1 """Random variable generators.
11 generate random permutation
13 distributions on the real line:
14 ------------------------------
24 distributions on the circle (angles 0 to 2pi)
25 ---------------------------------------------
29 General notes on the underlying Mersenne Twister core generator:
31 * The period is 2**19937-1.
32 * It is one of the most extensively tested generators in existence.
33 * Without a direct way to compute N steps forward, the semantics of
34 jumpahead(n) are weakened to simply jump to another distant state and rely
35 on the large period to avoid overlapping sequences.
36 * The random() method is implemented in C, executes in a single Python step,
37 and is, therefore, threadsafe.
41 from warnings
import warn
as _warn
42 from types
import MethodType
as _MethodType
, BuiltinMethodType
as _BuiltinMethodType
43 from math
import log
as _log
, exp
as _exp
, pi
as _pi
, e
as _e
, ceil
as _ceil
44 from math
import sqrt
as _sqrt
, acos
as _acos
, cos
as _cos
, sin
as _sin
45 from os
import urandom
as _urandom
46 from binascii
import hexlify
as _hexlify
48 __all__
= ["Random","seed","random","uniform","randint","choice","sample",
49 "randrange","shuffle","normalvariate","lognormvariate",
50 "expovariate","vonmisesvariate","gammavariate",
51 "gauss","betavariate","paretovariate","weibullvariate",
52 "getstate","setstate","jumpahead", "WichmannHill", "getrandbits",
55 NV_MAGICCONST
= 4 * _exp(-0.5)/_sqrt(2.0)
58 SG_MAGICCONST
= 1.0 + _log(4.5)
59 BPF
= 53 # Number of bits in a float
63 # Translated by Guido van Rossum from C source provided by
64 # Adrian Baddeley. Adapted by Raymond Hettinger for use with
65 # the Mersenne Twister and os.urandom() core generators.
69 class Random(_random
.Random
):
70 """Random number generator base class used by bound module functions.
72 Used to instantiate instances of Random to get generators that don't
73 share state. Especially useful for multi-threaded programs, creating
74 a different instance of Random for each thread, and using the jumpahead()
75 method to ensure that the generated sequences seen by each thread don't
78 Class Random can also be subclassed if you want to use a different basic
79 generator of your own devising: in that case, override the following
80 methods: random(), seed(), getstate(), setstate() and jumpahead().
81 Optionally, implement a getrandombits() method so that randrange()
82 can cover arbitrarily large ranges.
86 VERSION
= 2 # used by getstate/setstate
88 def __init__(self
, x
=None):
89 """Initialize an instance.
91 Optional argument x controls seeding, as for Random.seed().
95 self
.gauss_next
= None
97 def seed(self
, a
=None):
98 """Initialize internal state from hashable object.
100 None or no argument seeds from current time or from an operating
101 system specific randomness source if available.
103 If a is not None or an int or long, hash(a) is used instead.
108 a
= long(_hexlify(_urandom(16)), 16)
109 except NotImplementedError:
111 a
= long(time
.time() * 256) # use fractional seconds
113 super(Random
, self
).seed(a
)
114 self
.gauss_next
= None
117 """Return internal state; can be passed to setstate() later."""
118 return self
.VERSION
, super(Random
, self
).getstate(), self
.gauss_next
120 def setstate(self
, state
):
121 """Restore internal state from object returned by getstate()."""
124 version
, internalstate
, self
.gauss_next
= state
125 super(Random
, self
).setstate(internalstate
)
127 raise ValueError("state with version %s passed to "
128 "Random.setstate() of version %s" %
129 (version
, self
.VERSION
))
131 ## ---- Methods below this point do not need to be overridden when
132 ## ---- subclassing for the purpose of using a different core generator.
134 ## -------------------- pickle support -------------------
136 def __getstate__(self
): # for pickle
137 return self
.getstate()
139 def __setstate__(self
, state
): # for pickle
142 def __reduce__(self
):
143 return self
.__class
__, (), self
.getstate()
145 ## -------------------- integer methods -------------------
147 def randrange(self
, start
, stop
=None, step
=1, int=int, default
=None,
149 """Choose a random item from range(start, stop[, step]).
151 This fixes the problem with randint() which includes the
152 endpoint; in Python this is usually not what you want.
