Fix some documentation examples involving the repr of a float.
[python.git] / Doc / faq / design.rst
blob02e3fad6b07b38421e2b2a1b634d2e6576711cf6
1 ======================
2 Design and History FAQ
3 ======================
5 Why does Python use indentation for grouping of statements?
6 -----------------------------------------------------------
8 Guido van Rossum believes that using indentation for grouping is extremely
9 elegant and contributes a lot to the clarity of the average Python program.
10 Most people learn to love this feature after awhile.
12 Since there are no begin/end brackets there cannot be a disagreement between
13 grouping perceived by the parser and the human reader.  Occasionally C
14 programmers will encounter a fragment of code like this::
16    if (x <= y)
17            x++;
18            y--;
19    z++;
21 Only the ``x++`` statement is executed if the condition is true, but the
22 indentation leads you to believe otherwise.  Even experienced C programmers will
23 sometimes stare at it a long time wondering why ``y`` is being decremented even
24 for ``x > y``.
26 Because there are no begin/end brackets, Python is much less prone to
27 coding-style conflicts.  In C there are many different ways to place the braces.
28 If you're used to reading and writing code that uses one style, you will feel at
29 least slightly uneasy when reading (or being required to write) another style.
31 Many coding styles place begin/end brackets on a line by themself.  This makes
32 programs considerably longer and wastes valuable screen space, making it harder
33 to get a good overview of a program.  Ideally, a function should fit on one
34 screen (say, 20-30 lines).  20 lines of Python can do a lot more work than 20
35 lines of C.  This is not solely due to the lack of begin/end brackets -- the
36 lack of declarations and the high-level data types are also responsible -- but
37 the indentation-based syntax certainly helps.
40 Why am I getting strange results with simple arithmetic operations?
41 -------------------------------------------------------------------
43 See the next question.
46 Why are floating point calculations so inaccurate?
47 --------------------------------------------------
49 People are often very surprised by results like this::
51    >>> 1.2-1.0
52    0.199999999999999996
54 and think it is a bug in Python. It's not.  This has nothing to do with Python,
55 but with how the underlying C platform handles floating point numbers, and
56 ultimately with the inaccuracies introduced when writing down numbers as a
57 string of a fixed number of digits.
59 The internal representation of floating point numbers uses a fixed number of
60 binary digits to represent a decimal number.  Some decimal numbers can't be
61 represented exactly in binary, resulting in small roundoff errors.
63 In decimal math, there are many numbers that can't be represented with a fixed
64 number of decimal digits, e.g.  1/3 = 0.3333333333.......
66 In base 2, 1/2 = 0.1, 1/4 = 0.01, 1/8 = 0.001, etc.  .2 equals 2/10 equals 1/5,
67 resulting in the binary fractional number 0.001100110011001...
69 Floating point numbers only have 32 or 64 bits of precision, so the digits are
70 cut off at some point, and the resulting number is 0.199999999999999996 in
71 decimal, not 0.2.
73 A floating point number's ``repr()`` function prints as many digits are
74 necessary to make ``eval(repr(f)) == f`` true for any float f.  The ``str()``
75 function prints fewer digits and this often results in the more sensible number
76 that was probably intended::
78    >>> 1.1 - 0.9
79    0.20000000000000007
80    >>> print 1.1 - 0.9
81    0.2
83 One of the consequences of this is that it is error-prone to compare the result
84 of some computation to a float with ``==``. Tiny inaccuracies may mean that
85 ``==`` fails.  Instead, you have to check that the difference between the two
86 numbers is less than a certain threshold::
88    epsilon = 0.0000000000001 # Tiny allowed error
89    expected_result = 0.4
91    if expected_result-epsilon <= computation() <= expected_result+epsilon:
92        ...
94 Please see the chapter on :ref:`floating point arithmetic <tut-fp-issues>` in
95 the Python tutorial for more information.
98 Why are Python strings immutable?
99 ---------------------------------
101 There are several advantages.
103 One is performance: knowing that a string is immutable means we can allocate
104 space for it at creation time, and the storage requirements are fixed and
105 unchanging.  This is also one of the reasons for the distinction between tuples
106 and lists.
108 Another advantage is that strings in Python are considered as "elemental" as
109 numbers.  No amount of activity will change the value 8 to anything else, and in
110 Python, no amount of activity will change the string "eight" to anything else.
113 .. _why-self:
115 Why must 'self' be used explicitly in method definitions and calls?
116 -------------------------------------------------------------------
118 The idea was borrowed from Modula-3.  It turns out to be very useful, for a
119 variety of reasons.
