
4286 assert(n1 != n2);
4287 PyErr_SetString(PyExc_TypeError,
4288 "can't compare offset-naive and "
4289 "offset-aware datetimes");
4290 return NULL;
4293 static long
4294 datetime_hash(PyDateTime_DateTime *self)
4296 if (self->hashcode == -1) {
4297 naivety n;
4298 int offset;
4299 PyObject *temp;
4301 n = classify_utcoffset((PyObject *)self, (PyObject *)self,
4302 &offset);
4303 assert(n != OFFSET_UNKNOWN);
4304 if (n == OFFSET_ERROR)
4305 return -1;
4307 /* Reduce this to a hash of another object. */
4308 if (n == OFFSET_NAIVE)
4309 temp = PyString_FromStringAndSize(
4310 (char *)self->data,
4311 _PyDateTime_DATETIME_DATASIZE);
4312 else {
4313 int days;
4314 int seconds;
4316 assert(n == OFFSET_AWARE);
4317 assert(HASTZINFO(self));
4318 days = ymd_to_ord(GET_YEAR(self),
4319 GET_MONTH(self),
4320 GET_DAY(self));
4321 seconds = DATE_GET_HOUR(self) * 3600 +
4322 (DATE_GET_MINUTE(self) - offset) * 60 +
4323 DATE_GET_SECOND(self);
4324 temp = new_delta(days,
4325 seconds,
4326 DATE_GET_MICROSECOND(self),
4329 if (temp != NULL) {
4330 self->hashcode = PyObject_Hash(temp);
4331 Py_DECREF(temp);
4334 return self->hashcode;
4337 static PyObject *
4338 datetime_replace(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
4340 PyObject *clone;
4341 PyObject *tuple;
4342 int y = GET_YEAR(self);
4343 int m = GET_MONTH(self);
4344 int d = GET_DAY(self);
4345 int hh = DATE_GET_HOUR(self);
4346 int mm = DATE_GET_MINUTE(self);
4347 int ss = DATE_GET_SECOND(self);
4348 int us = DATE_GET_MICROSECOND(self);
4349 PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None;
4351 if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiiiiO:replace",
4352 datetime_kws,
4353 &y, &m, &d, &hh, &mm, &ss, &us,
4354 &tzinfo))
4355 return NULL;
4356 tuple = Py_BuildValue("iiiiiiiO", y, m, d, hh, mm, ss, us, tzinfo);
4357 if (tuple == NULL)
4358 return NULL;
4359 clone = datetime_new(Py_TYPE(self), tuple, NULL);
4360 Py_DECREF(tuple);
4361 return clone;
4364 static PyObject *
4365 datetime_astimezone(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
4367 int y, m, d, hh, mm, ss, us;
4368 PyObject *result;
4369 int offset, none;
4371 PyObject *tzinfo;
4372 static char *keywords[] = {"tz", NULL};
4374 if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:astimezone", keywords,
4375 &PyDateTime_TZInfoType, &tzinfo))
4376 return NULL;
4378 if (!HASTZINFO(self) || self->tzinfo == Py_None)
4379 goto NeedAware;
4381 /* Conversion to self's own time zone is a NOP. */
4382 if (self->tzinfo == tzinfo) {
4383 Py_INCREF(self);
4384 return (PyObject *)self;
4387 /* Convert self to UTC. */
4388 offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none);
4389 if (offset == -1 && PyErr_Occurred())
4390 return NULL;
4391 if (none)
4392 goto NeedAware;
4394 y = GET_YEAR(self);
4395 m = GET_MONTH(self);
4396 d = GET_DAY(self);
4397 hh = DATE_GET_HOUR(self);
4398 mm = DATE_GET_MINUTE(self);
4399 ss = DATE_GET_SECOND(self);
4400 us = DATE_GET_MICROSECOND(self);
4402 mm -= offset;
4403 if ((mm < 0 || mm >= 60) &&
