2 /* Generic object operations; and implementation of None (NoObject) */
5 #include "frameobject.h"
12 Py_ssize_t _Py_RefTotal
;
18 Py_ssize_t total
= _Py_RefTotal
;
19 /* ignore the references to the dummy object of the dicts and sets
20 because they are not reliable and not useful (now that the
21 hash table code is well-tested) */
24 total
-= o
->ob_refcnt
;
27 total
-= o
->ob_refcnt
;
30 #endif /* Py_REF_DEBUG */
32 int Py_DivisionWarningFlag
;
33 int Py_Py3kWarningFlag
;
35 /* Object allocation routines used by NEWOBJ and NEWVAROBJ macros.
36 These are used by the individual routines for object creation.
37 Do not call them otherwise, they do not initialize the object! */
40 /* Head of circular doubly-linked list of all objects. These are linked
41 * together via the _ob_prev and _ob_next members of a PyObject, which
42 * exist only in a Py_TRACE_REFS build.
44 static PyObject refchain
= {&refchain
, &refchain
};
46 /* Insert op at the front of the list of all objects. If force is true,
47 * op is added even if _ob_prev and _ob_next are non-NULL already. If
48 * force is false amd _ob_prev or _ob_next are non-NULL, do nothing.
49 * force should be true if and only if op points to freshly allocated,
50 * uninitialized memory, or you've unlinked op from the list and are
51 * relinking it into the front.
52 * Note that objects are normally added to the list via _Py_NewReference,
53 * which is called by PyObject_Init. Not all objects are initialized that
54 * way, though; exceptions include statically allocated type objects, and
55 * statically allocated singletons (like Py_True and Py_None).
58 _Py_AddToAllObjects(PyObject
*op
, int force
)
62 /* If it's initialized memory, op must be in or out of
63 * the list unambiguously.
65 assert((op
->_ob_prev
== NULL
) == (op
->_ob_next
== NULL
));
68 if (force
|| op
->_ob_prev
== NULL
) {
69 op
->_ob_next
= refchain
._ob_next
;
70 op
->_ob_prev
= &refchain
;
71 refchain
._ob_next
->_ob_prev
= op
;
72 refchain
._ob_next
= op
;
75 #endif /* Py_TRACE_REFS */
78 static PyTypeObject
*type_list
;
79 /* All types are added to type_list, at least when
80 they get one object created. That makes them
81 immortal, which unfortunately contributes to
82 garbage itself. If unlist_types_without_objects
83 is set, they will be removed from the type_list
84 once the last object is deallocated. */
85 static int unlist_types_without_objects
;
86 extern Py_ssize_t tuple_zero_allocs
, fast_tuple_allocs
;
87 extern Py_ssize_t quick_int_allocs
, quick_neg_int_allocs
;
88 extern Py_ssize_t null_strings
, one_strings
;
94 for (tp
= type_list
; tp
; tp
= tp
->tp_next
)
95 fprintf(f
, "%s alloc'd: %" PY_FORMAT_SIZE_T
"d, "
96 "freed: %" PY_FORMAT_SIZE_T
"d, "
97 "max in use: %" PY_FORMAT_SIZE_T
"d\n",
98 tp
->tp_name
, tp
->tp_allocs
, tp
->tp_frees
,
100 fprintf(f
, "fast tuple allocs: %" PY_FORMAT_SIZE_T
"d, "
101 "empty: %" PY_FORMAT_SIZE_T
"d\n",
102 fast_tuple_allocs
, tuple_zero_allocs
);
103 fprintf(f
, "fast int allocs: pos: %" PY_FORMAT_SIZE_T
"d, "
104 "neg: %" PY_FORMAT_SIZE_T
"d\n",
105 quick_int_allocs
, quick_neg_int_allocs
);
106 fprintf(f
, "null strings: %" PY_FORMAT_SIZE_T
"d, "
107 "1-strings: %" PY_FORMAT_SIZE_T
"d\n",
108 null_strings
, one_strings
);
118 result
= PyList_New(0);
121 for (tp
= type_list
; tp
; tp
= tp
->tp_next
) {
122 v
= Py_BuildValue("(snnn)", tp
->tp_name
, tp
->tp_allocs
,
123 tp
->tp_frees
, tp
->tp_maxalloc
);
128 if (PyList_Append(result
, v
) < 0) {
139 inc_count(PyTypeObject
*tp
)
141 if (tp
->tp_next
== NULL
&& tp
->tp_prev
== NULL
) {
142 /* first time; insert in linked list */
143 if (tp
->tp_next
!= NULL
) /* sanity check */
144 Py_FatalError("XXX inc_count sanity check");
146 type_list
->tp_prev
= tp
;
147 tp
->tp_next
= type_list
;
148 /* Note that as of Python 2.2, heap-allocated type objects
149 * can go away, but this code requires that they stay alive
150 * until program exit. That's why we're careful with
151 * refcounts here. type_list gets a new reference to tp,
152 * while ownership of the reference type_list used to hold
153 * (if any) was transferred to tp->tp_next in the line above.
154 * tp is thus effectively immortal after this.
159 /* Also insert in the doubly-linked list of all objects,
160 * if not already there.
162 _Py_AddToAllObjects((PyObject
*)tp
, 0);
166 if (tp
->tp_allocs
- tp
->tp_frees
> tp
->tp_maxalloc
)
167 tp
->tp_maxalloc
= tp
->tp_allocs
- tp
->tp_frees
;
170 void dec_count(PyTypeObject
*tp
)
173 if (unlist_types_without_objects
&&
174 tp
->tp_allocs
== tp
->tp_frees
) {
175 /* unlink the type from type_list */
177 tp
->tp_prev
->tp_next
= tp
->tp_next
;
179 type_list
= tp
->tp_next
;
181 tp
->tp_next
->tp_prev
= tp
->tp_prev
;
182 tp
->tp_next
= tp
->tp_prev
= NULL
;
190 /* Log a fatal error; doesn't return. */
192 _Py_NegativeRefcount(const char *fname
, int lineno
, PyObject
*op
)
196 PyOS_snprintf(buf
, sizeof(buf
),
197 "%s:%i object at %p has negative ref count "
198 "%" PY_FORMAT_SIZE_T
"d",
199 fname
, lineno
, op
, op
->ob_refcnt
);
203 #endif /* Py_REF_DEBUG */
206 Py_IncRef(PyObject
*o
)
212 Py_DecRef(PyObject
*o
)
218 PyObject_Init(PyObject
*op
, PyTypeObject
*tp
)
221 return PyErr_NoMemory();
222 /* Any changes should be reflected in PyObject_INIT (objimpl.h) */
224 _Py_NewReference(op
);
229 PyObject_InitVar(PyVarObject
*op
, PyTypeObject
*tp
, Py_ssize_t size
)
232 return (PyVarObject
*) PyErr_NoMemory();
233 /* Any changes should be reflected in PyObject_INIT_VAR */
236 _Py_NewReference((PyObject
*)op
);
241 _PyObject_New(PyTypeObject
*tp
)
244 op
= (PyObject
*) PyObject_MALLOC(_PyObject_SIZE(tp
));
246 return PyErr_NoMemory();
247 return PyObject_INIT(op
, tp
);
251 _PyObject_NewVar(PyTypeObject
*tp
, Py_ssize_t nitems
)
254 const size_t size
= _PyObject_VAR_SIZE(tp
, nitems
);
255 op
= (PyVarObject
*) PyObject_MALLOC(size
);
257 return (PyVarObject
*)PyErr_NoMemory();
258 return PyObject_INIT_VAR(op
, tp
, nitems
);
261 /* for binary compatibility with 2.2 */
264 _PyObject_Del(PyObject
*op
)
269 /* Implementation of PyObject_Print with recursion checking */
271 internal_print(PyObject
*op
, FILE *fp
, int flags
, int nesting
)
275 PyErr_SetString(PyExc_RuntimeError
, "print recursion");
