MATRIX: Fix test for very large matrix.
[pspp.git] / src / language / commands / crosstabs.c
blobd5c055c21f2052f7212660be5c11e0297a85ee5b
1 /* PSPP - a program for statistical analysis.
2 Copyright (C) 1997-9, 2000, 2006, 2009, 2010, 2011, 2012, 2013, 2014, 2016 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17 /* FIXME:
19 - How to calculate significance of some directional measures?
20 - How to calculate ASE for symmetric Somers ' d?
21 - How to calculate ASE for Goodman and Kruskal's tau?
22 - How to calculate approx. T of symmetric uncertainty coefficient?
26 #include <config.h>
28 #include <ctype.h>
29 #include <float.h>
30 #include <gsl/gsl_cdf.h>
31 #include <stdlib.h>
32 #include <stdio.h>
34 #include "data/case.h"
35 #include "data/casegrouper.h"
36 #include "data/casereader.h"
37 #include "data/data-out.h"
38 #include "data/dataset.h"
39 #include "data/dictionary.h"
40 #include "data/format.h"
41 #include "data/value-labels.h"
42 #include "data/variable.h"
43 #include "language/command.h"
44 #include "language/commands/freq.h"
45 #include "language/commands/split-file.h"
46 #include "language/lexer/lexer.h"
47 #include "language/lexer/variable-parser.h"
48 #include "libpspp/array.h"
49 #include "libpspp/assertion.h"
50 #include "libpspp/compiler.h"
51 #include "libpspp/hash-functions.h"
52 #include "libpspp/hmap.h"
53 #include "libpspp/hmapx.h"
54 #include "libpspp/message.h"
55 #include "libpspp/misc.h"
56 #include "libpspp/pool.h"
57 #include "libpspp/str.h"
58 #include "math/correlation.h"
59 #include "output/pivot-table.h"
60 #include "output/charts/barchart.h"
62 #include "gl/minmax.h"
63 #include "gl/xalloc-oversized.h"
64 #include "gl/xalloc.h"
65 #include "gl/xsize.h"
67 #include "gettext.h"
68 #define _(msgid) gettext (msgid)
69 #define N_(msgid) msgid
71 /* Kinds of cells in the crosstabulation. */
72 #define CRS_CELLS \
73 C(COUNT, N_("Count"), PIVOT_RC_COUNT) \
74 C(EXPECTED, N_("Expected"), PIVOT_RC_OTHER) \
75 C(ROW, N_("Row %"), PIVOT_RC_PERCENT) \
76 C(COLUMN, N_("Column %"), PIVOT_RC_PERCENT) \
77 C(TOTAL, N_("Total %"), PIVOT_RC_PERCENT) \
78 C(RESIDUAL, N_("Residual"), PIVOT_RC_RESIDUAL) \
79 C(SRESIDUAL, N_("Std. Residual"), PIVOT_RC_RESIDUAL) \
80 C(ASRESIDUAL, N_("Adjusted Residual"), PIVOT_RC_RESIDUAL)
81 enum crs_cell
83 #define C(KEYWORD, STRING, RC) CRS_CL_##KEYWORD,
84 CRS_CELLS
85 #undef C
87 enum {
88 #define C(KEYWORD, STRING, RC) + 1
89 CRS_N_CELLS = CRS_CELLS
90 #undef C
92 #define CRS_ALL_CELLS ((1u << CRS_N_CELLS) - 1)
94 /* Kinds of statistics. */
95 #define CRS_STATISTICS \
96 S(CHISQ) \
97 S(PHI) \
98 S(CC) \
99 S(LAMBDA) \
100 S(UC) \
101 S(BTAU) \
102 S(CTAU) \
103 S(RISK) \
104 S(GAMMA) \
105 S(D) \
106 S(KAPPA) \
107 S(ETA) \
108 S(CORR)
109 enum crs_statistic_index {
110 #define S(KEYWORD) CRS_ST_##KEYWORD##_INDEX,
111 CRS_STATISTICS
112 #undef S
114 enum crs_statistic_bit {
115 #define S(KEYWORD) CRS_ST_##KEYWORD = 1u << CRS_ST_##KEYWORD##_INDEX,
116 CRS_STATISTICS
117 #undef S
119 enum {
120 #define S(KEYWORD) + 1
121 CRS_N_STATISTICS = CRS_STATISTICS
122 #undef S
124 #define CRS_ALL_STATISTICS ((1u << CRS_N_STATISTICS) - 1)
126 /* Number of chi-square statistics. */
127 #define N_CHISQ 5
129 /* Number of symmetric statistics. */
130 #define N_SYMMETRIC 9
132 /* Number of directional statistics. */
133 #define N_DIRECTIONAL 13
135 /* Indexes into the 'vars' member of struct crosstabulation and
136 struct crosstab member. */
137 enum
139 ROW_VAR = 0, /* Row variable. */
140 COL_VAR = 1 /* Column variable. */
141 /* Higher indexes cause multiple tables to be output. */
144 struct xtab_var
146 const struct variable *var;
147 union value *values;
148 size_t n_values;
151 /* A crosstabulation of 2 or more variables. */
152 struct crosstabulation
154 struct crosstabs_proc *proc;
155 struct fmt_spec weight_format; /* Format for weight variable. */
156 double missing; /* Weight of missing cases. */
158 /* Variables (2 or more). */
159 size_t n_vars;
160 struct xtab_var *vars;
162 /* Constants (0 or more). */
163 size_t n_consts;
164 struct xtab_var *const_vars;
165 size_t *const_indexes;
167 /* Data. */
168 struct hmap data;
169 struct freq **entries;
170 size_t n_entries;
172 /* Number of statistically interesting columns/rows
173 (columns/rows with data in them). */
174 size_t ns_cols, ns_rows;
176 /* Matrix contents. */
177 double *mat; /* Matrix proper. */
178 double *row_tot; /* Row totals. */
179 double *col_tot; /* Column totals. */
180 double total; /* Grand total. */
182 /* Syntax. */
183 int start_ofs;
184 int end_ofs;
187 /* Integer mode variable info. */
188 struct var_range
190 struct hmap_node hmap_node; /* In struct crosstabs_proc var_ranges map. */
191 const struct variable *var; /* The variable. */
192 int min; /* Minimum value. */
193 int max; /* Maximum value + 1. */
194 int count; /* max - min. */
197 struct crosstabs_proc
199 const struct dictionary *dict;
200 enum { INTEGER, GENERAL } mode;
201 enum mv_class exclude;
202 bool barchart;
203 bool bad_warn;
204 struct fmt_spec weight_format;
206 /* Variables specifies on VARIABLES. */
207 const struct variable **variables;
208 size_t n_variables;
209 struct hmap var_ranges;
211 /* TABLES. */
212 struct crosstabulation *pivots;
213 size_t n_pivots;
215 /* CELLS. */
216 size_t n_cells; /* Number of cells requested. */
217 unsigned int cells; /* Bit k is 1 if cell k is requested. */
218 int a_cells[CRS_N_CELLS]; /* 0...n_cells-1 are the requested cells. */
220 /* Rounding of cells. */
221 bool round_case_weights; /* Round case weights? */
222 bool round_cells; /* If !round_case_weights, round cells? */
223 bool round_down; /* Round down? (otherwise to nearest) */
225 /* STATISTICS. */
226 unsigned int statistics; /* Bit k is 1 if statistic k is requested. */
228 bool descending; /* True if descending sort order is requested. */
231 static bool parse_crosstabs_tables (struct lexer *, struct dataset *,
232 struct crosstabs_proc *);
233 static bool parse_crosstabs_variables (struct lexer *, struct dataset *,
234 struct crosstabs_proc *);
236 static const struct var_range *get_var_range (const struct crosstabs_proc *,
237 const struct variable *);
239 static bool should_tabulate_case (const struct crosstabulation *,
240 const struct ccase *, enum mv_class exclude);
241 static void tabulate_general_case (struct crosstabulation *, const struct ccase *,
242 double weight);
243 static void tabulate_integer_case (struct crosstabulation *, const struct ccase *,
244 double weight);
245 static void postcalc (struct crosstabs_proc *, struct lexer *);
247 static double
248 round_weight (const struct crosstabs_proc *proc, double weight)
250 return proc->round_down ? floor (weight) : floor (weight + 0.5);
253 #define FOR_EACH_POPULATED_COLUMN(C, XT) \
254 for (size_t C = next_populated_column (0, XT); \
255 C < (XT)->vars[COL_VAR].n_values; \
256 C = next_populated_column (C + 1, XT))
257 static size_t
258 next_populated_column (size_t c, const struct crosstabulation *xt)
260 size_t n_columns = xt->vars[COL_VAR].n_values;
261 for (; c < n_columns; c++)
262 if (xt->col_tot[c])
263 break;
264 return c;
267 #define FOR_EACH_POPULATED_ROW(R, XT) \
268 for (size_t R = next_populated_row (0, XT); R < (XT)->vars[ROW_VAR].n_values; \
269 R = next_populated_row (R + 1, XT))
270 static size_t
271 next_populated_row (size_t r, const struct crosstabulation *xt)
273 size_t n_rows = xt->vars[ROW_VAR].n_values;
274 for (; r < n_rows; r++)
275 if (xt->row_tot[r])
276 break;
277 return r;
280 /* Parses and executes the CROSSTABS procedure. */
282 cmd_crosstabs (struct lexer *lexer, struct dataset *ds)
284 int result = CMD_FAILURE;
286 struct crosstabs_proc proc = {
287 .dict = dataset_dict (ds),
288 .mode = GENERAL,
289 .exclude = MV_ANY,
290 .barchart = false,
291 .bad_warn = true,
292 .weight_format = dict_get_weight_format (dataset_dict (ds)),
294 .variables = NULL,
295 .n_variables = 0,
296 .var_ranges = HMAP_INITIALIZER (proc.var_ranges),
298 .pivots = NULL,
299 .n_pivots = 0,
301 .cells = 1u << CRS_CL_COUNT,
302 /* n_cells and a_cells will be filled in later. */
304 .round_case_weights = false,
305 .round_cells = false,
306 .round_down = false,
308 .statistics = 0,
310 .descending = false,
312 bool show_tables = true;
313 int exclude_ofs = 0;
314 lex_match (lexer, T_SLASH);
315 for (;;)
317 if (lex_match_id (lexer, "VARIABLES"))
319 if (!parse_crosstabs_variables (lexer, ds, &proc))
320 goto exit;
322 else if (lex_match_id (lexer, "MISSING"))
324 lex_match (lexer, T_EQUALS);
325 exclude_ofs = lex_ofs (lexer);
326 if (lex_match_id (lexer, "TABLE"))
327 proc.exclude = MV_ANY;
328 else if (lex_match_id (lexer, "INCLUDE"))
329 proc.exclude = MV_SYSTEM;
330 else if (lex_match_id (lexer, "REPORT"))
331 proc.exclude = 0;
332 else
334 lex_error_expecting (lexer, "TABLE", "INCLUDE", "REPORT");
335 goto exit;
338 else if (lex_match_id (lexer, "COUNT"))
340 lex_match (lexer, T_EQUALS);
342 /* Default is CELL. */
343 proc.round_case_weights = false;
344 proc.round_cells = true;
346 while (lex_token (lexer) != T_SLASH && lex_token (lexer) != T_ENDCMD)
348 if (lex_match_id (lexer, "ASIS"))
350 proc.round_case_weights = false;
351 proc.round_cells = false;
353 else if (lex_match_id (lexer, "CASE"))
355 proc.round_case_weights = true;
356 proc.round_cells = false;
358 else if (lex_match_id (lexer, "CELL"))
360 proc.round_case_weights = false;
361 proc.round_cells = true;
363 else if (lex_match_id (lexer, "ROUND"))
364 proc.round_down = false;
365 else if (lex_match_id (lexer, "TRUNCATE"))
366 proc.round_down = true;
367 else
369 lex_error_expecting (lexer, "ASIS", "CASE", "CELL",
370 "ROUND", "TRUNCATE");
371 goto exit;
373 lex_match (lexer, T_COMMA);
