Add introductory paragraphs summarizing the release; minor edits
[pytest.git] / Objects / object.c
blob73c89417eb8c4f1dd92b895054a425048307ff59
2 /* Generic object operations; and implementation of None (NoObject) */
4 #include "Python.h"
6 #ifdef __cplusplus
7 extern "C" {
8 #endif
10 #ifdef Py_REF_DEBUG
11 Py_ssize_t _Py_RefTotal;
13 Py_ssize_t
14 _Py_GetRefTotal(void)
16 PyObject *o;
17 Py_ssize_t total = _Py_RefTotal;
18 /* ignore the references to the dummy object of the dicts and sets
19 because they are not reliable and not useful (now that the
20 hash table code is well-tested) */
21 o = _PyDict_Dummy();
22 if (o != NULL)
23 total -= o->ob_refcnt;
24 o = _PySet_Dummy();
25 if (o != NULL)
26 total -= o->ob_refcnt;
27 return total;
29 #endif /* Py_REF_DEBUG */
31 int Py_DivisionWarningFlag;
33 /* Object allocation routines used by NEWOBJ and NEWVAROBJ macros.
34 These are used by the individual routines for object creation.
35 Do not call them otherwise, they do not initialize the object! */
37 #ifdef Py_TRACE_REFS
38 /* Head of circular doubly-linked list of all objects. These are linked
39 * together via the _ob_prev and _ob_next members of a PyObject, which
40 * exist only in a Py_TRACE_REFS build.
42 static PyObject refchain = {&refchain, &refchain};
44 /* Insert op at the front of the list of all objects. If force is true,
45 * op is added even if _ob_prev and _ob_next are non-NULL already. If
46 * force is false amd _ob_prev or _ob_next are non-NULL, do nothing.
47 * force should be true if and only if op points to freshly allocated,
48 * uninitialized memory, or you've unlinked op from the list and are
49 * relinking it into the front.
50 * Note that objects are normally added to the list via _Py_NewReference,
51 * which is called by PyObject_Init. Not all objects are initialized that
52 * way, though; exceptions include statically allocated type objects, and
53 * statically allocated singletons (like Py_True and Py_None).
55 void
56 _Py_AddToAllObjects(PyObject *op, int force)
58 #ifdef Py_DEBUG
59 if (!force) {
60 /* If it's initialized memory, op must be in or out of
61 * the list unambiguously.
63 assert((op->_ob_prev == NULL) == (op->_ob_next == NULL));
65 #endif
66 if (force || op->_ob_prev == NULL) {
67 op->_ob_next = refchain._ob_next;
68 op->_ob_prev = &refchain;
69 refchain._ob_next->_ob_prev = op;
70 refchain._ob_next = op;
73 #endif /* Py_TRACE_REFS */
75 #ifdef COUNT_ALLOCS
76 static PyTypeObject *type_list;
77 /* All types are added to type_list, at least when
78 they get one object created. That makes them
79 immortal, which unfortunately contributes to
80 garbage itself. If unlist_types_without_objects
81 is set, they will be removed from the type_list
82 once the last object is deallocated. */
83 int unlist_types_without_objects;
84 extern int tuple_zero_allocs, fast_tuple_allocs;
85 extern int quick_int_allocs, quick_neg_int_allocs;
86 extern int null_strings, one_strings;
87 void
88 dump_counts(FILE* f)
90 PyTypeObject *tp;
92 for (tp = type_list; tp; tp = tp->tp_next)
93 fprintf(f, "%s alloc'd: %d, freed: %d, max in use: %d\n",
94 tp->tp_name, tp->tp_allocs, tp->tp_frees,
95 tp->tp_maxalloc);
96 fprintf(f, "fast tuple allocs: %d, empty: %d\n",
97 fast_tuple_allocs, tuple_zero_allocs);
98 fprintf(f, "fast int allocs: pos: %d, neg: %d\n",
99 quick_int_allocs, quick_neg_int_allocs);
100 fprintf(f, "null strings: %d, 1-strings: %d\n",
101 null_strings, one_strings);
104 PyObject *
105 get_counts(void)
107 PyTypeObject *tp;
108 PyObject *result;
109 PyObject *v;
111 result = PyList_New(0);
112 if (result == NULL)
113 return NULL;
114 for (tp = type_list; tp; tp = tp->tp_next) {
115 v = Py_BuildValue("(snnn)", tp->tp_name, tp->tp_allocs,
116 tp->tp_frees, tp->tp_maxalloc);
117 if (v == NULL) {
118 Py_DECREF(result);
119 return NULL;
121 if (PyList_Append(result, v) < 0) {
122 Py_DECREF(v);
123 Py_DECREF(result);
124 return NULL;
126 Py_DECREF(v);
128 return result;
131 void
132 inc_count(PyTypeObject *tp)
134 if (tp->tp_next == NULL && tp->tp_prev == NULL) {
135 /* first time; insert in linked list */
136 if (tp->tp_next != NULL) /* sanity check */
137 Py_FatalError("XXX inc_count sanity check");
138 if (type_list)
139 type_list->tp_prev = tp;
140 tp->tp_next = type_list;
141 /* Note that as of Python 2.2, heap-allocated type objects
142 * can go away, but this code requires that they stay alive
143 * until program exit. That's why we're careful with
144 * refcounts here. type_list gets a new reference to tp,
145 * while ownership of the reference type_list used to hold
146 * (if any) was transferred to tp->tp_next in the line above.
147 * tp is thus effectively immortal after this.
149 Py_INCREF(tp);
150 type_list = tp;
151 #ifdef Py_TRACE_REFS
152 /* Also insert in the doubly-linked list of all objects,
153 * if not already there.
155 _Py_AddToAllObjects((PyObject *)tp, 0);
156 #endif
158 tp->tp_allocs++;
159 if (tp->tp_allocs - tp->tp_frees > tp->tp_maxalloc)
160 tp->tp_maxalloc = tp->tp_allocs - tp->tp_frees;
163 void dec_count(PyTypeObject *tp)
165 tp->tp_frees++;
166 if (unlist_types_without_objects &&
167 tp->tp_allocs == tp->tp_frees) {
168 /* unlink the type from type_list */
169 if (tp->tp_prev)
170 tp->tp_prev->tp_next = tp->tp_next;
171 else
172 type_list = tp->tp_next;
173 if (tp->tp_next)
174 tp->tp_next->tp_prev = tp->tp_prev;
175 tp->tp_next = tp->tp_prev = NULL;
176 Py_DECREF(tp);
180 #endif
182 #ifdef Py_REF_DEBUG
183 /* Log a fatal error; doesn't return. */
184 void
185 _Py_NegativeRefcount(const char *fname, int lineno, PyObject *op)
187 char buf[300];
189 PyOS_snprintf(buf, sizeof(buf),
190 "%s:%i object at %p has negative ref count "
191 "%" PY_FORMAT_SIZE_T "d",
192 fname, lineno, op, op->ob_refcnt);
193 Py_FatalError(buf);
196 #endif /* Py_REF_DEBUG */
198 void
199 Py_IncRef(PyObject *o)
201 Py_XINCREF(o);
204 void
205 Py_DecRef(PyObject *o)
207 Py_XDECREF(o);
210 PyObject *
211 PyObject_Init(PyObject *op, PyTypeObject *tp)
213 if (op == NULL)
214 return PyErr_NoMemory();
215 /* Any changes should be reflected in PyObject_INIT (objimpl.h) */
216 op->ob_type = tp;
217 _Py_NewReference(op);
218 return op;
221 PyVarObject *
222 PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, Py_ssize_t size)
224 if (op == NULL)
225 return (PyVarObject *) PyErr_NoMemory();
226 /* Any changes should be reflected in PyObject_INIT_VAR */
227 op->ob_size = size;
228 op->ob_type = tp;
229 _Py_NewReference((PyObject *)op);
230 return op;
233 PyObject *
234 _PyObject_New(PyTypeObject *tp)
236 PyObject *op;
237 op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp));
238 if (op == NULL)
239 return PyErr_NoMemory();
240 return PyObject_INIT(op, tp);
243 PyVarObject *
244 _PyObject_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
246 PyVarObject *op;
247 const size_t size = _PyObject_VAR_SIZE(tp, nitems);
248 op = (PyVarObject *) PyObject_MALLOC(size);
249 if (op == NULL)
250 return (PyVarObject *)PyErr_NoMemory();
