Fix duplicate test numbers in extra.decTest
[python.git] / Lib / decimal.py
blob7384d3692f8249a5f8d0c9834430e8d6e83f6a5f
1 # Copyright (c) 2004 Python Software Foundation.
2 # All rights reserved.
4 # Written by Eric Price <eprice at tjhsst.edu>
5 # and Facundo Batista <facundo at taniquetil.com.ar>
6 # and Raymond Hettinger <python at rcn.com>
7 # and Aahz <aahz at pobox.com>
8 # and Tim Peters
10 # This module is currently Py2.3 compatible and should be kept that way
11 # unless a major compelling advantage arises. IOW, 2.3 compatibility is
12 # strongly preferred, but not guaranteed.
14 # Also, this module should be kept in sync with the latest updates of
15 # the IBM specification as it evolves. Those updates will be treated
16 # as bug fixes (deviation from the spec is a compatibility, usability
17 # bug) and will be backported. At this point the spec is stabilizing
18 # and the updates are becoming fewer, smaller, and less significant.
20 """
21 This is a Py2.3 implementation of decimal floating point arithmetic based on
22 the General Decimal Arithmetic Specification:
24 www2.hursley.ibm.com/decimal/decarith.html
26 and IEEE standard 854-1987:
28 www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html
30 Decimal floating point has finite precision with arbitrarily large bounds.
32 The purpose of this module is to support arithmetic using familiar
33 "schoolhouse" rules and to avoid some of the tricky representation
34 issues associated with binary floating point. The package is especially
35 useful for financial applications or for contexts where users have
36 expectations that are at odds with binary floating point (for instance,
37 in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
38 of the expected Decimal('0.00') returned by decimal floating point).
40 Here are some examples of using the decimal module:
42 >>> from decimal import *
43 >>> setcontext(ExtendedContext)
44 >>> Decimal(0)
45 Decimal('0')
46 >>> Decimal('1')
47 Decimal('1')
48 >>> Decimal('-.0123')
49 Decimal('-0.0123')
50 >>> Decimal(123456)
51 Decimal('123456')
52 >>> Decimal('123.45e12345678901234567890')
53 Decimal('1.2345E+12345678901234567892')
54 >>> Decimal('1.33') + Decimal('1.27')
55 Decimal('2.60')
56 >>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
57 Decimal('-2.20')
58 >>> dig = Decimal(1)
59 >>> print dig / Decimal(3)
60 0.333333333
61 >>> getcontext().prec = 18
62 >>> print dig / Decimal(3)
63 0.333333333333333333
64 >>> print dig.sqrt()
66 >>> print Decimal(3).sqrt()
67 1.73205080756887729
68 >>> print Decimal(3) ** 123
69 4.85192780976896427E+58
70 >>> inf = Decimal(1) / Decimal(0)
71 >>> print inf
72 Infinity
73 >>> neginf = Decimal(-1) / Decimal(0)
74 >>> print neginf
75 -Infinity
76 >>> print neginf + inf
77 NaN
78 >>> print neginf * inf
79 -Infinity
80 >>> print dig / 0
81 Infinity
82 >>> getcontext().traps[DivisionByZero] = 1
83 >>> print dig / 0
84 Traceback (most recent call last):
85 ...
86 ...
87 ...
88 DivisionByZero: x / 0
89 >>> c = Context()
90 >>> c.traps[InvalidOperation] = 0
91 >>> print c.flags[InvalidOperation]
93 >>> c.divide(Decimal(0), Decimal(0))
94 Decimal('NaN')
95 >>> c.traps[InvalidOperation] = 1
96 >>> print c.flags[InvalidOperation]
98 >>> c.flags[InvalidOperation] = 0
99 >>> print c.flags[InvalidOperation]
101 >>> print c.divide(Decimal(0), Decimal(0))
102 Traceback (most recent call last):
106 InvalidOperation: 0 / 0
107 >>> print c.flags[InvalidOperation]
109 >>> c.flags[InvalidOperation] = 0
110 >>> c.traps[InvalidOperation] = 0
111 >>> print c.divide(Decimal(0), Decimal(0))
113 >>> print c.flags[InvalidOperation]
118 __all__ = [
119 # Two major classes
120 'Decimal', 'Context',
122 # Contexts
123 'DefaultContext', 'BasicContext', 'ExtendedContext',
125 # Exceptions
126 'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
127 'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
129 # Constants for use in setting up contexts
130 'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
131 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
133 # Functions for manipulating contexts
134 'setcontext', 'getcontext', 'localcontext'
137 __version__ = '1.70' # Highest version of the spec this complies with
139 import copy as _copy
140 import math as _math
141 import numbers as _numbers
143 try:
144 from collections import namedtuple as _namedtuple
145 DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
146 except ImportError:
147 DecimalTuple = lambda *args: args
149 # Rounding
150 ROUND_DOWN = 'ROUND_DOWN'
151 ROUND_HALF_UP = 'ROUND_HALF_UP'
152 ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
153 ROUND_CEILING = 'ROUND_CEILING'
154 ROUND_FLOOR = 'ROUND_FLOOR'
155 ROUND_UP = 'ROUND_UP'
156 ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
157 ROUND_05UP = 'ROUND_05UP'
159 # Errors
161 class DecimalException(ArithmeticError):
162 """Base exception class.
164 Used exceptions derive from this.
165 If an exception derives from another exception besides this (such as
166 Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
167 called if the others are present. This isn't actually used for
168 anything, though.
170 handle -- Called when context._raise_error is called and the
171 trap_enabler is set. First argument is self, second is the
172 context. More arguments can be given, those being after
173 the explanation in _raise_error (For example,
174 context._raise_error(NewError, '(-x)!', self._sign) would
175 call NewError().handle(context, self._sign).)
177 To define a new exception, it should be sufficient to have it derive
178 from DecimalException.
180 def handle(self, context, *args):
181 pass
184 class Clamped(DecimalException):
185 """Exponent of a 0 changed to fit bounds.
187 This occurs and signals clamped if the exponent of a result has been
188 altered in order to fit the constraints of a specific concrete
189 representation. This may occur when the exponent of a zero result would
190 be outside the bounds of a representation, or when a large normal
191 number would have an encoded exponent that cannot be represented. In
192 this latter case, the exponent is reduced to fit and the corresponding
193 number of zero digits are appended to the coefficient ("fold-down").
196 class InvalidOperation(DecimalException):
197 """An invalid operation was performed.
199 Various bad things cause this:
201 Something creates a signaling NaN
202 -INF + INF
203 0 * (+-)INF
204 (+-)INF / (+-)INF
205 x % 0
206 (+-)INF % x
207 x._rescale( non-integer )
208 sqrt(-x) , x > 0
209 0 ** 0
210 x ** (non-integer)
211 x ** (+-)INF
212 An operand is invalid
214 The result of the operation after these is a quiet positive NaN,
215 except when the cause is a signaling NaN, in which case the result is
216 also a quiet NaN, but with the original sign, and an optional
217 diagnostic information.
219 def handle(self, context, *args):
220 if args:
221 ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
222 return ans._fix_nan(context)
223 return _NaN
225 class ConversionSyntax(InvalidOperation):
226 """Trying to convert badly formed string.
228 This occurs and signals invalid-operation if an string is being
229 converted to a number and it does not conform to the numeric string
230 syntax. The result is [0,qNaN].
232 def handle(self, context, *args):
233 return _NaN
235 class DivisionByZero(DecimalException, ZeroDivisionError):
236 """Division by 0.
238 This occurs and signals division-by-zero if division of a finite number
239 by zero was attempted (during a divide-integer or divide operation, or a
240 power operation with negative right-hand operand), and the dividend was
241 not zero.
243 The result of the operation is [sign,inf], where sign is the exclusive
244 or of the signs of the operands for divide, or is 1 for an odd power of
245 -0, for power.
248 def handle(self, context, sign, *args):
249 return _SignedInfinity[sign]
251 class DivisionImpossible(InvalidOperation):
252 """Cannot perform the division adequately.
254 This occurs and signals invalid-operation if the integer result of a
255 divide-integer or remainder operation had too many digits (would be
256 longer than precision). The result is [0,qNaN].
259 def handle(self, context, *args):
260 return _NaN
262 class DivisionUndefined(InvalidOperation, ZeroDivisionError):
263 """Undefined result of division.
265 This occurs and signals invalid-operation if division by zero was
266 attempted (during a divide-integer, divide, or remainder operation), and
267 the dividend is also zero. The result is [0,qNaN].
270 def handle(self, context, *args):
271 return _NaN
273 class Inexact(DecimalException):
274 """Had to round, losing information.
276 This occurs and signals inexact whenever the result of an operation is
277 not exact (that is, it needed to be rounded and any discarded digits
278 were non-zero), or if an overflow or underflow condition occurs. The
279 result in all cases is unchanged.
281 The inexact signal may be tested (or trapped) to determine if a given
282 operation (or sequence of operations) was inexact.
285 class InvalidContext(InvalidOperation):
286 """Invalid context. Unknown rounding, for example.
288 This occurs and signals invalid-operation if an invalid context was
289 detected during an operation. This can occur if contexts are not checked
290 on creation and either the precision exceeds the capability of the
291 underlying concrete representation or an unknown or unsupported rounding
292 was specified. These aspects of the context need only be checked when
293 the values are required to be used. The result is [0,qNaN].
296 def handle(self, context, *args):
297 return _NaN
299 class Rounded(DecimalException):
300 """Number got rounded (not necessarily changed during rounding).
302 This occurs and signals rounded whenever the result of an operation is
303 rounded (that is, some zero or non-zero digits were discarded from the
304 coefficient), or if an overflow or underflow condition occurs. The
305 result in all cases is unchanged.
307 The rounded signal may be tested (or trapped) to determine if a given
308 operation (or sequence of operations) caused a loss of precision.
311 class Subnormal(DecimalException):
312 """Exponent < Emin before rounding.
314 This occurs and signals subnormal whenever the result of a conversion or
315 operation is subnormal (that is, its adjusted exponent is less than
316 Emin, before any rounding). The result in all cases is unchanged.
318 The subnormal signal may be tested (or trapped) to determine if a given
319 or operation (or sequence of operations) yielded a subnormal result.
322 class Overflow(Inexact, Rounded):
323 """Numerical overflow.
325 This occurs and signals overflow if the adjusted exponent of a result
326 (from a conversion or from an operation that is not an attempt to divide
327 by zero), after rounding, would be greater than the largest value that
328 can be handled by the implementation (the value Emax).
330 The result depends on the rounding mode:
332 For round-half-up and round-half-even (and for round-half-down and
333 round-up, if implemented), the result of the operation is [sign,inf],
334 where sign is the sign of the intermediate result. For round-down, the
335 result is the largest finite number that can be represented in the
336 current precision, with the sign of the intermediate result. For
337 round-ceiling, the result is the same as for round-down if the sign of
338 the intermediate result is 1, or is [0,inf] otherwise. For round-floor,
339 the result is the same as for round-down if the sign of the intermediate
340 result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded
341 will also be raised.
344 def handle(self, context, sign, *args):
345 if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
346 ROUND_HALF_DOWN, ROUND_UP):
347 return _SignedInfinity[sign]
348 if sign == 0:
349 if context.rounding == ROUND_CEILING:
350 return _SignedInfinity[sign]
351 return _dec_from_triple(sign, '9'*context.prec,
352 context.Emax-context.prec+1)
353 if sign == 1:
354 if context.rounding == ROUND_FLOOR:
355 return _SignedInfinity[sign]
356 return _dec_from_triple(sign, '9'*context.prec,
357 context.Emax-context.prec+1)
360 class Underflow(Inexact, Rounded, Subnormal):
361 """Numerical underflow with result rounded to 0.
363 This occurs and signals underflow if a result is inexact and the
364 adjusted exponent of the result would be smaller (more negative) than
365 the smallest value that can be handled by the implementation (the value
366 Emin). That is, the result is both inexact and subnormal.
368 The result after an underflow will be a subnormal number rounded, if
369 necessary, so that its exponent is not less than Etiny. This may result
370 in 0 with the sign of the intermediate result and an exponent of Etiny.
372 In all cases, Inexact, Rounded, and Subnormal will also be raised.
375 # List of public traps and flags
376 _signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
377 Underflow, InvalidOperation, Subnormal]
379 # Map conditions (per the spec) to signals
380 _condition_map = {ConversionSyntax:InvalidOperation,
381 DivisionImpossible:InvalidOperation,
382 DivisionUndefined:InvalidOperation,
383 InvalidContext:InvalidOperation}
385 ##### Context Functions ##################################################
387 # The getcontext() and setcontext() function manage access to a thread-local
388 # current context. Py2.4 offers direct support for thread locals. If that
389 # is not available, use threading.currentThread() which is slower but will
390 # work for older Pythons. If threads are not part of the build, create a
391 # mock threading object with threading.local() returning the module namespace.
393 try:
394 import threading
395 except ImportError:
396 # Python was compiled without threads; create a mock object instead
397 import sys
398 class MockThreading(object):
399 def local(self, sys=sys):
400 return sys.modules[__name__]
401 threading = MockThreading()
402 del sys, MockThreading
404 try:
405 threading.local
407 except AttributeError:
409 # To fix reloading, force it to create a new context
410 # Old contexts have different exceptions in their dicts, making problems.
411 if hasattr(threading.currentThread(), '__decimal_context__'):
412 del threading.currentThread().__decimal_context__
414 def setcontext(context):
415 """Set this thread's context to context."""
416 if context in (DefaultContext, BasicContext, ExtendedContext):
417 context = context.copy()
418 context.clear_flags()
419 threading.currentThread().__decimal_context__ = context
421 def getcontext():
422 """Returns this thread's context.
424 If this thread does not yet have a context, returns
425 a new context and sets this thread's context.
426 New contexts are copies of DefaultContext.
428 try:
429 return threading.currentThread().__decimal_context__
430 except AttributeError:
431 context = Context()
432 threading.currentThread().__decimal_context__ = context
433 return context
435 else:
437 local = threading.local()
438 if hasattr(local, '__decimal_context__'):
439 del local.__decimal_context__
441 def getcontext(_local=local):
442 """Returns this thread's context.
444 If this thread does not yet have a context, returns
445 a new context and sets this thread's context.
446 New contexts are copies of DefaultContext.
448 try:
449 return _local.__decimal_context__
450 except AttributeError:
451 context = Context()
452 _local.__decimal_context__ = context
453 return context
455 def setcontext(context, _local=local):
456 """Set this thread's context to context."""
457 if context in (DefaultContext, BasicContext, ExtendedContext):
458 context = context.copy()
459 context.clear_flags()
460 _local.__decimal_context__ = context
462 del threading, local # Don't contaminate the namespace
464 def localcontext(ctx=None):
465 """Return a context manager for a copy of the supplied context
467 Uses a copy of the current context if no context is specified
468 The returned context manager creates a local decimal context
469 in a with statement:
470 def sin(x):
471 with localcontext() as ctx:
472 ctx.prec += 2
473 # Rest of sin calculation algorithm
474 # uses a precision 2 greater than normal
475 return +s # Convert result to normal precision
477 def sin(x):
478 with localcontext(ExtendedContext):
479 # Rest of sin calculation algorithm
480 # uses the Extended Context from the
481 # General Decimal Arithmetic Specification
482 return +s # Convert result to normal context
484 >>> setcontext(DefaultContext)
485 >>> print getcontext().prec
487 >>> with localcontext():
488 ... ctx = getcontext()
489 ... ctx.prec += 2
490 ... print ctx.prec
493 >>> with localcontext(ExtendedContext):
494 ... print getcontext().prec
497 >>> print getcontext().prec
500 if ctx is None: ctx = getcontext()
501 return _ContextManager(ctx)
504 ##### Decimal class #######################################################
506 class Decimal(object):
507 """Floating point class for decimal arithmetic."""
509 __slots__ = ('_exp','_int','_sign', '_is_special')
510 # Generally, the value of the Decimal instance is given by
511 # (-1)**_sign * _int * 10**_exp
512 # Special values are signified by _is_special == True
514 # We're immutable, so use __new__ not __init__
515 def __new__(cls, value="0", context=None):
516 """Create a decimal point instance.
518 >>> Decimal('3.14') # string input
519 Decimal('3.14')
520 >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent)
521 Decimal('3.14')
522 >>> Decimal(314) # int or long
523 Decimal('314')
524 >>> Decimal(Decimal(314)) # another decimal instance
525 Decimal('314')
526 >>> Decimal(' 3.14 \\n') # leading and trailing whitespace okay
527 Decimal('3.14')
530 # Note that the coefficient, self._int, is actually stored as
531 # a string rather than as a tuple of digits. This speeds up
532 # the "digits to integer" and "integer to digits" conversions
533 # that are used in almost every arithmetic operation on
534 # Decimals. This is an internal detail: the as_tuple function
535 # and the Decimal constructor still deal with tuples of
536 # digits.
538 self = object.__new__(cls)
540 # From a string
541 # REs insist on real strings, so we can too.
542 if isinstance(value, basestring):
543 m = _parser(value.strip())
544 if m is None:
545 if context is None:
546 context = getcontext()
547 return context._raise_error(ConversionSyntax,
548 "Invalid literal for Decimal: %r" % value)
550 if m.group('sign') == "-":
551 self._sign = 1
552 else:
553 self._sign = 0
554 intpart = m.group('int')
555 if intpart is not None:
556 # finite number
557 fracpart = m.group('frac') or ''
558 exp = int(m.group('exp') or '0')
559 self._int = str(int(intpart+fracpart))
560 self._exp = exp - len(fracpart)
561 self._is_special = False
562 else:
563 diag = m.group('diag')
564 if diag is not None:
565 # NaN
566 self._int = str(int(diag or '0')).lstrip('0')
567 if m.group('signal'):
568 self._exp = 'N'
569 else:
570 self._exp = 'n'
571 else:
572 # infinity
573 self._int = '0'
574 self._exp = 'F'
575 self._is_special = True
576 return self
578 # From an integer
579 if isinstance(value, (int,long)):
580 if value >= 0:
581 self._sign = 0
582 else:
583 self._sign = 1
584 self._exp = 0
585 self._int = str(abs(value))
586 self._is_special = False
587 return self
589 # From another decimal
590 if isinstance(value, Decimal):
591 self._exp = value._exp
592 self._sign = value._sign
593 self._int = value._int
594 self._is_special = value._is_special
595 return self
597 # From an internal working value
598 if isinstance(value, _WorkRep):
599 self._sign = value.sign
600 self._int = str(value.int)
601 self._exp = int(value.exp)
602 self._is_special = False
603 return self
605 # tuple/list conversion (possibly from as_tuple())
606 if isinstance(value, (list,tuple)):
607 if len(value) != 3:
608 raise ValueError('Invalid tuple size in creation of Decimal '
609 'from list or tuple. The list or tuple '
610 'should have exactly three elements.')
611 # process sign. The isinstance test rejects floats
612 if not (isinstance(value[0], (int, long)) and value[0] in (0,1)):
613 raise ValueError("Invalid sign. The first value in the tuple "
614 "should be an integer; either 0 for a "
615 "positive number or 1 for a negative number.")
616 self._sign = value[0]
617 if value[2] == 'F':
618 # infinity: value[1] is ignored
619 self._int = '0'
620 self._exp = value[2]
621 self._is_special = True
622 else:
623 # process and validate the digits in value[1]
624 digits = []
625 for digit in value[1]:
626 if isinstance(digit, (int, long)) and 0 <= digit <= 9:
627 # skip leading zeros
628 if digits or digit != 0:
629 digits.append(digit)
630 else:
631 raise ValueError("The second value in the tuple must "
632 "be composed of integers in the range "
633 "0 through 9.")
634 if value[2] in ('n', 'N'):
635 # NaN: digits form the diagnostic
636 self._int = ''.join(map(str, digits))
637 self._exp = value[2]
638 self._is_special = True
639 elif isinstance(value[2], (int, long)):
640 # finite number: digits give the coefficient
641 self._int = ''.join(map(str, digits or [0]))
642 self._exp = value[2]
643 self._is_special = False
644 else:
645 raise ValueError("The third value in the tuple must "
646 "be an integer, or one of the "
647 "strings 'F', 'n', 'N'.")
648 return self
650 if isinstance(value, float):
651 raise TypeError("Cannot convert float to Decimal. " +
652 "First convert the float to a string")
654 raise TypeError("Cannot convert %r to Decimal" % value)
656 # @classmethod, but @decorator is not valid Python 2.3 syntax, so
657 # don't use it (see notes on Py2.3 compatibility at top of file)
658 def from_float(cls, f):
659 """Converts a float to a decimal number, exactly.
661 Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
662 Since 0.1 is not exactly representable in binary floating point, the
663 value is stored as the nearest representable value which is
664 0x1.999999999999ap-4. The exact equivalent of the value in decimal
665 is 0.1000000000000000055511151231257827021181583404541015625.
667 >>> Decimal.from_float(0.1)
668 Decimal('0.1000000000000000055511151231257827021181583404541015625')
669 >>> Decimal.from_float(float('nan'))
670 Decimal('NaN')
671 >>> Decimal.from_float(float('inf'))
672 Decimal('Infinity')
673 >>> Decimal.from_float(-float('inf'))
674 Decimal('-Infinity')
675 >>> Decimal.from_float(-0.0)
676 Decimal('-0')
679 if isinstance(f, (int, long)): # handle integer inputs
680 return cls(f)
681 if _math.isinf(f) or _math.isnan(f): # raises TypeError if not a float
682 return cls(repr(f))
683 if _math.copysign(1.0, f) == 1.0:
684 sign = 0
685 else:
686 sign = 1
687 n, d = abs(f).as_integer_ratio()
688 k = d.bit_length() - 1
689 result = _dec_from_triple(sign, str(n*5**k), -k)
690 if cls is Decimal:
691 return result
692 else:
693 return cls(result)
694 from_float = classmethod(from_float)
696 def _isnan(self):
697 """Returns whether the number is not actually one.
699 0 if a number
700 1 if NaN
701 2 if sNaN
703 if self._is_special:
704 exp = self._exp
705 if exp == 'n':
706 return 1
707 elif exp == 'N':
708 return 2
709 return 0
711 def _isinfinity(self):
712 """Returns whether the number is infinite
714 0 if finite or not a number
715 1 if +INF
716 -1 if -INF
718 if self._exp == 'F':
719 if self._sign:
720 return -1
721 return 1
722 return 0
724 def _check_nans(self, other=None, context=None):
725 """Returns whether the number is not actually one.