376 else if (lex_match_id (lexer, "FORMAT"))
378 lex_match (lexer, T_EQUALS);
379 while (lex_token (lexer) != T_SLASH && lex_token (lexer) != T_ENDCMD)
381 if (lex_match_id (lexer, "AVALUE"))
382 proc.descending = false;
383 else if (lex_match_id (lexer, "DVALUE"))
384 proc.descending = true;
385 else if (lex_match_id (lexer, "TABLES"))
386 show_tables = true;
387 else if (lex_match_id (lexer, "NOTABLES"))
388 show_tables = false;
389 else
391 lex_error_expecting (lexer, "AVALUE", "DVALUE",
392 "TABLES", "NOTABLES");
393 goto exit;
395 lex_match (lexer, T_COMMA);
398 else if (lex_match_id (lexer, "BARCHART"))
399 proc.barchart = true;
400 else if (lex_match_id (lexer, "CELLS"))
402 lex_match (lexer, T_EQUALS);
404 if (lex_match_id (lexer, "NONE"))
405 proc.cells = 0;
406 else if (lex_match (lexer, T_ALL))
407 proc.cells = CRS_ALL_CELLS;
408 else
410 proc.cells = 0;
411 while (lex_token (lexer) != T_SLASH && lex_token (lexer) != T_ENDCMD)
413 #define C(KEYWORD, STRING, RC) \
414 if (lex_match_id (lexer, #KEYWORD)) \
416 proc.cells |= 1u << CRS_CL_##KEYWORD; \
417 continue; \
419 CRS_CELLS
420 #undef C
422 static const char *cells[] =
424 #define C(KEYWORD, STRING, RC) #KEYWORD,
425 CRS_CELLS
426 #undef C
428 lex_error_expecting_array (lexer, cells,
429 sizeof cells / sizeof *cells);
430 goto exit;
432 if (!proc.cells)
433 proc.cells = ((1u << CRS_CL_COUNT) | (1u << CRS_CL_ROW)
434 | (1u << CRS_CL_COLUMN) | (1u << CRS_CL_TOTAL));
437 else if (lex_match_id (lexer, "STATISTICS"))
439 lex_match (lexer, T_EQUALS);
441 if (lex_match_id (lexer, "NONE"))
442 proc.statistics = 0;
443 else if (lex_match (lexer, T_ALL))
444 proc.statistics = CRS_ALL_STATISTICS;
445 else
447 proc.statistics = 0;
448 while (lex_token (lexer) != T_SLASH && lex_token (lexer) != T_ENDCMD)
450 #define S(KEYWORD) \
451 if (lex_match_id (lexer, #KEYWORD)) \
453 proc.statistics |= CRS_ST_##KEYWORD; \
454 continue; \
456 CRS_STATISTICS
457 #undef S
458 static const char *stats[] =
460 #define S(KEYWORD) #KEYWORD,
461 CRS_STATISTICS
462 #undef S
464 lex_error_expecting_array (lexer, stats,
465 sizeof stats / sizeof *stats);
466 goto exit;
468 if (!proc.statistics)
469 proc.statistics = CRS_ST_CHISQ;
472 else if (!parse_crosstabs_tables (lexer, ds, &proc))
473 goto exit;
475 if (!lex_match (lexer, T_SLASH))
476 break;
478 if (!lex_end_of_command (lexer))
479 goto exit;
481 if (!proc.n_pivots)
483 msg (SE, _("At least one crosstabulation must be requested (using "
484 "the TABLES subcommand)."));
485 goto exit;
488 /* Cells. */
489 if (!show_tables)
490 proc.cells = 0;
491 for (size_t i = 0; i < CRS_N_CELLS; i++)
492 if (proc.cells & (1u << i))
493 proc.a_cells[proc.n_cells++] = i;
494 assert (proc.n_cells < CRS_N_CELLS);
496 /* Missing values. */
497 if (proc.mode == GENERAL && !proc.exclude)
499 lex_ofs_msg (lexer, SW, exclude_ofs, exclude_ofs,
500 _("Missing mode %s not allowed in general mode. "
501 "Assuming %s."), "REPORT", "MISSING=TABLE");
502 proc.exclude = MV_ANY;
505 struct casereader *input = casereader_create_filter_weight (proc_open (ds),
506 dataset_dict (ds),
507 NULL, NULL);
508 struct casegrouper *grouper = casegrouper_create_splits (input, dataset_dict (ds));
509 struct casereader *group;
510 while (casegrouper_get_next_group (grouper, &group))
512 output_split_file_values_peek (ds, group);
514 /* Initialize hash tables. */
515 for (struct crosstabulation *xt = &proc.pivots[0];
516 xt < &proc.pivots[proc.n_pivots]; xt++)
517 hmap_init (&xt->data);
519 /* Tabulate. */
520 struct ccase *c;
521 for (; (c = casereader_read (group)) != NULL; case_unref (c))
522 for (struct crosstabulation *xt = &proc.pivots[0];
523 xt < &proc.pivots[proc.n_pivots]; xt++)
525 double weight = dict_get_case_weight (dataset_dict (ds), c,
526 &proc.bad_warn);
527 if (proc.round_case_weights)
529 weight = round_weight (&proc, weight);
530 if (weight == 0.)
531 continue;
533 if (should_tabulate_case (xt, c, proc.exclude))
535 if (proc.mode == GENERAL)
536 tabulate_general_case (xt, c, weight);
537 else
538 tabulate_integer_case (xt, c, weight);
540 else
541 xt->missing += weight;
543 casereader_destroy (group);
545 /* Output. */
546 postcalc (&proc, lexer);
548 bool ok = casegrouper_destroy (grouper);
549 ok = proc_commit (ds) && ok;
551 result = ok ? CMD_SUCCESS : CMD_FAILURE;
553 exit:
554 free (proc.variables);
556 struct var_range *range, *next_range;
557 HMAP_FOR_EACH_SAFE (range, next_range, struct var_range, hmap_node,
558 &proc.var_ranges)
560 hmap_delete (&proc.var_ranges, &range->hmap_node);
561 free (range);
563 for (struct crosstabulation *xt = &proc.pivots[0];
564 xt < &proc.pivots[proc.n_pivots]; xt++)
566 free (xt->vars);
567 free (xt->const_vars);
568 free (xt->const_indexes);
570 free (proc.pivots);
572 return result;
575 /* Parses the TABLES subcommand. */
576 static bool
577 parse_crosstabs_tables (struct lexer *lexer, struct dataset *ds,
578 struct crosstabs_proc *proc)
580 const struct variable ***by = NULL;
581 size_t *by_nvar = NULL;
582 bool ok = false;
584 /* Ensure that this is a TABLES subcommand. */
585 if (!lex_match_id (lexer, "TABLES")
586 && (lex_token (lexer) != T_ID ||
587 dict_lookup_var (dataset_dict (ds), lex_tokcstr (lexer)) == NULL)
588 && lex_token (lexer) != T_ALL)
590 lex_error (lexer, _("Syntax error expecting subcommand name or "
591 "variable name."));
592 return false;
594 lex_match (lexer, T_EQUALS);
596 struct const_var_set *var_set
597 = (proc->variables
598 ? const_var_set_create_from_array (proc->variables,
599 proc->n_variables)
600 : const_var_set_create_from_dict (dataset_dict (ds)));
602 size_t nx = 1;
603 size_t n_by = 0;
604 int vars_start = lex_ofs (lexer);
605 bool overflow = false;
608 by = xnrealloc (by, n_by + 1, sizeof *by);
609 by_nvar = xnrealloc (by_nvar, n_by + 1, sizeof *by_nvar);
610 if (!parse_const_var_set_vars (lexer, var_set, &by[n_by], &by_nvar[n_by],
611 PV_NO_DUPLICATE | PV_NO_SCRATCH))
612 goto done;
613 size_t n = by_nvar[n_by++];
614 if (xalloc_oversized (nx, n))
615 overflow = true;
616 nx *= n;
618 while (lex_match (lexer, T_BY));
619 if (overflow)
621 lex_ofs_error (lexer, vars_start, lex_ofs (lexer) - 1,
622 _("Too many cross-tabulation variables or dimensions."));
623 goto done;
625 if (n_by < 2)
627 bool unused UNUSED = lex_force_match (lexer, T_BY);
628 goto done;
630 int vars_end = lex_ofs (lexer) - 1;
632 size_t *by_iter = XCALLOC (n_by, size_t);
633 proc->pivots = xnrealloc (proc->pivots,
634 proc->n_pivots + nx, sizeof *proc->pivots);
635 for (size_t i = 0; i < nx; i++)
637 struct crosstabulation *xt = &proc->pivots[proc->n_pivots++];
639 *xt = (struct crosstabulation) {
640 .proc = proc,
641 .weight_format = proc->weight_format,
642 .missing = 0.,
643 .n_vars = n_by,
644 .vars = xcalloc (n_by, sizeof *xt->vars),
645 .n_consts = 0,
646 .const_vars = NULL,
647 .const_indexes = NULL,
648 .start_ofs = vars_start,
649 .end_ofs = vars_end,
652 for (size_t j = 0; j < n_by; j++)
653 xt->vars[j].var = by[j][by_iter[j]];
655 for (int j = n_by - 1; j >= 0; j--)
657 if (++by_iter[j] < by_nvar[j])
658 break;
659 by_iter[j] = 0;
662 free (by_iter);
663 ok = true;
665 done:
666 /* All return paths lead here. */
667 for (size_t i = 0; i < n_by; i++)
668 free (by[i]);
669 free (by);
670 free (by_nvar);
672 const_var_set_destroy (var_set);
674 return ok;
677 /* Parses the VARIABLES subcommand. */
678 static bool
679 parse_crosstabs_variables (struct lexer *lexer, struct dataset *ds,
680 struct crosstabs_proc *proc)
682 if (proc->n_pivots)
684 lex_next_error (lexer, -1, -1, _("%s must be specified before %s."),
685 "VARIABLES", "TABLES");
686 return false;
689 lex_match (lexer, T_EQUALS);
691 for (;;)
693 size_t orig_nv = proc->n_variables;
695 if (!parse_variables_const (lexer, dataset_dict (ds),
696 &proc->variables, &proc->n_variables,
697 (PV_APPEND | PV_NUMERIC
698 | PV_NO_DUPLICATE | PV_NO_SCRATCH)))
699 return false;
701 if (!lex_force_match (lexer, T_LPAREN))
702 goto error;
704 if (!lex_force_int (lexer))
705 goto error;
706 long min = lex_integer (lexer);
707 lex_get (lexer);
709 lex_match (lexer, T_COMMA);
711 if (!lex_force_int_range (lexer, NULL, min, LONG_MAX))
712 goto error;
713 long max = lex_integer (lexer);
714 lex_get (lexer);
716 if (!lex_force_match (lexer, T_RPAREN))
717 goto error;
719 for (size_t i = orig_nv; i < proc->n_variables; i++)
721 const struct variable *var = proc->variables[i];
722 struct var_range *vr = xmalloc (sizeof *vr);
723 *vr = (struct var_range) {
724 .var = var,
725 .min = min,
726 .max = max,
727 .count = max - min + 1,
729 hmap_insert (&proc->var_ranges, &vr->hmap_node,
730 hash_pointer (var, 0));
733 if (lex_token (lexer) == T_SLASH)
734 break;
737 proc->mode = INTEGER;
738 return true;
740 error:
741 free (proc->variables);
742 proc->variables = NULL;
743 proc->n_variables = 0;
744 return false;
747 /* Data file processing. */
749 static const struct var_range *
750 get_var_range (const struct crosstabs_proc *proc, const struct variable *var)
752 if (!hmap_is_empty (&proc->var_ranges))
754 const struct var_range *range;
756 HMAP_FOR_EACH_IN_BUCKET (range, struct var_range, hmap_node,
757 hash_pointer (var, 0), &proc->var_ranges)
758 if (range->var == var)
759 return range;
762 return NULL;
765 static bool
766 should_tabulate_case (const struct crosstabulation *xt, const struct ccase *c,
767 enum mv_class exclude)
769 for (size_t j = 0; j < xt->n_vars; j++)
771 const struct variable *var = xt->vars[j].var;
772 const struct var_range *range = get_var_range (xt->proc, var);
774 if (var_is_value_missing (var, case_data (c, var)) & exclude)
775 return false;
777 if (range != NULL)
779 double num = case_num (c, var);
780 if (num < range->min || num >= range->max + 1.)
