Minor documentation changes cross-referencing NullHandler to the documentation on...
[python.git] / Lib / fractions.py
blob446ad8ea8279a1c754c1055e0b2c411731861fcb
1 # Originally contributed by Sjoerd Mullender.
2 # Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
4 """Rational, infinite-precision, real numbers."""
6 from __future__ import division
7 import math
8 import numbers
9 import operator
10 import re
12 __all__ = ['Fraction', 'gcd']
14 Rational = numbers.Rational
17 def gcd(a, b):
18 """Calculate the Greatest Common Divisor of a and b.
20 Unless b==0, the result will have the same sign as b (so that when
21 b is divided by it, the result comes out positive).
22 """
23 while b:
24 a, b = b, a%b
25 return a
28 _RATIONAL_FORMAT = re.compile(r"""
29 \A\s* # optional whitespace at the start, then
30 (?P<sign>[-+]?) # an optional sign, then
31 (?=\d|\.\d) # lookahead for digit or .digit
32 (?P<num>\d*) # numerator (possibly empty)
33 (?: # followed by an optional
34 /(?P<denom>\d+) # / and denominator
35 | # or
36 \.(?P<decimal>\d*) # decimal point and fractional part
38 \s*\Z # and optional whitespace to finish
39 """, re.VERBOSE)
42 class Fraction(Rational):
43 """This class implements rational numbers.
45 Fraction(8, 6) will produce a rational number equivalent to
46 4/3. Both arguments must be Integral. The numerator defaults to 0
47 and the denominator defaults to 1 so that Fraction(3) == 3 and
48 Fraction() == 0.
50 Fractions can also be constructed from strings of the form
51 '[-+]?[0-9]+((/|.)[0-9]+)?', optionally surrounded by spaces.
53 """
55 __slots__ = ('_numerator', '_denominator')
57 # We're immutable, so use __new__ not __init__
58 def __new__(cls, numerator=0, denominator=1):
59 """Constructs a Fraction.
61 Takes a string like '3/2' or '1.5', another Fraction, or a
62 numerator/denominator pair.
64 """
65 self = super(Fraction, cls).__new__(cls)
67 if type(numerator) not in (int, long) and denominator == 1:
68 if isinstance(numerator, basestring):
69 # Handle construction from strings.
70 input = numerator
71 m = _RATIONAL_FORMAT.match(input)
72 if m is None:
73 raise ValueError('Invalid literal for Fraction: %r' % input)
74 numerator = m.group('num')
75 decimal = m.group('decimal')
76 if decimal:
77 # The literal is a decimal number.
78 numerator = int(numerator + decimal)
79 denominator = 10**len(decimal)
80 else:
81 # The literal is an integer or fraction.
82 numerator = int(numerator)
83 # Default denominator to 1.
84 denominator = int(m.group('denom') or 1)
86 if m.group('sign') == '-':
87 numerator = -numerator
89 elif isinstance(numerator, Rational):
90 # Handle copies from other rationals. Integrals get
91 # caught here too, but it doesn't matter because
92 # denominator is already 1.
93 other_rational = numerator
94 numerator = other_rational.numerator
95 denominator = other_rational.denominator
97 if denominator == 0:
98 raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
99 numerator = operator.index(numerator)
100 denominator = operator.index(denominator)
101 g = gcd(numerator, denominator)
102 self._numerator = numerator // g
103 self._denominator = denominator // g
104 return self
106 @classmethod
107 def from_float(cls, f):
108 """Converts a finite float to a rational number, exactly.
110 Beware that Fraction.from_float(0.3) != Fraction(3, 10).
113 if isinstance(f, numbers.Integral):
114 return cls(f)
115 elif not isinstance(f, float):
116 raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
117 (cls.__name__, f, type(f).__name__))
118 if math.isnan(f) or math.isinf(f):
119 raise TypeError("Cannot convert %r to %s." % (f, cls.__name__))
120 return cls(*f.as_integer_ratio())
122 @classmethod
123 def from_decimal(cls, dec):
124 """Converts a finite Decimal instance to a rational number, exactly."""
125 from decimal import Decimal
126 if isinstance(dec, numbers.Integral):
127 dec = Decimal(int(dec))
128 elif not isinstance(dec, Decimal):
129 raise TypeError(
130 "%s.from_decimal() only takes Decimals, not %r (%s)" %
131 (cls.__name__, dec, type(dec).__name__))
132 if not dec.is_finite():
133 # Catches infinities and nans.