727 if self, other are sNaN, signal
728 if self, other are NaN return nan
729 return 0
731 Done before operations.
734 self_is_nan = self._isnan()
735 if other is None:
736 other_is_nan = False
737 else:
738 other_is_nan = other._isnan()
740 if self_is_nan or other_is_nan:
741 if context is None:
742 context = getcontext()
744 if self_is_nan == 2:
745 return context._raise_error(InvalidOperation, 'sNaN',
746 self)
747 if other_is_nan == 2:
748 return context._raise_error(InvalidOperation, 'sNaN',
749 other)
750 if self_is_nan:
751 return self._fix_nan(context)
753 return other._fix_nan(context)
754 return 0
756 def _compare_check_nans(self, other, context):
757 """Version of _check_nans used for the signaling comparisons
758 compare_signal, __le__, __lt__, __ge__, __gt__.
760 Signal InvalidOperation if either self or other is a (quiet
761 or signaling) NaN. Signaling NaNs take precedence over quiet
762 NaNs.
764 Return 0 if neither operand is a NaN.
767 if context is None:
768 context = getcontext()
770 if self._is_special or other._is_special:
771 if self.is_snan():
772 return context._raise_error(InvalidOperation,
773 'comparison involving sNaN',
774 self)
775 elif other.is_snan():
776 return context._raise_error(InvalidOperation,
777 'comparison involving sNaN',
778 other)
779 elif self.is_qnan():
780 return context._raise_error(InvalidOperation,
781 'comparison involving NaN',
782 self)
783 elif other.is_qnan():
784 return context._raise_error(InvalidOperation,
785 'comparison involving NaN',
786 other)
787 return 0
789 def __nonzero__(self):
790 """Return True if self is nonzero; otherwise return False.
792 NaNs and infinities are considered nonzero.
794 return self._is_special or self._int != '0'
796 def _cmp(self, other):
797 """Compare the two non-NaN decimal instances self and other.
799 Returns -1 if self < other, 0 if self == other and 1
800 if self > other. This routine is for internal use only."""
802 if self._is_special or other._is_special:
803 self_inf = self._isinfinity()
804 other_inf = other._isinfinity()
805 if self_inf == other_inf:
806 return 0
807 elif self_inf < other_inf:
808 return -1
809 else:
810 return 1
812 # check for zeros; Decimal('0') == Decimal('-0')
813 if not self:
814 if not other:
815 return 0
816 else:
817 return -((-1)**other._sign)
818 if not other:
819 return (-1)**self._sign
821 # If different signs, neg one is less
822 if other._sign < self._sign:
823 return -1
824 if self._sign < other._sign:
825 return 1
827 self_adjusted = self.adjusted()
828 other_adjusted = other.adjusted()
829 if self_adjusted == other_adjusted:
830 self_padded = self._int + '0'*(self._exp - other._exp)
831 other_padded = other._int + '0'*(other._exp - self._exp)
832 if self_padded == other_padded:
833 return 0
834 elif self_padded < other_padded:
835 return -(-1)**self._sign
836 else:
837 return (-1)**self._sign
838 elif self_adjusted > other_adjusted:
839 return (-1)**self._sign
840 else: # self_adjusted < other_adjusted
841 return -((-1)**self._sign)
843 # Note: The Decimal standard doesn't cover rich comparisons for
844 # Decimals. In particular, the specification is silent on the
845 # subject of what should happen for a comparison involving a NaN.
846 # We take the following approach:
848 # == comparisons involving a NaN always return False
849 # != comparisons involving a NaN always return True
850 # <, >, <= and >= comparisons involving a (quiet or signaling)
851 # NaN signal InvalidOperation, and return False if the
852 # InvalidOperation is not trapped.
854 # This behavior is designed to conform as closely as possible to
855 # that specified by IEEE 754.
857 def __eq__(self, other):
858 other = _convert_other(other)
859 if other is NotImplemented:
860 return other
861 if self.is_nan() or other.is_nan():
862 return False
863 return self._cmp(other) == 0
865 def __ne__(self, other):
866 other = _convert_other(other)
867 if other is NotImplemented:
868 return other
869 if self.is_nan() or other.is_nan():
870 return True
871 return self._cmp(other) != 0
873 def __lt__(self, other, context=None):
874 other = _convert_other(other)
875 if other is NotImplemented:
876 return other
877 ans = self._compare_check_nans(other, context)
878 if ans:
879 return False
880 return self._cmp(other) < 0
882 def __le__(self, other, context=None):
883 other = _convert_other(other)
884 if other is NotImplemented:
885 return other
886 ans = self._compare_check_nans(other, context)
887 if ans:
888 return False
889 return self._cmp(other) <= 0
891 def __gt__(self, other, context=None):
892 other = _convert_other(other)
893 if other is NotImplemented:
894 return other
895 ans = self._compare_check_nans(other, context)
896 if ans:
897 return False
898 return self._cmp(other) > 0
900 def __ge__(self, other, context=None):
901 other = _convert_other(other)
902 if other is NotImplemented:
903 return other
904 ans = self._compare_check_nans(other, context)
905 if ans:
906 return False
907 return self._cmp(other) >= 0
909 def compare(self, other, context=None):
910 """Compares one to another.
912 -1 => a < b
913 0 => a = b
914 1 => a > b
915 NaN => one is NaN
916 Like __cmp__, but returns Decimal instances.
918 other = _convert_other(other, raiseit=True)
920 # Compare(NaN, NaN) = NaN
921 if (self._is_special or other and other._is_special):
922 ans = self._check_nans(other, context)
923 if ans:
924 return ans
926 return Decimal(self._cmp(other))
928 def __hash__(self):
929 """x.__hash__() <==> hash(x)"""
930 # Decimal integers must hash the same as the ints
932 # The hash of a nonspecial noninteger Decimal must depend only
933 # on the value of that Decimal, and not on its representation.
934 # For example: hash(Decimal('100E-1')) == hash(Decimal('10')).
935 if self._is_special:
936 if self._isnan():
937 raise TypeError('Cannot hash a NaN value.')
938 return hash(str(self))
939 if not self:
940 return 0
941 if self._isinteger():
942 op = _WorkRep(self.to_integral_value())
943 # to make computation feasible for Decimals with large
944 # exponent, we use the fact that hash(n) == hash(m) for
945 # any two nonzero integers n and m such that (i) n and m
946 # have the same sign, and (ii) n is congruent to m modulo
947 # 2**64-1. So we can replace hash((-1)**s*c*10**e) with
948 # hash((-1)**s*c*pow(10, e, 2**64-1).
949 return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
950 # The value of a nonzero nonspecial Decimal instance is
951 # faithfully represented by the triple consisting of its sign,
952 # its adjusted exponent, and its coefficient with trailing
953 # zeros removed.
954 return hash((self._sign,
955 self._exp+len(self._int),
956 self._int.rstrip('0')))
958 def as_tuple(self):
959 """Represents the number as a triple tuple.
961 To show the internals exactly as they are.
963 return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
965 def __repr__(self):
966 """Represents the number as an instance of Decimal."""
967 # Invariant: eval(repr(d)) == d
968 return "Decimal('%s')" % str(self)
970 def __str__(self, eng=False, context=None):
971 """Return string representation of the number in scientific notation.
973 Captures all of the information in the underlying representation.
976 sign = ['', '-'][self._sign]
977 if self._is_special:
978 if self._exp == 'F':
979 return sign + 'Infinity'
980 elif self._exp == 'n':
981 return sign + 'NaN' + self._int
982 else: # self._exp == 'N'
983 return sign + 'sNaN' + self._int
985 # number of digits of self._int to left of decimal point
986 leftdigits = self._exp + len(self._int)
988 # dotplace is number of digits of self._int to the left of the
989 # decimal point in the mantissa of the output string (that is,
990 # after adjusting the exponent)
991 if self._exp <= 0 and leftdigits > -6:
992 # no exponent required
993 dotplace = leftdigits
994 elif not eng:
995 # usual scientific notation: 1 digit on left of the point
996 dotplace = 1
997 elif self._int == '0':
998 # engineering notation, zero
999 dotplace = (leftdigits + 1) % 3 - 1
1000 else:
1001 # engineering notation, nonzero
1002 dotplace = (leftdigits - 1) % 3 + 1
1004 if dotplace <= 0:
1005 intpart = '0'
1006 fracpart = '.' + '0'*(-dotplace) + self._int
1007 elif dotplace >= len(self._int):
1008 intpart = self._int+'0'*(dotplace-len(self._int))
1009 fracpart = ''
1010 else:
1011 intpart = self._int[:dotplace]
1012 fracpart = '.' + self._int[dotplace:]
1013 if leftdigits == dotplace:
1014 exp = ''
1015 else:
1016 if context is None:
1017 context = getcontext()
1018 exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
1020 return sign + intpart + fracpart + exp
1022 def to_eng_string(self, context=None):
1023 """Convert to engineering-type string.
1025 Engineering notation has an exponent which is a multiple of 3, so there
1026 are up to 3 digits left of the decimal place.
1028 Same rules for when in exponential and when as a value as in __str__.
1030 return self.__str__(eng=True, context=context)
1032 def __neg__(self, context=None):
1033 """Returns a copy with the sign switched.
1035 Rounds, if it has reason.
1037 if self._is_special:
1038 ans = self._check_nans(context=context)
1039 if ans:
1040 return ans
1042 if not self:
1043 # -Decimal('0') is Decimal('0'), not Decimal('-0')
1044 ans = self.copy_abs()
1045 else:
1046 ans = self.copy_negate()
1048 if context is None:
1049 context = getcontext()
1050 return ans._fix(context)
1052 def __pos__(self, context=None):
1053 """Returns a copy, unless it is a sNaN.
1055 Rounds the number (if more then precision digits)
1057 if self._is_special:
1058 ans = self._check_nans(context=context)
1059 if ans:
1060 return ans
1062 if not self:
1063 # + (-0) = 0
1064 ans = self.copy_abs()
1065 else:
1066 ans = Decimal(self)
1068 if context is None:
1069 context = getcontext()
1070 return ans._fix(context)
1072 def __abs__(self, round=True, context=None):
1073 """Returns the absolute value of self.
1075 If the keyword argument 'round' is false, do not round. The
1076 expression self.__abs__(round=False) is equivalent to
1077 self.copy_abs().
1079 if not round:
1080 return self.copy_abs()
1082 if self._is_special:
1083 ans = self._check_nans(context=context)
1084 if ans:
1085 return ans
1087 if self._sign:
1088 ans = self.__neg__(context=context)
1089 else:
1090 ans = self.__pos__(context=context)
1092 return ans
1094 def __add__(self, other, context=None):
1095 """Returns self + other.
1097 -INF + INF (or the reverse) cause InvalidOperation errors.
1099 other = _convert_other(other)
1100 if other is NotImplemented:
1101 return other
1103 if context is None:
1104 context = getcontext()
1106 if self._is_special or other._is_special:
1107 ans = self._check_nans(other, context)
1108 if ans:
1109 return ans
1111 if self._isinfinity():
1112 # If both INF, same sign => same as both, opposite => error.
1113 if self._sign != other._sign and other._isinfinity():
1114 return context._raise_error(InvalidOperation, '-INF + INF')
1115 return Decimal(self)
1116 if other._isinfinity():
1117 return Decimal(other) # Can't both be infinity here
1119 exp = min(self._exp, other._exp)
1120 negativezero = 0
1121 if context.rounding == ROUND_FLOOR and self._sign != other._sign:
1122 # If the answer is 0, the sign should be negative, in this case.
1123 negativezero = 1
1125 if not self and not other:
1126 sign = min(self._sign, other._sign)
1127 if negativezero:
1128 sign = 1
1129 ans = _dec_from_triple(sign, '0', exp)
1130 ans = ans._fix(context)
1131 return ans
1132 if not self:
1133 exp = max(exp, other._exp - context.prec-1)
1134 ans = other._rescale(exp, context.rounding)
1135 ans = ans._fix(context)
1136 return ans
1137 if not other:
1138 exp = max(exp, self._exp - context.prec-1)
1139 ans = self._rescale(exp, context.rounding)
1140 ans = ans._fix(context)
1141 return ans
1143 op1 = _WorkRep(self)
1144 op2 = _WorkRep(other)
1145 op1, op2 = _normalize(op1, op2, context.prec)
1147 result = _WorkRep()
1148 if op1.sign != op2.sign:
1149 # Equal and opposite
1150 if op1.int == op2.int:
1151 ans = _dec_from_triple(negativezero, '0', exp)
1152 ans = ans._fix(context)
1153 return ans
1154 if op1.int < op2.int:
1155 op1, op2 = op2, op1
1156 # OK, now abs(op1) > abs(op2)
1157 if op1.sign == 1:
1158 result.sign = 1
1159 op1.sign, op2.sign = op2.sign, op1.sign
1160 else:
1161 result.sign = 0
1162 # So we know the sign, and op1 > 0.
1163 elif op1.sign == 1:
1164 result.sign = 1
1165 op1.sign, op2.sign = (0, 0)
1166 else:
1167 result.sign = 0
1168 # Now, op1 > abs(op2) > 0
1170 if op2.sign == 0:
1171 result.int = op1.int + op2.int
1172 else:
1173 result.int = op1.int - op2.int
1175 result.exp = op1.exp
1176 ans = Decimal(result)
1177 ans = ans._fix(context)
1178 return ans
1180 __radd__ = __add__
1182 def __sub__(self, other, context=None):
1183 """Return self - other"""
1184 other = _convert_other(other)
1185 if other is NotImplemented:
1186 return other
1188 if self._is_special or other._is_special:
1189 ans = self._check_nans(other, context=context)
1190 if ans:
1191 return ans
1193 # self - other is computed as self + other.copy_negate()
1194 return self.__add__(other.copy_negate(), context=context)
1196 def __rsub__(self, other, context=None):
1197 """Return other - self"""
1198 other = _convert_other(other)
1199 if other is NotImplemented:
1200 return other
1202 return other.__sub__(self, context=context)
1204 def __mul__(self, other, context=None):
1205 """Return self * other.
1207 (+-) INF * 0 (or its reverse) raise InvalidOperation.
1209 other = _convert_other(other)
1210 if other is NotImplemented:
1211 return other
1213 if context is None:
1214 context = getcontext()
1216 resultsign = self._sign ^ other._sign
1218 if self._is_special or other._is_special:
1219 ans = self._check_nans(other, context)
1220 if ans:
1221 return ans
1223 if self._isinfinity():
1224 if not other:
1225 return context._raise_error(InvalidOperation, '(+-)INF * 0')
1226 return _SignedInfinity[resultsign]
1228 if other._isinfinity():
1229 if not self:
1230 return context._raise_error(InvalidOperation, '0 * (+-)INF')
1231 return _SignedInfinity[resultsign]
1233 resultexp = self._exp + other._exp
1235 # Special case for multiplying by zero
1236 if not self or not other:
1237 ans = _dec_from_triple(resultsign, '0', resultexp)
1238 # Fixing in case the exponent is out of bounds
1239 ans = ans._fix(context)
1240 return ans
1242 # Special case for multiplying by power of 10
1243 if self._int == '1':
1244 ans = _dec_from_triple(resultsign, other._int, resultexp)
1245 ans = ans._fix(context)
1246 return ans
1247 if other._int == '1':
1248 ans = _dec_from_triple(resultsign, self._int, resultexp)
1249 ans = ans._fix(context)
1250 return ans
1252 op1 = _WorkRep(self)
1253 op2 = _WorkRep(other)
1255 ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
1256 ans = ans._fix(context)
1258 return ans
1259 __rmul__ = __mul__
1261 def __truediv__(self, other, context=None):
1262 """Return self / other."""
1263 other = _convert_other(other)
1264 if other is NotImplemented:
1265 return NotImplemented
1267 if context is None:
1268 context = getcontext()
1270 sign = self._sign ^ other._sign
1272 if self._is_special or other._is_special:
1273 ans = self._check_nans(other, context)
1274 if ans:
1275 return ans
1277 if self._isinfinity() and other._isinfinity():
1278 return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
1280 if self._isinfinity():
1281 return _SignedInfinity[sign]
1283 if other._isinfinity():
1284 context._raise_error(Clamped, 'Division by infinity')
1285 return _dec_from_triple(sign, '0', context.Etiny())
1287 # Special cases for zeroes
1288 if not other:
1289 if not self:
1290 return context._raise_error(DivisionUndefined, '0 / 0')
1291 return context._raise_error(DivisionByZero, 'x / 0', sign)
1293 if not self:
1294 exp = self._exp - other._exp
1295 coeff = 0
1296 else:
1297 # OK, so neither = 0, INF or NaN
1298 shift = len(other._int) - len(self._int) + context.prec + 1
1299 exp = self._exp - other._exp - shift
1300 op1 = _WorkRep(self)
1301 op2 = _WorkRep(other)
1302 if shift >= 0:
1303 coeff, remainder = divmod(op1.int * 10**shift, op2.int)
1304 else:
1305 coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
1306 if remainder:
1307 # result is not exact; adjust to ensure correct rounding
1308 if coeff % 5 == 0:
1309 coeff += 1
1310 else:
1311 # result is exact; get as close to ideal exponent as possible
1312 ideal_exp = self._exp - other._exp
1313 while exp < ideal_exp and coeff % 10 == 0:
1314 coeff //= 10
1315 exp += 1
1317 ans = _dec_from_triple(sign, str(coeff), exp)
1318 return ans._fix(context)
1320 def _divide(self, other, context):
1321 """Return (self // other, self % other), to context.prec precision.
1323 Assumes that neither self nor other is a NaN, that self is not
1324 infinite and that other is nonzero.
1326 sign = self._sign ^ other._sign
1327 if other._isinfinity():
1328 ideal_exp = self._exp
1329 else:
1330 ideal_exp = min(self._exp, other._exp)
1332 expdiff = self.adjusted() - other.adjusted()
1333 if not self or other._isinfinity() or expdiff <= -2:
1334 return (_dec_from_triple(sign, '0', 0),
1335 self._rescale(ideal_exp, context.rounding))
1336 if expdiff <= context.prec:
1337 op1 = _WorkRep(self)
1338 op2 = _WorkRep(other)
1339 if op1.exp >= op2.exp:
1340 op1.int *= 10**(op1.exp - op2.exp)
1341 else:
1342 op2.int *= 10**(op2.exp - op1.exp)
1343 q, r = divmod(op1.int, op2.int)
1344 if q < 10**context.prec:
1345 return (_dec_from_triple(sign, str(q), 0),
1346 _dec_from_triple(self._sign, str(r), ideal_exp))
1348 # Here the quotient is too large to be representable
1349 ans = context._raise_error(DivisionImpossible,
1350 'quotient too large in //, % or divmod')
1351 return ans, ans
1353 def __rtruediv__(self, other, context=None):
1354 """Swaps self/other and returns __truediv__."""
1355 other = _convert_other(other)
1356 if other is NotImplemented:
1357 return other
1358 return other.__truediv__(self, context=context)
1360 __div__ = __truediv__
1361 __rdiv__ = __rtruediv__
1363 def __divmod__(self, other, context=None):
1365 Return (self // other, self % other)
1367 other = _convert_other(other)
1368 if other is NotImplemented:
1369 return other
1371 if context is None:
1372 context = getcontext()
1374 ans = self._check_nans(other, context)
1375 if ans:
1376 return (ans, ans)
1378 sign = self._sign ^ other._sign
1379 if self._isinfinity():
1380 if other._isinfinity():
1381 ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
1382 return ans, ans
1383 else:
1384 return (_SignedInfinity[sign],
1385 context._raise_error(InvalidOperation, 'INF % x'))
1387 if not other:
1388 if not self:
1389 ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
1390 return ans, ans
1391 else:
1392 return (context._raise_error(DivisionByZero, 'x // 0', sign),
1393 context._raise_error(InvalidOperation, 'x % 0'))
1395 quotient, remainder = self._divide(other, context)
1396 remainder = remainder._fix(context)
1397 return quotient, remainder
1399 def __rdivmod__(self, other, context=None):
1400 """Swaps self/other and returns __divmod__."""
1401 other = _convert_other(other)
1402 if other is NotImplemented:
1403 return other
1404 return other.__divmod__(self, context=context)
1406 def __mod__(self, other, context=None):
1408 self % other
1410 other = _convert_other(other)
1411 if other is NotImplemented:
1412 return other
1414 if context is None:
1415 context = getcontext()
1417 ans = self._check_nans(other, context)
1418 if ans:
1419 return ans
1421 if self._isinfinity():
1422 return context._raise_error(InvalidOperation, 'INF % x')
1423 elif not other:
1424 if self:
1425 return context._raise_error(InvalidOperation, 'x % 0')
1426 else:
1427 return context._raise_error(DivisionUndefined, '0 % 0')
1429 remainder = self._divide(other, context)[1]
1430 remainder = remainder._fix(context)
1431 return remainder
1433 def __rmod__(self, other, context=None):
1434 """Swaps self/other and returns __mod__."""