251 return PyObject_INIT_VAR(op, tp, nitems);
254 /* for binary compatibility with 2.2 */
255 #undef _PyObject_Del
256 void
257 _PyObject_Del(PyObject *op)
259 PyObject_FREE(op);
262 /* Implementation of PyObject_Print with recursion checking */
263 static int
264 internal_print(PyObject *op, FILE *fp, int flags, int nesting)
266 int ret = 0;
267 if (nesting > 10) {
268 PyErr_SetString(PyExc_RuntimeError, "print recursion");
269 return -1;
271 if (PyErr_CheckSignals())
272 return -1;
273 #ifdef USE_STACKCHECK
274 if (PyOS_CheckStack()) {
275 PyErr_SetString(PyExc_MemoryError, "stack overflow");
276 return -1;
278 #endif
279 clearerr(fp); /* Clear any previous error condition */
280 if (op == NULL) {
281 fprintf(fp, "<nil>");
283 else {
284 if (op->ob_refcnt <= 0)
285 /* XXX(twouters) cast refcount to long until %zd is
286 universally available */
287 fprintf(fp, "<refcnt %ld at %p>",
288 (long)op->ob_refcnt, op);
289 else if (op->ob_type->tp_print == NULL) {
290 PyObject *s;
291 if (flags & Py_PRINT_RAW)
292 s = PyObject_Str(op);
293 else
294 s = PyObject_Repr(op);
295 if (s == NULL)
296 ret = -1;
297 else {
298 ret = internal_print(s, fp, Py_PRINT_RAW,
299 nesting+1);
301 Py_XDECREF(s);
303 else
304 ret = (*op->ob_type->tp_print)(op, fp, flags);
306 if (ret == 0) {
307 if (ferror(fp)) {
308 PyErr_SetFromErrno(PyExc_IOError);
309 clearerr(fp);
310 ret = -1;
313 return ret;
317 PyObject_Print(PyObject *op, FILE *fp, int flags)
319 return internal_print(op, fp, flags, 0);
323 /* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */
324 void _PyObject_Dump(PyObject* op)
326 if (op == NULL)
327 fprintf(stderr, "NULL\n");
328 else {
329 fprintf(stderr, "object : ");
330 (void)PyObject_Print(op, stderr, 0);
331 /* XXX(twouters) cast refcount to long until %zd is
332 universally available */
333 fprintf(stderr, "\n"
334 "type : %s\n"
335 "refcount: %ld\n"
336 "address : %p\n",
337 op->ob_type==NULL ? "NULL" : op->ob_type->tp_name,
338 (long)op->ob_refcnt,
339 op);
343 PyObject *
344 PyObject_Repr(PyObject *v)
346 if (PyErr_CheckSignals())
347 return NULL;
348 #ifdef USE_STACKCHECK
349 if (PyOS_CheckStack()) {
350 PyErr_SetString(PyExc_MemoryError, "stack overflow");
351 return NULL;
353 #endif
354 if (v == NULL)
355 return PyString_FromString("<NULL>");
356 else if (v->ob_type->tp_repr == NULL)
357 return PyString_FromFormat("<%s object at %p>",
358 v->ob_type->tp_name, v);
359 else {
360 PyObject *res;
361 res = (*v->ob_type->tp_repr)(v);
362 if (res == NULL)
363 return NULL;
364 #ifdef Py_USING_UNICODE
365 if (PyUnicode_Check(res)) {
366 PyObject* str;
367 str = PyUnicode_AsEncodedString(res, NULL, NULL);
368 Py_DECREF(res);
369 if (str)
370 res = str;
371 else
372 return NULL;
374 #endif
375 if (!PyString_Check(res)) {
376 PyErr_Format(PyExc_TypeError,
377 "__repr__ returned non-string (type %.200s)",
378 res->ob_type->tp_name);
379 Py_DECREF(res);
380 return NULL;
382 return res;
386 PyObject *
387 _PyObject_Str(PyObject *v)
389 PyObject *res;
390 int type_ok;
391 if (v == NULL)
392 return PyString_FromString("<NULL>");
393 if (PyString_CheckExact(v)) {
394 Py_INCREF(v);
395 return v;
397 #ifdef Py_USING_UNICODE
398 if (PyUnicode_CheckExact(v)) {
399 Py_INCREF(v);
400 return v;
402 #endif
403 if (v->ob_type->tp_str == NULL)
404 return PyObject_Repr(v);
406 res = (*v->ob_type->tp_str)(v);
407 if (res == NULL)
408 return NULL;
409 type_ok = PyString_Check(res);
410 #ifdef Py_USING_UNICODE
411 type_ok = type_ok || PyUnicode_Check(res);
412 #endif
413 if (!type_ok) {
414 PyErr_Format(PyExc_TypeError,
415 "__str__ returned non-string (type %.200s)",
416 res->ob_type->tp_name);
417 Py_DECREF(res);
418 return NULL;
420 return res;
423 PyObject *
424 PyObject_Str(PyObject *v)
426 PyObject *res = _PyObject_Str(v);
427 if (res == NULL)
428 return NULL;
429 #ifdef Py_USING_UNICODE
430 if (PyUnicode_Check(res)) {
431 PyObject* str;
432 str = PyUnicode_AsEncodedString(res, NULL, NULL);
433 Py_DECREF(res);
434 if (str)
435 res = str;
436 else
437 return NULL;
439 #endif
440 assert(PyString_Check(res));
441 return res;
444 #ifdef Py_USING_UNICODE
445 PyObject *
446 PyObject_Unicode(PyObject *v)
448 PyObject *res;
449 PyObject *func;
450 PyObject *str;
451 static PyObject *unicodestr;
453 if (v == NULL) {
454 res = PyString_FromString("<NULL>");
455 if (res == NULL)
456 return NULL;
457 str = PyUnicode_FromEncodedObject(res, NULL, "strict");
458 Py_DECREF(res);
459 return str;
460 } else if (PyUnicode_CheckExact(v)) {
461 Py_INCREF(v);
462 return v;
464 /* XXX As soon as we have a tp_unicode slot, we should
465 check this before trying the __unicode__
466 method. */
467 if (unicodestr == NULL) {
468 unicodestr= PyString_InternFromString("__unicode__");
469 if (unicodestr == NULL)
470 return NULL;
472 func = PyObject_GetAttr(v, unicodestr);
473 if (func != NULL) {
474 res = PyEval_CallObject(func, (PyObject *)NULL);
475 Py_DECREF(func);
477 else {
478 PyErr_Clear();
479 if (PyUnicode_Check(v)) {
480 /* For a Unicode subtype that's didn't overwrite __unicode__,
481 return a true Unicode object with the same data. */
482 return PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(v),
483 PyUnicode_GET_SIZE(v));
485 if (PyString_CheckExact(v)) {
486 Py_INCREF(v);
487 res = v;
489 else {
490 if (v->ob_type->tp_str != NULL)
491 res = (*v->ob_type->tp_str)(v);
492 else
493 res = PyObject_Repr(v);
496 if (res == NULL)
497 return NULL;
498 if (!PyUnicode_Check(res)) {
499 str = PyUnicode_FromEncodedObject(res, NULL, "strict");
500 Py_DECREF(res);
501 res = str;
503 return res;
505 #endif
508 /* Helper to warn about deprecated tp_compare return values. Return:
509 -2 for an exception;
510 -1 if v < w;
511 0 if v == w;
512 1 if v > w.
513 (This function cannot return 2.)
515 static int
516 adjust_tp_compare(int c)
518 if (PyErr_Occurred()) {
519 if (c != -1 && c != -2) {
520 PyObject *t, *v, *tb;
521 PyErr_Fetch(&t, &v, &tb);
522 if (PyErr_Warn(PyExc_RuntimeWarning,
523 "tp_compare didn't return -1 or -2 "
524 "for exception") < 0) {
525 Py_XDECREF(t);
526 Py_XDECREF(v);
527 Py_XDECREF(tb);
529 else
530 PyErr_Restore(t, v, tb);
532 return -2;
534 else if (c < -1 || c > 1) {
535 if (PyErr_Warn(PyExc_RuntimeWarning,
536 "tp_compare didn't return -1, 0 or 1") < 0)
537 return -2;
538 else
539 return c < -1 ? -1 : 1;
541 else {
542 assert(c >= -1 && c <= 1);
543 return c;
548 /* Macro to get the tp_richcompare field of a type if defined */
549 #define RICHCOMPARE(t) (PyType_HasFeature((t), Py_TPFLAGS_HAVE_RICHCOMPARE) \
550 ? (t)->tp_richcompare : NULL)
552 /* Map rich comparison operators to their swapped version, e.g. LT --> GT */
553 int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE};
555 /* Try a genuine rich comparison, returning an object. Return:
556 NULL for exception;
557 NotImplemented if this particular rich comparison is not implemented or
558 undefined;
559 some object not equal to NotImplemented if it is implemented
560 (this latter object may not be a Boolean).