4404 normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
4405 return NULL;
4407 /* Attach new tzinfo and let fromutc() do the rest. */
4408 result = new_datetime(y, m, d, hh, mm, ss, us, tzinfo);
4409 if (result != NULL) {
4410 PyObject *temp = result;
4412 result = PyObject_CallMethod(tzinfo, "fromutc", "O", temp);
4413 Py_DECREF(temp);
4415 return result;
4417 NeedAware:
4418 PyErr_SetString(PyExc_ValueError, "astimezone() cannot be applied to "
4419 "a naive datetime");
4420 return NULL;
4423 static PyObject *
4424 datetime_timetuple(PyDateTime_DateTime *self)
4426 int dstflag = -1;
4428 if (HASTZINFO(self) && self->tzinfo != Py_None) {
4429 int none;
4431 dstflag = call_dst(self->tzinfo, (PyObject *)self, &none);
4432 if (dstflag == -1 && PyErr_Occurred())
4433 return NULL;
4435 if (none)
4436 dstflag = -1;
4437 else if (dstflag != 0)
4438 dstflag = 1;
4441 return build_struct_time(GET_YEAR(self),
4442 GET_MONTH(self),
4443 GET_DAY(self),
4444 DATE_GET_HOUR(self),
4445 DATE_GET_MINUTE(self),
4446 DATE_GET_SECOND(self),
4447 dstflag);
4450 static PyObject *
4451 datetime_getdate(PyDateTime_DateTime *self)
4453 return new_date(GET_YEAR(self),
4454 GET_MONTH(self),
4455 GET_DAY(self));
4458 static PyObject *
4459 datetime_gettime(PyDateTime_DateTime *self)
4461 return new_time(DATE_GET_HOUR(self),
4462 DATE_GET_MINUTE(self),
4463 DATE_GET_SECOND(self),
4464 DATE_GET_MICROSECOND(self),
4465 Py_None);
4468 static PyObject *
4469 datetime_gettimetz(PyDateTime_DateTime *self)
4471 return new_time(DATE_GET_HOUR(self),
4472 DATE_GET_MINUTE(self),
4473 DATE_GET_SECOND(self),
4474 DATE_GET_MICROSECOND(self),
4475 HASTZINFO(self) ? self->tzinfo : Py_None);
4478 static PyObject *
4479 datetime_utctimetuple(PyDateTime_DateTime *self)
4481 int y = GET_YEAR(self);
4482 int m = GET_MONTH(self);
4483 int d = GET_DAY(self);
4484 int hh = DATE_GET_HOUR(self);
4485 int mm = DATE_GET_MINUTE(self);
4486 int ss = DATE_GET_SECOND(self);
4487 int us = 0; /* microseconds are ignored in a timetuple */
4488 int offset = 0;
4490 if (HASTZINFO(self) && self->tzinfo != Py_None) {
4491 int none;
4493 offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none);
4494 if (offset == -1 && PyErr_Occurred())
4495 return NULL;
4497 /* Even if offset is 0, don't call timetuple() -- tm_isdst should be
4498 * 0 in a UTC timetuple regardless of what dst() says.
4500 if (offset) {
4501 /* Subtract offset minutes & normalize. */
4502 int stat;
4504 mm -= offset;
4505 stat = normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us);
4506 if (stat < 0) {
4507 /* At the edges, it's possible we overflowed
4508 * beyond MINYEAR or MAXYEAR.
4510 if (PyErr_ExceptionMatches(PyExc_OverflowError))
4511 PyErr_Clear();
4512 else
4513 return NULL;
4516 return build_struct_time(y, m, d, hh, mm, ss, 0);
4519 /* Pickle support, a simple use of __reduce__. */
4521 /* Let basestate be the non-tzinfo data string.
4522 * If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
4523 * So it's a tuple in any (non-error) case.
4524 * __getstate__ isn't exposed.