121 First, it's more obvious that you are using a method or instance attribute
122 instead of a local variable.  Reading ``self.x`` or ``self.meth()`` makes it
123 absolutely clear that an instance variable or method is used even if you don't
124 know the class definition by heart.  In C++, you can sort of tell by the lack of
125 a local variable declaration (assuming globals are rare or easily recognizable)
126 -- but in Python, there are no local variable declarations, so you'd have to
127 look up the class definition to be sure.  Some C++ and Java coding standards
128 call for instance attributes to have an ``m_`` prefix, so this explicitness is
129 still useful in those languages, too.
131 Second, it means that no special syntax is necessary if you want to explicitly
132 reference or call the method from a particular class.  In C++, if you want to
133 use a method from a base class which is overridden in a derived class, you have
134 to use the ``::`` operator -- in Python you can write baseclass.methodname(self,
135 <argument list>).  This is particularly useful for :meth:`__init__` methods, and
136 in general in cases where a derived class method wants to extend the base class
137 method of the same name and thus has to call the base class method somehow.
139 Finally, for instance variables it solves a syntactic problem with assignment:
140 since local variables in Python are (by definition!) those variables to which a
141 value assigned in a function body (and that aren't explicitly declared global),
142 there has to be some way to tell the interpreter that an assignment was meant to
143 assign to an instance variable instead of to a local variable, and it should
144 preferably be syntactic (for efficiency reasons).  C++ does this through
145 declarations, but Python doesn't have declarations and it would be a pity having
146 to introduce them just for this purpose.  Using the explicit "self.var" solves
147 this nicely.  Similarly, for using instance variables, having to write
148 "self.var" means that references to unqualified names inside a method don't have
149 to search the instance's directories.  To put it another way, local variables
150 and instance variables live in two different namespaces, and you need to tell
151 Python which namespace to use.
154 Why can't I use an assignment in an expression?
155 -----------------------------------------------
157 Many people used to C or Perl complain that they want to use this C idiom:
159 .. code-block:: c
161    while (line = readline(f)) {
162        // do something with line
163    }
165 where in Python you're forced to write this::
167    while True:
168        line = f.readline()
169        if not line:
170            break
171        ... # do something with line
173 The reason for not allowing assignment in Python expressions is a common,
174 hard-to-find bug in those other languages, caused by this construct:
176 .. code-block:: c
178     if (x = 0) {
179         // error handling
180     }
181     else {
182         // code that only works for nonzero x
183     }
185 The error is a simple typo: ``x = 0``, which assigns 0 to the variable ``x``,
186 was written while the comparison ``x == 0`` is certainly what was intended.
188 Many alternatives have been proposed.  Most are hacks that save some typing but
189 use arbitrary or cryptic syntax or keywords, and fail the simple criterion for
190 language change proposals: it should intuitively suggest the proper meaning to a
191 human reader who has not yet been introduced to the construct.
193 An interesting phenomenon is that most experienced Python programmers recognize
194 the ``while True`` idiom and don't seem to be missing the assignment in
195 expression construct much; it's only newcomers who express a strong desire to
196 add this to the language.
198 There's an alternative way of spelling this that seems attractive but is
199 generally less robust than the "while True" solution::
201    line = f.readline()
202    while line:
203        ... # do something with line...
204        line = f.readline()
206 The problem with this is that if you change your mind about exactly how you get
207 the next line (e.g. you want to change it into ``sys.stdin.readline()``) you
208 have to remember to change two places in your program -- the second occurrence
209 is hidden at the bottom of the loop.
211 The best approach is to use iterators, making it possible to loop through
212 objects using the ``for`` statement.  For example, in the current version of
213 Python file objects support the iterator protocol, so you can now write simply::
215    for line in f:
216        ... # do something with line...
220 Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g. len(list))?
221 ----------------------------------------------------------------------------------------------------------------
223 The major reason is history. Functions were used for those operations that were
224 generic for a group of types and which were intended to work even for objects
225 that didn't have methods at all (e.g. tuples).  It is also convenient to have a
226 function that can readily be applied to an amorphous collection of objects when
227 you use the functional features of Python (``map()``, ``apply()`` et al).
229 In fact, implementing ``len()``, ``max()``, ``min()`` as a built-in function is
230 actually less code than implementing them as methods for each type.  One can
231 quibble about individual cases but it's a part of Python, and it's too late to
232 make such fundamental changes now. The functions have to remain to avoid massive
233 code breakage.
