expressions: Fix definitions of IDF.T1G and IDF.T2G.
[pspp.git] / src / language / expressions / operations.def
blob42728e46ea0c98bff01f7e077718bdb9c8726272
1 // -*- c -*-
2 //
3 // PSPP - a program for statistical analysis.
4 // Copyright (C) 2005, 2006, 2009, 2010, 2011, 2012, 2015, 2016 Free Software Foundation, Inc.
5 //
6 // This program is free software: you can redistribute it and/or modify
7 // it under the terms of the GNU General Public License as published by
8 // the Free Software Foundation, either version 3 of the License, or
9 // (at your option) any later version.
11 // This program is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License
17 // along with this program. If not, see <http://www.gnu.org/licenses/>.
19 operator NEG (x) = -x;
21 operator ADD (a, b) = a + b;
22 operator SUB (a, b) = a - b;
24 absorb_miss operator MUL (a, b)
25 = (a == 0. || b == 0. ? 0.
26 : a == SYSMIS || b == SYSMIS ? SYSMIS
27 : a * b);
29 absorb_miss operator DIV (a, b)
30 = (a == 0. ? 0.
31 : a == SYSMIS || b == SYSMIS ? SYSMIS
32 : a / b);
34 absorb_miss operator POW (a, b)
35 = (a == SYSMIS ? (b == 0. ? 1. : a)
36 : b == SYSMIS ? (a == 0. ? 0. : SYSMIS)
37 : a == 0. && b <= 0. ? SYSMIS
38 : pow (a, b));
40 absorb_miss boolean operator AND (boolean a, boolean b)
41 = (a == 0. ? 0.
42 : b == 0. ? 0.
43 : b == SYSMIS ? SYSMIS
44 : a);
46 absorb_miss boolean operator OR (boolean a, boolean b)
47 = (a == 1. ? 1.
48 : b == 1. ? 1.
49 : b == SYSMIS ? SYSMIS
50 : a);
52 boolean operator NOT (boolean a)
53 = (a == 0. ? 1.
54 : a == 1. ? 0.
55 : SYSMIS);
57 // Numeric relational operators.
58 boolean operator EQ (a, b) = a == b;
59 boolean operator GE (a, b) = a >= b;
60 boolean operator GT (a, b) = a > b;
61 boolean operator LE (a, b) = a <= b;
62 boolean operator LT (a, b) = a < b;
63 boolean operator NE (a, b) = a != b;
65 // String relational operators.
66 boolean operator EQ_STRING (string a, string b) = compare_string_3way (&a, &b) == 0;
67 boolean operator GE_STRING (string a, string b) = compare_string_3way (&a, &b) >= 0;
68 boolean operator GT_STRING (string a, string b) = compare_string_3way (&a, &b) > 0;
69 boolean operator LE_STRING (string a, string b) = compare_string_3way (&a, &b) <= 0;
70 boolean operator LT_STRING (string a, string b) = compare_string_3way (&a, &b) < 0;
71 boolean operator NE_STRING (string a, string b) = compare_string_3way (&a, &b) != 0;
73 // Unary functions.
74 function ABS (x) = fabs (x);
75 extension function ACOS (x >= -1 && x <= 1) = acos (x);
76 function ASIN (x >= -1 && x <= 1) = asin (x);
77 function ATAN (x) = atan (x);
78 extension function ARCOS (x >= -1 && x <= 1) = acos (x);
79 function ARSIN (x >= -1 && x <= 1) = asin (x);
80 function ARTAN (x) = atan (x);
81 function COS (x) = cos (x);
82 function EXP (x) = check_errno (exp (x));
83 function LG10(x) = check_errno (log10 (x));
84 function LN (x) = check_errno (log (x));
85 function LNGAMMA (x >= 0) = gsl_sf_lngamma (x);
86 function MOD10 (x) = fmod (x, 10);
87 function RND (x) = round_nearest (x, 1, 0);
88 function RND (x, mult != 0) = round_nearest (x, mult, 0);
89 function RND (x, mult != 0, fuzzbits >= 0) = round_nearest (x, mult, fuzzbits);
90 function SIN (x) = sin (x);
91 function SQRT (x >= 0) = sqrt (x);
92 function TAN (x) = check_errno (tan (x));
93 function TRUNC (x) = round_zero (x, 1, 0);
94 function TRUNC (x, mult != 0) = round_zero (x, mult, 0);
95 function TRUNC (x, mult != 0, fuzzbits >= 0) = round_zero (x, mult, fuzzbits);
97 absorb_miss function MOD (n, d)
99 if (d != SYSMIS)
100 return n != SYSMIS ? fmod (n, d) : SYSMIS;
101 else
102 return n != 0. ? SYSMIS : 0.;
105 // N-ary numeric functions.
