treewide: Fix memory leaks from calls to relocate().
[pspp.git] / doc / statistics.texi
blobf8a06afd13394d7b77b5230ee787ff92ee41a4e7
1 @c PSPP - a program for statistical analysis.
2 @c Copyright (C) 2017, 2020 Free Software Foundation, Inc.
3 @c Permission is granted to copy, distribute and/or modify this document
4 @c under the terms of the GNU Free Documentation License, Version 1.3
5 @c or any later version published by the Free Software Foundation;
6 @c with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
7 @c A copy of the license is included in the section entitled "GNU
8 @c Free Documentation License".
9 @c
10 @node Statistics
11 @chapter Statistics
13 This chapter documents the statistical procedures that @pspp{} supports so
14 far.
16 @menu
17 * DESCRIPTIVES::                Descriptive statistics.
18 * FREQUENCIES::                 Frequency tables.
19 * EXAMINE::                     Testing data for normality.
20 * GRAPH::                       Plot data.
21 * CORRELATIONS::                Correlation tables.
22 * CROSSTABS::                   Crosstabulation tables.
23 * CTABLES::                     Custom tables.
24 * FACTOR::                      Factor analysis and Principal Components analysis.
25 * GLM::                         Univariate Linear Models.
26 * LOGISTIC REGRESSION::         Bivariate Logistic Regression.
27 * MEANS::                       Average values and other statistics.
28 * NPAR TESTS::                  Nonparametric tests.
29 * T-TEST::                      Test hypotheses about means.
30 * ONEWAY::                      One way analysis of variance.
31 * QUICK CLUSTER::               K-Means clustering.
32 * RANK::                        Compute rank scores.
33 * REGRESSION::                  Linear regression.
34 * RELIABILITY::                 Reliability analysis.
35 * ROC::                         Receiver Operating Characteristic.
36 @end menu
38 @node DESCRIPTIVES
39 @section DESCRIPTIVES
41 @vindex DESCRIPTIVES
42 @display
43 DESCRIPTIVES
44         /VARIABLES=@var{var_list}
45         /MISSING=@{VARIABLE,LISTWISE@} @{INCLUDE,NOINCLUDE@}
46         /FORMAT=@{LABELS,NOLABELS@} @{NOINDEX,INDEX@} @{LINE,SERIAL@}
47         /SAVE
48         /STATISTICS=@{ALL,MEAN,SEMEAN,STDDEV,VARIANCE,KURTOSIS,
49                      SKEWNESS,RANGE,MINIMUM,MAXIMUM,SUM,DEFAULT,
50                      SESKEWNESS,SEKURTOSIS@}
51         /SORT=@{NONE,MEAN,SEMEAN,STDDEV,VARIANCE,KURTOSIS,SKEWNESS,
52                RANGE,MINIMUM,MAXIMUM,SUM,SESKEWNESS,SEKURTOSIS,NAME@}
53               @{A,D@}
54 @end display
56 The @cmd{DESCRIPTIVES} procedure reads the active dataset and outputs
57 linear descriptive statistics requested by the user.  In addition, it can optionally
58 compute Z-scores.
60 The @subcmd{VARIABLES} subcommand, which is required, specifies the list of
61 variables to be analyzed.  Keyword @subcmd{VARIABLES} is optional.
63 All other subcommands are optional:
65 The @subcmd{MISSING} subcommand determines the handling of missing variables.  If
66 @subcmd{INCLUDE} is set, then user-missing values are included in the
67 calculations.  If @subcmd{NOINCLUDE} is set, which is the default, user-missing
68 values are excluded.  If @subcmd{VARIABLE} is set, then missing values are
69 excluded on a variable by variable basis; if @subcmd{LISTWISE} is set, then
70 the entire case is excluded whenever any value in that case has a
71 system-missing or, if @subcmd{INCLUDE} is set, user-missing value.
73 The @subcmd{FORMAT} subcommand has no effect.  It is accepted for
74 backward compatibility.
76 The @subcmd{SAVE} subcommand causes @cmd{DESCRIPTIVES} to calculate Z scores for all
77 the specified variables.  The Z scores are saved to new variables.
78 Variable names are generated by trying first the original variable name
79 with Z prepended and truncated to a maximum of 8 characters, then the
80 names ZSC000 through ZSC999, STDZ00 through STDZ09, ZZZZ00 through
81 ZZZZ09, ZQZQ00 through ZQZQ09, in that sequence.  In addition, Z score
82 variable names can be specified explicitly on @subcmd{VARIABLES} in the variable
83 list by enclosing them in parentheses after each variable.
84 When Z scores are calculated, @pspp{} ignores @cmd{TEMPORARY},
85 treating temporary transformations as permanent.
87 The @subcmd{STATISTICS} subcommand specifies the statistics to be displayed:
89 @table @code
90 @item @subcmd{ALL}
91 All of the statistics below.
92 @item @subcmd{MEAN}
93 Arithmetic mean.
94 @item @subcmd{SEMEAN}
95 Standard error of the mean.
96 @item @subcmd{STDDEV}
97 Standard deviation.
98 @item @subcmd{VARIANCE}
99 Variance.
100 @item @subcmd{KURTOSIS}
101 Kurtosis and standard error of the kurtosis.
102 @item @subcmd{SKEWNESS}
103 Skewness and standard error of the skewness.
104 @item @subcmd{RANGE}
105 Range.
106 @item MINIMUM
107 Minimum value.
108 @item MAXIMUM
109 Maximum value.
110 @item SUM
111 Sum.
112 @item DEFAULT
113 Mean, standard deviation of the mean, minimum, maximum.
114 @item SEKURTOSIS
115 Standard error of the kurtosis.
116 @item SESKEWNESS
117 Standard error of the skewness.
118 @end table
120 The @subcmd{SORT} subcommand specifies how the statistics should be sorted.  Most
121 of the possible values should be self-explanatory.  @subcmd{NAME} causes the
122 statistics to be sorted by name.  By default, the statistics are listed
123 in the order that they are specified on the @subcmd{VARIABLES} subcommand.
124 The @subcmd{A} and @subcmd{D} settings request an ascending or descending
125 sort order, respectively.
127 @subsection Descriptives Example
129 The @file{physiology.sav} file contains various physiological data for a sample
130 of persons.   Running the @cmd{DESCRIPTIVES} command on the variables @exvar{height}
131 and @exvar{temperature} with the default options allows one to see simple linear
132 statistics for these two variables.  In @ref{descriptives:ex}, these variables
133 are specfied on the @subcmd{VARIABLES} subcommand and the @subcmd{SAVE} option
134 has been used, to request that Z scores be calculated.
136 After the command has completed, this example runs @cmd{DESCRIPTIVES} again, this
137 time on the @exvar{zheight} and @exvar{ztemperature} variables,
138 which are the two normalized (Z-score) variables generated by the
139 first @cmd{DESCRIPTIVES} command.
141 @float Example, descriptives:ex
142 @psppsyntax {descriptives.sps}
143 @caption {Running two @cmd{DESCRIPTIVES} commands, one with the @subcmd{SAVE} subcommand}
144 @end float
146 @float Screenshot, descriptives:scr
147 @psppimage {descriptives}
148 @caption {The Descriptives dialog box with two variables and Z-Scores option selected}
149 @end float
151 In @ref{descriptives:res}, we can see that there are 40 valid data for each of the variables
152 and no missing values.   The mean average of the height and temperature is 16677.12
153 and 37.02 respectively.  The descriptive statistics for temperature seem reasonable.
154 However there is a very high standard deviation for @exvar{height} and a suspiciously
155 low minimum.  This is due to a data entry error in the
156 data (@pxref{Identifying incorrect data}).
158 In the second Descriptive Statistics command, one can see that the mean and standard
159 deviation of both Z score variables is 0 and 1 respectively.  All Z score statistics
160 should have these properties since they are normalized versions of the original scores.
162 @float Result, descriptives:res
163 @psppoutput {descriptives}
164 @caption {Descriptives statistics including two normalized variables (Z-scores)}
165 @end float
167 @node FREQUENCIES
168 @section FREQUENCIES
170 @vindex FREQUENCIES
171 @display
172 FREQUENCIES
173         /VARIABLES=@var{var_list}
174         /FORMAT=@{TABLE,NOTABLE,LIMIT(@var{limit})@}
175                 @{AVALUE,DVALUE,AFREQ,DFREQ@}
176         /MISSING=@{EXCLUDE,INCLUDE@}
177         /STATISTICS=@{DEFAULT,MEAN,SEMEAN,MEDIAN,MODE,STDDEV,VARIANCE,
178                      KURTOSIS,SKEWNESS,RANGE,MINIMUM,MAXIMUM,SUM,
179                      SESKEWNESS,SEKURTOSIS,ALL,NONE@}
180         /NTILES=@var{ntiles}
181         /PERCENTILES=percent@dots{}
182         /HISTOGRAM=[MINIMUM(@var{x_min})] [MAXIMUM(@var{x_max})]
183                    [@{FREQ[(@var{y_max})],PERCENT[(@var{y_max})]@}] [@{NONORMAL,NORMAL@}]
184         /PIECHART=[MINIMUM(@var{x_min})] [MAXIMUM(@var{x_max})]
185                   [@{FREQ,PERCENT@}] [@{NOMISSING,MISSING@}]
186         /BARCHART=[MINIMUM(@var{x_min})] [MAXIMUM(@var{x_max})]
187                   [@{FREQ,PERCENT@}]
188         /ORDER=@{ANALYSIS,VARIABLE@}
191 (These options are not currently implemented.)
192         /HBAR=@dots{}
193         /GROUPED=@dots{}
194 @end display
196 The @cmd{FREQUENCIES} procedure outputs frequency tables for specified
197 variables.
198 @cmd{FREQUENCIES} can also calculate and display descriptive statistics
199 (including median and mode) and percentiles, and various graphical representations
200 of the frequency distribution.
202 The @subcmd{VARIABLES} subcommand is the only required subcommand.  Specify the
203 variables to be analyzed.
205 The @subcmd{FORMAT} subcommand controls the output format.  It has several
206 possible settings:
208 @itemize @subcmd{}
209 @item
210 @subcmd{TABLE}, the default, causes a frequency table to be output for every
211 variable specified.  @subcmd{NOTABLE} prevents them from being output.  @subcmd{LIMIT}
212 with a numeric argument causes them to be output except when there are
213 more than the specified number of values in the table.
215 @item
216 Normally frequency tables are sorted in ascending order by value.  This
217 is @subcmd{AVALUE}.  @subcmd{DVALUE} tables are sorted in descending order by value.
218 @subcmd{AFREQ} and @subcmd{DFREQ} tables are sorted in ascending and descending order,
219 respectively, by frequency count.
220 @end itemize
222 The @subcmd{MISSING} subcommand controls the handling of user-missing values.
223 When @subcmd{EXCLUDE}, the default, is set, user-missing values are not included
224 in frequency tables or statistics.  When @subcmd{INCLUDE} is set, user-missing
225 are included.  System-missing values are never included in statistics,
226 but are listed in frequency tables.
228 The available @subcmd{STATISTICS} are the same as available
229 in @cmd{DESCRIPTIVES} (@pxref{DESCRIPTIVES}), with the addition
230 of @subcmd{MEDIAN}, the data's median
231 value, and MODE, the mode.  (If there are multiple modes, the smallest
232 value is reported.)  By default, the mean, standard deviation of the
233 mean, minimum, and maximum are reported for each variable.
235 @cindex percentiles
236 @subcmd{PERCENTILES} causes the specified percentiles to be reported.
237 The percentiles should  be presented at a list of numbers between 0
238 and 100 inclusive.
239 The @subcmd{NTILES} subcommand causes the percentiles to be reported at the
240 boundaries of the data set divided into the specified number of ranges.
241 For instance, @subcmd{/NTILES=4} would cause quartiles to be reported.
243 @cindex histogram
244 The @subcmd{HISTOGRAM} subcommand causes the output to include a histogram for
245 each specified numeric variable.  The X axis by default ranges from
246 the minimum to the maximum value observed in the data, but the @subcmd{MINIMUM}
247 and @subcmd{MAXIMUM} keywords can set an explicit range.
248 @footnote{The number of
249 bins is chosen according to the Freedman-Diaconis rule:
250 @math{2 \times IQR(x)n^{-1/3}}, where @math{IQR(x)} is the interquartile range of @math{x}
251 and @math{n} is the number of samples.    Note that
252 @cmd{EXAMINE} uses a different algorithm to determine bin sizes.}
253 Histograms are not created for string variables.
255 Specify @subcmd{NORMAL} to superimpose a normal curve on the
256 histogram.
258 @cindex piechart
259 The @subcmd{PIECHART} subcommand adds a pie chart for each variable to the data.  Each
260 slice represents one value, with the size of the slice proportional to
261 the value's frequency.  By default, all non-missing values are given
262 slices.
263 The @subcmd{MINIMUM} and @subcmd{MAXIMUM} keywords can be used to limit the
264 displayed slices to a given range of values.
265 The keyword @subcmd{NOMISSING} causes missing values to be omitted from the
266 piechart.  This is the default.
267 If instead, @subcmd{MISSING} is specified, then the pie chart includes
268 a single slice representing all system missing and user-missing cases.
270 @cindex bar chart
271 The @subcmd{BARCHART} subcommand produces a bar chart for each variable.
272 The @subcmd{MINIMUM} and @subcmd{MAXIMUM} keywords can be used to omit
273 categories whose counts which lie outside the specified limits.
274 The @subcmd{FREQ} option (default) causes the ordinate to display the frequency
275 of each category, whereas the @subcmd{PERCENT} option displays relative
276 percentages.
278 The @subcmd{FREQ} and @subcmd{PERCENT} options on @subcmd{HISTOGRAM} and
279 @subcmd{PIECHART} are accepted but not currently honoured.
281 The @subcmd{ORDER} subcommand is accepted but ignored.
283 @subsection Frequencies Example
285 @ref{frequencies:ex} runs a frequency analysis on the @exvar{sex}
286 and @exvar{occupation} variables from the @file{personnel.sav} file.
287 This is useful to get an general idea of the way in which these nominal
288 variables are distributed.
290 @float Example, frequencies:ex
291 @psppsyntax {frequencies.sps}
292 @caption {Running frequencies on the @exvar{sex} and @exvar{occupation} variables}
293 @end float
295 If you are using the graphic user interface, the dialog box is set up such that
296 by default, several statistics are calculated.   Some are not particularly useful
297 for categorical variables, so you may want to disable those.
299 @float Screenshot, frequencies:scr
300 @psppimage {frequencies}
301 @caption {The frequencies dialog box with the @exvar{sex} and @exvar{occupation} variables selected}
302 @end float
304 From @ref{frequencies:res} it is evident that there are 33 males, 21 females and
305 2 persons for whom their sex has not been entered.
307 One can also see how many of each occupation there are in the data.
308 When dealing with string variables used as nominal values, running a frequency
309 analysis is useful to detect data input entries.  Notice that
310 one @exvar{occupation} value has been mistyped as ``Scrientist''.  This entry should
311 be corrected, or marked as missing before using the data.
313 @float Result, frequencies:res
314 @psppoutput {frequencies}
315 @caption {The relative frequencies of @exvar{sex} and @exvar{occupation}}
316 @end float
318 @node EXAMINE
319 @section EXAMINE
321 @vindex EXAMINE
322 @cindex Exploratory data analysis
323 @cindex normality, testing
325 @display
326 EXAMINE
327         VARIABLES= @var{var1} [@var{var2}] @dots{} [@var{varN}]
328            [BY @var{factor1} [BY @var{subfactor1}]
329              [ @var{factor2} [BY @var{subfactor2}]]
330              @dots{}
331              [ @var{factor3} [BY @var{subfactor3}]]
332             ]
333         /STATISTICS=@{DESCRIPTIVES, EXTREME[(@var{n})], ALL, NONE@}
334         /PLOT=@{BOXPLOT, NPPLOT, HISTOGRAM, SPREADLEVEL[(@var{t})], ALL, NONE@}
335         /CINTERVAL @var{p}
336         /COMPARE=@{GROUPS,VARIABLES@}
337         /ID=@var{identity_variable}
338         /@{TOTAL,NOTOTAL@}
339         /PERCENTILE=[@var{percentiles}]=@{HAVERAGE, WAVERAGE, ROUND, AEMPIRICAL, EMPIRICAL @}
340         /MISSING=@{LISTWISE, PAIRWISE@} [@{EXCLUDE, INCLUDE@}]
341                 [@{NOREPORT,REPORT@}]
343 @end display
345 The @cmd{EXAMINE} command is used to perform exploratory data analysis.
346 In particular, it is useful for testing how closely a distribution follows a
347 normal distribution, and for finding outliers and extreme values.
349 The @subcmd{VARIABLES} subcommand is mandatory.
350 It specifies the dependent variables and optionally variables to use as
351 factors for the analysis.
352 Variables listed before the first @subcmd{BY} keyword (if any) are the
353 dependent variables.
354 The dependent variables may optionally be followed by a list of
355 factors which tell @pspp{} how to break down the analysis for each
356 dependent variable.
358 Following the dependent variables, factors may be specified.
359 The factors (if desired) should be preceded by a single @subcmd{BY} keyword.
360 The format for each factor is
361 @display
362 @var{factorvar} [BY @var{subfactorvar}].
363 @end display
364 Each unique combination of the values of  @var{factorvar} and
365 @var{subfactorvar} divide the dataset into @dfn{cells}.
366 Statistics are calculated for each cell
367 and for the entire dataset (unless @subcmd{NOTOTAL} is given).
369 The @subcmd{STATISTICS} subcommand specifies which statistics to show.
370 @subcmd{DESCRIPTIVES} produces a table showing some parametric and
371 non-parametrics statistics.
372 @subcmd{EXTREME} produces a table showing the extremities of each cell.
373 A number in parentheses, @var{n} determines
374 how many upper and lower extremities to show.
375 The default number is 5.
377 The subcommands @subcmd{TOTAL} and @subcmd{NOTOTAL} are mutually exclusive.
378 If @subcmd{TOTAL} appears, then statistics for the entire dataset
379 as well as for each cell are produced.
380 If @subcmd{NOTOTAL} appears, then statistics are produced only for the cells
381 (unless no factor variables have been given).
382 These subcommands have no effect if there have  been no factor variables
383 specified.
385 @cindex boxplot
386 @cindex histogram
387 @cindex npplot
388 @cindex spreadlevel plot
389 The @subcmd{PLOT} subcommand specifies which plots are to be produced if any.
390 Available plots are @subcmd{HISTOGRAM}, @subcmd{NPPLOT},  @subcmd{BOXPLOT} and
391 @subcmd{SPREADLEVEL}.
392 The first three can be used to visualise how closely each cell conforms to a
393 normal distribution, whilst the spread vs.@: level plot can be useful to visualise
394 how the variance differs between factors.
395 Boxplots show you the outliers and extreme values.
396 @footnote{@subcmd{HISTOGRAM} uses Sturges' rule to determine the number of
397 bins, as approximately @math{1 + \log2(n)}, where @math{n} is the number of samples.
398 Note that @cmd{FREQUENCIES} uses a different algorithm to find the bin size.}
400 The @subcmd{SPREADLEVEL} plot displays the interquartile range versus the
401 median.  It takes an optional parameter @var{t}, which specifies how the data
402 should be transformed prior to plotting.
403 The given value @var{t} is a power to which the data are raised.  For example, if
404 @var{t} is given as 2, then the square of the data is used.
405 Zero, however is a special value.  If @var{t} is 0 or
406 is omitted, then data are transformed by taking its natural logarithm instead of
407 raising to the power of @var{t}.
409 @cindex Shapiro-Wilk
410 When one or more plots are requested, @subcmd{EXAMINE} also performs the
411 Shapiro-Wilk test for each category.
412 There are however a number of provisos:
413 @itemize
414 @item All weight values must be integer.
415 @item The cumulative weight value must be in the range [3, 5000]
416 @end itemize
418 The @subcmd{COMPARE} subcommand is only relevant if producing boxplots, and it is only
419 useful there is more than one dependent variable and at least one factor.
421 @subcmd{/COMPARE=GROUPS} is specified, then one plot per dependent variable is produced,
422 each of which contain boxplots for all the cells.
423 If @subcmd{/COMPARE=VARIABLES} is specified, then one plot per cell is produced,
424 each containing one boxplot per dependent variable.
425 If the @subcmd{/COMPARE} subcommand is omitted, then @pspp{} behaves as if
426 @subcmd{/COMPARE=GROUPS} were given.