235 .. XXX talk about protocols?
237 Note that for string operations Python has moved from external functions (the
238 ``string`` module) to methods.  However, ``len()`` is still a function.
241 Why is join() a string method instead of a list or tuple method?
242 ----------------------------------------------------------------
244 Strings became much more like other standard types starting in Python 1.6, when
245 methods were added which give the same functionality that has always been
246 available using the functions of the string module.  Most of these new methods
247 have been widely accepted, but the one which appears to make some programmers
248 feel uncomfortable is::
250    ", ".join(['1', '2', '4', '8', '16'])
252 which gives the result::
254    "1, 2, 4, 8, 16"
256 There are two common arguments against this usage.
258 The first runs along the lines of: "It looks really ugly using a method of a
259 string literal (string constant)", to which the answer is that it might, but a
260 string literal is just a fixed value. If the methods are to be allowed on names
261 bound to strings there is no logical reason to make them unavailable on
262 literals.
264 The second objection is typically cast as: "I am really telling a sequence to
265 join its members together with a string constant".  Sadly, you aren't.  For some
266 reason there seems to be much less difficulty with having :meth:`~str.split` as
267 a string method, since in that case it is easy to see that ::
269    "1, 2, 4, 8, 16".split(", ")
271 is an instruction to a string literal to return the substrings delimited by the
272 given separator (or, by default, arbitrary runs of white space).  In this case a
273 Unicode string returns a list of Unicode strings, an ASCII string returns a list
274 of ASCII strings, and everyone is happy.
276 :meth:`~str.join` is a string method because in using it you are telling the
277 separator string to iterate over a sequence of strings and insert itself between
278 adjacent elements.  This method can be used with any argument which obeys the
279 rules for sequence objects, including any new classes you might define yourself.
281 Because this is a string method it can work for Unicode strings as well as plain
282 ASCII strings.  If ``join()`` were a method of the sequence types then the
283 sequence types would have to decide which type of string to return depending on
284 the type of the separator.
286 .. XXX remove next paragraph eventually
288 If none of these arguments persuade you, then for the moment you can continue to
289 use the ``join()`` function from the string module, which allows you to write ::
291    string.join(['1', '2', '4', '8', '16'], ", ")
294 How fast are exceptions?
295 ------------------------
297 A try/except block is extremely efficient.  Actually catching an exception is
298 expensive.  In versions of Python prior to 2.0 it was common to use this idiom::
300    try:
301        value = dict[key]
302    except KeyError:
303        dict[key] = getvalue(key)
304        value = dict[key]
306 This only made sense when you expected the dict to have the key almost all the
307 time.  If that wasn't the case, you coded it like this::
309    if dict.has_key(key):
310        value = dict[key]
311    else:
312        dict[key] = getvalue(key)
313        value = dict[key]
315 (In Python 2.0 and higher, you can code this as ``value = dict.setdefault(key,
316 getvalue(key))``.)
319 Why isn't there a switch or case statement in Python?
320 -----------------------------------------------------
322 You can do this easily enough with a sequence of ``if... elif... elif... else``.
323 There have been some proposals for switch statement syntax, but there is no
324 consensus (yet) on whether and how to do range tests.  See :pep:`275` for
325 complete details and the current status.
327 For cases where you need to choose from a very large number of possibilities,
328 you can create a dictionary mapping case values to functions to call.  For
329 example::
331    def function_1(...):
332        ...
334    functions = {'a': function_1,
335                 'b': function_2,
336                 'c': self.method_1, ...}
338    func = functions[value]
339    func()
341 For calling methods on objects, you can simplify yet further by using the
342 :func:`getattr` built-in to retrieve methods with a particular name::
344    def visit_a(self, ...):
345        ...
346    ...
348    def dispatch(self, value):
349        method_name = 'visit_' + str(value)
350        method = getattr(self, method_name)
351        method()
353 It's suggested that you use a prefix for the method names, such as ``visit_`` in
354 this example.  Without such a prefix, if values are coming from an untrusted
355 source, an attacker would be able to call any method on your object.
358 Can't you emulate threads in the interpreter instead of relying on an OS-specific thread implementation?
359 --------------------------------------------------------------------------------------------------------
361 Answer 1: Unfortunately, the interpreter pushes at least one C stack frame for
362 each Python stack frame.  Also, extensions can call back into Python at almost
363 random moments.  Therefore, a complete threads implementation requires thread
364 support for C.