106 absorb_miss boolean function ANY (x != SYSMIS, a[n])
108 int sysmis = 0;
109 size_t i;
111 for (i = 0; i < n; i++)
112 if (a[i] == x)
113 return 1.;
114 else if (a[i] == SYSMIS)
115 sysmis = 1;
117 return sysmis ? SYSMIS : 0.;
120 boolean function ANY (string x, string a[n])
122 size_t i;
124 for (i = 0; i < n; i++)
125 if (!compare_string_3way (&x, &a[i]))
126 return 1.;
127 return 0.;
130 function CFVAR.2 (a[n])
132 double mean, variance;
134 moments_of_doubles (a, n, NULL, &mean, &variance, NULL, NULL);
136 if (mean == SYSMIS || mean == 0 || variance == SYSMIS)
137 return SYSMIS;
138 else
139 return sqrt (variance) / mean;
142 function MAX.1 (a[n])
144 double max;
145 size_t i;
147 max = -DBL_MAX;
148 for (i = 0; i < n; i++)
149 if (a[i] != SYSMIS && a[i] > max)
150 max = a[i];
151 return max;
154 string function MAX (string a[n])
156 struct substring *max;
157 size_t i;
159 max = &a[0];
160 for (i = 1; i < n; i++)
161 if (compare_string_3way (&a[i], max) > 0)
162 max = &a[i];
163 return *max;
166 function MEAN.1 (a[n])
168 double mean;
169 moments_of_doubles (a, n, NULL, &mean, NULL, NULL, NULL);
170 return mean;
173 function MEDIAN.1 (a[n])
175 return median (a, n);
178 function MIN.1 (a[n])
180 double min;
181 size_t i;
183 min = DBL_MAX;
184 for (i = 0; i < n; i++)
185 if (a[i] != SYSMIS && a[i] < min)
186 min = a[i];
187 return min;
190 string function MIN (string a[n])
192 struct substring *min;
193 size_t i;
195 min = &a[0];
196 for (i = 1; i < n; i++)
197 if (compare_string_3way (&a[i], min) < 0)
198 min = &a[i];
199 return *min;
202 absorb_miss function NMISS (a[n])
204 size_t i;
205 size_t missing_cnt = 0;
207 for (i = 0; i < n; i++)
208 missing_cnt += a[i] == SYSMIS;
209 return missing_cnt;
212 absorb_miss function NVALID (a[n])
214 size_t i;
215 size_t valid_cnt = 0;
217 for (i = 0; i < n; i++)
218 valid_cnt += a[i] != SYSMIS;
219 return valid_cnt;
222 absorb_miss boolean function RANGE (x != SYSMIS, a[n*2])
224 size_t i;
225 int sysmis = 0;
227 for (i = 0; i < n; i++)
229 double w = a[2 * i];
230 double y = a[2 * i + 1];
231 if (w != SYSMIS && y != SYSMIS)
233 if (w <= x && x <= y)
234 return 1.0;
236 else
237 sysmis = 1;
239 return sysmis ? SYSMIS : 0.;
242 boolean function RANGE (string x, string a[n*2])
244 int i;
246 for (i = 0; i < n; i++)
248 struct substring *w = &a[2 * i];
249 struct substring *y = &a[2 * i + 1];
250 if (compare_string_3way (w, &x) <= 0 && compare_string_3way (&x, y) <= 0)
251 return 1.;
253 return 0.;
256 function SD.2 (a[n])
258 double variance;
259 moments_of_doubles (a, n, NULL, NULL, &variance, NULL, NULL);
260 return sqrt (variance);
263 function SUM.1 (a[n])
265 double sum;
266 size_t i;
268 sum = 0.;
269 for (i = 0; i < n; i++)
270 if (a[i] != SYSMIS)
271 sum += a[i];
272 return sum;
275 function VARIANCE.2 (a[n])
277 double variance;
278 moments_of_doubles (a, n, NULL, NULL, &variance, NULL, NULL);
279 return variance;
282 // Time construction & extraction functions.
283 function TIME.HMS (h, m, s)
285 if ((h > 0. || m > 0. || s > 0.) && (h < 0. || m < 0. || s < 0.))
287 msg (SW, _("TIME.HMS cannot mix positive and negative arguments."));
288 return SYSMIS;
290 else
291 return H_S * h + MIN_S * m + s;
293 function TIME.DAYS (days) = days * DAY_S;
294 function CTIME.DAYS (time) = time / DAY_S;
295 function CTIME.HOURS (time) = time / H_S;
296 function CTIME.MINUTES (time) = time / MIN_S;
297 function CTIME.SECONDS (time) = time;
299 // Date construction functions.
300 function DATE.DMY (d, m, y) = expr_ymd_to_date (y, m, d);
301 function DATE.MDY (m, d, y) = expr_ymd_to_date (y, m, d);
302 function DATE.MOYR (m, y) = expr_ymd_to_date (y, m, 1);
303 function DATE.QYR (q, y)
305 if (q < 1.0 || q > 4.0 || q != (int) q)
307 msg (SW, _("The first argument to DATE.QYR must be 1, 2, 3, or 4."));
308 return SYSMIS;
310 return expr_ymd_to_date (y, q * 3 - 2, 1);
312 function DATE.WKYR (w, y) = expr_wkyr_to_date (w, y);
313 function DATE.YRDAY (y, yday) = expr_yrday_to_date (y, yday);
314 function YRMODA (y, m, d) = expr_yrmoda (y, m, d);
316 // Date extraction functions.