278 if (PyErr_CheckSignals())
280 #ifdef USE_STACKCHECK
281 if (PyOS_CheckStack()) {
282 PyErr_SetString(PyExc_MemoryError
, "stack overflow");
286 clearerr(fp
); /* Clear any previous error condition */
288 Py_BEGIN_ALLOW_THREADS
289 fprintf(fp
, "<nil>");
293 if (op
->ob_refcnt
<= 0)
294 /* XXX(twouters) cast refcount to long until %zd is
295 universally available */
296 Py_BEGIN_ALLOW_THREADS
297 fprintf(fp
, "<refcnt %ld at %p>",
298 (long)op
->ob_refcnt
, op
);
300 else if (Py_TYPE(op
)->tp_print
== NULL
) {
302 if (flags
& Py_PRINT_RAW
)
303 s
= PyObject_Str(op
);
305 s
= PyObject_Repr(op
);
309 ret
= internal_print(s
, fp
, Py_PRINT_RAW
,
315 ret
= (*Py_TYPE(op
)->tp_print
)(op
, fp
, flags
);
319 PyErr_SetFromErrno(PyExc_IOError
);
328 PyObject_Print(PyObject
*op
, FILE *fp
, int flags
)
330 return internal_print(op
, fp
, flags
, 0);
334 /* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */
335 void _PyObject_Dump(PyObject
* op
)
338 fprintf(stderr
, "NULL\n");
341 PyGILState_STATE gil
;
343 fprintf(stderr
, "object : ");
345 gil
= PyGILState_Ensure();
347 (void)PyObject_Print(op
, stderr
, 0);
349 PyGILState_Release(gil
);
351 /* XXX(twouters) cast refcount to long until %zd is
352 universally available */
357 Py_TYPE(op
)==NULL
? "NULL" : Py_TYPE(op
)->tp_name
,
364 PyObject_Repr(PyObject
*v
)
366 if (PyErr_CheckSignals())
368 #ifdef USE_STACKCHECK
369 if (PyOS_CheckStack()) {
370 PyErr_SetString(PyExc_MemoryError
, "stack overflow");
375 return PyString_FromString("<NULL>");
376 else if (Py_TYPE(v
)->tp_repr
== NULL
)
377 return PyString_FromFormat("<%s object at %p>",
378 Py_TYPE(v
)->tp_name
, v
);
381 res
= (*Py_TYPE(v
)->tp_repr
)(v
);
384 #ifdef Py_USING_UNICODE
385 if (PyUnicode_Check(res
)) {
387 str
= PyUnicode_AsEncodedString(res
, NULL
, NULL
);
395 if (!PyString_Check(res
)) {
396 PyErr_Format(PyExc_TypeError
,
397 "__repr__ returned non-string (type %.200s)",
398 Py_TYPE(res
)->tp_name
);
407 _PyObject_Str(PyObject
*v
)
412 return PyString_FromString("<NULL>");
413 if (PyString_CheckExact(v
)) {
417 #ifdef Py_USING_UNICODE
418 if (PyUnicode_CheckExact(v
)) {
423 if (Py_TYPE(v
)->tp_str
== NULL
)
424 return PyObject_Repr(v
);
426 /* It is possible for a type to have a tp_str representation that loops
428 if (Py_EnterRecursiveCall(" while getting the str of an object"))
430 res
= (*Py_TYPE(v
)->tp_str
)(v
);
431 Py_LeaveRecursiveCall();
434 type_ok
= PyString_Check(res
);
435 #ifdef Py_USING_UNICODE
436 type_ok
= type_ok
|| PyUnicode_Check(res
);
439 PyErr_Format(PyExc_TypeError
,
440 "__str__ returned non-string (type %.200s)",
441 Py_TYPE(res
)->tp_name
);
449 PyObject_Str(PyObject
*v
)
451 PyObject
*res
= _PyObject_Str(v
);
454 #ifdef Py_USING_UNICODE
455 if (PyUnicode_Check(res
)) {
457 str
= PyUnicode_AsEncodedString(res
, NULL
, NULL
);
465 assert(PyString_Check(res
));
469 #ifdef Py_USING_UNICODE
471 PyObject_Unicode(PyObject
*v
)
476 int unicode_method_found
= 0;
477 static PyObject
*unicodestr
;
480 res
= PyString_FromString("<NULL>");
483 str
= PyUnicode_FromEncodedObject(res
, NULL
, "strict");
486 } else if (PyUnicode_CheckExact(v
)) {
491 if (PyInstance_Check(v
)) {
492 /* We're an instance of a classic class */
493 /* Try __unicode__ from the instance -- alas we have no type */
494 func
= PyObject_GetAttr(v
, unicodestr
);
496 unicode_method_found
= 1;
497 res
= PyObject_CallFunctionObjArgs(func
, NULL
);
505 /* Not a classic class instance, try __unicode__. */
506 func
= _PyObject_LookupSpecial(v
, "__unicode__", &unicodestr
);
508 unicode_method_found
= 1;
509 res
= PyObject_CallFunctionObjArgs(func
, NULL
);
512 else if (PyErr_Occurred())
516 /* Didn't find __unicode__ */
517 if (!unicode_method_found
) {
518 if (PyUnicode_Check(v
)) {
519 /* For a Unicode subtype that's didn't overwrite __unicode__,
520 return a true Unicode object with the same data. */
521 return PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(v
),
522 PyUnicode_GET_SIZE(v
));
524 if (PyString_CheckExact(v
)) {
529 if (Py_TYPE(v
)->tp_str
!= NULL
)
530 res
= (*Py_TYPE(v
)->tp_str
)(v
);
532 res
= PyObject_Repr(v
);
538 if (!PyUnicode_Check(res
)) {
539 str
= PyUnicode_FromEncodedObject(res
, NULL
, "strict");
548 /* Helper to warn about deprecated tp_compare return values. Return:
553 (This function cannot return 2.)
556 adjust_tp_compare(int c
)
558 if (PyErr_Occurred()) {
559 if (c
!= -1 && c
!= -2) {
560 PyObject
*t
, *v
, *tb
;
561 PyErr_Fetch(&t
, &v
, &tb
);
562 if (PyErr_Warn(PyExc_RuntimeWarning
,
563 "tp_compare didn't return -1 or -2 "
564 "for exception") < 0) {
570 PyErr_Restore(t
, v
, tb
);
574 else if (c
< -1 || c
> 1) {
575 if (PyErr_Warn(PyExc_RuntimeWarning
,
576 "tp_compare didn't return -1, 0 or 1") < 0)
579 return c
< -1 ? -1 : 1;
582 assert(c
>= -1 && c
<= 1);
588 /* Macro to get the tp_richcompare field of a type if defined */
589 #define RICHCOMPARE(t) (PyType_HasFeature((t), Py_TPFLAGS_HAVE_RICHCOMPARE) \
590 ? (t)->tp_richcompare : NULL)
592 /* Map rich comparison operators to their swapped version, e.g. LT --> GT */
593 int _Py_SwappedOp
[] = {Py_GT
, Py_GE
, Py_EQ
, Py_NE
, Py_LT
, Py_LE
};
595 /* Try a genuine rich comparison, returning an object. Return:
597 NotImplemented if this particular rich comparison is not implemented or
599 some object not equal to NotImplemented if it is implemented
600 (this latter object may not be a Boolean).
603 try_rich_compare(PyObject
*v
, PyObject
*w
, int op
)
608 if (v
->ob_type
!= w
->ob_type
&&
609 PyType_IsSubtype(w
->ob_type
, v
->ob_type
) &&
610 (f
= RICHCOMPARE(w
->ob_type
)) != NULL
) {
611 res
= (*f
)(w
, v
, _Py_SwappedOp
[op
]);
612 if (res
!= Py_NotImplemented
)
616 if ((f
= RICHCOMPARE(v
->ob_type
)) != NULL
) {
617 res
= (*f
)(v
, w
, op
);
618 if (res
!= Py_NotImplemented
)
622 if ((f
= RICHCOMPARE(w
->ob_type
)) != NULL
) {
623 return (*f
)(w
, v
, _Py_SwappedOp
[op
]);
625 res
= Py_NotImplemented
;
630 /* Try a genuine rich comparison, returning an int. Return:
631 -1 for exception (including the case where try_rich_compare() returns an
632 object that's not a Boolean);
633 0 if the outcome is false;
634 1 if the outcome is true;
635 2 if this particular rich comparison is not implemented or undefined.