134 raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__))
135 sign, digits, exp = dec.as_tuple()
136 digits = int(''.join(map(str, digits)))
137 if sign:
138 digits = -digits
139 if exp >= 0:
140 return cls(digits * 10 ** exp)
141 else:
142 return cls(digits, 10 ** -exp)
144 def limit_denominator(self, max_denominator=1000000):
145 """Closest Fraction to self with denominator at most max_denominator.
147 >>> Fraction('3.141592653589793').limit_denominator(10)
148 Fraction(22, 7)
149 >>> Fraction('3.141592653589793').limit_denominator(100)
150 Fraction(311, 99)
151 >>> Fraction(1234, 5678).limit_denominator(10000)
152 Fraction(1234, 5678)
155 # Algorithm notes: For any real number x, define a *best upper
156 # approximation* to x to be a rational number p/q such that:
158 # (1) p/q >= x, and
159 # (2) if p/q > r/s >= x then s > q, for any rational r/s.
161 # Define *best lower approximation* similarly. Then it can be
162 # proved that a rational number is a best upper or lower
163 # approximation to x if, and only if, it is a convergent or
164 # semiconvergent of the (unique shortest) continued fraction
165 # associated to x.
167 # To find a best rational approximation with denominator <= M,
168 # we find the best upper and lower approximations with
169 # denominator <= M and take whichever of these is closer to x.
170 # In the event of a tie, the bound with smaller denominator is
171 # chosen. If both denominators are equal (which can happen
172 # only when max_denominator == 1 and self is midway between
173 # two integers) the lower bound---i.e., the floor of self, is
174 # taken.
176 if max_denominator < 1:
177 raise ValueError("max_denominator should be at least 1")
178 if self._denominator <= max_denominator:
179 return Fraction(self)
181 p0, q0, p1, q1 = 0, 1, 1, 0
182 n, d = self._numerator, self._denominator
183 while True:
184 a = n//d
185 q2 = q0+a*q1
186 if q2 > max_denominator:
187 break
188 p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
189 n, d = d, n-a*d
191 k = (max_denominator-q0)//q1
192 bound1 = Fraction(p0+k*p1, q0+k*q1)
193 bound2 = Fraction(p1, q1)
194 if abs(bound2 - self) <= abs(bound1-self):
195 return bound2
196 else:
197 return bound1
199 @property
200 def numerator(a):
201 return a._numerator
203 @property
204 def denominator(a):
205 return a._denominator
207 def __repr__(self):
208 """repr(self)"""
209 return ('Fraction(%s, %s)' % (self._numerator, self._denominator))
211 def __str__(self):
212 """str(self)"""
213 if self._denominator == 1:
214 return str(self._numerator)
215 else:
216 return '%s/%s' % (self._numerator, self._denominator)
218 def _operator_fallbacks(monomorphic_operator, fallback_operator):
219 """Generates forward and reverse operators given a purely-rational
220 operator and a function from the operator module.
222 Use this like:
223 __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
225 In general, we want to implement the arithmetic operations so
226 that mixed-mode operations either call an implementation whose
227 author knew about the types of both arguments, or convert both
228 to the nearest built in type and do the operation there. In
229 Fraction, that means that we define __add__ and __radd__ as:
231 def __add__(self, other):
232 # Both types have numerators/denominator attributes,
233 # so do the operation directly
234 if isinstance(other, (int, long, Fraction)):
235 return Fraction(self.numerator * other.denominator +
236 other.numerator * self.denominator,
237 self.denominator * other.denominator)
238 # float and complex don't have those operations, but we
239 # know about those types, so special case them.
240 elif isinstance(other, float):
241 return float(self) + other
242 elif isinstance(other, complex):
243 return complex(self) + other
244 # Let the other type take over.
245 return NotImplemented
247 def __radd__(self, other):
248 # radd handles more types than add because there's
249 # nothing left to fall back to.
250 if isinstance(other, Rational):
251 return Fraction(self.numerator * other.denominator +
252 other.numerator * self.denominator,
253 self.denominator * other.denominator)
254 elif isinstance(other, Real):
255 return float(other) + float(self)
256 elif isinstance(other, Complex):
257 return complex(other) + complex(self)
258 return NotImplemented
261 There are 5 different cases for a mixed-type addition on
262 Fraction. I'll refer to all of the above code that doesn't
263 refer to Fraction, float, or complex as "boilerplate". 'r'
264 will be an instance of Fraction, which is a subtype of
265 Rational (r : Fraction <: Rational), and b : B <:
266 Complex. The first three involve 'r + b':
268 1. If B <: Fraction, int, float, or complex, we handle
269 that specially, and all is well.