428 The @subcmd{ID} subcommand is relevant only if @subcmd{/PLOT=BOXPLOT} or
429 @subcmd{/STATISTICS=EXTREME} has been given.
430 If given, it should provide the name of a variable which is to be used
431 to labels extreme values and outliers.
432 Numeric or string variables are permissible.
433 If the @subcmd{ID} subcommand is not given, then the case number is used for
434 labelling.
436 The @subcmd{CINTERVAL} subcommand specifies the confidence interval to use in
437 calculation of the descriptives command.  The default is 95%.
439 @cindex percentiles
440 The @subcmd{PERCENTILES} subcommand specifies which percentiles are to be calculated,
441 and which algorithm to use for calculating them.  The default is to
442 calculate the 5, 10, 25, 50, 75, 90, 95 percentiles using the
443 @subcmd{HAVERAGE} algorithm.
445 The @subcmd{TOTAL} and @subcmd{NOTOTAL} subcommands are mutually exclusive.  If @subcmd{NOTOTAL}
446 is given and factors have been specified in the @subcmd{VARIABLES} subcommand,
447 then statistics for the unfactored dependent variables are
448 produced in addition to the factored variables.  If there are no
449 factors specified then @subcmd{TOTAL} and @subcmd{NOTOTAL} have no effect.
452 The following example generates descriptive statistics and histograms for
453 two variables @var{score1} and @var{score2}.
454 Two factors are given, @i{viz}: @var{gender} and @var{gender} BY @var{culture}.
455 Therefore, the descriptives and histograms are generated for each
456 distinct  value
457 of @var{gender} @emph{and} for each distinct combination of the values
458 of @var{gender} and @var{race}.
459 Since the @subcmd{NOTOTAL} keyword is given, statistics and histograms for
460 @var{score1} and @var{score2} covering the  whole dataset are not produced.
461 @example
462 EXAMINE @var{score1} @var{score2} BY
463         @var{gender}
464         @var{gender} BY @var{culture}
465         /STATISTICS = DESCRIPTIVES
466         /PLOT = HISTOGRAM
467         /NOTOTAL.
468 @end example
470 Here is a second example showing how the @cmd{examine} command can be used to find extremities.
471 @example
472 EXAMINE @var{height} @var{weight} BY
473         @var{gender}
474         /STATISTICS = EXTREME (3)
475         /PLOT = BOXPLOT
476         /COMPARE = GROUPS
477         /ID = @var{name}.
478 @end example
479 In this example, we look at the height and weight of a sample of individuals and
480 how they differ between male and female.
481 A table showing the 3 largest and the 3 smallest values of @exvar{height} and
482 @exvar{weight} for each gender, and for the whole dataset as are shown.
483 In addition, the @subcmd{/PLOT} subcommand requests boxplots.
484 Because @subcmd{/COMPARE = GROUPS} was specified, boxplots for male and female are
485 shown in juxtaposed in the same graphic, allowing us to easily see the difference between
486 the genders.
487 Since the variable @var{name} was specified on the @subcmd{ID} subcommand,
488 values of the @var{name} variable are used to label the extreme values.
490 @strong{Warning!}
491 If you specify many dependent variables or factor variables
492 for which there are many distinct values, then @cmd{EXAMINE} will produce a very
493 large quantity of output.
495 @node GRAPH
496 @section GRAPH
498 @vindex GRAPH
499 @cindex Exploratory data analysis
500 @cindex normality, testing
502 @display
503 GRAPH
504         /HISTOGRAM [(NORMAL)]= @var{var}
505         /SCATTERPLOT [(BIVARIATE)] = @var{var1} WITH @var{var2} [BY @var{var3}]
506         /BAR = @{@var{summary-function}(@var{var1}) | @var{count-function}@} BY @var{var2} [BY @var{var3}]
507         [ /MISSING=@{LISTWISE, VARIABLE@} [@{EXCLUDE, INCLUDE@}] ]
508                 [@{NOREPORT,REPORT@}]
510 @end display
512 The @cmd{GRAPH} command produces graphical plots of data. Only one of the subcommands
513 @subcmd{HISTOGRAM}, @subcmd{BAR} or @subcmd{SCATTERPLOT} can be specified, @i{i.e.} only one plot
514 can be produced per call of @cmd{GRAPH}. The @subcmd{MISSING} is optional.
516 @menu
517 * SCATTERPLOT::             Cartesian Plots
518 * HISTOGRAM::               Histograms
519 * BAR CHART::               Bar Charts
520 @end menu
522 @node SCATTERPLOT
523 @subsection Scatterplot
524 @cindex scatterplot
526 The subcommand @subcmd{SCATTERPLOT} produces an xy plot of the
527 data.
528 @cmd{GRAPH} uses the third variable @var{var3}, if specified, to determine
529 the colours and/or markers for the plot.
530 The following is an example for producing a scatterplot.
532 @example
533 GRAPH
534         /SCATTERPLOT = @var{height} WITH @var{weight} BY @var{gender}.
535 @end example
537 This example produces a scatterplot where @var{height} is plotted versus @var{weight}. Depending
538 on the value of the @var{gender} variable, the colour of the datapoint is different. With
539 this plot it is possible to analyze gender differences for @var{height} versus @var{weight} relation.
541 @node HISTOGRAM
542 @subsection Histogram
543 @cindex histogram
545 The subcommand @subcmd{HISTOGRAM} produces a histogram. Only one variable is allowed for
546 the histogram plot.
547 The keyword @subcmd{NORMAL} may be specified in parentheses, to indicate that the ideal normal curve
548 should be superimposed over the histogram.
549 For an alternative method to produce histograms @pxref{EXAMINE}. The
550 following example produces a histogram plot for the variable @var{weight}.
552 @example
553 GRAPH
554         /HISTOGRAM = @var{weight}.
555 @end example
557 @node BAR CHART
558 @subsection Bar Chart
559 @cindex bar chart
561 The subcommand @subcmd{BAR} produces a bar chart.
562 This subcommand requires that a @var{count-function} be specified (with no arguments) or a @var{summary-function} with a variable @var{var1} in parentheses.
563 Following the summary or count function, the keyword @subcmd{BY} should be specified and then a catagorical variable, @var{var2}.
564 The values of the variable @var{var2} determine the labels of the bars to be plotted.
565 Optionally a second categorical variable @var{var3} may be specified in which case a clustered (grouped) bar chart is produced.
567 Valid count functions are
568 @table @subcmd
569 @item COUNT
570 The weighted counts of the cases in each category.
571 @item PCT
572 The weighted counts of the cases in each category expressed as a percentage of the total weights of the cases.
573 @item CUFREQ
574 The cumulative weighted counts of the cases in each category.
575 @item CUPCT
576 The cumulative weighted counts of the cases in each category expressed as a percentage of the total weights of the cases.
577 @end table
579 The summary function is applied to @var{var1} across all cases in each category.
580 The recognised summary functions are:
581 @table @subcmd
582 @item SUM
583 The sum.
584 @item MEAN
585 The arithmetic mean.
586 @item MAXIMUM
587 The maximum value.
588 @item MINIMUM
589 The minimum value.
590 @end table
592 The following examples assume a dataset which is the results of a survey.
593 Each respondent has indicated annual income, their sex and city of residence.
594 One could create a bar chart showing how the mean income varies between of residents of different cities, thus:
595 @example
596 GRAPH  /BAR  = MEAN(@var{income}) BY @var{city}.
597 @end example
599 This can be extended to also indicate how income in each city differs between the sexes.
600 @example
601 GRAPH  /BAR  = MEAN(@var{income}) BY @var{city} BY @var{sex}.
602 @end example
604 One might also want to see how many respondents there are from each city.  This can be achieved as follows:
605 @example
606 GRAPH  /BAR  = COUNT BY @var{city}.
607 @end example
609 Bar charts can also be produced using the @ref{FREQUENCIES} and @ref{CROSSTABS} commands.
611 @node CORRELATIONS
612 @section CORRELATIONS
614 @vindex CORRELATIONS
615 @display
616 CORRELATIONS
617      /VARIABLES = @var{var_list} [ WITH @var{var_list} ]
618      [
619       .
620       .
621       .
622       /VARIABLES = @var{var_list} [ WITH @var{var_list} ]
623       /VARIABLES = @var{var_list} [ WITH @var{var_list} ]
624      ]
626      [ /PRINT=@{TWOTAIL, ONETAIL@} @{SIG, NOSIG@} ]
627      [ /STATISTICS=DESCRIPTIVES XPROD ALL]
628      [ /MISSING=@{PAIRWISE, LISTWISE@} @{INCLUDE, EXCLUDE@} ]
629 @end display
631 @cindex correlation
632 The @cmd{CORRELATIONS} procedure produces tables of the Pearson correlation coefficient
633 for a set of variables.  The significance of the coefficients are also given.
635 At least one @subcmd{VARIABLES} subcommand is required. If you specify the @subcmd{WITH}
636 keyword, then a non-square correlation table is produced.
637 The variables preceding @subcmd{WITH}, are used as the rows of the table,
638 and the variables following @subcmd{WITH} are used as the columns of the table.
639 If no @subcmd{WITH} subcommand is specified, then @cmd{CORRELATIONS} produces a
640 square, symmetrical table using all variables.
642 The @cmd{MISSING} subcommand determines the handling of missing variables.
643 If @subcmd{INCLUDE} is set, then user-missing values are included in the
644 calculations, but system-missing values are not.
645 If @subcmd{EXCLUDE} is set, which is the default, user-missing
646 values are excluded as well as system-missing values.
648 If @subcmd{LISTWISE} is set, then the entire case is excluded from analysis
649 whenever any variable  specified in any @cmd{/VARIABLES} subcommand
650 contains a missing value.
651 If @subcmd{PAIRWISE} is set, then a case is considered missing only if either of the
652 values  for the particular coefficient are missing.
653 The default is @subcmd{PAIRWISE}.
655 The @subcmd{PRINT} subcommand is used to control how the reported significance values are printed.
656 If the @subcmd{TWOTAIL} option is used, then a two-tailed test of significance is
657 printed.  If the @subcmd{ONETAIL} option is given, then a one-tailed test is used.
658 The default is @subcmd{TWOTAIL}.
660 If the @subcmd{NOSIG} option is specified, then correlation coefficients with significance less than
661 0.05 are highlighted.
662 If @subcmd{SIG} is specified, then no highlighting is performed.  This is the default.
664 @cindex covariance
665 The @subcmd{STATISTICS} subcommand requests additional statistics to be displayed.  The keyword
666 @subcmd{DESCRIPTIVES} requests that the mean, number of non-missing cases, and the non-biased
667 estimator of the standard deviation are displayed.
668 These statistics are displayed in a separated table, for all the variables listed
669 in any @subcmd{/VARIABLES} subcommand.
670 The @subcmd{XPROD} keyword requests cross-product deviations and covariance estimators to
671 be displayed for each pair of variables.
672 The keyword @subcmd{ALL} is the union of @subcmd{DESCRIPTIVES} and @subcmd{XPROD}.
674 @node CROSSTABS
675 @section CROSSTABS
677 @vindex CROSSTABS
678 @display
679 CROSSTABS
680         /TABLES=@var{var_list} BY @var{var_list} [BY @var{var_list}]@dots{}
681         /MISSING=@{TABLE,INCLUDE,REPORT@}
682         /FORMAT=@{TABLES,NOTABLES@}
683                 @{AVALUE,DVALUE@}
684         /CELLS=@{COUNT,ROW,COLUMN,TOTAL,EXPECTED,RESIDUAL,SRESIDUAL,
685                 ASRESIDUAL,ALL,NONE@}
686         /COUNT=@{ASIS,CASE,CELL@}
687                @{ROUND,TRUNCATE@}
688         /STATISTICS=@{CHISQ,PHI,CC,LAMBDA,UC,BTAU,CTAU,RISK,GAMMA,D,
689                      KAPPA,ETA,CORR,ALL,NONE@}
690         /BARCHART
692 (Integer mode.)
693         /VARIABLES=@var{var_list} (@var{low},@var{high})@dots{}
694 @end display
696 The @cmd{CROSSTABS} procedure displays crosstabulation
697 tables requested by the user.  It can calculate several statistics for
698 each cell in the crosstabulation tables.  In addition, a number of
699 statistics can be calculated for each table itself.
701 The @subcmd{TABLES} subcommand is used to specify the tables to be reported.  Any
702 number of dimensions is permitted, and any number of variables per
703 dimension is allowed.  The @subcmd{TABLES} subcommand may be repeated as many
704 times as needed.  This is the only required subcommand in @dfn{general
705 mode}.
707 Occasionally, one may want to invoke a special mode called @dfn{integer
708 mode}.  Normally, in general mode, @pspp{} automatically determines
709 what values occur in the data.  In integer mode, the user specifies the
710 range of values that the data assumes.  To invoke this mode, specify the
711 @subcmd{VARIABLES} subcommand, giving a range of data values in parentheses for
712 each variable to be used on the @subcmd{TABLES} subcommand.  Data values inside
713 the range are truncated to the nearest integer, then assigned to that
714 value.  If values occur outside this range, they are discarded.  When it
715 is present, the @subcmd{VARIABLES} subcommand must precede the @subcmd{TABLES}
716 subcommand.
718 In general mode, numeric and string variables may be specified on
719 TABLES.  In integer mode, only numeric variables are allowed.
721 The @subcmd{MISSING} subcommand determines the handling of user-missing values.
722 When set to @subcmd{TABLE}, the default, missing values are dropped on a table by
723 table basis.  When set to @subcmd{INCLUDE}, user-missing values are included in
724 tables and statistics.  When set to @subcmd{REPORT}, which is allowed only in
725 integer mode, user-missing values are included in tables but marked with
726 a footnote and excluded from statistical calculations.
728 The @subcmd{FORMAT} subcommand controls the characteristics of the
729 crosstabulation tables to be displayed.  It has a number of possible
730 settings:
732 @itemize @w{}
733 @item
734 @subcmd{TABLES}, the default, causes crosstabulation tables to be output.
735 @subcmd{NOTABLES}, which is equivalent to @code{CELLS=NONE}, suppresses them.
737 @item
738 @subcmd{AVALUE}, the default, causes values to be sorted in ascending order.
739 @subcmd{DVALUE} asserts a descending sort order.
740 @end itemize
742 The @subcmd{CELLS} subcommand controls the contents of each cell in the displayed
743 crosstabulation table.  The possible settings are:
745 @table @asis
746 @item COUNT
747 Frequency count.
748 @item ROW
749 Row percent.
750 @item COLUMN
751 Column percent.
752 @item TOTAL
753 Table percent.
754 @item EXPECTED
755 Expected value.
756 @item RESIDUAL
757 Residual.
758 @item SRESIDUAL
759 Standardized residual.
760 @item ASRESIDUAL
761 Adjusted standardized residual.
762 @item ALL
763 All of the above.
764 @item NONE
765 Suppress cells entirely.
766 @end table
768 @samp{/CELLS} without any settings specified requests @subcmd{COUNT}, @subcmd{ROW},
769 @subcmd{COLUMN}, and @subcmd{TOTAL}.
770 If @subcmd{CELLS} is not specified at all then only @subcmd{COUNT}
771 is selected.
773 By default, crosstabulation and statistics use raw case weights,
774 without rounding.  Use the @subcmd{/COUNT} subcommand to perform
775 rounding: CASE rounds the weights of individual weights as cases are
776 read, CELL rounds the weights of cells within each crosstabulation
777 table after it has been constructed, and ASIS explicitly specifies the
778 default non-rounding behavior.  When rounding is requested, ROUND, the
779 default, rounds to the nearest integer and TRUNCATE rounds toward
780 zero.
782 The @subcmd{STATISTICS} subcommand selects statistics for computation:
784 @table @asis
785 @item CHISQ
786 @cindex chi-square
788 Pearson chi-square, likelihood ratio, Fisher's exact test, continuity
789 correction, linear-by-linear association.
790 @item PHI
791 Phi.
792 @item CC
793 Contingency coefficient.
794 @item LAMBDA
795 Lambda.
796 @item UC
797 Uncertainty coefficient.
798 @item BTAU
799 Tau-b.
800 @item CTAU
801 Tau-c.
802 @item RISK
803 Risk estimate.
804 @item GAMMA
805 Gamma.
806 @item D
807 Somers' D.
808 @item KAPPA
809 Cohen's Kappa.
810 @item ETA
811 Eta.
812 @item CORR
813 Spearman correlation, Pearson's r.
814 @item ALL
815 All of the above.
816 @item NONE
817 No statistics.
818 @end table
820 Selected statistics are only calculated when appropriate for the
821 statistic.  Certain statistics require tables of a particular size, and
822 some statistics are calculated only in integer mode.
824 @samp{/STATISTICS} without any settings selects CHISQ.  If the
825 @subcmd{STATISTICS} subcommand is not given, no statistics are calculated.
827 @cindex bar chart
828 The @samp{/BARCHART} subcommand produces a clustered bar chart for the first two
829 variables on each table.
830 If a table has more than two variables, the counts for the third and subsequent levels
831 are aggregated and the chart is produced as if there were only two variables.
834 @strong{Please note:} Currently the implementation of @cmd{CROSSTABS} has the
835 following limitations:
837 @itemize @bullet
838 @item
839 Significance of some symmetric and directional measures is not calculated.
840 @item
841 Asymptotic standard error is not calculated for
842 Goodman and Kruskal's tau or symmetric Somers' d.
843 @item
844 Approximate T is not calculated for symmetric uncertainty coefficient.
845 @end itemize
847 Fixes for any of these deficiencies would be welcomed.
849 @subsection Crosstabs Example
851 @cindex chi-square test of independence
853 A researcher wishes to know if, in an industry, a person's sex is related to
854 the person's occupation.  To investigate this, she has determined that the
855 @file{personnel.sav} is a representative, randomly selected sample of persons.
856 The researcher's null hypothesis is that a person's sex has no relation to a
857 person's occupation. She uses a chi-squared test of independence to investigate
858 the hypothesis.
860 @float Example, crosstabs:ex
861 @psppsyntax {crosstabs.sps}
862 @caption {Running crosstabs on the @exvar{sex} and @exvar{occupation} variables}
863 @end float
865 The syntax in @ref{crosstabs:ex} conducts a chi-squared test of independence.
866 The line @code{/tables = occupation by sex} indicates that @exvar{occupation}
867 and @exvar{sex} are the variables to be tabulated.  To do this using the @gui{}
868 you must place these variable names respectively in the @samp{Row} and
869 @samp{Column} fields as shown in @ref{crosstabs:scr}.
871 @float Screenshot, crosstabs:scr
872 @psppimage {crosstabs}
873 @caption {The Crosstabs dialog box with the @exvar{sex} and @exvar{occupation} variables selected}
874 @end float
876 Similarly, the @samp{Cells} button shows a dialog box to select the @code{count}
877 and @code{expected} options.  All other cell options can be deselected for this
878 test.
880 You would use the @samp{Format} and @samp{Statistics}  buttons to select options
881 for the @subcmd{FORMAT} and @subcmd{STATISTICS} subcommands.  In this example,
882 the @samp{Statistics} requires only the @samp{Chisq} option to be checked.  All
883 other options should be unchecked.  No special settings are required from the
884 @samp{Format} dialog.
886 As shown in @ref{crosstabs:res} @cmd{CROSSTABS} generates a contingency table
887 containing the observed count and the expected count of each sex and each
888 occupation.  The expected count is the count which would be observed if the
889 null hypothesis were true.
891 The significance of the Pearson Chi-Square value is very much larger than the
892 normally accepted value of 0.05 and so one cannot reject the null hypothesis.
893 Thus the researcher must conclude that a person's sex has no relation to the
894 person's occupation.