781 return false;
784 return true;
787 static void
788 tabulate_integer_case (struct crosstabulation *xt, const struct ccase *c,
789 double weight)
791 size_t hash = 0;
792 for (size_t j = 0; j < xt->n_vars; j++)
794 /* Throw away fractional parts of values. */
795 hash = hash_int (case_num (c, xt->vars[j].var), hash);
798 struct freq *te;
799 HMAP_FOR_EACH_WITH_HASH (te, struct freq, node, hash, &xt->data)
801 for (size_t j = 0; j < xt->n_vars; j++)
802 if ((int) case_num (c, xt->vars[j].var) != (int) te->values[j].f)
803 goto no_match;
805 /* Found an existing entry. */
806 te->count += weight;
807 return;
809 no_match: ;
812 /* No existing entry. Create a new one. */
813 te = xmalloc (table_entry_size (xt->n_vars));
814 te->count = weight;
815 for (size_t j = 0; j < xt->n_vars; j++)
816 te->values[j].f = (int) case_num (c, xt->vars[j].var);
817 hmap_insert (&xt->data, &te->node, hash);
820 static void
821 tabulate_general_case (struct crosstabulation *xt, const struct ccase *c,
822 double weight)
824 size_t hash = 0;
825 for (size_t j = 0; j < xt->n_vars; j++)
827 const struct variable *var = xt->vars[j].var;
828 hash = value_hash (case_data (c, var), var_get_width (var), hash);
831 struct freq *te;
832 HMAP_FOR_EACH_WITH_HASH (te, struct freq, node, hash, &xt->data)
834 for (size_t j = 0; j < xt->n_vars; j++)
836 const struct variable *var = xt->vars[j].var;
837 if (!value_equal (case_data (c, var), &te->values[j],
838 var_get_width (var)))
839 goto no_match;
842 /* Found an existing entry. */
843 te->count += weight;
844 return;
846 no_match: ;
849 /* No existing entry. Create a new one. */
850 te = xmalloc (table_entry_size (xt->n_vars));
851 te->count = weight;
852 for (size_t j = 0; j < xt->n_vars; j++)
854 const struct variable *var = xt->vars[j].var;
855 value_clone (&te->values[j], case_data (c, var), var_get_width (var));
857 hmap_insert (&xt->data, &te->node, hash);
860 /* Post-data reading calculations. */
862 static int compare_table_entry_vars_3way (const struct freq *a,
863 const struct freq *b,
864 const struct crosstabulation *xt,
865 int idx0, int idx1);
866 static int compare_table_entry_3way (const void *ap_, const void *bp_,
867 const void *xt_);
868 static int compare_table_entry_3way_inv (const void *ap_, const void *bp_,
869 const void *xt_);
871 static void enum_var_values (const struct crosstabulation *, int var_idx,
872 bool descending);
873 static void free_var_values (const struct crosstabulation *, int var_idx);
874 static void output_crosstabulation (struct crosstabs_proc *,
875 struct crosstabulation *,
876 struct lexer *);
877 static void make_crosstabulation_subset (struct crosstabulation *xt,
878 size_t row0, size_t row1,
879 struct crosstabulation *subset);
880 static void make_summary_table (struct crosstabs_proc *);
881 static bool find_crosstab (struct crosstabulation *, size_t *row0p,
882 size_t *row1p);
884 static void
885 postcalc (struct crosstabs_proc *proc, struct lexer *lexer)
887 /* Round hash table entries, if requested
889 If this causes any of the cell counts to fall to zero, delete those
890 cells. */
891 if (proc->round_cells)
892 for (struct crosstabulation *xt = proc->pivots;
893 xt < &proc->pivots[proc->n_pivots]; xt++)
895 struct freq *e, *next;
896 HMAP_FOR_EACH_SAFE (e, next, struct freq, node, &xt->data)
898 e->count = round_weight (proc, e->count);
899 if (e->count == 0.0)
901 hmap_delete (&xt->data, &e->node);
902 free (e);
907 /* Convert hash tables into sorted arrays of entries. */
908 for (struct crosstabulation *xt = proc->pivots;
909 xt < &proc->pivots[proc->n_pivots]; xt++)
911 xt->n_entries = hmap_count (&xt->data);
912 xt->entries = xnmalloc (xt->n_entries, sizeof *xt->entries);
914 size_t i = 0;
915 struct freq *e;
916 HMAP_FOR_EACH (e, struct freq, node, &xt->data)
917 xt->entries[i++] = e;
919 hmap_destroy (&xt->data);
921 sort (xt->entries, xt->n_entries, sizeof *xt->entries,
922 proc->descending ? compare_table_entry_3way_inv : compare_table_entry_3way,
923 xt);
926 make_summary_table (proc);
928 /* Output each pivot table. */
929 for (struct crosstabulation *xt = proc->pivots;
930 xt < &proc->pivots[proc->n_pivots]; xt++)
932 output_crosstabulation (proc, xt, lexer);
933 if (proc->barchart)
935 int n_vars = (xt->n_vars > 2 ? 2 : xt->n_vars);
936 const struct variable **vars = XCALLOC (n_vars, const struct variable*);
937 for (size_t i = 0; i < n_vars; i++)
938 vars[i] = xt->vars[i].var;
939 chart_submit (barchart_create (vars, n_vars, _("Count"),
940 false,
941 xt->entries, xt->n_entries));
942 free (vars);
946 /* Free output and prepare for next split file. */
947 for (struct crosstabulation *xt = proc->pivots;
948 xt < &proc->pivots[proc->n_pivots]; xt++)
950 xt->missing = 0.0;
952 /* Free the members that were allocated in this function(and the values
953 owned by the entries.
955 The other pointer members are either both allocated and destroyed at a
956 lower level (in output_crosstabulation), or both allocated and
957 destroyed at a higher level (in crs_custom_tables and free_proc,
958 respectively). */
959 for (size_t i = 0; i < xt->n_vars; i++)
961 int width = var_get_width (xt->vars[i].var);
962 if (value_needs_init (width))
963 for (size_t j = 0; j < xt->n_entries; j++)
964 value_destroy (&xt->entries[j]->values[i], width);
967 for (size_t i = 0; i < xt->n_entries; i++)
968 free (xt->entries[i]);
969 free (xt->entries);
973 static void
974 make_crosstabulation_subset (struct crosstabulation *xt, size_t row0,
975 size_t row1, struct crosstabulation *subset)
977 *subset = *xt;
978 if (xt->n_vars > 2)
980 assert (xt->n_consts == 0);
981 subset->n_vars = 2;
982 subset->vars = xt->vars;
984 subset->n_consts = xt->n_vars - 2;
985 subset->const_vars = xt->vars + 2;
986 subset->const_indexes = xcalloc (subset->n_consts,
987 sizeof *subset->const_indexes);
988 for (size_t i = 0; i < subset->n_consts; i++)
990 const union value *value = &xt->entries[row0]->values[2 + i];
992 for (size_t j = 0; j < xt->vars[2 + i].n_values; j++)
993 if (value_equal (&xt->vars[2 + i].values[j], value,
994 var_get_width (xt->vars[2 + i].var)))
996 subset->const_indexes[i] = j;
997 goto found;
999 NOT_REACHED ();
1000 found: ;
1003 subset->entries = &xt->entries[row0];
1004 subset->n_entries = row1 - row0;
1007 static int
1008 compare_table_entry_var_3way (const struct freq *a,
1009 const struct freq *b,
1010 const struct crosstabulation *xt,
1011 int idx)
1013 return value_compare_3way (&a->values[idx], &b->values[idx],
1014 var_get_width (xt->vars[idx].var));
1017 static int
1018 compare_table_entry_vars_3way (const struct freq *a,
1019 const struct freq *b,
1020 const struct crosstabulation *xt,
1021 int idx0, int idx1)
1023 for (int i = idx1 - 1; i >= idx0; i--)
1025 int cmp = compare_table_entry_var_3way (a, b, xt, i);
1026 if (cmp != 0)
1027 return cmp;
1029 return 0;
1032 /* Compare the struct freq at *AP to the one at *BP and
1033 return a strcmp()-type result. */
1034 static int
1035 compare_table_entry_3way (const void *ap_, const void *bp_, const void *xt_)
1037 const struct freq *const *ap = ap_;
1038 const struct freq *const *bp = bp_;
1039 const struct freq *a = *ap;
1040 const struct freq *b = *bp;
1041 const struct crosstabulation *xt = xt_;
1043 int cmp = compare_table_entry_vars_3way (a, b, xt, 2, xt->n_vars);
1044 if (cmp != 0)
1045 return cmp;
1047 cmp = compare_table_entry_var_3way (a, b, xt, ROW_VAR);
1048 if (cmp != 0)
1049 return cmp;
1051 return compare_table_entry_var_3way (a, b, xt, COL_VAR);
1054 /* Inverted version of compare_table_entry_3way */
1055 static int
1056 compare_table_entry_3way_inv (const void *ap_, const void *bp_, const void *xt_)
1058 return -compare_table_entry_3way (ap_, bp_, xt_);
1061 /* Output a table summarizing the cases processed. */
1062 static void
1063 make_summary_table (struct crosstabs_proc *proc)
1065 struct pivot_table *table = pivot_table_create (N_("Summary"));
1066 pivot_table_set_weight_var (table, dict_get_weight (proc->dict));
1068 pivot_dimension_create (table, PIVOT_AXIS_COLUMN, N_("Statistics"),
1069 N_("N"), PIVOT_RC_COUNT,
1070 N_("Percent"), PIVOT_RC_PERCENT);
1072 struct pivot_dimension *cases = pivot_dimension_create (
1073 table, PIVOT_AXIS_COLUMN, N_("Cases"),
1074 N_("Valid"), N_("Missing"), N_("Total"));
1075 cases->root->show_label = true;
1077 struct pivot_dimension *tables = pivot_dimension_create (
1078 table, PIVOT_AXIS_ROW, N_("Crosstabulation"));
1079 for (struct crosstabulation *xt = &proc->pivots[0];
1080 xt < &proc->pivots[proc->n_pivots]; xt++)
1082 struct string name = DS_EMPTY_INITIALIZER;
1083 for (size_t i = 0; i < xt->n_vars; i++)
1085 if (i > 0)
1086 ds_put_cstr (&name, " × ");
1087 ds_put_cstr (&name, var_to_string (xt->vars[i].var));
1090 int row = pivot_category_create_leaf (
1091 tables->root,
1092 pivot_value_new_user_text_nocopy (ds_steal_cstr (&name)));
1094 double valid = 0.;
1095 for (size_t i = 0; i < xt->n_entries; i++)
1096 valid += xt->entries[i]->count;
1098 double n[3];
1099 n[0] = valid;
1100 n[1] = xt->missing;
1101 n[2] = n[0] + n[1];
1102 for (int i = 0; i < 3; i++)
1104 pivot_table_put3 (table, 0, i, row, pivot_value_new_number (n[i]));
1105 pivot_table_put3 (table, 1, i, row,
1106 pivot_value_new_number (n[i] / n[2] * 100.0));
1110 pivot_table_submit (table);
1113 /* Output. */
1115 static struct pivot_table *create_crosstab_table (
1116 struct crosstabs_proc *, struct crosstabulation *,
1117 size_t crs_leaves[CRS_N_CELLS]);
1118 static struct pivot_table *create_chisq_table (struct crosstabulation *);
1119 static struct pivot_table *create_sym_table (struct crosstabulation *);
1120 static struct pivot_table *create_risk_table (
1121 struct crosstabulation *, struct pivot_dimension **risk_statistics);
1122 static struct pivot_table *create_direct_table (struct crosstabulation *);
1123 static void display_crosstabulation (struct crosstabs_proc *,
1124 struct crosstabulation *,
1125 struct pivot_table *,
1126 size_t crs_leaves[CRS_N_CELLS]);
1127 static void display_chisq (struct crosstabulation *, struct pivot_table *);