4526 static PyObject *
4527 datetime_getstate(PyDateTime_DateTime *self)
4529 PyObject *basestate;
4530 PyObject *result = NULL;
4532 basestate = PyString_FromStringAndSize((char *)self->data,
4533 _PyDateTime_DATETIME_DATASIZE);
4534 if (basestate != NULL) {
4535 if (! HASTZINFO(self) || self->tzinfo == Py_None)
4536 result = PyTuple_Pack(1, basestate);
4537 else
4538 result = PyTuple_Pack(2, basestate, self->tzinfo);
4539 Py_DECREF(basestate);
4541 return result;
4544 static PyObject *
4545 datetime_reduce(PyDateTime_DateTime *self, PyObject *arg)
4547 return Py_BuildValue("(ON)", Py_TYPE(self), datetime_getstate(self));
4550 static PyMethodDef datetime_methods[] = {
4552 /* Class methods: */
4554 {"now", (PyCFunction)datetime_now,
4555 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
4556 PyDoc_STR("[tz] -> new datetime with tz's local day and time.")},
4558 {"utcnow", (PyCFunction)datetime_utcnow,
4559 METH_NOARGS | METH_CLASS,
4560 PyDoc_STR("Return a new datetime representing UTC day and time.")},
4562 {"fromtimestamp", (PyCFunction)datetime_fromtimestamp,
4563 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
4564 PyDoc_STR("timestamp[, tz] -> tz's local time from POSIX timestamp.")},
4566 {"utcfromtimestamp", (PyCFunction)datetime_utcfromtimestamp,
4567 METH_VARARGS | METH_CLASS,
4568 PyDoc_STR("timestamp -> UTC datetime from a POSIX timestamp "
4569 "(like time.time()).")},
4571 {"strptime", (PyCFunction)datetime_strptime,
4572 METH_VARARGS | METH_CLASS,
4573 PyDoc_STR("string, format -> new datetime parsed from a string "
4574 "(like time.strptime()).")},
4576 {"combine", (PyCFunction)datetime_combine,
4577 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
4578 PyDoc_STR("date, time -> datetime with same date and time fields")},
4580 /* Instance methods: */
4582 {"date", (PyCFunction)datetime_getdate, METH_NOARGS,
4583 PyDoc_STR("Return date object with same year, month and day.")},
4585 {"time", (PyCFunction)datetime_gettime, METH_NOARGS,
4586 PyDoc_STR("Return time object with same time but with tzinfo=None.")},
4588 {"timetz", (PyCFunction)datetime_gettimetz, METH_NOARGS,
4589 PyDoc_STR("Return time object with same time and tzinfo.")},
4591 {"ctime", (PyCFunction)datetime_ctime, METH_NOARGS,
4592 PyDoc_STR("Return ctime() style string.")},
4594 {"timetuple", (PyCFunction)datetime_timetuple, METH_NOARGS,
4595 PyDoc_STR("Return time tuple, compatible with time.localtime().")},
4597 {"utctimetuple", (PyCFunction)datetime_utctimetuple, METH_NOARGS,
4598 PyDoc_STR("Return UTC time tuple, compatible with time.localtime().")},
4600 {"isoformat", (PyCFunction)datetime_isoformat, METH_VARARGS | METH_KEYWORDS,
4601 PyDoc_STR("[sep] -> string in ISO 8601 format, "
4602 "YYYY-MM-DDTHH:MM:SS[.mmmmmm][+HH:MM].\n\n"
4603 "sep is used to separate the year from the time, and "
4604 "defaults to 'T'.")},
4606 {"utcoffset", (PyCFunction)datetime_utcoffset, METH_NOARGS,
4607 PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
4609 {"tzname", (PyCFunction)datetime_tzname, METH_NOARGS,
4610 PyDoc_STR("Return self.tzinfo.tzname(self).")},
4612 {"dst", (PyCFunction)datetime_dst, METH_NOARGS,
4613 PyDoc_STR("Return self.tzinfo.dst(self).")},
4615 {"replace", (PyCFunction)datetime_replace, METH_VARARGS | METH_KEYWORDS,
4616 PyDoc_STR("Return datetime with new specified fields.")},
4618 {"astimezone", (PyCFunction)datetime_astimezone, METH_VARARGS | METH_KEYWORDS,
4619 PyDoc_STR("tz -> convert to local time in new timezone tz\n")},
4621 {"__reduce__", (PyCFunction)datetime_reduce, METH_NOARGS,
4622 PyDoc_STR("__reduce__() -> (cls, state)")},
4624 {NULL, NULL}
4627 static char datetime_doc[] =
4628 PyDoc_STR("datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])\n\
4630 The year, month and day arguments are required. tzinfo may be None, or an\n\