562 static PyObject *
563 try_rich_compare(PyObject *v, PyObject *w, int op)
565 richcmpfunc f;
566 PyObject *res;
568 if (v->ob_type != w->ob_type &&
569 PyType_IsSubtype(w->ob_type, v->ob_type) &&
570 (f = RICHCOMPARE(w->ob_type)) != NULL) {
571 res = (*f)(w, v, _Py_SwappedOp[op]);
572 if (res != Py_NotImplemented)
573 return res;
574 Py_DECREF(res);
576 if ((f = RICHCOMPARE(v->ob_type)) != NULL) {
577 res = (*f)(v, w, op);
578 if (res != Py_NotImplemented)
579 return res;
580 Py_DECREF(res);
582 if ((f = RICHCOMPARE(w->ob_type)) != NULL) {
583 return (*f)(w, v, _Py_SwappedOp[op]);
585 res = Py_NotImplemented;
586 Py_INCREF(res);
587 return res;
590 /* Try a genuine rich comparison, returning an int. Return:
591 -1 for exception (including the case where try_rich_compare() returns an
592 object that's not a Boolean);
593 0 if the outcome is false;
594 1 if the outcome is true;
595 2 if this particular rich comparison is not implemented or undefined.
597 static int
598 try_rich_compare_bool(PyObject *v, PyObject *w, int op)
600 PyObject *res;
601 int ok;
603 if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL)
604 return 2; /* Shortcut, avoid INCREF+DECREF */
605 res = try_rich_compare(v, w, op);
606 if (res == NULL)
607 return -1;
608 if (res == Py_NotImplemented) {
609 Py_DECREF(res);
610 return 2;
612 ok = PyObject_IsTrue(res);
613 Py_DECREF(res);
614 return ok;
617 /* Try rich comparisons to determine a 3-way comparison. Return:
618 -2 for an exception;
619 -1 if v < w;
620 0 if v == w;
621 1 if v > w;
622 2 if this particular rich comparison is not implemented or undefined.
624 static int
625 try_rich_to_3way_compare(PyObject *v, PyObject *w)
627 static struct { int op; int outcome; } tries[3] = {
628 /* Try this operator, and if it is true, use this outcome: */
629 {Py_EQ, 0},
630 {Py_LT, -1},
631 {Py_GT, 1},
633 int i;
635 if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL)
636 return 2; /* Shortcut */
638 for (i = 0; i < 3; i++) {
639 switch (try_rich_compare_bool(v, w, tries[i].op)) {
640 case -1:
641 return -2;
642 case 1:
643 return tries[i].outcome;
647 return 2;
650 /* Try a 3-way comparison, returning an int. Return:
651 -2 for an exception;
652 -1 if v < w;
653 0 if v == w;
654 1 if v > w;
655 2 if this particular 3-way comparison is not implemented or undefined.
657 static int
658 try_3way_compare(PyObject *v, PyObject *w)
660 int c;
661 cmpfunc f;
663 /* Comparisons involving instances are given to instance_compare,
664 which has the same return conventions as this function. */
666 f = v->ob_type->tp_compare;
667 if (PyInstance_Check(v))
668 return (*f)(v, w);
669 if (PyInstance_Check(w))
670 return (*w->ob_type->tp_compare)(v, w);
672 /* If both have the same (non-NULL) tp_compare, use it. */
673 if (f != NULL && f == w->ob_type->tp_compare) {
674 c = (*f)(v, w);
675 return adjust_tp_compare(c);
678 /* If either tp_compare is _PyObject_SlotCompare, that's safe. */
679 if (f == _PyObject_SlotCompare ||
680 w->ob_type->tp_compare == _PyObject_SlotCompare)
681 return _PyObject_SlotCompare(v, w);
683 /* If we're here, v and w,
684 a) are not instances;
685 b) have different types or a type without tp_compare; and
686 c) don't have a user-defined tp_compare.
687 tp_compare implementations in C assume that both arguments
688 have their type, so we give up if the coercion fails or if
689 it yields types which are still incompatible (which can
690 happen with a user-defined nb_coerce).
692 c = PyNumber_CoerceEx(&v, &w);
693 if (c < 0)
694 return -2;
695 if (c > 0)
696 return 2;
697 f = v->ob_type->tp_compare;
698 if (f != NULL && f == w->ob_type->tp_compare) {
699 c = (*f)(v, w);
700 Py_DECREF(v);
701 Py_DECREF(w);
702 return adjust_tp_compare(c);
705 /* No comparison defined */
706 Py_DECREF(v);
707 Py_DECREF(w);
708 return 2;
711 /* Final fallback 3-way comparison, returning an int. Return:
712 -2 if an error occurred;
713 -1 if v < w;
714 0 if v == w;
715 1 if v > w.
717 static int
718 default_3way_compare(PyObject *v, PyObject *w)
720 int c;
721 const char *vname, *wname;
723 if (v->ob_type == w->ob_type) {
724 /* When comparing these pointers, they must be cast to
725 * integer types (i.e. Py_uintptr_t, our spelling of C9X's
726 * uintptr_t). ANSI specifies that pointer compares other
727 * than == and != to non-related structures are undefined.
729 Py_uintptr_t vv = (Py_uintptr_t)v;
730 Py_uintptr_t ww = (Py_uintptr_t)w;
731 return (vv < ww) ? -1 : (vv > ww) ? 1 : 0;
734 #ifdef Py_USING_UNICODE
735 /* Special case for Unicode */
736 if (PyUnicode_Check(v) || PyUnicode_Check(w)) {
737 c = PyUnicode_Compare(v, w);
738 if (!PyErr_Occurred())
739 return c;
740 /* TypeErrors are ignored: if Unicode coercion fails due
741 to one of the arguments not having the right type, we
742 continue as defined by the coercion protocol (see
743 above). Luckily, decoding errors are reported as
744 ValueErrors and are not masked by this technique. */
745 if (!PyErr_ExceptionMatches(PyExc_TypeError))
746 return -2;
747 PyErr_Clear();
749 #endif
751 /* None is smaller than anything */
752 if (v == Py_None)
753 return -1;
754 if (w == Py_None)
755 return 1;
757 /* different type: compare type names; numbers are smaller */
758 if (PyNumber_Check(v))
759 vname = "";
760 else
761 vname = v->ob_type->tp_name;
762 if (PyNumber_Check(w))
763 wname = "";
764 else
765 wname = w->ob_type->tp_name;
766 c = strcmp(vname, wname);
767 if (c < 0)
768 return -1;
769 if (c > 0)
770 return 1;
771 /* Same type name, or (more likely) incomparable numeric types */
772 return ((Py_uintptr_t)(v->ob_type) < (
773 Py_uintptr_t)(w->ob_type)) ? -1 : 1;
776 /* Do a 3-way comparison, by hook or by crook. Return:
777 -2 for an exception (but see below);
778 -1 if v < w;
779 0 if v == w;
780 1 if v > w;
781 BUT: if the object implements a tp_compare function, it returns
782 whatever this function returns (whether with an exception or not).
784 static int
785 do_cmp(PyObject *v, PyObject *w)
787 int c;
788 cmpfunc f;
790 if (v->ob_type == w->ob_type
791 && (f = v->ob_type->tp_compare) != NULL) {
792 c = (*f)(v, w);
793 if (PyInstance_Check(v)) {
794 /* Instance tp_compare has a different signature.
795 But if it returns undefined we fall through. */
796 if (c != 2)
797 return c;
798 /* Else fall through to try_rich_to_3way_compare() */
800 else
801 return adjust_tp_compare(c);
803 /* We only get here if one of the following is true:
804 a) v and w have different types
805 b) v and w have the same type, which doesn't have tp_compare
806 c) v and w are instances, and either __cmp__ is not defined or
807 __cmp__ returns NotImplemented
809 c = try_rich_to_3way_compare(v, w);
810 if (c < 2)
811 return c;
812 c = try_3way_compare(v, w);
813 if (c < 2)
814 return c;
815 return default_3way_compare(v, w);
818 /* Compare v to w. Return
819 -1 if v < w or exception (PyErr_Occurred() true in latter case).