638 try_rich_compare_bool(PyObject
*v
, PyObject
*w
, int op
)
643 if (RICHCOMPARE(v
->ob_type
) == NULL
&& RICHCOMPARE(w
->ob_type
) == NULL
)
644 return 2; /* Shortcut, avoid INCREF+DECREF */
645 res
= try_rich_compare(v
, w
, op
);
648 if (res
== Py_NotImplemented
) {
652 ok
= PyObject_IsTrue(res
);
657 /* Try rich comparisons to determine a 3-way comparison. Return:
662 2 if this particular rich comparison is not implemented or undefined.
665 try_rich_to_3way_compare(PyObject
*v
, PyObject
*w
)
667 static struct { int op
; int outcome
; } tries
[3] = {
668 /* Try this operator, and if it is true, use this outcome: */
675 if (RICHCOMPARE(v
->ob_type
) == NULL
&& RICHCOMPARE(w
->ob_type
) == NULL
)
676 return 2; /* Shortcut */
678 for (i
= 0; i
< 3; i
++) {
679 switch (try_rich_compare_bool(v
, w
, tries
[i
].op
)) {
683 return tries
[i
].outcome
;
690 /* Try a 3-way comparison, returning an int. Return:
695 2 if this particular 3-way comparison is not implemented or undefined.
698 try_3way_compare(PyObject
*v
, PyObject
*w
)
703 /* Comparisons involving instances are given to instance_compare,
704 which has the same return conventions as this function. */
706 f
= v
->ob_type
->tp_compare
;
707 if (PyInstance_Check(v
))
709 if (PyInstance_Check(w
))
710 return (*w
->ob_type
->tp_compare
)(v
, w
);
712 /* If both have the same (non-NULL) tp_compare, use it. */
713 if (f
!= NULL
&& f
== w
->ob_type
->tp_compare
) {
715 return adjust_tp_compare(c
);
718 /* If either tp_compare is _PyObject_SlotCompare, that's safe. */
719 if (f
== _PyObject_SlotCompare
||
720 w
->ob_type
->tp_compare
== _PyObject_SlotCompare
)
721 return _PyObject_SlotCompare(v
, w
);
723 /* If we're here, v and w,
724 a) are not instances;
725 b) have different types or a type without tp_compare; and
726 c) don't have a user-defined tp_compare.
727 tp_compare implementations in C assume that both arguments
728 have their type, so we give up if the coercion fails or if
729 it yields types which are still incompatible (which can
730 happen with a user-defined nb_coerce).
732 c
= PyNumber_CoerceEx(&v
, &w
);
737 f
= v
->ob_type
->tp_compare
;
738 if (f
!= NULL
&& f
== w
->ob_type
->tp_compare
) {
742 return adjust_tp_compare(c
);
745 /* No comparison defined */
751 /* Final fallback 3-way comparison, returning an int. Return:
752 -2 if an error occurred;
758 default_3way_compare(PyObject
*v
, PyObject
*w
)
761 const char *vname
, *wname
;
763 if (v
->ob_type
== w
->ob_type
) {
764 /* When comparing these pointers, they must be cast to
765 * integer types (i.e. Py_uintptr_t, our spelling of C9X's
766 * uintptr_t). ANSI specifies that pointer compares other
767 * than == and != to non-related structures are undefined.
769 Py_uintptr_t vv
= (Py_uintptr_t
)v
;
770 Py_uintptr_t ww
= (Py_uintptr_t
)w
;
771 return (vv
< ww
) ? -1 : (vv
> ww
) ? 1 : 0;
774 /* None is smaller than anything */
780 /* different type: compare type names; numbers are smaller */
781 if (PyNumber_Check(v
))
784 vname
= v
->ob_type
->tp_name
;
785 if (PyNumber_Check(w
))
788 wname
= w
->ob_type
->tp_name
;
789 c
= strcmp(vname
, wname
);
794 /* Same type name, or (more likely) incomparable numeric types */
795 return ((Py_uintptr_t
)(v
->ob_type
) < (
796 Py_uintptr_t
)(w
->ob_type
)) ? -1 : 1;
799 /* Do a 3-way comparison, by hook or by crook. Return:
800 -2 for an exception (but see below);
804 BUT: if the object implements a tp_compare function, it returns
805 whatever this function returns (whether with an exception or not).
808 do_cmp(PyObject
*v
, PyObject
*w
)
813 if (v
->ob_type
== w
->ob_type
814 && (f
= v
->ob_type
->tp_compare
) != NULL
) {
816 if (PyInstance_Check(v
)) {
817 /* Instance tp_compare has a different signature.
818 But if it returns undefined we fall through. */
821 /* Else fall through to try_rich_to_3way_compare() */
824 return adjust_tp_compare(c
);
826 /* We only get here if one of the following is true:
827 a) v and w have different types
828 b) v and w have the same type, which doesn't have tp_compare
829 c) v and w are instances, and either __cmp__ is not defined or
830 __cmp__ returns NotImplemented
832 c
= try_rich_to_3way_compare(v
, w
);
835 c
= try_3way_compare(v
, w
);
838 return default_3way_compare(v
, w
);
841 /* Compare v to w. Return
842 -1 if v < w or exception (PyErr_Occurred() true in latter case).
845 XXX The docs (C API manual) say the return value is undefined in case
849 PyObject_Compare(PyObject
*v
, PyObject
*w
)
853 if (v
== NULL
|| w
== NULL
) {
854 PyErr_BadInternalCall();
859 if (Py_EnterRecursiveCall(" in cmp"))
861 result
= do_cmp(v
, w
);
862 Py_LeaveRecursiveCall();
863 return result
< 0 ? -1 : result
;
866 /* Return (new reference to) Py_True or Py_False. */
868 convert_3way_to_object(int op
, int c
)
872 case Py_LT
: c
= c
< 0; break;
873 case Py_LE
: c
= c
<= 0; break;
874 case Py_EQ
: c
= c
== 0; break;
875 case Py_NE
: c
= c
!= 0; break;
876 case Py_GT
: c
= c
> 0; break;
877 case Py_GE
: c
= c
>= 0; break;
879 result
= c
? Py_True
: Py_False
;
884 /* We want a rich comparison but don't have one. Try a 3-way cmp instead.
888 Py_False if not (v op w)
891 try_3way_to_rich_compare(PyObject
*v
, PyObject
*w
, int op
)
895 c
= try_3way_compare(v
, w
);
898 /* Py3K warning if types are not equal and comparison isn't == or != */
899 if (Py_Py3kWarningFlag
&&
900 v
->ob_type
!= w
->ob_type
&& op
!= Py_EQ
&& op
!= Py_NE
&&
901 PyErr_WarnEx(PyExc_DeprecationWarning
,
902 "comparing unequal types not supported "
907 c
= default_3way_compare(v
, w
);
911 return convert_3way_to_object(op
, c
);
914 /* Do rich comparison on v and w. Return
916 Else a new reference to an object other than Py_NotImplemented, usually(?):
918 Py_False if not (v op w)
921 do_richcmp(PyObject
*v
, PyObject
*w
, int op
)
925 res
= try_rich_compare(v
, w
, op
);
926 if (res
!= Py_NotImplemented
)
930 return try_3way_to_rich_compare(v
, w
, op
);
935 some object not equal to NotImplemented if it is implemented
936 (this latter object may not be a Boolean).
939 PyObject_RichCompare(PyObject
*v
, PyObject
*w
, int op
)
943 assert(Py_LT
<= op
&& op
<= Py_GE
);
944 if (Py_EnterRecursiveCall(" in cmp"))
947 /* If the types are equal, and not old-style instances, try to
948 get out cheap (don't bother with coercions etc.). */
949 if (v
->ob_type
== w
->ob_type
&& !PyInstance_Check(v
)) {
951 richcmpfunc frich
= RICHCOMPARE(v
->ob_type
);
952 /* If the type has richcmp, try it first. try_rich_compare
953 tries it two-sided, which is not needed since we've a
956 res
= (*frich
)(v
, w
, op
);
957 if (res
!= Py_NotImplemented
)
961 /* No richcmp, or this particular richmp not implemented.