317 function XDATE.TDAY (date) = floor (date / DAY_S);
318 function XDATE.HOUR (date) = fmod (floor (date / H_S), DAY_H);
319 function XDATE.MINUTE (date) = fmod (floor (date / H_MIN), H_MIN);
320 function XDATE.SECOND (date) = fmod (date, MIN_S);
321 function XDATE.DATE (date) = floor (date / DAY_S) * DAY_S;
322 function XDATE.TIME (date) = fmod (date, DAY_S);
324 function XDATE.JDAY (date >= DAY_S) = calendar_offset_to_yday (date / DAY_S);
325 function XDATE.MDAY (date >= DAY_S) = calendar_offset_to_mday (date / DAY_S);
326 function XDATE.MONTH (date >= DAY_S)
327 = calendar_offset_to_month (date / DAY_S);
328 function XDATE.QUARTER (date >= DAY_S)
329 = (calendar_offset_to_month (date / DAY_S) - 1) / 3 + 1;
330 function XDATE.WEEK (date >= DAY_S)
331 = (calendar_offset_to_yday (date / DAY_S) - 1) / 7 + 1;
332 function XDATE.WKDAY (date >= DAY_S) = calendar_offset_to_wday (date / DAY_S);
333 function XDATE.YEAR (date >= DAY_S) = calendar_offset_to_year (date / DAY_S);
335 // Date arithmetic functions.
336 no_abbrev function DATEDIFF (date2 >= DAY_S, date1 >= DAY_S, string unit)
337 = expr_date_difference (date1, date2, unit);
338 no_abbrev function DATESUM (date, quantity, string unit)
339 = expr_date_sum (date, quantity, unit, ss_cstr ("closest"));
340 no_abbrev function DATESUM (date, quantity, string unit, string method)
341 = expr_date_sum (date, quantity, unit, method);
344 // String functions.
345 string function CONCAT (string a[n])
346 expression e;
348 struct substring dst;
349 size_t i;
351 dst = alloc_string (e, MAX_STRING);
352 dst.length = 0;
353 for (i = 0; i < n; i++)
355 struct substring *src = &a[i];
356 size_t copy_len;
358 copy_len = src->length;
359 if (dst.length + copy_len > MAX_STRING)
360 copy_len = MAX_STRING - dst.length;
361 memcpy (&dst.string[dst.length], src->string, copy_len);
362 dst.length += copy_len;
365 return dst;
368 function INDEX (string haystack, string needle)
370 if (needle.length == 0)
371 return SYSMIS;
372 else
374 int limit = haystack.length - needle.length + 1;
375 int i;
376 for (i = 1; i <= limit; i++)
377 if (!memcmp (&haystack.string[i - 1], needle.string, needle.length))
378 return i;
379 return 0;
383 function INDEX (string haystack, string needles, needle_len_d)
385 if (needle_len_d <= INT_MIN || needle_len_d >= INT_MAX
386 || (int) needle_len_d != needle_len_d
387 || needles.length == 0)
388 return SYSMIS;
389 else
391 int needle_len = needle_len_d;
392 if (needle_len < 0 || needle_len > needles.length
393 || needles.length % needle_len != 0)
394 return SYSMIS;
395 else
397 int limit = haystack.length - needle_len + 1;
398 int i, j;
399 for (i = 1; i <= limit; i++)
400 for (j = 0; j < needles.length; j += needle_len)
401 if (!memcmp (&haystack.string[i - 1], &needles.string[j],
402 needle_len))
403 return i;
404 return 0;
409 function RINDEX (string haystack, string needle)
411 if (needle.length == 0)
412 return SYSMIS;
413 else
415 int limit = haystack.length - needle.length + 1;
416 int i;
417 for (i = limit; i >= 1; i--)
418 if (!memcmp (&haystack.string[i - 1], needle.string, needle.length))
419 return i;
420 return 0;
424 function RINDEX (string haystack, string needles, needle_len_d)
426 if (needle_len_d <= 0 || needle_len_d >= INT_MAX
427 || (int) needle_len_d != needle_len_d
428 || needles.length == 0)
429 return SYSMIS;
430 else
432 int needle_len = needle_len_d;
433 if (needle_len < 0 || needle_len > needles.length
434 || needles.length % needle_len != 0)
435 return SYSMIS;
436 else
438 int limit = haystack.length - needle_len + 1;
439 int i, j;
440 for (i = limit; i >= 1; i--)
441 for (j = 0; j < needles.length; j += needle_len)
442 if (!memcmp (&haystack.string[i - 1],
443 &needles.string[j], needle_len))
444 return i;
445 return 0;
450 function LENGTH (string s)
452 return s.length;
455 string function LOWER (string s)
457 int i;
459 for (i = 0; i < s.length; i++)
460 s.string[i] = tolower ((unsigned char) s.string[i]);
461 return s;
464 function MBLEN.BYTE (string s, idx)
466 if (idx < 0 || idx >= s.length || (int) idx != idx)
467 return SYSMIS;
468 else
469 return 1;
472 string function UPCASE (string s)
474 int i;
476 for (i = 0; i < s.length; i++)
477 s.string[i] = toupper ((unsigned char) s.string[i]);
478 return s;
481 absorb_miss string function LPAD (string s, n)
482 expression e;
484 if (n < 0 || n > MAX_STRING || (int) n != n)