820 0 if v == w.
821 1 if v > w.
822 XXX The docs (C API manual) say the return value is undefined in case
823 XXX of error.
826 PyObject_Compare(PyObject *v, PyObject *w)
828 int result;
830 if (v == NULL || w == NULL) {
831 PyErr_BadInternalCall();
832 return -1;
834 if (v == w)
835 return 0;
836 if (Py_EnterRecursiveCall(" in cmp"))
837 return -1;
838 result = do_cmp(v, w);
839 Py_LeaveRecursiveCall();
840 return result < 0 ? -1 : result;
843 /* Return (new reference to) Py_True or Py_False. */
844 static PyObject *
845 convert_3way_to_object(int op, int c)
847 PyObject *result;
848 switch (op) {
849 case Py_LT: c = c < 0; break;
850 case Py_LE: c = c <= 0; break;
851 case Py_EQ: c = c == 0; break;
852 case Py_NE: c = c != 0; break;
853 case Py_GT: c = c > 0; break;
854 case Py_GE: c = c >= 0; break;
856 result = c ? Py_True : Py_False;
857 Py_INCREF(result);
858 return result;
861 /* We want a rich comparison but don't have one. Try a 3-way cmp instead.
862 Return
863 NULL if error
864 Py_True if v op w
865 Py_False if not (v op w)
867 static PyObject *
868 try_3way_to_rich_compare(PyObject *v, PyObject *w, int op)
870 int c;
872 c = try_3way_compare(v, w);
873 if (c >= 2)
874 c = default_3way_compare(v, w);
875 if (c <= -2)
876 return NULL;
877 return convert_3way_to_object(op, c);
880 /* Do rich comparison on v and w. Return
881 NULL if error
882 Else a new reference to an object other than Py_NotImplemented, usually(?):
883 Py_True if v op w
884 Py_False if not (v op w)
886 static PyObject *
887 do_richcmp(PyObject *v, PyObject *w, int op)
889 PyObject *res;
891 res = try_rich_compare(v, w, op);
892 if (res != Py_NotImplemented)
893 return res;
894 Py_DECREF(res);
896 return try_3way_to_rich_compare(v, w, op);
899 /* Return:
900 NULL for exception;
901 some object not equal to NotImplemented if it is implemented
902 (this latter object may not be a Boolean).
904 PyObject *
905 PyObject_RichCompare(PyObject *v, PyObject *w, int op)
907 PyObject *res;
909 assert(Py_LT <= op && op <= Py_GE);
910 if (Py_EnterRecursiveCall(" in cmp"))
911 return NULL;
913 /* If the types are equal, and not old-style instances, try to
914 get out cheap (don't bother with coercions etc.). */
915 if (v->ob_type == w->ob_type && !PyInstance_Check(v)) {
916 cmpfunc fcmp;
917 richcmpfunc frich = RICHCOMPARE(v->ob_type);
918 /* If the type has richcmp, try it first. try_rich_compare
919 tries it two-sided, which is not needed since we've a
920 single type only. */
921 if (frich != NULL) {
922 res = (*frich)(v, w, op);
923 if (res != Py_NotImplemented)
924 goto Done;
925 Py_DECREF(res);
927 /* No richcmp, or this particular richmp not implemented.
928 Try 3-way cmp. */
929 fcmp = v->ob_type->tp_compare;
930 if (fcmp != NULL) {
931 int c = (*fcmp)(v, w);
932 c = adjust_tp_compare(c);
933 if (c == -2) {
934 res = NULL;
935 goto Done;
937 res = convert_3way_to_object(op, c);
938 goto Done;
942 /* Fast path not taken, or couldn't deliver a useful result. */
943 res = do_richcmp(v, w, op);
944 Done:
945 Py_LeaveRecursiveCall();
946 return res;
949 /* Return -1 if error; 1 if v op w; 0 if not (v op w). */
951 PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
953 PyObject *res;
954 int ok;
956 /* Quick result when objects are the same.
957 Guarantees that identity implies equality. */
958 if (v == w) {
959 if (op == Py_EQ)
960 return 1;
961 else if (op == Py_NE)
962 return 0;
965 res = PyObject_RichCompare(v, w, op);
966 if (res == NULL)
967 return -1;
968 if (PyBool_Check(res))
969 ok = (res == Py_True);
970 else
971 ok = PyObject_IsTrue(res);
972 Py_DECREF(res);
973 return ok;
976 /* Set of hash utility functions to help maintaining the invariant that
977 if a==b then hash(a)==hash(b)
979 All the utility functions (_Py_Hash*()) return "-1" to signify an error.
982 long
983 _Py_HashDouble(double v)
985 double intpart, fractpart;
986 int expo;
987 long hipart;
988 long x; /* the final hash value */
989 /* This is designed so that Python numbers of different types
990 * that compare equal hash to the same value; otherwise comparisons
991 * of mapping keys will turn out weird.
994 fractpart = modf(v, &intpart);
995 if (fractpart == 0.0) {
996 /* This must return the same hash as an equal int or long. */
997 if (intpart > LONG_MAX || -intpart > LONG_MAX) {
998 /* Convert to long and use its hash. */
999 PyObject *plong; /* converted to Python long */
1000 if (Py_IS_INFINITY(intpart))
1001 /* can't convert to long int -- arbitrary */
1002 v = v < 0 ? -271828.0 : 314159.0;
1003 plong = PyLong_FromDouble(v);
1004 if (plong == NULL)
1005 return -1;
1006 x = PyObject_Hash(plong);
1007 Py_DECREF(plong);
1008 return x;
1010 /* Fits in a C long == a Python int, so is its own hash. */
1011 x = (long)intpart;
1012 if (x == -1)
1013 x = -2;
1014 return x;
1016 /* The fractional part is non-zero, so we don't have to worry about
1017 * making this match the hash of some other type.
1018 * Use frexp to get at the bits in the double.
1019 * Since the VAX D double format has 56 mantissa bits, which is the
1020 * most of any double format in use, each of these parts may have as
1021 * many as (but no more than) 56 significant bits.
1022 * So, assuming sizeof(long) >= 4, each part can be broken into two
1023 * longs; frexp and multiplication are used to do that.
1024 * Also, since the Cray double format has 15 exponent bits, which is
1025 * the most of any double format in use, shifting the exponent field
1026 * left by 15 won't overflow a long (again assuming sizeof(long) >= 4).