1435 other = _convert_other(other)
1436 if other is NotImplemented:
1437 return other
1438 return other.__mod__(self, context=context)
1440 def remainder_near(self, other, context=None):
1442 Remainder nearest to 0- abs(remainder-near) <= other/2
1444 if context is None:
1445 context = getcontext()
1447 other = _convert_other(other, raiseit=True)
1449 ans = self._check_nans(other, context)
1450 if ans:
1451 return ans
1453 # self == +/-infinity -> InvalidOperation
1454 if self._isinfinity():
1455 return context._raise_error(InvalidOperation,
1456 'remainder_near(infinity, x)')
1458 # other == 0 -> either InvalidOperation or DivisionUndefined
1459 if not other:
1460 if self:
1461 return context._raise_error(InvalidOperation,
1462 'remainder_near(x, 0)')
1463 else:
1464 return context._raise_error(DivisionUndefined,
1465 'remainder_near(0, 0)')
1467 # other = +/-infinity -> remainder = self
1468 if other._isinfinity():
1469 ans = Decimal(self)
1470 return ans._fix(context)
1472 # self = 0 -> remainder = self, with ideal exponent
1473 ideal_exponent = min(self._exp, other._exp)
1474 if not self:
1475 ans = _dec_from_triple(self._sign, '0', ideal_exponent)
1476 return ans._fix(context)
1478 # catch most cases of large or small quotient
1479 expdiff = self.adjusted() - other.adjusted()
1480 if expdiff >= context.prec + 1:
1481 # expdiff >= prec+1 => abs(self/other) > 10**prec
1482 return context._raise_error(DivisionImpossible)
1483 if expdiff <= -2:
1484 # expdiff <= -2 => abs(self/other) < 0.1
1485 ans = self._rescale(ideal_exponent, context.rounding)
1486 return ans._fix(context)
1488 # adjust both arguments to have the same exponent, then divide
1489 op1 = _WorkRep(self)
1490 op2 = _WorkRep(other)
1491 if op1.exp >= op2.exp:
1492 op1.int *= 10**(op1.exp - op2.exp)
1493 else:
1494 op2.int *= 10**(op2.exp - op1.exp)
1495 q, r = divmod(op1.int, op2.int)
1496 # remainder is r*10**ideal_exponent; other is +/-op2.int *
1497 # 10**ideal_exponent. Apply correction to ensure that
1498 # abs(remainder) <= abs(other)/2
1499 if 2*r + (q&1) > op2.int:
1500 r -= op2.int
1501 q += 1
1503 if q >= 10**context.prec:
1504 return context._raise_error(DivisionImpossible)
1506 # result has same sign as self unless r is negative
1507 sign = self._sign
1508 if r < 0:
1509 sign = 1-sign
1510 r = -r
1512 ans = _dec_from_triple(sign, str(r), ideal_exponent)
1513 return ans._fix(context)
1515 def __floordiv__(self, other, context=None):
1516 """self // other"""
1517 other = _convert_other(other)
1518 if other is NotImplemented:
1519 return other
1521 if context is None:
1522 context = getcontext()
1524 ans = self._check_nans(other, context)
1525 if ans:
1526 return ans
1528 if self._isinfinity():
1529 if other._isinfinity():
1530 return context._raise_error(InvalidOperation, 'INF // INF')
1531 else:
1532 return _SignedInfinity[self._sign ^ other._sign]
1534 if not other:
1535 if self:
1536 return context._raise_error(DivisionByZero, 'x // 0',
1537 self._sign ^ other._sign)
1538 else:
1539 return context._raise_error(DivisionUndefined, '0 // 0')
1541 return self._divide(other, context)[0]
1543 def __rfloordiv__(self, other, context=None):
1544 """Swaps self/other and returns __floordiv__."""
1545 other = _convert_other(other)
1546 if other is NotImplemented:
1547 return other
1548 return other.__floordiv__(self, context=context)
1550 def __float__(self):
1551 """Float representation."""
1552 return float(str(self))
1554 def __int__(self):
1555 """Converts self to an int, truncating if necessary."""
1556 if self._is_special:
1557 if self._isnan():
1558 raise ValueError("Cannot convert NaN to integer")
1559 elif self._isinfinity():
1560 raise OverflowError("Cannot convert infinity to integer")
1561 s = (-1)**self._sign
1562 if self._exp >= 0:
1563 return s*int(self._int)*10**self._exp
1564 else:
1565 return s*int(self._int[:self._exp] or '0')
1567 __trunc__ = __int__
1569 def real(self):
1570 return self
1571 real = property(real)
1573 def imag(self):
1574 return Decimal(0)
1575 imag = property(imag)
1577 def conjugate(self):
1578 return self
1580 def __complex__(self):
1581 return complex(float(self))
1583 def __long__(self):
1584 """Converts to a long.
1586 Equivalent to long(int(self))
1588 return long(self.__int__())
1590 def _fix_nan(self, context):
1591 """Decapitate the payload of a NaN to fit the context"""
1592 payload = self._int
1594 # maximum length of payload is precision if _clamp=0,
1595 # precision-1 if _clamp=1.
1596 max_payload_len = context.prec - context._clamp
1597 if len(payload) > max_payload_len:
1598 payload = payload[len(payload)-max_payload_len:].lstrip('0')
1599 return _dec_from_triple(self._sign, payload, self._exp, True)
1600 return Decimal(self)
1602 def _fix(self, context):
1603 """Round if it is necessary to keep self within prec precision.
1605 Rounds and fixes the exponent. Does not raise on a sNaN.
1607 Arguments:
1608 self - Decimal instance
1609 context - context used.
1612 if self._is_special:
1613 if self._isnan():
1614 # decapitate payload if necessary
1615 return self._fix_nan(context)
1616 else:
1617 # self is +/-Infinity; return unaltered
1618 return Decimal(self)
1620 # if self is zero then exponent should be between Etiny and
1621 # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
1622 Etiny = context.Etiny()
1623 Etop = context.Etop()
1624 if not self:
1625 exp_max = [context.Emax, Etop][context._clamp]
1626 new_exp = min(max(self._exp, Etiny), exp_max)
1627 if new_exp != self._exp:
1628 context._raise_error(Clamped)
1629 return _dec_from_triple(self._sign, '0', new_exp)
1630 else:
1631 return Decimal(self)
1633 # exp_min is the smallest allowable exponent of the result,
1634 # equal to max(self.adjusted()-context.prec+1, Etiny)
1635 exp_min = len(self._int) + self._exp - context.prec
1636 if exp_min > Etop:
1637 # overflow: exp_min > Etop iff self.adjusted() > Emax
1638 context._raise_error(Inexact)
1639 context._raise_error(Rounded)
1640 return context._raise_error(Overflow, 'above Emax', self._sign)
1641 self_is_subnormal = exp_min < Etiny
1642 if self_is_subnormal:
1643 context._raise_error(Subnormal)
1644 exp_min = Etiny
1646 # round if self has too many digits
1647 if self._exp < exp_min:
1648 context._raise_error(Rounded)
1649 digits = len(self._int) + self._exp - exp_min
1650 if digits < 0:
1651 self = _dec_from_triple(self._sign, '1', exp_min-1)
1652 digits = 0
1653 this_function = getattr(self, self._pick_rounding_function[context.rounding])
1654 changed = this_function(digits)
1655 coeff = self._int[:digits] or '0'
1656 if changed == 1:
1657 coeff = str(int(coeff)+1)
1658 ans = _dec_from_triple(self._sign, coeff, exp_min)
1660 if changed:
1661 context._raise_error(Inexact)
1662 if self_is_subnormal:
1663 context._raise_error(Underflow)
1664 if not ans:
1665 # raise Clamped on underflow to 0
1666 context._raise_error(Clamped)
1667 elif len(ans._int) == context.prec+1:
1668 # we get here only if rescaling rounds the
1669 # cofficient up to exactly 10**context.prec
1670 if ans._exp < Etop:
1671 ans = _dec_from_triple(ans._sign,
1672 ans._int[:-1], ans._exp+1)
1673 else:
1674 # Inexact and Rounded have already been raised
1675 ans = context._raise_error(Overflow, 'above Emax',
1676 self._sign)
1677 return ans
1679 # fold down if _clamp == 1 and self has too few digits
1680 if context._clamp == 1 and self._exp > Etop:
1681 context._raise_error(Clamped)
1682 self_padded = self._int + '0'*(self._exp - Etop)
1683 return _dec_from_triple(self._sign, self_padded, Etop)
1685 # here self was representable to begin with; return unchanged
1686 return Decimal(self)
1688 _pick_rounding_function = {}
1690 # for each of the rounding functions below:
1691 # self is a finite, nonzero Decimal
1692 # prec is an integer satisfying 0 <= prec < len(self._int)
1694 # each function returns either -1, 0, or 1, as follows:
1695 # 1 indicates that self should be rounded up (away from zero)
1696 # 0 indicates that self should be truncated, and that all the
1697 # digits to be truncated are zeros (so the value is unchanged)
1698 # -1 indicates that there are nonzero digits to be truncated
1700 def _round_down(self, prec):
1701 """Also known as round-towards-0, truncate."""
1702 if _all_zeros(self._int, prec):
1703 return 0
1704 else:
1705 return -1
1707 def _round_up(self, prec):
1708 """Rounds away from 0."""
1709 return -self._round_down(prec)
1711 def _round_half_up(self, prec):
1712 """Rounds 5 up (away from 0)"""
1713 if self._int[prec] in '56789':
1714 return 1
1715 elif _all_zeros(self._int, prec):
1716 return 0
1717 else:
1718 return -1
1720 def _round_half_down(self, prec):
1721 """Round 5 down"""
1722 if _exact_half(self._int, prec):
1723 return -1
1724 else:
1725 return self._round_half_up(prec)
1727 def _round_half_even(self, prec):
1728 """Round 5 to even, rest to nearest."""
1729 if _exact_half(self._int, prec) and \
1730 (prec == 0 or self._int[prec-1] in '02468'):
1731 return -1
1732 else:
1733 return self._round_half_up(prec)
1735 def _round_ceiling(self, prec):
1736 """Rounds up (not away from 0 if negative.)"""
1737 if self._sign:
1738 return self._round_down(prec)
1739 else:
1740 return -self._round_down(prec)
1742 def _round_floor(self, prec):
1743 """Rounds down (not towards 0 if negative)"""
1744 if not self._sign:
1745 return self._round_down(prec)
1746 else:
1747 return -self._round_down(prec)
1749 def _round_05up(self, prec):
1750 """Round down unless digit prec-1 is 0 or 5."""
1751 if prec and self._int[prec-1] not in '05':
1752 return self._round_down(prec)
1753 else:
1754 return -self._round_down(prec)
1756 def fma(self, other, third, context=None):
1757 """Fused multiply-add.
1759 Returns self*other+third with no rounding of the intermediate
1760 product self*other.
1762 self and other are multiplied together, with no rounding of
1763 the result. The third operand is then added to the result,
1764 and a single final rounding is performed.
1767 other = _convert_other(other, raiseit=True)
1769 # compute product; raise InvalidOperation if either operand is
1770 # a signaling NaN or if the product is zero times infinity.
1771 if self._is_special or other._is_special:
1772 if context is None:
1773 context = getcontext()
1774 if self._exp == 'N':
1775 return context._raise_error(InvalidOperation, 'sNaN', self)
1776 if other._exp == 'N':
1777 return context._raise_error(InvalidOperation, 'sNaN', other)
1778 if self._exp == 'n':
1779 product = self
1780 elif other._exp == 'n':
1781 product = other
1782 elif self._exp == 'F':
1783 if not other:
1784 return context._raise_error(InvalidOperation,
1785 'INF * 0 in fma')
1786 product = _SignedInfinity[self._sign ^ other._sign]
1787 elif other._exp == 'F':
1788 if not self:
1789 return context._raise_error(InvalidOperation,
1790 '0 * INF in fma')
1791 product = _SignedInfinity[self._sign ^ other._sign]
1792 else:
1793 product = _dec_from_triple(self._sign ^ other._sign,
1794 str(int(self._int) * int(other._int)),
1795 self._exp + other._exp)
1797 third = _convert_other(third, raiseit=True)
1798 return product.__add__(third, context)
1800 def _power_modulo(self, other, modulo, context=None):
1801 """Three argument version of __pow__"""
1803 # if can't convert other and modulo to Decimal, raise
1804 # TypeError; there's no point returning NotImplemented (no
1805 # equivalent of __rpow__ for three argument pow)
1806 other = _convert_other(other, raiseit=True)
1807 modulo = _convert_other(modulo, raiseit=True)
1809 if context is None:
1810 context = getcontext()
1812 # deal with NaNs: if there are any sNaNs then first one wins,
1813 # (i.e. behaviour for NaNs is identical to that of fma)
1814 self_is_nan = self._isnan()
1815 other_is_nan = other._isnan()
1816 modulo_is_nan = modulo._isnan()
1817 if self_is_nan or other_is_nan or modulo_is_nan:
1818 if self_is_nan == 2:
1819 return context._raise_error(InvalidOperation, 'sNaN',
1820 self)
1821 if other_is_nan == 2:
1822 return context._raise_error(InvalidOperation, 'sNaN',
1823 other)
1824 if modulo_is_nan == 2:
1825 return context._raise_error(InvalidOperation, 'sNaN',
1826 modulo)
1827 if self_is_nan:
1828 return self._fix_nan(context)
1829 if other_is_nan:
1830 return other._fix_nan(context)
1831 return modulo._fix_nan(context)
1833 # check inputs: we apply same restrictions as Python's pow()
1834 if not (self._isinteger() and
1835 other._isinteger() and
1836 modulo._isinteger()):
1837 return context._raise_error(InvalidOperation,
1838 'pow() 3rd argument not allowed '
1839 'unless all arguments are integers')
1840 if other < 0:
1841 return context._raise_error(InvalidOperation,
1842 'pow() 2nd argument cannot be '
1843 'negative when 3rd argument specified')
1844 if not modulo:
1845 return context._raise_error(InvalidOperation,
1846 'pow() 3rd argument cannot be 0')
1848 # additional restriction for decimal: the modulus must be less
1849 # than 10**prec in absolute value
1850 if modulo.adjusted() >= context.prec:
1851 return context._raise_error(InvalidOperation,
1852 'insufficient precision: pow() 3rd '
1853 'argument must not have more than '
1854 'precision digits')
1856 # define 0**0 == NaN, for consistency with two-argument pow
1857 # (even though it hurts!)
1858 if not other and not self:
1859 return context._raise_error(InvalidOperation,
1860 'at least one of pow() 1st argument '
1861 'and 2nd argument must be nonzero ;'
1862 '0**0 is not defined')
1864 # compute sign of result
1865 if other._iseven():
1866 sign = 0
1867 else:
1868 sign = self._sign
1870 # convert modulo to a Python integer, and self and other to
1871 # Decimal integers (i.e. force their exponents to be >= 0)
1872 modulo = abs(int(modulo))
1873 base = _WorkRep(self.to_integral_value())
1874 exponent = _WorkRep(other.to_integral_value())
1876 # compute result using integer pow()
1877 base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
1878 for i in xrange(exponent.exp):
1879 base = pow(base, 10, modulo)
1880 base = pow(base, exponent.int, modulo)
1882 return _dec_from_triple(sign, str(base), 0)
1884 def _power_exact(self, other, p):
1885 """Attempt to compute self**other exactly.
1887 Given Decimals self and other and an integer p, attempt to
1888 compute an exact result for the power self**other, with p
1889 digits of precision. Return None if self**other is not
1890 exactly representable in p digits.
1892 Assumes that elimination of special cases has already been
1893 performed: self and other must both be nonspecial; self must
1894 be positive and not numerically equal to 1; other must be
1895 nonzero. For efficiency, other._exp should not be too large,
1896 so that 10**abs(other._exp) is a feasible calculation."""
1898 # In the comments below, we write x for the value of self and
1899 # y for the value of other. Write x = xc*10**xe and y =
1900 # yc*10**ye.
1902 # The main purpose of this method is to identify the *failure*
1903 # of x**y to be exactly representable with as little effort as
1904 # possible. So we look for cheap and easy tests that
1905 # eliminate the possibility of x**y being exact. Only if all
1906 # these tests are passed do we go on to actually compute x**y.
1908 # Here's the main idea. First normalize both x and y. We
1909 # express y as a rational m/n, with m and n relatively prime
1910 # and n>0. Then for x**y to be exactly representable (at
1911 # *any* precision), xc must be the nth power of a positive
1912 # integer and xe must be divisible by n. If m is negative
1913 # then additionally xc must be a power of either 2 or 5, hence
1914 # a power of 2**n or 5**n.
1916 # There's a limit to how small |y| can be: if y=m/n as above
1917 # then:
1919 # (1) if xc != 1 then for the result to be representable we
1920 # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
1921 # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
1922 # 2**(1/|y|), hence xc**|y| < 2 and the result is not
1923 # representable.
1925 # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
1926 # |y| < 1/|xe| then the result is not representable.
1928 # Note that since x is not equal to 1, at least one of (1) and
1929 # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
1930 # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
1932 # There's also a limit to how large y can be, at least if it's
1933 # positive: the normalized result will have coefficient xc**y,
1934 # so if it's representable then xc**y < 10**p, and y <
1935 # p/log10(xc). Hence if y*log10(xc) >= p then the result is
1936 # not exactly representable.
1938 # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
1939 # so |y| < 1/xe and the result is not representable.
1940 # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
1941 # < 1/nbits(xc).
1943 x = _WorkRep(self)
1944 xc, xe = x.int, x.exp
1945 while xc % 10 == 0:
1946 xc //= 10
1947 xe += 1
1949 y = _WorkRep(other)
1950 yc, ye = y.int, y.exp
1951 while yc % 10 == 0:
1952 yc //= 10
1953 ye += 1
1955 # case where xc == 1: result is 10**(xe*y), with xe*y
1956 # required to be an integer
1957 if xc == 1:
1958 if ye >= 0:
1959 exponent = xe*yc*10**ye
1960 else:
1961 exponent, remainder = divmod(xe*yc, 10**-ye)
1962 if remainder:
1963 return None
1964 if y.sign == 1:
1965 exponent = -exponent
1966 # if other is a nonnegative integer, use ideal exponent
1967 if other._isinteger() and other._sign == 0:
1968 ideal_exponent = self._exp*int(other)
1969 zeros = min(exponent-ideal_exponent, p-1)
1970 else:
1971 zeros = 0
1972 return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
1974 # case where y is negative: xc must be either a power
1975 # of 2 or a power of 5.
1976 if y.sign == 1:
1977 last_digit = xc % 10
1978 if last_digit in (2,4,6,8):
1979 # quick test for power of 2
1980 if xc & -xc != xc:
1981 return None
1982 # now xc is a power of 2; e is its exponent
1983 e = _nbits(xc)-1
1984 # find e*y and xe*y; both must be integers
1985 if ye >= 0:
1986 y_as_int = yc*10**ye
1987 e = e*y_as_int
1988 xe = xe*y_as_int
1989 else:
1990 ten_pow = 10**-ye
1991 e, remainder = divmod(e*yc, ten_pow)
1992 if remainder:
1993 return None
1994 xe, remainder = divmod(xe*yc, ten_pow)
1995 if remainder:
1996 return None
1998 if e*65 >= p*93: # 93/65 > log(10)/log(5)
1999 return None
2000 xc = 5**e
2002 elif last_digit == 5:
2003 # e >= log_5(xc) if xc is a power of 5; we have
2004 # equality all the way up to xc=5**2658
2005 e = _nbits(xc)*28//65
2006 xc, remainder = divmod(5**e, xc)
2007 if remainder:
2008 return None
2009 while xc % 5 == 0:
2010 xc //= 5
2011 e -= 1
2012 if ye >= 0:
2013 y_as_integer = yc*10**ye
2014 e = e*y_as_integer
2015 xe = xe*y_as_integer
2016 else:
2017 ten_pow = 10**-ye
2018 e, remainder = divmod(e*yc, ten_pow)
2019 if remainder:
2020 return None
2021 xe, remainder = divmod(xe*yc, ten_pow)
2022 if remainder:
2023 return None
2024 if e*3 >= p*10: # 10/3 > log(10)/log(2)
2025 return None
2026 xc = 2**e
2027 else:
2028 return None
2030 if xc >= 10**p:
2031 return None
2032 xe = -e-xe
2033 return _dec_from_triple(0, str(xc), xe)
2035 # now y is positive; find m and n such that y = m/n
2036 if ye >= 0:
2037 m, n = yc*10**ye, 1
2038 else:
2039 if xe != 0 and len(str(abs(yc*xe))) <= -ye:
2040 return None
2041 xc_bits = _nbits(xc)
2042 if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
2043 return None
2044 m, n = yc, 10**(-ye)
2045 while m % 2 == n % 2 == 0:
2046 m //= 2
2047 n //= 2
2048 while m % 5 == n % 5 == 0:
2049 m //= 5
2050 n //= 5
2052 # compute nth root of xc*10**xe
2053 if n > 1:
2054 # if 1 < xc < 2**n then xc isn't an nth power
2055 if xc != 1 and xc_bits <= n:
2056 return None
2058 xe, rem = divmod(xe, n)
2059 if rem != 0:
2060 return None
2062 # compute nth root of xc using Newton's method
2063 a = 1L << -(-_nbits(xc)//n) # initial estimate
2064 while True:
2065 q, r = divmod(xc, a**(n-1))
2066 if a <= q:
2067 break
2068 else:
2069 a = (a*(n-1) + q)//n
2070 if not (a == q and r == 0):
2071 return None
2072 xc = a
2074 # now xc*10**xe is the nth root of the original xc*10**xe
2075 # compute mth power of xc*10**xe
2077 # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
2078 # 10**p and the result is not representable.
2079 if xc > 1 and m > p*100//_log10_lb(xc):
2080 return None
2081 xc = xc**m
2082 xe *= m
2083 if xc > 10**p:
2084 return None
2086 # by this point the result *is* exactly representable
2087 # adjust the exponent to get as close as possible to the ideal
2088 # exponent, if necessary
2089 str_xc = str(xc)
2090 if other._isinteger() and other._sign == 0:
2091 ideal_exponent = self._exp*int(other)
2092 zeros = min(xe-ideal_exponent, p-len(str_xc))
2093 else:
2094 zeros = 0
2095 return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
2097 def __pow__(self, other, modulo=None, context=None):
2098 """Return self ** other [ % modulo].
2100 With two arguments, compute self**other.
2102 With three arguments, compute (self**other) % modulo. For the
2103 three argument form, the following restrictions on the
2104 arguments hold:
2106 - all three arguments must be integral
2107 - other must be nonnegative
2108 - either self or other (or both) must be nonzero
2109 - modulo must be nonzero and must have at most p digits,
2110 where p is the context precision.
2112 If any of these restrictions is violated the InvalidOperation
2113 flag is raised.
2115 The result of pow(self, other, modulo) is identical to the
2116 result that would be obtained by computing (self**other) %
2117 modulo with unbounded precision, but is computed more
2118 efficiently. It is always exact.