896 @float Results, crosstabs:res
897 @psppoutput {crosstabs}
898 @caption {The results of a test of independence between @exvar{sex} and @exvar{occupation}}
899 @end float
901 @node CTABLES
902 @section CTABLES
904 @vindex CTABLES
905 @cindex custom tables
906 @cindex tables, custom
908 @code{CTABLES} has the following overall syntax.  At least one
909 @code{TABLE} subcommand is required:
911 @display
912 @t{CTABLES}
913   @dots{}@i{global subcommands}@dots{}
914   [@t{/TABLE} @i{axis} [@t{BY} @i{axis} [@t{BY} @i{axis}]]
915    @dots{}@i{per-table subcommands}@dots{}]@dots{}
916 @end display
918 @noindent
919 where each @i{axis} may be empty or take one of the following forms:
921 @display
922 @i{variable}
923 @i{variable} @t{[}@{@t{C} @math{|} @t{S}@}@t{]}
924 @i{axis} + @i{axis}
925 @i{axis} > @i{axis}
926 (@i{axis})
927 @i{axis} @t{[}@i{summary} [@i{string}] [@i{format}]@t{]}
928 @end display
930 The following subcommands precede the first @code{TABLE} subcommand
931 and apply to all of the output tables.  All of these subcommands are
932 optional:
934 @display
935 @t{/FORMAT}
936     [@t{MINCOLWIDTH=}@{@t{DEFAULT} @math{|} @i{width}@}]
937     [@t{MAXCOLWIDTH=}@{@t{DEFAULT} @math{|} @i{width}@}]
938     [@t{UNITS=}@{@t{POINTS} @math{|} @t{INCHES} @math{|} @t{CM}@}]
939     [@t{EMPTY=}@{@t{ZERO} @math{|} @t{BLANK} @math{|} @i{string}@}]
940     [@t{MISSING=}@i{string}]
941 @t{/VLABELS}
942     @t{VARIABLES=}@i{variables}
943     @t{DISPLAY}=@{@t{DEFAULT} @math{|} @t{NAME} @math{|} @t{LABEL} @math{|} @t{BOTH} @math{|} @t{NONE}@}
944 @ignore @c not yet implemented
945 @t{/MRSETS COUNTDUPLICATES=}@{@t{YES} @math{|} @t{NO}@}
946 @end ignore
947 @t{/SMISSING} @{@t{VARIABLE} @math{|} @t{LISTWISE}@}
948 @t{/PCOMPUTE} @t{&}@i{postcompute}@t{=EXPR(}@i{expression}@t{)}
949 @t{/PPROPERTIES} @t{&}@i{postcompute}@dots{}
950     [@t{LABEL=}@i{string}]
951     [@t{FORMAT=}[@i{summary} @i{format}]@dots{}]
952     [@t{HIDESOURCECATS=}@{@t{NO} @math{|} @t{YES}@}
953 @t{/WEIGHT VARIABLE=}@i{variable}
954 @t{/HIDESMALLCOUNTS COUNT=@i{count}}
955 @end display
957 The following subcommands follow @code{TABLE} and apply only to the
958 previous @code{TABLE}.  All of these subcommands are optional:
960 @display
961 @t{/SLABELS}
962     [@t{POSITION=}@{@t{COLUMN} @math{|} @t{ROW} @math{|} @t{LAYER}@}]
963     [@t{VISIBLE=}@{@t{YES} @math{|} @t{NO}@}]
964 @t{/CLABELS} @{@t{AUTO} @math{|} @{@t{ROWLABELS}@math{|}@t{COLLABELS}@}@t{=}@{@t{OPPOSITE}@math{|}@t{LAYER}@}@}
965 @t{/CATEGORIES} @t{VARIABLES=}@i{variables}
966     @{@t{[}@i{value}@t{,} @i{value}@dots{}@t{]}
967    @math{|} [@t{ORDER=}@{@t{A} @math{|} @t{D}@}]
968      [@t{KEY=}@{@t{VALUE} @math{|} @t{LABEL} @math{|} @i{summary}@t{(}@i{variable}@t{)}@}]
969      [@t{MISSING=}@{@t{EXCLUDE} @math{|} @t{INCLUDE}@}]@}
970     [@t{TOTAL=}@{@t{NO} @math{|} @t{YES}@} [@t{LABEL=}@i{string}] [@t{POSITION=}@{@t{AFTER} @math{|} @t{BEFORE}@}]]
971     [@t{EMPTY=}@{@t{INCLUDE} @math{|} @t{EXCLUDE}@}]
972 @t{/TITLES}
973     [@t{TITLE=}@i{string}@dots{}]
974     [@t{CAPTION=}@i{string}@dots{}]
975     [@t{CORNER=}@i{string}@dots{}]
976 @ignore  @c not yet implemented
977 @t{/CRITERIA CILEVEL=}@i{percentage}
978 @t{/SIGTEST TYPE=CHISQUARE}
979     [@t{ALPHA=}@i{siglevel}]
980     [@t{INCLUDEMRSETS=}@{@t{YES} @math{|} @t{NO}@}]
981     [@t{CATEGORIES=}@{@t{ALLVISIBLE} @math{|} @t{SUBTOTALS}@}]
982 @t{/COMPARETEST TYPE=}@{@t{PROP} @math{|} @t{MEAN}@}
983     [@t{ALPHA=}@i{value}[@t{,} @i{value}]]
984     [@t{ADJUST=}@{@t{BONFERRONI} @math{|} @t{BH} @math{|} @t{NONE}@}]
985     [@t{INCLUDEMRSETS=}@{@t{YES} @math{|} @t{NO}@}]
986     [@t{MEANSVARIANCE=}@{@t{ALLCATS} @math{|} @t{TESTEDCATS}@}]
987     [@t{CATEGORIES=}@{@t{ALLVISIBLE} @math{|} @t{SUBTOTALS}@}]
988     [@t{MERGE=}@{@t{NO} @math{|} @t{YES}@}]
989     [@t{STYLE=}@{@t{APA} @math{|} @t{SIMPLE}@}]
990     [@t{SHOWSIG=}@{@t{NO} @math{|} @t{YES}@}]
991 @end ignore
992 @end display
994 The @code{CTABLES} (aka ``custom tables'') command produces
995 multi-dimensional tables from categorical and scale data.  It offers
996 many options for data summarization and formatting.
998 This section's examples use data from the 2008 (USA) National Survey
999 of Drinking and Driving Attitudes and Behaviors, a public domain data
1000 set from the (USA) National Highway Traffic Administration and
1001 available at @url{https://data.transportation.gov}.  @pspp{} includes
1002 this data set, with a modified dictionary, as
1003 @file{examples/nhtsa.sav}.
1005 @node CTABLES Basics
1006 @subsection Basics
1008 The only required subcommand is @code{TABLE}, which specifies the
1009 variables to include along each axis:
1010 @display
1011 @t{/TABLE} @i{rows} [@t{BY} @i{columns} [@t{BY} @i{layers}]]
1012 @end display
1013 @noindent
1014 In @code{TABLE}, each of @var{rows}, @var{columns}, and @var{layers}
1015 is either empty or an axis expression that specifies one or more
1016 variables.  At least one must specify an axis expression.
1018 @node CTABLES Categorical Variable Basics
1019 @subsubsection Categorical Variables
1021 An axis expression that names a categorical variable divides the data
1022 into cells according to the values of that variable.  When all the
1023 variables named on @code{TABLE} are categorical, by default each cell
1024 displays the number of cases that it contains, so specifying a single
1025 variable yields a frequency table, much like the output of the
1026 @code{FREQUENCIES} command (@pxref{FREQUENCIES}):
1028 @example
1029 CTABLES /TABLE=ageGroup.
1030 @end example
1031 @psppoutput {ctables1}
1033 @noindent
1034 Specifying a row and a column categorical variable yields a
1035 crosstabulation, much like the output of the @code{CROSSTABS} command
1036 (@pxref{CROSSTABS}):
1038 @example
1039 CTABLES /TABLE=ageGroup BY gender.
1040 @end example
1041 @psppoutput {ctables2}
1043 @noindent
1044 The @samp{>} ``nesting'' operator nests multiple variables on a single
1045 axis, e.g.:
1047 @example
1048 CTABLES /TABLE likelihoodOfBeingStoppedByPolice BY ageGroup > gender.
1049 @end example
1050 @psppoutput {ctables3}
1052 @noindent
1053 The @samp{+} ``stacking'' operator allows a single output table to
1054 include multiple data analyses.  With @samp{+}, @code{CTABLES} divides
1055 the output table into multiple @dfn{sections}, each of which includes
1056 an analysis of the full data set.  For example, the following command
1057 separately tabulates age group and driving frequency by gender:
1059 @example
1060 CTABLES /TABLE ageGroup + freqOfDriving BY gender.
1061 @end example
1062 @psppoutput {ctables4}
1064 @noindent
1065 When @samp{+} and @samp{>} are used together, @samp{>} binds more
1066 tightly.  Use parentheses to override operator precedence.  Thus:
1068 @example
1069 CTABLES /TABLE hasConsideredReduction + hasBeenCriticized > gender.
1070 CTABLES /TABLE (hasConsideredReduction + hasBeenCriticized) > gender.
1071 @end example
1072 @psppoutput {ctables5}
1074 @node CTABLES Scalar Variable Basics
1075 @subsubsection Scalar Variables
1077 For a categorical variable, @code{CTABLES} divides the table into a
1078 cell per category.  For a scalar variable, @code{CTABLES} instead
1079 calculates a summary measure, by default the mean, of the values that
1080 fall into a cell.  For example, if the only variable specified is a
1081 scalar variable, then the output is a single cell that holds the mean
1082 of all of the data:
1084 @example
1085 CTABLES /TABLE age.
1086 @end example
1087 @psppoutput {ctables6}
1089 A scalar variable may nest with categorical variables.  The following
1090 example shows the mean age of survey respondents across gender and
1091 language groups:
1093 @example
1094 CTABLES /TABLE gender > age BY region.
1095 @end example
1096 @psppoutput {ctables7}
1098 The order of nesting of scalar and categorical variables affects table
1099 labeling, but it does not affect the data displayed in the table.  The
1100 following example shows how the output changes when the nesting order
1101 of the scalar and categorical variable are interchanged:
1103 @example
1104 CTABLES /TABLE age > gender BY region.
1105 @end example
1106 @psppoutput {ctables8}
1108 Only a single scalar variable may appear in each section; that is, a
1109 scalar variable may not nest inside a scalar variable directly or
1110 indirectly.  Scalar variables may only appear on one axis within
1111 @code{TABLE}.
1113 @node CTABLES Overriding Measurement Level
1114 @subsubsection Overriding Measurement Level
1116 By default, @code{CTABLES} uses a variable's measurement level to
1117 decide whether to treat it as categorical or scalar.  Variables
1118 assigned the nominal or ordinal measurement level are treated as
1119 categorical, and scalar variables are treated as scalar.
1121 When @pspp{} reads data from a file in an external format, such as a
1122 text file, variables' measurement levels are often unknown.  If
1123 @code{CTABLES} runs when a variable has an unknown measurement level,
1124 it makes an initial pass through the data to guess measurement levels
1125 using the rules described in an earlier section (@pxref{Measurement
1126 Level}).  Use the @code{VARIABLE LEVEL} command to set or change a
1127 variable's measurement level (@pxref{VARIABLE LEVEL}).
1129 To treat a variable as categorical or scalar only for one use on
1130 @code{CTABLES}, add @samp{[C]} or @samp{[S]}, respectively, after the
1131 variable name.  The following example shows the output when variable
1132 @code{monthDaysMin1drink} is analyzed as scalar (the default for its measurement
1133 level) and as categorical:
1135 @example
1136 CTABLES
1137     /TABLE monthDaysMin1drink BY gender
1138     /TABLE monthDaysMin1drink [C] BY gender.
1139 @end example
1140 @psppoutput {ctables9}
1142 @ignore
1143 @node CTABLES Multiple Response Sets
1144 @subsubheading Multiple Response Sets
1146 The @code{CTABLES} command does not yet support multiple response
1147 sets.
1148 @end ignore
1150 @node CTABLES Data Summarization
1151 @subsection Data Summarization
1153 The @code{CTABLES} command allows the user to control how the data are
1154 summarized with @dfn{summary specifications}, syntax that lists one or
1155 more summary function names, optionally separated by commas, and which
1156 are enclosed in square brackets following a variable name on the
1157 @code{TABLE} subcommand.  When all the variables are categorical,
1158 summary specifications can be given for the innermost nested variables
1159 on any one axis.  When a scalar variable is present, only the scalar
1160 variable may have summary specifications.
1162 The following example includes a summary specification for column and
1163 row percentages for categorical variables, and mean and median for a
1164 scalar variable:
1166 @example
1167 CTABLES
1168     /TABLE=age [MEAN, MEDIAN] BY gender
1169     /TABLE=ageGroup [COLPCT, ROWPCT] BY gender.
1170 @end example
1171 @psppoutput {ctables10}
1173 A summary specification may override the default label and format by
1174 appending a string or format specification or both (in that order) to
1175 the summary function name.  For example:
1177 @example
1178 CTABLES /TABLE=ageGroup [COLPCT 'Gender %' PCT5.0,
1179                          ROWPCT 'Age Group %' PCT5.0]
1180                BY gender.
1181 @end example
1182 @psppoutput {ctables11}
1184 In addition to the standard formats, @code{CTABLES} allows the user to
1185 specify the following special formats:
1187 @multitable {@code{NEGPAREN@i{w}.@i{d}}} {Encloses all numbers in parentheses.} {@t{(42.96%)}} {@t{(-42.96%)}}
1188 @item @code{NEGPAREN@i{w}.@i{d}}
1189 @tab Encloses negative numbers in parentheses.
1190 @tab @t{@w{    }42.96}
1191 @tab @t{@w{  }(42.96)}
1193 @item @code{NEQUAL@i{w}.@i{d}}
1194 @tab Adds a @code{N=} prefix.
1195 @tab @t{@w{  }N=42.96}
1196 @tab @t{@w{ }N=-42.96}
1198 @item @code{@code{PAREN@i{w}.@i{d}}}
1199 @tab Encloses all numbers in parentheses.
1200 @tab @t{@w{  }(42.96)}
1201 @tab @t{@w{ }(-42.96)}
1203 @item @code{PCTPAREN@i{w}.@i{d}}
1204 @tab Encloses all numbers in parentheses with a @samp{%} suffix.
1205 @tab @t{@w{ }(42.96%)}
1206 @tab @t{(-42.96%)}
1207 @end multitable
1209 Parentheses provide a shorthand to apply summary specifications to
1210 multiple variables.  For example, both of these commands:
1212 @example
1213 CTABLES /TABLE=ageGroup[COLPCT] + membersOver16[COLPCT] BY gender.
1214 CTABLES /TABLE=(ageGroup + membersOver16)[COLPCT] BY gender.
1215 @end example
1217 @noindent
1218 produce the same output shown below:
1220 @psppoutput {ctables12}
1222 The following sections list the available summary functions.  After
1223 each function's name is given its default label and format.  If no
1224 format is listed, then the default format is the print format for the
1225 variable being summarized.
1227 @node CTABLES Summary Functions for Individual Cells
1228 @subsubsection Summary Functions for Individual Cells
1230 This section lists the summary functions that consider only an
1231 individual cell in @code{CTABLES}.  Only one such summary function,
1232 @code{COUNT}, may be applied to both categorical and scale variables:
1234 @table @asis
1235 @item @code{COUNT} (``Count'', F40.0)
1236 The sum of weights in a cell.
1238 If @code{CATEGORIES} for one or more of the variables in a table
1239 include missing values (@pxref{CTABLES Per-Variable Category
1240 Options}), then some or all of the categories for a cell might be
1241 missing values.  @code{COUNT} counts data included in a cell
1242 regardless of whether its categories are missing.
1243 @end table
1245 The following summary functions apply only to scale variables or
1246 totals and subtotals for categorical variables.  Be cautious about
1247 interpreting the summary value in the latter case, because it is not
1248 necessarily meaningful; however, the mean of a Likert scale, etc.@:
1249 may have a straightforward interpreation.
1251 @table @asis
1252 @item @code{MAXIMUM} (``Maximum'')
1253 The largest value.
1255 @item @code{MEAN} (``Mean'')
1256 The mean.
1258 @item @code{MEDIAN} (``Median'')
1259 The median value.
1261 @item @code{MINIMUM} (``Minimum'')
1262 The smallest value.
1264 @item @code{MISSING} (``Missing'')
1265 Sum of weights of user- and system-missing values.
1267 @item @code{MODE} (``Mode'')
1268 The highest-frequency value.  Ties are broken by taking the smallest mode.
1270 @item @code{PTILE} @i{n} (``Percentile @i{n}'')
1271 The @var{n}th percentile, where @math{0 @leq{} @var{n} @leq{} 100}.
1273 @item @code{RANGE} (``Range'')
1274 The maximum minus the minimum.
1276 @item @code{SEMEAN} (``Std Error of Mean'')
1277 The standard error of the mean.
1279 @item @code{STDDEV} (``Std Deviation'')
1280 The standard deviation.
1282 @item @code{SUM} (``Sum'')
1283 The sum.
1285 @item @code{TOTALN} (``Total N'', F40.0)
1286 The sum of weights in a cell.
1288 For scale data, @code{COUNT} and @code{TOTALN} are the same.
1290 For categorical data, @code{TOTALN} counts missing values in excluded
1291 categories, that is, user-missing values not in an explicit category
1292 list on @code{CATEGORIES} (@pxref{CTABLES Per-Variable Category
1293 Options}), or user-missing values excluded because
1294 @code{MISSING=EXCLUDE} is in effect on @code{CATEGORIES}, or
1295 system-missing values.  @code{COUNT} does not count these.
1297 @xref{CTABLES Missing Values for Summary Variables}, for details of
1298 how @code{CTABLES} summarizes missing values.
1300 @item @code{VALIDN} (``Valid N'', F40.0)
1301 The sum of valid count weights in included categories.
1303 For categorical variables, @code{VALIDN} does not count missing values
1304 regardless of whether they are in included categories via
1305 @code{CATEGORIES}.  @code{VALIDN} does not count valid values that are
1306 in excluded categories.  @xref{CTABLES Missing Values for Summary
1307 Variables}, for details.
1309 @item @code{VARIANCE} (``Variance'')
1310 The variance.
1311 @end table
1313 @node CTABLES Summary Functions for Groups of Cells
1314 @subsubsection Summary Functions for Groups of Cells
1316 These summary functions summarize over multiple cells within an area
1317 of the output chosen by the user and specified as part of the function
1318 name.  The following basic @var{area}s are supported, in decreasing
1319 order of size:
1321 @table @code
1322 @item TABLE
1323 A @dfn{section}.  Stacked variables divide sections of the output from
1324 each other.  sections may span multiple layers.
1326 @item LAYER
1327 A section within a single layer.
1329 @item SUBTABLE
1330 A @dfn{subtable}, whose contents are the cells that pair an innermost
1331 row variable and an innermost column variable within a single layer.
1332 @end table
1334 The following shows how the output for the table expression
1335 @code{hasBeenPassengerOfDesignatedDriver >
1336 hasBeenPassengerOfDrunkDriver BY isLicensedDriver >
1337 hasHostedEventWithAlcohol + hasBeenDesignatedDriver BY
1338 gender}@footnote{This is not necessarily a meaningful table.  To make
1339 it easier to read, short variable labels are used.} is divided up into
1340 @code{TABLE}, @code{LAYER}, and @code{SUBTABLE} areas.  Each unique
1341 value for Table ID is one section, and similarly for Layer ID and
1342 Subtable ID.  Thus, this output has two @code{TABLE} areas (one for
1343 @code{isLicensedDriver} and one for @code{hasBeenDesignatedDriver}),
1344 four @code{LAYER} areas (for those two variables, per layer), and 12
1345 @code{SUBTABLE} areas.