485 return empty_string;
486 else if (s.length >= n)
487 return s;
488 else
490 struct substring t = alloc_string (e, n);
491 memset (t.string, ' ', n - s.length);
492 memcpy (&t.string[(int) n - s.length], s.string, s.length);
493 return t;
497 absorb_miss string function LPAD (string s, n, string c)
498 expression e;
500 if (n < 0 || n > MAX_STRING || (int) n != n || c.length != 1)
501 return empty_string;
502 else if (s.length >= n)
503 return s;
504 else
506 struct substring t = alloc_string (e, n);
507 memset (t.string, c.string[0], n - s.length);
508 memcpy (&t.string[(int) n - s.length], s.string, s.length);
509 return t;
513 string function REPLACE (string haystack, string needle, string replacement)
514 expression e;
515 = replace_string (e, haystack, needle, replacement, DBL_MAX);
517 absorb_miss string function REPLACE (string haystack, string needle,
518 string replacement, n)
519 expression e;
520 = replace_string (e, haystack, needle, replacement, n);
522 absorb_miss string function RPAD (string s, n)
523 expression e;
525 if (n < 0 || n > MAX_STRING || (int) n != n)
526 return empty_string;
527 else if (s.length >= n)
528 return s;
529 else
531 struct substring t = alloc_string (e, n);
532 memcpy (t.string, s.string, s.length);
533 memset (&t.string[s.length], ' ', n - s.length);
534 return t;
538 absorb_miss string function RPAD (string s, n, string c)
539 expression e;
541 if (n < 0 || n > MAX_STRING || (int) n != n || c.length != 1)
542 return empty_string;
543 else if (s.length >= n)
544 return s;
545 else
547 struct substring t = alloc_string (e, n);
548 memcpy (t.string, s.string, s.length);
549 memset (&t.string[s.length], c.string[0], n - s.length);
550 return t;
554 string function LTRIM (string s)
556 while (s.length > 0 && s.string[0] == ' ')
558 s.length--;
559 s.string++;
561 return s;
564 string function LTRIM (string s, string c)
566 if (c.length == 1)
568 while (s.length > 0 && s.string[0] == c.string[0])
570 s.length--;
571 s.string++;
573 return s;
575 else
576 return empty_string;
579 string function RTRIM (string s)
581 while (s.length > 0 && s.string[s.length - 1] == ' ')
582 s.length--;
583 return s;
586 string function RTRIM (string s, string c)
588 if (c.length == 1)
590 while (s.length > 0 && s.string[s.length - 1] == c.string[0])
591 s.length--;
592 return s;
594 else
595 return empty_string;
598 function NUMBER (string s, ni_format f)
600 union value out;
601 char *error;
603 if (s.length > f->w)
604 s.length = f->w;
605 error = data_in (s, C_ENCODING, f->type, settings_get_fmt_settings (),
606 &out, 0, NULL);
607 if (error == NULL)
608 data_in_imply_decimals (s, C_ENCODING, f->type, f->d,
609 settings_get_fmt_settings (), &out);
610 else
612 msg (SE, "Cannot parse `%.*s' as format %s: %s",
613 (int) s.length, s.string, fmt_name (f->type), error);
614 free (error);
616 return out.f;
619 absorb_miss string function STRING (x, no_format f)
620 expression e;
622 union value v;
623 struct substring dst;
624 char *s;
626 v.f = x;
628 assert (!fmt_is_string (f->type));
629 s = data_out (&v, C_ENCODING, f, settings_get_fmt_settings ());
630 dst = alloc_string (e, strlen (s));
631 strcpy (dst.string, s);
632 free (s);
633 return dst;
636 absorb_miss string function STRUNC (string s, n)
638 if (n < 1 || n == SYSMIS)
639 return empty_string;
641 if (n < s.length)
642 s.length = n;
643 while (s.length > 0 && s.string[s.length - 1] == ' ')
644 s.length--;
645 return s;
648 absorb_miss string function SUBSTR (string s, ofs)
649 expression e;
651 if (ofs >= 1 && ofs <= s.length && (int) ofs == ofs)
652 return copy_string (e, &s.string[(int) ofs - 1], s.length - ofs + 1);
653 else
654 return empty_string;
657 absorb_miss string function SUBSTR (string s, ofs, cnt)
658 expression e;
660 if (ofs >= 1 && ofs <= s.length && (int) ofs == ofs
661 && cnt >= 1 && cnt <= INT_MAX && (int) cnt == cnt)
663 int cnt_max = s.length - (int) ofs + 1;
664 return copy_string (e, &s.string[(int) ofs - 1],
665 cnt <= cnt_max ? cnt : cnt_max);
667 else
668 return empty_string;
671 absorb_miss no_opt no_abbrev string function VALUELABEL (var v)
672 expression e;
673 case c;
675 const char *label = var_lookup_value_label (v, case_data (c, v));
676 if (label != NULL)
677 return copy_string (e, label, strlen (label));
678 else
679 return empty_string;
682 // Artificial.