4631 instance of a tzinfo subclass. The remaining arguments may be ints or longs.\n");
4633 static PyNumberMethods datetime_as_number = {
4634 datetime_add, /* nb_add */
4635 datetime_subtract, /* nb_subtract */
4636 0, /* nb_multiply */
4637 0, /* nb_divide */
4638 0, /* nb_remainder */
4639 0, /* nb_divmod */
4640 0, /* nb_power */
4641 0, /* nb_negative */
4642 0, /* nb_positive */
4643 0, /* nb_absolute */
4644 0, /* nb_nonzero */
4647 statichere PyTypeObject PyDateTime_DateTimeType = {
4648 PyObject_HEAD_INIT(NULL)
4649 0, /* ob_size */
4650 "datetime.datetime", /* tp_name */
4651 sizeof(PyDateTime_DateTime), /* tp_basicsize */
4652 0, /* tp_itemsize */
4653 (destructor)datetime_dealloc, /* tp_dealloc */
4654 0, /* tp_print */
4655 0, /* tp_getattr */
4656 0, /* tp_setattr */
4657 0, /* tp_compare */
4658 (reprfunc)datetime_repr, /* tp_repr */
4659 &datetime_as_number, /* tp_as_number */
4660 0, /* tp_as_sequence */
4661 0, /* tp_as_mapping */
4662 (hashfunc)datetime_hash, /* tp_hash */
4663 0, /* tp_call */
4664 (reprfunc)datetime_str, /* tp_str */
4665 PyObject_GenericGetAttr, /* tp_getattro */
4666 0, /* tp_setattro */
4667 0, /* tp_as_buffer */
4668 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
4669 Py_TPFLAGS_BASETYPE, /* tp_flags */
4670 datetime_doc, /* tp_doc */
4671 0, /* tp_traverse */
4672 0, /* tp_clear */
4673 (richcmpfunc)datetime_richcompare, /* tp_richcompare */
4674 0, /* tp_weaklistoffset */
4675 0, /* tp_iter */
4676 0, /* tp_iternext */
4677 datetime_methods, /* tp_methods */
4678 0, /* tp_members */
4679 datetime_getset, /* tp_getset */
4680 &PyDateTime_DateType, /* tp_base */
4681 0, /* tp_dict */
4682 0, /* tp_descr_get */
4683 0, /* tp_descr_set */
4684 0, /* tp_dictoffset */
4685 0, /* tp_init */
4686 datetime_alloc, /* tp_alloc */
4687 datetime_new, /* tp_new */
4688 0, /* tp_free */
4691 /* ---------------------------------------------------------------------------
4692 * Module methods and initialization.
4695 static PyMethodDef module_methods[] = {
4696 {NULL, NULL}
4699 /* C API. Clients get at this via PyDateTime_IMPORT, defined in
4700 * datetime.h.
4702 static PyDateTime_CAPI CAPI = {
4703 &PyDateTime_DateType,
4704 &PyDateTime_DateTimeType,
4705 &PyDateTime_TimeType,
4706 &PyDateTime_DeltaType,
4707 &PyDateTime_TZInfoType,
4708 new_date_ex,
4709 new_datetime_ex,
4710 new_time_ex,
4711 new_delta_ex,
4712 datetime_fromtimestamp,
4713 date_fromtimestamp
4717 PyMODINIT_FUNC
4718 initdatetime(void)
4720 PyObject *m; /* a module object */
4721 PyObject *d; /* its dict */
4722 PyObject *x;
4724 m = Py_InitModule3("datetime", module_methods,
4725 "Fast implementation of the datetime type.");
4726 if (m == NULL)
4727 return;
4729 if (PyType_Ready(&PyDateTime_DateType) < 0)
4730 return;
4731 if (PyType_Ready(&PyDateTime_DateTimeType) < 0)
4732 return;
4733 if (PyType_Ready(&PyDateTime_DeltaType) < 0)
4734 return;
4735 if (PyType_Ready(&PyDateTime_TimeType) < 0)
4736 return;
4737 if (PyType_Ready(&PyDateTime_TZInfoType) < 0)
4738 return;
4740 /* timedelta values */
4741 d = PyDateTime_DeltaType.tp_dict;
4743 x = new_delta(0, 0, 1, 0);
4744 if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
4745 return;
4746 Py_DECREF(x);
4748 x = new_delta(-MAX_DELTA_DAYS, 0, 0, 0);
4749 if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
4750 return;
4751 Py_DECREF(x);
4753 x = new_delta(MAX_DELTA_DAYS, 24*3600-1, 1000000-1, 0);
4754 if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
4755 return;
4756 Py_DECREF(x);
4758 /* date values */
4759 d = PyDateTime_DateType.tp_dict;
4761 x = new_date(1, 1, 1);
4762 if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
4763 return;
4764 Py_DECREF(x);
4766 x = new_date(MAXYEAR, 12, 31);
4767 if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
4768 return;
4769 Py_DECREF(x);
4771 x = new_delta(1, 0, 0, 0);