366 Answer 2: Fortunately, there is `Stackless Python <http://www.stackless.com>`_,
367 which has a completely redesigned interpreter loop that avoids the C stack.
368 It's still experimental but looks very promising.  Although it is binary
369 compatible with standard Python, it's still unclear whether Stackless will make
370 it into the core -- maybe it's just too revolutionary.
373 Why can't lambda forms contain statements?
374 ------------------------------------------
376 Python lambda forms cannot contain statements because Python's syntactic
377 framework can't handle statements nested inside expressions.  However, in
378 Python, this is not a serious problem.  Unlike lambda forms in other languages,
379 where they add functionality, Python lambdas are only a shorthand notation if
380 you're too lazy to define a function.
382 Functions are already first class objects in Python, and can be declared in a
383 local scope.  Therefore the only advantage of using a lambda form instead of a
384 locally-defined function is that you don't need to invent a name for the
385 function -- but that's just a local variable to which the function object (which
386 is exactly the same type of object that a lambda form yields) is assigned!
389 Can Python be compiled to machine code, C or some other language?
390 -----------------------------------------------------------------
392 Not easily.  Python's high level data types, dynamic typing of objects and
393 run-time invocation of the interpreter (using :func:`eval` or :keyword:`exec`)
394 together mean that a "compiled" Python program would probably consist mostly of
395 calls into the Python run-time system, even for seemingly simple operations like
396 ``x+1``.
398 Several projects described in the Python newsgroup or at past `Python
399 conferences <http://python.org/community/workshops/>`_ have shown that this
400 approach is feasible, although the speedups reached so far are only modest
401 (e.g. 2x).  Jython uses the same strategy for compiling to Java bytecode.  (Jim
402 Hugunin has demonstrated that in combination with whole-program analysis,
403 speedups of 1000x are feasible for small demo programs.  See the proceedings
404 from the `1997 Python conference
405 <http://python.org/workshops/1997-10/proceedings/>`_ for more information.)
407 Internally, Python source code is always translated into a bytecode
408 representation, and this bytecode is then executed by the Python virtual
409 machine.  In order to avoid the overhead of repeatedly parsing and translating
410 modules that rarely change, this byte code is written into a file whose name
411 ends in ".pyc" whenever a module is parsed.  When the corresponding .py file is
412 changed, it is parsed and translated again and the .pyc file is rewritten.
414 There is no performance difference once the .pyc file has been loaded, as the
415 bytecode read from the .pyc file is exactly the same as the bytecode created by
416 direct translation.  The only difference is that loading code from a .pyc file
417 is faster than parsing and translating a .py file, so the presence of
418 precompiled .pyc files improves the start-up time of Python scripts.  If
419 desired, the Lib/compileall.py module can be used to create valid .pyc files for
420 a given set of modules.
422 Note that the main script executed by Python, even if its filename ends in .py,
423 is not compiled to a .pyc file.  It is compiled to bytecode, but the bytecode is
424 not saved to a file.  Usually main scripts are quite short, so this doesn't cost
425 much speed.
427 .. XXX check which of these projects are still alive
429 There are also several programs which make it easier to intermingle Python and C
430 code in various ways to increase performance.  See, for example, `Psyco
431 <http://psyco.sourceforge.net/>`_, `Pyrex
432 <http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/>`_, `PyInline
433 <http://pyinline.sourceforge.net/>`_, `Py2Cmod
434 <http://sourceforge.net/projects/py2cmod/>`_, and `Weave
435 <http://www.scipy.org/site_content/weave>`_.
438 How does Python manage memory?
439 ------------------------------
441 The details of Python memory management depend on the implementation.  The
442 standard C implementation of Python uses reference counting to detect
443 inaccessible objects, and another mechanism to collect reference cycles,
444 periodically executing a cycle detection algorithm which looks for inaccessible
445 cycles and deletes the objects involved. The :mod:`gc` module provides functions
446 to perform a garbage collection, obtain debugging statistics, and tune the
447 collector's parameters.
449 Jython relies on the Java runtime so the JVM's garbage collector is used.  This
450 difference can cause some subtle porting problems if your Python code depends on
451 the behavior of the reference counting implementation.
453 Sometimes objects get stuck in tracebacks temporarily and hence are not
454 deallocated when you might expect.  Clear the tracebacks with::
456    import sys
457    sys.exc_clear()
458    sys.exc_traceback = sys.last_traceback = None
460 Tracebacks are used for reporting errors, implementing debuggers and related
461 things.  They contain a portion of the program state extracted during the
462 handling of an exception (usually the most recent exception).
