1 # lrucache.py -- a simple LRU (Least-Recently-Used) cache class
3 # Copyright 2004 Evan Prodromou <evan@bad.dynu.ca>
4 # Licensed under the Academic Free License 2.1
6 # Licensed for ftputil under the revised BSD license
7 # with permission by the author, Evan Prodromou. Many
10 # The original file is available at
11 # http://pypi.python.org/pypi/lrucache/0.2 .
13 # arch-tag: LRU cache main module
15 """a simple LRU (Least-Recently-Used) cache module
17 This module provides very simple LRU (Least-Recently-Used) cache
20 An *in-memory cache* is useful for storing the results of an
21 'expensive' process (one that takes a lot of time or resources) for
22 later re-use. Typical examples are accessing data from the filesystem,
23 a database, or a network location. If you know you'll need to re-read
24 the data again, it can help to keep it in a cache.
26 You *can* use a Python dictionary as a cache for some purposes.
27 However, if the results you're caching are large, or you have a lot of
28 possible results, this can be impractical memory-wise.
30 An *LRU cache*, on the other hand, only keeps _some_ of the results in
31 memory, which keeps you from overusing resources. The cache is bounded
32 by a maximum size; if you try to add more values to the cache, it will
33 automatically discard the values that you haven't read or written to
34 in the longest time. In other words, the least-recently-used items are
37 .. [1]: 'Discarded' here means 'removed from the cache'.
41 from __future__
import generators
43 from heapq
import heappush
, heappop
, heapify
46 __all__
= ['CacheKeyError', 'LRUCache', 'DEFAULT_SIZE']
47 __docformat__
= 'reStructuredText en'
50 """Default size of a new LRUCache object, if no 'size' argument is given."""
52 class CacheKeyError(KeyError):
53 """Error raised when cache requests fail
55 When a cache record is accessed which no longer exists (or never did),
56 this error is raised. To avoid it, you may want to check for the existence
57 of a cache record before reading or deleting it."""
60 class LRUCache(object):
61 """Least-Recently-Used (LRU) cache.
63 Instances of this class provide a least-recently-used (LRU) cache. They
64 emulate a Python mapping type. You can use an LRU cache more or less like
65 a Python dictionary, with the exception that objects you put into the
66 cache may be discarded before you take them out.
70 cache = LRUCache(32) # new cache
71 cache['foo'] = get_file_contents('foo') # or whatever
73 if 'foo' in cache: # if it's still in cache...
75 contents = cache['foo']
78 contents = get_file_contents('foo')
79 # store in cache for next time
80 cache['foo'] = contents
82 print cache.size # Maximum size
84 print len(cache) # 0 <= len(cache) <= cache.size
86 cache.size = 10 # Auto-shrink on size assignment
88 for i in range(50): # note: larger than cache size
91 if 0 not in cache: print 'Zero was discarded.'
94 del cache[42] # Manual deletion
96 for j in cache: # iterate (in LRU order)
97 print j, cache[j] # iterator produces keys, not values
100 class __Node(object):
101 """Record of a cached value. Not for public consumption."""
103 def __init__(self
, key
, obj
, timestamp
):
104 object.__init
__(self
)
107 self
.atime
= timestamp
108 self
.mtime
= self
.atime
110 def __cmp__(self
, other
):
111 return cmp(self
.atime
, other
.atime
)
114 return "<%s %s => %s (%s)>" % \
115 (self
.__class
__, self
.key
, self
.obj
, \
116 time
.asctime(time
.localtime(self
.atime
)))
118 def __init__(self
, size
=DEFAULT_SIZE
):
121 raise ValueError, size
122 elif type(size
) is not type(0):
123 raise TypeError, size
124 object.__init
__(self
)
128 """Maximum size of the cache.
129 If more than 'size' elements are added to the cache,
130 the least-recently-used ones will be discarded."""
133 return len(self
.__heap
)
135 def __contains__(self
, key
):
136 return self
.__dict
.has_key(key
)
138 def __setitem__(self
, key
, obj
):
139 if self
.__dict
.has_key(key
):
140 node
= self
.__dict
[key
]
142 node
.atime
= time
.time()
143 node
.mtime
= node
.atime
146 # size may have been reset, so we loop
147 while len(self
.__heap
) >= self
.size
:
148 lru
= heappop(self
.__heap
)
149 del self
.__dict
[lru
.key
]
150 node
= self
.__Node
(key
, obj
, time
.time())
151 self
.__dict
[key
] = node
152 heappush(self
.__heap
, node
)
154 def __getitem__(self
, key
):
155 if not self
.__dict
.has_key(key
):
156 raise CacheKeyError(key
)
158 node
= self
.__dict
[key
]
159 node
.atime
= time
.time()
163 def __delitem__(self
, key
):
164 if not self
.__dict
.has_key(key
):
165 raise CacheKeyError(key
)
167 node
= self
.__dict
[key
]
169 self
.__heap
.remove(node
)
174 copy
= self
.__heap
[:]
180 def __setattr__(self
, name
, value
):
181 object.__setattr
__(self
, name
, value
)
182 # automagically shrink heap on resize
184 while len(self
.__heap
) > value
:
185 lru
= heappop(self
.__heap
)
186 del self
.__dict
[lru
.key
]
189 return "<%s (%d elements)>" % (str(self
.__class
__), len(self
.__heap
))
191 def mtime(self
, key
):
192 """Return the last modification time for the cache record with key.
193 May be useful for cache instances where the stored values can get
194 'stale', such as caching file or network resource contents."""
195 if not self
.__dict
.has_key(key
):
196 raise CacheKeyError(key
)
198 node
= self
.__dict
[key
]
201 if __name__
== "__main__":
218 print cache
.mtime(46)