1346 @psppoutput {ctables22}
1348 @code{CTABLES} also supports the following @var{area}s that further
1349 divide a subtable or a layer within a section:
1351 @table @code
1352 @item LAYERROW
1353 @itemx LAYERCOL
1354 A row or column, respectively, in one layer of a section.
1356 @item ROW
1357 @itemx COL
1358 A row or column, respectively, in a subtable.
1359 @end table
1361 The following summary functions for groups of cells are available for
1362 each @var{area} described above, for both categorical and scale
1363 variables:
1365 @table @asis
1366 @item @code{@i{area}PCT} or @code{@i{area}PCT.COUNT} (``@i{Area} %'', PCT40.1)
1367 A percentage of total counts within @var{area}.
1369 @item @code{@i{area}PCT.VALIDN} (``@i{Area} Valid N %'', PCT40.1)
1370 A percentage of total counts for valid values within @var{area}.
1372 @item @code{@i{area}PCT.TOTALN} (``@i{Area} Total N %'', PCT40.1)
1373 A percentage of total counts for all values within @var{area}.
1374 @end table
1376 Scale variables and totals and subtotals for categorical variables may
1377 use the following additional group cell summary function:
1379 @table @asis
1380 @item @code{@i{area}PCT.SUM} (``@i{Area} Sum %'', PCT40.1)
1381 Percentage of the sum of the values within @var{area}.
1382 @end table
1384 @node CTABLES Summary Functions for Adjusted Weights
1385 @subsubsection Summary Functions for Adjusted Weights
1387 If the @code{WEIGHT} subcommand specified an effective weight variable
1388 (@pxref{CTABLES Effective Weight}), then the following summary functions
1389 use its value instead of the dictionary weight variable.  Otherwise,
1390 they are equivalent to the summary function without the
1391 @samp{E}-prefix:
1393 @itemize @bullet
1394 @item
1395 @code{ECOUNT} (``Adjusted Count'', F40.0)
1397 @item
1398 @code{ETOTALN} (``Adjusted Total N'', F40.0)
1400 @item
1401 @code{EVALIDN} (``Adjusted Valid N'', F40.0)
1402 @end itemize
1404 @node CTABLES Unweighted Summary Functions
1405 @subsubsection Unweighted Summary Functions
1407 The following summary functions with a @samp{U}-prefix are equivalent
1408 to the same ones without the prefix, except that they use unweighted
1409 counts:
1411 @itemize @bullet
1412 @item
1413 @code{UCOUNT} (``Unweighted Count'', F40.0)
1415 @item
1416 @code{U@i{area}PCT} or @code{U@i{area}PCT.COUNT} (``Unweighted @i{Area} %'', PCT40.1)
1418 @item
1419 @code{U@i{area}PCT.VALIDN} (``Unweighted @i{Area} Valid N %'', PCT40.1)
1421 @item
1422 @code{U@i{area}PCT.TOTALN} (``Unweighted @i{Area} Total N %'', PCT40.1)
1424 @item
1425 @code{UMEAN} (``Unweighted Mean'')
1427 @item
1428 @code{UMEDIAN} (``Unweighted Median'')
1430 @item
1431 @code{UMISSING} (``Unweighted Missing'')
1433 @item
1434 @code{UMODE} (``Unweighted Mode'')
1436 @item
1437 @code{U@i{area}PCT.SUM} (``Unweighted @i{Area} Sum %'', PCT40.1)
1439 @item
1440 @code{UPTILE} @i{n} (``Unweighted Percentile @i{n}'') 
1442 @item
1443 @code{USEMEAN} (``Unweighted Std Error of Mean'')
1445 @item
1446 @code{USTDDEV} (``Unweighted Std Deviation'')
1448 @item
1449 @code{USUM} (``Unweighted Sum'')
1451 @item
1452 @code{UTOTALN} (``Unweighted Total N'', F40.0)
1454 @item
1455 @code{UVALIDN} (``Unweighted Valid N'', F40.0)
1457 @item
1458 @code{UVARIANCE} (``Unweighted Variance'', F40.0)
1459 @end itemize
1461 @node CTABLES Statistics Positions and Labels
1462 @subsection Statistics Positions and Labels
1464 @display
1465 @t{/SLABELS}
1466     [@t{POSITION=}@{@t{COLUMN} @math{|} @t{ROW} @math{|} @t{LAYER}@}]
1467     [@t{VISIBLE=}@{@t{YES} @math{|} @t{NO}@}]
1468 @end display
1470 The @code{SLABELS} subcommand controls the position and visibility of
1471 summary statistics for the @code{TABLE} subcommand that it follows.
1473 @code{POSITION} sets the axis on which summary statistics appear.
1474 With @t{POSITION=COLUMN}, which is the default, each summary statistic
1475 appears in a column.  For example:
1477 @example
1478 CTABLES /TABLE=age [MEAN, MEDIAN] BY gender.
1479 @end example
1480 @psppoutput {ctables13}
1482 @noindent
1483 With @t{POSITION=ROW}, each summary statistic appears in a row, as
1484 shown below:
1486 @example
1487 CTABLES /TABLE=age [MEAN, MEDIAN] BY gender /SLABELS POSITION=ROW.
1488 @end example
1489 @psppoutput {ctables14}
1491 @noindent
1492 @t{POSITION=LAYER} is also available to place each summary statistic in
1493 a separate layer.
1495 Labels for summary statistics are shown by default.  Use
1496 @t{VISIBLE=NO} to suppress them.  Because unlabeled data can cause
1497 confusion, it should only be considered if the meaning of the data is
1498 evident, as in a simple case like this:
1500 @example
1501 CTABLES /TABLE=ageGroup [TABLEPCT] /SLABELS VISIBLE=NO.
1502 @end example
1503 @psppoutput {ctables15}
1505 @node CTABLES Category Label Positions
1506 @subsection Category Label Positions
1508 @display
1509 @t{/CLABELS} @{@t{AUTO} @math{|} @{@t{ROWLABELS}@math{|}@t{COLLABELS}@}@t{=}@{@t{OPPOSITE}@math{|}@t{LAYER}@}@}
1510 @end display
1512 The @code{CLABELS} subcommand controls the position of category labels
1513 for the @code{TABLE} subcommand that it follows.  By default, or if
1514 @t{AUTO} is specified, category labels for a given variable nest
1515 inside the variable's label on the same axis.  For example, the
1516 command below results in age categories nesting within the age group
1517 variable on the rows axis and gender categories within the gender
1518 variable on the columns axis:
1520 @example
1521 CTABLES /TABLE ageGroup BY gender.
1522 @end example
1523 @psppoutput {ctables16}
1525 @t{ROWLABELS=OPPOSITE} or @t{COLLABELS=OPPOSITE} move row or column
1526 variable category labels, respectively, to the opposite axis.  The
1527 setting affects only the innermost variable or variables, which must
1528 be categorical, on the given axis.  For example:
1530 @example
1531 CTABLES /TABLE ageGroup BY gender /CLABELS ROWLABELS=OPPOSITE.
1532 CTABLES /TABLE ageGroup BY gender /CLABELS COLLABELS=OPPOSITE.
1533 @end example
1534 @psppoutput {ctables17}
1536 @t{ROWLABELS=LAYER} or @t{COLLABELS=LAYER} move the innermost row or
1537 column variable category labels, respectively, to the layer axis.
1539 Only one axis's labels may be moved, whether to the opposite axis or
1540 to the layer axis.
1542 @subsubheading Effect on Summary Statistics
1544 @code{CLABELS} primarily affects the appearance of tables, not the
1545 data displayed in them.  However, @code{CTABLES} can affect the values
1546 displayed for statistics that summarize areas of a table, since it can
1547 change the definitions of these areas.
1549 For example, consider the following syntax and output:
1551 @example
1552 CTABLES /TABLE ageGroup BY gender [ROWPCT, COLPCT].
1553 @end example
1554 @psppoutput {ctables23}
1556 @noindent
1557 Using @code{COLLABELS=OPPOSITE} changes the definitions of rows and
1558 columns, so that column percentages display what were previously row
1559 percentages and the new row percentages become meaningless (because
1560 there is only one cell per row):
1562 @example
1563 CTABLES
1564     /TABLE ageGroup BY gender [ROWPCT, COLPCT]
1565     /CLABELS COLLABELS=OPPOSITE.
1566 @end example
1567 @psppoutput {ctables24}
1569 @subsubheading Moving Categories for Stacked Variables
1571 If @code{CLABELS} moves category labels from an axis with stacked
1572 variables, the variables that are moved must have the same category
1573 specifications (@pxref{CTABLES Per-Variable Category Options}) and the
1574 same value labels.
1576 The following shows both moving stacked category variables and
1577 adapting to the changing definitions of rows and columns:
1579 @example
1580 CTABLES /TABLE (likelihoodOfBeingStoppedByPolice
1581                 + likelihoodOfHavingAnAccident) [COLPCT].
1582 CTABLES /TABLE (likelihoodOfBeingStoppedByPolice
1583                 + likelihoodOfHavingAnAccident) [ROWPCT]
1584   /CLABELS ROW=OPPOSITE.
1585 @end example
1586 @psppoutput {ctables25}
1588 @node CTABLES Per-Variable Category Options
1589 @subsection Per-Variable Category Options
1591 @display
1592 @t{/CATEGORIES} @t{VARIABLES=}@i{variables}
1593     @{@t{[}@i{value}@t{,} @i{value}@dots{}@t{]}
1594    @math{|} [@t{ORDER=}@{@t{A} @math{|} @t{D}@}]
1595      [@t{KEY=}@{@t{VALUE} @math{|} @t{LABEL} @math{|} @i{summary}@t{(}@i{variable}@t{)}@}]
1596      [@t{MISSING=}@{@t{EXCLUDE} @math{|} @t{INCLUDE}@}]@}
1597     [@t{TOTAL=}@{@t{NO} @math{|} @t{YES}@} [@t{LABEL=}@i{string}] [@t{POSITION=}@{@t{AFTER} @math{|} @t{BEFORE}@}]]
1598     [@t{EMPTY=}@{@t{INCLUDE} @math{|} @t{EXCLUDE}@}]
1599 @end display
1601 The @code{CATEGORIES} subcommand specifies, for one or more
1602 categorical variables, the categories to include and exclude, the sort
1603 order for included categories, and treatment of missing values.  It
1604 also controls the totals and subtotals to display.  It may be
1605 specified any number of times, each time for a different set of
1606 variables.  @code{CATEGORIES} applies to the table produced by the
1607 @code{TABLE} subcommand that it follows.
1609 @code{CATEGORIES} does not apply to scalar variables.
1611 @t{VARIABLES} is required and must list the variables for the subcommand
1612 to affect.
1614 The syntax may specify the categories to include and their sort order
1615 either explicitly or implicitly.  The following sections give the
1616 details of each form of syntax, followed by information on totals and
1617 subtotals and the @code{EMPTY} setting.
1619 @node CTABLES Explicit Categories
1620 @subsubsection Explicit Categories
1622 @anchor{CTABLES Explicit Category List}
1624 To use @code{CTABLES} to explicitly specify categories to include,
1625 list the categories within square brackets in the desired sort order.
1626 Use spaces or commas to separate values.  Categories not covered by
1627 the list are excluded from analysis.
1629 Each element of the list takes one of the following forms:
1631 @table @t
1632 @item @i{number}
1633 @itemx '@i{string}'
1634 A numeric or string category value, for variables that have the
1635 corresponding type.
1637 @item '@i{date}'
1638 @itemx '@i{time}'
1639 A date or time category value, for variables that have a date or time
1640 print format.
1642 @item @i{min} THRU @i{max}
1643 @itemx LO THRU @i{max}
1644 @itemx @i{min} THRU HI
1645 A range of category values, where @var{min} and @var{max} each takes
1646 one of the forms above, in increasing order.
1648 @item MISSING
1649 All user-missing values.  (To match individual user-missing values,
1650 specify their category values.)
1652 @item OTHERNM
1653 Any non-missing value not covered by any other element of the list
1654 (regardless of where @t{OTHERNM} is placed in the list).
1656 @item &@i{postcompute}
1657 A computed category name (@pxref{CTABLES Computed Categories}).
1659 @item SUBTOTAL
1660 @itemx HSUBTOTAL
1661 A subtotal (@pxref{CTABLES Totals and Subtotals}).
1662 @end table
1664 If multiple elements of the list cover a given category, the last one
1665 in the list takes precedence.
1667 The following example syntax and output show how an explicit category
1668 can limit the displayed categories:
1670 @example
1671 CTABLES /TABLE freqOfDriving.
1672 CTABLES /TABLE freqOfDriving /CATEGORIES VARIABLES=freqOfDriving [1, 2, 3].
1673 @end example
1674 @psppoutput {ctables27}
1676 @node CTABLES Implicit Categories
1677 @subsubsection Implicit Categories
1679 In the absence of an explicit list of categories, @code{CATEGORIES}
1680 allows @code{KEY}, @code{ORDER}, and @code{MISSING} to specify how to
1681 select and sort categories.
1683 The @code{KEY} setting specifies the sort key.  By default, or with
1684 @code{KEY=VALUE}, categories are sorted by default.  Categories may
1685 also be sorted by value label, with @code{KEY=LABEL}, or by the value
1686 of a summary function, e.g.@: @code{KEY=COUNT}.
1687 @ignore  @c Not yet implemented
1688 For summary functions, a variable name may be specified in
1689 parentheses, e.g.@: @code{KEY=MAXIUM(age)}, and this is required for
1690 functions that apply only to scalar variables.  The @code{PTILE}
1691 function also requires a percentage argument, e.g.@:
1692 @code{KEY=PTILE(age, 90)}.  Only summary functions used in the table
1693 may be used, except that @code{COUNT} is always allowed.
1694 @end ignore
1696 By default, or with @code{ORDER=A}, categories are sorted in ascending
1697 order.  Specify @code{ORDER=D} to sort in descending order.
1699 User-missing values are excluded by default, or with
1700 @code{MISSING=EXCLUDE}.  Specify @code{MISSING=INCLUDE} to include
1701 user-missing values.  The system-missing value is always excluded.
1703 The following example syntax and output show how
1704 @code{MISSING=INCLUDE} causes missing values to be included in a
1705 category list.
1707 @example
1708 CTABLES /TABLE freqOfDriving.
1709 CTABLES /TABLE freqOfDriving
1710         /CATEGORIES VARIABLES=freqOfDriving MISSING=INCLUDE.
1711 @end example
1712 @psppoutput {ctables28}
1714 @node CTABLES Totals and Subtotals
1715 @subsubsection Totals and Subtotals
1717 @code{CATEGORIES} also controls display of totals and subtotals.  By
1718 default, or with @code{TOTAL=NO}, totals are not displayed.  Use
1719 @code{TOTAL=YES} to display a total.  By default, the total is labeled
1720 ``Total''; use @code{LABEL="@i{label}"} to override it.
1722 Subtotals are also not displayed by default.  To add one or more
1723 subtotals, use an explicit category list and insert @code{SUBTOTAL} or
1724 @code{HSUBTOTAL} in the position or positions where the subtotal
1725 should appear.  The subtotal becomes an extra row or column or layer.
1726 @code{HSUBTOTAL} additionally hides the categories that make up the
1727 subtotal.  Either way, the default label is ``Subtotal'', use
1728 @code{SUBTOTAL="@i{label}"} or @code{HSUBTOTAL="@i{label}"} to specify
1729 a custom label.
1731 The following example syntax and output show how to use
1732 @code{TOTAL=YES} and @code{SUBTOTAL}:
1734 @example
1735 CTABLES
1736     /TABLE freqOfDriving
1737     /CATEGORIES VARIABLES=freqOfDriving [OTHERNM, SUBTOTAL='Valid Total',
1738                                          MISSING, SUBTOTAL='Missing Total']
1739                                         TOTAL=YES LABEL='Overall Total'.
1740 @end example
1741 @psppoutput {ctables29}
1743 By default, or with @code{POSITION=AFTER}, totals are displayed in the
1744 output after the last category and subtotals apply to categories that
1745 precede them.  With @code{POSITION=BEFORE}, totals come before the
1746 first category and subtotals apply to categories that follow them.
1748 Only categorical variables may have totals and subtotals.  Scalar
1749 variables may be ``totaled'' indirectly by enabling totals and
1750 subtotals on a categorical variable within which the scalar variable
1751 is summarized.  For example, the following syntax produces a mean,
1752 count, and valid count across all data by adding a total on the
1753 categorical @code{region} variable, as shown:
1755 @example
1756 CTABLES /TABLE=region > monthDaysMin1drink [MEAN, VALIDN]
1757     /CATEGORIES VARIABLES=region TOTAL=YES LABEL='All regions'.
1758 @end example
1759 @psppoutput {ctables30}
1761 By default, @pspp{} uses the same summary functions for totals and
1762 subtotals as other categories.  To summarize totals and subtotals
1763 differently, specify the summary functions for totals and subtotals
1764 after the ordinary summary functions inside a nested set of @code{[]}
1765 following @code{TOTALS}.  For example, the following syntax displays
1766 @code{COUNT} for individual categories and totals and @code{VALIDN}
1767 for totals, as shown:
1769 @example
1770 CTABLES
1771     /TABLE isLicensedDriver [COUNT, TOTALS[COUNT, VALIDN]]
1772     /CATEGORIES VARIABLES=isLicensedDriver TOTAL=YES MISSING=INCLUDE.
1773 @end example
1774 @psppoutput {ctables26}
1776 @node CTABLES Categories Without Values
1777 @subsubsection Categories Without Values
1779 Some categories might not be included in the data set being analyzed.
1780 For example, our example data set has no cases in the ``15 or
1781 younger'' age group.  By default, or with @code{EMPTY=INCLUDE},
1782 @pspp{} includes these empty categories in output tables.  To exclude
1783 them, specify @code{EMPTY=EXCLUDE}.
1785 For implicit categories, empty categories potentially include all the
1786 values with value labels for a given variable; for explicit
1787 categories, they include all the values listed individually and all
1788 values with value labels that are covered by ranges or @code{MISSING}
1789 or @code{OTHERNM}.
1791 The following example syntax and output show the effect of
1792 @code{EMPTY=EXCLUDE} for the @code{membersOver16} variable, in which 0
1793 is labeled ``None'' but no cases exist with that value:
1795 @example
1796 CTABLES /TABLE=membersOver16.
1797 CTABLES /TABLE=membersOver16 /CATEGORIES VARIABLES=membersOver16 EMPTY=EXCLUDE.
1798 @end example
1799 @psppoutput {ctables31}
1801 @node CTABLES Titles
1802 @subsection Titles
1804 @display
1805 @t{/TITLES}
1806     [@t{TITLE=}@i{string}@dots{}]
1807     [@t{CAPTION=}@i{string}@dots{}]
1808     [@t{CORNER=}@i{string}@dots{}]
1809 @end display
1811 The @code{TITLES} subcommand sets the title, caption, and corner text
1812 for the table output for the previous @code{TABLE} subcommand.  Any
1813 number of strings may be specified for each kind of text, with each
1814 string appearing on a separate line in the output.  The title appears
1815 above the table, the caption below the table, and the corner text
1816 appears in the table's upper left corner.  By default, the title is
1817 ``Custom Tables'' and the caption and corner text are empty.  With
1818 some table output styles, the corner text is not displayed.
1820 The strings provided in this subcommand may contain the following
1821 macro-like keywords that @pspp{} substitutes at the time that it runs
1822 the command:
1824 @table @code @c (
1825 @item )DATE
1826 The current date, e.g.@: MM/DD/YY.  The format is locale-dependent.
1828 @c (
1829 @item )TIME
1830 The current time, e.g.@: HH:MM:SS.  The format is locale-dependent.
1832 @c (
1833 @item )TABLE
1834 The expression specified on the @code{TABLE} command.  Summary
1835 and measurement level specifications are omitted, and variable labels are used in place of variable names.
1836 @end table
1838 @node CTABLES Table Formatting
1839 @subsection Table Formatting
1841 @display
1842 @t{/FORMAT}
1843     [@t{MINCOLWIDTH=}@{@t{DEFAULT} @math{|} @i{width}@}]
1844     [@t{MAXCOLWIDTH=}@{@t{DEFAULT} @math{|} @i{width}@}]
1845     [@t{UNITS=}@{@t{POINTS} @math{|} @t{INCHES} @math{|} @t{CM}@}]
1846     [@t{EMPTY=}@{@t{ZERO} @math{|} @t{BLANK} @math{|} @i{string}@}]
1847     [@t{MISSING=}@i{string}]
1848 @end display
1850 The @code{FORMAT} subcommand, which must precede the first
1851 @code{TABLE} subcommand, controls formatting for all the output
1852 tables.  @code{FORMAT} and all of its settings are optional.
1854 Use @code{MINCOLWIDTH} and @code{MAXCOLWIDTH} to control the minimum
1855 or maximum width of columns in output tables.  By default, with
1856 @code{DEFAULT}, column width varies based on content.  Otherwise,
1857 specify a number for either or both of these settings.  If both are
1858 specified, @code{MAXCOLWIDTH} must be greater than or equal to
1859 @code{MINCOLWIDTH}.  The default unit, or with @code{UNITS=POINTS}, is
1860 points (1/72 inch), or specify @code{UNITS=INCHES} to use inches or
1861 @code{UNITS=CM} for centimeters.  @pspp{} does not currently honor any
1862 of these settings.
1864 By default, or with @code{EMPTY=ZERO}, zero values are displayed in
1865 their usual format.  Use @code{EMPTY=BLANK} to use an empty cell
1866 instead, or @code{EMPTY="@i{string}"} to use the specified string.
1868 By default, missing values are displayed as @samp{.}, the same as in
1869 other tables.  Specify @code{MISSING="@i{string}"} to instead use a
1870 custom string.