270 2. If Fraction falls back to the boilerplate code, and it
271 were to return a value from __add__, we'd miss the
272 possibility that B defines a more intelligent __radd__,
273 so the boilerplate should return NotImplemented from
274 __add__. In particular, we don't handle Rational
275 here, even though we could get an exact answer, in case
276 the other type wants to do something special.
277 3. If B <: Fraction, Python tries B.__radd__ before
278 Fraction.__add__. This is ok, because it was
279 implemented with knowledge of Fraction, so it can
280 handle those instances before delegating to Real or
281 Complex.
283 The next two situations describe 'b + r'. We assume that b
284 didn't know about Fraction in its implementation, and that it
285 uses similar boilerplate code:
287 4. If B <: Rational, then __radd_ converts both to the
288 builtin rational type (hey look, that's us) and
289 proceeds.
290 5. Otherwise, __radd__ tries to find the nearest common
291 base ABC, and fall back to its builtin type. Since this
292 class doesn't subclass a concrete type, there's no
293 implementation to fall back to, so we need to try as
294 hard as possible to return an actual value, or the user
295 will get a TypeError.
298 def forward(a, b):
299 if isinstance(b, (int, long, Fraction)):
300 return monomorphic_operator(a, b)
301 elif isinstance(b, float):
302 return fallback_operator(float(a), b)
303 elif isinstance(b, complex):
304 return fallback_operator(complex(a), b)
305 else:
306 return NotImplemented
307 forward.__name__ = '__' + fallback_operator.__name__ + '__'
308 forward.__doc__ = monomorphic_operator.__doc__
310 def reverse(b, a):
311 if isinstance(a, Rational):
312 # Includes ints.
313 return monomorphic_operator(a, b)
314 elif isinstance(a, numbers.Real):
315 return fallback_operator(float(a), float(b))
316 elif isinstance(a, numbers.Complex):
317 return fallback_operator(complex(a), complex(b))
318 else:
319 return NotImplemented
320 reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
321 reverse.__doc__ = monomorphic_operator.__doc__
323 return forward, reverse
325 def _add(a, b):
326 """a + b"""
327 return Fraction(a.numerator * b.denominator +
328 b.numerator * a.denominator,
329 a.denominator * b.denominator)
331 __add__, __radd__ = _operator_fallbacks(_add, operator.add)
333 def _sub(a, b):
334 """a - b"""
335 return Fraction(a.numerator * b.denominator -
336 b.numerator * a.denominator,
337 a.denominator * b.denominator)
339 __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
341 def _mul(a, b):
342 """a * b"""
343 return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)
345 __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
347 def _div(a, b):
348 """a / b"""
349 return Fraction(a.numerator * b.denominator,
350 a.denominator * b.numerator)
352 __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
353 __div__, __rdiv__ = _operator_fallbacks(_div, operator.div)
355 def __floordiv__(a, b):
356 """a // b"""
357 # Will be math.floor(a / b) in 3.0.
358 div = a / b
359 if isinstance(div, Rational):
360 # trunc(math.floor(div)) doesn't work if the rational is
361 # more precise than a float because the intermediate
362 # rounding may cross an integer boundary.
363 return div.numerator // div.denominator
364 else:
365 return math.floor(div)
367 def __rfloordiv__(b, a):
368 """a // b"""
369 # Will be math.floor(a / b) in 3.0.
370 div = a / b
371 if isinstance(div, Rational):
372 # trunc(math.floor(div)) doesn't work if the rational is
373 # more precise than a float because the intermediate
374 # rounding may cross an integer boundary.
375 return div.numerator // div.denominator
376 else:
377 return math.floor(div)
379 def __mod__(a, b):
380 """a % b"""
381 div = a // b
382 return a - b * div
384 def __rmod__(b, a):
385 """a % b"""
386 div = a // b
387 return a - b * div
389 def __pow__(a, b):
390 """a ** b
392 If b is not an integer, the result will be a float or complex
393 since roots are generally irrational. If b is an integer, the
394 result will be rational.