2121 if modulo is not None:
2122 return self._power_modulo(other, modulo, context)
2124 other = _convert_other(other)
2125 if other is NotImplemented:
2126 return other
2128 if context is None:
2129 context = getcontext()
2131 # either argument is a NaN => result is NaN
2132 ans = self._check_nans(other, context)
2133 if ans:
2134 return ans
2136 # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
2137 if not other:
2138 if not self:
2139 return context._raise_error(InvalidOperation, '0 ** 0')
2140 else:
2141 return _One
2143 # result has sign 1 iff self._sign is 1 and other is an odd integer
2144 result_sign = 0
2145 if self._sign == 1:
2146 if other._isinteger():
2147 if not other._iseven():
2148 result_sign = 1
2149 else:
2150 # -ve**noninteger = NaN
2151 # (-0)**noninteger = 0**noninteger
2152 if self:
2153 return context._raise_error(InvalidOperation,
2154 'x ** y with x negative and y not an integer')
2155 # negate self, without doing any unwanted rounding
2156 self = self.copy_negate()
2158 # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
2159 if not self:
2160 if other._sign == 0:
2161 return _dec_from_triple(result_sign, '0', 0)
2162 else:
2163 return _SignedInfinity[result_sign]
2165 # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
2166 if self._isinfinity():
2167 if other._sign == 0:
2168 return _SignedInfinity[result_sign]
2169 else:
2170 return _dec_from_triple(result_sign, '0', 0)
2172 # 1**other = 1, but the choice of exponent and the flags
2173 # depend on the exponent of self, and on whether other is a
2174 # positive integer, a negative integer, or neither
2175 if self == _One:
2176 if other._isinteger():
2177 # exp = max(self._exp*max(int(other), 0),
2178 # 1-context.prec) but evaluating int(other) directly
2179 # is dangerous until we know other is small (other
2180 # could be 1e999999999)
2181 if other._sign == 1:
2182 multiplier = 0
2183 elif other > context.prec:
2184 multiplier = context.prec
2185 else:
2186 multiplier = int(other)
2188 exp = self._exp * multiplier
2189 if exp < 1-context.prec:
2190 exp = 1-context.prec
2191 context._raise_error(Rounded)
2192 else:
2193 context._raise_error(Inexact)
2194 context._raise_error(Rounded)
2195 exp = 1-context.prec
2197 return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
2199 # compute adjusted exponent of self
2200 self_adj = self.adjusted()
2202 # self ** infinity is infinity if self > 1, 0 if self < 1
2203 # self ** -infinity is infinity if self < 1, 0 if self > 1
2204 if other._isinfinity():
2205 if (other._sign == 0) == (self_adj < 0):
2206 return _dec_from_triple(result_sign, '0', 0)
2207 else:
2208 return _SignedInfinity[result_sign]
2210 # from here on, the result always goes through the call
2211 # to _fix at the end of this function.
2212 ans = None
2214 # crude test to catch cases of extreme overflow/underflow. If
2215 # log10(self)*other >= 10**bound and bound >= len(str(Emax))
2216 # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
2217 # self**other >= 10**(Emax+1), so overflow occurs. The test
2218 # for underflow is similar.
2219 bound = self._log10_exp_bound() + other.adjusted()
2220 if (self_adj >= 0) == (other._sign == 0):
2221 # self > 1 and other +ve, or self < 1 and other -ve
2222 # possibility of overflow
2223 if bound >= len(str(context.Emax)):
2224 ans = _dec_from_triple(result_sign, '1', context.Emax+1)
2225 else:
2226 # self > 1 and other -ve, or self < 1 and other +ve
2227 # possibility of underflow to 0
2228 Etiny = context.Etiny()
2229 if bound >= len(str(-Etiny)):
2230 ans = _dec_from_triple(result_sign, '1', Etiny-1)
2232 # try for an exact result with precision +1
2233 if ans is None:
2234 ans = self._power_exact(other, context.prec + 1)
2235 if ans is not None and result_sign == 1:
2236 ans = _dec_from_triple(1, ans._int, ans._exp)
2238 # usual case: inexact result, x**y computed directly as exp(y*log(x))
2239 if ans is None:
2240 p = context.prec
2241 x = _WorkRep(self)
2242 xc, xe = x.int, x.exp
2243 y = _WorkRep(other)
2244 yc, ye = y.int, y.exp
2245 if y.sign == 1:
2246 yc = -yc
2248 # compute correctly rounded result: start with precision +3,
2249 # then increase precision until result is unambiguously roundable
2250 extra = 3
2251 while True:
2252 coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
2253 if coeff % (5*10**(len(str(coeff))-p-1)):
2254 break
2255 extra += 3
2257 ans = _dec_from_triple(result_sign, str(coeff), exp)
2259 # the specification says that for non-integer other we need to
2260 # raise Inexact, even when the result is actually exact. In
2261 # the same way, we need to raise Underflow here if the result
2262 # is subnormal. (The call to _fix will take care of raising
2263 # Rounded and Subnormal, as usual.)
2264 if not other._isinteger():
2265 context._raise_error(Inexact)
2266 # pad with zeros up to length context.prec+1 if necessary
2267 if len(ans._int) <= context.prec:
2268 expdiff = context.prec+1 - len(ans._int)
2269 ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
2270 ans._exp-expdiff)
2271 if ans.adjusted() < context.Emin:
2272 context._raise_error(Underflow)
2274 # unlike exp, ln and log10, the power function respects the
2275 # rounding mode; no need to use ROUND_HALF_EVEN here
2276 ans = ans._fix(context)
2277 return ans
2279 def __rpow__(self, other, context=None):
2280 """Swaps self/other and returns __pow__."""
2281 other = _convert_other(other)
2282 if other is NotImplemented:
2283 return other
2284 return other.__pow__(self, context=context)
2286 def normalize(self, context=None):
2287 """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
2289 if context is None:
2290 context = getcontext()
2292 if self._is_special:
2293 ans = self._check_nans(context=context)
2294 if ans:
2295 return ans
2297 dup = self._fix(context)
2298 if dup._isinfinity():
2299 return dup
2301 if not dup:
2302 return _dec_from_triple(dup._sign, '0', 0)
2303 exp_max = [context.Emax, context.Etop()][context._clamp]
2304 end = len(dup._int)
2305 exp = dup._exp
2306 while dup._int[end-1] == '0' and exp < exp_max:
2307 exp += 1
2308 end -= 1
2309 return _dec_from_triple(dup._sign, dup._int[:end], exp)
2311 def quantize(self, exp, rounding=None, context=None, watchexp=True):
2312 """Quantize self so its exponent is the same as that of exp.
2314 Similar to self._rescale(exp._exp) but with error checking.
2316 exp = _convert_other(exp, raiseit=True)
2318 if context is None:
2319 context = getcontext()
2320 if rounding is None:
2321 rounding = context.rounding
2323 if self._is_special or exp._is_special:
2324 ans = self._check_nans(exp, context)
2325 if ans:
2326 return ans
2328 if exp._isinfinity() or self._isinfinity():
2329 if exp._isinfinity() and self._isinfinity():
2330 return Decimal(self) # if both are inf, it is OK
2331 return context._raise_error(InvalidOperation,
2332 'quantize with one INF')
2334 # if we're not watching exponents, do a simple rescale
2335 if not watchexp:
2336 ans = self._rescale(exp._exp, rounding)
2337 # raise Inexact and Rounded where appropriate
2338 if ans._exp > self._exp:
2339 context._raise_error(Rounded)
2340 if ans != self:
2341 context._raise_error(Inexact)
2342 return ans
2344 # exp._exp should be between Etiny and Emax
2345 if not (context.Etiny() <= exp._exp <= context.Emax):
2346 return context._raise_error(InvalidOperation,
2347 'target exponent out of bounds in quantize')
2349 if not self:
2350 ans = _dec_from_triple(self._sign, '0', exp._exp)
2351 return ans._fix(context)
2353 self_adjusted = self.adjusted()
2354 if self_adjusted > context.Emax:
2355 return context._raise_error(InvalidOperation,
2356 'exponent of quantize result too large for current context')
2357 if self_adjusted - exp._exp + 1 > context.prec:
2358 return context._raise_error(InvalidOperation,
2359 'quantize result has too many digits for current context')
2361 ans = self._rescale(exp._exp, rounding)
2362 if ans.adjusted() > context.Emax:
2363 return context._raise_error(InvalidOperation,
2364 'exponent of quantize result too large for current context')
2365 if len(ans._int) > context.prec:
2366 return context._raise_error(InvalidOperation,
2367 'quantize result has too many digits for current context')
2369 # raise appropriate flags
2370 if ans._exp > self._exp:
2371 context._raise_error(Rounded)
2372 if ans != self:
2373 context._raise_error(Inexact)
2374 if ans and ans.adjusted() < context.Emin:
2375 context._raise_error(Subnormal)
2377 # call to fix takes care of any necessary folddown
2378 ans = ans._fix(context)
2379 return ans
2381 def same_quantum(self, other):
2382 """Return True if self and other have the same exponent; otherwise
2383 return False.
2385 If either operand is a special value, the following rules are used:
2386 * return True if both operands are infinities
2387 * return True if both operands are NaNs
2388 * otherwise, return False.
2390 other = _convert_other(other, raiseit=True)
2391 if self._is_special or other._is_special:
2392 return (self.is_nan() and other.is_nan() or
2393 self.is_infinite() and other.is_infinite())
2394 return self._exp == other._exp
2396 def _rescale(self, exp, rounding):
2397 """Rescale self so that the exponent is exp, either by padding with zeros
2398 or by truncating digits, using the given rounding mode.
2400 Specials are returned without change. This operation is
2401 quiet: it raises no flags, and uses no information from the
2402 context.
2404 exp = exp to scale to (an integer)
2405 rounding = rounding mode
2407 if self._is_special:
2408 return Decimal(self)
2409 if not self:
2410 return _dec_from_triple(self._sign, '0', exp)
2412 if self._exp >= exp:
2413 # pad answer with zeros if necessary
2414 return _dec_from_triple(self._sign,
2415 self._int + '0'*(self._exp - exp), exp)
2417 # too many digits; round and lose data. If self.adjusted() <
2418 # exp-1, replace self by 10**(exp-1) before rounding
2419 digits = len(self._int) + self._exp - exp
2420 if digits < 0:
2421 self = _dec_from_triple(self._sign, '1', exp-1)
2422 digits = 0
2423 this_function = getattr(self, self._pick_rounding_function[rounding])
2424 changed = this_function(digits)
2425 coeff = self._int[:digits] or '0'
2426 if changed == 1:
2427 coeff = str(int(coeff)+1)
2428 return _dec_from_triple(self._sign, coeff, exp)
2430 def _round(self, places, rounding):
2431 """Round a nonzero, nonspecial Decimal to a fixed number of
2432 significant figures, using the given rounding mode.
2434 Infinities, NaNs and zeros are returned unaltered.
2436 This operation is quiet: it raises no flags, and uses no
2437 information from the context.
2440 if places <= 0:
2441 raise ValueError("argument should be at least 1 in _round")
2442 if self._is_special or not self:
2443 return Decimal(self)
2444 ans = self._rescale(self.adjusted()+1-places, rounding)
2445 # it can happen that the rescale alters the adjusted exponent;
2446 # for example when rounding 99.97 to 3 significant figures.
2447 # When this happens we end up with an extra 0 at the end of
2448 # the number; a second rescale fixes this.
2449 if ans.adjusted() != self.adjusted():
2450 ans = ans._rescale(ans.adjusted()+1-places, rounding)
2451 return ans
2453 def to_integral_exact(self, rounding=None, context=None):
2454 """Rounds to a nearby integer.
2456 If no rounding mode is specified, take the rounding mode from
2457 the context. This method raises the Rounded and Inexact flags
2458 when appropriate.
2460 See also: to_integral_value, which does exactly the same as
2461 this method except that it doesn't raise Inexact or Rounded.
2463 if self._is_special:
2464 ans = self._check_nans(context=context)
2465 if ans:
2466 return ans
2467 return Decimal(self)
2468 if self._exp >= 0:
2469 return Decimal(self)
2470 if not self:
2471 return _dec_from_triple(self._sign, '0', 0)
2472 if context is None:
2473 context = getcontext()
2474 if rounding is None:
2475 rounding = context.rounding
2476 context._raise_error(Rounded)
2477 ans = self._rescale(0, rounding)
2478 if ans != self:
2479 context._raise_error(Inexact)
2480 return ans
2482 def to_integral_value(self, rounding=None, context=None):
2483 """Rounds to the nearest integer, without raising inexact, rounded."""
2484 if context is None:
2485 context = getcontext()
2486 if rounding is None:
2487 rounding = context.rounding
2488 if self._is_special:
2489 ans = self._check_nans(context=context)
2490 if ans:
2491 return ans
2492 return Decimal(self)
2493 if self._exp >= 0:
2494 return Decimal(self)
2495 else:
2496 return self._rescale(0, rounding)
2498 # the method name changed, but we provide also the old one, for compatibility
2499 to_integral = to_integral_value
2501 def sqrt(self, context=None):
2502 """Return the square root of self."""
2503 if context is None:
2504 context = getcontext()
2506 if self._is_special:
2507 ans = self._check_nans(context=context)
2508 if ans:
2509 return ans
2511 if self._isinfinity() and self._sign == 0:
2512 return Decimal(self)
2514 if not self:
2515 # exponent = self._exp // 2. sqrt(-0) = -0
2516 ans = _dec_from_triple(self._sign, '0', self._exp // 2)
2517 return ans._fix(context)
2519 if self._sign == 1:
2520 return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
2522 # At this point self represents a positive number. Let p be
2523 # the desired precision and express self in the form c*100**e
2524 # with c a positive real number and e an integer, c and e
2525 # being chosen so that 100**(p-1) <= c < 100**p. Then the
2526 # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
2527 # <= sqrt(c) < 10**p, so the closest representable Decimal at
2528 # precision p is n*10**e where n = round_half_even(sqrt(c)),
2529 # the closest integer to sqrt(c) with the even integer chosen
2530 # in the case of a tie.
2532 # To ensure correct rounding in all cases, we use the
2533 # following trick: we compute the square root to an extra
2534 # place (precision p+1 instead of precision p), rounding down.
2535 # Then, if the result is inexact and its last digit is 0 or 5,
2536 # we increase the last digit to 1 or 6 respectively; if it's
2537 # exact we leave the last digit alone. Now the final round to
2538 # p places (or fewer in the case of underflow) will round
2539 # correctly and raise the appropriate flags.
2541 # use an extra digit of precision
2542 prec = context.prec+1
2544 # write argument in the form c*100**e where e = self._exp//2
2545 # is the 'ideal' exponent, to be used if the square root is
2546 # exactly representable. l is the number of 'digits' of c in
2547 # base 100, so that 100**(l-1) <= c < 100**l.
2548 op = _WorkRep(self)
2549 e = op.exp >> 1
2550 if op.exp & 1:
2551 c = op.int * 10
2552 l = (len(self._int) >> 1) + 1
2553 else:
2554 c = op.int
2555 l = len(self._int)+1 >> 1
2557 # rescale so that c has exactly prec base 100 'digits'
2558 shift = prec-l
2559 if shift >= 0:
2560 c *= 100**shift
2561 exact = True
2562 else:
2563 c, remainder = divmod(c, 100**-shift)
2564 exact = not remainder
2565 e -= shift
2567 # find n = floor(sqrt(c)) using Newton's method
2568 n = 10**prec
2569 while True:
2570 q = c//n
2571 if n <= q:
2572 break
2573 else:
2574 n = n + q >> 1
2575 exact = exact and n*n == c
2577 if exact:
2578 # result is exact; rescale to use ideal exponent e
2579 if shift >= 0:
2580 # assert n % 10**shift == 0
2581 n //= 10**shift
2582 else:
2583 n *= 10**-shift
2584 e += shift
2585 else:
2586 # result is not exact; fix last digit as described above
2587 if n % 5 == 0:
2588 n += 1
2590 ans = _dec_from_triple(0, str(n), e)
2592 # round, and fit to current context
2593 context = context._shallow_copy()
2594 rounding = context._set_rounding(ROUND_HALF_EVEN)
2595 ans = ans._fix(context)
2596 context.rounding = rounding
2598 return ans
2600 def max(self, other, context=None):
2601 """Returns the larger value.
2603 Like max(self, other) except if one is not a number, returns
2604 NaN (and signals if one is sNaN). Also rounds.
2606 other = _convert_other(other, raiseit=True)
2608 if context is None:
2609 context = getcontext()
2611 if self._is_special or other._is_special:
2612 # If one operand is a quiet NaN and the other is number, then the
2613 # number is always returned
2614 sn = self._isnan()
2615 on = other._isnan()
2616 if sn or on:
2617 if on == 1 and sn == 0:
2618 return self._fix(context)
2619 if sn == 1 and on == 0:
2620 return other._fix(context)
2621 return self._check_nans(other, context)
2623 c = self._cmp(other)
2624 if c == 0:
2625 # If both operands are finite and equal in numerical value
2626 # then an ordering is applied:
2628 # If the signs differ then max returns the operand with the
2629 # positive sign and min returns the operand with the negative sign
2631 # If the signs are the same then the exponent is used to select
2632 # the result. This is exactly the ordering used in compare_total.
2633 c = self.compare_total(other)
2635 if c == -1:
2636 ans = other
2637 else:
2638 ans = self
2640 return ans._fix(context)
2642 def min(self, other, context=None):
2643 """Returns the smaller value.
2645 Like min(self, other) except if one is not a number, returns
2646 NaN (and signals if one is sNaN). Also rounds.
2648 other = _convert_other(other, raiseit=True)
2650 if context is None:
2651 context = getcontext()
2653 if self._is_special or other._is_special:
2654 # If one operand is a quiet NaN and the other is number, then the
2655 # number is always returned
2656 sn = self._isnan()
2657 on = other._isnan()
2658 if sn or on:
2659 if on == 1 and sn == 0:
2660 return self._fix(context)
2661 if sn == 1 and on == 0:
2662 return other._fix(context)
2663 return self._check_nans(other, context)
2665 c = self._cmp(other)
2666 if c == 0:
2667 c = self.compare_total(other)
2669 if c == -1:
2670 ans = self
2671 else:
2672 ans = other
2674 return ans._fix(context)
2676 def _isinteger(self):
2677 """Returns whether self is an integer"""
2678 if self._is_special:
2679 return False
2680 if self._exp >= 0:
2681 return True
2682 rest = self._int[self._exp:]
2683 return rest == '0'*len(rest)
2685 def _iseven(self):
2686 """Returns True if self is even. Assumes self is an integer."""
2687 if not self or self._exp > 0:
2688 return True
2689 return self._int[-1+self._exp] in '02468'
2691 def adjusted(self):
2692 """Return the adjusted exponent of self"""
2693 try:
2694 return self._exp + len(self._int) - 1
2695 # If NaN or Infinity, self._exp is string
2696 except TypeError:
2697 return 0
2699 def canonical(self, context=None):
2700 """Returns the same Decimal object.
2702 As we do not have different encodings for the same number, the
2703 received object already is in its canonical form.
2705 return self
2707 def compare_signal(self, other, context=None):
2708 """Compares self to the other operand numerically.
2710 It's pretty much like compare(), but all NaNs signal, with signaling
2711 NaNs taking precedence over quiet NaNs.
2713 other = _convert_other(other, raiseit = True)
2714 ans = self._compare_check_nans(other, context)
2715 if ans:
2716 return ans
2717 return self.compare(other, context=context)
2719 def compare_total(self, other):
2720 """Compares self to other using the abstract representations.
2722 This is not like the standard compare, which use their numerical
2723 value. Note that a total ordering is defined for all possible abstract
2724 representations.
2726 # if one is negative and the other is positive, it's easy
2727 if self._sign and not other._sign:
2728 return _NegativeOne
2729 if not self._sign and other._sign:
2730 return _One
2731 sign = self._sign
2733 # let's handle both NaN types
2734 self_nan = self._isnan()
2735 other_nan = other._isnan()
2736 if self_nan or other_nan:
2737 if self_nan == other_nan:
2738 # compare payloads as though they're integers
2739 self_key = len(self._int), self._int
2740 other_key = len(other._int), other._int
2741 if self_key < other_key:
2742 if sign:
2743 return _One
2744 else:
2745 return _NegativeOne
2746 if self_key > other_key:
2747 if sign:
2748 return _NegativeOne
2749 else:
2750 return _One
2751 return _Zero
2753 if sign:
2754 if self_nan == 1:
2755 return _NegativeOne
2756 if other_nan == 1:
2757 return _One
2758 if self_nan == 2:
2759 return _NegativeOne
2760 if other_nan == 2:
2761 return _One
2762 else:
2763 if self_nan == 1:
2764 return _One
2765 if other_nan == 1:
2766 return _NegativeOne
2767 if self_nan == 2:
2768 return _One
2769 if other_nan == 2:
2770 return _NegativeOne
2772 if self < other:
2773 return _NegativeOne
2774 if self > other:
2775 return _One
2777 if self._exp < other._exp:
2778 if sign:
2779 return _One
2780 else:
2781 return _NegativeOne
2782 if self._exp > other._exp:
2783 if sign:
2784 return _NegativeOne
2785 else:
2786 return _One
2787 return _Zero
2790 def compare_total_mag(self, other):
2791 """Compares self to other using abstract repr., ignoring sign.
2793 Like compare_total, but with operand's sign ignored and assumed to be 0.
2795 s = self.copy_abs()
2796 o = other.copy_abs()
2797 return s.compare_total(o)
2799 def copy_abs(self):
2800 """Returns a copy with the sign set to 0. """
2801 return _dec_from_triple(0, self._int, self._exp, self._is_special)
2803 def copy_negate(self):
2804 """Returns a copy with the sign inverted."""
2805 if self._sign:
2806 return _dec_from_triple(0, self._int, self._exp, self._is_special)
2807 else:
2808 return _dec_from_triple(1, self._int, self._exp, self._is_special)
2810 def copy_sign(self, other):
2811 """Returns self with the sign of other."""
2812 return _dec_from_triple(other._sign, self._int,
2813 self._exp, self._is_special)
2815 def exp(self, context=None):
2816 """Returns e ** self."""
2818 if context is None:
2819 context = getcontext()
2821 # exp(NaN) = NaN
2822 ans = self._check_nans(context=context)
2823 if ans:
2824 return ans
2826 # exp(-Infinity) = 0
2827 if self._isinfinity() == -1:
2828 return _Zero
2830 # exp(0) = 1
2831 if not self:
2832 return _One
2834 # exp(Infinity) = Infinity
2835 if self._isinfinity() == 1:
2836 return Decimal(self)
2838 # the result is now guaranteed to be inexact (the true
2839 # mathematical result is transcendental). There's no need to
2840 # raise Rounded and Inexact here---they'll always be raised as
2841 # a result of the call to _fix.
2842 p = context.prec
2843 adj = self.adjusted()
2845 # we only need to do any computation for quite a small range
2846 # of adjusted exponents---for example, -29 <= adj <= 10 for
2847 # the default context. For smaller exponent the result is
2848 # indistinguishable from 1 at the given precision, while for
2849 # larger exponent the result either overflows or underflows.