1028 v = frexp(v, &expo);
1029 v *= 2147483648.0; /* 2**31 */
1030 hipart = (long)v; /* take the top 32 bits */
1031 v = (v - (double)hipart) * 2147483648.0; /* get the next 32 bits */
1032 x = hipart + (long)v + (expo << 15);
1033 if (x == -1)
1034 x = -2;
1035 return x;
1038 long
1039 _Py_HashPointer(void *p)
1041 #if SIZEOF_LONG >= SIZEOF_VOID_P
1042 return (long)p;
1043 #else
1044 /* convert to a Python long and hash that */
1045 PyObject* longobj;
1046 long x;
1048 if ((longobj = PyLong_FromVoidPtr(p)) == NULL) {
1049 x = -1;
1050 goto finally;
1052 x = PyObject_Hash(longobj);
1054 finally:
1055 Py_XDECREF(longobj);
1056 return x;
1057 #endif
1061 long
1062 PyObject_Hash(PyObject *v)
1064 PyTypeObject *tp = v->ob_type;
1065 if (tp->tp_hash != NULL)
1066 return (*tp->tp_hash)(v);
1067 if (tp->tp_compare == NULL && RICHCOMPARE(tp) == NULL) {
1068 return _Py_HashPointer(v); /* Use address as hash value */
1070 /* If there's a cmp but no hash defined, the object can't be hashed */
1071 PyErr_Format(PyExc_TypeError, "unhashable type: '%.200s'",
1072 v->ob_type->tp_name);
1073 return -1;
1076 PyObject *
1077 PyObject_GetAttrString(PyObject *v, const char *name)
1079 PyObject *w, *res;
1081 if (v->ob_type->tp_getattr != NULL)
1082 return (*v->ob_type->tp_getattr)(v, (char*)name);
1083 w = PyString_InternFromString(name);
1084 if (w == NULL)
1085 return NULL;
1086 res = PyObject_GetAttr(v, w);
1087 Py_XDECREF(w);
1088 return res;
1092 PyObject_HasAttrString(PyObject *v, const char *name)
1094 PyObject *res = PyObject_GetAttrString(v, name);
1095 if (res != NULL) {
1096 Py_DECREF(res);
1097 return 1;
1099 PyErr_Clear();
1100 return 0;
1104 PyObject_SetAttrString(PyObject *v, const char *name, PyObject *w)
1106 PyObject *s;
1107 int res;
1109 if (v->ob_type->tp_setattr != NULL)
1110 return (*v->ob_type->tp_setattr)(v, (char*)name, w);
1111 s = PyString_InternFromString(name);
1112 if (s == NULL)
1113 return -1;
1114 res = PyObject_SetAttr(v, s, w);
1115 Py_XDECREF(s);
1116 return res;
1119 PyObject *
1120 PyObject_GetAttr(PyObject *v, PyObject *name)
1122 PyTypeObject *tp = v->ob_type;
1124 if (!PyString_Check(name)) {
1125 #ifdef Py_USING_UNICODE
1126 /* The Unicode to string conversion is done here because the
1127 existing tp_getattro slots expect a string object as name
1128 and we wouldn't want to break those. */
1129 if (PyUnicode_Check(name)) {
1130 name = _PyUnicode_AsDefaultEncodedString(name, NULL);
1131 if (name == NULL)
1132 return NULL;
1134 else
1135 #endif
1137 PyErr_Format(PyExc_TypeError,
1138 "attribute name must be string, not '%.200s'",
1139 name->ob_type->tp_name);
1140 return NULL;
1143 if (tp->tp_getattro != NULL)
1144 return (*tp->tp_getattro)(v, name);
1145 if (tp->tp_getattr != NULL)
1146 return (*tp->tp_getattr)(v, PyString_AS_STRING(name));
1147 PyErr_Format(PyExc_AttributeError,
1148 "'%.50s' object has no attribute '%.400s'",
1149 tp->tp_name, PyString_AS_STRING(name));
1150 return NULL;
1154 PyObject_HasAttr(PyObject *v, PyObject *name)
1156 PyObject *res = PyObject_GetAttr(v, name);
1157 if (res != NULL) {
1158 Py_DECREF(res);
1159 return 1;
1161 PyErr_Clear();
1162 return 0;
1166 PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value)
1168 PyTypeObject *tp = v->ob_type;
1169 int err;
1171 if (!PyString_Check(name)){
1172 #ifdef Py_USING_UNICODE
1173 /* The Unicode to string conversion is done here because the
1174 existing tp_setattro slots expect a string object as name
1175 and we wouldn't want to break those. */
1176 if (PyUnicode_Check(name)) {
1177 name = PyUnicode_AsEncodedString(name, NULL, NULL);
1178 if (name == NULL)
1179 return -1;
1181 else
1182 #endif
1184 PyErr_Format(PyExc_TypeError,
1185 "attribute name must be string, not '%.200s'",
1186 name->ob_type->tp_name);
1187 return -1;
1190 else
1191 Py_INCREF(name);
1193 PyString_InternInPlace(&name);
1194 if (tp->tp_setattro != NULL) {
1195 err = (*tp->tp_setattro)(v, name, value);
1196 Py_DECREF(name);
1197 return err;
1199 if (tp->tp_setattr != NULL) {
1200 err = (*tp->tp_setattr)(v, PyString_AS_STRING(name), value);
1201 Py_DECREF(name);
1202 return err;
1204 Py_DECREF(name);
1205 if (tp->tp_getattr == NULL && tp->tp_getattro == NULL)
1206 PyErr_Format(PyExc_TypeError,
1207 "'%.100s' object has no attributes "
1208 "(%s .%.100s)",
1209 tp->tp_name,
1210 value==NULL ? "del" : "assign to",
1211 PyString_AS_STRING(name));
1212 else
1213 PyErr_Format(PyExc_TypeError,
1214 "'%.100s' object has only read-only attributes "
1215 "(%s .%.100s)",
1216 tp->tp_name,
1217 value==NULL ? "del" : "assign to",
1218 PyString_AS_STRING(name));
1219 return -1;
1222 /* Helper to get a pointer to an object's __dict__ slot, if any */
1224 PyObject **
1225 _PyObject_GetDictPtr(PyObject *obj)
1227 Py_ssize_t dictoffset;
1228 PyTypeObject *tp = obj->ob_type;
1230 if (!(tp->tp_flags & Py_TPFLAGS_HAVE_CLASS))
1231 return NULL;
1232 dictoffset = tp->tp_dictoffset;
1233 if (dictoffset == 0)
1234 return NULL;
1235 if (dictoffset < 0) {
1236 Py_ssize_t tsize;
1237 size_t size;
1239 tsize = ((PyVarObject *)obj)->ob_size;
1240 if (tsize < 0)
1241 tsize = -tsize;
1242 size = _PyObject_VAR_SIZE(tp, tsize);
1244 dictoffset += (long)size;
1245 assert(dictoffset > 0);
1246 assert(dictoffset % SIZEOF_VOID_P == 0);
1248 return (PyObject **) ((char *)obj + dictoffset);
1251 PyObject *
1252 PyObject_SelfIter(PyObject *obj)
1254 Py_INCREF(obj);
1255 return obj;
1258 /* Generic GetAttr functions - put these in your tp_[gs]etattro slot */
1260 PyObject *
1261 PyObject_GenericGetAttr(PyObject *obj, PyObject *name)
1263 PyTypeObject *tp = obj->ob_type;
1264 PyObject *descr = NULL;
1265 PyObject *res = NULL;
1266 descrgetfunc f;
1267 Py_ssize_t dictoffset;
1268 PyObject **dictptr;
1270 if (!PyString_Check(name)){
1271 #ifdef Py_USING_UNICODE
1272 /* The Unicode to string conversion is done here because the
1273 existing tp_setattro slots expect a string object as name
1274 and we wouldn't want to break those. */
1275 if (PyUnicode_Check(name)) {
1276 name = PyUnicode_AsEncodedString(name, NULL, NULL);
1277 if (name == NULL)
1278 return NULL;
1280 else
1281 #endif
1283 PyErr_Format(PyExc_TypeError,
1284 "attribute name must be string, not '%.200s'",
1285 name->ob_type->tp_name);
1286 return NULL;
1289 else
1290 Py_INCREF(name);
1292 if (tp->tp_dict == NULL) {
1293 if (PyType_Ready(tp) < 0)
1294 goto done;
1297 /* Inline _PyType_Lookup */
1299 Py_ssize_t i, n;
1300 PyObject *mro, *base, *dict;
1302 /* Look in tp_dict of types in MRO */
1303 mro = tp->tp_mro;
1304 assert(mro != NULL);
1305 assert(PyTuple_Check(mro));
1306 n = PyTuple_GET_SIZE(mro);
1307 for (i = 0; i < n; i++) {
1308 base = PyTuple_GET_ITEM(mro, i);
1309 if (PyClass_Check(base))
1310 dict = ((PyClassObject *)base)->cl_dict;
1311 else {
1312 assert(PyType_Check(base));
1313 dict = ((PyTypeObject *)base)->tp_dict;
1315 assert(dict && PyDict_Check(dict));
1316 descr = PyDict_GetItem(dict, name);
1317 if (descr != NULL)
1318 break;
1322 Py_XINCREF(descr);
1324 f = NULL;
1325 if (descr != NULL &&
1326 PyType_HasFeature(descr->ob_type, Py_TPFLAGS_HAVE_CLASS)) {
1327 f = descr->ob_type->tp_descr_get;
1328 if (f != NULL && PyDescr_IsData(descr)) {
1329 res = f(descr, obj, (PyObject *)obj->ob_type);
1330 Py_DECREF(descr);
1331 goto done;
1335 /* Inline _PyObject_GetDictPtr */
1336 dictoffset = tp->tp_dictoffset;
1337 if (dictoffset != 0) {
1338 PyObject *dict;
1339 if (dictoffset < 0) {
1340 Py_ssize_t tsize;