4772 if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
4773 return;
4774 Py_DECREF(x);
4776 /* time values */
4777 d = PyDateTime_TimeType.tp_dict;
4779 x = new_time(0, 0, 0, 0, Py_None);
4780 if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
4781 return;
4782 Py_DECREF(x);
4784 x = new_time(23, 59, 59, 999999, Py_None);
4785 if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
4786 return;
4787 Py_DECREF(x);
4789 x = new_delta(0, 0, 1, 0);
4790 if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
4791 return;
4792 Py_DECREF(x);
4794 /* datetime values */
4795 d = PyDateTime_DateTimeType.tp_dict;
4797 x = new_datetime(1, 1, 1, 0, 0, 0, 0, Py_None);
4798 if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
4799 return;
4800 Py_DECREF(x);
4802 x = new_datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999, Py_None);
4803 if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
4804 return;
4805 Py_DECREF(x);
4807 x = new_delta(0, 0, 1, 0);
4808 if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
4809 return;
4810 Py_DECREF(x);
4812 /* module initialization */
4813 PyModule_AddIntConstant(m, "MINYEAR", MINYEAR);
4814 PyModule_AddIntConstant(m, "MAXYEAR", MAXYEAR);
4816 Py_INCREF(&PyDateTime_DateType);
4817 PyModule_AddObject(m, "date", (PyObject *) &PyDateTime_DateType);
4819 Py_INCREF(&PyDateTime_DateTimeType);
4820 PyModule_AddObject(m, "datetime",
4821 (PyObject *)&PyDateTime_DateTimeType);
4823 Py_INCREF(&PyDateTime_TimeType);
4824 PyModule_AddObject(m, "time", (PyObject *) &PyDateTime_TimeType);
4826 Py_INCREF(&PyDateTime_DeltaType);
4827 PyModule_AddObject(m, "timedelta", (PyObject *) &PyDateTime_DeltaType);
4829 Py_INCREF(&PyDateTime_TZInfoType);
4830 PyModule_AddObject(m, "tzinfo", (PyObject *) &PyDateTime_TZInfoType);
4832 x = PyCObject_FromVoidPtrAndDesc(&CAPI, (void*) DATETIME_API_MAGIC,
4833 NULL);
4834 if (x == NULL)
4835 return;
4836 PyModule_AddObject(m, "datetime_CAPI", x);
4838 /* A 4-year cycle has an extra leap day over what we'd get from
4839 * pasting together 4 single years.
4841 assert(DI4Y == 4 * 365 + 1);
4842 assert(DI4Y == days_before_year(4+1));
4844 /* Similarly, a 400-year cycle has an extra leap day over what we'd
4845 * get from pasting together 4 100-year cycles.
4847 assert(DI400Y == 4 * DI100Y + 1);
4848 assert(DI400Y == days_before_year(400+1));
4850 /* OTOH, a 100-year cycle has one fewer leap day than we'd get from
4851 * pasting together 25 4-year cycles.
4853 assert(DI100Y == 25 * DI4Y - 1);
4854 assert(DI100Y == days_before_year(100+1));
4856 us_per_us = PyInt_FromLong(1);
4857 us_per_ms = PyInt_FromLong(1000);
4858 us_per_second = PyInt_FromLong(1000000);
4859 us_per_minute = PyInt_FromLong(60000000);
4860 seconds_per_day = PyInt_FromLong(24 * 3600);
4861 if (us_per_us == NULL || us_per_ms == NULL || us_per_second == NULL ||
4862 us_per_minute == NULL || seconds_per_day == NULL)
4863 return;
4865 /* The rest are too big for 32-bit ints, but even
4866 * us_per_week fits in 40 bits, so doubles should be exact.
4868 us_per_hour = PyLong_FromDouble(3600000000.0);
4869 us_per_day = PyLong_FromDouble(86400000000.0);
4870 us_per_week = PyLong_FromDouble(604800000000.0);
4871 if (us_per_hour == NULL || us_per_day == NULL || us_per_week == NULL)
4872 return;
4875 /* ---------------------------------------------------------------------------
4876 Some time zone algebra. For a datetime x, let
4877 x.n = x stripped of its timezone -- its naive time.
4878 x.o = x.utcoffset(), and assuming that doesn't raise an exception or
4879 return None
4880 x.d = x.dst(), and assuming that doesn't raise an exception or
4881 return None
4882 x.s = x's standard offset, x.o - x.d
4884 Now some derived rules, where k is a duration (timedelta).
4886 1. x.o = x.s + x.d
4887 This follows from the definition of x.s.
4889 2. If x and y have the same tzinfo member, x.s = y.s.