464 In the absence of circularities and tracebacks, Python programs need not
465 explicitly manage memory.
467 Why doesn't Python use a more traditional garbage collection scheme?  For one
468 thing, this is not a C standard feature and hence it's not portable.  (Yes, we
469 know about the Boehm GC library.  It has bits of assembler code for *most*
470 common platforms, not for all of them, and although it is mostly transparent, it
471 isn't completely transparent; patches are required to get Python to work with
472 it.)
474 Traditional GC also becomes a problem when Python is embedded into other
475 applications.  While in a standalone Python it's fine to replace the standard
476 malloc() and free() with versions provided by the GC library, an application
477 embedding Python may want to have its *own* substitute for malloc() and free(),
478 and may not want Python's.  Right now, Python works with anything that
479 implements malloc() and free() properly.
481 In Jython, the following code (which is fine in CPython) will probably run out
482 of file descriptors long before it runs out of memory::
484    for file in <very long list of files>:
485        f = open(file)
486        c = f.read(1)
488 Using the current reference counting and destructor scheme, each new assignment
489 to f closes the previous file.  Using GC, this is not guaranteed.  If you want
490 to write code that will work with any Python implementation, you should
491 explicitly close the file; this will work regardless of GC::
493    for file in <very long list of files>:
494        f = open(file)
495        c = f.read(1)
496        f.close()
499 Why isn't all memory freed when Python exits?
500 ---------------------------------------------
502 Objects referenced from the global namespaces of Python modules are not always
503 deallocated when Python exits.  This may happen if there are circular
504 references.  There are also certain bits of memory that are allocated by the C
505 library that are impossible to free (e.g. a tool like Purify will complain about
506 these).  Python is, however, aggressive about cleaning up memory on exit and
507 does try to destroy every single object.
509 If you want to force Python to delete certain things on deallocation use the
510 :mod:`atexit` module to run a function that will force those deletions.
513 Why are there separate tuple and list data types?
514 -------------------------------------------------
516 Lists and tuples, while similar in many respects, are generally used in
517 fundamentally different ways.  Tuples can be thought of as being similar to
518 Pascal records or C structs; they're small collections of related data which may
519 be of different types which are operated on as a group.  For example, a
520 Cartesian coordinate is appropriately represented as a tuple of two or three
521 numbers.
523 Lists, on the other hand, are more like arrays in other languages.  They tend to
524 hold a varying number of objects all of which have the same type and which are
525 operated on one-by-one.  For example, ``os.listdir('.')`` returns a list of
526 strings representing the files in the current directory.  Functions which
527 operate on this output would generally not break if you added another file or
528 two to the directory.
530 Tuples are immutable, meaning that once a tuple has been created, you can't
531 replace any of its elements with a new value.  Lists are mutable, meaning that
532 you can always change a list's elements.  Only immutable elements can be used as
533 dictionary keys, and hence only tuples and not lists can be used as keys.
536 How are lists implemented?
537 --------------------------
539 Python's lists are really variable-length arrays, not Lisp-style linked lists.
540 The implementation uses a contiguous array of references to other objects, and
541 keeps a pointer to this array and the array's length in a list head structure.
543 This makes indexing a list ``a[i]`` an operation whose cost is independent of
544 the size of the list or the value of the index.
546 When items are appended or inserted, the array of references is resized.  Some
547 cleverness is applied to improve the performance of appending items repeatedly;
548 when the array must be grown, some extra space is allocated so the next few
549 times don't require an actual resize.
552 How are dictionaries implemented?
553 ---------------------------------
555 Python's dictionaries are implemented as resizable hash tables.  Compared to
556 B-trees, this gives better performance for lookup (the most common operation by
557 far) under most circumstances, and the implementation is simpler.
559 Dictionaries work by computing a hash code for each key stored in the dictionary
560 using the :func:`hash` built-in function.  The hash code varies widely depending
561 on the key; for example, "Python" hashes to -539294296 while "python", a string
562 that differs by a single bit, hashes to 1142331976.  The hash code is then used
563 to calculate a location in an internal array where the value will be stored.
564 Assuming that you're storing keys that all have different hash values, this
565 means that dictionaries take constant time -- O(1), in computer science notation
566 -- to retrieve a key.  It also means that no sorted order of the keys is
567 maintained, and traversing the array as the ``.keys()`` and ``.items()`` do will
568 output the dictionary's content in some arbitrary jumbled order.