2850 if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
2851 # overflow
2852 ans = _dec_from_triple(0, '1', context.Emax+1)
2853 elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
2854 # underflow to 0
2855 ans = _dec_from_triple(0, '1', context.Etiny()-1)
2856 elif self._sign == 0 and adj < -p:
2857 # p+1 digits; final round will raise correct flags
2858 ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
2859 elif self._sign == 1 and adj < -p-1:
2860 # p+1 digits; final round will raise correct flags
2861 ans = _dec_from_triple(0, '9'*(p+1), -p-1)
2862 # general case
2863 else:
2864 op = _WorkRep(self)
2865 c, e = op.int, op.exp
2866 if op.sign == 1:
2867 c = -c
2869 # compute correctly rounded result: increase precision by
2870 # 3 digits at a time until we get an unambiguously
2871 # roundable result
2872 extra = 3
2873 while True:
2874 coeff, exp = _dexp(c, e, p+extra)
2875 if coeff % (5*10**(len(str(coeff))-p-1)):
2876 break
2877 extra += 3
2879 ans = _dec_from_triple(0, str(coeff), exp)
2881 # at this stage, ans should round correctly with *any*
2882 # rounding mode, not just with ROUND_HALF_EVEN
2883 context = context._shallow_copy()
2884 rounding = context._set_rounding(ROUND_HALF_EVEN)
2885 ans = ans._fix(context)
2886 context.rounding = rounding
2888 return ans
2890 def is_canonical(self):
2891 """Return True if self is canonical; otherwise return False.
2893 Currently, the encoding of a Decimal instance is always
2894 canonical, so this method returns True for any Decimal.
2896 return True
2898 def is_finite(self):
2899 """Return True if self is finite; otherwise return False.
2901 A Decimal instance is considered finite if it is neither
2902 infinite nor a NaN.
2904 return not self._is_special
2906 def is_infinite(self):
2907 """Return True if self is infinite; otherwise return False."""
2908 return self._exp == 'F'
2910 def is_nan(self):
2911 """Return True if self is a qNaN or sNaN; otherwise return False."""
2912 return self._exp in ('n', 'N')
2914 def is_normal(self, context=None):
2915 """Return True if self is a normal number; otherwise return False."""
2916 if self._is_special or not self:
2917 return False
2918 if context is None:
2919 context = getcontext()
2920 return context.Emin <= self.adjusted()
2922 def is_qnan(self):
2923 """Return True if self is a quiet NaN; otherwise return False."""
2924 return self._exp == 'n'
2926 def is_signed(self):
2927 """Return True if self is negative; otherwise return False."""
2928 return self._sign == 1
2930 def is_snan(self):
2931 """Return True if self is a signaling NaN; otherwise return False."""
2932 return self._exp == 'N'
2934 def is_subnormal(self, context=None):
2935 """Return True if self is subnormal; otherwise return False."""
2936 if self._is_special or not self:
2937 return False
2938 if context is None:
2939 context = getcontext()
2940 return self.adjusted() < context.Emin
2942 def is_zero(self):
2943 """Return True if self is a zero; otherwise return False."""
2944 return not self._is_special and self._int == '0'
2946 def _ln_exp_bound(self):
2947 """Compute a lower bound for the adjusted exponent of self.ln().
2948 In other words, compute r such that self.ln() >= 10**r. Assumes
2949 that self is finite and positive and that self != 1.
2952 # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
2953 adj = self._exp + len(self._int) - 1
2954 if adj >= 1:
2955 # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
2956 return len(str(adj*23//10)) - 1
2957 if adj <= -2:
2958 # argument <= 0.1
2959 return len(str((-1-adj)*23//10)) - 1
2960 op = _WorkRep(self)
2961 c, e = op.int, op.exp
2962 if adj == 0:
2963 # 1 < self < 10
2964 num = str(c-10**-e)
2965 den = str(c)
2966 return len(num) - len(den) - (num < den)
2967 # adj == -1, 0.1 <= self < 1
2968 return e + len(str(10**-e - c)) - 1
2971 def ln(self, context=None):
2972 """Returns the natural (base e) logarithm of self."""
2974 if context is None:
2975 context = getcontext()
2977 # ln(NaN) = NaN
2978 ans = self._check_nans(context=context)
2979 if ans:
2980 return ans
2982 # ln(0.0) == -Infinity
2983 if not self:
2984 return _NegativeInfinity
2986 # ln(Infinity) = Infinity
2987 if self._isinfinity() == 1:
2988 return _Infinity
2990 # ln(1.0) == 0.0
2991 if self == _One:
2992 return _Zero
2994 # ln(negative) raises InvalidOperation
2995 if self._sign == 1:
2996 return context._raise_error(InvalidOperation,
2997 'ln of a negative value')
2999 # result is irrational, so necessarily inexact
3000 op = _WorkRep(self)
3001 c, e = op.int, op.exp
3002 p = context.prec
3004 # correctly rounded result: repeatedly increase precision by 3
3005 # until we get an unambiguously roundable result
3006 places = p - self._ln_exp_bound() + 2 # at least p+3 places
3007 while True:
3008 coeff = _dlog(c, e, places)
3009 # assert len(str(abs(coeff)))-p >= 1
3010 if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3011 break
3012 places += 3
3013 ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3015 context = context._shallow_copy()
3016 rounding = context._set_rounding(ROUND_HALF_EVEN)
3017 ans = ans._fix(context)
3018 context.rounding = rounding
3019 return ans
3021 def _log10_exp_bound(self):
3022 """Compute a lower bound for the adjusted exponent of self.log10().
3023 In other words, find r such that self.log10() >= 10**r.
3024 Assumes that self is finite and positive and that self != 1.
3027 # For x >= 10 or x < 0.1 we only need a bound on the integer
3028 # part of log10(self), and this comes directly from the
3029 # exponent of x. For 0.1 <= x <= 10 we use the inequalities
3030 # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
3031 # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
3033 adj = self._exp + len(self._int) - 1
3034 if adj >= 1:
3035 # self >= 10
3036 return len(str(adj))-1
3037 if adj <= -2:
3038 # self < 0.1
3039 return len(str(-1-adj))-1
3040 op = _WorkRep(self)
3041 c, e = op.int, op.exp
3042 if adj == 0:
3043 # 1 < self < 10
3044 num = str(c-10**-e)
3045 den = str(231*c)
3046 return len(num) - len(den) - (num < den) + 2
3047 # adj == -1, 0.1 <= self < 1
3048 num = str(10**-e-c)
3049 return len(num) + e - (num < "231") - 1
3051 def log10(self, context=None):
3052 """Returns the base 10 logarithm of self."""
3054 if context is None:
3055 context = getcontext()
3057 # log10(NaN) = NaN
3058 ans = self._check_nans(context=context)
3059 if ans:
3060 return ans
3062 # log10(0.0) == -Infinity
3063 if not self:
3064 return _NegativeInfinity
3066 # log10(Infinity) = Infinity
3067 if self._isinfinity() == 1:
3068 return _Infinity
3070 # log10(negative or -Infinity) raises InvalidOperation
3071 if self._sign == 1:
3072 return context._raise_error(InvalidOperation,
3073 'log10 of a negative value')
3075 # log10(10**n) = n
3076 if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
3077 # answer may need rounding
3078 ans = Decimal(self._exp + len(self._int) - 1)
3079 else:
3080 # result is irrational, so necessarily inexact
3081 op = _WorkRep(self)
3082 c, e = op.int, op.exp
3083 p = context.prec
3085 # correctly rounded result: repeatedly increase precision
3086 # until result is unambiguously roundable
3087 places = p-self._log10_exp_bound()+2
3088 while True:
3089 coeff = _dlog10(c, e, places)
3090 # assert len(str(abs(coeff)))-p >= 1
3091 if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3092 break
3093 places += 3
3094 ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3096 context = context._shallow_copy()
3097 rounding = context._set_rounding(ROUND_HALF_EVEN)
3098 ans = ans._fix(context)
3099 context.rounding = rounding
3100 return ans
3102 def logb(self, context=None):
3103 """ Returns the exponent of the magnitude of self's MSD.
3105 The result is the integer which is the exponent of the magnitude
3106 of the most significant digit of self (as though it were truncated
3107 to a single digit while maintaining the value of that digit and
3108 without limiting the resulting exponent).
3110 # logb(NaN) = NaN
3111 ans = self._check_nans(context=context)
3112 if ans:
3113 return ans
3115 if context is None:
3116 context = getcontext()
3118 # logb(+/-Inf) = +Inf
3119 if self._isinfinity():
3120 return _Infinity
3122 # logb(0) = -Inf, DivisionByZero
3123 if not self:
3124 return context._raise_error(DivisionByZero, 'logb(0)', 1)
3126 # otherwise, simply return the adjusted exponent of self, as a
3127 # Decimal. Note that no attempt is made to fit the result
3128 # into the current context.
3129 ans = Decimal(self.adjusted())
3130 return ans._fix(context)
3132 def _islogical(self):
3133 """Return True if self is a logical operand.
3135 For being logical, it must be a finite number with a sign of 0,
3136 an exponent of 0, and a coefficient whose digits must all be
3137 either 0 or 1.
3139 if self._sign != 0 or self._exp != 0:
3140 return False
3141 for dig in self._int:
3142 if dig not in '01':
3143 return False
3144 return True
3146 def _fill_logical(self, context, opa, opb):
3147 dif = context.prec - len(opa)
3148 if dif > 0:
3149 opa = '0'*dif + opa
3150 elif dif < 0:
3151 opa = opa[-context.prec:]
3152 dif = context.prec - len(opb)
3153 if dif > 0:
3154 opb = '0'*dif + opb
3155 elif dif < 0:
3156 opb = opb[-context.prec:]
3157 return opa, opb
3159 def logical_and(self, other, context=None):
3160 """Applies an 'and' operation between self and other's digits."""
3161 if context is None:
3162 context = getcontext()
3163 if not self._islogical() or not other._islogical():
3164 return context._raise_error(InvalidOperation)
3166 # fill to context.prec
3167 (opa, opb) = self._fill_logical(context, self._int, other._int)
3169 # make the operation, and clean starting zeroes
3170 result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
3171 return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3173 def logical_invert(self, context=None):
3174 """Invert all its digits."""
3175 if context is None:
3176 context = getcontext()
3177 return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
3178 context)
3180 def logical_or(self, other, context=None):
3181 """Applies an 'or' operation between self and other's digits."""
3182 if context is None:
3183 context = getcontext()
3184 if not self._islogical() or not other._islogical():
3185 return context._raise_error(InvalidOperation)
3187 # fill to context.prec
3188 (opa, opb) = self._fill_logical(context, self._int, other._int)
3190 # make the operation, and clean starting zeroes
3191 result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
3192 return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3194 def logical_xor(self, other, context=None):
3195 """Applies an 'xor' operation between self and other's digits."""
3196 if context is None:
3197 context = getcontext()
3198 if not self._islogical() or not other._islogical():
3199 return context._raise_error(InvalidOperation)
3201 # fill to context.prec
3202 (opa, opb) = self._fill_logical(context, self._int, other._int)
3204 # make the operation, and clean starting zeroes
3205 result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
3206 return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3208 def max_mag(self, other, context=None):
3209 """Compares the values numerically with their sign ignored."""
3210 other = _convert_other(other, raiseit=True)
3212 if context is None:
3213 context = getcontext()
3215 if self._is_special or other._is_special:
3216 # If one operand is a quiet NaN and the other is number, then the
3217 # number is always returned
3218 sn = self._isnan()
3219 on = other._isnan()
3220 if sn or on:
3221 if on == 1 and sn == 0:
3222 return self._fix(context)
3223 if sn == 1 and on == 0:
3224 return other._fix(context)
3225 return self._check_nans(other, context)
3227 c = self.copy_abs()._cmp(other.copy_abs())
3228 if c == 0:
3229 c = self.compare_total(other)
3231 if c == -1:
3232 ans = other
3233 else:
3234 ans = self
3236 return ans._fix(context)
3238 def min_mag(self, other, context=None):
3239 """Compares the values numerically with their sign ignored."""
3240 other = _convert_other(other, raiseit=True)
3242 if context is None:
3243 context = getcontext()
3245 if self._is_special or other._is_special:
3246 # If one operand is a quiet NaN and the other is number, then the
3247 # number is always returned
3248 sn = self._isnan()
3249 on = other._isnan()
3250 if sn or on:
3251 if on == 1 and sn == 0:
3252 return self._fix(context)
3253 if sn == 1 and on == 0:
3254 return other._fix(context)
3255 return self._check_nans(other, context)
3257 c = self.copy_abs()._cmp(other.copy_abs())
3258 if c == 0:
3259 c = self.compare_total(other)
3261 if c == -1:
3262 ans = self
3263 else:
3264 ans = other
3266 return ans._fix(context)
3268 def next_minus(self, context=None):
3269 """Returns the largest representable number smaller than itself."""
3270 if context is None:
3271 context = getcontext()
3273 ans = self._check_nans(context=context)
3274 if ans:
3275 return ans
3277 if self._isinfinity() == -1:
3278 return _NegativeInfinity
3279 if self._isinfinity() == 1:
3280 return _dec_from_triple(0, '9'*context.prec, context.Etop())
3282 context = context.copy()
3283 context._set_rounding(ROUND_FLOOR)
3284 context._ignore_all_flags()
3285 new_self = self._fix(context)
3286 if new_self != self:
3287 return new_self
3288 return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
3289 context)
3291 def next_plus(self, context=None):
3292 """Returns the smallest representable number larger than itself."""
3293 if context is None:
3294 context = getcontext()
3296 ans = self._check_nans(context=context)
3297 if ans:
3298 return ans
3300 if self._isinfinity() == 1:
3301 return _Infinity
3302 if self._isinfinity() == -1:
3303 return _dec_from_triple(1, '9'*context.prec, context.Etop())
3305 context = context.copy()
3306 context._set_rounding(ROUND_CEILING)
3307 context._ignore_all_flags()
3308 new_self = self._fix(context)
3309 if new_self != self:
3310 return new_self
3311 return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
3312 context)
3314 def next_toward(self, other, context=None):
3315 """Returns the number closest to self, in the direction towards other.
3317 The result is the closest representable number to self
3318 (excluding self) that is in the direction towards other,
3319 unless both have the same value. If the two operands are
3320 numerically equal, then the result is a copy of self with the
3321 sign set to be the same as the sign of other.
3323 other = _convert_other(other, raiseit=True)
3325 if context is None:
3326 context = getcontext()
3328 ans = self._check_nans(other, context)
3329 if ans:
3330 return ans
3332 comparison = self._cmp(other)
3333 if comparison == 0:
3334 return self.copy_sign(other)
3336 if comparison == -1:
3337 ans = self.next_plus(context)
3338 else: # comparison == 1
3339 ans = self.next_minus(context)
3341 # decide which flags to raise using value of ans
3342 if ans._isinfinity():
3343 context._raise_error(Overflow,
3344 'Infinite result from next_toward',
3345 ans._sign)
3346 context._raise_error(Rounded)
3347 context._raise_error(Inexact)
3348 elif ans.adjusted() < context.Emin:
3349 context._raise_error(Underflow)
3350 context._raise_error(Subnormal)
3351 context._raise_error(Rounded)
3352 context._raise_error(Inexact)
3353 # if precision == 1 then we don't raise Clamped for a
3354 # result 0E-Etiny.
3355 if not ans:
3356 context._raise_error(Clamped)
3358 return ans
3360 def number_class(self, context=None):
3361 """Returns an indication of the class of self.
3363 The class is one of the following strings:
3364 sNaN
3366 -Infinity
3367 -Normal
3368 -Subnormal
3369 -Zero
3370 +Zero
3371 +Subnormal
3372 +Normal
3373 +Infinity
3375 if self.is_snan():
3376 return "sNaN"
3377 if self.is_qnan():
3378 return "NaN"
3379 inf = self._isinfinity()
3380 if inf == 1:
3381 return "+Infinity"
3382 if inf == -1:
3383 return "-Infinity"
3384 if self.is_zero():
3385 if self._sign:
3386 return "-Zero"
3387 else:
3388 return "+Zero"
3389 if context is None:
3390 context = getcontext()
3391 if self.is_subnormal(context=context):
3392 if self._sign:
3393 return "-Subnormal"
3394 else:
3395 return "+Subnormal"
3396 # just a normal, regular, boring number, :)
3397 if self._sign:
3398 return "-Normal"
3399 else:
3400 return "+Normal"
3402 def radix(self):
3403 """Just returns 10, as this is Decimal, :)"""
3404 return Decimal(10)
3406 def rotate(self, other, context=None):
3407 """Returns a rotated copy of self, value-of-other times."""
3408 if context is None:
3409 context = getcontext()
3411 ans = self._check_nans(other, context)
3412 if ans:
3413 return ans
3415 if other._exp != 0:
3416 return context._raise_error(InvalidOperation)
3417 if not (-context.prec <= int(other) <= context.prec):
3418 return context._raise_error(InvalidOperation)
3420 if self._isinfinity():
3421 return Decimal(self)
3423 # get values, pad if necessary
3424 torot = int(other)
3425 rotdig = self._int
3426 topad = context.prec - len(rotdig)
3427 if topad:
3428 rotdig = '0'*topad + rotdig
3430 # let's rotate!
3431 rotated = rotdig[torot:] + rotdig[:torot]
3432 return _dec_from_triple(self._sign,
3433 rotated.lstrip('0') or '0', self._exp)
3435 def scaleb (self, other, context=None):
3436 """Returns self operand after adding the second value to its exp."""
3437 if context is None:
3438 context = getcontext()
3440 ans = self._check_nans(other, context)
3441 if ans:
3442 return ans
3444 if other._exp != 0:
3445 return context._raise_error(InvalidOperation)
3446 liminf = -2 * (context.Emax + context.prec)
3447 limsup = 2 * (context.Emax + context.prec)
3448 if not (liminf <= int(other) <= limsup):
3449 return context._raise_error(InvalidOperation)
3451 if self._isinfinity():
3452 return Decimal(self)
3454 d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
3455 d = d._fix(context)
3456 return d
3458 def shift(self, other, context=None):
3459 """Returns a shifted copy of self, value-of-other times."""
3460 if context is None:
3461 context = getcontext()
3463 ans = self._check_nans(other, context)
3464 if ans:
3465 return ans
3467 if other._exp != 0:
3468 return context._raise_error(InvalidOperation)
3469 if not (-context.prec <= int(other) <= context.prec):
3470 return context._raise_error(InvalidOperation)
3472 if self._isinfinity():
3473 return Decimal(self)
3475 # get values, pad if necessary
3476 torot = int(other)
3477 if not torot:
3478 return Decimal(self)
3479 rotdig = self._int
3480 topad = context.prec - len(rotdig)
3481 if topad:
3482 rotdig = '0'*topad + rotdig
3484 # let's shift!
3485 if torot < 0:
3486 rotated = rotdig[:torot]
3487 else:
3488 rotated = rotdig + '0'*torot
3489 rotated = rotated[-context.prec:]
3491 return _dec_from_triple(self._sign,
3492 rotated.lstrip('0') or '0', self._exp)
3494 # Support for pickling, copy, and deepcopy
3495 def __reduce__(self):
3496 return (self.__class__, (str(self),))
3498 def __copy__(self):
3499 if type(self) == Decimal:
3500 return self # I'm immutable; therefore I am my own clone
3501 return self.__class__(str(self))
3503 def __deepcopy__(self, memo):
3504 if type(self) == Decimal:
3505 return self # My components are also immutable
3506 return self.__class__(str(self))
3508 # PEP 3101 support. the _localeconv keyword argument should be
3509 # considered private: it's provided for ease of testing only.
3510 def __format__(self, specifier, context=None, _localeconv=None):
3511 """Format a Decimal instance according to the given specifier.
3513 The specifier should be a standard format specifier, with the
3514 form described in PEP 3101. Formatting types 'e', 'E', 'f',
3515 'F', 'g', 'G', 'n' and '%' are supported. If the formatting
3516 type is omitted it defaults to 'g' or 'G', depending on the
3517 value of context.capitals.
3520 # Note: PEP 3101 says that if the type is not present then
3521 # there should be at least one digit after the decimal point.
3522 # We take the liberty of ignoring this requirement for
3523 # Decimal---it's presumably there to make sure that
3524 # format(float, '') behaves similarly to str(float).
3525 if context is None:
3526 context = getcontext()
3528 spec = _parse_format_specifier(specifier, _localeconv=_localeconv)
3530 # special values don't care about the type or precision
3531 if self._is_special:
3532 sign = _format_sign(self._sign, spec)
3533 body = str(self.copy_abs())
3534 return _format_align(sign, body, spec)
3536 # a type of None defaults to 'g' or 'G', depending on context
3537 if spec['type'] is None:
3538 spec['type'] = ['g', 'G'][context.capitals]
3540 # if type is '%', adjust exponent of self accordingly
3541 if spec['type'] == '%':
3542 self = _dec_from_triple(self._sign, self._int, self._exp+2)
3544 # round if necessary, taking rounding mode from the context
3545 rounding = context.rounding
3546 precision = spec['precision']
3547 if precision is not None:
3548 if spec['type'] in 'eE':
3549 self = self._round(precision+1, rounding)
3550 elif spec['type'] in 'fF%':
3551 self = self._rescale(-precision, rounding)
3552 elif spec['type'] in 'gG' and len(self._int) > precision:
3553 self = self._round(precision, rounding)
3554 # special case: zeros with a positive exponent can't be
3555 # represented in fixed point; rescale them to 0e0.
3556 if not self and self._exp > 0 and spec['type'] in 'fF%':
3557 self = self._rescale(0, rounding)
3559 # figure out placement of the decimal point
3560 leftdigits = self._exp + len(self._int)
3561 if spec['type'] in 'eE':
3562 if not self and precision is not None:
3563 dotplace = 1 - precision
3564 else:
3565 dotplace = 1
3566 elif spec['type'] in 'fF%':
3567 dotplace = leftdigits
3568 elif spec['type'] in 'gG':
3569 if self._exp <= 0 and leftdigits > -6:
3570 dotplace = leftdigits
3571 else:
3572 dotplace = 1
3574 # find digits before and after decimal point, and get exponent
3575 if dotplace < 0:
3576 intpart = '0'
3577 fracpart = '0'*(-dotplace) + self._int
3578 elif dotplace > len(self._int):
3579 intpart = self._int + '0'*(dotplace-len(self._int))
3580 fracpart = ''
3581 else:
3582 intpart = self._int[:dotplace] or '0'
3583 fracpart = self._int[dotplace:]
3584 exp = leftdigits-dotplace
3586 # done with the decimal-specific stuff; hand over the rest
3587 # of the formatting to the _format_number function
3588 return _format_number(self._sign, intpart, fracpart, exp, spec)
3590 def _dec_from_triple(sign, coefficient, exponent, special=False):
3591 """Create a decimal instance directly, without any validation,
3592 normalization (e.g. removal of leading zeros) or argument
3593 conversion.