1128 static void display_symmetric (struct crosstabs_proc *,
1129 struct crosstabulation *, struct pivot_table *);
1130 static void display_risk (struct crosstabulation *, struct pivot_table *,
1131 struct pivot_dimension *risk_statistics);
1132 static void display_directional (struct crosstabs_proc *,
1133 struct crosstabulation *,
1134 struct pivot_table *);
1135 static void delete_missing (struct crosstabulation *);
1136 static void build_matrix (struct crosstabulation *);
1138 /* Output pivot table XT in the context of PROC. */
1139 static void
1140 output_crosstabulation (struct crosstabs_proc *proc, struct crosstabulation *xt,
1141 struct lexer *lexer)
1143 for (size_t i = 0; i < xt->n_vars; i++)
1144 enum_var_values (xt, i, proc->descending);
1146 if (xt->vars[COL_VAR].n_values == 0)
1148 struct string vars;
1150 ds_init_cstr (&vars, var_to_string (xt->vars[0].var));
1151 for (size_t i = 1; i < xt->n_vars; i++)
1152 ds_put_format (&vars, " × %s", var_to_string (xt->vars[i].var));
1154 /* TRANSLATORS: The %s here describes a crosstabulation. It takes the
1155 form "var1 * var2 * var3 * ...". */
1156 lex_ofs_msg (lexer, SW, xt->start_ofs, xt->end_ofs,
1157 _("Crosstabulation %s contained no non-missing cases."),
1158 ds_cstr (&vars));
1160 ds_destroy (&vars);
1161 for (size_t i = 0; i < xt->n_vars; i++)
1162 free_var_values (xt, i);
1163 return;
1166 size_t crs_leaves[CRS_N_CELLS];
1167 struct pivot_table *table = (proc->cells
1168 ? create_crosstab_table (proc, xt, crs_leaves)
1169 : NULL);
1170 struct pivot_table *chisq = (proc->statistics & CRS_ST_CHISQ
1171 ? create_chisq_table (xt)
1172 : NULL);
1173 struct pivot_table *sym
1174 = (proc->statistics & (CRS_ST_PHI | CRS_ST_CC | CRS_ST_BTAU | CRS_ST_CTAU
1175 | CRS_ST_GAMMA | CRS_ST_CORR | CRS_ST_KAPPA)
1176 ? create_sym_table (xt)
1177 : NULL);
1178 struct pivot_dimension *risk_statistics = NULL;
1179 struct pivot_table *risk = (proc->statistics & CRS_ST_RISK
1180 ? create_risk_table (xt, &risk_statistics)
1181 : NULL);
1182 struct pivot_table *direct
1183 = (proc->statistics & (CRS_ST_LAMBDA | CRS_ST_UC | CRS_ST_D | CRS_ST_ETA)
1184 ? create_direct_table (xt)
1185 : NULL);
1187 size_t row0 = 0;
1188 size_t row1 = 0;
1189 while (find_crosstab (xt, &row0, &row1))
1191 struct crosstabulation x;
1193 make_crosstabulation_subset (xt, row0, row1, &x);
1195 size_t n_rows = x.vars[ROW_VAR].n_values;
1196 size_t n_cols = x.vars[COL_VAR].n_values;
1197 if (size_overflow_p (xtimes (xtimes (n_rows, n_cols), sizeof (double))))
1198 xalloc_die ();
1199 x.row_tot = xmalloc (n_rows * sizeof *x.row_tot);
1200 x.col_tot = xmalloc (n_cols * sizeof *x.col_tot);
1201 x.mat = xmalloc (n_rows * n_cols * sizeof *x.mat);
1203 build_matrix (&x);
1205 /* Find the first variable that differs from the last subtable. */
1206 if (table)
1207 display_crosstabulation (proc, &x, table, crs_leaves);
1209 if (proc->exclude == 0)
1210 delete_missing (&x);
1212 if (chisq)
1213 display_chisq (&x, chisq);
1215 if (sym)
1216 display_symmetric (proc, &x, sym);
1217 if (risk)
1218 display_risk (&x, risk, risk_statistics);
1219 if (direct)
1220 display_directional (proc, &x, direct);
1222 free (x.mat);
1223 free (x.row_tot);
1224 free (x.col_tot);
1225 free (x.const_indexes);
1228 if (table)
1229 pivot_table_submit (table);
1231 if (chisq)
1232 pivot_table_submit (chisq);
1234 if (sym)
1235 pivot_table_submit (sym);
1237 if (risk)
1239 if (!pivot_table_is_empty (risk))
1240 pivot_table_submit (risk);
1241 else
1242 pivot_table_unref (risk);
1245 if (direct)
1246 pivot_table_submit (direct);
1248 for (size_t i = 0; i < xt->n_vars; i++)
1249 free_var_values (xt, i);
1252 static void
1253 build_matrix (struct crosstabulation *x)
1255 const int col_var_width = var_get_width (x->vars[COL_VAR].var);
1256 const int row_var_width = var_get_width (x->vars[ROW_VAR].var);
1257 size_t n_rows = x->vars[ROW_VAR].n_values;
1258 size_t n_cols = x->vars[COL_VAR].n_values;
1260 double *mp = x->mat;
1261 size_t col = 0;
1262 size_t row = 0;
1263 for (struct freq **p = x->entries; p < &x->entries[x->n_entries]; p++)
1265 const struct freq *te = *p;
1267 while (!value_equal (&x->vars[ROW_VAR].values[row],
1268 &te->values[ROW_VAR], row_var_width))
1270 for (; col < n_cols; col++)
1271 *mp++ = 0.0;
1272 col = 0;
1273 row++;
1276 while (!value_equal (&x->vars[COL_VAR].values[col],
1277 &te->values[COL_VAR], col_var_width))
1279 *mp++ = 0.0;
1280 col++;
1283 *mp++ = te->count;
1284 if (++col >= n_cols)
1286 col = 0;
1287 row++;
1290 while (mp < &x->mat[n_cols * n_rows])
1291 *mp++ = 0.0;
1292 assert (mp == &x->mat[n_cols * n_rows]);
1294 /* Column totals, row totals, ns_rows. */
1295 mp = x->mat;
1296 for (col = 0; col < n_cols; col++)
1297 x->col_tot[col] = 0.0;
1298 for (row = 0; row < n_rows; row++)
1299 x->row_tot[row] = 0.0;
1300 x->ns_rows = 0;
1301 for (row = 0; row < n_rows; row++)
1303 bool row_is_empty = true;
1304 for (col = 0; col < n_cols; col++)
1306 if (*mp != 0.0)
1308 row_is_empty = false;
1309 x->col_tot[col] += *mp;
1310 x->row_tot[row] += *mp;
1312 mp++;
1314 if (!row_is_empty)
1315 x->ns_rows++;
1317 assert (mp == &x->mat[n_cols * n_rows]);
1319 /* ns_cols. */
1320 x->ns_cols = 0;
1321 for (col = 0; col < n_cols; col++)
1322 for (row = 0; row < n_rows; row++)
1323 if (x->mat[col + row * n_cols] != 0.0)
1325 x->ns_cols++;
1326 break;
1329 /* Grand total. */
1330 x->total = 0.0;
1331 for (col = 0; col < n_cols; col++)
1332 x->total += x->col_tot[col];
1335 static void
1336 add_var_dimension (struct pivot_table *table, const struct xtab_var *var,
1337 enum pivot_axis_type axis_type, bool total)
1339 struct pivot_dimension *d = pivot_dimension_create__ (
1340 table, axis_type, pivot_value_new_variable (var->var));
1342 struct pivot_footnote *missing_footnote = pivot_table_create_footnote (
1343 table, pivot_value_new_text (N_("Missing value")));
1345 struct pivot_category *group = pivot_category_create_group__ (
1346 d->root, pivot_value_new_variable (var->var));
1347 for (size_t j = 0; j < var->n_values; j++)
1349 struct pivot_value *value = pivot_value_new_var_value (
1350 var->var, &var->values[j]);
1351 if (var_is_value_missing (var->var, &var->values[j]))
1352 pivot_value_add_footnote (value, missing_footnote);
1353 pivot_category_create_leaf (group, value);
1356 if (total)
1357 pivot_category_create_leaf (d->root, pivot_value_new_text (N_("Total")));
1360 static struct pivot_table *
1361 create_crosstab_table (struct crosstabs_proc *proc, struct crosstabulation *xt,
1362 size_t crs_leaves[CRS_N_CELLS])
1364 /* Title. */
1365 struct string title = DS_EMPTY_INITIALIZER;
1366 for (size_t i = 0; i < xt->n_vars; i++)
1368 if (i)
1369 ds_put_cstr (&title, " × ");
1370 ds_put_cstr (&title, var_to_string (xt->vars[i].var));
1372 for (size_t i = 0; i < xt->n_consts; i++)
1374 const struct variable *var = xt->const_vars[i].var;
1375 const union value *value = &xt->entries[0]->values[2 + i];
1376 char *s;
1378 ds_put_format (&title, ", %s=", var_to_string (var));
1380 /* Insert the formatted value of VAR without any leading spaces. */
1381 s = data_out (value, var_get_encoding (var), var_get_print_format (var),
1382 settings_get_fmt_settings ());
1383 ds_put_cstr (&title, s + strspn (s, " "));
1384 free (s);
1386 struct pivot_table *table = pivot_table_create__ (
1387 pivot_value_new_user_text_nocopy (ds_steal_cstr (&title)),
1388 "Crosstabulation");
1389 pivot_table_set_weight_format (table, proc->weight_format);
1391 struct pivot_dimension *statistics = pivot_dimension_create (
1392 table, PIVOT_AXIS_ROW, N_("Statistics"));
1394 struct statistic
1396 const char *label;
1397 const char *rc;
1399 static const struct statistic stats[CRS_N_CELLS] =
1401 #define C(KEYWORD, STRING, RC) { STRING, RC },
1402 CRS_CELLS
1403 #undef C
1405 for (size_t i = 0; i < CRS_N_CELLS; i++)
1406 if (proc->cells & (1u << i) && stats[i].label)
1407 crs_leaves[i] = pivot_category_create_leaf_rc (
1408 statistics->root, pivot_value_new_text (stats[i].label),
1409 stats[i].rc);
1411 for (size_t i = 0; i < xt->n_vars; i++)
1412 add_var_dimension (table, &xt->vars[i],
1413 i == COL_VAR ? PIVOT_AXIS_COLUMN : PIVOT_AXIS_ROW,
1414 true);
1416 return table;
1419 static struct pivot_table *
1420 create_chisq_table (struct crosstabulation *xt)
1422 struct pivot_table *chisq = pivot_table_create (N_("Chi-Square Tests"));
1423 pivot_table_set_weight_format (chisq, xt->weight_format);
1425 pivot_dimension_create (
1426 chisq, PIVOT_AXIS_ROW, N_("Statistics"),
1427 N_("Pearson Chi-Square"),
1428 N_("Likelihood Ratio"),
1429 N_("Fisher's Exact Test"),
1430 N_("Continuity Correction"),
1431 N_("Linear-by-Linear Association"),
1432 N_("N of Valid Cases"), PIVOT_RC_COUNT);
1434 pivot_dimension_create (
1435 chisq, PIVOT_AXIS_COLUMN, N_("Statistics"),
1436 N_("Value"), PIVOT_RC_OTHER,
1437 N_("df"), PIVOT_RC_COUNT,
1438 N_("Asymptotic Sig. (2-tailed)"), PIVOT_RC_SIGNIFICANCE,
1439 N_("Exact Sig. (2-tailed)"), PIVOT_RC_SIGNIFICANCE,
1440 N_("Exact Sig. (1-tailed)"), PIVOT_RC_SIGNIFICANCE);
1442 for (size_t i = 2; i < xt->n_vars; i++)
1443 add_var_dimension (chisq, &xt->vars[i], PIVOT_AXIS_ROW, false);
1445 return chisq;
1448 /* Symmetric measures. */
1449 static struct pivot_table *
1450 create_sym_table (struct crosstabulation *xt)
1452 struct pivot_table *sym = pivot_table_create (N_("Symmetric Measures"));
1453 pivot_table_set_weight_format (sym, xt->weight_format);
1455 pivot_dimension_create (
1456 sym, PIVOT_AXIS_COLUMN, N_("Values"),
1457 N_("Value"), PIVOT_RC_OTHER,
1458 N_("Asymp. Std. Error"), PIVOT_RC_OTHER,
1459 N_("Approx. T"), PIVOT_RC_OTHER,
1460 N_("Approx. Sig."), PIVOT_RC_SIGNIFICANCE);
1462 struct pivot_dimension *statistics = pivot_dimension_create (
1463 sym, PIVOT_AXIS_ROW, N_("Statistics"));
1464 pivot_category_create_group (
1465 statistics->root, N_("Nominal by Nominal"),
1466 N_("Phi"), N_("Cramer's V"), N_("Contingency Coefficient"));
1467 pivot_category_create_group (
1468 statistics->root, N_("Ordinal by Ordinal"),
1469 N_("Kendall's tau-b"), N_("Kendall's tau-c"),
1470 N_("Gamma"), N_("Spearman Correlation"));
1471 pivot_category_create_group (