4890 This is actually a requirement, an assumption we need to make about
4891 sane tzinfo classes.
4893 3. The naive UTC time corresponding to x is x.n - x.o.
4894 This is again a requirement for a sane tzinfo class.
4896 4. (x+k).s = x.s
4897 This follows from #2, and that datimetimetz+timedelta preserves tzinfo.
4899 5. (x+k).n = x.n + k
4900 Again follows from how arithmetic is defined.
4902 Now we can explain tz.fromutc(x). Let's assume it's an interesting case
4903 (meaning that the various tzinfo methods exist, and don't blow up or return
4904 None when called).
4906 The function wants to return a datetime y with timezone tz, equivalent to x.
4907 x is already in UTC.
4909 By #3, we want
4911 y.n - y.o = x.n [1]
4913 The algorithm starts by attaching tz to x.n, and calling that y. So
4914 x.n = y.n at the start. Then it wants to add a duration k to y, so that [1]
4915 becomes true; in effect, we want to solve [2] for k:
4917 (y+k).n - (y+k).o = x.n [2]
4919 By #1, this is the same as
4921 (y+k).n - ((y+k).s + (y+k).d) = x.n [3]
4923 By #5, (y+k).n = y.n + k, which equals x.n + k because x.n=y.n at the start.
4924 Substituting that into [3],
4926 x.n + k - (y+k).s - (y+k).d = x.n; the x.n terms cancel, leaving
4927 k - (y+k).s - (y+k).d = 0; rearranging,
4928 k = (y+k).s - (y+k).d; by #4, (y+k).s == y.s, so
4929 k = y.s - (y+k).d
4931 On the RHS, (y+k).d can't be computed directly, but y.s can be, and we
4932 approximate k by ignoring the (y+k).d term at first. Note that k can't be
4933 very large, since all offset-returning methods return a duration of magnitude
4934 less than 24 hours. For that reason, if y is firmly in std time, (y+k).d must
4935 be 0, so ignoring it has no consequence then.
4937 In any case, the new value is
4939 z = y + y.s [4]
4941 It's helpful to step back at look at [4] from a higher level: it's simply
4942 mapping from UTC to tz's standard time.
4944 At this point, if
4946 z.n - z.o = x.n [5]
4948 we have an equivalent time, and are almost done. The insecurity here is
4949 at the start of daylight time. Picture US Eastern for concreteness. The wall
4950 time jumps from 1:59 to 3:00, and wall hours of the form 2:MM don't make good
4951 sense then. The docs ask that an Eastern tzinfo class consider such a time to
4952 be EDT (because it's "after 2"), which is a redundant spelling of 1:MM EST
4953 on the day DST starts. We want to return the 1:MM EST spelling because that's
4954 the only spelling that makes sense on the local wall clock.
4956 In fact, if [5] holds at this point, we do have the standard-time spelling,
4957 but that takes a bit of proof. We first prove a stronger result. What's the
4958 difference between the LHS and RHS of [5]? Let
4960 diff = x.n - (z.n - z.o) [6]
4963 z.n = by [4]
4964 (y + y.s).n = by #5
4965 y.n + y.s = since y.n = x.n
4966 x.n + y.s = since z and y are have the same tzinfo member,
4967 y.s = z.s by #2
4968 x.n + z.s
4970 Plugging that back into [6] gives
4972 diff =
4973 x.n - ((x.n + z.s) - z.o) = expanding
4974 x.n - x.n - z.s + z.o = cancelling
4975 - z.s + z.o = by #2
4978 So diff = z.d.
4980 If [5] is true now, diff = 0, so z.d = 0 too, and we have the standard-time
4981 spelling we wanted in the endcase described above. We're done. Contrarily,
4982 if z.d = 0, then we have a UTC equivalent, and are also done.
4984 If [5] is not true now, diff = z.d != 0, and z.d is the offset we need to
4985 add to z (in effect, z is in tz's standard time, and we need to shift the
4986 local clock into tz's daylight time).