3595 This function is for *internal use only*.
3598 self = object.__new__(Decimal)
3599 self._sign = sign
3600 self._int = coefficient
3601 self._exp = exponent
3602 self._is_special = special
3604 return self
3606 # Register Decimal as a kind of Number (an abstract base class).
3607 # However, do not register it as Real (because Decimals are not
3608 # interoperable with floats).
3609 _numbers.Number.register(Decimal)
3612 ##### Context class #######################################################
3615 # get rounding method function:
3616 rounding_functions = [name for name in Decimal.__dict__.keys()
3617 if name.startswith('_round_')]
3618 for name in rounding_functions:
3619 # name is like _round_half_even, goes to the global ROUND_HALF_EVEN value.
3620 globalname = name[1:].upper()
3621 val = globals()[globalname]
3622 Decimal._pick_rounding_function[val] = name
3624 del name, val, globalname, rounding_functions
3626 class _ContextManager(object):
3627 """Context manager class to support localcontext().
3629 Sets a copy of the supplied context in __enter__() and restores
3630 the previous decimal context in __exit__()
3632 def __init__(self, new_context):
3633 self.new_context = new_context.copy()
3634 def __enter__(self):
3635 self.saved_context = getcontext()
3636 setcontext(self.new_context)
3637 return self.new_context
3638 def __exit__(self, t, v, tb):
3639 setcontext(self.saved_context)
3641 class Context(object):
3642 """Contains the context for a Decimal instance.
3644 Contains:
3645 prec - precision (for use in rounding, division, square roots..)
3646 rounding - rounding type (how you round)
3647 traps - If traps[exception] = 1, then the exception is
3648 raised when it is caused. Otherwise, a value is
3649 substituted in.
3650 flags - When an exception is caused, flags[exception] is set.
3651 (Whether or not the trap_enabler is set)
3652 Should be reset by user of Decimal instance.
3653 Emin - Minimum exponent
3654 Emax - Maximum exponent
3655 capitals - If 1, 1*10^1 is printed as 1E+1.
3656 If 0, printed as 1e1
3657 _clamp - If 1, change exponents if too high (Default 0)
3660 def __init__(self, prec=None, rounding=None,
3661 traps=None, flags=None,
3662 Emin=None, Emax=None,
3663 capitals=None, _clamp=0,
3664 _ignored_flags=None):
3665 if flags is None:
3666 flags = []
3667 if _ignored_flags is None:
3668 _ignored_flags = []
3669 if not isinstance(flags, dict):
3670 flags = dict([(s, int(s in flags)) for s in _signals])
3671 del s
3672 if traps is not None and not isinstance(traps, dict):
3673 traps = dict([(s, int(s in traps)) for s in _signals])
3674 del s
3675 for name, val in locals().items():
3676 if val is None:
3677 setattr(self, name, _copy.copy(getattr(DefaultContext, name)))
3678 else:
3679 setattr(self, name, val)
3680 del self.self
3682 def __repr__(self):
3683 """Show the current context."""
3684 s = []
3685 s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
3686 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
3687 % vars(self))
3688 names = [f.__name__ for f, v in self.flags.items() if v]
3689 s.append('flags=[' + ', '.join(names) + ']')
3690 names = [t.__name__ for t, v in self.traps.items() if v]
3691 s.append('traps=[' + ', '.join(names) + ']')
3692 return ', '.join(s) + ')'
3694 def clear_flags(self):
3695 """Reset all flags to zero"""
3696 for flag in self.flags:
3697 self.flags[flag] = 0
3699 def _shallow_copy(self):
3700 """Returns a shallow copy from self."""
3701 nc = Context(self.prec, self.rounding, self.traps,
3702 self.flags, self.Emin, self.Emax,
3703 self.capitals, self._clamp, self._ignored_flags)
3704 return nc
3706 def copy(self):
3707 """Returns a deep copy from self."""
3708 nc = Context(self.prec, self.rounding, self.traps.copy(),
3709 self.flags.copy(), self.Emin, self.Emax,
3710 self.capitals, self._clamp, self._ignored_flags)
3711 return nc
3712 __copy__ = copy
3714 def _raise_error(self, condition, explanation = None, *args):
3715 """Handles an error
3717 If the flag is in _ignored_flags, returns the default response.
3718 Otherwise, it sets the flag, then, if the corresponding
3719 trap_enabler is set, it reaises the exception. Otherwise, it returns
3720 the default value after setting the flag.
3722 error = _condition_map.get(condition, condition)
3723 if error in self._ignored_flags:
3724 # Don't touch the flag
3725 return error().handle(self, *args)
3727 self.flags[error] = 1
3728 if not self.traps[error]:
3729 # The errors define how to handle themselves.
3730 return condition().handle(self, *args)
3732 # Errors should only be risked on copies of the context
3733 # self._ignored_flags = []
3734 raise error(explanation)
3736 def _ignore_all_flags(self):
3737 """Ignore all flags, if they are raised"""
3738 return self._ignore_flags(*_signals)
3740 def _ignore_flags(self, *flags):
3741 """Ignore the flags, if they are raised"""
3742 # Do not mutate-- This way, copies of a context leave the original
3743 # alone.
3744 self._ignored_flags = (self._ignored_flags + list(flags))
3745 return list(flags)
3747 def _regard_flags(self, *flags):
3748 """Stop ignoring the flags, if they are raised"""
3749 if flags and isinstance(flags[0], (tuple,list)):
3750 flags = flags[0]
3751 for flag in flags:
3752 self._ignored_flags.remove(flag)
3754 # We inherit object.__hash__, so we must deny this explicitly
3755 __hash__ = None
3757 def Etiny(self):
3758 """Returns Etiny (= Emin - prec + 1)"""
3759 return int(self.Emin - self.prec + 1)
3761 def Etop(self):
3762 """Returns maximum exponent (= Emax - prec + 1)"""
3763 return int(self.Emax - self.prec + 1)
3765 def _set_rounding(self, type):
3766 """Sets the rounding type.
3768 Sets the rounding type, and returns the current (previous)
3769 rounding type. Often used like:
3771 context = context.copy()
3772 # so you don't change the calling context
3773 # if an error occurs in the middle.
3774 rounding = context._set_rounding(ROUND_UP)
3775 val = self.__sub__(other, context=context)
3776 context._set_rounding(rounding)
3778 This will make it round up for that operation.
3780 rounding = self.rounding
3781 self.rounding= type
3782 return rounding
3784 def create_decimal(self, num='0'):
3785 """Creates a new Decimal instance but using self as context.
3787 This method implements the to-number operation of the
3788 IBM Decimal specification."""
3790 if isinstance(num, basestring) and num != num.strip():
3791 return self._raise_error(ConversionSyntax,
3792 "no trailing or leading whitespace is "
3793 "permitted.")
3795 d = Decimal(num, context=self)
3796 if d._isnan() and len(d._int) > self.prec - self._clamp:
3797 return self._raise_error(ConversionSyntax,
3798 "diagnostic info too long in NaN")
3799 return d._fix(self)
3801 def create_decimal_from_float(self, f):
3802 """Creates a new Decimal instance from a float but rounding using self
3803 as the context.
3805 >>> context = Context(prec=5, rounding=ROUND_DOWN)
3806 >>> context.create_decimal_from_float(3.1415926535897932)
3807 Decimal('3.1415')
3808 >>> context = Context(prec=5, traps=[Inexact])
3809 >>> context.create_decimal_from_float(3.1415926535897932)
3810 Traceback (most recent call last):
3812 Inexact: None
3815 d = Decimal.from_float(f) # An exact conversion
3816 return d._fix(self) # Apply the context rounding
3818 # Methods
3819 def abs(self, a):
3820 """Returns the absolute value of the operand.
3822 If the operand is negative, the result is the same as using the minus
3823 operation on the operand. Otherwise, the result is the same as using
3824 the plus operation on the operand.
3826 >>> ExtendedContext.abs(Decimal('2.1'))
3827 Decimal('2.1')
3828 >>> ExtendedContext.abs(Decimal('-100'))
3829 Decimal('100')
3830 >>> ExtendedContext.abs(Decimal('101.5'))
3831 Decimal('101.5')
3832 >>> ExtendedContext.abs(Decimal('-101.5'))
3833 Decimal('101.5')
3835 return a.__abs__(context=self)
3837 def add(self, a, b):
3838 """Return the sum of the two operands.
3840 >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
3841 Decimal('19.00')
3842 >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
3843 Decimal('1.02E+4')
3845 return a.__add__(b, context=self)
3847 def _apply(self, a):
3848 return str(a._fix(self))
3850 def canonical(self, a):
3851 """Returns the same Decimal object.
3853 As we do not have different encodings for the same number, the
3854 received object already is in its canonical form.
3856 >>> ExtendedContext.canonical(Decimal('2.50'))
3857 Decimal('2.50')
3859 return a.canonical(context=self)
3861 def compare(self, a, b):
3862 """Compares values numerically.
3864 If the signs of the operands differ, a value representing each operand
3865 ('-1' if the operand is less than zero, '0' if the operand is zero or
3866 negative zero, or '1' if the operand is greater than zero) is used in
3867 place of that operand for the comparison instead of the actual
3868 operand.
3870 The comparison is then effected by subtracting the second operand from
3871 the first and then returning a value according to the result of the
3872 subtraction: '-1' if the result is less than zero, '0' if the result is
3873 zero or negative zero, or '1' if the result is greater than zero.
3875 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
3876 Decimal('-1')
3877 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
3878 Decimal('0')
3879 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
3880 Decimal('0')
3881 >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
3882 Decimal('1')
3883 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
3884 Decimal('1')
3885 >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
3886 Decimal('-1')
3888 return a.compare(b, context=self)
3890 def compare_signal(self, a, b):
3891 """Compares the values of the two operands numerically.
3893 It's pretty much like compare(), but all NaNs signal, with signaling
3894 NaNs taking precedence over quiet NaNs.
3896 >>> c = ExtendedContext
3897 >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
3898 Decimal('-1')
3899 >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
3900 Decimal('0')
3901 >>> c.flags[InvalidOperation] = 0
3902 >>> print c.flags[InvalidOperation]
3904 >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
3905 Decimal('NaN')
3906 >>> print c.flags[InvalidOperation]
3908 >>> c.flags[InvalidOperation] = 0
3909 >>> print c.flags[InvalidOperation]
3911 >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
3912 Decimal('NaN')
3913 >>> print c.flags[InvalidOperation]
3916 return a.compare_signal(b, context=self)
3918 def compare_total(self, a, b):
3919 """Compares two operands using their abstract representation.
3921 This is not like the standard compare, which use their numerical
3922 value. Note that a total ordering is defined for all possible abstract
3923 representations.
3925 >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
3926 Decimal('-1')
3927 >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12'))
3928 Decimal('-1')
3929 >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
3930 Decimal('-1')
3931 >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
3932 Decimal('0')
3933 >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300'))
3934 Decimal('1')
3935 >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN'))
3936 Decimal('-1')
3938 return a.compare_total(b)
3940 def compare_total_mag(self, a, b):
3941 """Compares two operands using their abstract representation ignoring sign.
3943 Like compare_total, but with operand's sign ignored and assumed to be 0.
3945 return a.compare_total_mag(b)
3947 def copy_abs(self, a):
3948 """Returns a copy of the operand with the sign set to 0.
3950 >>> ExtendedContext.copy_abs(Decimal('2.1'))
3951 Decimal('2.1')
3952 >>> ExtendedContext.copy_abs(Decimal('-100'))
3953 Decimal('100')
3955 return a.copy_abs()
3957 def copy_decimal(self, a):
3958 """Returns a copy of the decimal objet.
3960 >>> ExtendedContext.copy_decimal(Decimal('2.1'))
3961 Decimal('2.1')
3962 >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
3963 Decimal('-1.00')
3965 return Decimal(a)
3967 def copy_negate(self, a):
3968 """Returns a copy of the operand with the sign inverted.
3970 >>> ExtendedContext.copy_negate(Decimal('101.5'))
3971 Decimal('-101.5')
3972 >>> ExtendedContext.copy_negate(Decimal('-101.5'))
3973 Decimal('101.5')
3975 return a.copy_negate()
3977 def copy_sign(self, a, b):
3978 """Copies the second operand's sign to the first one.
3980 In detail, it returns a copy of the first operand with the sign
3981 equal to the sign of the second operand.
3983 >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
3984 Decimal('1.50')
3985 >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
3986 Decimal('1.50')
3987 >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
3988 Decimal('-1.50')
3989 >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
3990 Decimal('-1.50')
3992 return a.copy_sign(b)
3994 def divide(self, a, b):
3995 """Decimal division in a specified context.
3997 >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
3998 Decimal('0.333333333')
3999 >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
4000 Decimal('0.666666667')
4001 >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
4002 Decimal('2.5')
4003 >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
4004 Decimal('0.1')
4005 >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
4006 Decimal('1')
4007 >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
4008 Decimal('4.00')
4009 >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
4010 Decimal('1.20')
4011 >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
4012 Decimal('10')
4013 >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
4014 Decimal('1000')
4015 >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
4016 Decimal('1.20E+6')
4018 return a.__div__(b, context=self)
4020 def divide_int(self, a, b):
4021 """Divides two numbers and returns the integer part of the result.
4023 >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
4024 Decimal('0')
4025 >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
4026 Decimal('3')
4027 >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
4028 Decimal('3')
4030 return a.__floordiv__(b, context=self)
4032 def divmod(self, a, b):
4033 return a.__divmod__(b, context=self)
4035 def exp(self, a):
4036 """Returns e ** a.
4038 >>> c = ExtendedContext.copy()
4039 >>> c.Emin = -999
4040 >>> c.Emax = 999
4041 >>> c.exp(Decimal('-Infinity'))
4042 Decimal('0')
4043 >>> c.exp(Decimal('-1'))
4044 Decimal('0.367879441')
4045 >>> c.exp(Decimal('0'))
4046 Decimal('1')
4047 >>> c.exp(Decimal('1'))
4048 Decimal('2.71828183')
4049 >>> c.exp(Decimal('0.693147181'))
4050 Decimal('2.00000000')
4051 >>> c.exp(Decimal('+Infinity'))
4052 Decimal('Infinity')
4054 return a.exp(context=self)
4056 def fma(self, a, b, c):
4057 """Returns a multiplied by b, plus c.
4059 The first two operands are multiplied together, using multiply,
4060 the third operand is then added to the result of that
4061 multiplication, using add, all with only one final rounding.
4063 >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
4064 Decimal('22')
4065 >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
4066 Decimal('-8')
4067 >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
4068 Decimal('1.38435736E+12')
4070 return a.fma(b, c, context=self)
4072 def is_canonical(self, a):
4073 """Return True if the operand is canonical; otherwise return False.
4075 Currently, the encoding of a Decimal instance is always
4076 canonical, so this method returns True for any Decimal.
4078 >>> ExtendedContext.is_canonical(Decimal('2.50'))
4079 True
4081 return a.is_canonical()
4083 def is_finite(self, a):
4084 """Return True if the operand is finite; otherwise return False.
4086 A Decimal instance is considered finite if it is neither
4087 infinite nor a NaN.
4089 >>> ExtendedContext.is_finite(Decimal('2.50'))
4090 True
4091 >>> ExtendedContext.is_finite(Decimal('-0.3'))
4092 True
4093 >>> ExtendedContext.is_finite(Decimal('0'))
4094 True
4095 >>> ExtendedContext.is_finite(Decimal('Inf'))
4096 False
4097 >>> ExtendedContext.is_finite(Decimal('NaN'))
4098 False
4100 return a.is_finite()
4102 def is_infinite(self, a):
4103 """Return True if the operand is infinite; otherwise return False.
4105 >>> ExtendedContext.is_infinite(Decimal('2.50'))
4106 False
4107 >>> ExtendedContext.is_infinite(Decimal('-Inf'))
4108 True
4109 >>> ExtendedContext.is_infinite(Decimal('NaN'))
4110 False
4112 return a.is_infinite()
4114 def is_nan(self, a):
4115 """Return True if the operand is a qNaN or sNaN;
4116 otherwise return False.
4118 >>> ExtendedContext.is_nan(Decimal('2.50'))
4119 False
4120 >>> ExtendedContext.is_nan(Decimal('NaN'))
4121 True
4122 >>> ExtendedContext.is_nan(Decimal('-sNaN'))
4123 True
4125 return a.is_nan()
4127 def is_normal(self, a):
4128 """Return True if the operand is a normal number;
4129 otherwise return False.
4131 >>> c = ExtendedContext.copy()
4132 >>> c.Emin = -999
4133 >>> c.Emax = 999
4134 >>> c.is_normal(Decimal('2.50'))
4135 True
4136 >>> c.is_normal(Decimal('0.1E-999'))
4137 False
4138 >>> c.is_normal(Decimal('0.00'))
4139 False
4140 >>> c.is_normal(Decimal('-Inf'))
4141 False
4142 >>> c.is_normal(Decimal('NaN'))
4143 False
4145 return a.is_normal(context=self)
4147 def is_qnan(self, a):
4148 """Return True if the operand is a quiet NaN; otherwise return False.
4150 >>> ExtendedContext.is_qnan(Decimal('2.50'))
4151 False
4152 >>> ExtendedContext.is_qnan(Decimal('NaN'))
4153 True
4154 >>> ExtendedContext.is_qnan(Decimal('sNaN'))
4155 False
4157 return a.is_qnan()
4159 def is_signed(self, a):
4160 """Return True if the operand is negative; otherwise return False.
4162 >>> ExtendedContext.is_signed(Decimal('2.50'))
4163 False
4164 >>> ExtendedContext.is_signed(Decimal('-12'))
4165 True
4166 >>> ExtendedContext.is_signed(Decimal('-0'))
4167 True
4169 return a.is_signed()
4171 def is_snan(self, a):
4172 """Return True if the operand is a signaling NaN;
4173 otherwise return False.
4175 >>> ExtendedContext.is_snan(Decimal('2.50'))
4176 False
4177 >>> ExtendedContext.is_snan(Decimal('NaN'))
4178 False
4179 >>> ExtendedContext.is_snan(Decimal('sNaN'))
4180 True
4182 return a.is_snan()
4184 def is_subnormal(self, a):
4185 """Return True if the operand is subnormal; otherwise return False.
4187 >>> c = ExtendedContext.copy()
4188 >>> c.Emin = -999
4189 >>> c.Emax = 999
4190 >>> c.is_subnormal(Decimal('2.50'))
4191 False
4192 >>> c.is_subnormal(Decimal('0.1E-999'))
4193 True
4194 >>> c.is_subnormal(Decimal('0.00'))
4195 False
4196 >>> c.is_subnormal(Decimal('-Inf'))
4197 False
4198 >>> c.is_subnormal(Decimal('NaN'))
4199 False
4201 return a.is_subnormal(context=self)
4203 def is_zero(self, a):
4204 """Return True if the operand is a zero; otherwise return False.
4206 >>> ExtendedContext.is_zero(Decimal('0'))
4207 True
4208 >>> ExtendedContext.is_zero(Decimal('2.50'))
4209 False
4210 >>> ExtendedContext.is_zero(Decimal('-0E+2'))
4211 True
4213 return a.is_zero()
4215 def ln(self, a):
4216 """Returns the natural (base e) logarithm of the operand.
4218 >>> c = ExtendedContext.copy()
4219 >>> c.Emin = -999
4220 >>> c.Emax = 999
4221 >>> c.ln(Decimal('0'))
4222 Decimal('-Infinity')
4223 >>> c.ln(Decimal('1.000'))
4224 Decimal('0')
4225 >>> c.ln(Decimal('2.71828183'))
4226 Decimal('1.00000000')
4227 >>> c.ln(Decimal('10'))
4228 Decimal('2.30258509')
4229 >>> c.ln(Decimal('+Infinity'))
4230 Decimal('Infinity')
4232 return a.ln(context=self)
4234 def log10(self, a):
4235 """Returns the base 10 logarithm of the operand.
4237 >>> c = ExtendedContext.copy()
4238 >>> c.Emin = -999
4239 >>> c.Emax = 999
4240 >>> c.log10(Decimal('0'))
4241 Decimal('-Infinity')
4242 >>> c.log10(Decimal('0.001'))
4243 Decimal('-3')
4244 >>> c.log10(Decimal('1.000'))
4245 Decimal('0')
4246 >>> c.log10(Decimal('2'))
4247 Decimal('0.301029996')
4248 >>> c.log10(Decimal('10'))
4249 Decimal('1')
4250 >>> c.log10(Decimal('70'))
4251 Decimal('1.84509804')
4252 >>> c.log10(Decimal('+Infinity'))
4253 Decimal('Infinity')
4255 return a.log10(context=self)
4257 def logb(self, a):
4258 """ Returns the exponent of the magnitude of the operand's MSD.
4260 The result is the integer which is the exponent of the magnitude
4261 of the most significant digit of the operand (as though the
4262 operand were truncated to a single digit while maintaining the
4263 value of that digit and without limiting the resulting exponent).
4265 >>> ExtendedContext.logb(Decimal('250'))
4266 Decimal('2')
4267 >>> ExtendedContext.logb(Decimal('2.50'))
4268 Decimal('0')
4269 >>> ExtendedContext.logb(Decimal('0.03'))
4270 Decimal('-2')
4271 >>> ExtendedContext.logb(Decimal('0'))
4272 Decimal('-Infinity')
4274 return a.logb(context=self)
4276 def logical_and(self, a, b):
4277 """Applies the logical operation 'and' between each operand's digits.
4279 The operands must be both logical numbers.
4281 >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
4282 Decimal('0')
4283 >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
4284 Decimal('0')
4285 >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
4286 Decimal('0')
4287 >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
4288 Decimal('1')
4289 >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
4290 Decimal('1000')
4291 >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
4292 Decimal('10')
4294 return a.logical_and(b, context=self)
4296 def logical_invert(self, a):
4297 """Invert all the digits in the operand.
4299 The operand must be a logical number.
4301 >>> ExtendedContext.logical_invert(Decimal('0'))
4302 Decimal('111111111')
4303 >>> ExtendedContext.logical_invert(Decimal('1'))
4304 Decimal('111111110')
4305 >>> ExtendedContext.logical_invert(Decimal('111111111'))
4306 Decimal('0')
4307 >>> ExtendedContext.logical_invert(Decimal('101010101'))
4308 Decimal('10101010')
4310 return a.logical_invert(context=self)
4312 def logical_or(self, a, b):
4313 """Applies the logical operation 'or' between each operand's digits.