1872 @node CTABLES Display of Variable Labels
1873 @subsection Display of Variable Labels
1875 @display
1876 @t{/VLABELS}
1877     @t{VARIABLES=}@i{variables}
1878     @t{DISPLAY}=@{@t{DEFAULT} @math{|} @t{NAME} @math{|} @t{LABEL} @math{|} @t{BOTH} @math{|} @t{NONE}@}
1879 @end display
1881 The @code{VLABELS} subcommand, which must precede the first
1882 @code{TABLE} subcommand, controls display of variable labels in all
1883 the output tables.  @code{VLABELS} is optional.  It may appear
1884 multiple times to adjust settings for different variables.
1886 @code{VARIABLES} and @code{DISPLAY} are required.  The value of
1887 @code{DISPLAY} controls how variable labels are displayed for the
1888 variables listed on @code{VARIABLES}.  The supported values are:
1890 @table @code
1891 @item DEFAULT
1892 Use the setting from @code{SET TVARS} (@pxref{SET TVARS}).
1894 @item NAME
1895 Show only a variable name.
1897 @item LABEL
1898 Show only a variable label.
1900 @item BOTH
1901 Show variable name and label.
1903 @item NONE
1904 Show nothing.
1905 @end table
1907 @node CTABLES Missing Value Treatment
1908 @subsection Missing Value Treatment
1910 The @code{TABLE} subcommand on @code{CTABLES} specifies two different
1911 kinds of variables: variables that divide tables into cells (which are
1912 always categorical) and variables being summarized (which may be
1913 categorical or scale).  @pspp{} treats missing values differently in
1914 each kind of variable, as described in the sections below.
1916 @node CTABLES Missing Values for Cell-Defining Variables
1917 @subsubsection Missing Values for Cell-Defining Variables
1919 For variables that divide tables into cells, per-variable category
1920 options, as described in @ref{CTABLES Per-Variable Category Options},
1921 determine which data is analyzed.  If any of the categories for such a
1922 variable would exclude a case, then that case is not included.
1924 As an example, consider the following entirely artificial dataset, in
1925 which @samp{x} and @samp{y} are categorical variables with missing
1926 value 9, and @samp{z} is scale:
1928 @psppoutput{ctables32}
1930 Using @samp{x} and @samp{y} to define cells, and summarizing @samp{z},
1931 by default @pspp{} omits all the cases that have @samp{x} or @samp{y} (or both)
1932 missing:
1934 @example
1935 CTABLES /TABLE x > y > z [SUM].
1936 @end example
1937 @psppoutput{ctables33}
1939 If, however, we add @code{CATEGORIES} specifications to include
1940 missing values for @samp{y} or for @samp{x} and @samp{y}, the output
1941 table includes them, like so:
1943 @example
1944 CTABLES /TABLE x > y > z [SUM] /CATEGORIES VARIABLES=y MISSING=INCLUDE.
1945 CTABLES /TABLE x > y > z [SUM] /CATEGORIES VARIABLES=x y MISSING=INCLUDE.
1946 @end example
1947 @psppoutput{ctables34}
1949 @node CTABLES Missing Values for Summary Variables
1950 @subsubsection Missing Values for Summary Variables
1952 For summary variables, values that are valid and in included
1953 categories are analyzed, and values that are missing or in excluded
1954 categories are not analyzed, with the following exceptions:
1956 @itemize @bullet
1957 @item
1958 The ``@t{VALIDN}'' summary functions (@code{VALIDN}, @code{EVALIDN},
1959 @code{UVALIDN}, @code{@i{area}PCT.VALIDN}, and
1960 @code{U@i{area}PCT.VALIDN}) only count valid values in included
1961 categories (not missing values in included categories).
1963 @item
1964 The ``@t{TOTALN}'' summary functions (@code{TOTALN}, @code{ETOTALN},
1965 @code{UTOTALN}, @code{@i{area}PCT.TOTALN}), and
1966 @code{U@i{area}PCT.TOTALN} count all values (valid and missing) in
1967 included categories and missing (but not valid) values in excluded
1968 categories.
1969 @end itemize
1971 @noindent
1972 For categorical variables, system-missing values are never in included
1973 categories.  For scale variables, there is no notion of included and
1974 excluded categories, so all values are effectively included.
1976 The following table provides another view of the above rules:
1978 @multitable {@w{ }@w{ }@w{ }@w{ }Missing values in excluded categories} {@t{VALIDN}} {other} {@t{TOTALN}}
1979 @headitem @tab @t{VALIDN} @tab other @tab @t{TOTALN}
1980 @item @headitemfont{Categorical variables:}
1981 @item @w{ }@w{ }@w{ }@w{ }Valid values in included categories   @tab yes @tab yes @tab yes
1982 @item @w{ }@w{ }@w{ }@w{ }Missing values in included categories @tab --- @tab yes @tab yes
1983 @item @w{ }@w{ }@w{ }@w{ }Missing values in excluded categories @tab --- @tab --- @tab yes
1984 @item @w{ }@w{ }@w{ }@w{ }Valid values in excluded categories   @tab --- @tab --- @tab ---
1985 @item @headitemfont{Scale variables:}
1986 @item @w{ }@w{ }@w{ }@w{ }Valid values                          @tab yes @tab yes @tab yes
1987 @item @w{ }@w{ }@w{ }@w{ }User- or system-missing values        @tab --- @tab yes @tab yes
1988 @end multitable
1990 @node CTABLES Scale Missing Values
1991 @subsubsection Scale Missing Values
1993 @display
1994 @t{/SMISSING} @{@t{VARIABLE} @math{|} @t{LISTWISE}@}
1995 @end display
1997 The @code{SMISSING} subcommand, which must precede the first
1998 @code{TABLE} subcommand, controls treatment of missing values for
1999 scalar variables in producing all the output tables.  @code{SMISSING}
2000 is optional.
2002 With @code{SMISSING=VARIABLE}, which is the default, missing values
2003 are excluded on a variable-by-variable basis.  With
2004 @code{SMISSING=LISTWISE}, when stacked scalar variables are nested
2005 together with a categorical variable, a missing value for any of the
2006 scalar variables causes the case to be excluded for all of them.
2008 As an example, consider the following dataset, in which @samp{x} is a
2009 categorical variable and @samp{y} and @samp{z} are scale:
2011 @psppoutput{ctables18}
2013 @noindent
2014 With the default missing-value treatment, @samp{x}'s mean is 20, based
2015 on the values 10, 20, and 30, and @samp{y}'s mean is 50, based on 40,
2016 50, and 60:
2018 @example
2019 CTABLES /TABLE (y + z) > x.
2020 @end example
2021 @psppoutput{ctables19}
2023 @noindent
2024 By adding @code{SMISSING=LISTWISE}, only cases where @samp{y} and
2025 @samp{z} are both non-missing are considered, so @samp{x}'s mean
2026 becomes 15, as the average of 10 and 20, and @samp{y}'s mean becomes
2027 55, the average of 50 and 60:
2029 @example
2030 CTABLES /SMISSING LISTWISE /TABLE (y + z) > x.
2031 @end example
2032 @psppoutput{ctables20}
2034 @noindent
2035 Even with @code{SMISSING=LISTWISE}, if @samp{y} and @samp{z} are
2036 separately nested with @samp{x}, instead of using a single @samp{>}
2037 operator, missing values revert to being considered on a
2038 variable-by-variable basis:
2040 @example
2041 CTABLES /SMISSING LISTWISE /TABLE (y > x) + (z > x).
2042 @end example
2043 @psppoutput{ctables21}
2045 @node CTABLES Computed Categories
2046 @subsection Computed Categories
2048 @display
2049 @t{/PCOMPUTE} @t{&}@i{postcompute}@t{=EXPR(}@i{expression}@t{)}
2050 @t{/PPROPERTIES} @t{&}@i{postcompute}@dots{}
2051     [@t{LABEL=}@i{string}]
2052     [@t{FORMAT=}[@i{summary} @i{format}]@dots{}]
2053     [@t{HIDESOURCECATS=}@{@t{NO} @math{|} @t{YES}@}
2054 @end display
2056 @dfn{Computed categories}, also called @dfn{postcomputes}, are
2057 categories created using arithmetic on categories obtained from the
2058 data.  The @code{PCOMPUTE} subcommand creates a postcompute, which may
2059 then be used on @code{CATEGORIES} within an explicit category list
2060 (@pxref{CTABLES Explicit Category List}).  Optionally,
2061 @code{PPROPERTIES} refines how a postcompute is displayed.  The
2062 following sections provide the details.
2064 @node CTABLES PCOMPUTE
2065 @subsubsection PCOMPUTE
2067 @display
2068 @t{/PCOMPUTE} @t{&}@i{postcompute}@t{=EXPR(}@i{expression}@t{)}
2069 @end display
2071 The @code{PCOMPUTE} subcommand, which must precede the first
2072 @code{TABLE} command, defines computed categories.  It is optional and
2073 may be used any number of times to define multiple postcomputes.
2075 Each @code{PCOMPUTE} defines one postcompute.  Its syntax consists of
2076 a name to identify the postcompute as a @pspp{} identifier prefixed by
2077 @samp{&}, followed by @samp{=} and a postcompute expression enclosed
2078 in @code{EXPR(@dots{})}.  A postcompute expression consists of:
2080 @table @t
2081 @item [@i{category}]
2082 This form evaluates to the summary statistic for @i{category}, e.g.@:
2083 @code{[1]} evaluates to the value of the summary statistic associated
2084 with category 1.  The @i{category} may be a number, a quoted string,
2085 or a quoted time or date value.  All of the categories for a given
2086 postcompute must have the same form.  The category must appear in all
2087 the @code{CATEGORIES} list in which the postcompute is used.
2089 @item [@i{min} THRU @i{max}]
2090 @itemx [LO THRU @i{max}]
2091 @itemx [@i{min} THRU HI]
2092 @itemx MISSING
2093 @itemx OTHERNM
2094 These forms evaluate to the summary statistics for a category
2095 specified with the same syntax, as described in previous section
2096 (@pxref{CTABLES Explicit Category List}).  The category must appear in
2097 all the @code{CATEGORIES} list in which the postcompute is used.
2099 @item SUBTOTAL
2100 The summary statistic for the subtotal category.  This form is allowed
2101 only if the @code{CATEGORIES} lists that include this postcompute have
2102 exactly one subtotal.
2104 @item SUBTOTAL[@i{index}]
2105 The summary statistic for subtotal category @i{index}, where 1 is the
2106 first subtotal, 2 is the second, and so on.  This form may be used for
2107 @code{CATEGORIES} lists with any number of subtotals.
2109 @item TOTAL
2110 The summary statistic for the total.  The @code{CATEGORIES} lsits that
2111 include this postcompute must have a total enabled.
2113 @item @i{a} + @i{b}
2114 @itemx @i{a} - @i{b}
2115 @itemx @i{a} * @i{b}
2116 @itemx @i{a} / @i{b}
2117 @itemx @i{a} ** @i{b}
2118 These forms perform arithmetic on the values of postcompute
2119 expressions @i{a} and @i{b}.  The usual operator precedence rules
2120 apply.
2122 @item @i{number}
2123 Numeric constants may be used in postcompute expressions.
2125 @item (@i{a})
2126 Parentheses override operator precedence.
2127 @end table
2129 A postcompute is not associated with any particular variable.
2130 Instead, it may be referenced within @code{CATEGORIES} for any
2131 suitable variable (e.g.@: only a string variable is suitable for a
2132 postcompute expression that refers to a string category, only a
2133 variable with subtotals for an expression that refers to subtotals,
2134 @dots{}).
2136 Normally a named postcompute is defined only once, but if a later
2137 @code{PCOMPUTE} redefines a postcompute with the same name as an
2138 earlier one, the later one take precedence.
2140 The following syntax and output shows how @code{PCOMPUTE} can compute
2141 a total over subtotals, summing the ``Frequent Drivers'' and
2142 ``Infrequent Drivers'' subtotals to form an ``All Drivers''
2143 postcompute.  It also shows how to calculate and display a percentage,
2144 in this case the percentage of valid responses that report never
2145 driving.  It uses @code{PPROPERTIES} (@pxref{CTABLES PPROPERTIES}) to
2146 display the latter in @code{PCT} format.
2148 @example
2149 CTABLES
2150     /PCOMPUTE &all_drivers=EXPR([1 THRU 2] + [3 THRU 4])
2151     /PPROPERTIES &all_drivers LABEL='All Drivers'
2152     /PCOMPUTE &pct_never=EXPR([5] / ([1 THRU 2] + [3 THRU 4] + [5]) * 100)
2153     /PPROPERTIES &pct_never LABEL='% Not Drivers' FORMAT=COUNT PCT40.1
2154     /TABLE=freqOfDriving BY gender
2155     /CATEGORIES VARIABLES=freqOfDriving
2156                              [1 THRU 2, SUBTOTAL='Frequent Drivers',
2157                               3 THRU 4, SUBTOTAL='Infrequent Drivers',
2158                               &all_drivers, 5, &pct_never,
2159                               MISSING, SUBTOTAL='Not Drivers or Missing'].
2160 @end example
2161 @psppoutput{ctables35}
2163 @node CTABLES PPROPERTIES
2164 @subsubsection PPROPERTIES
2166 @display
2167 @t{/PPROPERTIES} @t{&}@i{postcompute}@dots{}
2168     [@t{LABEL=}@i{string}]
2169     [@t{FORMAT=}[@i{summary} @i{format}]@dots{}]
2170     [@t{HIDESOURCECATS=}@{@t{NO} @math{|} @t{YES}@}
2171 @end display
2173 The @code{PPROPERTIES} subcommand, which must appear before
2174 @code{TABLE}, sets properties for one or more postcomputes defined on
2175 prior @code{PCOMPUTE} subcommands.  The subcommand syntax begins with
2176 the list of postcomputes, each prefixed with @samp{&} as specified on
2177 @code{PCOMPUTE}.
2179 All of the settings on @code{PPROPERTIES} are optional.  Use
2180 @code{LABEL} to set the label shown for the postcomputes in table
2181 output.  The default label for a postcompute is the expression used to
2182 define it.
2184 A postcompute always uses same summary functions as the variable whose
2185 categories contain it, but @code{FORMAT} allows control over the
2186 format used to display their values.  It takes a list of summary
2187 function names and format specifiers.
2189 By default, or with @code{HIDESOURCECATS=NO}, categories referred to
2190 by computed categories are displayed like other categories.  Use
2191 @code{HIDESOURCECATS=YES} to hide them.
2193 The previous section provides an example for @code{PPROPERTIES}.
2195 @node CTABLES Effective Weight
2196 @subsection Effective Weight
2198 @display
2199 @t{/WEIGHT VARIABLE=}@i{variable}
2200 @end display
2202 The @code{WEIGHT} subcommand is optional and must appear before
2203 @code{TABLE}.  If it appears, it must name a numeric variable, known
2204 as the @dfn{effective weight} or @dfn{adjustment weight}.  The
2205 effective weight variable stands in for the dictionary's weight
2206 variable (@pxref{WEIGHT}), if any, in most calculations in
2207 @code{CTABLES}.  The only exceptions are the @code{COUNT},
2208 @code{TOTALN}, and @code{VALIDN} summary functions, which use the
2209 dictionary weight instead.
2211 Weights obtained from the @pspp{} dictionary are rounded to the
2212 nearest integer at the case level.  Effective weights are not rounded.
2213 Regardless of the weighting source, @pspp{} does not analyze cases
2214 with zero, missing, or negative effective weights.
2216 @node CTABLES Hiding Small Counts
2217 @subsection Hiding Small Counts
2219 @display
2220 @t{/HIDESMALLCOUNTS COUNT=@i{count}}
2221 @end display
2223 The @code{HIDESMALLCOUNTS} subcommand is optional.  If it specified,
2224 then @code{COUNT}, @code{ECOUNT}, and @code{UCOUNT} values in output
2225 tables less than the value of @i{count} are shown as @code{<@i{count}}
2226 instead of their true values.  The value of @i{count} must be an
2227 integer and must be at least 2.
2229 The following syntax and example shows how to use
2230 @code{HIDESMALLCOUNTS}:
2232 @example
2233 CTABLES /HIDESMALLCOUNTS COUNT=10 /TABLE placeOfLastDrinkBeforeDrive.
2234 @end example
2235 @psppoutput{ctables36}
2237 @node FACTOR
2238 @section FACTOR
2240 @vindex FACTOR
2241 @cindex factor analysis
2242 @cindex principal components analysis
2243 @cindex principal axis factoring
2244 @cindex data reduction
2246 @display
2247 FACTOR  @{
2248          VARIABLES=@var{var_list},
2249          MATRIX IN (@{CORR,COV@}=@{*,@var{file_spec}@})
2250         @}
2252         [ /METHOD = @{CORRELATION, COVARIANCE@} ]
2254         [ /ANALYSIS=@var{var_list} ]
2256         [ /EXTRACTION=@{PC, PAF@}]
2258         [ /ROTATION=@{VARIMAX, EQUAMAX, QUARTIMAX, PROMAX[(@var{k})], NOROTATE@}]
2260         [ /PRINT=[INITIAL] [EXTRACTION] [ROTATION] [UNIVARIATE] [CORRELATION] [COVARIANCE] [DET] [KMO] [AIC] [SIG] [ALL] [DEFAULT] ]
2262         [ /PLOT=[EIGEN] ]
2264         [ /FORMAT=[SORT] [BLANK(@var{n})] [DEFAULT] ]
2266         [ /CRITERIA=[FACTORS(@var{n})] [MINEIGEN(@var{l})] [ITERATE(@var{m})] [ECONVERGE (@var{delta})] [DEFAULT] ]
2268         [ /MISSING=[@{LISTWISE, PAIRWISE@}] [@{INCLUDE, EXCLUDE@}] ]
2269 @end display
2271 The @cmd{FACTOR} command performs Factor Analysis or Principal Axis Factoring on a dataset.  It may be used to find
2272 common factors in the data or for data reduction purposes.
2274 The @subcmd{VARIABLES} subcommand is required (unless the @subcmd{MATRIX IN}
2275 subcommand is used).
2276 It lists the variables which are to partake in the analysis.  (The @subcmd{ANALYSIS}
2277 subcommand may optionally further limit the variables that
2278 participate; it is useful primarily in conjunction with @subcmd{MATRIX IN}.)
2280 If @subcmd{MATRIX IN} instead of @subcmd{VARIABLES} is specified, then the analysis
2281 is performed on a pre-prepared correlation or covariance matrix file instead of on
2282 individual data cases.  Typically the matrix file will have been generated by
2283 @cmd{MATRIX DATA} (@pxref{MATRIX DATA}) or provided by a third party.
2284 If specified, @subcmd{MATRIX IN} must be followed by @samp{COV} or @samp{CORR},
2285 then by @samp{=} and @var{file_spec} all in parentheses.
2286 @var{file_spec} may either be an asterisk, which indicates the currently loaded
2287 dataset, or it may be a file name to be loaded. @xref{MATRIX DATA}, for the expected
2288 format of the file.
2290 The @subcmd{/EXTRACTION} subcommand is used to specify the way in which factors
2291 (components) are extracted from the data.
2292 If @subcmd{PC} is specified, then Principal Components Analysis is used.
2293 If @subcmd{PAF} is specified, then Principal Axis Factoring is
2294 used. By default Principal Components Analysis is used.
2296 The @subcmd{/ROTATION} subcommand is used to specify the method by which the
2297 extracted solution is rotated.  Three orthogonal rotation methods are available:
2298 @subcmd{VARIMAX} (which is the default), @subcmd{EQUAMAX}, and @subcmd{QUARTIMAX}.
2299 There is one oblique rotation method, @i{viz}: @subcmd{PROMAX}.
2300 Optionally you may enter the power of the promax rotation @var{k}, which must be enclosed in parentheses.
2301 The default value of @var{k} is 5.
2302 If you don't want any rotation to be performed, the word @subcmd{NOROTATE}
2303 prevents the command from performing any rotation on the data.
2305 The @subcmd{/METHOD} subcommand should be used to determine whether the
2306 covariance matrix or the correlation matrix of the data is
2307 to be analysed.  By default, the correlation matrix is analysed.