4990 z' = z + z.d = z + diff [7]
4992 and we can again ask whether
4994 z'.n - z'.o = x.n [8]
4996 If so, we're done. If not, the tzinfo class is insane, according to the
4997 assumptions we've made. This also requires a bit of proof. As before, let's
4998 compute the difference between the LHS and RHS of [8] (and skipping some of
4999 the justifications for the kinds of substitutions we've done several times
5000 already):
5002 diff' = x.n - (z'.n - z'.o) = replacing z'.n via [7]
5003 x.n - (z.n + diff - z'.o) = replacing diff via [6]
5004 x.n - (z.n + x.n - (z.n - z.o) - z'.o) =
5005 x.n - z.n - x.n + z.n - z.o + z'.o = cancel x.n
5006 - z.n + z.n - z.o + z'.o = cancel z.n
5007 - z.o + z'.o = #1 twice
5008 -z.s - z.d + z'.s + z'.d = z and z' have same tzinfo
5009 z'.d - z.d
5011 So z' is UTC-equivalent to x iff z'.d = z.d at this point. If they are equal,
5012 we've found the UTC-equivalent so are done. In fact, we stop with [7] and
5013 return z', not bothering to compute z'.d.
5015 How could z.d and z'd differ? z' = z + z.d [7], so merely moving z' by
5016 a dst() offset, and starting *from* a time already in DST (we know z.d != 0),
5017 would have to change the result dst() returns: we start in DST, and moving
5018 a little further into it takes us out of DST.
5020 There isn't a sane case where this can happen. The closest it gets is at
5021 the end of DST, where there's an hour in UTC with no spelling in a hybrid
5022 tzinfo class. In US Eastern, that's 5:MM UTC = 0:MM EST = 1:MM EDT. During
5023 that hour, on an Eastern clock 1:MM is taken as being in standard time (6:MM
5024 UTC) because the docs insist on that, but 0:MM is taken as being in daylight
5025 time (4:MM UTC). There is no local time mapping to 5:MM UTC. The local
5026 clock jumps from 1:59 back to 1:00 again, and repeats the 1:MM hour in
5027 standard time. Since that's what the local clock *does*, we want to map both
5028 UTC hours 5:MM and 6:MM to 1:MM Eastern. The result is ambiguous
5029 in local time, but so it goes -- it's the way the local clock works.
5031 When x = 5:MM UTC is the input to this algorithm, x.o=0, y.o=-5 and y.d=0,
5032 so z=0:MM. z.d=60 (minutes) then, so [5] doesn't hold and we keep going.
5033 z' = z + z.d = 1:MM then, and z'.d=0, and z'.d - z.d = -60 != 0 so [8]
5034 (correctly) concludes that z' is not UTC-equivalent to x.
5036 Because we know z.d said z was in daylight time (else [5] would have held and
5037 we would have stopped then), and we know z.d != z'.d (else [8] would have held
5038 and we would have stopped then), and there are only 2 possible values dst() can
5039 return in Eastern, it follows that z'.d must be 0 (which it is in the example,
5040 but the reasoning doesn't depend on the example -- it depends on there being
5041 two possible dst() outcomes, one zero and the other non-zero). Therefore
5042 z' must be in standard time, and is the spelling we want in this case.
5044 Note again that z' is not UTC-equivalent as far as the hybrid tzinfo class is
5045 concerned (because it takes z' as being in standard time rather than the
5046 daylight time we intend here), but returning it gives the real-life "local
5047 clock repeats an hour" behavior when mapping the "unspellable" UTC hour into
5050 When the input is 6:MM, z=1:MM and z.d=0, and we stop at once, again with
5051 the 1:MM standard time spelling we want.
5053 So how can this break? One of the assumptions must be violated. Two
5054 possibilities:
5056 1) [2] effectively says that y.s is invariant across all y belong to a given
5057 time zone. This isn't true if, for political reasons or continental drift,
5058 a region decides to change its base offset from UTC.
5060 2) There may be versions of "double daylight" time where the tail end of
5061 the analysis gives up a step too early. I haven't thought about that
5062 enough to say.
5064 In any case, it's clear that the default fromutc() is strong enough to handle
5065 "almost all" time zones: so long as the standard offset is invariant, it
5066 doesn't matter if daylight time transition points change from year to year, or
5067 if daylight time is skipped in some years; it doesn't matter how large or
5068 small dst() may get within its bounds; and it doesn't even matter if some
5069 perverse time zone returns a negative dst()). So a breaking case must be
5070 pretty bizarre, and a tzinfo subclass can override fromutc() if it is.
5071 --------------------------------------------------------------------------- */