Minor documentation changes cross-referencing NullHandler to the documentation on...
[python.git] / Lib / csv.py
blobff51a8648447c5dd198958944efc12ce5c09383d
2 """
3 csv.py - read/write/investigate CSV files
4 """
6 import re
7 from functools import reduce
8 from _csv import Error, __version__, writer, reader, register_dialect, \
9 unregister_dialect, get_dialect, list_dialects, \
10 field_size_limit, \
11 QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \
12 __doc__
13 from _csv import Dialect as _Dialect
15 try:
16 from cStringIO import StringIO
17 except ImportError:
18 from StringIO import StringIO
20 __all__ = [ "QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE",
21 "Error", "Dialect", "__doc__", "excel", "excel_tab",
22 "field_size_limit", "reader", "writer",
23 "register_dialect", "get_dialect", "list_dialects", "Sniffer",
24 "unregister_dialect", "__version__", "DictReader", "DictWriter" ]
26 class Dialect:
27 """Describe an Excel dialect.
29 This must be subclassed (see csv.excel). Valid attributes are:
30 delimiter, quotechar, escapechar, doublequote, skipinitialspace,
31 lineterminator, quoting.
33 """
34 _name = ""
35 _valid = False
36 # placeholders
37 delimiter = None
38 quotechar = None
39 escapechar = None
40 doublequote = None
41 skipinitialspace = None
42 lineterminator = None
43 quoting = None
45 def __init__(self):
46 if self.__class__ != Dialect:
47 self._valid = True
48 self._validate()
50 def _validate(self):
51 try:
52 _Dialect(self)
53 except TypeError, e:
54 # We do this for compatibility with py2.3
55 raise Error(str(e))
57 class excel(Dialect):
58 """Describe the usual properties of Excel-generated CSV files."""
59 delimiter = ','
60 quotechar = '"'
61 doublequote = True
62 skipinitialspace = False
63 lineterminator = '\r\n'
64 quoting = QUOTE_MINIMAL
65 register_dialect("excel", excel)
67 class excel_tab(excel):
68 """Describe the usual properties of Excel-generated TAB-delimited files."""
69 delimiter = '\t'
70 register_dialect("excel-tab", excel_tab)
73 class DictReader:
74 def __init__(self, f, fieldnames=None, restkey=None, restval=None,
75 dialect="excel", *args, **kwds):
76 self._fieldnames = fieldnames # list of keys for the dict
77 self.restkey = restkey # key to catch long rows
78 self.restval = restval # default value for short rows
79 self.reader = reader(f, dialect, *args, **kwds)
80 self.dialect = dialect
81 self.line_num = 0
83 def __iter__(self):
84 return self
86 @property
87 def fieldnames(self):
88 if self._fieldnames is None:
89 try:
90 self._fieldnames = self.reader.next()
91 except StopIteration:
92 pass
93 self.line_num = self.reader.line_num
94 return self._fieldnames
96 @fieldnames.setter
97 def fieldnames(self, value):
98 self._fieldnames = value
100 def next(self):
101 if self.line_num == 0:
102 # Used only for its side effect.
103 self.fieldnames
104 row = self.reader.next()
105 self.line_num = self.reader.line_num
107 # unlike the basic reader, we prefer not to return blanks,
108 # because we will typically wind up with a dict full of None
109 # values
110 while row == []:
111 row = self.reader.next()
112 d = dict(zip(self.fieldnames, row))
113 lf = len(self.fieldnames)
114 lr = len(row)
115 if lf < lr:
116 d[self.restkey] = row[lf:]
117 elif lf > lr:
118 for key in self.fieldnames[lr:]:
119 d[key] = self.restval
120 return d
123 class DictWriter:
124 def __init__(self, f, fieldnames, restval="", extrasaction="raise",
125 dialect="excel", *args, **kwds):
126 self.fieldnames = fieldnames # list of keys for the dict
127 self.restval = restval # for writing short dicts
128 if extrasaction.lower() not in ("raise", "ignore"):
129 raise ValueError, \
130 ("extrasaction (%s) must be 'raise' or 'ignore'" %
131 extrasaction)
132 self.extrasaction = extrasaction
133 self.writer = writer(f, dialect, *args, **kwds)
135 def _dict_to_list(self, rowdict):
136 if self.extrasaction == "raise":
137 wrong_fields = [k for k in rowdict if k not in self.fieldnames]
138 if wrong_fields:
139 raise ValueError("dict contains fields not in fieldnames: " +
140 ", ".join(wrong_fields))
141 return [rowdict.get(key, self.restval) for key in self.fieldnames]
143 def writerow(self, rowdict):
144 return self.writer.writerow(self._dict_to_list(rowdict))
146 def writerows(self, rowdicts):
147 rows = []
148 for rowdict in rowdicts:
149 rows.append(self._dict_to_list(rowdict))
150 return self.writer.writerows(rows)
152 # Guard Sniffer's type checking against builds that exclude complex()
153 try:
154 complex
155 except NameError:
156 complex = float
158 class Sniffer:
160 "Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
161 Returns a Dialect object.
163 def __init__(self):
164 # in case there is more than one possible delimiter
165 self.preferred = [',', '\t', ';', ' ', ':']
168 def sniff(self, sample, delimiters=None):
170 Returns a dialect (or None) corresponding to the sample
173 quotechar, delimiter, skipinitialspace = \
174 self._guess_quote_and_delimiter(sample, delimiters)
175 if not delimiter:
176 delimiter, skipinitialspace = self._guess_delimiter(sample,
177 delimiters)
179 if not delimiter:
180 raise Error, "Could not determine delimiter"
182 class dialect(Dialect):
183 _name = "sniffed"
184 lineterminator = '\r\n'
185 quoting = QUOTE_MINIMAL
186 # escapechar = ''
187 doublequote = False
189 dialect.delimiter = delimiter
190 # _csv.reader won't accept a quotechar of ''
191 dialect.quotechar = quotechar or '"'
192 dialect.skipinitialspace = skipinitialspace
194 return dialect
197 def _guess_quote_and_delimiter(self, data, delimiters):
199 Looks for text enclosed between two identical quotes
200 (the probable quotechar) which are preceded and followed
201 by the same character (the probable delimiter).
202 For example:
203 ,'some text',
204 The quote with the most wins, same with the delimiter.
205 If there is no quotechar the delimiter can't be determined
206 this way.
209 matches = []
210 for restr in ('(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
211 '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # ".*?",
212 '(?P<delim>>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)', # ,".*?"
213 '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space)
214 regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
215 matches = regexp.findall(data)
216 if matches:
217 break
219 if not matches:
220 return ('', None, 0) # (quotechar, delimiter, skipinitialspace)
222 quotes = {}
223 delims = {}
224 spaces = 0
225 for m in matches:
226 n = regexp.groupindex['quote'] - 1
227 key = m[n]
228 if key:
229 quotes[key] = quotes.get(key, 0) + 1
230 try:
231 n = regexp.groupindex['delim'] - 1
232 key = m[n]
233 except KeyError:
234 continue
235 if key and (delimiters is None or key in delimiters):
236 delims[key] = delims.get(key, 0) + 1
237 try:
238 n = regexp.groupindex['space'] - 1
239 except KeyError:
240 continue
241 if m[n]:
242 spaces += 1
244 quotechar = reduce(lambda a, b, quotes = quotes:
245 (quotes[a] > quotes[b]) and a or b, quotes.keys())
247 if delims:
248 delim = reduce(lambda a, b, delims = delims:
249 (delims[a] > delims[b]) and a or b, delims.keys())
250 skipinitialspace = delims[delim] == spaces
251 if delim == '\n': # most likely a file with a single column
252 delim = ''
253 else:
254 # there is *no* delimiter, it's a single column of quoted data
255 delim = ''
256 skipinitialspace = 0
258 return (quotechar, delim, skipinitialspace)
261 def _guess_delimiter(self, data, delimiters):
263 The delimiter /should/ occur the same number of times on
264 each row. However, due to malformed data, it may not. We don't want
265 an all or nothing approach, so we allow for small variations in this
266 number.
267 1) build a table of the frequency of each character on every line.
268 2) build a table of freqencies of this frequency (meta-frequency?),
269 e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows,
270 7 times in 2 rows'
271 3) use the mode of the meta-frequency to determine the /expected/
272 frequency for that character
273 4) find out how often the character actually meets that goal
274 5) the character that best meets its goal is the delimiter
275 For performance reasons, the data is evaluated in chunks, so it can
276 try and evaluate the smallest portion of the data possible, evaluating
277 additional chunks as necessary.