683 operator SQUARE (x) = x * x;
684 boolean operator NUM_TO_BOOLEAN (x, string op_name)
686 if (x == 0. || x == 1. || x == SYSMIS)
687 return x;
689 if (!ss_is_empty (op_name))
690 msg (SE, _("An operand of the %.*s operator was found to have a value "
691 "other than 0 (false), 1 (true), or the system-missing "
692 "value. The result was forced to 0."),
693 (int) op_name.length, op_name.string);
694 else
695 msg (SE, _("A logical expression was found to have a value other than 0 "
696 "(false), 1 (true), or the system-missing value. The result "
697 "was forced to 0."));
698 return 0.;
701 operator BOOLEAN_TO_NUM (boolean x) = x;
703 // Beta distribution.
704 function PDF.BETA (x >= 0 && x <= 1, a > 0, b > 0)
705 = gsl_ran_beta_pdf (x, a, b);
706 function CDF.BETA (x >= 0 && x <= 1, a > 0, b > 0) = gsl_cdf_beta_P (x, a, b);
707 function IDF.BETA (P >= 0 && P <= 1, a > 0, b > 0)
708 = gsl_cdf_beta_Pinv (P, a, b);
709 no_opt function RV.BETA (a > 0, b > 0) = gsl_ran_beta (get_rng (), a, b);
710 function NCDF.BETA (x >= 0, a > 0, b > 0, lambda > 0)
711 = ncdf_beta (x, a, b, lambda);
712 function NPDF.BETA (x >= 0, a > 0, b > 0, lambda > 0)
713 = npdf_beta (x, a, b, lambda);
715 // Bivariate normal distribution.
716 function CDF.BVNOR (x0, x1, r >= -1 && r <= 1) = cdf_bvnor (x0, x1, r);
717 function PDF.BVNOR (x0, x1, r >= -1 && r <= 1)
718 = gsl_ran_bivariate_gaussian_pdf (x0, x1, 1, 1, r);
720 // Cauchy distribution.
721 function CDF.CAUCHY (x, a, b > 0) = gsl_cdf_cauchy_P ((x - a) / b, 1);
722 function IDF.CAUCHY (P > 0 && P < 1, a, b > 0)
723 = a + b * gsl_cdf_cauchy_Pinv (P, 1);
724 function PDF.CAUCHY (x, a, b > 0) = gsl_ran_cauchy_pdf ((x - a) / b, 1) / b;
725 no_opt function RV.CAUCHY (a, b > 0) = a + b * gsl_ran_cauchy (get_rng (), 1);
727 // Chi-square distribution.
728 function CDF.CHISQ (x >= 0, df > 0) = gsl_cdf_chisq_P (x, df);
729 function IDF.CHISQ (P >= 0 && P < 1, df > 0) = gsl_cdf_chisq_Pinv (P, df);
730 function PDF.CHISQ (x >= 0, df > 0) = gsl_ran_chisq_pdf (x, df);
731 no_opt function RV.CHISQ (df > 0) = gsl_ran_chisq (get_rng (), df);
732 function NCDF.CHISQ (x >= 0, df > 0, c) = unimplemented;
733 function NPDF.CHISQ (x >= 0, df > 0, c) = unimplemented;
734 function SIG.CHISQ (x >= 0, df > 0) = gsl_cdf_chisq_Q (x, df);
736 // Exponential distribution.
737 function CDF.EXP (x >= 0, a > 0) = gsl_cdf_exponential_P (x, 1. / a);
738 function IDF.EXP (P >= 0 && P < 1, a > 0)
739 = gsl_cdf_exponential_Pinv (P, 1. / a);
740 function PDF.EXP (x >= 0, a > 0) = gsl_ran_exponential_pdf (x, 1. / a);
741 no_opt function RV.EXP (a > 0) = gsl_ran_exponential (get_rng (), 1. / a);
743 // Exponential power distribution.
744 extension function PDF.XPOWER (x, a > 0, b >= 0)
745 = gsl_ran_exppow_pdf (x, a, b);
746 no_opt extension function RV.XPOWER (a > 0, b >= 0)
747 = gsl_ran_exppow (get_rng (), a, b);
749 // F distribution.