397 if isinstance(b, Rational):
398 if b.denominator == 1:
399 power = b.numerator
400 if power >= 0:
401 return Fraction(a._numerator ** power,
402 a._denominator ** power)
403 else:
404 return Fraction(a._denominator ** -power,
405 a._numerator ** -power)
406 else:
407 # A fractional power will generally produce an
408 # irrational number.
409 return float(a) ** float(b)
410 else:
411 return float(a) ** b
413 def __rpow__(b, a):
414 """a ** b"""
415 if b._denominator == 1 and b._numerator >= 0:
416 # If a is an int, keep it that way if possible.
417 return a ** b._numerator
419 if isinstance(a, Rational):
420 return Fraction(a.numerator, a.denominator) ** b
422 if b._denominator == 1:
423 return a ** b._numerator
425 return a ** float(b)
427 def __pos__(a):
428 """+a: Coerces a subclass instance to Fraction"""
429 return Fraction(a._numerator, a._denominator)
431 def __neg__(a):
432 """-a"""
433 return Fraction(-a._numerator, a._denominator)
435 def __abs__(a):
436 """abs(a)"""
437 return Fraction(abs(a._numerator), a._denominator)
439 def __trunc__(a):
440 """trunc(a)"""
441 if a._numerator < 0:
442 return -(-a._numerator // a._denominator)
443 else:
444 return a._numerator // a._denominator
446 def __hash__(self):
447 """hash(self)
449 Tricky because values that are exactly representable as a
450 float must have the same hash as that float.
453 # XXX since this method is expensive, consider caching the result
454 if self._denominator == 1:
455 # Get integers right.
456 return hash(self._numerator)
457 # Expensive check, but definitely correct.
458 if self == float(self):
459 return hash(float(self))
460 else:
461 # Use tuple's hash to avoid a high collision rate on
462 # simple fractions.
463 return hash((self._numerator, self._denominator))
465 def __eq__(a, b):
466 """a == b"""
467 if isinstance(b, Rational):
468 return (a._numerator == b.numerator and
469 a._denominator == b.denominator)
470 if isinstance(b, numbers.Complex) and b.imag == 0:
471 b = b.real
472 if isinstance(b, float):
473 return a == a.from_float(b)
474 else:
475 # XXX: If b.__eq__ is implemented like this method, it may
476 # give the wrong answer after float(a) changes a's
477 # value. Better ways of doing this are welcome.
478 return float(a) == b
480 def _subtractAndCompareToZero(a, b, op):
481 """Helper function for comparison operators.
483 Subtracts b from a, exactly if possible, and compares the
484 result with 0 using op, in such a way that the comparison
485 won't recurse. If the difference raises a TypeError, returns
486 NotImplemented instead.
489 if isinstance(b, numbers.Complex) and b.imag == 0:
490 b = b.real
491 if isinstance(b, float):
492 b = a.from_float(b)
493 try:
494 # XXX: If b <: Real but not <: Rational, this is likely
495 # to fall back to a float. If the actual values differ by
496 # less than MIN_FLOAT, this could falsely call them equal,
497 # which would make <= inconsistent with ==. Better ways of
498 # doing this are welcome.
499 diff = a - b
500 except TypeError:
501 return NotImplemented
502 if isinstance(diff, Rational):
503 return op(diff.numerator, 0)
504 return op(diff, 0)
506 def __lt__(a, b):
507 """a < b"""
508 return a._subtractAndCompareToZero(b, operator.lt)
510 def __gt__(a, b):
511 """a > b"""
512 return a._subtractAndCompareToZero(b, operator.gt)
514 def __le__(a, b):
515 """a <= b"""
516 return a._subtractAndCompareToZero(b, operator.le)
518 def __ge__(a, b):
519 """a >= b"""
520 return a._subtractAndCompareToZero(b, operator.ge)
522 def __nonzero__(a):
523 """a != 0"""
524 return a._numerator != 0
526 # support for pickling, copy, and deepcopy
528 def __reduce__(self):
529 return (self.__class__, (str(self),))
531 def __copy__(self):
532 if type(self) == Fraction:
533 return self # I'm immutable; therefore I am my own clone
534 return self.__class__(self._numerator, self._denominator)
536 def __deepcopy__(self, memo):
537 if type(self) == Fraction:
538 return self # My components are also immutable
539 return self.__class__(self._numerator, self._denominator)