2309 The @subcmd{/PRINT} subcommand may be used to select which features of the analysis are reported:
2311 @itemize
2312 @item @subcmd{UNIVARIATE}
2313       A table of mean values, standard deviations and total weights are printed.
2314 @item @subcmd{INITIAL}
2315       Initial communalities and eigenvalues are printed.
2316 @item @subcmd{EXTRACTION}
2317       Extracted communalities and eigenvalues are printed.
2318 @item @subcmd{ROTATION}
2319       Rotated communalities and eigenvalues are printed.
2320 @item @subcmd{CORRELATION}
2321       The correlation matrix is printed.
2322 @item @subcmd{COVARIANCE}
2323       The covariance matrix is printed.
2324 @item @subcmd{DET}
2325       The determinant of the correlation or covariance matrix is printed.
2326 @item @subcmd{AIC}
2327       The anti-image covariance and anti-image correlation matrices are printed.
2328 @item @subcmd{KMO}
2329       The Kaiser-Meyer-Olkin measure of sampling adequacy and the Bartlett test of sphericity is printed.
2330 @item @subcmd{SIG}
2331       The significance of the elements of correlation matrix is printed.
2332 @item @subcmd{ALL}
2333       All of the above are printed.
2334 @item @subcmd{DEFAULT}
2335       Identical to @subcmd{INITIAL} and @subcmd{EXTRACTION}.
2336 @end itemize
2338 If @subcmd{/PLOT=EIGEN} is given, then a ``Scree'' plot of the eigenvalues is
2339 printed.  This can be useful for visualizing the factors and deciding
2340 which factors (components) should be retained.
2342 The @subcmd{/FORMAT} subcommand determined how data are to be
2343 displayed in loading matrices.  If @subcmd{SORT} is specified, then
2344 the variables are sorted in descending order of significance.  If
2345 @subcmd{BLANK(@var{n})} is specified, then coefficients whose absolute
2346 value is less than @var{n} are not printed.  If the keyword
2347 @subcmd{DEFAULT} is specified, or if no @subcmd{/FORMAT} subcommand is
2348 specified, then no sorting is performed, and all coefficients are printed.
2350 You can use the @subcmd{/CRITERIA} subcommand to specify how the number of
2351 extracted factors (components) are chosen.  If @subcmd{FACTORS(@var{n})} is
2352 specified, where @var{n} is an integer, then @var{n} factors are
2353 extracted.  Otherwise, the @subcmd{MINEIGEN} setting is used.
2354 @subcmd{MINEIGEN(@var{l})} requests that all factors whose eigenvalues
2355 are greater than or equal to @var{l} are extracted. The default value
2356 of @var{l} is 1. The @subcmd{ECONVERGE} setting has effect only when
2357 using iterative algorithms for factor extraction (such as Principal Axis
2358 Factoring).  @subcmd{ECONVERGE(@var{delta})} specifies that
2359 iteration should cease when the maximum absolute value of the
2360 communality estimate between one iteration and the previous is less
2361 than @var{delta}. The default value of @var{delta} is 0.001.
2363 The @subcmd{ITERATE(@var{m})} may appear any number of times and is
2364 used for two different purposes. It is used to set the maximum number
2365 of iterations (@var{m}) for convergence and also to set the maximum
2366 number of iterations for rotation.
2367 Whether it affects convergence or rotation depends upon which
2368 subcommand follows the @subcmd{ITERATE} subcommand.
2369 If @subcmd{EXTRACTION} follows, it affects convergence.
2370 If @subcmd{ROTATION} follows, it affects rotation.
2371 If neither @subcmd{ROTATION} nor @subcmd{EXTRACTION} follow a
2372 @subcmd{ITERATE} subcommand, then the entire subcommand is ignored.
2373 The default value of @var{m} is 25.
2375 The @cmd{MISSING} subcommand determines the handling of missing
2376 variables.  If @subcmd{INCLUDE} is set, then user-missing values are
2377 included in the calculations, but system-missing values are not.
2378 If @subcmd{EXCLUDE} is set, which is the default, user-missing
2379 values are excluded as well as system-missing values.  This is the
2380 default. If @subcmd{LISTWISE} is set, then the entire case is excluded
2381 from analysis whenever any variable  specified in the @cmd{VARIABLES}
2382 subcommand contains a missing value.
2384 If @subcmd{PAIRWISE} is set, then a case is considered missing only if
2385 either of the values  for the particular coefficient are missing.
2386 The default is @subcmd{LISTWISE}.
2388 @node GLM
2389 @section GLM
2391 @vindex GLM
2392 @cindex univariate analysis of variance
2393 @cindex fixed effects
2394 @cindex factorial anova
2395 @cindex analysis of variance
2396 @cindex ANOVA
2399 @display
2400 GLM @var{dependent_vars} BY @var{fixed_factors}
2401      [/METHOD = SSTYPE(@var{type})]
2402      [/DESIGN = @var{interaction_0} [@var{interaction_1} [... @var{interaction_n}]]]
2403      [/INTERCEPT = @{INCLUDE|EXCLUDE@}]
2404      [/MISSING = @{INCLUDE|EXCLUDE@}]
2405 @end display
2407 The @cmd{GLM} procedure can be used for fixed effects factorial Anova.
2409 The @var{dependent_vars} are the variables to be analysed.
2410 You may analyse several variables in the same command in which case they should all
2411 appear before the @code{BY} keyword.
2413 The @var{fixed_factors} list must be one or more categorical variables.  Normally it
2414 does not make sense to enter a scalar variable in the @var{fixed_factors} and doing
2415 so may cause @pspp{} to do a lot of unnecessary processing.
2417 The @subcmd{METHOD} subcommand is used to change the method for producing the sums of
2418 squares.  Available values of @var{type} are 1, 2 and 3.  The default is type 3.
2420 You may specify a custom design using the @subcmd{DESIGN} subcommand.
2421 The design comprises a list of interactions where each interaction is a
2422 list of variables separated by a @samp{*}.  For example the command
2423 @display
2424 GLM subject BY sex age_group race
2425     /DESIGN = age_group sex group age_group*sex age_group*race
2426 @end display
2427 @noindent specifies the model @math{subject = age_group + sex + race + age_group*sex + age_group*race}.
2428 If no @subcmd{DESIGN} subcommand is specified, then the default is all possible combinations
2429 of the fixed factors.  That is to say
2430 @display
2431 GLM subject BY sex age_group race
2432 @end display
2433 implies the model
2434 @math{subject = age_group + sex + race + age_group*sex + age_group*race + sex*race + age_group*sex*race}.
2437 The @subcmd{MISSING} subcommand determines the handling of missing
2438 variables.
2439 If @subcmd{INCLUDE} is set then, for the purposes of GLM analysis,
2440 only system-missing values are considered
2441 to be missing; user-missing values are not regarded as missing.
2442 If @subcmd{EXCLUDE} is set, which is the default, then user-missing
2443 values are considered to be missing as well as system-missing values.
2444 A case for which any dependent variable or any factor
2445 variable has a missing value is excluded from the analysis.
2447 @node LOGISTIC REGRESSION
2448 @section LOGISTIC REGRESSION
2450 @vindex LOGISTIC REGRESSION
2451 @cindex logistic regression
2452 @cindex bivariate logistic regression
2454 @display
2455 LOGISTIC REGRESSION [VARIABLES =] @var{dependent_var} WITH @var{predictors}
2457      [/CATEGORICAL = @var{categorical_predictors}]
2459      [@{/NOCONST | /ORIGIN | /NOORIGIN @}]
2461      [/PRINT = [SUMMARY] [DEFAULT] [CI(@var{confidence})] [ALL]]
2463      [/CRITERIA = [BCON(@var{min_delta})] [ITERATE(@var{max_interations})]
2464                   [LCON(@var{min_likelihood_delta})] [EPS(@var{min_epsilon})]
2465                   [CUT(@var{cut_point})]]
2467      [/MISSING = @{INCLUDE|EXCLUDE@}]
2468 @end display
2470 Bivariate Logistic Regression is used when you want to explain a dichotomous dependent
2471 variable in terms of one or more predictor variables.
2473 The minimum command is
2474 @example
2475 LOGISTIC REGRESSION @var{y} WITH @var{x1} @var{x2} @dots{} @var{xn}.
2476 @end example
2477 Here, @var{y} is the dependent variable, which must be dichotomous and @var{x1} @dots{} @var{xn}
2478 are the predictor variables whose coefficients the procedure estimates.
2480 By default, a constant term is included in the model.
2481 Hence, the full model is
2482 @math{
2483 {\bf y}
2484 = b_0 + b_1 {\bf x_1}
2485 + b_2 {\bf x_2}
2486 + \dots
2487 + b_n {\bf x_n}
2490 Predictor variables which are categorical in nature should be listed on the @subcmd{/CATEGORICAL} subcommand.
2491 Simple variables as well as interactions between variables may be listed here.
2493 If you want a model without the constant term @math{b_0}, use the keyword @subcmd{/ORIGIN}.
2494 @subcmd{/NOCONST} is a synonym for @subcmd{/ORIGIN}.
2496 An iterative Newton-Raphson procedure is used to fit the model.
2497 The @subcmd{/CRITERIA} subcommand is used to specify the stopping criteria of the procedure,
2498 and other parameters.
2499 The value of @var{cut_point} is used in the classification table.  It is the
2500 threshold above which predicted values are considered to be 1.  Values
2501 of @var{cut_point} must lie in the range [0,1].
2502 During iterations, if any one of the stopping criteria are satisfied, the procedure is
2503 considered complete.
2504 The stopping criteria are:
2505 @itemize
2506 @item The number of iterations exceeds @var{max_iterations}.
2507       The default value of @var{max_iterations} is 20.
2508 @item The change in the all coefficient estimates are less than @var{min_delta}.
2509 The default value of @var{min_delta} is 0.001.
2510 @item The magnitude of change in the likelihood estimate is less than @var{min_likelihood_delta}.
2511 The default value of @var{min_delta} is zero.
2512 This means that this criterion is disabled.
2513 @item The differential of the estimated probability for all cases is less than @var{min_epsilon}.
2514 In other words, the probabilities are close to zero or one.
2515 The default value of @var{min_epsilon} is 0.00000001.
2516 @end itemize
2519 The @subcmd{PRINT} subcommand controls the display of optional statistics.
2520 Currently there is one such option, @subcmd{CI}, which indicates that the
2521 confidence interval of the odds ratio should be displayed as well as its value.
2522 @subcmd{CI} should be followed by an integer in parentheses, to indicate the
2523 confidence level of the desired confidence interval.
2525 The @subcmd{MISSING} subcommand determines the handling of missing
2526 variables.
2527 If @subcmd{INCLUDE} is set, then user-missing values are included in the
2528 calculations, but system-missing values are not.
2529 If @subcmd{EXCLUDE} is set, which is the default, user-missing
2530 values are excluded as well as system-missing values.
2531 This is the default.
2533 @node MEANS
2534 @section MEANS
2536 @vindex MEANS
2537 @cindex means
2539 @display
2540 MEANS [TABLES =]
2541       @{@var{var_list}@}
2542         [ BY @{@var{var_list}@} [BY @{@var{var_list}@} [BY @{@var{var_list}@} @dots{} ]]]
2544       [ /@{@var{var_list}@}
2545          [ BY @{@var{var_list}@} [BY @{@var{var_list}@} [BY @{@var{var_list}@} @dots{} ]]] ]
2547       [/CELLS = [MEAN] [COUNT] [STDDEV] [SEMEAN] [SUM] [MIN] [MAX] [RANGE]
2548         [VARIANCE] [KURT] [SEKURT]
2549         [SKEW] [SESKEW] [FIRST] [LAST]
2550         [HARMONIC] [GEOMETRIC]
2551         [DEFAULT]
2552         [ALL]
2553         [NONE] ]
2555       [/MISSING = [INCLUDE] [DEPENDENT]]
2556 @end display
2558 You can use the @cmd{MEANS} command to calculate the arithmetic mean and similar
2559 statistics, either for the dataset as a whole or for categories of data.
2561 The simplest form of the command is
2562 @example
2563 MEANS @var{v}.
2564 @end example
2565 @noindent which calculates the mean, count and standard deviation for @var{v}.
2566 If you specify a grouping variable, for example
2567 @example
2568 MEANS @var{v} BY @var{g}.
2569 @end example
2570 @noindent then the means, counts and standard deviations for @var{v} after having
2571 been grouped by @var{g} are calculated.
2572 Instead of the mean, count and standard deviation, you could specify the statistics
2573 in which you are interested:
2574 @example
2575 MEANS @var{x} @var{y} BY @var{g}
2576       /CELLS = HARMONIC SUM MIN.
2577 @end example
2578 This example calculates the harmonic mean, the sum and the minimum values of @var{x} and @var{y}
2579 grouped by @var{g}.
2581 The @subcmd{CELLS} subcommand specifies which statistics to calculate.  The available statistics
2582 are:
2583 @itemize
2584 @item @subcmd{MEAN}
2585 @cindex arithmetic mean
2586       The arithmetic mean.
2587 @item @subcmd{COUNT}
2588       The count of the values.
2589 @item @subcmd{STDDEV}
2590       The standard deviation.
2591 @item @subcmd{SEMEAN}
2592       The standard error of the mean.
2593 @item @subcmd{SUM}
2594       The sum of the values.
2595 @item @subcmd{MIN}
2596       The minimum value.
2597 @item @subcmd{MAX}
2598       The maximum value.
2599 @item @subcmd{RANGE}
2600       The difference between the maximum and minimum values.
2601 @item @subcmd{VARIANCE}
2602       The variance.
2603 @item @subcmd{FIRST}
2604       The first value in the category.
2605 @item @subcmd{LAST}
2606       The last value in the category.
2607 @item @subcmd{SKEW}
2608       The skewness.
2609 @item @subcmd{SESKEW}
2610       The standard error of the skewness.
2611 @item @subcmd{KURT}
2612       The kurtosis
2613 @item @subcmd{SEKURT}
2614       The standard error of the kurtosis.
2615 @item @subcmd{HARMONIC}
2616 @cindex harmonic mean
2617       The harmonic mean.
2618 @item @subcmd{GEOMETRIC}
2619 @cindex geometric mean
2620       The geometric mean.
2621 @end itemize
2623 In addition, three special keywords are recognized:
2624 @itemize
2625 @item @subcmd{DEFAULT}
2626       This is the same as @subcmd{MEAN} @subcmd{COUNT} @subcmd{STDDEV}.
2627 @item @subcmd{ALL}
2628       All of the above statistics are calculated.
2629 @item @subcmd{NONE}
2630       No statistics are calculated (only a summary is shown).
2631 @end itemize
2634 More than one @dfn{table} can be specified in a single command.
2635 Each table is separated by a @samp{/}. For
2636 example
2637 @example
2638 MEANS TABLES =
2639       @var{c} @var{d} @var{e} BY @var{x}
2640       /@var{a} @var{b} BY @var{x} @var{y}
2641       /@var{f} BY @var{y} BY @var{z}.
2642 @end example
2643 has three tables (the @samp{TABLE =} is optional).
2644 The first table has three dependent variables @var{c}, @var{d} and @var{e}
2645 and a single categorical variable @var{x}.
2646 The second table has two dependent variables @var{a} and @var{b},
2647 and two categorical variables @var{x} and @var{y}.
2648 The third table has a single dependent variables @var{f}
2649 and a categorical variable formed by the combination of @var{y} and @var{z}.
2652 By default values are omitted from the analysis only if missing values
2653 (either system missing or user missing)
2654 for any of the variables directly involved in their calculation are
2655 encountered.
2656 This behaviour can be modified with the  @subcmd{/MISSING} subcommand.
2657 Three options are possible: @subcmd{TABLE}, @subcmd{INCLUDE} and @subcmd{DEPENDENT}.
2659 @subcmd{/MISSING = INCLUDE} says that user missing values, either in the dependent
2660 variables or in the categorical variables should be taken at their face
2661 value, and not excluded.
2663 @subcmd{/MISSING = DEPENDENT} says that user missing values, in the dependent
2664 variables should be taken at their face value, however cases which
2665 have user missing values for the categorical variables should be omitted
2666 from the calculation.
2668 @subsection Example Means
2670 The dataset in @file{repairs.sav} contains the mean time between failures (@exvar{mtbf})
2671 for a sample of artifacts produced by different factories and trialed under
2672 different operating conditions.
2673 Since there are four combinations of categorical variables, by simply looking
2674 at the list of data, it would be hard to how the scores vary for each category.
2675 @ref{means:ex} shows one way of tabulating the @exvar{mtbf} in a way which is
2676 easier to understand.
2678 @float Example, means:ex
2679 @psppsyntax {means.sps}
2680 @caption {Running @cmd{MEANS} on the @exvar{mtbf} score with categories @exvar{factory} and @exvar{environment}}
2681 @end float
2683 The results are shown in @ref{means:res}.   The figures shown indicate the mean,
2684 standard deviation and number of samples in each category.
2685 These figures however do not indicate whether the results are statistically
2686 significant.  For that, you would need to use the procedures @cmd{ONEWAY}, @cmd{GLM} or
2687 @cmd{T-TEST} depending on the hypothesis being tested.
2689 @float Result, means:res
2690 @psppoutput {means}
2691 @caption {The @exvar{mtbf} categorised by @exvar{factory} and @exvar{environment}}
2692 @end float
2694 Note that there is no limit to the number of variables for which you can calculate
2695 statistics, nor to the number of categorical variables per layer, nor the number
2696 of layers.
2697 However, running @cmd{MEANS} on a large numbers of variables, or with categorical variables
2698 containing a large number of distinct values may result in an extremely large output, which
2699 will not be easy to interpret.
2700 So you should consider carefully which variables to select for participation in the analysis.
2702 @node NPAR TESTS
2703 @section NPAR TESTS
2705 @vindex NPAR TESTS
2706 @cindex nonparametric tests
2708 @display
2709 NPAR TESTS
2711      nonparametric test subcommands
2712      .
2713      .
2714      .
2716      [ /STATISTICS=@{DESCRIPTIVES@} ]
2718      [ /MISSING=@{ANALYSIS, LISTWISE@} @{INCLUDE, EXCLUDE@} ]
2720      [ /METHOD=EXACT [ TIMER [(@var{n})] ] ]
2721 @end display
2723 @cmd{NPAR TESTS} performs nonparametric tests.
2724 Non parametric tests make very few assumptions about the distribution of the
2725 data.
2726 One or more tests may be specified by using the corresponding subcommand.
2727 If the @subcmd{/STATISTICS} subcommand is also specified, then summary statistics are
2728 produces for each variable that is the subject of any test.
2730 Certain tests may take a long time to execute, if an exact figure is required.
2731 Therefore, by default asymptotic approximations are used unless the
2732 subcommand @subcmd{/METHOD=EXACT} is specified.
2733 Exact tests give more accurate results, but may take an unacceptably long
2734 time to perform.  If the @subcmd{TIMER} keyword is used, it sets a maximum time,
2735 after which the test is abandoned, and a warning message printed.
2736 The time, in minutes, should be specified in parentheses after the @subcmd{TIMER} keyword.
2737 If the @subcmd{TIMER} keyword is given without this figure, then a default value of 5 minutes
2738 is used.
2741 @menu
2742 * BINOMIAL::                Binomial Test
2743 * CHISQUARE::               Chi-square Test
2744 * COCHRAN::                 Cochran Q Test
2745 * FRIEDMAN::                Friedman Test
2746 * KENDALL::                 Kendall's W Test
2747 * KOLMOGOROV-SMIRNOV::      Kolmogorov Smirnov Test
2748 * KRUSKAL-WALLIS::          Kruskal-Wallis Test
2749 * MANN-WHITNEY::            Mann Whitney U Test
2750 * MCNEMAR::                 McNemar Test
2751 * MEDIAN::                  Median Test
2752 * RUNS::                    Runs Test
2753 * SIGN::                    The Sign Test
2754 * WILCOXON::                Wilcoxon Signed Ranks Test
2755 @end menu
2758 @node    BINOMIAL
2759 @subsection Binomial test
2760 @vindex BINOMIAL
2761 @cindex binomial test
2763 @display
2764      [ /BINOMIAL[(@var{p})]=@var{var_list}[(@var{value1}[, @var{value2})] ] ]
2765 @end display
2767 The @subcmd{/BINOMIAL} subcommand compares the observed distribution of a dichotomous
2768 variable with that of a binomial distribution.
2769 The variable @var{p} specifies the test proportion of the binomial
2770 distribution.
2771 The default value of 0.5 is assumed if @var{p} is omitted.
2773 If a single value appears after the variable list, then that value is
2774 used as the threshold to partition the observed values. Values less
2775 than or equal to the threshold value form the first category.  Values
2776 greater than the threshold form the second category.
2778 If two values appear after the variable list, then they are used
2779 as the values which a variable must take to be in the respective
2780 category.
2781 Cases for which a variable takes a value equal to neither of the specified
2782 values, take no part in the test for that variable.
2784 If no values appear, then the variable must assume dichotomous
2785 values.
2786 If more than two distinct, non-missing values for a variable
2787 under test are encountered then an error occurs.
2789 If the test proportion is equal to 0.5, then a two tailed test is
2790 reported.   For any other test proportion, a one tailed test is
2791 reported.