153 Do not supply the 'int', 'default', and 'maxwidth' arguments.
156 # This code is a bit messy to make it fast for the
157 # common case while still doing adequate error checking.
160 raise ValueError, "non-integer arg 1 for randrange()"
163 if istart
>= maxwidth
:
164 return self
._randbelow
(istart
)
165 return int(self
.random() * istart
)
166 raise ValueError, "empty range for randrange()"
168 # stop argument supplied.
171 raise ValueError, "non-integer stop for randrange()"
172 width
= istop
- istart
173 if step
== 1 and width
> 0:
175 # int(istart + self.random()*width)
176 # instead would be incorrect. For example, consider istart
177 # = -2 and istop = 0. Then the guts would be in
178 # -2.0 to 0.0 exclusive on both ends (ignoring that random()
179 # might return 0.0), and because int() truncates toward 0, the
180 # final result would be -1 or 0 (instead of -2 or -1).
181 # istart + int(self.random()*width)
182 # would also be incorrect, for a subtler reason: the RHS
183 # can return a long, and then randrange() would also return
184 # a long, but we're supposed to return an int (for backward
187 if width
>= maxwidth
:
188 return int(istart
+ self
._randbelow
(width
))
189 return int(istart
+ int(self
.random()*width
))
191 raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart
, istop
, width
)
193 # Non-unit step argument supplied.
196 raise ValueError, "non-integer step for randrange()"
198 n
= (width
+ istep
- 1) // istep
200 n
= (width
+ istep
+ 1) // istep
202 raise ValueError, "zero step for randrange()"
205 raise ValueError, "empty range for randrange()"
208 return istart
+ self
._randbelow
(n
)
209 return istart
+ istep
*int(self
.random() * n
)
211 def randint(self
, a
, b
):
212 """Return random integer in range [a, b], including both end points.
215 return self
.randrange(a
, b
+1)
217 def _randbelow(self
, n
, _log
=_log
, int=int, _maxwidth
=1L<<BPF
,
218 _Method
=_MethodType
, _BuiltinMethod
=_BuiltinMethodType
):
219 """Return a random int in the range [0,n)
221 Handles the case where n has more bits than returned
222 by a single call to the underlying generator.
226 getrandbits
= self
.getrandbits
227 except AttributeError:
230 # Only call self.getrandbits if the original random() builtin method
231 # has not been overridden or if a new getrandbits() was supplied.
232 # This assures that the two methods correspond.
233 if type(self
.random
) is _BuiltinMethod
or type(getrandbits
) is _Method
:
234 k
= int(1.00001 + _log(n
-1, 2.0)) # 2**k > n-1 > 2**(k-2)
240 _warn("Underlying random() generator does not supply \n"
241 "enough bits to choose from a population range this large")
242 return int(self
.random() * n
)
244 ## -------------------- sequence methods -------------------
246 def choice(self
, seq
):
247 """Choose a random element from a non-empty sequence."""
248 return seq
[int(self
.random() * len(seq
))] # raises IndexError if seq is empty
250 def shuffle(self
, x
, random
=None, int=int):
251 """x, random=random.random -> shuffle list x in place; return None.
253 Optional arg random is a 0-argument function returning a random
254 float in [0.0, 1.0); by default, the standard random.random.
259 for i
in reversed(xrange(1, len(x
))):
260 # pick an element in x[:i+1] with which to exchange x[i]
261 j
= int(random() * (i
+1))
262 x
[i
], x
[j
] = x
[j
], x
[i
]
264 def sample(self
, population
, k
):
265 """Chooses k unique random elements from a population sequence.
267 Returns a new list containing elements from the population while
268 leaving the original population unchanged. The resulting list is
269 in selection order so that all sub-slices will also be valid random
270 samples. This allows raffle winners (the sample) to be partitioned
271 into grand prize and second place winners (the subslices).
273 Members of the population need not be hashable or unique. If the
274 population contains repeats, then each occurrence is a possible
275 selection in the sample.