963 fcmp
= v
->ob_type
->tp_compare
;
965 int c
= (*fcmp
)(v
, w
);
966 c
= adjust_tp_compare(c
);
971 res
= convert_3way_to_object(op
, c
);
976 /* Fast path not taken, or couldn't deliver a useful result. */
977 res
= do_richcmp(v
, w
, op
);
979 Py_LeaveRecursiveCall();
983 /* Return -1 if error; 1 if v op w; 0 if not (v op w). */
985 PyObject_RichCompareBool(PyObject
*v
, PyObject
*w
, int op
)
990 /* Quick result when objects are the same.
991 Guarantees that identity implies equality. */
995 else if (op
== Py_NE
)
999 res
= PyObject_RichCompare(v
, w
, op
);
1002 if (PyBool_Check(res
))
1003 ok
= (res
== Py_True
);
1005 ok
= PyObject_IsTrue(res
);
1010 /* Set of hash utility functions to help maintaining the invariant that
1011 if a==b then hash(a)==hash(b)
1013 All the utility functions (_Py_Hash*()) return "-1" to signify an error.
1017 _Py_HashDouble(double v
)
1019 double intpart
, fractpart
;
1022 long x
; /* the final hash value */
1023 /* This is designed so that Python numbers of different types
1024 * that compare equal hash to the same value; otherwise comparisons
1025 * of mapping keys will turn out weird.
1028 fractpart
= modf(v
, &intpart
);
1029 if (fractpart
== 0.0) {
1030 /* This must return the same hash as an equal int or long. */
1031 if (intpart
> LONG_MAX
/2 || -intpart
> LONG_MAX
/2) {
1032 /* Convert to long and use its hash. */
1033 PyObject
*plong
; /* converted to Python long */
1034 if (Py_IS_INFINITY(intpart
))
1035 /* can't convert to long int -- arbitrary */
1036 v
= v
< 0 ? -271828.0 : 314159.0;
1037 plong
= PyLong_FromDouble(v
);
1040 x
= PyObject_Hash(plong
);
1044 /* Fits in a C long == a Python int, so is its own hash. */
1050 /* The fractional part is non-zero, so we don't have to worry about
1051 * making this match the hash of some other type.
1052 * Use frexp to get at the bits in the double.
1053 * Since the VAX D double format has 56 mantissa bits, which is the
1054 * most of any double format in use, each of these parts may have as
1055 * many as (but no more than) 56 significant bits.
1056 * So, assuming sizeof(long) >= 4, each part can be broken into two
1057 * longs; frexp and multiplication are used to do that.
1058 * Also, since the Cray double format has 15 exponent bits, which is
1059 * the most of any double format in use, shifting the exponent field
1060 * left by 15 won't overflow a long (again assuming sizeof(long) >= 4).
1062 v
= frexp(v
, &expo
);
1063 v
*= 2147483648.0; /* 2**31 */
1064 hipart
= (long)v
; /* take the top 32 bits */
1065 v
= (v
- (double)hipart
) * 2147483648.0; /* get the next 32 bits */
1066 x
= hipart
+ (long)v
+ (expo
<< 15);
1073 _Py_HashPointer(void *p
)
1076 size_t y
= (size_t)p
;
1077 /* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid
1078 excessive hash collisions for dicts and sets */
1079 y
= (y
>> 4) | (y
<< (8 * SIZEOF_VOID_P
- 4));
1087 PyObject_HashNotImplemented(PyObject
*self
)
1089 PyErr_Format(PyExc_TypeError
, "unhashable type: '%.200s'",
1090 self
->ob_type
->tp_name
);
1095 PyObject_Hash(PyObject
*v
)
1097 PyTypeObject
*tp
= v
->ob_type
;
1098 if (tp
->tp_hash
!= NULL
)
1099 return (*tp
->tp_hash
)(v
);
1100 /* To keep to the general practice that inheriting
1101 * solely from object in C code should work without
1102 * an explicit call to PyType_Ready, we implicitly call
1103 * PyType_Ready here and then check the tp_hash slot again
1105 if (tp
->tp_dict
== NULL
) {
1106 if (PyType_Ready(tp
) < 0)
1108 if (tp
->tp_hash
!= NULL
)
1109 return (*tp
->tp_hash
)(v
);
1111 if (tp
->tp_compare
== NULL
&& RICHCOMPARE(tp
) == NULL
) {
1112 return _Py_HashPointer(v
); /* Use address as hash value */
1114 /* If there's a cmp but no hash defined, the object can't be hashed */
1115 return PyObject_HashNotImplemented(v
);
1119 PyObject_GetAttrString(PyObject
*v
, const char *name
)
1123 if (Py_TYPE(v
)->tp_getattr
!= NULL
)
1124 return (*Py_TYPE(v
)->tp_getattr
)(v
, (char*)name
);
1125 w
= PyString_InternFromString(name
);
1128 res
= PyObject_GetAttr(v
, w
);
1134 PyObject_HasAttrString(PyObject
*v
, const char *name
)
1136 PyObject
*res
= PyObject_GetAttrString(v
, name
);
1146 PyObject_SetAttrString(PyObject
*v
, const char *name
, PyObject
*w
)
1151 if (Py_TYPE(v
)->tp_setattr
!= NULL
)
1152 return (*Py_TYPE(v
)->tp_setattr
)(v
, (char*)name
, w
);
1153 s
= PyString_InternFromString(name
);
1156 res
= PyObject_SetAttr(v
, s
, w
);
1162 PyObject_GetAttr(PyObject
*v
, PyObject
*name
)
1164 PyTypeObject
*tp
= Py_TYPE(v
);
1166 if (!PyString_Check(name
)) {
1167 #ifdef Py_USING_UNICODE
1168 /* The Unicode to string conversion is done here because the
1169 existing tp_getattro slots expect a string object as name
1170 and we wouldn't want to break those. */
1171 if (PyUnicode_Check(name
)) {
1172 name
= _PyUnicode_AsDefaultEncodedString(name
, NULL
);
1179 PyErr_Format(PyExc_TypeError
,
1180 "attribute name must be string, not '%.200s'",
1181 Py_TYPE(name
)->tp_name
);
1185 if (tp
->tp_getattro
!= NULL
)
1186 return (*tp
->tp_getattro
)(v
, name
);
1187 if (tp
->tp_getattr
!= NULL
)
1188 return (*tp
->tp_getattr
)(v
, PyString_AS_STRING(name
));
1189 PyErr_Format(PyExc_AttributeError
,
1190 "'%.50s' object has no attribute '%.400s'",
1191 tp
->tp_name
, PyString_AS_STRING(name
));
1196 PyObject_HasAttr(PyObject
*v
, PyObject
*name
)
1198 PyObject
*res
= PyObject_GetAttr(v
, name
);
1208 PyObject_SetAttr(PyObject
*v
, PyObject
*name
, PyObject
*value
)
1210 PyTypeObject
*tp
= Py_TYPE(v
);
1213 if (!PyString_Check(name
)){
1214 #ifdef Py_USING_UNICODE
1215 /* The Unicode to string conversion is done here because the
1216 existing tp_setattro slots expect a string object as name
1217 and we wouldn't want to break those. */
1218 if (PyUnicode_Check(name
)) {
1219 name
= PyUnicode_AsEncodedString(name
, NULL
, NULL
);
1226 PyErr_Format(PyExc_TypeError
,
1227 "attribute name must be string, not '%.200s'",
1228 Py_TYPE(name
)->tp_name
);
1235 PyString_InternInPlace(&name
);
1236 if (tp
->tp_setattro
!= NULL
) {
1237 err
= (*tp
->tp_setattro
)(v
, name
, value
);
1241 if (tp
->tp_setattr
!= NULL
) {
1242 err
= (*tp
->tp_setattr
)(v
, PyString_AS_STRING(name
), value
);
1247 if (tp
->tp_getattr
== NULL