2792 For one tailed tests, if the test proportion is less than
2793 or equal to the observed proportion, then the significance of
2794 observing the observed proportion or more is reported.
2795 If the test proportion is more than the observed proportion, then the
2796 significance of observing the observed proportion or less is reported.
2797 That is to say, the test is always performed in the observed
2798 direction.
2800 @pspp{} uses a very precise approximation to the gamma function to
2801 compute the binomial significance.  Thus, exact results are reported
2802 even for very large sample sizes.
2805 @node    CHISQUARE
2806 @subsection Chi-square Test
2807 @vindex CHISQUARE
2808 @cindex chi-square test
2811 @display
2812      [ /CHISQUARE=@var{var_list}[(@var{lo},@var{hi})] [/EXPECTED=@{EQUAL|@var{f1}, @var{f2} @dots{} @var{fn}@}] ]
2813 @end display
2816 The @subcmd{/CHISQUARE} subcommand produces a chi-square statistic for the differences
2817 between the expected and observed frequencies of the categories of a variable.
2818 Optionally, a range of values may appear after the variable list.
2819 If a range is given, then non integer values are truncated, and values
2820 outside the  specified range are excluded from the analysis.
2822 The @subcmd{/EXPECTED} subcommand specifies the expected values of each
2823 category.
2824 There must be exactly one non-zero expected value, for each observed
2825 category, or the @subcmd{EQUAL} keyword must be specified.
2826 You may use the notation @subcmd{@var{n}*@var{f}} to specify @var{n}
2827 consecutive expected categories all taking a frequency of @var{f}.
2828 The frequencies given are proportions, not absolute frequencies.  The
2829 sum of the frequencies need not be 1.
2830 If no @subcmd{/EXPECTED} subcommand is given, then equal frequencies
2831 are expected.
2833 @subsubsection Chi-square Example
2835 A researcher wishes to investigate whether there are an equal number of
2836 persons of each sex in a population.   The sample chosen for invesigation
2837 is that from the @file {physiology.sav} dataset.   The null hypothesis for
2838 the test is that the population comprises an equal number of males and females.
2839 The analysis is performed as shown in @ref{chisquare:ex}.
2841 @float Example, chisquare:ex
2842 @psppsyntax {chisquare.sps}
2843 @caption {Performing a chi-square test to check for equal distribution of sexes}
2844 @end float
2846 There is only one test variable, @i{viz:} @exvar{sex}.  The other variables in the dataset
2847 are ignored.
2849 @float Screenshot, chisquare:scr
2850 @psppimage {chisquare}
2851 @caption {Performing a chi-square test using the graphic user interface}
2852 @end float
2854 In @ref{chisquare:res} the summary box shows that in the sample, there are more males
2855 than females.  However the significance of chi-square result is greater than 0.05
2856 --- the most commonly accepted p-value --- and therefore
2857 there is not enough evidence to reject the null hypothesis and one must conclude
2858 that the evidence does not indicate that there is an imbalance of the sexes
2859 in the population.
2861 @float Result, chisquare:res
2862 @psppoutput {chisquare}
2863 @caption {The results of running a chi-square test on @exvar{sex}}
2864 @end float
2867 @node COCHRAN
2868 @subsection Cochran Q Test
2869 @vindex Cochran
2870 @cindex Cochran Q test
2871 @cindex Q, Cochran Q
2873 @display
2874      [ /COCHRAN = @var{var_list} ]
2875 @end display
2877 The Cochran Q test is used to test for differences between three or more groups.
2878 The data for @var{var_list} in all cases must assume exactly two
2879 distinct values (other than missing values).
2881 The value of Q is displayed along with its Asymptotic significance
2882 based on a chi-square distribution.
2884 @node FRIEDMAN
2885 @subsection Friedman Test
2886 @vindex FRIEDMAN
2887 @cindex Friedman test
2889 @display
2890      [ /FRIEDMAN = @var{var_list} ]
2891 @end display
2893 The Friedman test is used to test for differences between repeated measures when
2894 there is no indication that the distributions are normally distributed.
2896 A list of variables which contain the measured data must be given.  The procedure
2897 prints the sum of ranks for each variable, the test statistic and its significance.
2899 @node KENDALL
2900 @subsection Kendall's W Test
2901 @vindex KENDALL
2902 @cindex Kendall's W test
2903 @cindex coefficient of concordance
2905 @display
2906      [ /KENDALL = @var{var_list} ]
2907 @end display
2909 The Kendall test investigates whether an arbitrary number of related samples come from the
2910 same population.
2911 It is identical to the Friedman test except that the additional statistic W, Kendall's Coefficient of Concordance is printed.
2912 It has the range [0,1] --- a value of zero indicates no agreement between the samples whereas a value of
2913 unity indicates complete agreement.
2916 @node KOLMOGOROV-SMIRNOV
2917 @subsection Kolmogorov-Smirnov Test
2918 @vindex KOLMOGOROV-SMIRNOV
2919 @vindex K-S
2920 @cindex Kolmogorov-Smirnov test
2922 @display
2923      [ /KOLMOGOROV-SMIRNOV (@{NORMAL [@var{mu}, @var{sigma}], UNIFORM [@var{min}, @var{max}], POISSON [@var{lambda}], EXPONENTIAL [@var{scale}] @}) = @var{var_list} ]
2924 @end display
2926 The one sample Kolmogorov-Smirnov subcommand is used to test whether or not a dataset is
2927 drawn from a particular distribution.  Four distributions are supported, @i{viz:}
2928 Normal, Uniform, Poisson and Exponential.
2930 Ideally you should provide the parameters of the distribution against
2931 which you wish to test the data. For example, with the normal
2932 distribution  the mean (@var{mu})and standard deviation (@var{sigma})
2933 should be given; with the uniform distribution, the minimum
2934 (@var{min})and maximum (@var{max}) value should be provided.
2935 However, if the parameters are omitted they are imputed from the
2936 data.  Imputing the parameters reduces the power of the test so should
2937 be avoided if possible.
2939 In the following example, two variables @var{score} and @var{age} are
2940 tested to see if they follow a normal distribution with a mean of 3.5
2941 and a standard deviation of 2.0.
2942 @example
2943   NPAR TESTS
2944         /KOLMOGOROV-SMIRNOV (normal 3.5 2.0) = @var{score} @var{age}.
2945 @end example
2946 If the variables need to be tested against different distributions, then a separate
2947 subcommand must be used.  For example the following syntax tests @var{score} against
2948 a normal distribution with mean of 3.5 and standard deviation of 2.0 whilst @var{age}
2949 is tested against a normal distribution of mean 40 and standard deviation 1.5.
2950 @example
2951   NPAR TESTS
2952         /KOLMOGOROV-SMIRNOV (normal 3.5 2.0) = @var{score}
2953         /KOLMOGOROV-SMIRNOV (normal 40 1.5) =  @var{age}.
2954 @end example
2956 The abbreviated subcommand  @subcmd{K-S} may be used in place of @subcmd{KOLMOGOROV-SMIRNOV}.
2958 @node KRUSKAL-WALLIS
2959 @subsection Kruskal-Wallis Test
2960 @vindex KRUSKAL-WALLIS
2961 @vindex K-W
2962 @cindex Kruskal-Wallis test
2964 @display
2965      [ /KRUSKAL-WALLIS = @var{var_list} BY var (@var{lower}, @var{upper}) ]
2966 @end display
2968 The Kruskal-Wallis test is used to compare data from an
2969 arbitrary number of populations.  It does not assume normality.
2970 The data to be compared are specified by @var{var_list}.
2971 The categorical variable determining the groups to which the
2972 data belongs is given by @var{var}. The limits @var{lower} and
2973 @var{upper} specify the valid range of @var{var}.
2974 If @var{upper} is smaller than @var{lower}, the PSPP will assume their values
2975 to be reversed. Any cases for which @var{var} falls outside
2976 [@var{lower}, @var{upper}] are ignored.
2978 The mean rank of each group as well as the chi-squared value and
2979 significance of the test are printed.
2980 The abbreviated subcommand  @subcmd{K-W} may be used in place of
2981 @subcmd{KRUSKAL-WALLIS}.
2984 @node MANN-WHITNEY
2985 @subsection Mann-Whitney U Test
2986 @vindex MANN-WHITNEY
2987 @vindex M-W
2988 @cindex Mann-Whitney U test
2989 @cindex U, Mann-Whitney U
2991 @display
2992      [ /MANN-WHITNEY = @var{var_list} BY var (@var{group1}, @var{group2}) ]
2993 @end display
2995 The Mann-Whitney subcommand is used to test whether two groups of data
2996 come from different populations. The variables to be tested should be
2997 specified in @var{var_list} and the grouping variable, that determines
2998 to which group the test variables belong, in @var{var}.
2999 @var{Var} may be either a string or an alpha variable.
3000 @var{Group1} and @var{group2} specify the
3001 two values of @var{var} which determine the groups of the test data.
3002 Cases for which the @var{var} value is neither @var{group1} or
3003 @var{group2} are ignored.
3005 The value of the Mann-Whitney U statistic, the Wilcoxon W, and the
3006 significance are printed.
3007 You may abbreviated the subcommand @subcmd{MANN-WHITNEY} to
3008 @subcmd{M-W}.
3011 @node MCNEMAR
3012 @subsection McNemar Test
3013 @vindex MCNEMAR
3014 @cindex McNemar test
3016 @display
3017      [ /MCNEMAR @var{var_list} [ WITH @var{var_list} [ (PAIRED) ]]]
3018 @end display
3020 Use McNemar's test to analyse the significance of the difference between
3021 pairs of correlated proportions.
3023 If the @code{WITH} keyword is omitted, then tests for all
3024 combinations of the listed variables are performed.
3025 If the @code{WITH} keyword is given, and the @code{(PAIRED)} keyword
3026 is also given, then the number of variables preceding @code{WITH}
3027 must be the same as the number following it.
3028 In this case, tests for each respective pair of variables are
3029 performed.
3030 If the @code{WITH} keyword is given, but the
3031 @code{(PAIRED)} keyword is omitted, then tests for each combination
3032 of variable preceding @code{WITH} against variable following
3033 @code{WITH} are performed.
3035 The data in each variable must be dichotomous.  If there are more
3036 than two distinct variables an error will occur and the test will
3037 not be run.
3039 @node MEDIAN
3040 @subsection Median Test
3041 @vindex MEDIAN
3042 @cindex Median test
3044 @display
3045      [ /MEDIAN [(@var{value})] = @var{var_list} BY @var{variable} (@var{value1}, @var{value2}) ]
3046 @end display
3048 The median test is used to test whether independent samples come from
3049 populations with a common median.
3050 The median of the populations against which the samples are to be tested
3051 may be given in parentheses immediately after the
3052 @subcmd{/MEDIAN} subcommand.  If it is not given, the median is imputed from the
3053 union of all the samples.
3055 The variables of the samples to be tested should immediately follow the @samp{=} sign. The
3056 keyword @code{BY} must come next, and then the grouping variable.  Two values
3057 in parentheses should follow.  If the first value is greater than the second,
3058 then a 2 sample test is performed using these two values to determine the groups.
3059 If however, the first variable is less than the second, then a @i{k} sample test is
3060 conducted and the group values used are all values encountered which lie in the
3061 range [@var{value1},@var{value2}].
3064 @node RUNS
3065 @subsection Runs Test
3066 @vindex RUNS
3067 @cindex runs test
3069 @display
3070      [ /RUNS (@{MEAN, MEDIAN, MODE, @var{value}@})  = @var{var_list} ]
3071 @end display
3073 The @subcmd{/RUNS} subcommand tests whether a data sequence is randomly ordered.
3075 It works by examining the number of times a variable's value crosses a given threshold.
3076 The desired threshold must be specified within parentheses.
3077 It may either be specified as a number or as one of @subcmd{MEAN}, @subcmd{MEDIAN} or @subcmd{MODE}.
3078 Following the threshold specification comes the list of variables whose values are to be
3079 tested.
3081 The subcommand shows the number of runs, the asymptotic significance based on the
3082 length of the data.
3084 @node SIGN
3085 @subsection Sign Test
3086 @vindex SIGN
3087 @cindex sign test
3089 @display
3090      [ /SIGN @var{var_list} [ WITH @var{var_list} [ (PAIRED) ]]]
3091 @end display
3093 The @subcmd{/SIGN} subcommand tests for differences between medians of the
3094 variables listed.
3095 The test does not make any assumptions about the
3096 distribution of the data.
3098 If the @code{WITH} keyword is omitted, then tests for all
3099 combinations of the listed variables are performed.
3100 If the @code{WITH} keyword is given, and the @code{(PAIRED)} keyword
3101 is also given, then the number of variables preceding @code{WITH}
3102 must be the same as the number following it.
3103 In this case, tests for each respective pair of variables are
3104 performed.
3105 If the @code{WITH} keyword is given, but the
3106 @code{(PAIRED)} keyword is omitted, then tests for each combination
3107 of variable preceding @code{WITH} against variable following
3108 @code{WITH} are performed.
3110 @node WILCOXON
3111 @subsection Wilcoxon Matched Pairs Signed Ranks Test
3112 @vindex WILCOXON
3113 @cindex wilcoxon matched pairs signed ranks test
3115 @display
3116      [ /WILCOXON @var{var_list} [ WITH @var{var_list} [ (PAIRED) ]]]
3117 @end display
3119 The @subcmd{/WILCOXON} subcommand tests for differences between medians of the
3120 variables listed.
3121 The test does not make any assumptions about the variances of the samples.
3122 It does however assume that the distribution is symmetrical.
3124 If the @subcmd{WITH} keyword is omitted, then tests for all
3125 combinations of the listed variables are performed.
3126 If the @subcmd{WITH} keyword is given, and the @subcmd{(PAIRED)} keyword
3127 is also given, then the number of variables preceding @subcmd{WITH}
3128 must be the same as the number following it.
3129 In this case, tests for each respective pair of variables are
3130 performed.
3131 If the @subcmd{WITH} keyword is given, but the
3132 @subcmd{(PAIRED)} keyword is omitted, then tests for each combination
3133 of variable preceding @subcmd{WITH} against variable following
3134 @subcmd{WITH} are performed.
3136 @node T-TEST
3137 @section T-TEST
3139 @vindex T-TEST
3141 @display
3142 T-TEST
3143         /MISSING=@{ANALYSIS,LISTWISE@} @{EXCLUDE,INCLUDE@}
3144         /CRITERIA=CI(@var{confidence})
3147 (One Sample mode.)
3148         TESTVAL=@var{test_value}
3149         /VARIABLES=@var{var_list}
3152 (Independent Samples mode.)
3153         GROUPS=var(@var{value1} [, @var{value2}])
3154         /VARIABLES=@var{var_list}
3157 (Paired Samples mode.)
3158         PAIRS=@var{var_list} [WITH @var{var_list} [(PAIRED)] ]
3160 @end display
3163 The @cmd{T-TEST} procedure outputs tables used in testing hypotheses about
3164 means.
3165 It operates in one of three modes:
3166 @itemize
3167 @item One Sample mode.
3168 @item Independent Groups mode.
3169 @item Paired mode.
3170 @end itemize
3172 @noindent
3173 Each of these modes are described in more detail below.
3174 There are two optional subcommands which are common to all modes.
3176 The @cmd{/CRITERIA} subcommand tells @pspp{} the confidence interval used
3177 in the tests.  The default value is 0.95.
3180 The @cmd{MISSING} subcommand determines the handling of missing
3181 variables.
3182 If @subcmd{INCLUDE} is set, then user-missing values are included in the
3183 calculations, but system-missing values are not.
3184 If @subcmd{EXCLUDE} is set, which is the default, user-missing
3185 values are excluded as well as system-missing values.
3186 This is the default.
3188 If @subcmd{LISTWISE} is set, then the entire case is excluded from analysis
3189 whenever any variable  specified in the @subcmd{/VARIABLES}, @subcmd{/PAIRS} or
3190 @subcmd{/GROUPS} subcommands contains a missing value.
3191 If @subcmd{ANALYSIS} is set, then missing values are excluded only in the analysis for
3192 which they would be needed. This is the default.
3195 @menu
3196 * One Sample Mode::             Testing against a hypothesized mean
3197 * Independent Samples Mode::    Testing two independent groups for equal mean
3198 * Paired Samples Mode::         Testing two interdependent groups for equal mean
3199 @end menu
3201 @node One Sample Mode
3202 @subsection One Sample Mode
3204 The @subcmd{TESTVAL} subcommand invokes the One Sample mode.
3205 This mode is used to test a population mean against a hypothesized
3206 mean.
3207 The value given to the @subcmd{TESTVAL} subcommand is the value against
3208 which you wish to test.
3209 In this mode, you must also use the @subcmd{/VARIABLES} subcommand to
3210 tell @pspp{} which variables you wish to test.
3212 @subsubsection Example - One Sample T-test
3214 A researcher wishes to know whether the weight of persons in a population
3215 is different from the national average.
3216 The samples are drawn from the population under investigation and recorded
3217 in the file @file{physiology.sav}.
3218 From the Department of Health, she
3219 knows that the national average weight of healthy adults is 76.8kg.
3220 Accordingly the @subcmd{TESTVAL} is set to 76.8.
3221 The null hypothesis therefore is that the mean average weight of the
3222 population from which the sample was drawn is 76.8kg.
3224 As previously noted (@pxref{Identifying incorrect data}), one
3225 sample in the dataset contains a weight value
3226 which is clearly incorrect.  So this is excluded from the analysis
3227 using the @cmd{SELECT} command.
3229 @float Example, one-sample-t:ex
3230 @psppsyntax {one-sample-t.sps}
3231 @caption {Running a one sample T-Test after excluding all non-positive values}
3232 @end float
3234 @float Screenshot, one-sample-t:scr
3235 @psppimage {one-sample-t}
3236 @caption {Using the One Sample T-Test dialog box to test @exvar{weight} for a mean of 76.8kg}
3237 @end float
3240 @ref{one-sample-t:res} shows that the mean of our sample differs from the test value
3241 by -1.40kg.  However the significance is very high (0.610).  So one cannot
3242 reject the null hypothesis, and must conclude there is not enough evidence
3243 to suggest that the mean weight of the persons in our population is different
3244 from 76.8kg.
3246 @float Results, one-sample-t:res
3247 @psppoutput {one-sample-t}
3248 @caption {The results of a one sample T-test of @exvar{weight} using a test value of 76.8kg}
3249 @end float
3251 @node Independent Samples Mode
3252 @subsection Independent Samples Mode
3254 The @subcmd{GROUPS} subcommand invokes Independent Samples mode or
3255 `Groups' mode.
3256 This mode is used to test whether two groups of values have the
3257 same population mean.
3258 In this mode, you must also use the @subcmd{/VARIABLES} subcommand to
3259 tell @pspp{} the dependent variables you wish to test.
3261 The variable given in the @subcmd{GROUPS} subcommand is the independent
3262 variable which determines to which group the samples belong.
3263 The values in parentheses are the specific values of the independent
3264 variable for each group.
3265 If the parentheses are omitted and no values are given, the default values
3266 of 1.0 and 2.0 are assumed.
3268 If the independent variable is numeric,
3269 it is acceptable to specify only one value inside the parentheses.
3270 If you do this, cases where the independent variable is
3271 greater than or equal to this value belong to the first group, and cases
3272 less than this value belong to the second group.
3273 When using this form of the @subcmd{GROUPS} subcommand, missing values in
3274 the independent variable are excluded on a listwise basis, regardless
3275 of whether @subcmd{/MISSING=LISTWISE} was specified.
3277 @subsubsection Example - Independent Samples T-test
3279 A researcher wishes to know whether within a population, adult males
3280 are taller than adult females.
3281 The samples are drawn from the population under investigation and recorded
3282 in the file @file{physiology.sav}.
3284 As previously noted (@pxref{Identifying incorrect data}), one
3285 sample in the dataset contains a height value
3286 which is clearly incorrect.  So this is excluded from the analysis
3287 using the @cmd{SELECT} command.
3290 @float Example, indepdendent-samples-t:ex
3291 @psppsyntax {independent-samples-t.sps}
3292 @caption {Running a independent samples T-Test after excluding all observations less than 200kg}
3293 @end float
3296 The null hypothesis is that both males and females are on average
3297 of equal height.
3299 @float Screenshot, independent-samples-t:scr
3300 @psppimage {independent-samples-t}
3301 @caption {Using the Independent Sample T-test dialog, to test for differences of @exvar{height} between values of @exvar{sex}}
3302 @end float
3305 In this case, the grouping variable is @exvar{sex}, so this is entered
3306 as the variable for the @subcmd{GROUP} subcommand.  The group values are  0 (male) and
3307 1 (female).
