Removed defensive test in Handler.close
[python.git] / Demo / classes / Complex.py
blob2b306ad5eadf7c41b5676cc85fa3d7fce0f1e547
1 # Complex numbers
2 # ---------------
4 # [Now that Python has a complex data type built-in, this is not very
5 # useful, but it's still a nice example class]
7 # This module represents complex numbers as instances of the class Complex.
8 # A Complex instance z has two data attribues, z.re (the real part) and z.im
9 # (the imaginary part). In fact, z.re and z.im can have any value -- all
10 # arithmetic operators work regardless of the type of z.re and z.im (as long
11 # as they support numerical operations).
13 # The following functions exist (Complex is actually a class):
14 # Complex([re [,im]) -> creates a complex number from a real and an imaginary part
15 # IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
16 # ToComplex(z) -> a complex number equal to z; z itself if IsComplex(z) is true
17 # if z is a tuple(re, im) it will also be converted
18 # PolarToComplex([r [,phi [,fullcircle]]]) ->
19 # the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
20 # (r and phi default to 0)
21 # exp(z) -> returns the complex exponential of z. Equivalent to pow(math.e,z).
23 # Complex numbers have the following methods:
24 # z.abs() -> absolute value of z
25 # z.radius() == z.abs()
26 # z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
27 # z.phi([fullcircle]) == z.angle(fullcircle)
29 # These standard functions and unary operators accept complex arguments:
30 # abs(z)
31 # -z
32 # +z
33 # not z
34 # repr(z) == `z`
35 # str(z)
36 # hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
37 # the result equals hash(z.re)
38 # Note that hex(z) and oct(z) are not defined.
40 # These conversions accept complex arguments only if their imaginary part is zero:
41 # int(z)
42 # long(z)
43 # float(z)
45 # The following operators accept two complex numbers, or one complex number
46 # and one real number (int, long or float):
47 # z1 + z2
48 # z1 - z2
49 # z1 * z2
50 # z1 / z2
51 # pow(z1, z2)
52 # cmp(z1, z2)
53 # Note that z1 % z2 and divmod(z1, z2) are not defined,
54 # nor are shift and mask operations.
56 # The standard module math does not support complex numbers.
57 # The cmath modules should be used instead.
59 # Idea:
60 # add a class Polar(r, phi) and mixed-mode arithmetic which
61 # chooses the most appropriate type for the result:
62 # Complex for +,-,cmp
63 # Polar for *,/,pow
65 import math
66 import sys
68 twopi = math.pi*2.0
69 halfpi = math.pi/2.0
71 def IsComplex(obj):
72 return hasattr(obj, 're') and hasattr(obj, 'im')
74 def ToComplex(obj):
75 if IsComplex(obj):
76 return obj
77 elif isinstance(obj, tuple):
78 return Complex(*obj)
79 else:
80 return Complex(obj)
82 def PolarToComplex(r = 0, phi = 0, fullcircle = twopi):
83 phi = phi * (twopi / fullcircle)
84 return Complex(math.cos(phi)*r, math.sin(phi)*r)
86 def Re(obj):
87 if IsComplex(obj):
88 return obj.re
89 return obj
91 def Im(obj):
92 if IsComplex(obj):
93 return obj.im
94 return 0
96 class Complex:
98 def __init__(self, re=0, im=0):
99 _re = 0
100 _im = 0
101 if IsComplex(re):
102 _re = re.re
103 _im = re.im
104 else:
105 _re = re
106 if IsComplex(im):
107 _re = _re - im.im
108 _im = _im + im.re
109 else:
110 _im = _im + im
111 # this class is immutable, so setting self.re directly is
112 # not possible.
113 self.__dict__['re'] = _re
114 self.__dict__['im'] = _im
116 def __setattr__(self, name, value):
117 raise TypeError, 'Complex numbers are immutable'
119 def __hash__(self):
120 if not self.im:
121 return hash(self.re)
122 return hash((self.re, self.im))
124 def __repr__(self):
125 if not self.im:
126 return 'Complex(%r)' % (self.re,)
127 else:
128 return 'Complex(%r, %r)' % (self.re, self.im)
130 def __str__(self):
131 if not self.im:
132 return repr(self.re)
133 else:
134 return 'Complex(%r, %r)' % (self.re, self.im)
136 def __neg__(self):
137 return Complex(-self.re, -self.im)
139 def __pos__(self):
140 return self
142 def __abs__(self):
143 return math.hypot(self.re, self.im)
145 def __int__(self):
146 if self.im:
147 raise ValueError, "can't convert Complex with nonzero im to int"
148 return int(self.re)
150 def __long__(self):
151 if self.im:
152 raise ValueError, "can't convert Complex with nonzero im to long"
153 return long(self.re)
155 def __float__(self):
156 if self.im:
157 raise ValueError, "can't convert Complex with nonzero im to float"