277 To choose a sample in a range of integers, use xrange as an argument.
278 This is especially fast and space efficient for sampling from a
279 large population: sample(xrange(10000000), 60)
282 # XXX Although the documentation says `population` is "a sequence",
283 # XXX attempts are made to cater to any iterable with a __len__
284 # XXX method. This has had mixed success. Examples from both
285 # XXX sides: sets work fine, and should become officially supported;
286 # XXX dicts are much harder, and have failed in various subtle
287 # XXX ways across attempts. Support for mapping types should probably
288 # XXX be dropped (and users should pass mapping.keys() or .values()
291 # Sampling without replacement entails tracking either potential
292 # selections (the pool) in a list or previous selections in a set.
294 # When the number of selections is small compared to the
295 # population, then tracking selections is efficient, requiring
296 # only a small set and an occasional reselection. For
297 # a larger number of selections, the pool tracking method is
298 # preferred since the list takes less space than the
299 # set and it doesn't suffer from frequent reselections.
303 raise ValueError, "sample larger than population"
307 setsize
= 21 # size of a small set minus size of an empty list
309 setsize
+= 4 ** _ceil(_log(k
* 3, 4)) # table size for big sets
310 if n
<= setsize
or hasattr(population
, "keys"):
311 # An n-length list is smaller than a k-length set, or this is a
312 # mapping type so the other algorithm wouldn't work.
313 pool
= list(population
)
314 for i
in xrange(k
): # invariant: non-selected at [0,n-i)
315 j
= _int(random() * (n
-i
))
317 pool
[j
] = pool
[n
-i
-1] # move non-selected item into vacancy
321 selected_add
= selected
.add
323 j
= _int(random() * n
)
325 j
= _int(random() * n
)
327 result
[i
] = population
[j
]
328 except (TypeError, KeyError): # handle (at least) sets
329 if isinstance(population
, list):
331 return self
.sample(tuple(population
), k
)
334 ## -------------------- real-valued distributions -------------------
336 ## -------------------- uniform distribution -------------------
338 def uniform(self
, a
, b
):
339 """Get a random number in the range [a, b)."""
340 return a
+ (b
-a
) * self
.random()
342 ## -------------------- normal distribution --------------------
344 def normalvariate(self
, mu
, sigma
):
345 """Normal distribution.
347 mu is the mean, and sigma is the standard deviation.
350 # mu = mean, sigma = standard deviation
352 # Uses Kinderman and Monahan method. Reference: Kinderman,
353 # A.J. and Monahan, J.F., "Computer generation of random
354 # variables using the ratio of uniform deviates", ACM Trans
355 # Math Software, 3, (1977), pp257-260.
361 z
= NV_MAGICCONST
*(u1
-0.5)/u2
367 ## -------------------- lognormal distribution --------------------
369 def lognormvariate(self
, mu
, sigma
):
370 """Log normal distribution.
372 If you take the natural logarithm of this distribution, you'll get a
373 normal distribution with mean mu and standard deviation sigma.
374 mu can have any value, and sigma must be greater than zero.
377 return _exp(self
.normalvariate(mu
, sigma
))
379 ## -------------------- exponential distribution --------------------
381 def expovariate(self
, lambd
):
382 """Exponential distribution.
384 lambd is 1.0 divided by the desired mean. (The parameter would be
385 called "lambda", but that is a reserved word in Python.) Returned
386 values range from 0 to positive infinity.
389 # lambd: rate lambd = 1/mean
390 # ('lambda' is a Python reserved word)
396 return -_log(u
)/lambd
398 ## -------------------- von Mises distribution --------------------
400 def vonmisesvariate(self
, mu
, kappa
):
401 """Circular data distribution.
403 mu is the mean angle, expressed in radians between 0 and 2*pi, and
404 kappa is the concentration parameter, which must be greater than or
405 equal to zero. If kappa is equal to zero, this distribution reduces
406 to a uniform random angle over the range 0 to 2*pi.
409 # mu: mean angle (in radians between 0 and 2*pi)
410 # kappa: concentration parameter kappa (>= 0)
411 # if kappa = 0 generate uniform random angle
413 # Based upon an algorithm published in: Fisher, N.I.,
414 # "Statistical Analysis of Circular Data", Cambridge
415 # University Press, 1993.
417 # Thanks to Magnus Kessler for a correction to the
418 # implementation of step 4.