280 data = filter(None, data.split('\n'))
282 ascii = [chr(c) for c in range(127)] # 7-bit ASCII
284 # build frequency tables
285 chunkLength = min(10, len(data))
286 iteration = 0
287 charFrequency = {}
288 modes = {}
289 delims = {}
290 start, end = 0, min(chunkLength, len(data))
291 while start < len(data):
292 iteration += 1
293 for line in data[start:end]:
294 for char in ascii:
295 metaFrequency = charFrequency.get(char, {})
296 # must count even if frequency is 0
297 freq = line.count(char)
298 # value is the mode
299 metaFrequency[freq] = metaFrequency.get(freq, 0) + 1
300 charFrequency[char] = metaFrequency
302 for char in charFrequency.keys():
303 items = charFrequency[char].items()
304 if len(items) == 1 and items[0][0] == 0:
305 continue
306 # get the mode of the frequencies
307 if len(items) > 1:
308 modes[char] = reduce(lambda a, b: a[1] > b[1] and a or b,
309 items)
310 # adjust the mode - subtract the sum of all
311 # other frequencies
312 items.remove(modes[char])
313 modes[char] = (modes[char][0], modes[char][1]
314 - reduce(lambda a, b: (0, a[1] + b[1]),
315 items)[1])
316 else:
317 modes[char] = items[0]
319 # build a list of possible delimiters
320 modeList = modes.items()
321 total = float(chunkLength * iteration)
322 # (rows of consistent data) / (number of rows) = 100%
323 consistency = 1.0
324 # minimum consistency threshold
325 threshold = 0.9
326 while len(delims) == 0 and consistency >= threshold:
327 for k, v in modeList:
328 if v[0] > 0 and v[1] > 0:
329 if ((v[1]/total) >= consistency and
330 (delimiters is None or k in delimiters)):
331 delims[k] = v
332 consistency -= 0.01
334 if len(delims) == 1:
335 delim = delims.keys()[0]
336 skipinitialspace = (data[0].count(delim) ==
337 data[0].count("%c " % delim))
338 return (delim, skipinitialspace)
340 # analyze another chunkLength lines
341 start = end
342 end += chunkLength
344 if not delims:
345 return ('', 0)
347 # if there's more than one, fall back to a 'preferred' list
348 if len(delims) > 1:
349 for d in self.preferred:
350 if d in delims.keys():
351 skipinitialspace = (data[0].count(d) ==
352 data[0].count("%c " % d))
353 return (d, skipinitialspace)
355 # nothing else indicates a preference, pick the character that
356 # dominates(?)
357 items = [(v,k) for (k,v) in delims.items()]
358 items.sort()
359 delim = items[-1][1]
361 skipinitialspace = (data[0].count(delim) ==
362 data[0].count("%c " % delim))
363 return (delim, skipinitialspace)
366 def has_header(self, sample):
367 # Creates a dictionary of types of data in each column. If any
368 # column is of a single type (say, integers), *except* for the first
369 # row, then the first row is presumed to be labels. If the type
370 # can't be determined, it is assumed to be a string in which case
371 # the length of the string is the determining factor: if all of the
372 # rows except for the first are the same length, it's a header.
373 # Finally, a 'vote' is taken at the end for each column, adding or
374 # subtracting from the likelihood of the first row being a header.
376 rdr = reader(StringIO(sample), self.sniff(sample))
378 header = rdr.next() # assume first row is header
380 columns = len(header)
381 columnTypes = {}
382 for i in range(columns): columnTypes[i] = None
384 checked = 0
385 for row in rdr:
386 # arbitrary number of rows to check, to keep it sane
387 if checked > 20:
388 break
389 checked += 1
391 if len(row) != columns:
392 continue # skip rows that have irregular number of columns
394 for col in columnTypes.keys():
396 for thisType in [int, long, float, complex]:
397 try:
398 thisType(row[col])
399 break
400 except (ValueError, OverflowError):
401 pass
402 else:
403 # fallback to length of string
404 thisType = len(row[col])
406 # treat longs as ints
407 if thisType == long:
408 thisType = int
410 if thisType != columnTypes[col]:
411 if columnTypes[col] is None: # add new column type
412 columnTypes[col] = thisType
413 else:
414 # type is inconsistent, remove column from
415 # consideration
416 del columnTypes[col]
418 # finally, compare results against first row and "vote"
419 # on whether it's a header
420 hasHeader = 0
421 for col, colType in columnTypes.items():
422 if type(colType) == type(0): # it's a length
423 if len(header[col]) != colType:
424 hasHeader += 1
425 else:
426 hasHeader -= 1
427 else: # attempt typecast
428 try:
429 colType(header[col])
430 except (ValueError, TypeError):
431 hasHeader += 1
432 else:
433 hasHeader -= 1
435 return hasHeader > 0