3309 If you are running the proceedure using syntax, then you need to enter
3310 the values corresponding to each group within parentheses.
3311 If you are using the graphic user interface, then you have to open
3312 the ``Define Groups'' dialog box and enter the values corresponding
3313 to each group as shown in @ref{define-groups-t:scr}.  If, as in this case, the dataset has defined value
3314 labels for the group variable, then you can enter them by label
3315 or by value.
3317 @float Screenshot, define-groups-t:scr
3318 @psppimage {define-groups-t}
3319 @caption {Setting the values of the grouping variable for an Independent Samples T-test}
3320 @end float
3322 From @ref{independent-samples-t:res}, one can clearly see that the @emph{sample} mean height
3323 is greater for males than for females.  However in order to see if this
3324 is a significant result, one must consult the T-Test table.
3326 The T-Test table contains two rows; one for use if the variance of the samples
3327 in each group may be safely assumed to be equal, and the second row
3328 if the variances in each group may not be safely assumed to be equal.
3330 In this case however, both rows show a 2-tailed significance less than 0.001 and
3331 one must therefore reject the null hypothesis and conclude that within
3332 the population the mean height of males and of females are unequal.
3334 @float Result, independent-samples-t:res
3335 @psppoutput {independent-samples-t}
3336 @caption {The results of an independent samples T-test of @exvar{height} by @exvar{sex}}
3337 @end float
3339 @node Paired Samples Mode
3340 @subsection Paired Samples Mode
3342 The @cmd{PAIRS} subcommand introduces Paired Samples mode.
3343 Use this mode when repeated measures have been taken from the same
3344 samples.
3345 If the @subcmd{WITH} keyword is omitted, then tables for all
3346 combinations of variables given in the @cmd{PAIRS} subcommand are
3347 generated.
3348 If the @subcmd{WITH} keyword is given, and the @subcmd{(PAIRED)} keyword
3349 is also given, then the number of variables preceding @subcmd{WITH}
3350 must be the same as the number following it.
3351 In this case, tables for each respective pair of variables are
3352 generated.
3353 In the event that the @subcmd{WITH} keyword is given, but the
3354 @subcmd{(PAIRED)} keyword is omitted, then tables for each combination
3355 of variable preceding @subcmd{WITH} against variable following
3356 @subcmd{WITH} are generated.
3359 @node ONEWAY
3360 @section ONEWAY
3362 @vindex ONEWAY
3363 @cindex analysis of variance
3364 @cindex ANOVA
3366 @display
3367 ONEWAY
3368         [/VARIABLES = ] @var{var_list} BY @var{var}
3369         /MISSING=@{ANALYSIS,LISTWISE@} @{EXCLUDE,INCLUDE@}
3370         /CONTRAST= @var{value1} [, @var{value2}] ... [,@var{valueN}]
3371         /STATISTICS=@{DESCRIPTIVES,HOMOGENEITY@}
3372         /POSTHOC=@{BONFERRONI, GH, LSD, SCHEFFE, SIDAK, TUKEY, ALPHA ([@var{value}])@}
3373 @end display
3375 The @cmd{ONEWAY} procedure performs a one-way analysis of variance of
3376 variables factored by a single independent variable.
3377 It is used to compare the means of a population
3378 divided into more than two groups.
3380 The dependent variables to be analysed should be given in the @subcmd{VARIABLES}
3381 subcommand.
3382 The list of variables must be followed by the @subcmd{BY} keyword and
3383 the name of the independent (or factor) variable.
3385 You can use the @subcmd{STATISTICS} subcommand to tell @pspp{} to display
3386 ancillary information.  The options accepted are:
3387 @itemize
3388 @item DESCRIPTIVES
3389 Displays descriptive statistics about the groups factored by the independent
3390 variable.
3391 @item HOMOGENEITY
3392 Displays the Levene test of Homogeneity of Variance for the
3393 variables and their groups.
3394 @end itemize
3396 The @subcmd{CONTRAST} subcommand is used when you anticipate certain
3397 differences between the groups.
3398 The subcommand must be followed by a list of numerals which are the
3399 coefficients of the groups to be tested.
3400 The number of coefficients must correspond to the number of distinct
3401 groups (or values of the independent variable).
3402 If the total sum of the coefficients are not zero, then @pspp{} will
3403 display a warning, but will proceed with the analysis.
3404 The @subcmd{CONTRAST} subcommand may be given up to 10 times in order
3405 to specify different contrast tests.
3406 The @subcmd{MISSING} subcommand defines how missing values are handled.
3407 If @subcmd{LISTWISE} is specified then cases which have missing values for
3408 the independent variable or any dependent variable are ignored.
3409 If @subcmd{ANALYSIS} is specified, then cases are ignored if the independent
3410 variable is missing or if the dependent variable currently being
3411 analysed is missing.  The default is @subcmd{ANALYSIS}.
3412 A setting of @subcmd{EXCLUDE} means that variables whose values are
3413 user-missing are to be excluded from the analysis. A setting of
3414 @subcmd{INCLUDE} means they are to be included.  The default is @subcmd{EXCLUDE}.
3416 Using the @code{POSTHOC} subcommand you can perform multiple
3417 pairwise comparisons on the data. The following comparison methods
3418 are available:
3419 @itemize
3420 @item @subcmd{LSD}
3421 Least Significant Difference.
3422 @item @subcmd{TUKEY}
3423 Tukey Honestly Significant Difference.
3424 @item @subcmd{BONFERRONI}
3425 Bonferroni test.
3426 @item @subcmd{SCHEFFE}
3427 Scheff@'e's test.
3428 @item @subcmd{SIDAK}
3429 Sidak test.
3430 @item @subcmd{GH}
3431 The Games-Howell test.
3432 @end itemize
3434 @noindent
3435 Use the optional syntax @code{ALPHA(@var{value})} to indicate that
3436 @cmd{ONEWAY} should perform the posthoc tests at a confidence level of
3437 @var{value}.  If @code{ALPHA(@var{value})} is not specified, then the
3438 confidence level used is 0.05.
3440 @node QUICK CLUSTER
3441 @section QUICK CLUSTER
3442 @vindex QUICK CLUSTER
3444 @cindex K-means clustering
3445 @cindex clustering
3447 @display
3448 QUICK CLUSTER @var{var_list}
3449       [/CRITERIA=CLUSTERS(@var{k}) [MXITER(@var{max_iter})] CONVERGE(@var{epsilon}) [NOINITIAL]]
3450       [/MISSING=@{EXCLUDE,INCLUDE@} @{LISTWISE, PAIRWISE@}]
3451       [/PRINT=@{INITIAL@} @{CLUSTER@}]
3452       [/SAVE[=[CLUSTER[(@var{membership_var})]] [DISTANCE[(@var{distance_var})]]]
3453 @end display
3455 The @cmd{QUICK CLUSTER} command performs k-means clustering on the
3456 dataset.  This is useful when you wish to allocate cases into clusters
3457 of similar values and you already know the number of clusters.
3459 The minimum specification is @samp{QUICK CLUSTER} followed by the names
3460 of the variables which contain the cluster data.  Normally you will also
3461 want to specify @subcmd{/CRITERIA=CLUSTERS(@var{k})} where @var{k} is the
3462 number of clusters.  If this is not specified, then @var{k} defaults to 2.
3464 If you use @subcmd{/CRITERIA=NOINITIAL} then a naive algorithm to select
3465 the initial clusters is used.   This will provide for faster execution but
3466 less well separated initial clusters and hence possibly an inferior final
3467 result.
3470 @cmd{QUICK CLUSTER} uses an iterative algorithm to select the clusters centers.
3471 The subcommand  @subcmd{/CRITERIA=MXITER(@var{max_iter})} sets the maximum number of iterations.
3472 During classification, @pspp{} will continue iterating until until @var{max_iter}
3473 iterations have been done or the convergence criterion (see below) is fulfilled.
3474 The default value of @var{max_iter} is 2.
3476 If however, you specify @subcmd{/CRITERIA=NOUPDATE} then after selecting the initial centers,
3477 no further update to the cluster centers is done.  In this case, @var{max_iter}, if specified.
3478 is ignored.
3480 The subcommand  @subcmd{/CRITERIA=CONVERGE(@var{epsilon})} is used
3481 to set the convergence criterion.  The value of convergence criterion is  @var{epsilon}
3482 times the minimum distance between the @emph{initial} cluster centers.  Iteration stops when
3483 the  mean cluster distance between  one iteration and the next
3484 is less than the convergence criterion.  The default value of @var{epsilon} is zero.
3486 The @subcmd{MISSING} subcommand determines the handling of missing variables.
3487 If @subcmd{INCLUDE} is set, then user-missing values are considered at their face
3488 value and not as missing values.
3489 If @subcmd{EXCLUDE} is set, which is the default, user-missing
3490 values are excluded as well as system-missing values.
3492 If @subcmd{LISTWISE} is set, then the entire case is excluded from the analysis
3493 whenever any of the clustering variables contains a missing value.
3494 If @subcmd{PAIRWISE} is set, then a case is considered missing only if all the
3495 clustering variables contain missing values.  Otherwise it is clustered
3496 on the basis of the non-missing values.
3497 The default is @subcmd{LISTWISE}.
3499 The @subcmd{PRINT} subcommand requests additional output to be printed.
3500 If @subcmd{INITIAL} is set, then the initial cluster memberships will
3501 be printed.
3502 If @subcmd{CLUSTER} is set, the cluster memberships of the individual
3503 cases are displayed (potentially generating lengthy output).
3505 You can specify the subcommand @subcmd{SAVE} to ask that each case's cluster membership
3506 and the euclidean distance between the case and its cluster center be saved to
3507 a new variable in the active dataset.   To save the cluster membership use the
3508 @subcmd{CLUSTER} keyword and to save the distance use the @subcmd{DISTANCE} keyword.
3509 Each keyword may optionally be followed by a variable name in parentheses to specify
3510 the new variable which is to contain the saved parameter.  If no variable name is specified,
3511 then PSPP will create one.
3513 @node RANK
3514 @section RANK
3516 @vindex RANK
3517 @display
3518 RANK
3519         [VARIABLES=] @var{var_list} [@{A,D@}] [BY @var{var_list}]
3520         /TIES=@{MEAN,LOW,HIGH,CONDENSE@}
3521         /FRACTION=@{BLOM,TUKEY,VW,RANKIT@}
3522         /PRINT[=@{YES,NO@}
3523         /MISSING=@{EXCLUDE,INCLUDE@}
3525         /RANK [INTO @var{var_list}]
3526         /NTILES(k) [INTO @var{var_list}]
3527         /NORMAL [INTO @var{var_list}]
3528         /PERCENT [INTO @var{var_list}]
3529         /RFRACTION [INTO @var{var_list}]
3530         /PROPORTION [INTO @var{var_list}]
3531         /N [INTO @var{var_list}]
3532         /SAVAGE [INTO @var{var_list}]
3533 @end display
3535 The @cmd{RANK} command ranks variables and stores the results into new
3536 variables.
3538 The @subcmd{VARIABLES} subcommand, which is mandatory, specifies one or
3539 more variables whose values are to be ranked.
3540 After each variable, @samp{A} or @samp{D} may appear, indicating that
3541 the variable is to be ranked in ascending or descending order.
3542 Ascending is the default.
3543 If a @subcmd{BY} keyword appears, it should be followed by a list of variables
3544 which are to serve as group variables.
3545 In this case, the cases are gathered into groups, and ranks calculated
3546 for each group.
3548 The @subcmd{TIES} subcommand specifies how tied values are to be treated.  The
3549 default is to take the mean value of all the tied cases.
3551 The @subcmd{FRACTION} subcommand specifies how proportional ranks are to be
3552 calculated.  This only has any effect if @subcmd{NORMAL} or @subcmd{PROPORTIONAL} rank
3553 functions are requested.
3555 The @subcmd{PRINT} subcommand may be used to specify that a summary of the rank
3556 variables created should appear in the output.
3558 The function subcommands are @subcmd{RANK}, @subcmd{NTILES}, @subcmd{NORMAL}, @subcmd{PERCENT}, @subcmd{RFRACTION},
3559 @subcmd{PROPORTION} and @subcmd{SAVAGE}.  Any number of function subcommands may appear.
3560 If none are given, then the default is RANK.
3561 The @subcmd{NTILES} subcommand must take an integer specifying the number of
3562 partitions into which values should be ranked.
3563 Each subcommand may be followed by the @subcmd{INTO} keyword and a list of
3564 variables which are the variables to be created and receive the rank
3565 scores.  There may be as many variables specified as there are
3566 variables named on the @subcmd{VARIABLES} subcommand.  If fewer are specified,
3567 then the variable names are automatically created.
3569 The @subcmd{MISSING} subcommand determines how user missing values are to be
3570 treated. A setting of @subcmd{EXCLUDE} means that variables whose values are
3571 user-missing are to be excluded from the rank scores. A setting of
3572 @subcmd{INCLUDE} means they are to be included.  The default is @subcmd{EXCLUDE}.
3574 @include regression.texi
3577 @node RELIABILITY
3578 @section RELIABILITY
3580 @vindex RELIABILITY
3581 @display
3582 RELIABILITY
3583         /VARIABLES=@var{var_list}
3584         /SCALE (@var{name}) = @{@var{var_list}, ALL@}
3585         /MODEL=@{ALPHA, SPLIT[(@var{n})]@}
3586         /SUMMARY=@{TOTAL,ALL@}
3587         /MISSING=@{EXCLUDE,INCLUDE@}
3588 @end display
3590 @cindex Cronbach's Alpha
3591 The @cmd{RELIABILITY} command performs reliability analysis on the data.
3593 The @subcmd{VARIABLES} subcommand is required. It determines the set of variables
3594 upon which analysis is to be performed.
3596 The @subcmd{SCALE} subcommand determines the  variables for which
3597 reliability is to be calculated.  If @subcmd{SCALE} is omitted, then analysis for
3598 all variables named in the @subcmd{VARIABLES} subcommand are used.
3599 Optionally, the @var{name} parameter may be specified to set a string name
3600 for the scale.
3602 The @subcmd{MODEL} subcommand determines the type of analysis. If @subcmd{ALPHA} is specified,
3603 then Cronbach's Alpha is calculated for the scale.  If the model is @subcmd{SPLIT},
3604 then the variables  are divided into 2 subsets.  An optional parameter
3605 @var{n} may be given, to specify how many variables to be in the first subset.
3606 If @var{n} is omitted, then it defaults to one half of the variables in the
3607 scale, or one half minus one if there are an odd number of variables.
3608 The default model is @subcmd{ALPHA}.
3610 By default, any cases with user missing, or system missing values for
3611 any variables given in the @subcmd{VARIABLES} subcommand are omitted
3612 from the analysis.  The @subcmd{MISSING} subcommand determines whether
3613 user missing values are included or excluded in the analysis.
3615 The @subcmd{SUMMARY} subcommand determines the type of summary analysis to be performed.
3616 Currently there is only one type: @subcmd{SUMMARY=TOTAL}, which displays per-item
3617 analysis tested against the totals.
3619 @subsection Example - Reliability
3621 Before analysing the results of a survey -- particularly for a multiple choice survey --
3622 it is desireable to know whether the respondents have considered their answers
3623 or simply provided random answers.
3625 In the following example the survey results from the file @file{hotel.sav} are used.
3626 All five survey questions are included in the reliability analysis.
3627 However, before running the analysis, the data must be preprocessed.
3628 An examination of the survey questions reveals that two questions, @i{viz:} v3 and v5
3629 are negatively worded, whereas the others are positively worded.
3630 All questions must be based upon the same scale for the analysis to be meaningful.
3631 One could use the @cmd{RECODE} command (@pxref{RECODE}), however a simpler way is
3632 to use @cmd{COMPUTE} (@pxref{COMPUTE}) and this is what is done in @ref{reliability:ex}.
3634 @float Example, reliability:ex
3635 @psppsyntax {reliability.sps}
3636 @caption {Investigating the reliability of survey responses}
3637 @end float
3639 In this case, all variables in the data set are used.  So we can use the special
3640 keyword @samp{ALL} (@pxref{BNF}).
3642 @float Screenshot, reliability:src
3643 @psppimage {reliability}
3644 @caption {Reliability dialog box with all variables selected}
3645 @end float
3647 @ref{reliability:res} shows that Cronbach's Alpha is 0.11  which is a value normally considered too
3648 low to indicate consistency within the data.  This is possibly due to the small number of
3649 survey questions.  The survey should be redesigned before serious use of the results are
3650 applied.
3652 @float Result, reliability:res
3653 @psppoutput {reliability}
3654 @caption {The results of the reliability command on @file{hotel.sav}}
3655 @end float
3658 @node ROC
3659 @section ROC
3661 @vindex ROC
3662 @cindex Receiver Operating Characteristic
3663 @cindex Area under curve
3665 @display
3666 ROC     @var{var_list} BY @var{state_var} (@var{state_value})
3667         /PLOT = @{ CURVE [(REFERENCE)], NONE @}
3668         /PRINT = [ SE ] [ COORDINATES ]
3669         /CRITERIA = [ CUTOFF(@{INCLUDE,EXCLUDE@}) ]
3670           [ TESTPOS (@{LARGE,SMALL@}) ]
3671           [ CI (@var{confidence}) ]
3672           [ DISTRIBUTION (@{FREE, NEGEXPO @}) ]
3673         /MISSING=@{EXCLUDE,INCLUDE@}
3674 @end display
3677 The @cmd{ROC} command is used to plot the receiver operating characteristic curve
3678 of a dataset, and to estimate the area under the curve.
3679 This is useful for analysing the efficacy of a variable as a predictor of a state of nature.
3681 The mandatory @var{var_list} is the list of predictor variables.
3682 The variable @var{state_var} is the variable whose values represent the actual states,
3683 and @var{state_value} is the value of this variable which represents the positive state.
3685 The optional subcommand @subcmd{PLOT} is used to determine if and how the @subcmd{ROC} curve is drawn.
3686 The keyword @subcmd{CURVE} means that the @subcmd{ROC} curve should be drawn, and the optional keyword @subcmd{REFERENCE},
3687 which should be enclosed in parentheses, says that the diagonal reference line should be drawn.
3688 If the keyword @subcmd{NONE} is given, then no @subcmd{ROC} curve is drawn.
3689 By default, the curve is drawn with no reference line.
3691 The optional subcommand @subcmd{PRINT} determines which additional
3692 tables should be printed.  Two additional tables are available.  The
3693 @subcmd{SE} keyword says that standard error of the area under the
3694 curve should be printed as well as the area itself.  In addition, a
3695 p-value for the null hypothesis that the area under the curve equals
3696 0.5 is printed.   The @subcmd{COORDINATES} keyword says that a
3697 table of coordinates of the @subcmd{ROC} curve should be printed.
3699 The @subcmd{CRITERIA} subcommand has four optional parameters:
3700 @itemize @bullet
3701 @item The @subcmd{TESTPOS} parameter may be @subcmd{LARGE} or @subcmd{SMALL}.
3702 @subcmd{LARGE} is the default, and says that larger values in the predictor variables are to be
3703 considered positive.  @subcmd{SMALL} indicates that smaller values should be considered positive.
3705 @item The @subcmd{CI} parameter specifies the confidence interval that should be printed.
3706 It has no effect if the @subcmd{SE} keyword in the @subcmd{PRINT} subcommand has not been given.
3708 @item The @subcmd{DISTRIBUTION} parameter determines the method to be used when estimating the area
3709 under the curve.
3710 There are two possibilities, @i{viz}: @subcmd{FREE} and @subcmd{NEGEXPO}.
3711 The @subcmd{FREE} method uses a non-parametric estimate, and the @subcmd{NEGEXPO} method a bi-negative
3712 exponential distribution estimate.
3713 The @subcmd{NEGEXPO} method should only be used when the number of positive actual states is
3714 equal to the number of negative actual states.
3715 The default is @subcmd{FREE}.
3717 @item The @subcmd{CUTOFF} parameter is for compatibility and is ignored.
3718 @end itemize
3720 The @subcmd{MISSING} subcommand determines whether user missing values are to
3721 be included or excluded in the analysis.  The default behaviour is to
3722 exclude them.
3723 Cases are excluded on a listwise basis; if any of the variables in @var{var_list}
3724 or if the variable @var{state_var} is missing, then the entire case is
3725 excluded.
3727 @c  LocalWords:  subcmd subcommand