422 return TWOPI
* random()
424 a
= 1.0 + _sqrt(1.0 + 4.0 * kappa
* kappa
)
425 b
= (a
- _sqrt(2.0 * a
))/(2.0 * kappa
)
426 r
= (1.0 + b
* b
)/(2.0 * b
)
432 f
= (1.0 + r
* z
)/(r
+ z
)
437 if u2
< c
* (2.0 - c
) or u2
<= c
* _exp(1.0 - c
):
442 theta
= (mu
% TWOPI
) + _acos(f
)
444 theta
= (mu
% TWOPI
) - _acos(f
)
448 ## -------------------- gamma distribution --------------------
450 def gammavariate(self
, alpha
, beta
):
451 """Gamma distribution. Not the gamma function!
453 Conditions on the parameters are alpha > 0 and beta > 0.
457 # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
459 # Warning: a few older sources define the gamma distribution in terms
461 if alpha
<= 0.0 or beta
<= 0.0:
462 raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
467 # Uses R.C.H. Cheng, "The generation of Gamma
468 # variables with non-integral shape parameters",
469 # Applied Statistics, (1977), 26, No. 1, p71-74
471 ainv
= _sqrt(2.0 * alpha
- 1.0)
477 if not 1e-7 < u1
< .9999999:
480 v
= _log(u1
/(1.0-u1
))/ainv
484 if r
+ SG_MAGICCONST
- 4.5*z
>= 0.0 or r
>= _log(z
):
492 return -_log(u
) * beta
494 else: # alpha is between 0 and 1 (exclusive)
496 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
505 x
= -_log((b
-p
)/alpha
)
508 if u1
<= x
** (alpha
- 1.0):
514 ## -------------------- Gauss (faster alternative) --------------------
516 def gauss(self
, mu
, sigma
):
517 """Gaussian distribution.
519 mu is the mean, and sigma is the standard deviation. This is
520 slightly faster than the normalvariate() function.
522 Not thread-safe without a lock around calls.
526 # When x and y are two variables from [0, 1), uniformly
529 # cos(2*pi*x)*sqrt(-2*log(1-y))
530 # sin(2*pi*x)*sqrt(-2*log(1-y))
532 # are two *independent* variables with normal distribution
533 # (mu = 0, sigma = 1).
535 # (corrected version; bug discovered by Mike Miller, fixed by LM)
537 # Multithreading note: When two threads call this function
538 # simultaneously, it is possible that they will receive the
539 # same return value. The window is very small though. To
540 # avoid this, you have to use a lock around all calls. (I
541 # didn't want to slow this down in the serial case by using a
546 self
.gauss_next
= None
548 x2pi
= random() * TWOPI
549 g2rad
= _sqrt(-2.0 * _log(1.0 - random()))
550 z
= _cos(x2pi
) * g2rad
551 self
.gauss_next
= _sin(x2pi
) * g2rad
555 ## -------------------- beta --------------------
557 ## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
558 ## for Ivan Frohne's insightful analysis of why the original implementation:
560 ## def betavariate(self, alpha, beta):
561 ## # Discrete Event Simulation in C, pp 87-88.
563 ## y = self.expovariate(alpha)
564 ## z = self.expovariate(1.0/beta)
567 ## was dead wrong, and how it probably got that way.
569 def betavariate(self
, alpha
, beta
):
570 """Beta distribution.
572 Conditions on the parameters are alpha > -1 and beta} > -1.
573 Returned values range between 0 and 1.
577 # This version due to Janne Sinkkonen, and matches all the std
578 # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
579 y
= self
.gammavariate(alpha
, 1.)
583 return y
/ (y
+ self
.gammavariate(beta
, 1.))
585 ## -------------------- Pareto --------------------
587 def paretovariate(self
, alpha
):
588 """Pareto distribution. alpha is the shape parameter."""
591 u
= 1.0 - self
.random()
592 return 1.0 / pow(u
, 1.0/alpha
)
594 ## -------------------- Weibull --------------------
596 def weibullvariate(self
, alpha
, beta
):
597 """Weibull distribution.
599 alpha is the scale parameter and beta is the shape parameter.
602 # Jain, pg. 499; bug fix courtesy Bill Arms
604 u
= 1.0 - self
.random()
605 return alpha
* pow(-_log(u
), 1.0/beta
)
607 ## -------------------- Wichmann-Hill -------------------
609 class WichmannHill(Random
):
611 VERSION
= 1 # used by getstate/setstate
613 def seed(self
, a
=None):
614 """Initialize internal state from hashable object.