1472 statistics->root, N_("Interval by Interval"),
1473 N_("Pearson's R"));
1474 pivot_category_create_group (
1475 statistics->root, N_("Measure of Agreement"),
1476 N_("Kappa"));
1477 pivot_category_create_leaves (statistics->root, N_("N of Valid Cases"),
1478 PIVOT_RC_COUNT);
1480 for (size_t i = 2; i < xt->n_vars; i++)
1481 add_var_dimension (sym, &xt->vars[i], PIVOT_AXIS_ROW, false);
1483 return sym;
1486 /* Risk estimate. */
1487 static struct pivot_table *
1488 create_risk_table (struct crosstabulation *xt,
1489 struct pivot_dimension **risk_statistics)
1491 struct pivot_table *risk = pivot_table_create (N_("Risk Estimate"));
1492 pivot_table_set_weight_format (risk, xt->weight_format);
1494 struct pivot_dimension *values = pivot_dimension_create (
1495 risk, PIVOT_AXIS_COLUMN, N_("Values"),
1496 N_("Value"), PIVOT_RC_OTHER);
1497 pivot_category_create_group (
1498 /* xgettext:no-c-format */
1499 values->root, N_("95% Confidence Interval"),
1500 N_("Lower"), PIVOT_RC_OTHER,
1501 N_("Upper"), PIVOT_RC_OTHER);
1503 *risk_statistics = pivot_dimension_create (
1504 risk, PIVOT_AXIS_ROW, N_("Statistics"));
1506 for (size_t i = 2; i < xt->n_vars; i++)
1507 add_var_dimension (risk, &xt->vars[i], PIVOT_AXIS_ROW, false);
1509 return risk;
1512 static void
1513 create_direct_stat (struct pivot_category *parent,
1514 const struct crosstabulation *xt,
1515 const char *name, bool symmetric)
1517 struct pivot_category *group = pivot_category_create_group (
1518 parent, name);
1519 if (symmetric)
1520 pivot_category_create_leaf (group, pivot_value_new_text (N_("Symmetric")));
1522 char *row_label = xasprintf (_("%s Dependent"),
1523 var_to_string (xt->vars[ROW_VAR].var));
1524 pivot_category_create_leaf (group, pivot_value_new_user_text_nocopy (
1525 row_label));
1527 char *col_label = xasprintf (_("%s Dependent"),
1528 var_to_string (xt->vars[COL_VAR].var));
1529 pivot_category_create_leaf (group, pivot_value_new_user_text_nocopy (
1530 col_label));
1533 /* Directional measures. */
1534 static struct pivot_table *
1535 create_direct_table (struct crosstabulation *xt)
1537 struct pivot_table *direct = pivot_table_create (N_("Directional Measures"));
1538 pivot_table_set_weight_format (direct, xt->weight_format);
1540 pivot_dimension_create (
1541 direct, PIVOT_AXIS_COLUMN, N_("Values"),
1542 N_("Value"), PIVOT_RC_OTHER,
1543 N_("Asymp. Std. Error"), PIVOT_RC_OTHER,
1544 N_("Approx. T"), PIVOT_RC_OTHER,
1545 N_("Approx. Sig."), PIVOT_RC_SIGNIFICANCE);
1547 struct pivot_dimension *statistics = pivot_dimension_create (
1548 direct, PIVOT_AXIS_ROW, N_("Statistics"));
1549 struct pivot_category *nn = pivot_category_create_group (
1550 statistics->root, N_("Nominal by Nominal"));
1551 create_direct_stat (nn, xt, N_("Lambda"), true);
1552 create_direct_stat (nn, xt, N_("Goodman and Kruskal tau"), false);
1553 create_direct_stat (nn, xt, N_("Uncertainty Coefficient"), true);
1554 struct pivot_category *oo = pivot_category_create_group (
1555 statistics->root, N_("Ordinal by Ordinal"));
1556 create_direct_stat (oo, xt, N_("Somers' d"), true);
1557 struct pivot_category *ni = pivot_category_create_group (
1558 statistics->root, N_("Nominal by Interval"));
1559 create_direct_stat (ni, xt, N_("Eta"), false);
1561 for (size_t i = 2; i < xt->n_vars; i++)
1562 add_var_dimension (direct, &xt->vars[i], PIVOT_AXIS_ROW, false);
1564 return direct;
1567 /* Delete missing rows and columns for statistical analysis when
1568 /MISSING=REPORT. */
1569 static void
1570 delete_missing (struct crosstabulation *xt)
1572 size_t n_rows = xt->vars[ROW_VAR].n_values;
1573 size_t n_cols = xt->vars[COL_VAR].n_values;
1575 for (size_t r = 0; r < n_rows; r++)
1576 if (var_is_num_missing (xt->vars[ROW_VAR].var,
1577 xt->vars[ROW_VAR].values[r].f) == MV_USER)
1579 for (size_t c = 0; c < n_cols; c++)
1580 xt->mat[c + r * n_cols] = 0.;
1581 xt->ns_rows--;
1585 for (size_t c = 0; c < n_cols; c++)
1586 if (var_is_num_missing (xt->vars[COL_VAR].var,
1587 xt->vars[COL_VAR].values[c].f) == MV_USER)
1589 for (size_t r = 0; r < n_rows; r++)
1590 xt->mat[c + r * n_cols] = 0.;
1591 xt->ns_cols--;
1595 static bool
1596 find_crosstab (struct crosstabulation *xt, size_t *row0p, size_t *row1p)
1598 size_t row0 = *row1p;
1599 if (row0 >= xt->n_entries)
1600 return false;
1602 size_t row1;
1603 for (row1 = row0 + 1; row1 < xt->n_entries; row1++)
1605 struct freq *a = xt->entries[row0];
1606 struct freq *b = xt->entries[row1];
1607 if (compare_table_entry_vars_3way (a, b, xt, 2, xt->n_vars) != 0)
1608 break;
1610 *row0p = row0;
1611 *row1p = row1;
1612 return true;
1615 /* Compares `union value's A_ and B_ and returns a strcmp()-like
1616 result. WIDTH_ points to an int which is either 0 for a
1617 numeric value or a string width for a string value. */
1618 static int
1619 compare_value_3way (const void *a_, const void *b_, const void *width_)
1621 const union value *a = a_;
1622 const union value *b = b_;
1623 const int *width = width_;
1625 return value_compare_3way (a, b, *width);
1628 /* Inverted version of the above */
1629 static int
1630 compare_value_3way_inv (const void *a_, const void *b_, const void *width_)
1632 return -compare_value_3way (a_, b_, width_);
1636 /* Given an array of ENTRY_CNT table_entry structures starting at
1637 ENTRIES, creates a sorted list of the values that the variable
1638 with index VAR_IDX takes on. Stores the array of the values in
1639 XT->values and the number of values in XT->n_values. */
1640 static void
1641 enum_var_values (const struct crosstabulation *xt, int var_idx,
1642 bool descending)
1644 struct xtab_var *xv = &xt->vars[var_idx];
1645 const struct var_range *range = get_var_range (xt->proc, xv->var);
1647 if (range)
1649 xv->values = xnmalloc (range->count, sizeof *xv->values);
1650 xv->n_values = range->count;
1651 for (size_t i = 0; i < range->count; i++)
1652 xv->values[i].f = range->min + i;
1654 else
1656 int width = var_get_width (xv->var);
1657 struct hmapx set = HMAPX_INITIALIZER (set);
1659 for (size_t i = 0; i < xt->n_entries; i++)
1661 const struct freq *te = xt->entries[i];
1662 const union value *value = &te->values[var_idx];
1663 size_t hash = value_hash (value, width, 0);
1665 const union value *iter;
1666 struct hmapx_node *node;
1667 HMAPX_FOR_EACH_WITH_HASH (iter, node, hash, &set)
1668 if (value_equal (iter, value, width))
1669 goto next_entry;
1671 hmapx_insert (&set, (union value *) value, hash);
1673 next_entry: ;
1676 xv->n_values = hmapx_count (&set);
1677 xv->values = xnmalloc (xv->n_values, sizeof *xv->values);
1678 size_t i = 0;
1679 const union value *iter;
1680 struct hmapx_node *node;
1681 HMAPX_FOR_EACH (iter, node, &set)
1682 xv->values[i++] = *iter;
1683 hmapx_destroy (&set);
1685 sort (xv->values, xv->n_values, sizeof *xv->values,
1686 descending ? compare_value_3way_inv : compare_value_3way,
1687 &width);
1691 static void
1692 free_var_values (const struct crosstabulation *xt, int var_idx)
1694 struct xtab_var *xv = &xt->vars[var_idx];
1695 free (xv->values);
1696 xv->values = NULL;
1697 xv->n_values = 0;
1700 /* Displays the crosstabulation table. */
1701 static void
1702 display_crosstabulation (struct crosstabs_proc *proc,
1703 struct crosstabulation *xt, struct pivot_table *table,
1704 size_t crs_leaves[CRS_N_CELLS])
1706 size_t n_rows = xt->vars[ROW_VAR].n_values;
1707 size_t n_cols = xt->vars[COL_VAR].n_values;
1709 size_t *indexes = xnmalloc (table->n_dimensions, sizeof *indexes);
1710 assert (xt->n_vars == 2);
1711 for (size_t i = 0; i < xt->n_consts; i++)
1712 indexes[i + 3] = xt->const_indexes[i];
1714 /* Put in the actual cells. */
1715 for (size_t r = 0; r < n_rows; r++)
1717 if (!xt->row_tot[r] && proc->mode != INTEGER)
1718 continue;
1720 indexes[ROW_VAR + 1] = r;
1721 for (size_t c = 0; c < n_cols; c++)
1723 if (!xt->col_tot[c] && proc->mode != INTEGER)
1724 continue;
1726 indexes[COL_VAR + 1] = c;
1728 double *mp = xt->mat + r * n_cols + c;
1729 double expected_value = xt->row_tot[r] * xt->col_tot[c] / xt->total;
1730 double residual = *mp - expected_value;
1731 double sresidual = residual / sqrt (expected_value);
1732 double asresidual
1733 = residual / sqrt (expected_value
1734 * (1. - xt->row_tot[r] / xt->total)
1735 * (1. - xt->col_tot[c] / xt->total));
1736 double entries[CRS_N_CELLS] = {
1737 [CRS_CL_COUNT] = *mp,
1738 [CRS_CL_ROW] = *mp / xt->row_tot[r] * 100.,
1739 [CRS_CL_COLUMN] = *mp / xt->col_tot[c] * 100.,
1740 [CRS_CL_TOTAL] = *mp / xt->total * 100.,
1741 [CRS_CL_EXPECTED] = expected_value,
1742 [CRS_CL_RESIDUAL] = residual,
1743 [CRS_CL_SRESIDUAL] = sresidual,
1744 [CRS_CL_ASRESIDUAL] = asresidual,
1746 for (size_t i = 0; i < proc->n_cells; i++)
1748 int cell = proc->a_cells[i];
1749 indexes[0] = crs_leaves[cell];
1750 pivot_table_put (table, indexes, table->n_dimensions,
1751 pivot_value_new_number (entries[cell]));
1756 /* Row totals. */
1757 for (size_t r = 0; r < n_rows; r++)
1759 if (!xt->row_tot[r] && proc->mode != INTEGER)
1760 continue;
1762 double expected_value = xt->row_tot[r] / xt->total;
1763 double entries[CRS_N_CELLS] = {
1764 [CRS_CL_COUNT] = xt->row_tot[r],
1765 [CRS_CL_ROW] = 100.0,
1766 [CRS_CL_COLUMN] = expected_value * 100.,
1767 [CRS_CL_TOTAL] = expected_value * 100.,
1768 [CRS_CL_EXPECTED] = expected_value,
1769 [CRS_CL_RESIDUAL] = SYSMIS,
1770 [CRS_CL_SRESIDUAL] = SYSMIS,
1771 [CRS_CL_ASRESIDUAL] = SYSMIS,
1773 for (size_t i = 0; i < proc->n_cells; i++)
1775 int cell = proc->a_cells[i];
1776 double entry = entries[cell];
1777 if (entry != SYSMIS)
1779 indexes[ROW_VAR + 1] = r;
1780 indexes[COL_VAR + 1] = n_cols;
1781 indexes[0] = crs_leaves[cell];
1782 pivot_table_put (table, indexes, table->n_dimensions,
1783 pivot_value_new_number (entry));
1788 for (size_t c = 0; c <= n_cols; c++)
1790 if (c < n_cols && !xt->col_tot[c] && proc->mode != INTEGER)
1791 continue;
1793 double ct = c < n_cols ? xt->col_tot[c] : xt->total;
1794 double expected_value = ct / xt->total;
1795 double entries[CRS_N_CELLS] = {
1796 [CRS_CL_COUNT] = ct,
1797 [CRS_CL_ROW] = expected_value * 100.0,
1798 [CRS_CL_COLUMN] = 100.0,
1799 [CRS_CL_TOTAL] = expected_value * 100.,