1341 size_t size;
1343 tsize = ((PyVarObject *)obj)->ob_size;
1344 if (tsize < 0)
1345 tsize = -tsize;
1346 size = _PyObject_VAR_SIZE(tp, tsize);
1348 dictoffset += (long)size;
1349 assert(dictoffset > 0);
1350 assert(dictoffset % SIZEOF_VOID_P == 0);
1352 dictptr = (PyObject **) ((char *)obj + dictoffset);
1353 dict = *dictptr;
1354 if (dict != NULL) {
1355 res = PyDict_GetItem(dict, name);
1356 if (res != NULL) {
1357 Py_INCREF(res);
1358 Py_XDECREF(descr);
1359 goto done;
1364 if (f != NULL) {
1365 res = f(descr, obj, (PyObject *)obj->ob_type);
1366 Py_DECREF(descr);
1367 goto done;
1370 if (descr != NULL) {
1371 res = descr;
1372 /* descr was already increfed above */
1373 goto done;
1376 PyErr_Format(PyExc_AttributeError,
1377 "'%.50s' object has no attribute '%.400s'",
1378 tp->tp_name, PyString_AS_STRING(name));
1379 done:
1380 Py_DECREF(name);
1381 return res;
1385 PyObject_GenericSetAttr(PyObject *obj, PyObject *name, PyObject *value)
1387 PyTypeObject *tp = obj->ob_type;
1388 PyObject *descr;
1389 descrsetfunc f;
1390 PyObject **dictptr;
1391 int res = -1;
1393 if (!PyString_Check(name)){
1394 #ifdef Py_USING_UNICODE
1395 /* The Unicode to string conversion is done here because the
1396 existing tp_setattro slots expect a string object as name
1397 and we wouldn't want to break those. */
1398 if (PyUnicode_Check(name)) {
1399 name = PyUnicode_AsEncodedString(name, NULL, NULL);
1400 if (name == NULL)
1401 return -1;
1403 else
1404 #endif
1406 PyErr_Format(PyExc_TypeError,
1407 "attribute name must be string, not '%.200s'",
1408 name->ob_type->tp_name);
1409 return -1;
1412 else
1413 Py_INCREF(name);
1415 if (tp->tp_dict == NULL) {
1416 if (PyType_Ready(tp) < 0)
1417 goto done;
1420 descr = _PyType_Lookup(tp, name);
1421 f = NULL;
1422 if (descr != NULL &&
1423 PyType_HasFeature(descr->ob_type, Py_TPFLAGS_HAVE_CLASS)) {
1424 f = descr->ob_type->tp_descr_set;
1425 if (f != NULL && PyDescr_IsData(descr)) {
1426 res = f(descr, obj, value);
1427 goto done;
1431 dictptr = _PyObject_GetDictPtr(obj);
1432 if (dictptr != NULL) {
1433 PyObject *dict = *dictptr;
1434 if (dict == NULL && value != NULL) {
1435 dict = PyDict_New();
1436 if (dict == NULL)
1437 goto done;
1438 *dictptr = dict;
1440 if (dict != NULL) {
1441 if (value == NULL)
1442 res = PyDict_DelItem(dict, name);
1443 else
1444 res = PyDict_SetItem(dict, name, value);
1445 if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError))
1446 PyErr_SetObject(PyExc_AttributeError, name);
1447 goto done;
1451 if (f != NULL) {
1452 res = f(descr, obj, value);
1453 goto done;
1456 if (descr == NULL) {
1457 PyErr_Format(PyExc_AttributeError,
1458 "'%.100s' object has no attribute '%.200s'",
1459 tp->tp_name, PyString_AS_STRING(name));
1460 goto done;
1463 PyErr_Format(PyExc_AttributeError,
1464 "'%.50s' object attribute '%.400s' is read-only",
1465 tp->tp_name, PyString_AS_STRING(name));
1466 done:
1467 Py_DECREF(name);
1468 return res;
1471 /* Test a value used as condition, e.g., in a for or if statement.
1472 Return -1 if an error occurred */
1475 PyObject_IsTrue(PyObject *v)
1477 Py_ssize_t res;
1478 if (v == Py_True)
1479 return 1;
1480 if (v == Py_False)
1481 return 0;
1482 if (v == Py_None)
1483 return 0;
1484 else if (v->ob_type->tp_as_number != NULL &&
1485 v->ob_type->tp_as_number->nb_nonzero != NULL)
1486 res = (*v->ob_type->tp_as_number->nb_nonzero)(v);
1487 else if (v->ob_type->tp_as_mapping != NULL &&
1488 v->ob_type->tp_as_mapping->mp_length != NULL)
1489 res = (*v->ob_type->tp_as_mapping->mp_length)(v);
1490 else if (v->ob_type->tp_as_sequence != NULL &&
1491 v->ob_type->tp_as_sequence->sq_length != NULL)
1492 res = (*v->ob_type->tp_as_sequence->sq_length)(v);
1493 else
1494 return 1;
1495 /* if it is negative, it should be either -1 or -2 */
1496 return (res > 0) ? 1 : Py_SAFE_DOWNCAST(res, Py_ssize_t, int);
1499 /* equivalent of 'not v'
1500 Return -1 if an error occurred */
1503 PyObject_Not(PyObject *v)
1505 int res;
1506 res = PyObject_IsTrue(v);
1507 if (res < 0)
1508 return res;
1509 return res == 0;
1512 /* Coerce two numeric types to the "larger" one.
1513 Increment the reference count on each argument.
1514 Return value:
1515 -1 if an error occurred;
1516 0 if the coercion succeeded (and then the reference counts are increased);
1517 1 if no coercion is possible (and no error is raised).
1520 PyNumber_CoerceEx(PyObject **pv, PyObject **pw)
1522 register PyObject *v = *pv;
1523 register PyObject *w = *pw;
1524 int res;
1526 /* Shortcut only for old-style types */
1527 if (v->ob_type == w->ob_type &&
1528 !PyType_HasFeature(v->ob_type, Py_TPFLAGS_CHECKTYPES))
1530 Py_INCREF(v);
1531 Py_INCREF(w);
1532 return 0;
1534 if (v->ob_type->tp_as_number && v->ob_type->tp_as_number->nb_coerce) {
1535 res = (*v->ob_type->tp_as_number->nb_coerce)(pv, pw);
1536 if (res <= 0)
1537 return res;
1539 if (w->ob_type->tp_as_number && w->ob_type->tp_as_number->nb_coerce) {
1540 res = (*w->ob_type->tp_as_number->nb_coerce)(pw, pv);
1541 if (res <= 0)
1542 return res;
1544 return 1;
1547 /* Coerce two numeric types to the "larger" one.
1548 Increment the reference count on each argument.
1549 Return -1 and raise an exception if no coercion is possible
1550 (and then no reference count is incremented).
1553 PyNumber_Coerce(PyObject **pv, PyObject **pw)
1555 int err = PyNumber_CoerceEx(pv, pw);
1556 if (err <= 0)
1557 return err;
1558 PyErr_SetString(PyExc_TypeError, "number coercion failed");
1559 return -1;
1563 /* Test whether an object can be called */
1566 PyCallable_Check(PyObject *x)
1568 if (x == NULL)
1569 return 0;
1570 if (PyInstance_Check(x)) {
1571 PyObject *call = PyObject_GetAttrString(x, "__call__");
1572 if (call == NULL) {
1573 PyErr_Clear();
1574 return 0;
1576 /* Could test recursively but don't, for fear of endless
1577 recursion if some joker sets self.__call__ = self */
1578 Py_DECREF(call);
1579 return 1;
1581 else {
1582 return x->ob_type->tp_call != NULL;
1586 /* Helper for PyObject_Dir.
1587 Merge the __dict__ of aclass into dict, and recursively also all
1588 the __dict__s of aclass's base classes. The order of merging isn't
1589 defined, as it's expected that only the final set of dict keys is
1590 interesting.
1591 Return 0 on success, -1 on error.
1594 static int
1595 merge_class_dict(PyObject* dict, PyObject* aclass)
1597 PyObject *classdict;
1598 PyObject *bases;
1600 assert(PyDict_Check(dict));
1601 assert(aclass);
1603 /* Merge in the type's dict (if any). */
1604 classdict = PyObject_GetAttrString(aclass, "__dict__");
1605 if (classdict == NULL)
1606 PyErr_Clear();
1607 else {
1608 int status = PyDict_Update(dict, classdict);
1609 Py_DECREF(classdict);
1610 if (status < 0)
1611 return -1;
1614 /* Recursively merge in the base types' (if any) dicts. */
1615 bases = PyObject_GetAttrString(aclass, "__bases__");
1616 if (bases == NULL)
1617 PyErr_Clear();
1618 else {
1619 /* We have no guarantee that bases is a real tuple */
1620 Py_ssize_t i, n;
1621 n = PySequence_Size(bases); /* This better be right */
1622 if (n < 0)
1623 PyErr_Clear();
1624 else {
1625 for (i = 0; i < n; i++) {
1626 int status;
1627 PyObject *base = PySequence_GetItem(bases, i);
1628 if (base == NULL) {
1629 Py_DECREF(bases);
1630 return -1;
1632 status = merge_class_dict(dict, base);
1633 Py_DECREF(base);
1634 if (status < 0) {
1635 Py_DECREF(bases);
1636 return -1;
1640 Py_DECREF(bases);
1642 return 0;
1645 /* Helper for PyObject_Dir.