616 None or no argument seeds from current time or from an operating
617 system specific randomness source if available.
619 If a is not None or an int or long, hash(a) is used instead.
621 If a is an int or long, a is used directly. Distinct values between
622 0 and 27814431486575L inclusive are guaranteed to yield distinct
623 internal states (this guarantee is specific to the default
624 Wichmann-Hill generator).
629 a
= long(_hexlify(_urandom(16)), 16)
630 except NotImplementedError:
632 a
= long(time
.time() * 256) # use fractional seconds
634 if not isinstance(a
, (int, long)):
637 a
, x
= divmod(a
, 30268)
638 a
, y
= divmod(a
, 30306)
639 a
, z
= divmod(a
, 30322)
640 self
._seed
= int(x
)+1, int(y
)+1, int(z
)+1
642 self
.gauss_next
= None
645 """Get the next random number in the range [0.0, 1.0)."""
647 # Wichman-Hill random number generator.
649 # Wichmann, B. A. & Hill, I. D. (1982)
651 # An efficient and portable pseudo-random number generator
652 # Applied Statistics 31 (1982) 188-190
655 # Correction to Algorithm AS 183
656 # Applied Statistics 33 (1984) 123
658 # McLeod, A. I. (1985)
659 # A remark on Algorithm AS 183
660 # Applied Statistics 34 (1985),198-200
662 # This part is thread-unsafe:
663 # BEGIN CRITICAL SECTION
665 x
= (171 * x
) % 30269
666 y
= (172 * y
) % 30307
667 z
= (170 * z
) % 30323
669 # END CRITICAL SECTION
671 # Note: on a platform using IEEE-754 double arithmetic, this can
672 # never return 0.0 (asserted by Tim; proof too long for a comment).
673 return (x
/30269.0 + y
/30307.0 + z
/30323.0) % 1.0
676 """Return internal state; can be passed to setstate() later."""
677 return self
.VERSION
, self
._seed
, self
.gauss_next
679 def setstate(self
, state
):
680 """Restore internal state from object returned by getstate()."""
683 version
, self
._seed
, self
.gauss_next
= state
685 raise ValueError("state with version %s passed to "
686 "Random.setstate() of version %s" %
687 (version
, self
.VERSION
))
689 def jumpahead(self
, n
):
690 """Act as if n calls to random() were made, but quickly.
692 n is an int, greater than or equal to 0.
694 Example use: If you have 2 threads and know that each will
695 consume no more than a million random numbers, create two Random
696 objects r1 and r2, then do
697 r2.setstate(r1.getstate())
698 r2.jumpahead(1000000)
699 Then r1 and r2 will use guaranteed-disjoint segments of the full
704 raise ValueError("n must be >= 0")
706 x
= int(x
* pow(171, n
, 30269)) % 30269
707 y
= int(y
* pow(172, n
, 30307)) % 30307
708 z
= int(z
* pow(170, n
, 30323)) % 30323
711 def __whseed(self
, x
=0, y
=0, z
=0):
712 """Set the Wichmann-Hill seed from (x, y, z).
714 These must be integers in the range [0, 256).
717 if not type(x
) == type(y
) == type(z
) == int:
718 raise TypeError('seeds must be integers')
719 if not (0 <= x
< 256 and 0 <= y
< 256 and 0 <= z
< 256):
720 raise ValueError('seeds must be in range(0, 256)')
722 # Initialize from current time
724 t
= long(time
.time() * 256)
725 t
= int((t
&0xffffff) ^
(t
>>24))
726 t
, x
= divmod(t
, 256)
727 t
, y
= divmod(t
, 256)
728 t
, z
= divmod(t
, 256)
729 # Zero is a poor seed, so substitute 1
730 self
._seed
= (x
or 1, y
or 1, z
or 1)
732 self
.gauss_next
= None
734 def whseed(self
, a
=None):
735 """Seed from hashable object's hash code.
737 None or no argument seeds from current time. It is not guaranteed
738 that objects with distinct hash codes lead to distinct internal
741 This is obsolete, provided for compatibility with the seed routine
742 used prior to Python 2.1. Use the .seed() method instead.