158 return float(self.re)
160 def __cmp__(self, other):
161 other = ToComplex(other)
162 return cmp((self.re, self.im), (other.re, other.im))
164 def __rcmp__(self, other):
165 other = ToComplex(other)
166 return cmp(other, self)
168 def __nonzero__(self):
169 return not (self.re == self.im == 0)
171 abs = radius = __abs__
173 def angle(self, fullcircle = twopi):
174 return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)
176 phi = angle
178 def __add__(self, other):
179 other = ToComplex(other)
180 return Complex(self.re + other.re, self.im + other.im)
182 __radd__ = __add__
184 def __sub__(self, other):
185 other = ToComplex(other)
186 return Complex(self.re - other.re, self.im - other.im)
188 def __rsub__(self, other):
189 other = ToComplex(other)
190 return other - self
192 def __mul__(self, other):
193 other = ToComplex(other)
194 return Complex(self.re*other.re - self.im*other.im,
195 self.re*other.im + self.im*other.re)
197 __rmul__ = __mul__
199 def __div__(self, other):
200 other = ToComplex(other)
201 d = float(other.re*other.re + other.im*other.im)
202 if not d: raise ZeroDivisionError, 'Complex division'
203 return Complex((self.re*other.re + self.im*other.im) / d,
204 (self.im*other.re - self.re*other.im) / d)
206 def __rdiv__(self, other):
207 other = ToComplex(other)
208 return other / self
210 def __pow__(self, n, z=None):
211 if z is not None:
212 raise TypeError, 'Complex does not support ternary pow()'
213 if IsComplex(n):
214 if n.im:
215 if self.im: raise TypeError, 'Complex to the Complex power'
216 else: return exp(math.log(self.re)*n)
217 n = n.re
218 r = pow(self.abs(), n)
219 phi = n*self.angle()
220 return Complex(math.cos(phi)*r, math.sin(phi)*r)
222 def __rpow__(self, base):
223 base = ToComplex(base)
224 return pow(base, self)
226 def exp(z):
227 r = math.exp(z.re)
228 return Complex(math.cos(z.im)*r,math.sin(z.im)*r)
231 def checkop(expr, a, b, value, fuzz = 1e-6):
232 print ' ', a, 'and', b,
233 try:
234 result = eval(expr)
235 except:
236 result = sys.exc_type
237 print '->', result
238 if isinstance(result, str) or isinstance(value, str):
239 ok = (result == value)
240 else:
241 ok = abs(result - value) <= fuzz
242 if not ok:
243 print '!!\t!!\t!! should be', value, 'diff', abs(result - value)
245 def test():
246 print 'test constructors'
247 constructor_test = (
248 # "expect" is an array [re,im] "got" the Complex.
249 ( (0,0), Complex() ),
250 ( (0,0), Complex() ),
251 ( (1,0), Complex(1) ),
252 ( (0,1), Complex(0,1) ),
253 ( (1,2), Complex(Complex(1,2)) ),
254 ( (1,3), Complex(Complex(1,2),1) ),
255 ( (0,0), Complex(0,Complex(0,0)) ),
256 ( (3,4), Complex(3,Complex(4)) ),
257 ( (-1,3), Complex(1,Complex(3,2)) ),
258 ( (-7,6), Complex(Complex(1,2),Complex(4,8)) ) )
259 cnt = [0,0]
260 for t in constructor_test:
261 cnt[0] += 1
262 if ((t[0][0]!=t[1].re)or(t[0][1]!=t[1].im)):
263 print " expected", t[0], "got", t[1]
264 cnt[1] += 1
265 print " ", cnt[1], "of", cnt[0], "tests failed"
266 # test operators
267 testsuite = {
268 'a+b': [
269 (1, 10, 11),
270 (1, Complex(0,10), Complex(1,10)),
271 (Complex(0,10), 1, Complex(1,10)),
272 (Complex(0,10), Complex(1), Complex(1,10)),
273 (Complex(1), Complex(0,10), Complex(1,10)),
275 'a-b': [
276 (1, 10, -9),
277 (1, Complex(0,10), Complex(1,-10)),
278 (Complex(0,10), 1, Complex(-1,10)),
279 (Complex(0,10), Complex(1), Complex(-1,10)),
280 (Complex(1), Complex(0,10), Complex(1,-10)),
282 'a*b': [
283 (1, 10, 10),
284 (1, Complex(0,10), Complex(0, 10)),
285 (Complex(0,10), 1, Complex(0,10)),
286 (Complex(0,10), Complex(1), Complex(0,10)),
287 (Complex(1), Complex(0,10), Complex(0,10)),
289 'a/b': [
290 (1., 10, 0.1),
291 (1, Complex(0,10), Complex(0, -0.1)),
292 (Complex(0, 10), 1, Complex(0, 10)),
293 (Complex(0, 10), Complex(1), Complex(0, 10)),
294 (Complex(1), Complex(0,10), Complex(0, -0.1)),
296 'pow(a,b)': [
297 (1, 10, 1),
298 (1, Complex(0,10), 1),
299 (Complex(0,10), 1, Complex(0,10)),
300 (Complex(0,10), Complex(1), Complex(0,10)),
301 (Complex(1), Complex(0,10), 1),
302 (2, Complex(4,0), 16),
304 'cmp(a,b)': [
305 (1, 10, -1),
306 (1, Complex(0,10), 1),
307 (Complex(0,10), 1, -1),
308 (Complex(0,10), Complex(1), -1),
309 (Complex(1), Complex(0,10), 1),
312 for expr in sorted(testsuite):
313 print expr + ':'
314 t = (expr,)
315 for item in testsuite[expr]:
316 checkop(*(t+item))
319 if __name__ == '__main__':
320 test()