1646 If obj has an attr named attrname that's a list, merge its string
1647 elements into keys of dict.
1648 Return 0 on success, -1 on error. Errors due to not finding the attr,
1649 or the attr not being a list, are suppressed.
1652 static int
1653 merge_list_attr(PyObject* dict, PyObject* obj, const char *attrname)
1655 PyObject *list;
1656 int result = 0;
1658 assert(PyDict_Check(dict));
1659 assert(obj);
1660 assert(attrname);
1662 list = PyObject_GetAttrString(obj, attrname);
1663 if (list == NULL)
1664 PyErr_Clear();
1666 else if (PyList_Check(list)) {
1667 int i;
1668 for (i = 0; i < PyList_GET_SIZE(list); ++i) {
1669 PyObject *item = PyList_GET_ITEM(list, i);
1670 if (PyString_Check(item)) {
1671 result = PyDict_SetItem(dict, item, Py_None);
1672 if (result < 0)
1673 break;
1678 Py_XDECREF(list);
1679 return result;
1682 /* Like __builtin__.dir(arg). See bltinmodule.c's builtin_dir for the
1683 docstring, which should be kept in synch with this implementation. */
1685 PyObject *
1686 PyObject_Dir(PyObject *arg)
1688 /* Set exactly one of these non-NULL before the end. */
1689 PyObject *result = NULL; /* result list */
1690 PyObject *masterdict = NULL; /* result is masterdict.keys() */
1692 /* If NULL arg, return the locals. */
1693 if (arg == NULL) {
1694 PyObject *locals = PyEval_GetLocals();
1695 if (locals == NULL)
1696 goto error;
1697 result = PyMapping_Keys(locals);
1698 if (result == NULL)
1699 goto error;
1702 /* Elif this is some form of module, we only want its dict. */
1703 else if (PyModule_Check(arg)) {
1704 masterdict = PyObject_GetAttrString(arg, "__dict__");
1705 if (masterdict == NULL)
1706 goto error;
1707 if (!PyDict_Check(masterdict)) {
1708 PyErr_SetString(PyExc_TypeError,
1709 "module.__dict__ is not a dictionary");
1710 goto error;
1714 /* Elif some form of type or class, grab its dict and its bases.
1715 We deliberately don't suck up its __class__, as methods belonging
1716 to the metaclass would probably be more confusing than helpful. */
1717 else if (PyType_Check(arg) || PyClass_Check(arg)) {
1718 masterdict = PyDict_New();
1719 if (masterdict == NULL)
1720 goto error;
1721 if (merge_class_dict(masterdict, arg) < 0)
1722 goto error;
1725 /* Else look at its dict, and the attrs reachable from its class. */
1726 else {
1727 PyObject *itsclass;
1728 /* Create a dict to start with. CAUTION: Not everything
1729 responding to __dict__ returns a dict! */
1730 masterdict = PyObject_GetAttrString(arg, "__dict__");
1731 if (masterdict == NULL) {
1732 PyErr_Clear();
1733 masterdict = PyDict_New();
1735 else if (!PyDict_Check(masterdict)) {
1736 Py_DECREF(masterdict);
1737 masterdict = PyDict_New();
1739 else {
1740 /* The object may have returned a reference to its
1741 dict, so copy it to avoid mutating it. */
1742 PyObject *temp = PyDict_Copy(masterdict);
1743 Py_DECREF(masterdict);
1744 masterdict = temp;
1746 if (masterdict == NULL)
1747 goto error;
1749 /* Merge in __members__ and __methods__ (if any).
1750 XXX Would like this to go away someday; for now, it's
1751 XXX needed to get at im_self etc of method objects. */
1752 if (merge_list_attr(masterdict, arg, "__members__") < 0)
1753 goto error;
1754 if (merge_list_attr(masterdict, arg, "__methods__") < 0)
1755 goto error;
1757 /* Merge in attrs reachable from its class.
1758 CAUTION: Not all objects have a __class__ attr. */
1759 itsclass = PyObject_GetAttrString(arg, "__class__");
1760 if (itsclass == NULL)
1761 PyErr_Clear();
1762 else {
1763 int status = merge_class_dict(masterdict, itsclass);
1764 Py_DECREF(itsclass);
1765 if (status < 0)
1766 goto error;
1770 assert((result == NULL) ^ (masterdict == NULL));
1771 if (masterdict != NULL) {
1772 /* The result comes from its keys. */
1773 assert(result == NULL);
1774 result = PyDict_Keys(masterdict);
1775 if (result == NULL)
1776 goto error;
1779 assert(result);
1780 if (!PyList_Check(result)) {
1781 PyErr_Format(PyExc_TypeError,
1782 "Expected keys() to be a list, not '%.200s'",
1783 result->ob_type->tp_name);
1784 goto error;
1786 if (PyList_Sort(result) != 0)
1787 goto error;
1788 else
1789 goto normal_return;
1791 error:
1792 Py_XDECREF(result);
1793 result = NULL;
1794 /* fall through */
1795 normal_return:
1796 Py_XDECREF(masterdict);
1797 return result;
1801 NoObject is usable as a non-NULL undefined value, used by the macro None.
1802 There is (and should be!) no way to create other objects of this type,
1803 so there is exactly one (which is indestructible, by the way).
1804 (XXX This type and the type of NotImplemented below should be unified.)
1807 /* ARGSUSED */
1808 static PyObject *
1809 none_repr(PyObject *op)
1811 return PyString_FromString("None");
1814 /* ARGUSED */
1815 static void
1816 none_dealloc(PyObject* ignore)
1818 /* This should never get called, but we also don't want to SEGV if
1819 * we accidently decref None out of existance.
1821 Py_FatalError("deallocating None");
1825 static PyTypeObject PyNone_Type = {
1826 PyObject_HEAD_INIT(&PyType_Type)
1828 "NoneType",
1831 none_dealloc, /*tp_dealloc*/ /*never called*/
1832 0, /*tp_print*/
1833 0, /*tp_getattr*/
1834 0, /*tp_setattr*/
1835 0, /*tp_compare*/
1836 none_repr, /*tp_repr*/
1837 0, /*tp_as_number*/
1838 0, /*tp_as_sequence*/
1839 0, /*tp_as_mapping*/
1840 0, /*tp_hash */
1843 PyObject _Py_NoneStruct = {
1844 PyObject_HEAD_INIT(&PyNone_Type)
1847 /* NotImplemented is an object that can be used to signal that an
1848 operation is not implemented for the given type combination. */
1850 static PyObject *
1851 NotImplemented_repr(PyObject *op)
1853 return PyString_FromString("NotImplemented");
1856 static PyTypeObject PyNotImplemented_Type = {
1857 PyObject_HEAD_INIT(&PyType_Type)
1859 "NotImplementedType",
1862 none_dealloc, /*tp_dealloc*/ /*never called*/
1863 0, /*tp_print*/
1864 0, /*tp_getattr*/
1865 0, /*tp_setattr*/
1866 0, /*tp_compare*/
1867 NotImplemented_repr, /*tp_repr*/
1868 0, /*tp_as_number*/
1869 0, /*tp_as_sequence*/
1870 0, /*tp_as_mapping*/
1871 0, /*tp_hash */
1874 PyObject _Py_NotImplementedStruct = {
1875 PyObject_HEAD_INIT(&PyNotImplemented_Type)
1878 void
1879 _Py_ReadyTypes(void)
1881 if (PyType_Ready(&PyType_Type) < 0)
1882 Py_FatalError("Can't initialize 'type'");
1884 if (PyType_Ready(&_PyWeakref_RefType) < 0)
1885 Py_FatalError("Can't initialize 'weakref'");
1887 if (PyType_Ready(&PyBool_Type) < 0)
1888 Py_FatalError("Can't initialize 'bool'");
1890 if (PyType_Ready(&PyString_Type) < 0)
1891 Py_FatalError("Can't initialize 'str'");
1893 if (PyType_Ready(&PyList_Type) < 0)
1894 Py_FatalError("Can't initialize 'list'");
1896 if (PyType_Ready(&PyNone_Type) < 0)
1897 Py_FatalError("Can't initialize type(None)");
1899 if (PyType_Ready(&PyNotImplemented_Type) < 0)
1900 Py_FatalError("Can't initialize type(NotImplemented)");
1904 #ifdef Py_TRACE_REFS
1906 void
1907 _Py_NewReference(PyObject *op)
1909 _Py_INC_REFTOTAL;
1910 op->ob_refcnt = 1;
1911 _Py_AddToAllObjects(op, 1);
1912 _Py_INC_TPALLOCS(op);
1915 void
1916 _Py_ForgetReference(register PyObject *op)
1918 #ifdef SLOW_UNREF_CHECK
1919 register PyObject *p;
1920 #endif
1921 if (op->ob_refcnt < 0)
1922 Py_FatalError("UNREF negative refcnt");
1923 if (op == &refchain ||
1924 op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op)
1925 Py_FatalError("UNREF invalid object");
1926 #ifdef SLOW_UNREF_CHECK
1927 for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) {
1928 if (p == op)
1929 break;
1931 if (p == &refchain) /* Not found */
1932 Py_FatalError("UNREF unknown object");
1933 #endif
1934 op->_ob_next->_ob_prev = op->_ob_prev;
1935 op->_ob_prev->_ob_next = op->_ob_next;
1936 op->_ob_next = op->_ob_prev = NULL;
1937 _Py_INC_TPFREES(op);
1940 void
1941 _Py_Dealloc(PyObject *op)
1943 destructor dealloc = op->ob_type->tp_dealloc;
1944 _Py_ForgetReference(op);
1945 (*dealloc)(op);
1948 /* Print all live objects. Because PyObject_Print is called, the
1949 * interpreter must be in a healthy state.