750 function CDF.F (x >= 0, df1 > 0, df2 > 0) = gsl_cdf_fdist_P (x, df1, df2);
751 function IDF.F (P >= 0 && P < 1, df1 > 0, df2 > 0) = idf_fdist (P, df1, df2);
752 function PDF.F (x >= 0, df1 > 0, df2 > 0) = gsl_ran_fdist_pdf (x, df1, df2);
753 no_opt function RV.F (df1 > 0, df2 > 0) = gsl_ran_fdist (get_rng (), df1, df2);
754 function NCDF.F (x >= 0, df1 > 0, df2 > 0, lambda >= 0) = unimplemented;
755 function NPDF.F (x >= 0, df1 > 0, df2 > 0, lmabda >= 0) = unimplemented;
756 function SIG.F (x >= 0, df1 > 0, df2 > 0) = gsl_cdf_fdist_Q (x, df1, df2);
758 // Gamma distribution.
759 function CDF.GAMMA (x >= 0, a > 0, b > 0) = gsl_cdf_gamma_P (x, a, 1. / b);
760 function IDF.GAMMA (P >= 0 && P <= 1, a > 0, b > 0)
761 = gsl_cdf_gamma_Pinv (P, a, 1. / b);
762 function PDF.GAMMA (x >= 0, a > 0, b > 0) = gsl_ran_gamma_pdf (x, a, 1. / b);
763 no_opt function RV.GAMMA (a > 0, b > 0)
764 = gsl_ran_gamma (get_rng (), a, 1. / b);
766 // Half-normal distribution.
767 function CDF.HALFNRM (x, a, b > 0) = unimplemented;
768 function IDF.HALFNRM (P > 0 && P < 1, a, b > 0) = unimplemented;
769 function PDF.HALFNRM (x, a, b > 0) = unimplemented;
770 no_opt function RV.HALFNRM (a, b > 0) = unimplemented;
772 // Inverse Gaussian distribution.
773 function CDF.IGAUSS (x > 0, a > 0, b > 0) = unimplemented;
774 function IDF.IGAUSS (P >= 0 && P < 1, a > 0, b > 0) = unimplemented;
775 function PDF.IGAUSS (x > 0, a > 0, b > 0) = unimplemented;
776 no_opt function RV.IGAUSS (a > 0, b > 0) = unimplemented;
778 // Landau distribution.
779 extension function PDF.LANDAU (x) = gsl_ran_landau_pdf (x);
780 no_opt extension function RV.LANDAU () = gsl_ran_landau (get_rng ());
782 // Laplace distribution.
783 function CDF.LAPLACE (x, a, b > 0) = gsl_cdf_laplace_P ((x - a) / b, 1);
784 function IDF.LAPLACE (P > 0 && P < 1, a, b > 0)
785 = a + b * gsl_cdf_laplace_Pinv (P, 1);
786 function PDF.LAPLACE (x, a, b > 0) = gsl_ran_laplace_pdf ((x - a) / b, 1) / b;
787 no_opt function RV.LAPLACE (a, b > 0)
788 = a + b * gsl_ran_laplace (get_rng (), 1);
790 // Levy alpha-stable distribution.
791 no_opt extension function RV.LEVY (c, alpha > 0 && alpha <= 2)
792 = gsl_ran_levy (get_rng (), c, alpha);
794 // Levy skew alpha-stable distribution.
795 no_opt extension function RV.LVSKEW (c, alpha > 0 && alpha <= 2,
796 beta >= -1 && beta <= 1)
797 = gsl_ran_levy_skew (get_rng (), c, alpha, beta);
799 // Logistic distribution.
800 function CDF.LOGISTIC (x, a, b > 0) = gsl_cdf_logistic_P ((x - a) / b, 1);
801 function IDF.LOGISTIC (P > 0 && P < 1, a, b > 0)
802 = a + b * gsl_cdf_logistic_Pinv (P, 1);
803 function PDF.LOGISTIC (x, a, b > 0)
804 = gsl_ran_logistic_pdf ((x - a) / b, 1) / b;
805 no_opt function RV.LOGISTIC (a, b > 0)
806 = a + b * gsl_ran_logistic (get_rng (), 1);
808 // Lognormal distribution.
809 function CDF.LNORMAL (x >= 0, m > 0, s > 0)
810 = gsl_cdf_lognormal_P (x, log (m), s);
811 function IDF.LNORMAL (P >= 0 && P < 1, m > 0, s > 0)
812 = gsl_cdf_lognormal_Pinv (P, log (m), s);
813 function PDF.LNORMAL (x >= 0, m > 0, s > 0)
814 = gsl_ran_lognormal_pdf (x, log (m), s);
815 no_opt function RV.LNORMAL (m > 0, s > 0)
816 = gsl_ran_lognormal (get_rng (), log (m), s);
818 // Normal distribution.