4315 The operands must be both logical numbers.
4317 >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
4318 Decimal('0')
4319 >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
4320 Decimal('1')
4321 >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
4322 Decimal('1')
4323 >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
4324 Decimal('1')
4325 >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
4326 Decimal('1110')
4327 >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
4328 Decimal('1110')
4330 return a.logical_or(b, context=self)
4332 def logical_xor(self, a, b):
4333 """Applies the logical operation 'xor' between each operand's digits.
4335 The operands must be both logical numbers.
4337 >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
4338 Decimal('0')
4339 >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
4340 Decimal('1')
4341 >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
4342 Decimal('1')
4343 >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
4344 Decimal('0')
4345 >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
4346 Decimal('110')
4347 >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
4348 Decimal('1101')
4350 return a.logical_xor(b, context=self)
4352 def max(self, a,b):
4353 """max compares two values numerically and returns the maximum.
4355 If either operand is a NaN then the general rules apply.
4356 Otherwise, the operands are compared as though by the compare
4357 operation. If they are numerically equal then the left-hand operand
4358 is chosen as the result. Otherwise the maximum (closer to positive
4359 infinity) of the two operands is chosen as the result.
4361 >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
4362 Decimal('3')
4363 >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
4364 Decimal('3')
4365 >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
4366 Decimal('1')
4367 >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
4368 Decimal('7')
4370 return a.max(b, context=self)
4372 def max_mag(self, a, b):
4373 """Compares the values numerically with their sign ignored."""
4374 return a.max_mag(b, context=self)
4376 def min(self, a,b):
4377 """min compares two values numerically and returns the minimum.
4379 If either operand is a NaN then the general rules apply.
4380 Otherwise, the operands are compared as though by the compare
4381 operation. If they are numerically equal then the left-hand operand
4382 is chosen as the result. Otherwise the minimum (closer to negative
4383 infinity) of the two operands is chosen as the result.
4385 >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
4386 Decimal('2')
4387 >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
4388 Decimal('-10')
4389 >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
4390 Decimal('1.0')
4391 >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
4392 Decimal('7')
4394 return a.min(b, context=self)
4396 def min_mag(self, a, b):
4397 """Compares the values numerically with their sign ignored."""
4398 return a.min_mag(b, context=self)
4400 def minus(self, a):
4401 """Minus corresponds to unary prefix minus in Python.
4403 The operation is evaluated using the same rules as subtract; the
4404 operation minus(a) is calculated as subtract('0', a) where the '0'
4405 has the same exponent as the operand.
4407 >>> ExtendedContext.minus(Decimal('1.3'))
4408 Decimal('-1.3')
4409 >>> ExtendedContext.minus(Decimal('-1.3'))
4410 Decimal('1.3')
4412 return a.__neg__(context=self)
4414 def multiply(self, a, b):
4415 """multiply multiplies two operands.
4417 If either operand is a special value then the general rules apply.
4418 Otherwise, the operands are multiplied together ('long multiplication'),
4419 resulting in a number which may be as long as the sum of the lengths
4420 of the two operands.
4422 >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
4423 Decimal('3.60')
4424 >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
4425 Decimal('21')
4426 >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
4427 Decimal('0.72')
4428 >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
4429 Decimal('-0.0')
4430 >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
4431 Decimal('4.28135971E+11')
4433 return a.__mul__(b, context=self)
4435 def next_minus(self, a):
4436 """Returns the largest representable number smaller than a.
4438 >>> c = ExtendedContext.copy()
4439 >>> c.Emin = -999
4440 >>> c.Emax = 999
4441 >>> ExtendedContext.next_minus(Decimal('1'))
4442 Decimal('0.999999999')
4443 >>> c.next_minus(Decimal('1E-1007'))
4444 Decimal('0E-1007')
4445 >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
4446 Decimal('-1.00000004')
4447 >>> c.next_minus(Decimal('Infinity'))
4448 Decimal('9.99999999E+999')
4450 return a.next_minus(context=self)
4452 def next_plus(self, a):
4453 """Returns the smallest representable number larger than a.
4455 >>> c = ExtendedContext.copy()
4456 >>> c.Emin = -999
4457 >>> c.Emax = 999
4458 >>> ExtendedContext.next_plus(Decimal('1'))
4459 Decimal('1.00000001')
4460 >>> c.next_plus(Decimal('-1E-1007'))
4461 Decimal('-0E-1007')
4462 >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
4463 Decimal('-1.00000002')
4464 >>> c.next_plus(Decimal('-Infinity'))
4465 Decimal('-9.99999999E+999')
4467 return a.next_plus(context=self)
4469 def next_toward(self, a, b):
4470 """Returns the number closest to a, in direction towards b.
4472 The result is the closest representable number from the first
4473 operand (but not the first operand) that is in the direction
4474 towards the second operand, unless the operands have the same
4475 value.
4477 >>> c = ExtendedContext.copy()
4478 >>> c.Emin = -999
4479 >>> c.Emax = 999
4480 >>> c.next_toward(Decimal('1'), Decimal('2'))
4481 Decimal('1.00000001')
4482 >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
4483 Decimal('-0E-1007')
4484 >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
4485 Decimal('-1.00000002')
4486 >>> c.next_toward(Decimal('1'), Decimal('0'))
4487 Decimal('0.999999999')
4488 >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
4489 Decimal('0E-1007')
4490 >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
4491 Decimal('-1.00000004')
4492 >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
4493 Decimal('-0.00')
4495 return a.next_toward(b, context=self)
4497 def normalize(self, a):
4498 """normalize reduces an operand to its simplest form.
4500 Essentially a plus operation with all trailing zeros removed from the
4501 result.
4503 >>> ExtendedContext.normalize(Decimal('2.1'))
4504 Decimal('2.1')
4505 >>> ExtendedContext.normalize(Decimal('-2.0'))
4506 Decimal('-2')
4507 >>> ExtendedContext.normalize(Decimal('1.200'))
4508 Decimal('1.2')
4509 >>> ExtendedContext.normalize(Decimal('-120'))
4510 Decimal('-1.2E+2')
4511 >>> ExtendedContext.normalize(Decimal('120.00'))
4512 Decimal('1.2E+2')
4513 >>> ExtendedContext.normalize(Decimal('0.00'))
4514 Decimal('0')
4516 return a.normalize(context=self)
4518 def number_class(self, a):
4519 """Returns an indication of the class of the operand.
4521 The class is one of the following strings:
4522 -sNaN
4523 -NaN
4524 -Infinity
4525 -Normal
4526 -Subnormal
4527 -Zero
4528 +Zero
4529 +Subnormal
4530 +Normal
4531 +Infinity
4533 >>> c = Context(ExtendedContext)
4534 >>> c.Emin = -999
4535 >>> c.Emax = 999
4536 >>> c.number_class(Decimal('Infinity'))
4537 '+Infinity'
4538 >>> c.number_class(Decimal('1E-10'))
4539 '+Normal'
4540 >>> c.number_class(Decimal('2.50'))
4541 '+Normal'
4542 >>> c.number_class(Decimal('0.1E-999'))
4543 '+Subnormal'
4544 >>> c.number_class(Decimal('0'))
4545 '+Zero'
4546 >>> c.number_class(Decimal('-0'))
4547 '-Zero'
4548 >>> c.number_class(Decimal('-0.1E-999'))
4549 '-Subnormal'
4550 >>> c.number_class(Decimal('-1E-10'))
4551 '-Normal'
4552 >>> c.number_class(Decimal('-2.50'))
4553 '-Normal'
4554 >>> c.number_class(Decimal('-Infinity'))
4555 '-Infinity'
4556 >>> c.number_class(Decimal('NaN'))
4557 'NaN'
4558 >>> c.number_class(Decimal('-NaN'))
4559 'NaN'
4560 >>> c.number_class(Decimal('sNaN'))
4561 'sNaN'
4563 return a.number_class(context=self)
4565 def plus(self, a):
4566 """Plus corresponds to unary prefix plus in Python.
4568 The operation is evaluated using the same rules as add; the
4569 operation plus(a) is calculated as add('0', a) where the '0'
4570 has the same exponent as the operand.
4572 >>> ExtendedContext.plus(Decimal('1.3'))
4573 Decimal('1.3')
4574 >>> ExtendedContext.plus(Decimal('-1.3'))
4575 Decimal('-1.3')
4577 return a.__pos__(context=self)
4579 def power(self, a, b, modulo=None):
4580 """Raises a to the power of b, to modulo if given.
4582 With two arguments, compute a**b. If a is negative then b
4583 must be integral. The result will be inexact unless b is
4584 integral and the result is finite and can be expressed exactly
4585 in 'precision' digits.
4587 With three arguments, compute (a**b) % modulo. For the
4588 three argument form, the following restrictions on the
4589 arguments hold:
4591 - all three arguments must be integral
4592 - b must be nonnegative
4593 - at least one of a or b must be nonzero
4594 - modulo must be nonzero and have at most 'precision' digits
4596 The result of pow(a, b, modulo) is identical to the result
4597 that would be obtained by computing (a**b) % modulo with
4598 unbounded precision, but is computed more efficiently. It is
4599 always exact.
4601 >>> c = ExtendedContext.copy()
4602 >>> c.Emin = -999
4603 >>> c.Emax = 999
4604 >>> c.power(Decimal('2'), Decimal('3'))
4605 Decimal('8')
4606 >>> c.power(Decimal('-2'), Decimal('3'))
4607 Decimal('-8')
4608 >>> c.power(Decimal('2'), Decimal('-3'))
4609 Decimal('0.125')
4610 >>> c.power(Decimal('1.7'), Decimal('8'))
4611 Decimal('69.7575744')
4612 >>> c.power(Decimal('10'), Decimal('0.301029996'))
4613 Decimal('2.00000000')
4614 >>> c.power(Decimal('Infinity'), Decimal('-1'))
4615 Decimal('0')
4616 >>> c.power(Decimal('Infinity'), Decimal('0'))
4617 Decimal('1')
4618 >>> c.power(Decimal('Infinity'), Decimal('1'))
4619 Decimal('Infinity')
4620 >>> c.power(Decimal('-Infinity'), Decimal('-1'))
4621 Decimal('-0')
4622 >>> c.power(Decimal('-Infinity'), Decimal('0'))
4623 Decimal('1')
4624 >>> c.power(Decimal('-Infinity'), Decimal('1'))
4625 Decimal('-Infinity')
4626 >>> c.power(Decimal('-Infinity'), Decimal('2'))
4627 Decimal('Infinity')
4628 >>> c.power(Decimal('0'), Decimal('0'))
4629 Decimal('NaN')
4631 >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
4632 Decimal('11')
4633 >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
4634 Decimal('-11')
4635 >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
4636 Decimal('1')
4637 >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
4638 Decimal('11')
4639 >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
4640 Decimal('11729830')
4641 >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
4642 Decimal('-0')
4643 >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
4644 Decimal('1')
4646 return a.__pow__(b, modulo, context=self)
4648 def quantize(self, a, b):
4649 """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
4651 The coefficient of the result is derived from that of the left-hand
4652 operand. It may be rounded using the current rounding setting (if the
4653 exponent is being increased), multiplied by a positive power of ten (if
4654 the exponent is being decreased), or is unchanged (if the exponent is
4655 already equal to that of the right-hand operand).
4657 Unlike other operations, if the length of the coefficient after the
4658 quantize operation would be greater than precision then an Invalid
4659 operation condition is raised. This guarantees that, unless there is
4660 an error condition, the exponent of the result of a quantize is always
4661 equal to that of the right-hand operand.
4663 Also unlike other operations, quantize will never raise Underflow, even
4664 if the result is subnormal and inexact.
4666 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
4667 Decimal('2.170')
4668 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
4669 Decimal('2.17')
4670 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
4671 Decimal('2.2')
4672 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
4673 Decimal('2')
4674 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
4675 Decimal('0E+1')
4676 >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
4677 Decimal('-Infinity')
4678 >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
4679 Decimal('NaN')
4680 >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
4681 Decimal('-0')
4682 >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
4683 Decimal('-0E+5')
4684 >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
4685 Decimal('NaN')
4686 >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
4687 Decimal('NaN')
4688 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
4689 Decimal('217.0')
4690 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
4691 Decimal('217')
4692 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
4693 Decimal('2.2E+2')
4694 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
4695 Decimal('2E+2')
4697 return a.quantize(b, context=self)
4699 def radix(self):
4700 """Just returns 10, as this is Decimal, :)
4702 >>> ExtendedContext.radix()
4703 Decimal('10')
4705 return Decimal(10)
4707 def remainder(self, a, b):
4708 """Returns the remainder from integer division.
4710 The result is the residue of the dividend after the operation of
4711 calculating integer division as described for divide-integer, rounded
4712 to precision digits if necessary. The sign of the result, if
4713 non-zero, is the same as that of the original dividend.
4715 This operation will fail under the same conditions as integer division
4716 (that is, if integer division on the same two operands would fail, the
4717 remainder cannot be calculated).
4719 >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
4720 Decimal('2.1')
4721 >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
4722 Decimal('1')
4723 >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
4724 Decimal('-1')
4725 >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
4726 Decimal('0.2')
4727 >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
4728 Decimal('0.1')
4729 >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
4730 Decimal('1.0')
4732 return a.__mod__(b, context=self)
4734 def remainder_near(self, a, b):
4735 """Returns to be "a - b * n", where n is the integer nearest the exact
4736 value of "x / b" (if two integers are equally near then the even one
4737 is chosen). If the result is equal to 0 then its sign will be the
4738 sign of a.
4740 This operation will fail under the same conditions as integer division
4741 (that is, if integer division on the same two operands would fail, the
4742 remainder cannot be calculated).
4744 >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
4745 Decimal('-0.9')
4746 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
4747 Decimal('-2')
4748 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
4749 Decimal('1')
4750 >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
4751 Decimal('-1')
4752 >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
4753 Decimal('0.2')
4754 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
4755 Decimal('0.1')
4756 >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
4757 Decimal('-0.3')
4759 return a.remainder_near(b, context=self)
4761 def rotate(self, a, b):
4762 """Returns a rotated copy of a, b times.
4764 The coefficient of the result is a rotated copy of the digits in
4765 the coefficient of the first operand. The number of places of
4766 rotation is taken from the absolute value of the second operand,
4767 with the rotation being to the left if the second operand is
4768 positive or to the right otherwise.
4770 >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
4771 Decimal('400000003')
4772 >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
4773 Decimal('12')
4774 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
4775 Decimal('891234567')
4776 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
4777 Decimal('123456789')
4778 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
4779 Decimal('345678912')
4781 return a.rotate(b, context=self)
4783 def same_quantum(self, a, b):
4784 """Returns True if the two operands have the same exponent.
4786 The result is never affected by either the sign or the coefficient of
4787 either operand.
4789 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
4790 False
4791 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
4792 True
4793 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
4794 False
4795 >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
4796 True
4798 return a.same_quantum(b)
4800 def scaleb (self, a, b):
4801 """Returns the first operand after adding the second value its exp.
4803 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
4804 Decimal('0.0750')
4805 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
4806 Decimal('7.50')
4807 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
4808 Decimal('7.50E+3')
4810 return a.scaleb (b, context=self)
4812 def shift(self, a, b):
4813 """Returns a shifted copy of a, b times.
4815 The coefficient of the result is a shifted copy of the digits
4816 in the coefficient of the first operand. The number of places
4817 to shift is taken from the absolute value of the second operand,
4818 with the shift being to the left if the second operand is
4819 positive or to the right otherwise. Digits shifted into the
4820 coefficient are zeros.
4822 >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
4823 Decimal('400000000')
4824 >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
4825 Decimal('0')
4826 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
4827 Decimal('1234567')
4828 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
4829 Decimal('123456789')
4830 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
4831 Decimal('345678900')
4833 return a.shift(b, context=self)
4835 def sqrt(self, a):
4836 """Square root of a non-negative number to context precision.
4838 If the result must be inexact, it is rounded using the round-half-even
4839 algorithm.
4841 >>> ExtendedContext.sqrt(Decimal('0'))
4842 Decimal('0')
4843 >>> ExtendedContext.sqrt(Decimal('-0'))
4844 Decimal('-0')
4845 >>> ExtendedContext.sqrt(Decimal('0.39'))
4846 Decimal('0.624499800')
4847 >>> ExtendedContext.sqrt(Decimal('100'))
4848 Decimal('10')
4849 >>> ExtendedContext.sqrt(Decimal('1'))
4850 Decimal('1')
4851 >>> ExtendedContext.sqrt(Decimal('1.0'))
4852 Decimal('1.0')
4853 >>> ExtendedContext.sqrt(Decimal('1.00'))
4854 Decimal('1.0')
4855 >>> ExtendedContext.sqrt(Decimal('7'))
4856 Decimal('2.64575131')
4857 >>> ExtendedContext.sqrt(Decimal('10'))
4858 Decimal('3.16227766')
4859 >>> ExtendedContext.prec
4862 return a.sqrt(context=self)
4864 def subtract(self, a, b):
4865 """Return the difference between the two operands.
4867 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
4868 Decimal('0.23')
4869 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
4870 Decimal('0.00')
4871 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
4872 Decimal('-0.77')
4874 return a.__sub__(b, context=self)
4876 def to_eng_string(self, a):
4877 """Converts a number to a string, using scientific notation.
4879 The operation is not affected by the context.
4881 return a.to_eng_string(context=self)
4883 def to_sci_string(self, a):
4884 """Converts a number to a string, using scientific notation.
4886 The operation is not affected by the context.
4888 return a.__str__(context=self)
4890 def to_integral_exact(self, a):
4891 """Rounds to an integer.
4893 When the operand has a negative exponent, the result is the same
4894 as using the quantize() operation using the given operand as the
4895 left-hand-operand, 1E+0 as the right-hand-operand, and the precision
4896 of the operand as the precision setting; Inexact and Rounded flags
4897 are allowed in this operation. The rounding mode is taken from the
4898 context.
4900 >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
4901 Decimal('2')
4902 >>> ExtendedContext.to_integral_exact(Decimal('100'))
4903 Decimal('100')
4904 >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
4905 Decimal('100')
4906 >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
4907 Decimal('102')
4908 >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
4909 Decimal('-102')
4910 >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
4911 Decimal('1.0E+6')
4912 >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
4913 Decimal('7.89E+77')
4914 >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
4915 Decimal('-Infinity')
4917 return a.to_integral_exact(context=self)
4919 def to_integral_value(self, a):
4920 """Rounds to an integer.
4922 When the operand has a negative exponent, the result is the same
4923 as using the quantize() operation using the given operand as the
4924 left-hand-operand, 1E+0 as the right-hand-operand, and the precision
4925 of the operand as the precision setting, except that no flags will
4926 be set. The rounding mode is taken from the context.
4928 >>> ExtendedContext.to_integral_value(Decimal('2.1'))
4929 Decimal('2')
4930 >>> ExtendedContext.to_integral_value(Decimal('100'))
4931 Decimal('100')
4932 >>> ExtendedContext.to_integral_value(Decimal('100.0'))
4933 Decimal('100')
4934 >>> ExtendedContext.to_integral_value(Decimal('101.5'))
4935 Decimal('102')
4936 >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
4937 Decimal('-102')
4938 >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
4939 Decimal('1.0E+6')
4940 >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
4941 Decimal('7.89E+77')
4942 >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
4943 Decimal('-Infinity')
4945 return a.to_integral_value(context=self)
4947 # the method name changed, but we provide also the old one, for compatibility
4948 to_integral = to_integral_value
4950 class _WorkRep(object):
4951 __slots__ = ('sign','int','exp')
4952 # sign: 0 or 1
4953 # int: int or long
4954 # exp: None, int, or string
4956 def __init__(self, value=None):
4957 if value is None:
4958 self.sign = None
4959 self.int = 0
4960 self.exp = None
4961 elif isinstance(value, Decimal):
4962 self.sign = value._sign
4963 self.int = int(value._int)
4964 self.exp = value._exp
4965 else:
4966 # assert isinstance(value, tuple)
4967 self.sign = value[0]
4968 self.int = value[1]
4969 self.exp = value[2]
4971 def __repr__(self):
4972 return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
4974 __str__ = __repr__
4978 def _normalize(op1, op2, prec = 0):
4979 """Normalizes op1, op2 to have the same exp and length of coefficient.
4981 Done during addition.
4983 if op1.exp < op2.exp:
4984 tmp = op2
4985 other = op1
4986 else:
4987 tmp = op1
4988 other = op2
4990 # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
4991 # Then adding 10**exp to tmp has the same effect (after rounding)
4992 # as adding any positive quantity smaller than 10**exp; similarly
4993 # for subtraction. So if other is smaller than 10**exp we replace
4994 # it with 10**exp. This avoids tmp.exp - other.exp getting too large.
4995 tmp_len = len(str(tmp.int))
4996 other_len = len(str(other.int))
4997 exp = tmp.exp + min(-1, tmp_len - prec - 2)
4998 if other_len + other.exp - 1 < exp:
4999 other.int = 1
5000 other.exp = exp
5002 tmp.int *= 10 ** (tmp.exp - other.exp)
5003 tmp.exp = other.exp
5004 return op1, op2
5006 ##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
5008 # This function from Tim Peters was taken from here:
5009 # http://mail.python.org/pipermail/python-list/1999-July/007758.html
5010 # The correction being in the function definition is for speed, and
5011 # the whole function is not resolved with math.log because of avoiding
5012 # the use of floats.
5013 def _nbits(n, correction = {
5014 '0': 4, '1': 3, '2': 2, '3': 2,
5015 '4': 1, '5': 1, '6': 1, '7': 1,
5016 '8': 0, '9': 0, 'a': 0, 'b': 0,
5017 'c': 0, 'd': 0, 'e': 0, 'f': 0}):
5018 """Number of bits in binary representation of the positive integer n,
5019 or 0 if n == 0.
5021 if n < 0:
5022 raise ValueError("The argument to _nbits should be nonnegative.")
5023 hex_n = "%x" % n
5024 return 4*len(hex_n) - correction[hex_n[0]]
5026 def _sqrt_nearest(n, a):
5027 """Closest integer to the square root of the positive integer n. a is
5028 an initial approximation to the square root. Any positive integer
5029 will do for a, but the closer a is to the square root of n the
5030 faster convergence will be.
5033 if n <= 0 or a <= 0:
5034 raise ValueError("Both arguments to _sqrt_nearest should be positive.")
5037 while a != b:
5038 b, a = a, a--n//a>>1
5039 return a
5041 def _rshift_nearest(x, shift):
5042 """Given an integer x and a nonnegative integer shift, return closest
5043 integer to x / 2**shift; use round-to-even in case of a tie.