&& tp
->tp_getattro
== NULL
)
1248 PyErr_Format(PyExc_TypeError
,
1249 "'%.100s' object has no attributes "
1252 value
==NULL
? "del" : "assign to",
1253 PyString_AS_STRING(name
));
1255 PyErr_Format(PyExc_TypeError
,
1256 "'%.100s' object has only read-only attributes "
1259 value
==NULL
? "del" : "assign to",
1260 PyString_AS_STRING(name
));
1264 /* Helper to get a pointer to an object's __dict__ slot, if any */
1267 _PyObject_GetDictPtr(PyObject
*obj
)
1269 Py_ssize_t dictoffset
;
1270 PyTypeObject
*tp
= Py_TYPE(obj
);
1272 if (!(tp
->tp_flags
& Py_TPFLAGS_HAVE_CLASS
))
1274 dictoffset
= tp
->tp_dictoffset
;
1275 if (dictoffset
== 0)
1277 if (dictoffset
< 0) {
1281 tsize
= ((PyVarObject
*)obj
)->ob_size
;
1284 size
= _PyObject_VAR_SIZE(tp
, tsize
);
1286 dictoffset
+= (long)size
;
1287 assert(dictoffset
> 0);
1288 assert(dictoffset
% SIZEOF_VOID_P
== 0);
1290 return (PyObject
**) ((char *)obj
+ dictoffset
);
1294 PyObject_SelfIter(PyObject
*obj
)
1300 /* Helper used when the __next__ method is removed from a type:
1301 tp_iternext is never NULL and can be safely called without checking
1306 _PyObject_NextNotImplemented(PyObject
*self
)
1308 PyErr_Format(PyExc_TypeError
,
1309 "'%.200s' object is not iterable",
1310 Py_TYPE(self
)->tp_name
);
1314 /* Generic GetAttr functions - put these in your tp_[gs]etattro slot */
1317 PyObject_GenericGetAttr(PyObject
*obj
, PyObject
*name
)
1319 PyTypeObject
*tp
= Py_TYPE(obj
);
1320 PyObject
*descr
= NULL
;
1321 PyObject
*res
= NULL
;
1323 Py_ssize_t dictoffset
;
1326 if (!PyString_Check(name
)){
1327 #ifdef Py_USING_UNICODE
1328 /* The Unicode to string conversion is done here because the
1329 existing tp_setattro slots expect a string object as name
1330 and we wouldn't want to break those. */
1331 if (PyUnicode_Check(name
)) {
1332 name
= PyUnicode_AsEncodedString(name
, NULL
, NULL
);
1339 PyErr_Format(PyExc_TypeError
,
1340 "attribute name must be string, not '%.200s'",
1341 Py_TYPE(name
)->tp_name
);
1348 if (tp
->tp_dict
== NULL
) {
1349 if (PyType_Ready(tp
) < 0)
1353 #if 0 /* XXX this is not quite _PyType_Lookup anymore */
1354 /* Inline _PyType_Lookup */
1357 PyObject
*mro
, *base
, *dict
;
1359 /* Look in tp_dict of types in MRO */
1361 assert(mro
!= NULL
);
1362 assert(PyTuple_Check(mro
));
1363 n
= PyTuple_GET_SIZE(mro
);
1364 for (i
= 0; i
< n
; i
++) {
1365 base
= PyTuple_GET_ITEM(mro
, i
);
1366 if (PyClass_Check(base
))
1367 dict
= ((PyClassObject
*)base
)->cl_dict
;
1369 assert(PyType_Check(base
));
1370 dict
= ((PyTypeObject
*)base
)->tp_dict
;
1372 assert(dict
&& PyDict_Check(dict
));
1373 descr
= PyDict_GetItem(dict
, name
);
1379 descr
= _PyType_Lookup(tp
, name
);
1385 if (descr
!= NULL
&&
1386 PyType_HasFeature(descr
->ob_type
, Py_TPFLAGS_HAVE_CLASS
)) {
1387 f
= descr
->ob_type
->tp_descr_get
;
1388 if (f
!= NULL
&& PyDescr_IsData(descr
)) {
1389 res
= f(descr
, obj
, (PyObject
*)obj
->ob_type
);
1395 /* Inline _PyObject_GetDictPtr */
1396 dictoffset
= tp
->tp_dictoffset
;
1397 if (dictoffset
!= 0) {
1399 if (dictoffset
< 0) {
1403 tsize
= ((PyVarObject
*)obj
)->ob_size
;
1406 size
= _PyObject_VAR_SIZE(tp
, tsize
);
1408 dictoffset
+= (long)size
;
1409 assert(dictoffset
> 0);
1410 assert(dictoffset
% SIZEOF_VOID_P
== 0);
1412 dictptr
= (PyObject
**) ((char *)obj
+ dictoffset
);
1416 res
= PyDict_GetItem(dict
, name
);
1428 res
= f(descr
, obj
, (PyObject
*)Py_TYPE(obj
));
1433 if (descr
!= NULL
) {
1435 /* descr was already increfed above */
1439 PyErr_Format(PyExc_AttributeError
,
1440 "'%.50s' object has no attribute '%.400s'",
1441 tp
->tp_name
, PyString_AS_STRING(name
));
1448 PyObject_GenericSetAttr(PyObject
*obj
, PyObject
*name
, PyObject
*value
)
1450 PyTypeObject
*tp
= Py_TYPE(obj
);
1456 if (!PyString_Check(name
)){
1457 #ifdef Py_USING_UNICODE
1458 /* The Unicode to string conversion is done here because the
1459 existing tp_setattro slots expect a string object as name
1460 and we wouldn't want to break those. */
1461 if (PyUnicode_Check(name
)) {
1462 name
= PyUnicode_AsEncodedString(name
, NULL
, NULL
);
1469 PyErr_Format(PyExc_TypeError
,
1470 "attribute name must be string, not '%.200s'",
1471 Py_TYPE(name
)->tp_name
);
1478 if (tp
->tp_dict
== NULL
) {
1479 if (PyType_Ready(tp
) < 0)
1483 descr
= _PyType_Lookup(tp
, name
);
1485 if (descr
!= NULL
&&
1486 PyType_HasFeature(descr
->ob_type
, Py_TPFLAGS_HAVE_CLASS
)) {
1487 f
= descr
->ob_type
->tp_descr_set
;
1488 if (f
!= NULL
&& PyDescr_IsData(descr
)) {
1489 res
= f(descr
, obj
, value
);
1494 dictptr
= _PyObject_GetDictPtr(obj
);
1495 if (dictptr
!= NULL
) {
1496 PyObject
*dict
= *dictptr
;
1497 if (dict
== NULL
&& value
!= NULL
) {
1498 dict
= PyDict_New();
1506 res
= PyDict_DelItem(dict
, name
);
1508 res
= PyDict_SetItem(dict
, name
, value
);
1509 if (res
< 0 && PyErr_ExceptionMatches(PyExc_KeyError
))
1510 PyErr_SetObject(PyExc_AttributeError
, name
);
1517 res
= f(descr
, obj
, value
);
1521 if (descr
== NULL
) {
1522 PyErr_Format(PyExc_AttributeError
,
1523 "'%.100s' object has no attribute '%.200s'",
1524 tp
->tp_name
, PyString_AS_STRING(name
));
1528 PyErr_Format(PyExc_AttributeError
,
1529 "'%.50s' object attribute '%.400s' is read-only",
1530 tp
->tp_name
, PyString_AS_STRING(name
));
1536 /* Test a value used as condition, e.g., in a for or if statement.
1537 Return -1 if an error occurred */
1540 PyObject_IsTrue(PyObject
*v
)
1549 else if (v
->ob_type
->tp_as_number
!= NULL
&&
1550 v
->ob_type
->tp_as_number
->nb_nonzero
!= NULL
)
1551 res
= (*v
->ob_type
->tp_as_number
->nb_nonzero
)(v
);
1552 else if (v
->ob_type
->tp_as_mapping
!= NULL
&&
1553 v
->ob_type
->tp_as_mapping
->mp_length
!= NULL
)
1554 res
= (*v
->ob_type
->tp_as_mapping
->mp_length
)(v
);
1555 else if (v
->ob_type
->tp_as_sequence
!= NULL
&&
1556 v
->ob_type
->tp_as_sequence
->sq_length
!= NULL
)
1557 res
= (*v
->ob_type
->tp_as_sequence
->sq_length
)(v
);
1560 /* if it is negative, it should be either -1 or -2 */
1561 return (res
> 0) ? 1 : Py_SAFE_DOWNCAST(res
, Py_ssize_t
, int);
1564 /* equivalent of 'not v'
1565 Return -1 if an error occurred */
1568 PyObject_Not(PyObject
*v
)
1571 res
= PyObject_IsTrue(v
);
1577 /* Coerce two numeric types to the "larger" one.