571 Why must dictionary keys be immutable?
572 --------------------------------------
574 The hash table implementation of dictionaries uses a hash value calculated from
575 the key value to find the key.  If the key were a mutable object, its value
576 could change, and thus its hash could also change.  But since whoever changes
577 the key object can't tell that it was being used as a dictionary key, it can't
578 move the entry around in the dictionary.  Then, when you try to look up the same
579 object in the dictionary it won't be found because its hash value is different.
580 If you tried to look up the old value it wouldn't be found either, because the
581 value of the object found in that hash bin would be different.
583 If you want a dictionary indexed with a list, simply convert the list to a tuple
584 first; the function ``tuple(L)`` creates a tuple with the same entries as the
585 list ``L``.  Tuples are immutable and can therefore be used as dictionary keys.
587 Some unacceptable solutions that have been proposed:
589 - Hash lists by their address (object ID).  This doesn't work because if you
590   construct a new list with the same value it won't be found; e.g.::
592      d = {[1,2]: '12'}
593      print d[[1,2]]
595   would raise a KeyError exception because the id of the ``[1,2]`` used in the
596   second line differs from that in the first line.  In other words, dictionary
597   keys should be compared using ``==``, not using :keyword:`is`.
599 - Make a copy when using a list as a key.  This doesn't work because the list,
600   being a mutable object, could contain a reference to itself, and then the
601   copying code would run into an infinite loop.
603 - Allow lists as keys but tell the user not to modify them.  This would allow a
604   class of hard-to-track bugs in programs when you forgot or modified a list by
605   accident. It also invalidates an important invariant of dictionaries: every
606   value in ``d.keys()`` is usable as a key of the dictionary.
608 - Mark lists as read-only once they are used as a dictionary key.  The problem
609   is that it's not just the top-level object that could change its value; you
610   could use a tuple containing a list as a key.  Entering anything as a key into
611   a dictionary would require marking all objects reachable from there as
612   read-only -- and again, self-referential objects could cause an infinite loop.
614 There is a trick to get around this if you need to, but use it at your own risk:
615 You can wrap a mutable structure inside a class instance which has both a
616 :meth:`__cmp_` and a :meth:`__hash__` method.  You must then make sure that the
617 hash value for all such wrapper objects that reside in a dictionary (or other
618 hash based structure), remain fixed while the object is in the dictionary (or
619 other structure). ::
621    class ListWrapper:
622        def __init__(self, the_list):
623            self.the_list = the_list
624        def __cmp__(self, other):
625            return self.the_list == other.the_list
626        def __hash__(self):
627            l = self.the_list
628            result = 98767 - len(l)*555
629            for i in range(len(l)):
630                try:
631                    result = result + (hash(l[i]) % 9999999) * 1001 + i
632                except:
633                    result = (result % 7777777) + i * 333
634            return result
636 Note that the hash computation is complicated by the possibility that some
637 members of the list may be unhashable and also by the possibility of arithmetic
638 overflow.
640 Furthermore it must always be the case that if ``o1 == o2`` (ie ``o1.__cmp__(o2)
641 == 0``) then ``hash(o1) == hash(o2)`` (ie, ``o1.__hash__() == o2.__hash__()``),
642 regardless of whether the object is in a dictionary or not.  If you fail to meet
643 these restrictions dictionaries and other hash based structures will misbehave.
645 In the case of ListWrapper, whenever the wrapper object is in a dictionary the
646 wrapped list must not change to avoid anomalies.  Don't do this unless you are
647 prepared to think hard about the requirements and the consequences of not
648 meeting them correctly.  Consider yourself warned.
651 Why doesn't list.sort() return the sorted list?
652 -----------------------------------------------
654 In situations where performance matters, making a copy of the list just to sort
655 it would be wasteful. Therefore, :meth:`list.sort` sorts the list in place. In
656 order to remind you of that fact, it does not return the sorted list.  This way,
657 you won't be fooled into accidentally overwriting a list when you need a sorted
658 copy but also need to keep the unsorted version around.
660 In Python 2.4 a new builtin -- :func:`sorted` -- has been added.  This function
661 creates a new list from a provided iterable, sorts it and returns it.  For
662 example, here's how to iterate over the keys of a dictionary in sorted order::
664    for key in sorted(dict.iterkeys()):
665        ... # do whatever with dict[key]...
668 How do you specify and enforce an interface spec in Python?
669 -----------------------------------------------------------
671 An interface specification for a module as provided by languages such as C++ and
672 Java describes the prototypes for the methods and functions of the module.  Many
673 feel that compile-time enforcement of interface specifications helps in the
674 construction of large programs.