1951 void
1952 _Py_PrintReferences(FILE *fp)
1954 PyObject *op;
1955 fprintf(fp, "Remaining objects:\n");
1956 for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) {
1957 fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] ", op, op->ob_refcnt);
1958 if (PyObject_Print(op, fp, 0) != 0)
1959 PyErr_Clear();
1960 putc('\n', fp);
1964 /* Print the addresses of all live objects. Unlike _Py_PrintReferences, this
1965 * doesn't make any calls to the Python C API, so is always safe to call.
1967 void
1968 _Py_PrintReferenceAddresses(FILE *fp)
1970 PyObject *op;
1971 fprintf(fp, "Remaining object addresses:\n");
1972 for (op = refchain._ob_next; op != &refchain; op = op->_ob_next)
1973 fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] %s\n", op,
1974 op->ob_refcnt, op->ob_type->tp_name);
1977 PyObject *
1978 _Py_GetObjects(PyObject *self, PyObject *args)
1980 int i, n;
1981 PyObject *t = NULL;
1982 PyObject *res, *op;
1984 if (!PyArg_ParseTuple(args, "i|O", &n, &t))
1985 return NULL;
1986 op = refchain._ob_next;
1987 res = PyList_New(0);
1988 if (res == NULL)
1989 return NULL;
1990 for (i = 0; (n == 0 || i < n) && op != &refchain; i++) {
1991 while (op == self || op == args || op == res || op == t ||
1992 (t != NULL && op->ob_type != (PyTypeObject *) t)) {
1993 op = op->_ob_next;
1994 if (op == &refchain)
1995 return res;
1997 if (PyList_Append(res, op) < 0) {
1998 Py_DECREF(res);
1999 return NULL;
2001 op = op->_ob_next;
2003 return res;
2006 #endif
2009 /* Hack to force loading of cobject.o */
2010 PyTypeObject *_Py_cobject_hack = &PyCObject_Type;
2013 /* Hack to force loading of abstract.o */
2014 Py_ssize_t (*_Py_abstract_hack)(PyObject *) = PyObject_Size;
2017 /* Python's malloc wrappers (see pymem.h) */
2019 void *
2020 PyMem_Malloc(size_t nbytes)
2022 return PyMem_MALLOC(nbytes);
2025 void *
2026 PyMem_Realloc(void *p, size_t nbytes)
2028 return PyMem_REALLOC(p, nbytes);
2031 void
2032 PyMem_Free(void *p)
2034 PyMem_FREE(p);
2038 /* These methods are used to control infinite recursion in repr, str, print,
2039 etc. Container objects that may recursively contain themselves,
2040 e.g. builtin dictionaries and lists, should used Py_ReprEnter() and
2041 Py_ReprLeave() to avoid infinite recursion.
2043 Py_ReprEnter() returns 0 the first time it is called for a particular
2044 object and 1 every time thereafter. It returns -1 if an exception
2045 occurred. Py_ReprLeave() has no return value.
2047 See dictobject.c and listobject.c for examples of use.
2050 #define KEY "Py_Repr"
2053 Py_ReprEnter(PyObject *obj)
2055 PyObject *dict;
2056 PyObject *list;
2057 Py_ssize_t i;
2059 dict = PyThreadState_GetDict();
2060 if (dict == NULL)
2061 return 0;
2062 list = PyDict_GetItemString(dict, KEY);
2063 if (list == NULL) {
2064 list = PyList_New(0);
2065 if (list == NULL)
2066 return -1;
2067 if (PyDict_SetItemString(dict, KEY, list) < 0)
2068 return -1;
2069 Py_DECREF(list);
2071 i = PyList_GET_SIZE(list);
2072 while (--i >= 0) {
2073 if (PyList_GET_ITEM(list, i) == obj)
2074 return 1;
2076 PyList_Append(list, obj);
2077 return 0;
2080 void
2081 Py_ReprLeave(PyObject *obj)
2083 PyObject *dict;
2084 PyObject *list;
2085 Py_ssize_t i;
2087 dict = PyThreadState_GetDict();
2088 if (dict == NULL)
2089 return;
2090 list = PyDict_GetItemString(dict, KEY);
2091 if (list == NULL || !PyList_Check(list))
2092 return;
2093 i = PyList_GET_SIZE(list);
2094 /* Count backwards because we always expect obj to be list[-1] */
2095 while (--i >= 0) {
2096 if (PyList_GET_ITEM(list, i) == obj) {
2097 PyList_SetSlice(list, i, i + 1, NULL);
2098 break;
2103 /* Trashcan support. */
2105 /* Current call-stack depth of tp_dealloc calls. */
2106 int _PyTrash_delete_nesting = 0;
2108 /* List of objects that still need to be cleaned up, singly linked via their
2109 * gc headers' gc_prev pointers.
2111 PyObject *_PyTrash_delete_later = NULL;
2113 /* Add op to the _PyTrash_delete_later list. Called when the current
2114 * call-stack depth gets large. op must be a currently untracked gc'ed
2115 * object, with refcount 0. Py_DECREF must already have been called on it.
2117 void
2118 _PyTrash_deposit_object(PyObject *op)
2120 assert(PyObject_IS_GC(op));
2121 assert(_Py_AS_GC(op)->gc.gc_refs == _PyGC_REFS_UNTRACKED);
2122 assert(op->ob_refcnt == 0);
2123 _Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *)_PyTrash_delete_later;
2124 _PyTrash_delete_later = op;
2127 /* Dealloccate all the objects in the _PyTrash_delete_later list. Called when
2128 * the call-stack unwinds again.
2130 void
2131 _PyTrash_destroy_chain(void)
2133 while (_PyTrash_delete_later) {
2134 PyObject *op = _PyTrash_delete_later;
2135 destructor dealloc = op->ob_type->tp_dealloc;
2137 _PyTrash_delete_later =
2138 (PyObject*) _Py_AS_GC(op)->gc.gc_prev;
2140 /* Call the deallocator directly. This used to try to
2141 * fool Py_DECREF into calling it indirectly, but
2142 * Py_DECREF was already called on this object, and in
2143 * assorted non-release builds calling Py_DECREF again ends
2144 * up distorting allocation statistics.
2146 assert(op->ob_refcnt == 0);
2147 ++_PyTrash_delete_nesting;
2148 (*dealloc)(op);
2149 --_PyTrash_delete_nesting;
2153 #ifdef __cplusplus
2155 #endif