1578 Increment the reference count on each argument.
1580 -1 if an error occurred;
1581 0 if the coercion succeeded (and then the reference counts are increased);
1582 1 if no coercion is possible (and no error is raised).
1585 PyNumber_CoerceEx(PyObject
**pv
, PyObject
**pw
)
1587 register PyObject
*v
= *pv
;
1588 register PyObject
*w
= *pw
;
1591 /* Shortcut only for old-style types */
1592 if (v
->ob_type
== w
->ob_type
&&
1593 !PyType_HasFeature(v
->ob_type
, Py_TPFLAGS_CHECKTYPES
))
1599 if (v
->ob_type
->tp_as_number
&& v
->ob_type
->tp_as_number
->nb_coerce
) {
1600 res
= (*v
->ob_type
->tp_as_number
->nb_coerce
)(pv
, pw
);
1604 if (w
->ob_type
->tp_as_number
&& w
->ob_type
->tp_as_number
->nb_coerce
) {
1605 res
= (*w
->ob_type
->tp_as_number
->nb_coerce
)(pw
, pv
);
1612 /* Coerce two numeric types to the "larger" one.
1613 Increment the reference count on each argument.
1614 Return -1 and raise an exception if no coercion is possible
1615 (and then no reference count is incremented).
1618 PyNumber_Coerce(PyObject
**pv
, PyObject
**pw
)
1620 int err
= PyNumber_CoerceEx(pv
, pw
);
1623 PyErr_SetString(PyExc_TypeError
, "number coercion failed");
1628 /* Test whether an object can be called */
1631 PyCallable_Check(PyObject
*x
)
1635 if (PyInstance_Check(x
)) {
1636 PyObject
*call
= PyObject_GetAttrString(x
, "__call__");
1641 /* Could test recursively but don't, for fear of endless
1642 recursion if some joker sets self.__call__ = self */
1647 return x
->ob_type
->tp_call
!= NULL
;
1651 /* ------------------------- PyObject_Dir() helpers ------------------------- */
1653 /* Helper for PyObject_Dir.
1654 Merge the __dict__ of aclass into dict, and recursively also all
1655 the __dict__s of aclass's base classes. The order of merging isn't
1656 defined, as it's expected that only the final set of dict keys is
1658 Return 0 on success, -1 on error.
1662 merge_class_dict(PyObject
* dict
, PyObject
* aclass
)
1664 PyObject
*classdict
;
1667 assert(PyDict_Check(dict
));
1670 /* Merge in the type's dict (if any). */
1671 classdict
= PyObject_GetAttrString(aclass
, "__dict__");
1672 if (classdict
== NULL
)
1675 int status
= PyDict_Update(dict
, classdict
);
1676 Py_DECREF(classdict
);
1681 /* Recursively merge in the base types' (if any) dicts. */
1682 bases
= PyObject_GetAttrString(aclass
, "__bases__");
1686 /* We have no guarantee that bases is a real tuple */
1688 n
= PySequence_Size(bases
); /* This better be right */
1692 for (i
= 0; i
< n
; i
++) {
1694 PyObject
*base
= PySequence_GetItem(bases
, i
);
1699 status
= merge_class_dict(dict
, base
);
1712 /* Helper for PyObject_Dir.
1713 If obj has an attr named attrname that's a list, merge its string
1714 elements into keys of dict.
1715 Return 0 on success, -1 on error. Errors due to not finding the attr,
1716 or the attr not being a list, are suppressed.
1720 merge_list_attr(PyObject
* dict
, PyObject
* obj
, const char *attrname
)
1725 assert(PyDict_Check(dict
));
1729 list
= PyObject_GetAttrString(obj
, attrname
);
1733 else if (PyList_Check(list
)) {
1735 for (i
= 0; i
< PyList_GET_SIZE(list
); ++i
) {
1736 PyObject
*item
= PyList_GET_ITEM(list
, i
);
1737 if (PyString_Check(item
)) {
1738 result
= PyDict_SetItem(dict
, item
, Py_None
);
1743 if (Py_Py3kWarningFlag
&&
1744 (strcmp(attrname
, "__members__") == 0 ||
1745 strcmp(attrname
, "__methods__") == 0)) {
1746 if (PyErr_WarnEx(PyExc_DeprecationWarning
,
1747 "__members__ and __methods__ not "
1748 "supported in 3.x", 1) < 0) {
1759 /* Helper for PyObject_Dir without arguments: returns the local scope. */
1764 PyObject
*locals
= PyEval_GetLocals();
1766 if (locals
== NULL
) {
1767 PyErr_SetString(PyExc_SystemError
, "frame does not exist");
1771 names
= PyMapping_Keys(locals
);
1774 if (!PyList_Check(names
)) {
1775 PyErr_Format(PyExc_TypeError
,
1776 "dir(): expected keys() of locals to be a list, "
1777 "not '%.200s'", Py_TYPE(names
)->tp_name
);
1781 /* the locals don't need to be DECREF'd */
1785 /* Helper for PyObject_Dir of type objects: returns __dict__ and __bases__.
1786 We deliberately don't suck up its __class__, as methods belonging to the
1787 metaclass would probably be more confusing than helpful.
1790 _specialized_dir_type(PyObject
*obj
)
1792 PyObject
*result
= NULL
;
1793 PyObject
*dict
= PyDict_New();
1795 if (dict
!= NULL
&& merge_class_dict(dict
, obj
) == 0)
1796 result
= PyDict_Keys(dict
);
1802 /* Helper for PyObject_Dir of module objects: returns the module's __dict__. */
1804 _specialized_dir_module(PyObject
*obj
)
1806 PyObject
*result
= NULL
;
1807 PyObject
*dict
= PyObject_GetAttrString(obj
, "__dict__");
1810 if (PyDict_Check(dict
))
1811 result
= PyDict_Keys(dict
);
1813 char *name
= PyModule_GetName(obj
);
1815 PyErr_Format(PyExc_TypeError
,
1816 "%.200s.__dict__ is not a dictionary",
1825 /* Helper for PyObject_Dir of generic objects: returns __dict__, __class__,
1826 and recursively up the __class__.__bases__ chain.
1829 _generic_dir(PyObject
*obj
)
1831 PyObject
*result
= NULL
;
1832 PyObject
*dict
= NULL
;
1833 PyObject
*itsclass
= NULL
;
1835 /* Get __dict__ (which may or may not be a real dict...) */
1836 dict
= PyObject_GetAttrString(obj
, "__dict__");
1839 dict
= PyDict_New();
1841 else if (!PyDict_Check(dict
)) {
1843 dict
= PyDict_New();
1846 /* Copy __dict__ to avoid mutating it. */
1847 PyObject
*temp
= PyDict_Copy(dict
);
1855 /* Merge in __members__ and __methods__ (if any).
1856 * This is removed in Python 3000. */
1857 if (merge_list_attr(dict
, obj
, "__members__") < 0)
1859 if (merge_list_attr(dict
, obj
, "__methods__") < 0)
1862 /* Merge in attrs reachable from its class. */
1863 itsclass
= PyObject_GetAttrString(obj
, "__class__");
1864 if (itsclass
== NULL
)
1865 /* XXX(tomer): Perhaps fall back to obj->ob_type if no
1866 __class__ exists? */
1869 if (merge_class_dict(dict
, itsclass
) != 0)
1873 result
= PyDict_Keys(dict
);
1876 Py_XDECREF(itsclass
);
1881 /* Helper for PyObject_Dir: object introspection.