676 Python 2.6 adds an :mod:`abc` module that lets you define Abstract Base Classes
677 (ABCs).  You can then use :func:`isinstance` and :func:`issubclass` to check
678 whether an instance or a class implements a particular ABC.  The
679 :mod:`collections` modules defines a set of useful ABCs such as
680 :class:`Iterable`, :class:`Container`, and :class:`MutableMapping`.
682 For Python, many of the advantages of interface specifications can be obtained
683 by an appropriate test discipline for components.  There is also a tool,
684 PyChecker, which can be used to find problems due to subclassing.
686 A good test suite for a module can both provide a regression test and serve as a
687 module interface specification and a set of examples.  Many Python modules can
688 be run as a script to provide a simple "self test."  Even modules which use
689 complex external interfaces can often be tested in isolation using trivial
690 "stub" emulations of the external interface.  The :mod:`doctest` and
691 :mod:`unittest` modules or third-party test frameworks can be used to construct
692 exhaustive test suites that exercise every line of code in a module.
694 An appropriate testing discipline can help build large complex applications in
695 Python as well as having interface specifications would.  In fact, it can be
696 better because an interface specification cannot test certain properties of a
697 program.  For example, the :meth:`append` method is expected to add new elements
698 to the end of some internal list; an interface specification cannot test that
699 your :meth:`append` implementation will actually do this correctly, but it's
700 trivial to check this property in a test suite.
702 Writing test suites is very helpful, and you might want to design your code with
703 an eye to making it easily tested.  One increasingly popular technique,
704 test-directed development, calls for writing parts of the test suite first,
705 before you write any of the actual code.  Of course Python allows you to be
706 sloppy and not write test cases at all.
709 Why are default values shared between objects?
710 ----------------------------------------------
712 This type of bug commonly bites neophyte programmers.  Consider this function::
714    def foo(D={}):  # Danger: shared reference to one dict for all calls
715        ... compute something ...
716        D[key] = value
717        return D
719 The first time you call this function, ``D`` contains a single item.  The second
720 time, ``D`` contains two items because when ``foo()`` begins executing, ``D``
721 starts out with an item already in it.
723 It is often expected that a function call creates new objects for default
724 values. This is not what happens. Default values are created exactly once, when
725 the function is defined.  If that object is changed, like the dictionary in this
726 example, subsequent calls to the function will refer to this changed object.
728 By definition, immutable objects such as numbers, strings, tuples, and ``None``,
729 are safe from change. Changes to mutable objects such as dictionaries, lists,
730 and class instances can lead to confusion.
732 Because of this feature, it is good programming practice to not use mutable
733 objects as default values.  Instead, use ``None`` as the default value and
734 inside the function, check if the parameter is ``None`` and create a new
735 list/dictionary/whatever if it is.  For example, don't write::
737    def foo(dict={}):
738        ...
740 but::
742    def foo(dict=None):
743        if dict is None:
744            dict = {} # create a new dict for local namespace
746 This feature can be useful.  When you have a function that's time-consuming to
747 compute, a common technique is to cache the parameters and the resulting value
748 of each call to the function, and return the cached value if the same value is
749 requested again.  This is called "memoizing", and can be implemented like this::
751    # Callers will never provide a third parameter for this function.
752    def expensive (arg1, arg2, _cache={}):
753        if _cache.has_key((arg1, arg2)):
754            return _cache[(arg1, arg2)]
756        # Calculate the value
757        result = ... expensive computation ...
758        _cache[(arg1, arg2)] = result           # Store result in the cache
759        return result
761 You could use a global variable containing a dictionary instead of the default
762 value; it's a matter of taste.
765 Why is there no goto?
766 ---------------------
768 You can use exceptions to provide a "structured goto" that even works across
769 function calls.  Many feel that exceptions can conveniently emulate all
770 reasonable uses of the "go" or "goto" constructs of C, Fortran, and other
771 languages.  For example::
773    class label: pass # declare a label
775    try:
776         ...
777         if (condition): raise label() # goto label
778         ...
779    except label: # where to goto
780         pass
781    ...
783 This doesn't allow you to jump into the middle of a loop, but that's usually
784 considered an abuse of goto anyway.  Use sparingly.
787 Why can't raw strings (r-strings) end with a backslash?
788 -------------------------------------------------------
790 More precisely, they can't end with an odd number of backslashes: the unpaired
791 backslash at the end escapes the closing quote character, leaving an
792 unterminated string.