1800 [CRS_CL_EXPECTED] = expected_value,
1801 [CRS_CL_RESIDUAL] = SYSMIS,
1802 [CRS_CL_SRESIDUAL] = SYSMIS,
1803 [CRS_CL_ASRESIDUAL] = SYSMIS,
1805 for (size_t i = 0; i < proc->n_cells; i++)
1807 size_t cell = proc->a_cells[i];
1808 double entry = entries[cell];
1809 if (entry != SYSMIS)
1811 indexes[ROW_VAR + 1] = n_rows;
1812 indexes[COL_VAR + 1] = c;
1813 indexes[0] = crs_leaves[cell];
1814 pivot_table_put (table, indexes, table->n_dimensions,
1815 pivot_value_new_number (entry));
1820 free (indexes);
1823 struct symmetric_statistic
1825 double v; /* Value. */
1826 double ase; /* Appropriate standard error. */
1827 double t; /* Student's t value. */
1828 double sig; /* Significance. */
1831 static void calc_r (struct crosstabulation *,
1832 double *XT, double *Y, struct symmetric_statistic *);
1833 static void calc_chisq (struct crosstabulation *,
1834 double[N_CHISQ], int[N_CHISQ], double *, double *);
1836 /* Display chi-square statistics. */
1837 static void
1838 display_chisq (struct crosstabulation *xt, struct pivot_table *chisq)
1840 double chisq_v[N_CHISQ];
1841 double fisher1, fisher2;
1842 int df[N_CHISQ];
1843 calc_chisq (xt, chisq_v, df, &fisher1, &fisher2);
1845 size_t *indexes = xnmalloc (chisq->n_dimensions, sizeof *indexes);
1846 assert (xt->n_vars == 2);
1847 for (size_t i = 0; i < xt->n_consts; i++)
1848 indexes[i + 2] = xt->const_indexes[i];
1849 for (size_t i = 0; i < N_CHISQ; i++)
1851 indexes[0] = i;
1853 double entries[5] = { SYSMIS, SYSMIS, SYSMIS, SYSMIS, SYSMIS };
1854 if (i == 2)
1856 entries[3] = fisher2;
1857 entries[4] = fisher1;
1859 else if (chisq_v[i] != SYSMIS)
1861 entries[0] = chisq_v[i];
1862 entries[1] = df[i];
1863 entries[2] = gsl_cdf_chisq_Q (chisq_v[i], df[i]);
1866 for (size_t j = 0; j < sizeof entries / sizeof *entries; j++)
1867 if (entries[j] != SYSMIS)
1869 indexes[1] = j;
1870 pivot_table_put (chisq, indexes, chisq->n_dimensions,
1871 pivot_value_new_number (entries[j]));
1875 indexes[0] = 5;
1876 indexes[1] = 0;
1877 pivot_table_put (chisq, indexes, chisq->n_dimensions,
1878 pivot_value_new_number (xt->total));
1880 free (indexes);
1883 struct somers_d
1885 double v;
1886 double ase;
1887 double t;
1890 static bool calc_symmetric (struct crosstabs_proc *, struct crosstabulation *,
1891 struct symmetric_statistic[N_SYMMETRIC],
1892 struct somers_d[3]);
1894 /* Display symmetric measures. */
1895 static void
1896 display_symmetric (struct crosstabs_proc *proc, struct crosstabulation *xt,
1897 struct pivot_table *sym)
1899 struct symmetric_statistic ss[N_SYMMETRIC];
1900 struct somers_d somers_d[3];
1902 if (!calc_symmetric (proc, xt, ss, somers_d))
1903 return;
1905 size_t *indexes = xnmalloc (sym->n_dimensions, sizeof *indexes);
1906 assert (xt->n_vars == 2);
1907 for (size_t i = 0; i < xt->n_consts; i++)
1908 indexes[i + 2] = xt->const_indexes[i];
1910 for (size_t i = 0; i < N_SYMMETRIC; i++)
1912 struct symmetric_statistic *s = &ss[i];
1913 if (s->v == SYSMIS)
1914 continue;
1916 indexes[1] = i;
1918 double entries[] = { s->v, s->ase, s->t, s->sig };
1919 for (size_t j = 0; j < sizeof entries / sizeof *entries; j++)
1920 if (entries[j] != SYSMIS)
1922 indexes[0] = j;
1923 pivot_table_put (sym, indexes, sym->n_dimensions,
1924 pivot_value_new_number (entries[j]));
1928 indexes[1] = N_SYMMETRIC;
1929 indexes[0] = 0;
1930 struct pivot_value *total = pivot_value_new_number (xt->total);
1931 pivot_value_set_rc (sym, total, PIVOT_RC_COUNT);
1932 pivot_table_put (sym, indexes, sym->n_dimensions, total);
1934 free (indexes);
1937 static bool calc_risk (struct crosstabulation *,
1938 double[], double[], double[], union value *,
1939 double *);
1941 /* Display risk estimate. */
1942 static void
1943 display_risk (struct crosstabulation *xt, struct pivot_table *risk,
1944 struct pivot_dimension *risk_statistics)
1946 double risk_v[3], lower[3], upper[3], n_valid;
1947 union value c[2];
1948 if (!calc_risk (xt, risk_v, upper, lower, c, &n_valid))
1949 return;
1950 assert (risk_statistics);
1952 size_t *indexes = xnmalloc (risk->n_dimensions, sizeof *indexes);
1953 assert (xt->n_vars == 2);
1954 for (size_t i = 0; i < xt->n_consts; i++)
1955 indexes[i + 2] = xt->const_indexes[i];
1957 for (size_t i = 0; i < 3; i++)
1959 const struct variable *cv = xt->vars[COL_VAR].var;
1960 const struct variable *rv = xt->vars[ROW_VAR].var;
1962 if (risk_v[i] == SYSMIS)
1963 continue;
1965 struct string label = DS_EMPTY_INITIALIZER;
1966 switch (i)
1968 case 0:
1969 ds_put_format (&label, _("Odds Ratio for %s"), var_to_string (rv));
1970 ds_put_cstr (&label, " (");
1971 var_append_value_name (rv, &c[0], &label);
1972 ds_put_cstr (&label, " / ");
1973 var_append_value_name (rv, &c[1], &label);
1974 ds_put_cstr (&label, ")");
1975 break;
1976 case 1:
1977 case 2:
1978 ds_put_format (&label, _("For cohort %s = "), var_to_string (cv));
1979 var_append_value_name (cv, &xt->vars[ROW_VAR].values[i - 1], &label);
1980 break;
1983 indexes[1] = pivot_category_create_leaf (
1984 risk_statistics->root,
1985 pivot_value_new_user_text_nocopy (ds_steal_cstr (&label)));
1987 double entries[] = { risk_v[i], lower[i], upper[i] };
1988 for (size_t j = 0; j < sizeof entries / sizeof *entries; j++)
1990 indexes[0] = j;
1991 pivot_table_put (risk, indexes, risk->n_dimensions,
1992 pivot_value_new_number (entries[j]));
1995 indexes[1] = pivot_category_create_leaf (
1996 risk_statistics->root,
1997 pivot_value_new_text (N_("N of Valid Cases")));
1998 indexes[0] = 0;
1999 pivot_table_put (risk, indexes, risk->n_dimensions,
2000 pivot_value_new_number (n_valid));
2001 free (indexes);
2004 static void calc_directional (struct crosstabs_proc *, struct crosstabulation *,
2005 double[N_DIRECTIONAL], double[N_DIRECTIONAL],
2006 double[N_DIRECTIONAL], double[N_DIRECTIONAL]);
2008 /* Display directional measures. */
2009 static void
2010 display_directional (struct crosstabs_proc *proc,
2011 struct crosstabulation *xt, struct pivot_table *direct)
2013 double direct_v[N_DIRECTIONAL];
2014 double direct_ase[N_DIRECTIONAL];
2015 double direct_t[N_DIRECTIONAL];
2016 double sig[N_DIRECTIONAL];
2017 calc_directional (proc, xt, direct_v, direct_ase, direct_t, sig);
2019 size_t *indexes = xnmalloc (direct->n_dimensions, sizeof *indexes);
2020 assert (xt->n_vars == 2);
2021 for (size_t i = 0; i < xt->n_consts; i++)
2022 indexes[i + 2] = xt->const_indexes[i];
2024 for (size_t i = 0; i < N_DIRECTIONAL; i++)
2026 if (direct_v[i] == SYSMIS)
2027 continue;
2029 indexes[1] = i;
2031 double entries[] = {
2032 direct_v[i], direct_ase[i], direct_t[i], sig[i],
2034 for (size_t j = 0; j < sizeof entries / sizeof *entries; j++)
2035 if (entries[j] != SYSMIS)
2037 indexes[0] = j;
2038 pivot_table_put (direct, indexes, direct->n_dimensions,
2039 pivot_value_new_number (entries[j]));
2043 free (indexes);
2046 /* Statistical calculations. */
2048 /* Returns the value of the logarithm of gamma (factorial) function for an integer
2049 argument XT. */
2050 static double
2051 log_gamma_int (double xt)
2053 double r = 0;
2054 for (int i = 2; i < xt; i++)
2055 r += log(i);
2056 return r;
2059 /* Calculate P_r as specified in _SPSS Statistical Algorithms_,
2060 Appendix 5. */
2061 static inline double
2062 Pr (int a, int b, int c, int d)
2064 return exp (log_gamma_int (a + b + 1.) - log_gamma_int (a + 1.)
2065 + log_gamma_int (c + d + 1.) - log_gamma_int (b + 1.)
2066 + log_gamma_int (a + c + 1.) - log_gamma_int (c + 1.)
2067 + log_gamma_int (b + d + 1.) - log_gamma_int (d + 1.)
2068 - log_gamma_int (a + b + c + d + 1.));
2071 /* Swap the contents of A and B. */
2072 static inline void
2073 swap (int *a, int *b)
2075 int t = *a;
2076 *a = *b;
2077 *b = t;
2080 /* Calculate significance for Fisher's exact test as specified in
2081 _SPSS Statistical Algorithms_, Appendix 5. */
2082 static void
2083 calc_fisher (int a, int b, int c, int d, double *fisher1, double *fisher2)
2085 if (MIN (c, d) < MIN (a, b))
2086 swap (&a, &c), swap (&b, &d);
2087 if (MIN (b, d) < MIN (a, c))
2088 swap (&a, &b), swap (&c, &d);
2089 if (b * c < a * d)
2091 if (b < c)
2092 swap (&a, &b), swap (&c, &d);
2093 else
2094 swap (&a, &c), swap (&b, &d);
2097 double pn1 = Pr (a, b, c, d);
2098 *fisher1 = pn1;
2099 for (int xt = 1; xt <= a; xt++)
2100 *fisher1 += Pr (a - xt, b + xt, c + xt, d - xt);
2102 *fisher2 = *fisher1;
2103 for (int xt = 1; xt <= b; xt++)
2105 double p = Pr (a + xt, b - xt, c - xt, d + xt);
2106 if (p < pn1)
2107 *fisher2 += p;
2111 /* Calculates chi-squares into CHISQ. MAT is a matrix with N_COLS
2112 columns with values COLS and N_ROWS rows with values ROWS. Values
2113 in the matrix sum to xt->total. */
2114 static void
2115 calc_chisq (struct crosstabulation *xt,
2116 double chisq[N_CHISQ], int df[N_CHISQ],
2117 double *fisher1, double *fisher2)
2119 chisq[0] = chisq[1] = 0.;
2120 chisq[2] = chisq[3] = chisq[4] = SYSMIS;
2121 *fisher1 = *fisher2 = SYSMIS;
2123 df[0] = df[1] = (xt->ns_cols - 1) * (xt->ns_rows - 1);
2125 if (xt->ns_rows <= 1 || xt->ns_cols <= 1)
2127 chisq[0] = chisq[1] = SYSMIS;
2128 return;
2131 size_t n_cols = xt->vars[COL_VAR].n_values;
2132 FOR_EACH_POPULATED_ROW (r, xt)
2133 FOR_EACH_POPULATED_COLUMN (c, xt)
2135 const double expected = xt->row_tot[r] * xt->col_tot[c] / xt->total;
2136 const double freq = xt->mat[n_cols * r + c];
2137 const double residual = freq - expected;
2139 chisq[0] += residual * residual / expected;
2140 if (freq)
2141 chisq[1] += freq * log (expected / freq);
2144 if (chisq[0] == 0.)
2145 chisq[0] = SYSMIS;
2147 if (chisq[1] != 0.)
2148 chisq[1] *= -2.;
2149 else
2150 chisq[1] = SYSMIS;
2152 /* Calculate Yates and Fisher exact test. */
2153 if (xt->ns_cols == 2 && xt->ns_rows == 2)
2155 int nz_cols[2];
2157 size_t j = 0;
2158 FOR_EACH_POPULATED_COLUMN (c, xt)
2160 nz_cols[j++] = c;
2161 if (j == 2)
2162 break;
2164 assert (j == 2);
2166 double f11 = xt->mat[nz_cols[0]];
2167 double f12 = xt->mat[nz_cols[1]];
2168 double f21 = xt->mat[nz_cols[0] + n_cols];
2169 double f22 = xt->mat[nz_cols[1] + n_cols];
2171 /* Yates. */
2172 const double xt_ = fabs (f11 * f22 - f12 * f21) - 0.5 * xt->total;
2174 if (xt_ > 0.)