1882 This calls one of the above specialized versions if no __dir__ method
1885 _dir_object(PyObject
*obj
)
1887 PyObject
*result
= NULL
;
1888 PyObject
*dirfunc
= PyObject_GetAttrString((PyObject
*)obj
->ob_type
,
1892 if (dirfunc
== NULL
) {
1893 /* use default implementation */
1895 if (PyModule_Check(obj
))
1896 result
= _specialized_dir_module(obj
);
1897 else if (PyType_Check(obj
) || PyClass_Check(obj
))
1898 result
= _specialized_dir_type(obj
);
1900 result
= _generic_dir(obj
);
1904 result
= PyObject_CallFunctionObjArgs(dirfunc
, obj
, NULL
);
1909 /* result must be a list */
1910 /* XXX(gbrandl): could also check if all items are strings */
1911 if (!PyList_Check(result
)) {
1912 PyErr_Format(PyExc_TypeError
,
1913 "__dir__() must return a list, not %.200s",
1914 Py_TYPE(result
)->tp_name
);
1923 /* Implementation of dir() -- if obj is NULL, returns the names in the current
1924 (local) scope. Otherwise, performs introspection of the object: returns a
1925 sorted list of attribute names (supposedly) accessible from the object
1928 PyObject_Dir(PyObject
*obj
)
1933 /* no object -- introspect the locals */
1934 result
= _dir_locals();
1936 /* object -- introspect the object */
1937 result
= _dir_object(obj
);
1939 assert(result
== NULL
|| PyList_Check(result
));
1941 if (result
!= NULL
&& PyList_Sort(result
) != 0) {
1942 /* sorting the list failed */
1951 NoObject is usable as a non-NULL undefined value, used by the macro None.
1952 There is (and should be!) no way to create other objects of this type,
1953 so there is exactly one (which is indestructible, by the way).
1954 (XXX This type and the type of NotImplemented below should be unified.)
1959 none_repr(PyObject
*op
)
1961 return PyString_FromString("None");
1966 none_dealloc(PyObject
* ignore
)
1968 /* This should never get called, but we also don't want to SEGV if
1969 * we accidentally decref None out of existence.
1971 Py_FatalError("deallocating None");
1975 static PyTypeObject PyNone_Type
= {
1976 PyVarObject_HEAD_INIT(&PyType_Type
, 0)
1980 none_dealloc
, /*tp_dealloc*/ /*never called*/
1985 none_repr
, /*tp_repr*/
1987 0, /*tp_as_sequence*/
1988 0, /*tp_as_mapping*/
1989 (hashfunc
)_Py_HashPointer
, /*tp_hash */
1992 PyObject _Py_NoneStruct
= {
1993 _PyObject_EXTRA_INIT
1997 /* NotImplemented is an object that can be used to signal that an
1998 operation is not implemented for the given type combination. */
2001 NotImplemented_repr(PyObject
*op
)
2003 return PyString_FromString("NotImplemented");
2006 static PyTypeObject PyNotImplemented_Type
= {
2007 PyVarObject_HEAD_INIT(&PyType_Type
, 0)
2008 "NotImplementedType",
2011 none_dealloc
, /*tp_dealloc*/ /*never called*/
2016 NotImplemented_repr
, /*tp_repr*/
2018 0, /*tp_as_sequence*/
2019 0, /*tp_as_mapping*/
2023 PyObject _Py_NotImplementedStruct
= {
2024 _PyObject_EXTRA_INIT
2025 1, &PyNotImplemented_Type
2029 _Py_ReadyTypes(void)
2031 if (PyType_Ready(&PyType_Type
) < 0)
2032 Py_FatalError("Can't initialize type type");
2034 if (PyType_Ready(&_PyWeakref_RefType
) < 0)
2035 Py_FatalError("Can't initialize weakref type");
2037 if (PyType_Ready(&_PyWeakref_CallableProxyType
) < 0)
2038 Py_FatalError("Can't initialize callable weakref proxy type");
2040 if (PyType_Ready(&_PyWeakref_ProxyType
) < 0)
2041 Py_FatalError("Can't initialize weakref proxy type");
2043 if (PyType_Ready(&PyBool_Type
) < 0)
2044 Py_FatalError("Can't initialize bool type");
2046 if (PyType_Ready(&PyString_Type
) < 0)
2047 Py_FatalError("Can't initialize str type");
2049 if (PyType_Ready(&PyByteArray_Type
) < 0)
2050 Py_FatalError("Can't initialize bytearray type");
2052 if (PyType_Ready(&PyList_Type
) < 0)
2053 Py_FatalError("Can't initialize list type");
2055 if (PyType_Ready(&PyNone_Type
) < 0)
2056 Py_FatalError("Can't initialize None type");
2058 if (PyType_Ready(&PyNotImplemented_Type
) < 0)
2059 Py_FatalError("Can't initialize NotImplemented type");
2061 if (PyType_Ready(&PyTraceBack_Type
) < 0)
2062 Py_FatalError("Can't initialize traceback type");
2064 if (PyType_Ready(&PySuper_Type
) < 0)
2065 Py_FatalError("Can't initialize super type");
2067 if (PyType_Ready(&PyBaseObject_Type
) < 0)
2068 Py_FatalError("Can't initialize object type");
2070 if (PyType_Ready(&PyRange_Type
) < 0)
2071 Py_FatalError("Can't initialize xrange type");
2073 if (PyType_Ready(&PyDict_Type
) < 0)
2074 Py_FatalError("Can't initialize dict type");
2076 if (PyType_Ready(&PySet_Type
) < 0)
2077 Py_FatalError("Can't initialize set type");
2079 if (PyType_Ready(&PyUnicode_Type
) < 0)
2080 Py_FatalError("Can't initialize unicode type");
2082 if (PyType_Ready(&PySlice_Type
) < 0)
2083 Py_FatalError("Can't initialize slice type");
2085 if (PyType_Ready(&PyStaticMethod_Type
) < 0)
2086 Py_FatalError("Can't initialize static method type");
2088 #ifndef WITHOUT_COMPLEX
2089 if (PyType_Ready(&PyComplex_Type
) < 0)
2090 Py_FatalError("Can't initialize complex type");
2093 if (PyType_Ready(&PyFloat_Type
) < 0)
2094 Py_FatalError("Can't initialize float type");
2096 if (PyType_Ready(&PyBuffer_Type
) < 0)
2097 Py_FatalError("Can't initialize buffer type");
2099 if (PyType_Ready(&PyLong_Type
) < 0)
2100 Py_FatalError("Can't initialize long type");
2102 if (PyType_Ready(&PyInt_Type
) < 0)
2103 Py_FatalError("Can't initialize int type");
2105 if (PyType_Ready(&PyFrozenSet_Type
) < 0)
2106 Py_FatalError("Can't initialize frozenset type");
2108 if (PyType_Ready(&PyProperty_Type
) < 0)
2109 Py_FatalError("Can't initialize property type");
2111 if (PyType_Ready(&PyMemoryView_Type
) < 0)
2112 Py_FatalError("Can't initialize memoryview type");
2114 if (PyType_Ready(&PyTuple_Type
) < 0)
2115 Py_FatalError("Can't initialize tuple type");
2117 if (PyType_Ready(&PyEnum_Type
) < 0)
2118 Py_FatalError("Can't initialize enumerate type");
2120 if (PyType_Ready(&PyReversed_Type
) < 0)
2121 Py_FatalError("Can't initialize reversed type");
2123 if (PyType_Ready(&PyCode_Type
) < 0)
2124 Py_FatalError("Can't initialize code type");
2126 if (PyType_Ready(&PyFrame_Type
) < 0)
2127 Py_FatalError("Can't initialize frame type");
2129 if (PyType_Ready(&PyCFunction_Type
) < 0)
2130 Py_FatalError("Can't initialize builtin function type");
2132 if (PyType_Ready(&PyMethod_Type
) < 0)
2133 Py_FatalError("Can't initialize method type");
2135 if (PyType_Ready(&PyFunction_Type
) < 0)
2136 Py_FatalError("Can't initialize function type");
2138 if (PyType_Ready(&PyClass_Type
) < 0)
2139 Py_FatalError("Can't initialize class type");
2141 if (PyType_Ready(&PyDictProxy_Type
) < 0)
2142 Py_FatalError("Can't initialize dict proxy type");
2144 if (PyType_Ready(&PyGen_Type
) < 0)
2145 Py_FatalError("Can't initialize generator type");
2147 if (PyType_Ready(&PyGetSetDescr_Type
) < 0)
2148 Py_FatalError("Can't initialize get-set descriptor type");
2150 if (PyType_Ready(&PyWrapperDescr_Type
) < 0)
2151 Py_FatalError("Can't initialize wrapper type");
2153 if (PyType_Ready(&PyInstance_Type
) < 0)
2154 Py_FatalError("Can't initialize instance type");
2156 if (PyType_Ready(&PyEllipsis_Type
) < 0)
2157 Py_FatalError("Can't initialize ellipsis type");
2159 if (PyType_Ready(&PyMemberDescr_Type
) < 0)
2160 Py_FatalError("Can't initialize member descriptor type");
2162 if (PyType_Ready(&PyFile_Type
) < 0)
2163 Py_FatalError("Can't initialize file type");
2167 #ifdef Py_TRACE_REFS
2170 _Py_NewReference(PyObject
*op
)
2174 _Py_AddToAllObjects(op
, 1);
2175 _Py_INC_TPALLOCS(op
);
2179 _Py_ForgetReference(register PyObject
*op
)
2181 #ifdef SLOW_UNREF_CHECK
2182 register PyObject
*p
;
2184 if (op
->ob_refcnt
< 0)
2185 Py_FatalError("UNREF negative refcnt");
2186 if (op
== &refchain
||
2187 op
->_ob_prev
->_ob_next
!= op
|| op
->_ob_next
->_ob_prev
!= op
)
2188 Py_FatalError("UNREF invalid object");
2189 #ifdef SLOW_UNREF_CHECK
2190 for (p
= refchain
._ob_next
; p
!= &refchain
; p
= p
->_ob_next
) {
2194 if (p
== &refchain
) /* Not found */
2195 Py_FatalError("UNREF unknown object");
2197 op
->_ob_next
->_ob_prev
= op
->_ob_prev
;
2198 op
->_ob_prev
->_ob_next
= op
->_ob_next
;
2199 op
->_ob_next
= op
->_ob_prev
= NULL
;
2200 _Py_INC_TPFREES(op
);
2204 _Py_Dealloc(PyObject
*op
)
2206 destructor dealloc
= Py_TYPE(op
)->tp_dealloc
;
2207 _Py_ForgetReference(op
);
2211 /* Print all live objects. Because PyObject_Print is called, the
2212 * interpreter must be in a healthy state.