749 a
, x
= divmod(a
, 256)
750 a
, y
= divmod(a
, 256)
751 a
, z
= divmod(a
, 256)
752 x
= (x
+ a
) % 256 or 1
753 y
= (y
+ a
) % 256 or 1
754 z
= (z
+ a
) % 256 or 1
755 self
.__whseed
(x
, y
, z
)
757 ## --------------- Operating System Random Source ------------------
759 class SystemRandom(Random
):
760 """Alternate random number generator using sources provided
761 by the operating system (such as /dev/urandom on Unix or
762 CryptGenRandom on Windows).
764 Not available on all systems (see os.urandom() for details).
768 """Get the next random number in the range [0.0, 1.0)."""
769 return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF
771 def getrandbits(self
, k
):
772 """getrandbits(k) -> x. Generates a long int with k random bits."""
774 raise ValueError('number of bits must be greater than zero')
776 raise TypeError('number of bits should be an integer')
777 bytes
= (k
+ 7) // 8 # bits / 8 and rounded up
778 x
= long(_hexlify(_urandom(bytes
)), 16)
779 return x
>> (bytes
* 8 - k
) # trim excess bits
781 def _stub(self
, *args
, **kwds
):
782 "Stub method. Not used for a system random number generator."
784 seed
= jumpahead
= _stub
786 def _notimplemented(self
, *args
, **kwds
):
787 "Method should not be called for a system random number generator."
788 raise NotImplementedError('System entropy source does not have state.')
789 getstate
= setstate
= _notimplemented
791 ## -------------------- test program --------------------
793 def _test_generator(n
, func
, args
):
795 print n
, 'times', func
.__name
__
805 smallest
= min(x
, smallest
)
806 largest
= max(x
, largest
)
808 print round(t1
-t0
, 3), 'sec,',
810 stddev
= _sqrt(sqsum
/n
- avg
*avg
)
811 print 'avg %g, stddev %g, min %g, max %g' % \
812 (avg
, stddev
, smallest
, largest
)
816 _test_generator(N
, random
, ())
817 _test_generator(N
, normalvariate
, (0.0, 1.0))
818 _test_generator(N
, lognormvariate
, (0.0, 1.0))
819 _test_generator(N
, vonmisesvariate
, (0.0, 1.0))
820 _test_generator(N
, gammavariate
, (0.01, 1.0))
821 _test_generator(N
, gammavariate
, (0.1, 1.0))
822 _test_generator(N
, gammavariate
, (0.1, 2.0))
823 _test_generator(N
, gammavariate
, (0.5, 1.0))
824 _test_generator(N
, gammavariate
, (0.9, 1.0))
825 _test_generator(N
, gammavariate
, (1.0, 1.0))
826 _test_generator(N
, gammavariate
, (2.0, 1.0))
827 _test_generator(N
, gammavariate
, (20.0, 1.0))
828 _test_generator(N
, gammavariate
, (200.0, 1.0))
829 _test_generator(N
, gauss
, (0.0, 1.0))
830 _test_generator(N
, betavariate
, (3.0, 3.0))
832 # Create one instance, seeded from current time, and export its methods
833 # as module-level functions. The functions share state across all uses
834 #(both in the user's code and in the Python libraries), but that's fine
835 # for most programs and is easier for the casual user than making them
836 # instantiate their own Random() instance.
840 random
= _inst
.random
841 uniform
= _inst
.uniform
842 randint
= _inst
.randint
843 choice
= _inst
.choice
844 randrange
= _inst
.randrange
845 sample
= _inst
.sample
846 shuffle
= _inst
.shuffle
847 normalvariate
= _inst
.normalvariate
848 lognormvariate
= _inst
.lognormvariate
849 expovariate
= _inst
.expovariate
850 vonmisesvariate
= _inst
.vonmisesvariate
851 gammavariate
= _inst
.gammavariate
853 betavariate
= _inst
.betavariate
854 paretovariate
= _inst
.paretovariate
855 weibullvariate
= _inst
.weibullvariate
856 getstate
= _inst
.getstate
857 setstate
= _inst
.setstate
858 jumpahead
= _inst
.jumpahead
859 getrandbits
= _inst
.getrandbits
861 if __name__
== '__main__':