2175 chisq[3] = (xt->total * pow2 (xt_)
2176 / (f11 + f12) / (f21 + f22)
2177 / (f11 + f21) / (f12 + f22));
2178 else
2179 chisq[3] = 0.;
2181 df[3] = 1.;
2183 /* Fisher. */
2184 calc_fisher (f11 + .5, f12 + .5, f21 + .5, f22 + .5, fisher1, fisher2);
2187 /* Calculate Mantel-Haenszel. */
2188 if (var_is_numeric (xt->vars[ROW_VAR].var)
2189 && var_is_numeric (xt->vars[COL_VAR].var))
2191 struct symmetric_statistic r;
2192 calc_r (xt, (double *) xt->vars[ROW_VAR].values,
2193 (double *) xt->vars[COL_VAR].values, &r);
2195 chisq[4] = (xt->total - 1.) * pow2 (r.v);
2196 df[4] = 1;
2200 /* Calculate the value of Pearson's r and stores it into *R. The row and
2201 column values must be passed in XT and Y. */
2202 static void
2203 calc_r (struct crosstabulation *xt,
2204 double *XT, double *Y, struct symmetric_statistic *r)
2206 size_t n_rows = xt->vars[ROW_VAR].n_values;
2207 size_t n_cols = xt->vars[COL_VAR].n_values;
2209 double sum_XYf = 0;
2210 for (size_t i = 0; i < n_rows; i++)
2211 for (size_t j = 0; j < n_cols; j++)
2213 double fij = xt->mat[j + i * n_cols];
2214 double product = XT[i] * Y[j];
2215 double temp = fij * product;
2216 sum_XYf += temp;
2219 double sum_Xr = 0;
2220 double sum_X2r = 0;
2221 for (size_t i = 0; i < n_rows; i++)
2223 sum_Xr += XT[i] * xt->row_tot[i];
2224 sum_X2r += pow2 (XT[i]) * xt->row_tot[i];
2226 double Xbar = sum_Xr / xt->total;
2228 double sum_Yc = 0;
2229 double sum_Y2c = 0;
2230 for (size_t i = 0; i < n_cols; i++)
2232 sum_Yc += Y[i] * xt->col_tot[i];
2233 sum_Y2c += Y[i] * Y[i] * xt->col_tot[i];
2235 double Ybar = sum_Yc / xt->total;
2237 double S = sum_XYf - sum_Xr * sum_Yc / xt->total;
2238 double SX = sum_X2r - pow2 (sum_Xr) / xt->total;
2239 double SY = sum_Y2c - pow2 (sum_Yc) / xt->total;
2240 double T = sqrt (SX * SY);
2241 r->v = S / T;
2242 r->t = r->v / sqrt (1 - pow2 (r->v)) * sqrt (xt->total - 2);
2243 r->sig = 2 * significance_of_correlation (r->v, xt->total);
2245 double s = 0;
2246 double c = 0;
2247 for (size_t i = 0; i < n_rows; i++)
2248 for (size_t j = 0; j < n_cols; j++)
2250 double Xresid = XT[i] - Xbar;
2251 double Yresid = Y[j] - Ybar;
2252 double temp = (T * Xresid * Yresid
2253 - ((S / (2. * T))
2254 * (Xresid * Xresid * SY + Yresid * Yresid * SX)));
2255 double y = xt->mat[j + i * n_cols] * temp * temp - c;
2256 double t = s + y;
2257 c = (t - s) - y;
2258 s = t;
2260 r->ase = sqrt (s) / (T * T);
2263 /* Calculate symmetric statistics and their asymptotic standard
2264 errors. Returns false if none could be calculated. */
2265 static bool
2266 calc_symmetric (struct crosstabs_proc *proc, struct crosstabulation *xt,
2267 struct symmetric_statistic sym[N_SYMMETRIC],
2268 struct somers_d somers_d[3])
2270 size_t n_rows = xt->vars[ROW_VAR].n_values;
2271 size_t n_cols = xt->vars[COL_VAR].n_values;
2273 size_t q = MIN (xt->ns_rows, xt->ns_cols);
2274 if (q <= 1)
2275 return false;
2277 for (size_t i = 0; i < N_SYMMETRIC; i++)
2278 sym[i].v = sym[i].ase = sym[i].t = sym[i].sig = SYSMIS;
2280 /* Phi, Cramer's V, contingency coefficient. */
2281 if (proc->statistics & (CRS_ST_PHI | CRS_ST_CC))
2283 double Xp = 0.; /* Pearson chi-square. */
2285 FOR_EACH_POPULATED_ROW (r, xt)
2286 FOR_EACH_POPULATED_COLUMN (c, xt)
2288 double expected = xt->row_tot[r] * xt->col_tot[c] / xt->total;
2289 double freq = xt->mat[n_cols * r + c];
2290 double residual = freq - expected;
2292 Xp += residual * residual / expected;
2295 if (proc->statistics & CRS_ST_PHI)
2297 sym[0].v = sqrt (Xp / xt->total);
2298 sym[1].v = sqrt (Xp / (xt->total * (q - 1)));
2300 if (proc->statistics & CRS_ST_CC)
2301 sym[2].v = sqrt (Xp / (Xp + xt->total));
2304 if (proc->statistics & (CRS_ST_BTAU | CRS_ST_CTAU
2305 | CRS_ST_GAMMA | CRS_ST_D))
2307 double Dr = pow2 (xt->total);
2308 for (size_t r = 0; r < n_rows; r++)
2309 Dr -= pow2 (xt->row_tot[r]);
2311 double Dc = pow2 (xt->total);
2312 for (size_t c = 0; c < n_cols; c++)
2313 Dc -= pow2 (xt->col_tot[c]);
2315 double *cum = xnmalloc (n_cols * n_rows, sizeof *cum);
2316 for (size_t c = 0; c < n_cols; c++)
2318 double ct = 0.;
2320 for (size_t r = 0; r < n_rows; r++)
2321 cum[c + r * n_cols] = ct += xt->mat[c + r * n_cols];
2324 /* P and Q. */
2325 double P = 0;
2326 double Q = 0;
2327 for (size_t i = 0; i < n_rows; i++)
2329 double Cij = 0;
2330 for (size_t j = 1; j < n_cols; j++)
2331 Cij += xt->col_tot[j] - cum[j + i * n_cols];
2333 double Dij = 0;
2334 if (i > 0)
2335 for (size_t j = 1; j < n_cols; j++)
2336 Dij += cum[j + (i - 1) * n_cols];
2338 for (size_t j = 0;;)
2340 double fij = xt->mat[j + i * n_cols];
2341 P += fij * Cij;
2342 Q += fij * Dij;
2344 if (++j >= n_cols)
2345 break;
2347 Cij -= xt->col_tot[j] - cum[j + i * n_cols];
2348 Dij += xt->col_tot[j - 1] - cum[j - 1 + i * n_cols];
2350 if (i > 0)
2352 Cij += cum[j - 1 + (i - 1) * n_cols];
2353 Dij -= cum[j + (i - 1) * n_cols];
2358 if (proc->statistics & CRS_ST_BTAU)
2359 sym[3].v = (P - Q) / sqrt (Dr * Dc);
2360 if (proc->statistics & CRS_ST_CTAU)
2361 sym[4].v = (q * (P - Q)) / (pow2 (xt->total) * (q - 1));
2362 if (proc->statistics & CRS_ST_GAMMA)
2363 sym[5].v = (P - Q) / (P + Q);
2365 /* ASE for tau-b, tau-c, gamma. Calculations could be
2366 eliminated here, at expense of memory. */
2367 double btau_cum = 0;
2368 double ctau_cum = 0;
2369 double gamma_cum = 0;
2370 double d_yx_cum = 0;
2371 double d_xy_cum = 0;
2372 for (size_t i = 0; i < n_rows; i++)
2374 double Cij = 0;
2375 for (size_t j = 1; j < n_cols; j++)
2376 Cij += xt->col_tot[j] - cum[j + i * n_cols];
2378 double Dij = 0;
2379 if (i > 0)
2380 for (size_t j = 1; j < n_cols; j++)
2381 Dij += cum[j + (i - 1) * n_cols];
2383 for (size_t j = 0;;)
2385 double fij = xt->mat[j + i * n_cols];
2387 if (proc->statistics & CRS_ST_BTAU)
2388 btau_cum += fij * pow2 (2. * sqrt (Dr * Dc) * (Cij - Dij)
2389 + sym[3].v * (xt->row_tot[i] * Dc
2390 + xt->col_tot[j] * Dr));
2391 ctau_cum += fij * pow2 (Cij - Dij);
2393 if (proc->statistics & CRS_ST_GAMMA)
2394 gamma_cum += fij * pow2 (Q * Cij - P * Dij);
2396 if (proc->statistics & CRS_ST_D)
2398 d_yx_cum += fij * pow2 (Dr * (Cij - Dij)
2399 - (P - Q) * (xt->total - xt->row_tot[i]));
2400 d_xy_cum += fij * pow2 (Dc * (Dij - Cij)
2401 - (Q - P) * (xt->total - xt->col_tot[j]));
2404 if (++j >= n_cols)
2405 break;
2407 Cij -= xt->col_tot[j] - cum[j + i * n_cols];
2408 Dij += xt->col_tot[j - 1] - cum[j - 1 + i * n_cols];
2410 if (i > 0)
2412 Cij += cum[j - 1 + (i - 1) * n_cols];
2413 Dij -= cum[j + (i - 1) * n_cols];
2418 if (proc->statistics & CRS_ST_BTAU)
2420 double btau_var = ((btau_cum
2421 - (xt->total * pow2 (xt->total * (P - Q) / sqrt (Dr * Dc) * (Dr + Dc))))
2422 / pow2 (Dr * Dc));
2423 sym[3].ase = sqrt (btau_var);
2424 sym[3].t = sym[3].v / (2 * sqrt ((ctau_cum - (P - Q) * (P - Q) / xt->total)
2425 / (Dr * Dc)));
2427 if (proc->statistics & CRS_ST_CTAU)
2429 sym[4].ase = ((2 * q / ((q - 1) * pow2 (xt->total)))
2430 * sqrt (ctau_cum - (P - Q) * (P - Q) / xt->total));
2431 sym[4].t = sym[4].v / sym[4].ase;
2433 if (proc->statistics & CRS_ST_GAMMA)
2435 sym[5].ase = ((4. / ((P + Q) * (P + Q))) * sqrt (gamma_cum));
2436 sym[5].t = sym[5].v / (2. / (P + Q)
2437 * sqrt (ctau_cum - (P - Q) * (P - Q) / xt->total));
2439 if (proc->statistics & CRS_ST_D)
2441 somers_d[0].v = (P - Q) / (.5 * (Dc + Dr));
2442 somers_d[0].ase = SYSMIS;
2443 somers_d[0].t = (somers_d[0].v
2444 / (4 / (Dc + Dr)
2445 * sqrt (ctau_cum - pow2 (P - Q) / xt->total)));
2446 somers_d[1].v = (P - Q) / Dc;
2447 somers_d[1].ase = 2. / pow2 (Dc) * sqrt (d_xy_cum);
2448 somers_d[1].t = (somers_d[1].v
2449 / (2. / Dc
2450 * sqrt (ctau_cum - pow2 (P - Q) / xt->total)));
2451 somers_d[2].v = (P - Q) / Dr;
2452 somers_d[2].ase = 2. / pow2 (Dr) * sqrt (d_yx_cum);
2453 somers_d[2].t = (somers_d[2].v
2454 / (2. / Dr
2455 * sqrt (ctau_cum - pow2 (P - Q) / xt->total)));
2458 free (cum);
2461 /* Spearman correlation, Pearson's r. */
2462 if (proc->statistics & CRS_ST_CORR)
2464 double *R = xmalloc (sizeof *R * n_rows);
2465 double c = 0;
2466 double s = 0;
2467 for (size_t i = 0; i < n_rows; i++)
2469 R[i] = s + (xt->row_tot[i] + 1.) / 2.;
2470 double y = xt->row_tot[i] - c;
2471 double t = s + y;
2472 c = (t - s) - y;
2473 s = t;
2476 double *C = xmalloc (sizeof *C * n_cols);
2477 c = s = 0;
2478 for (size_t j = 0; j < n_cols; j++)
2480 C[j] = s + (xt->col_tot[j] + 1.) / 2;
2481 double y = xt->col_tot[j] - c;
2482 double t = s + y;
2483 c = (t - s) - y;
2484 s = t;
2487 calc_r (xt, R, C, &sym[6]);
2489 free (R);
2490 free (C);
2492 calc_r (xt, (double *) xt->vars[ROW_VAR].values,
2493 (double *) xt->vars[COL_VAR].values,
2494 &sym[7]);
2497 /* Cohen's kappa. */
2498 if (proc->statistics & CRS_ST_KAPPA && xt->ns_rows == xt->ns_cols)
2500 double sum_fii = 0;
2501 double sum_rici = 0;
2502 double sum_fiiri_ci = 0;
2503 double sum_riciri_ci = 0;
2504 for (size_t i = 0, j = 0; i < xt->ns_rows; i++, j++)
2506 while (xt->col_tot[j] == 0.)
2507 j++;
2509 double prod = xt->row_tot[i] * xt->col_tot[j];
2510 double sum = xt->row_tot[i] + xt->col_tot[j];
2512 sum_fii += xt->mat[j + i * n_cols];
2513 sum_rici += prod;
2514 sum_fiiri_ci += xt->mat[j + i * n_cols] * sum;
2515 sum_riciri_ci += prod * sum;
2518 double sum_fijri_ci2 = 0;
2519 for (size_t i = 0; i < xt->ns_rows; i++)
2520 for (size_t j = 0; j < xt->ns_cols; j++)
2522 double sum = xt->row_tot[i] + xt->col_tot[j];
2523 sum_fijri_ci2 += xt->mat[j + i * n_cols] * sum * sum;
2526 sym[8].v = (xt->total * sum_fii - sum_rici) / (pow2 (xt->total) - sum_rici);
2528 double ase_under_h0 = sqrt ((pow2 (xt->total) * sum_rici
2529 + sum_rici * sum_rici
2530 - xt->total * sum_riciri_ci)
2531 / (xt->total * (pow2 (xt->total) - sum_rici) * (pow2 (xt->total) - sum_rici)));
2533 sym[8].ase = sqrt (xt->total * (((sum_fii * (xt->total - sum_fii))
2534 / pow2 (pow2 (xt->total) - sum_rici))
2535 + ((2. * (xt->total - sum_fii)
2536 * (2. * sum_fii * sum_rici
2537 - xt->total * sum_fiiri_ci))
2538 / pow3 (pow2 (xt->total) - sum_rici))
2539 + (pow2 (xt->total - sum_fii)
2540 * (xt->total * sum_fijri_ci2 - 4.