819 function CDF.NORMAL (x, u, s > 0) = gsl_cdf_gaussian_P (x - u, s);
820 function IDF.NORMAL (P > 0 && P < 1, u, s > 0)
821 = u + gsl_cdf_gaussian_Pinv (P, s);
822 function PDF.NORMAL (x, u, s > 0) = gsl_ran_gaussian_pdf ((x - u) / s, 1) / s;
823 no_opt function RV.NORMAL (u, s > 0) = u + gsl_ran_gaussian (get_rng (), s);
824 function CDFNORM (x) = gsl_cdf_ugaussian_P (x);
825 function PROBIT (P > 0 && P < 1) = gsl_cdf_ugaussian_Pinv (P);
826 no_opt function NORMAL (s > 0) = gsl_ran_gaussian (get_rng (), s);
828 // Normal tail distribution.
829 function PDF.NTAIL (x, a > 0, sigma > 0)
830 = gsl_ran_gaussian_tail_pdf (x, a, sigma);
831 no_opt function RV.NTAIL (a > 0, sigma > 0)
832 = gsl_ran_gaussian_tail (get_rng (), a, sigma);
834 // Pareto distribution.
835 function CDF.PARETO (x >= a, a > 0, b > 0) = gsl_cdf_pareto_P (x, b, a);
836 function IDF.PARETO (P >= 0 && P < 1, a > 0, b > 0)
837 = gsl_cdf_pareto_Pinv (P, b, a);
838 function PDF.PARETO (x >= a, a > 0, b > 0) = gsl_ran_pareto_pdf (x, b, a);
839 no_opt function RV.PARETO (a > 0, b > 0) = gsl_ran_pareto (get_rng (), b, a);
841 // Rayleigh distribution.
842 extension function CDF.RAYLEIGH (x, sigma > 0) = gsl_cdf_rayleigh_P (x, sigma);
843 extension function IDF.RAYLEIGH (P >= 0 && P <= 1, sigma > 0)
844 = gsl_cdf_rayleigh_Pinv (P, sigma);
845 extension function PDF.RAYLEIGH (x, sigma > 0)
846 = gsl_ran_rayleigh_pdf (x, sigma);
847 no_opt extension function RV.RAYLEIGH (sigma > 0)
848 = gsl_ran_rayleigh (get_rng (), sigma);
850 // Rayleigh tail distribution.
851 extension function PDF.RTAIL (x, a, sigma)
852 = gsl_ran_rayleigh_tail_pdf (x, a, sigma);
853 no_opt extension function RV.RTAIL (a, sigma)
854 = gsl_ran_rayleigh_tail (get_rng (), a, sigma);
856 // Studentized maximum modulus distribution.
857 function CDF.SMOD (x > 0, a >= 1, b >= 1) = unimplemented;
858 function IDF.SMOD (P >= 0 && P < 1, a >= 1, b >= 1) = unimplemented;
860 // Studentized range distribution.
861 function CDF.SRANGE (x > 0, a >= 1, b >= 1) = unimplemented;
862 function IDF.SRANGE (P >= 0 && P < 1, a >= 1, b >= 1) = unimplemented;
864 // Student t distribution.
865 function CDF.T (x, df > 0) = gsl_cdf_tdist_P (x, df);
866 function IDF.T (P > 0 && P < 1, df > 0) = gsl_cdf_tdist_Pinv (P, df);
867 function PDF.T (x, df > 0) = gsl_ran_tdist_pdf (x, df);
868 no_opt function RV.T (df > 0) = gsl_ran_tdist (get_rng (), df);
869 function NCDF.T (x, df > 0, nc) = unimplemented;
870 function NPDF.T (x, df > 0, nc) = unimplemented;
872 // Type-1 Gumbel distribution.
873 extension function CDF.T1G (x, a, b) = gsl_cdf_gumbel1_P (x, a, b);
874 extension function IDF.T1G (P >= 0 && P <= 1, a, b)
875 = gsl_cdf_gumbel1_Pinv (P, a, b);
876 extension function PDF.T1G (x, a, b) = gsl_ran_gumbel1_pdf (x, a, b);
877 no_opt extension function RV.T1G (a, b) = gsl_ran_gumbel1 (get_rng (), a, b);
879 // Type-2 Gumbel distribution.
880 extension function CDF.T2G (x, a, b) = gsl_cdf_gumbel2_P (x, a, b);
881 extension function IDF.T2G (P >= 0 && P <= 1, a, b)
882 = gsl_cdf_gumbel2_Pinv (P, a, b);
883 extension function PDF.T2G (x, a, b) = gsl_ran_gumbel2_pdf (x, a, b);
884 no_opt extension function RV.T2G (a, b) = gsl_ran_gumbel2 (get_rng (), a, b);
886 // Uniform distribution.