2215 _Py_PrintReferences(FILE *fp
)
2218 fprintf(fp
, "Remaining objects:\n");
2219 for (op
= refchain
._ob_next
; op
!= &refchain
; op
= op
->_ob_next
) {
2220 fprintf(fp
, "%p [%" PY_FORMAT_SIZE_T
"d] ", op
, op
->ob_refcnt
);
2221 if (PyObject_Print(op
, fp
, 0) != 0)
2227 /* Print the addresses of all live objects. Unlike _Py_PrintReferences, this
2228 * doesn't make any calls to the Python C API, so is always safe to call.
2231 _Py_PrintReferenceAddresses(FILE *fp
)
2234 fprintf(fp
, "Remaining object addresses:\n");
2235 for (op
= refchain
._ob_next
; op
!= &refchain
; op
= op
->_ob_next
)
2236 fprintf(fp
, "%p [%" PY_FORMAT_SIZE_T
"d] %s\n", op
,
2237 op
->ob_refcnt
, Py_TYPE(op
)->tp_name
);
2241 _Py_GetObjects(PyObject
*self
, PyObject
*args
)
2247 if (!PyArg_ParseTuple(args
, "i|O", &n
, &t
))
2249 op
= refchain
._ob_next
;
2250 res
= PyList_New(0);
2253 for (i
= 0; (n
== 0 || i
< n
) && op
!= &refchain
; i
++) {
2254 while (op
== self
|| op
== args
|| op
== res
|| op
== t
||
2255 (t
!= NULL
&& Py_TYPE(op
) != (PyTypeObject
*) t
)) {
2257 if (op
== &refchain
)
2260 if (PyList_Append(res
, op
) < 0) {
2272 /* Hack to force loading of cobject.o */
2273 PyTypeObject
*_Py_cobject_hack
= &PyCObject_Type
;
2276 /* Hack to force loading of abstract.o */
2277 Py_ssize_t (*_Py_abstract_hack
)(PyObject
*) = PyObject_Size
;
2280 /* Python's malloc wrappers (see pymem.h) */
2283 PyMem_Malloc(size_t nbytes
)
2285 return PyMem_MALLOC(nbytes
);
2289 PyMem_Realloc(void *p
, size_t nbytes
)
2291 return PyMem_REALLOC(p
, nbytes
);
2301 /* These methods are used to control infinite recursion in repr, str, print,
2302 etc. Container objects that may recursively contain themselves,
2303 e.g. builtin dictionaries and lists, should used Py_ReprEnter() and
2304 Py_ReprLeave() to avoid infinite recursion.
2306 Py_ReprEnter() returns 0 the first time it is called for a particular
2307 object and 1 every time thereafter. It returns -1 if an exception
2308 occurred. Py_ReprLeave() has no return value.
2310 See dictobject.c and listobject.c for examples of use.
2313 #define KEY "Py_Repr"
2316 Py_ReprEnter(PyObject
*obj
)
2322 dict
= PyThreadState_GetDict();
2325 list
= PyDict_GetItemString(dict
, KEY
);
2327 list
= PyList_New(0);
2330 if (PyDict_SetItemString(dict
, KEY
, list
) < 0)
2334 i
= PyList_GET_SIZE(list
);
2336 if (PyList_GET_ITEM(list
, i
) == obj
)
2339 PyList_Append(list
, obj
);
2344 Py_ReprLeave(PyObject
*obj
)
2350 dict
= PyThreadState_GetDict();
2353 list
= PyDict_GetItemString(dict
, KEY
);
2354 if (list
== NULL
|| !PyList_Check(list
))
2356 i
= PyList_GET_SIZE(list
);
2357 /* Count backwards because we always expect obj to be list[-1] */
2359 if (PyList_GET_ITEM(list
, i
) == obj
) {
2360 PyList_SetSlice(list
, i
, i
+ 1, NULL
);
2366 /* Trashcan support. */
2368 /* Current call-stack depth of tp_dealloc calls. */
2369 int _PyTrash_delete_nesting
= 0;
2371 /* List of objects that still need to be cleaned up, singly linked via their
2372 * gc headers' gc_prev pointers.
2374 PyObject
*_PyTrash_delete_later
= NULL
;
2376 /* Add op to the _PyTrash_delete_later list. Called when the current
2377 * call-stack depth gets large. op must be a currently untracked gc'ed
2378 * object, with refcount 0. Py_DECREF must already have been called on it.
2381 _PyTrash_deposit_object(PyObject
*op
)
2383 assert(PyObject_IS_GC(op
));
2384 assert(_Py_AS_GC(op
)->gc
.gc_refs
== _PyGC_REFS_UNTRACKED
);
2385 assert(op
->ob_refcnt
== 0);
2386 _Py_AS_GC(op
)->gc
.gc_prev
= (PyGC_Head
*)_PyTrash_delete_later
;
2387 _PyTrash_delete_later
= op
;
2390 /* Dealloccate all the objects in the _PyTrash_delete_later list. Called when
2391 * the call-stack unwinds again.
2394 _PyTrash_destroy_chain(void)
2396 while (_PyTrash_delete_later
) {
2397 PyObject
*op
= _PyTrash_delete_later
;
2398 destructor dealloc
= Py_TYPE(op
)->tp_dealloc
;
2400 _PyTrash_delete_later
=
2401 (PyObject
*) _Py_AS_GC(op
)->gc
.gc_prev
;
2403 /* Call the deallocator directly. This used to try to
2404 * fool Py_DECREF into calling it indirectly, but
2405 * Py_DECREF was already called on this object, and in
2406 * assorted non-release builds calling Py_DECREF again ends
2407 * up distorting allocation statistics.
2409 assert(op
->ob_refcnt
== 0);
2410 ++_PyTrash_delete_nesting
;
2412 --_PyTrash_delete_nesting
;