794 Raw strings were designed to ease creating input for processors (chiefly regular
795 expression engines) that want to do their own backslash escape processing. Such
796 processors consider an unmatched trailing backslash to be an error anyway, so
797 raw strings disallow that.  In return, they allow you to pass on the string
798 quote character by escaping it with a backslash.  These rules work well when
799 r-strings are used for their intended purpose.
801 If you're trying to build Windows pathnames, note that all Windows system calls
802 accept forward slashes too::
804    f = open("/mydir/file.txt") # works fine!
806 If you're trying to build a pathname for a DOS command, try e.g. one of ::
808    dir = r"\this\is\my\dos\dir" "\\"
809    dir = r"\this\is\my\dos\dir\ "[:-1]
810    dir = "\\this\\is\\my\\dos\\dir\\"
813 Why doesn't Python have a "with" statement for attribute assignments?
814 ---------------------------------------------------------------------
816 Python has a 'with' statement that wraps the execution of a block, calling code
817 on the entrance and exit from the block.  Some language have a construct that
818 looks like this::
820    with obj:
821        a = 1    # equivalent to obj.a = 1
822        total = total + 1   # obj.total = obj.total + 1
824 In Python, such a construct would be ambiguous.
826 Other languages, such as Object Pascal, Delphi, and C++, use static types, so
827 it's possible to know, in an unambiguous way, what member is being assigned
828 to. This is the main point of static typing -- the compiler *always* knows the
829 scope of every variable at compile time.
831 Python uses dynamic types. It is impossible to know in advance which attribute
832 will be referenced at runtime. Member attributes may be added or removed from
833 objects on the fly. This makes it impossible to know, from a simple reading,
834 what attribute is being referenced: a local one, a global one, or a member
835 attribute?
837 For instance, take the following incomplete snippet::
839    def foo(a):
840        with a:
841            print x
843 The snippet assumes that "a" must have a member attribute called "x".  However,
844 there is nothing in Python that tells the interpreter this. What should happen
845 if "a" is, let us say, an integer?  If there is a global variable named "x",
846 will it be used inside the with block?  As you see, the dynamic nature of Python
847 makes such choices much harder.
849 The primary benefit of "with" and similar language features (reduction of code
850 volume) can, however, easily be achieved in Python by assignment.  Instead of::
852    function(args).dict[index][index].a = 21
853    function(args).dict[index][index].b = 42
854    function(args).dict[index][index].c = 63
856 write this::
858    ref = function(args).dict[index][index]
859    ref.a = 21
860    ref.b = 42
861    ref.c = 63
863 This also has the side-effect of increasing execution speed because name
864 bindings are resolved at run-time in Python, and the second version only needs
865 to perform the resolution once.  If the referenced object does not have a, b and
866 c attributes, of course, the end result is still a run-time exception.
869 Why are colons required for the if/while/def/class statements?
870 --------------------------------------------------------------
872 The colon is required primarily to enhance readability (one of the results of
873 the experimental ABC language).  Consider this::
875    if a == b
876        print a
878 versus ::
880    if a == b:
881        print a
883 Notice how the second one is slightly easier to read.  Notice further how a
884 colon sets off the example in this FAQ answer; it's a standard usage in English.
886 Another minor reason is that the colon makes it easier for editors with syntax
887 highlighting; they can look for colons to decide when indentation needs to be
888 increased instead of having to do a more elaborate parsing of the program text.
891 Why does Python allow commas at the end of lists and tuples?
892 ------------------------------------------------------------
894 Python lets you add a trailing comma at the end of lists, tuples, and
895 dictionaries::
897    [1, 2, 3,]
898    ('a', 'b', 'c',)
899    d = {
900        "A": [1, 5],
901        "B": [6, 7],  # last trailing comma is optional but good style
902    }
905 There are several reasons to allow this.
907 When you have a literal value for a list, tuple, or dictionary spread across
908 multiple lines, it's easier to add more elements because you don't have to
909 remember to add a comma to the previous line.  The lines can also be sorted in
910 your editor without creating a syntax error.
912 Accidentally omitting the comma can lead to errors that are hard to diagnose.
913 For example::
915        x = [
916          "fee",
917          "fie"
918          "foo",
919          "fum"
920        ]
922 This list looks like it has four elements, but it actually contains three:
923 "fee", "fiefoo" and "fum".  Always adding the comma avoids this source of error.
925 Allowing the trailing comma may also make programmatic code generation easier.