2541 * sum_rici * sum_rici)
2542 / pow4 (pow2 (xt->total) - sum_rici))));
2544 sym[8].t = sym[8].v / ase_under_h0;
2547 return true;
2550 /* Calculate risk estimate. */
2551 static bool
2552 calc_risk (struct crosstabulation *xt,
2553 double *value, double *upper, double *lower, union value *c,
2554 double *n_valid)
2556 size_t n_cols = xt->vars[COL_VAR].n_values;
2558 for (size_t i = 0; i < 3; i++)
2559 value[i] = upper[i] = lower[i] = SYSMIS;
2561 if (xt->ns_rows != 2 || xt->ns_cols != 2)
2562 return false;
2564 /* Find populated columns. */
2565 size_t nz_cols[2];
2566 size_t n = 0;
2567 FOR_EACH_POPULATED_COLUMN (c, xt)
2568 nz_cols[n++] = c;
2569 assert (n == 2);
2571 /* Find populated rows. */
2572 size_t nz_rows[2];
2573 n = 0;
2574 FOR_EACH_POPULATED_ROW (r, xt)
2575 nz_rows[n++] = r;
2576 assert (n == 2);
2578 double f11 = xt->mat[nz_cols[0] + n_cols * nz_rows[0]];
2579 double f12 = xt->mat[nz_cols[1] + n_cols * nz_rows[0]];
2580 double f21 = xt->mat[nz_cols[0] + n_cols * nz_rows[1]];
2581 double f22 = xt->mat[nz_cols[1] + n_cols * nz_rows[1]];
2582 *n_valid = f11 + f12 + f21 + f22;
2584 c[0] = xt->vars[COL_VAR].values[nz_cols[0]];
2585 c[1] = xt->vars[COL_VAR].values[nz_cols[1]];
2587 value[0] = (f11 * f22) / (f12 * f21);
2588 double v = sqrt (1. / f11 + 1. / f12 + 1. / f21 + 1. / f22);
2589 lower[0] = value[0] * exp (-1.960 * v);
2590 upper[0] = value[0] * exp (1.960 * v);
2592 value[1] = (f11 * (f21 + f22)) / (f21 * (f11 + f12));
2593 v = sqrt ((f12 / (f11 * (f11 + f12)))
2594 + (f22 / (f21 * (f21 + f22))));
2595 lower[1] = value[1] * exp (-1.960 * v);
2596 upper[1] = value[1] * exp (1.960 * v);
2598 value[2] = (f12 * (f21 + f22)) / (f22 * (f11 + f12));
2599 v = sqrt ((f11 / (f12 * (f11 + f12)))
2600 + (f21 / (f22 * (f21 + f22))));
2601 lower[2] = value[2] * exp (-1.960 * v);
2602 upper[2] = value[2] * exp (1.960 * v);
2604 return true;
2607 /* Calculate directional measures. */
2608 static void
2609 calc_directional (struct crosstabs_proc *proc, struct crosstabulation *xt,
2610 double v[N_DIRECTIONAL], double ase[N_DIRECTIONAL],
2611 double t[N_DIRECTIONAL], double sig[N_DIRECTIONAL])
2613 size_t n_rows = xt->vars[ROW_VAR].n_values;
2614 size_t n_cols = xt->vars[COL_VAR].n_values;
2615 for (size_t i = 0; i < N_DIRECTIONAL; i++)
2616 v[i] = ase[i] = t[i] = sig[i] = SYSMIS;
2618 /* Lambda. */
2619 if (proc->statistics & CRS_ST_LAMBDA)
2621 /* Find maximum for each row and their sum. */
2622 double *fim = xnmalloc (n_rows, sizeof *fim);
2623 size_t *fim_index = xnmalloc (n_rows, sizeof *fim_index);
2624 double sum_fim = 0.0;
2625 for (size_t i = 0; i < n_rows; i++)
2627 double max = xt->mat[i * n_cols];
2628 size_t index = 0;
2630 for (size_t j = 1; j < n_cols; j++)
2631 if (xt->mat[j + i * n_cols] > max)
2633 max = xt->mat[j + i * n_cols];
2634 index = j;
2637 fim[i] = max;
2638 sum_fim += max;
2639 fim_index[i] = index;
2642 /* Find maximum for each column. */
2643 double *fmj = xnmalloc (n_cols, sizeof *fmj);
2644 size_t *fmj_index = xnmalloc (n_cols, sizeof *fmj_index);
2645 double sum_fmj = 0.0;
2646 for (size_t j = 0; j < n_cols; j++)
2648 double max = xt->mat[j];
2649 size_t index = 0;
2651 for (size_t i = 1; i < n_rows; i++)
2652 if (xt->mat[j + i * n_cols] > max)
2654 max = xt->mat[j + i * n_cols];
2655 index = i;
2658 fmj[j] = max;
2659 sum_fmj += max;
2660 fmj_index[j] = index;
2663 /* Find maximum row total. */
2664 double rm = xt->row_tot[0];
2665 size_t rm_index = 0;
2666 for (size_t i = 1; i < n_rows; i++)
2667 if (xt->row_tot[i] > rm)
2669 rm = xt->row_tot[i];
2670 rm_index = i;
2673 /* Find maximum column total. */
2674 double cm = xt->col_tot[0];
2675 size_t cm_index = 0;
2676 for (size_t j = 1; j < n_cols; j++)
2677 if (xt->col_tot[j] > cm)
2679 cm = xt->col_tot[j];
2680 cm_index = j;
2683 v[0] = (sum_fim + sum_fmj - cm - rm) / (2. * xt->total - rm - cm);
2684 v[1] = (sum_fmj - rm) / (xt->total - rm);
2685 v[2] = (sum_fim - cm) / (xt->total - cm);
2687 /* ASE1 for Y given XT. */
2689 double accum = 0.0;
2690 for (size_t i = 0; i < n_rows; i++)
2691 if (cm_index == fim_index[i])
2692 accum += fim[i];
2693 ase[2] = sqrt ((xt->total - sum_fim) * (sum_fim + cm - 2. * accum)
2694 / pow3 (xt->total - cm));
2697 /* ASE0 for Y given XT. */
2699 double accum = 0.0;
2700 for (size_t i = 0; i < n_rows; i++)
2701 if (cm_index != fim_index[i])
2702 accum += (xt->mat[i * n_cols + fim_index[i]]
2703 + xt->mat[i * n_cols + cm_index]);
2704 t[2] = v[2] / (sqrt (accum - pow2 (sum_fim - cm) / xt->total) / (xt->total - cm));
2707 /* ASE1 for XT given Y. */
2709 double accum = 0.0;
2710 for (size_t j = 0; j < n_cols; j++)
2711 if (rm_index == fmj_index[j])
2712 accum += fmj[j];
2713 ase[1] = sqrt ((xt->total - sum_fmj) * (sum_fmj + rm - 2. * accum)
2714 / pow3 (xt->total - rm));
2717 /* ASE0 for XT given Y. */
2719 double accum = 0.0;
2720 for (size_t j = 0; j < n_cols; j++)
2721 if (rm_index != fmj_index[j])
2722 accum += (xt->mat[j + n_cols * fmj_index[j]]
2723 + xt->mat[j + n_cols * rm_index]);
2724 t[1] = v[1] / (sqrt (accum - pow2 (sum_fmj - rm) / xt->total) / (xt->total - rm));
2727 /* Symmetric ASE0 and ASE1. */
2729 double accum0 = 0.0;
2730 double accum1 = 0.0;
2731 for (size_t i = 0; i < n_rows; i++)
2732 for (size_t j = 0; j < n_cols; j++)
2734 int temp0 = (fmj_index[j] == i) + (fim_index[i] == j);
2735 int temp1 = (i == rm_index) + (j == cm_index);
2736 accum0 += xt->mat[j + i * n_cols] * pow2 (temp0 - temp1);
2737 accum1 += (xt->mat[j + i * n_cols]
2738 * pow2 (temp0 + (v[0] - 1.) * temp1));
2740 ase[0] = sqrt (accum1 - 4. * xt->total * v[0] * v[0]) / (2. * xt->total - rm - cm);
2741 t[0] = v[0] / (sqrt (accum0 - pow2 (sum_fim + sum_fmj - cm - rm) / xt->total)
2742 / (2. * xt->total - rm - cm));
2745 for (size_t i = 0; i < 3; i++)
2746 sig[i] = 2 * gsl_cdf_ugaussian_Q (t[i]);
2748 free (fim);
2749 free (fim_index);
2750 free (fmj);
2751 free (fmj_index);
2753 /* Tau. */
2754 double sum_fij2_ri = 0.0;
2755 double sum_fij2_ci = 0.0;
2756 FOR_EACH_POPULATED_ROW (i, xt)
2757 FOR_EACH_POPULATED_COLUMN (j, xt)
2759 double temp = pow2 (xt->mat[j + i * n_cols]);
2760 sum_fij2_ri += temp / xt->row_tot[i];
2761 sum_fij2_ci += temp / xt->col_tot[j];
2764 double sum_ri2 = 0.0;
2765 for (size_t i = 0; i < n_rows; i++)
2766 sum_ri2 += pow2 (xt->row_tot[i]);
2768 double sum_cj2 = 0.0;
2769 for (size_t j = 0; j < n_cols; j++)
2770 sum_cj2 += pow2 (xt->col_tot[j]);
2772 v[3] = (xt->total * sum_fij2_ci - sum_ri2) / (pow2 (xt->total) - sum_ri2);
2773 v[4] = (xt->total * sum_fij2_ri - sum_cj2) / (pow2 (xt->total) - sum_cj2);
2776 if (proc->statistics & CRS_ST_UC)
2778 double UX = 0.0;
2779 FOR_EACH_POPULATED_ROW (i, xt)
2780 UX -= xt->row_tot[i] / xt->total * log (xt->row_tot[i] / xt->total);
2782 double UY = 0.0;
2783 FOR_EACH_POPULATED_COLUMN (j, xt)
2784 UY -= xt->col_tot[j] / xt->total * log (xt->col_tot[j] / xt->total);
2786 double UXY = 0.0;
2787 double P = 0.0;
2788 for (size_t i = 0; i < n_rows; i++)
2789 for (size_t j = 0; j < n_cols; j++)
2791 double entry = xt->mat[j + i * n_cols];
2793 if (entry <= 0.)
2794 continue;
2796 P += entry * pow2 (log (xt->col_tot[j] * xt->row_tot[i] / (xt->total * entry)));
2797 UXY -= entry / xt->total * log (entry / xt->total);
2800 double ase1_yx = 0.0;
2801 double ase1_xy = 0.0;
2802 double ase1_sym = 0.0;
2803 for (size_t i = 0; i < n_rows; i++)
2804 for (size_t j = 0; j < n_cols; j++)
2806 double entry = xt->mat[j + i * n_cols];
2808 if (entry <= 0.)
2809 continue;
2811 ase1_yx += entry * pow2 (UY * log (entry / xt->row_tot[i])
2812 + (UX - UXY) * log (xt->col_tot[j] / xt->total));
2813 ase1_xy += entry * pow2 (UX * log (entry / xt->col_tot[j])
2814 + (UY - UXY) * log (xt->row_tot[i] / xt->total));
2815 ase1_sym += entry * pow2 ((UXY
2816 * log (xt->row_tot[i] * xt->col_tot[j] / pow2 (xt->total)))
2817 - (UX + UY) * log (entry / xt->total));
2820 v[5] = 2. * ((UX + UY - UXY) / (UX + UY));
2821 ase[5] = (2. / (xt->total * pow2 (UX + UY))) * sqrt (ase1_sym);
2822 t[5] = SYSMIS;
2824 v[6] = (UX + UY - UXY) / UX;
2825 ase[6] = sqrt (ase1_xy) / (xt->total * UX * UX);
2826 t[6] = v[6] / (sqrt (P - xt->total * pow2 (UX + UY - UXY)) / (xt->total * UX));
2828 v[7] = (UX + UY - UXY) / UY;
2829 ase[7] = sqrt (ase1_yx) / (xt->total * UY * UY);
2830 t[7] = v[7] / (sqrt (P - xt->total * pow2 (UX + UY - UXY)) / (xt->total * UY));
2833 /* Somers' D. */
2834 if (proc->statistics & CRS_ST_D)
2836 struct symmetric_statistic ss[N_SYMMETRIC];
2837 struct somers_d somers_d[3];
2839 if (calc_symmetric (proc, xt, ss, somers_d))
2841 for (size_t i = 0; i < 3; i++)
2843 v[8 + i] = somers_d[i].v;
2844 ase[8 + i] = somers_d[i].ase;
2845 t[8 + i] = somers_d[i].t;
2846 sig[8 + i] = 2 * gsl_cdf_ugaussian_Q (fabs (somers_d[i].t));
2851 /* Eta. */
2852 if (proc->statistics & CRS_ST_ETA)
2854 /* X dependent. */
2855 double sum_Xr = 0.0;
2856 double sum_X2r = 0.0;
2857 for (size_t i = 0; i < n_rows; i++)
2859 sum_Xr += xt->vars[ROW_VAR].values[i].f * xt->row_tot[i];
2860 sum_X2r += pow2 (xt->vars[ROW_VAR].values[i].f) * xt->row_tot[i];
2862 double SX = sum_X2r - pow2 (sum_Xr) / xt->total;
2864 double SXW = 0.0;
2865 FOR_EACH_POPULATED_COLUMN (j, xt)
2867 double cum = 0.0;
2869 for (size_t i = 0; i < n_rows; i++)
2871 SXW += (pow2 (xt->vars[ROW_VAR].values[i].f)
2872 * xt->mat[j + i * n_cols]);
2873 cum += (xt->vars[ROW_VAR].values[i].f
2874 * xt->mat[j + i * n_cols]);
2877 SXW -= cum * cum / xt->col_tot[j];
2879 v[11] = sqrt (1. - SXW / SX);
2881 /* Y dependent. */
2882 double sum_Yc = 0.0;
2883 double sum_Y2c = 0.0;
2884 for (size_t i = 0; i < n_cols; i++)
2886 sum_Yc += xt->vars[COL_VAR].values[i].f * xt->col_tot[i];
2887 sum_Y2c += pow2 (xt->vars[COL_VAR].values[i].f) * xt->col_tot[i];
2889 double SY = sum_Y2c - pow2 (sum_Yc) / xt->total;
2891 double SYW = 0.0;
2892 FOR_EACH_POPULATED_ROW (i, xt)
2894 double cum = 0.0;
2895 for (size_t j = 0; j < n_cols; j++)
2897 SYW += (pow2 (xt->vars[COL_VAR].values[j].f)
2898 * xt->mat[j + i * n_cols]);
2899 cum += (xt->vars[COL_VAR].values[j].f
2900 * xt->mat[j + i * n_cols]);
2903 SYW -= cum * cum / xt->row_tot[i];
2905 v[12] = sqrt (1. - SYW / SY);