5046 b, q = 1L << shift, x >> shift
5047 return q + (2*(x & (b-1)) + (q&1) > b)
5049 def _div_nearest(a, b):
5050 """Closest integer to a/b, a and b positive integers; rounds to even
5051 in the case of a tie.
5054 q, r = divmod(a, b)
5055 return q + (2*r + (q&1) > b)
5057 def _ilog(x, M, L = 8):
5058 """Integer approximation to M*log(x/M), with absolute error boundable
5059 in terms only of x/M.
5061 Given positive integers x and M, return an integer approximation to
5062 M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
5063 between the approximation and the exact result is at most 22. For
5064 L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
5065 both cases these are upper bounds on the error; it will usually be
5066 much smaller."""
5068 # The basic algorithm is the following: let log1p be the function
5069 # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
5070 # the reduction
5072 # log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
5074 # repeatedly until the argument to log1p is small (< 2**-L in
5075 # absolute value). For small y we can use the Taylor series
5076 # expansion
5078 # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
5080 # truncating at T such that y**T is small enough. The whole
5081 # computation is carried out in a form of fixed-point arithmetic,
5082 # with a real number z being represented by an integer
5083 # approximation to z*M. To avoid loss of precision, the y below
5084 # is actually an integer approximation to 2**R*y*M, where R is the
5085 # number of reductions performed so far.
5087 y = x-M
5088 # argument reduction; R = number of reductions performed
5089 R = 0
5090 while (R <= L and long(abs(y)) << L-R >= M or
5091 R > L and abs(y) >> R-L >= M):
5092 y = _div_nearest(long(M*y) << 1,
5093 M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
5094 R += 1
5096 # Taylor series with T terms
5097 T = -int(-10*len(str(M))//(3*L))
5098 yshift = _rshift_nearest(y, R)
5099 w = _div_nearest(M, T)
5100 for k in xrange(T-1, 0, -1):
5101 w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
5103 return _div_nearest(w*y, M)
5105 def _dlog10(c, e, p):
5106 """Given integers c, e and p with c > 0, p >= 0, compute an integer
5107 approximation to 10**p * log10(c*10**e), with an absolute error of
5108 at most 1. Assumes that c*10**e is not exactly 1."""
5110 # increase precision by 2; compensate for this by dividing
5111 # final result by 100
5112 p += 2
5114 # write c*10**e as d*10**f with either:
5115 # f >= 0 and 1 <= d <= 10, or
5116 # f <= 0 and 0.1 <= d <= 1.
5117 # Thus for c*10**e close to 1, f = 0
5118 l = len(str(c))
5119 f = e+l - (e+l >= 1)
5121 if p > 0:
5122 M = 10**p
5123 k = e+p-f
5124 if k >= 0:
5125 c *= 10**k
5126 else:
5127 c = _div_nearest(c, 10**-k)
5129 log_d = _ilog(c, M) # error < 5 + 22 = 27
5130 log_10 = _log10_digits(p) # error < 1
5131 log_d = _div_nearest(log_d*M, log_10)
5132 log_tenpower = f*M # exact
5133 else:
5134 log_d = 0 # error < 2.31
5135 log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
5137 return _div_nearest(log_tenpower+log_d, 100)
5139 def _dlog(c, e, p):
5140 """Given integers c, e and p with c > 0, compute an integer
5141 approximation to 10**p * log(c*10**e), with an absolute error of
5142 at most 1. Assumes that c*10**e is not exactly 1."""
5144 # Increase precision by 2. The precision increase is compensated
5145 # for at the end with a division by 100.
5146 p += 2
5148 # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
5149 # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
5150 # as 10**p * log(d) + 10**p*f * log(10).
5151 l = len(str(c))
5152 f = e+l - (e+l >= 1)
5154 # compute approximation to 10**p*log(d), with error < 27
5155 if p > 0:
5156 k = e+p-f
5157 if k >= 0:
5158 c *= 10**k
5159 else:
5160 c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
5162 # _ilog magnifies existing error in c by a factor of at most 10
5163 log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
5164 else:
5165 # p <= 0: just approximate the whole thing by 0; error < 2.31
5166 log_d = 0
5168 # compute approximation to f*10**p*log(10), with error < 11.
5169 if f:
5170 extra = len(str(abs(f)))-1
5171 if p + extra >= 0:
5172 # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
5173 # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
5174 f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
5175 else:
5176 f_log_ten = 0
5177 else:
5178 f_log_ten = 0
5180 # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
5181 return _div_nearest(f_log_ten + log_d, 100)
5183 class _Log10Memoize(object):
5184 """Class to compute, store, and allow retrieval of, digits of the
5185 constant log(10) = 2.302585.... This constant is needed by
5186 Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
5187 def __init__(self):
5188 self.digits = "23025850929940456840179914546843642076011014886"
5190 def getdigits(self, p):
5191 """Given an integer p >= 0, return floor(10**p)*log(10).
5193 For example, self.getdigits(3) returns 2302.
5195 # digits are stored as a string, for quick conversion to
5196 # integer in the case that we've already computed enough
5197 # digits; the stored digits should always be correct
5198 # (truncated, not rounded to nearest).
5199 if p < 0:
5200 raise ValueError("p should be nonnegative")
5202 if p >= len(self.digits):
5203 # compute p+3, p+6, p+9, ... digits; continue until at
5204 # least one of the extra digits is nonzero
5205 extra = 3
5206 while True:
5207 # compute p+extra digits, correct to within 1ulp
5208 M = 10**(p+extra+2)
5209 digits = str(_div_nearest(_ilog(10*M, M), 100))
5210 if digits[-extra:] != '0'*extra:
5211 break
5212 extra += 3
5213 # keep all reliable digits so far; remove trailing zeros
5214 # and next nonzero digit
5215 self.digits = digits.rstrip('0')[:-1]
5216 return int(self.digits[:p+1])
5218 _log10_digits = _Log10Memoize().getdigits
5220 def _iexp(x, M, L=8):
5221 """Given integers x and M, M > 0, such that x/M is small in absolute
5222 value, compute an integer approximation to M*exp(x/M). For 0 <=
5223 x/M <= 2.4, the absolute error in the result is bounded by 60 (and
5224 is usually much smaller)."""
5226 # Algorithm: to compute exp(z) for a real number z, first divide z
5227 # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
5228 # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
5229 # series
5231 # expm1(x) = x + x**2/2! + x**3/3! + ...
5233 # Now use the identity
5235 # expm1(2x) = expm1(x)*(expm1(x)+2)
5237 # R times to compute the sequence expm1(z/2**R),
5238 # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
5240 # Find R such that x/2**R/M <= 2**-L
5241 R = _nbits((long(x)<<L)//M)
5243 # Taylor series. (2**L)**T > M
5244 T = -int(-10*len(str(M))//(3*L))
5245 y = _div_nearest(x, T)
5246 Mshift = long(M)<<R
5247 for i in xrange(T-1, 0, -1):
5248 y = _div_nearest(x*(Mshift + y), Mshift * i)
5250 # Expansion
5251 for k in xrange(R-1, -1, -1):
5252 Mshift = long(M)<<(k+2)
5253 y = _div_nearest(y*(y+Mshift), Mshift)
5255 return M+y
5257 def _dexp(c, e, p):
5258 """Compute an approximation to exp(c*10**e), with p decimal places of
5259 precision.
5261 Returns integers d, f such that:
5263 10**(p-1) <= d <= 10**p, and
5264 (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
5266 In other words, d*10**f is an approximation to exp(c*10**e) with p
5267 digits of precision, and with an error in d of at most 1. This is
5268 almost, but not quite, the same as the error being < 1ulp: when d
5269 = 10**(p-1) the error could be up to 10 ulp."""
5271 # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
5272 p += 2
5274 # compute log(10) with extra precision = adjusted exponent of c*10**e
5275 extra = max(0, e + len(str(c)) - 1)
5276 q = p + extra
5278 # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
5279 # rounding down
5280 shift = e+q
5281 if shift >= 0:
5282 cshift = c*10**shift
5283 else:
5284 cshift = c//10**-shift
5285 quot, rem = divmod(cshift, _log10_digits(q))
5287 # reduce remainder back to original precision
5288 rem = _div_nearest(rem, 10**extra)
5290 # error in result of _iexp < 120; error after division < 0.62
5291 return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
5293 def _dpower(xc, xe, yc, ye, p):
5294 """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
5295 y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
5297 10**(p-1) <= c <= 10**p, and
5298 (c-1)*10**e < x**y < (c+1)*10**e
5300 in other words, c*10**e is an approximation to x**y with p digits
5301 of precision, and with an error in c of at most 1. (This is
5302 almost, but not quite, the same as the error being < 1ulp: when c
5303 == 10**(p-1) we can only guarantee error < 10ulp.)
5305 We assume that: x is positive and not equal to 1, and y is nonzero.
5308 # Find b such that 10**(b-1) <= |y| <= 10**b
5309 b = len(str(abs(yc))) + ye
5311 # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
5312 lxc = _dlog(xc, xe, p+b+1)
5314 # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
5315 shift = ye-b
5316 if shift >= 0:
5317 pc = lxc*yc*10**shift
5318 else:
5319 pc = _div_nearest(lxc*yc, 10**-shift)
5321 if pc == 0:
5322 # we prefer a result that isn't exactly 1; this makes it
5323 # easier to compute a correctly rounded result in __pow__
5324 if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
5325 coeff, exp = 10**(p-1)+1, 1-p
5326 else:
5327 coeff, exp = 10**p-1, -p
5328 else:
5329 coeff, exp = _dexp(pc, -(p+1), p+1)
5330 coeff = _div_nearest(coeff, 10)
5331 exp += 1
5333 return coeff, exp
5335 def _log10_lb(c, correction = {
5336 '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
5337 '6': 23, '7': 16, '8': 10, '9': 5}):
5338 """Compute a lower bound for 100*log10(c) for a positive integer c."""
5339 if c <= 0:
5340 raise ValueError("The argument to _log10_lb should be nonnegative.")
5341 str_c = str(c)
5342 return 100*len(str_c) - correction[str_c[0]]
5344 ##### Helper Functions ####################################################
5346 def _convert_other(other, raiseit=False):
5347 """Convert other to Decimal.
5349 Verifies that it's ok to use in an implicit construction.
5351 if isinstance(other, Decimal):
5352 return other
5353 if isinstance(other, (int, long)):
5354 return Decimal(other)
5355 if raiseit:
5356 raise TypeError("Unable to convert %s to Decimal" % other)
5357 return NotImplemented
5359 ##### Setup Specific Contexts ############################################
5361 # The default context prototype used by Context()
5362 # Is mutable, so that new contexts can have different default values
5364 DefaultContext = Context(
5365 prec=28, rounding=ROUND_HALF_EVEN,
5366 traps=[DivisionByZero, Overflow, InvalidOperation],
5367 flags=[],
5368 Emax=999999999,
5369 Emin=-999999999,
5370 capitals=1
5373 # Pre-made alternate contexts offered by the specification
5374 # Don't change these; the user should be able to select these
5375 # contexts and be able to reproduce results from other implementations
5376 # of the spec.
5378 BasicContext = Context(
5379 prec=9, rounding=ROUND_HALF_UP,
5380 traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
5381 flags=[],
5384 ExtendedContext = Context(
5385 prec=9, rounding=ROUND_HALF_EVEN,
5386 traps=[],
5387 flags=[],
5391 ##### crud for parsing strings #############################################
5393 # Regular expression used for parsing numeric strings. Additional
5394 # comments:
5396 # 1. Uncomment the two '\s*' lines to allow leading and/or trailing
5397 # whitespace. But note that the specification disallows whitespace in
5398 # a numeric string.
5400 # 2. For finite numbers (not infinities and NaNs) the body of the
5401 # number between the optional sign and the optional exponent must have
5402 # at least one decimal digit, possibly after the decimal point. The
5403 # lookahead expression '(?=\d|\.\d)' checks this.
5405 import re
5406 _parser = re.compile(r""" # A numeric string consists of:
5407 # \s*
5408 (?P<sign>[-+])? # an optional sign, followed by either...
5410 (?=\d|\.\d) # ...a number (with at least one digit)
5411 (?P<int>\d*) # having a (possibly empty) integer part
5412 (\.(?P<frac>\d*))? # followed by an optional fractional part
5413 (E(?P<exp>[-+]?\d+))? # followed by an optional exponent, or...
5415 Inf(inity)? # ...an infinity, or...
5417 (?P<signal>s)? # ...an (optionally signaling)
5418 NaN # NaN
5419 (?P<diag>\d*) # with (possibly empty) diagnostic info.
5421 # \s*
5423 """, re.VERBOSE | re.IGNORECASE | re.UNICODE).match
5425 _all_zeros = re.compile('0*$').match
5426 _exact_half = re.compile('50*$').match
5428 ##### PEP3101 support functions ##############################################
5429 # The functions in this section have little to do with the Decimal
5430 # class, and could potentially be reused or adapted for other pure
5431 # Python numeric classes that want to implement __format__
5433 # A format specifier for Decimal looks like:
5435 # [[fill]align][sign][0][minimumwidth][,][.precision][type]
5437 _parse_format_specifier_regex = re.compile(r"""\A
5439 (?P<fill>.)?
5440 (?P<align>[<>=^])
5442 (?P<sign>[-+ ])?
5443 (?P<zeropad>0)?
5444 (?P<minimumwidth>(?!0)\d+)?
5445 (?P<thousands_sep>,)?
5446 (?:\.(?P<precision>0|(?!0)\d+))?
5447 (?P<type>[eEfFgGn%])?
5449 """, re.VERBOSE)
5451 del re
5453 # The locale module is only needed for the 'n' format specifier. The
5454 # rest of the PEP 3101 code functions quite happily without it, so we
5455 # don't care too much if locale isn't present.
5456 try:
5457 import locale as _locale
5458 except ImportError:
5459 pass
5461 def _parse_format_specifier(format_spec, _localeconv=None):
5462 """Parse and validate a format specifier.
5464 Turns a standard numeric format specifier into a dict, with the
5465 following entries:
5467 fill: fill character to pad field to minimum width
5468 align: alignment type, either '<', '>', '=' or '^'
5469 sign: either '+', '-' or ' '
5470 minimumwidth: nonnegative integer giving minimum width
5471 zeropad: boolean, indicating whether to pad with zeros
5472 thousands_sep: string to use as thousands separator, or ''
5473 grouping: grouping for thousands separators, in format
5474 used by localeconv
5475 decimal_point: string to use for decimal point
5476 precision: nonnegative integer giving precision, or None
5477 type: one of the characters 'eEfFgG%', or None
5478 unicode: boolean (always True for Python 3.x)
5481 m = _parse_format_specifier_regex.match(format_spec)
5482 if m is None:
5483 raise ValueError("Invalid format specifier: " + format_spec)
5485 # get the dictionary
5486 format_dict = m.groupdict()
5488 # zeropad; defaults for fill and alignment. If zero padding
5489 # is requested, the fill and align fields should be absent.
5490 fill = format_dict['fill']
5491 align = format_dict['align']
5492 format_dict['zeropad'] = (format_dict['zeropad'] is not None)
5493 if format_dict['zeropad']:
5494 if fill is not None:
5495 raise ValueError("Fill character conflicts with '0'"
5496 " in format specifier: " + format_spec)
5497 if align is not None:
5498 raise ValueError("Alignment conflicts with '0' in "
5499 "format specifier: " + format_spec)
5500 format_dict['fill'] = fill or ' '
5501 # PEP 3101 originally specified that the default alignment should
5502 # be left; it was later agreed that right-aligned makes more sense
5503 # for numeric types. See http://bugs.python.org/issue6857.
5504 format_dict['align'] = align or '>'
5506 # default sign handling: '-' for negative, '' for positive
5507 if format_dict['sign'] is None:
5508 format_dict['sign'] = '-'
5510 # minimumwidth defaults to 0; precision remains None if not given
5511 format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
5512 if format_dict['precision'] is not None:
5513 format_dict['precision'] = int(format_dict['precision'])
5515 # if format type is 'g' or 'G' then a precision of 0 makes little
5516 # sense; convert it to 1. Same if format type is unspecified.
5517 if format_dict['precision'] == 0:
5518 if format_dict['type'] is None or format_dict['type'] in 'gG':
5519 format_dict['precision'] = 1
5521 # determine thousands separator, grouping, and decimal separator, and
5522 # add appropriate entries to format_dict
5523 if format_dict['type'] == 'n':
5524 # apart from separators, 'n' behaves just like 'g'
5525 format_dict['type'] = 'g'
5526 if _localeconv is None:
5527 _localeconv = _locale.localeconv()
5528 if format_dict['thousands_sep'] is not None:
5529 raise ValueError("Explicit thousands separator conflicts with "
5530 "'n' type in format specifier: " + format_spec)
5531 format_dict['thousands_sep'] = _localeconv['thousands_sep']
5532 format_dict['grouping'] = _localeconv['grouping']
5533 format_dict['decimal_point'] = _localeconv['decimal_point']
5534 else:
5535 if format_dict['thousands_sep'] is None:
5536 format_dict['thousands_sep'] = ''
5537 format_dict['grouping'] = [3, 0]
5538 format_dict['decimal_point'] = '.'
5540 # record whether return type should be str or unicode
5541 format_dict['unicode'] = isinstance(format_spec, unicode)
5543 return format_dict
5545 def _format_align(sign, body, spec):
5546 """Given an unpadded, non-aligned numeric string 'body' and sign
5547 string 'sign', add padding and aligment conforming to the given
5548 format specifier dictionary 'spec' (as produced by
5549 parse_format_specifier).
5551 Also converts result to unicode if necessary.
5554 # how much extra space do we have to play with?
5555 minimumwidth = spec['minimumwidth']
5556 fill = spec['fill']
5557 padding = fill*(minimumwidth - len(sign) - len(body))
5559 align = spec['align']
5560 if align == '<':
5561 result = sign + body + padding
5562 elif align == '>':
5563 result = padding + sign + body
5564 elif align == '=':
5565 result = sign + padding + body
5566 elif align == '^':
5567 half = len(padding)//2
5568 result = padding[:half] + sign + body + padding[half:]
5569 else:
5570 raise ValueError('Unrecognised alignment field')
5572 # make sure that result is unicode if necessary
5573 if spec['unicode']:
5574 result = unicode(result)
5576 return result
5578 def _group_lengths(grouping):
5579 """Convert a localeconv-style grouping into a (possibly infinite)
5580 iterable of integers representing group lengths.
5583 # The result from localeconv()['grouping'], and the input to this
5584 # function, should be a list of integers in one of the
5585 # following three forms:
5587 # (1) an empty list, or
5588 # (2) nonempty list of positive integers + [0]
5589 # (3) list of positive integers + [locale.CHAR_MAX], or
5591 from itertools import chain, repeat
5592 if not grouping:
5593 return []
5594 elif grouping[-1] == 0 and len(grouping) >= 2:
5595 return chain(grouping[:-1], repeat(grouping[-2]))
5596 elif grouping[-1] == _locale.CHAR_MAX:
5597 return grouping[:-1]
5598 else:
5599 raise ValueError('unrecognised format for grouping')
5601 def _insert_thousands_sep(digits, spec, min_width=1):
5602 """Insert thousands separators into a digit string.
5604 spec is a dictionary whose keys should include 'thousands_sep' and
5605 'grouping'; typically it's the result of parsing the format
5606 specifier using _parse_format_specifier.
5608 The min_width keyword argument gives the minimum length of the
5609 result, which will be padded on the left with zeros if necessary.
5611 If necessary, the zero padding adds an extra '0' on the left to
5612 avoid a leading thousands separator. For example, inserting
5613 commas every three digits in '123456', with min_width=8, gives
5614 '0,123,456', even though that has length 9.
5618 sep = spec['thousands_sep']
5619 grouping = spec['grouping']
5621 groups = []
5622 for l in _group_lengths(grouping):
5623 if l <= 0:
5624 raise ValueError("group length should be positive")
5625 # max(..., 1) forces at least 1 digit to the left of a separator
5626 l = min(max(len(digits), min_width, 1), l)
5627 groups.append('0'*(l - len(digits)) + digits[-l:])
5628 digits = digits[:-l]
5629 min_width -= l
5630 if not digits and min_width <= 0:
5631 break
5632 min_width -= len(sep)
5633 else:
5634 l = max(len(digits), min_width, 1)
5635 groups.append('0'*(l - len(digits)) + digits[-l:])
5636 return sep.join(reversed(groups))
5638 def _format_sign(is_negative, spec):
5639 """Determine sign character."""
5641 if is_negative:
5642 return '-'
5643 elif spec['sign'] in ' +':
5644 return spec['sign']
5645 else:
5646 return ''
5648 def _format_number(is_negative, intpart, fracpart, exp, spec):
5649 """Format a number, given the following data:
5651 is_negative: true if the number is negative, else false
5652 intpart: string of digits that must appear before the decimal point
5653 fracpart: string of digits that must come after the point
5654 exp: exponent, as an integer
5655 spec: dictionary resulting from parsing the format specifier
5657 This function uses the information in spec to:
5658 insert separators (decimal separator and thousands separators)
5659 format the sign
5660 format the exponent
5661 add trailing '%' for the '%' type
5662 zero-pad if necessary
5663 fill and align if necessary
5666 sign = _format_sign(is_negative, spec)
5668 if fracpart:
5669 fracpart = spec['decimal_point'] + fracpart
5671 if exp != 0 or spec['type'] in 'eE':
5672 echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
5673 fracpart += "{0}{1:+}".format(echar, exp)
5674 if spec['type'] == '%':
5675 fracpart += '%'
5677 if spec['zeropad']:
5678 min_width = spec['minimumwidth'] - len(fracpart) - len(sign)
5679 else:
5680 min_width = 0
5681 intpart = _insert_thousands_sep(intpart, spec, min_width)
5683 return _format_align(sign, intpart+fracpart, spec)
5686 ##### Useful Constants (internal use only) ################################
5688 # Reusable defaults
5689 _Infinity = Decimal('Inf')
5690 _NegativeInfinity = Decimal('-Inf')
5691 _NaN = Decimal('NaN')
5692 _Zero = Decimal(0)
5693 _One = Decimal(1)
5694 _NegativeOne = Decimal(-1)
5696 # _SignedInfinity[sign] is infinity w/ that sign
5697 _SignedInfinity = (_Infinity, _NegativeInfinity)
5701 if __name__ == '__main__':
5702 import doctest, sys
5703 doctest.testmod(sys.modules[__name__])