887 function CDF.UNIFORM (x <= b, a <= x, b) = gsl_cdf_flat_P (x, a, b);
888 function IDF.UNIFORM (P >= 0 && P <= 1, a <= b, b)
889 = gsl_cdf_flat_Pinv (P, a, b);
890 function PDF.UNIFORM (x <= b, a <= x, b) = gsl_ran_flat_pdf (x, a, b);
891 no_opt function RV.UNIFORM (a <= b, b) = gsl_ran_flat (get_rng (), a, b);
892 no_opt function UNIFORM (b >= 0) = gsl_ran_flat (get_rng (), 0, b);
894 // Weibull distribution.
895 function CDF.WEIBULL (x >= 0, a > 0, b > 0) = gsl_cdf_weibull_P (x, a, b);
896 function IDF.WEIBULL (P >= 0 && P < 1, a > 0, b > 0)
897 = gsl_cdf_weibull_Pinv (P, a, b);
898 function PDF.WEIBULL (x >= 0, a > 0, b > 0) = gsl_ran_weibull_pdf (x, a, b);
899 no_opt function RV.WEIBULL (a > 0, b > 0) = gsl_ran_weibull (get_rng (), a, b);
901 // Bernoulli distribution.
902 function CDF.BERNOULLI (k == 0 || k == 1, p >= 0 && p <= 1)
903 = k ? 1 : 1 - p;
904 function PDF.BERNOULLI (k == 0 || k == 1, p >= 0 && p <= 1)
905 = gsl_ran_bernoulli_pdf (k, p);
906 no_opt function RV.BERNOULLI (p >= 0 && p <= 1)
907 = gsl_ran_bernoulli (get_rng (), p);
909 // Binomial distribution.
910 function CDF.BINOM (k, n > 0 && n == floor (n), p >= 0 && p <= 1)
911 = gsl_cdf_binomial_P (k, p, n);
912 function PDF.BINOM (k >= 0 && k == floor (k) && k <= n,
913 n > 0 && n == floor (n),
914 p >= 0 && p <= 1)
915 = gsl_ran_binomial_pdf (k, p, n);
916 no_opt function RV.BINOM (p > 0 && p == floor (p), n >= 0 && n <= 1)
917 = gsl_ran_binomial (get_rng (), p, n);
919 // Geometric distribution.
920 function CDF.GEOM (k >= 1 && k == floor (k), p >= 0 && p <= 1)
921 = gsl_cdf_geometric_P (k, p);
922 function PDF.GEOM (k >= 1 && k == floor (k),
923 p >= 0 && p <= 1)
924 = gsl_ran_geometric_pdf (k, p);
925 no_opt function RV.GEOM (p >= 0 && p <= 1) = gsl_ran_geometric (get_rng (), p);
927 // Hypergeometric distribution.
928 function CDF.HYPER (k >= 0 && k == floor (k) && k <= c,
929 a > 0 && a == floor (a),
930 b > 0 && b == floor (b) && b <= a,
931 c > 0 && c == floor (c) && c <= a)
932 = gsl_cdf_hypergeometric_P (k, c, a - c, b);
933 function PDF.HYPER (k >= 0 && k == floor (k) && k <= c,
934 a > 0 && a == floor (a),
935 b > 0 && b == floor (b) && b <= a,
936 c > 0 && c == floor (c) && c <= a)
937 = gsl_ran_hypergeometric_pdf (k, c, a - c, b);
938 no_opt function RV.HYPER (a > 0 && a == floor (a),
939 b > 0 && b == floor (b) && b <= a,
940 c > 0 && c == floor (c) && c <= a)
941 = gsl_ran_hypergeometric (get_rng (), c, a - c, b);
943 // Logarithmic distribution.
944 extension function PDF.LOG (k >= 1, p > 0 && p <= 1)
945 = gsl_ran_logarithmic_pdf (k, p);
946 no_opt extension function RV.LOG (p > 0 && p <= 1)
947 = gsl_ran_logarithmic (get_rng (), p);
949 // Negative binomial distribution.
950 function CDF.NEGBIN (k >= 1, n == floor (n), p > 0 && p <= 1)
951 = gsl_cdf_negative_binomial_P (k, p, n);
952 function PDF.NEGBIN (k >= 1, n == floor (n), p > 0 && p <= 1)
953 = gsl_ran_negative_binomial_pdf (k, p, n);
954 no_opt function RV.NEGBIN (n == floor (n), p > 0 && p <= 1)
955 = gsl_ran_negative_binomial (get_rng (), p, n);
957 // Poisson distribution.
958 function CDF.POISSON (k >= 0 && k == floor (k), mu > 0)
959 = gsl_cdf_poisson_P (k, mu);
960 function PDF.POISSON (k >= 0 && k == floor (k), mu > 0)
961 = gsl_ran_poisson_pdf (k, mu);
962 no_opt function RV.POISSON (mu > 0) = gsl_ran_poisson (get_rng (), mu);
964 // Weirdness.
965 absorb_miss boolean function MISSING (x) = x == SYSMIS || !isfinite (x);
966 absorb_miss boolean function SYSMIS (x) = x == SYSMIS || !isfinite (x);
967 no_opt boolean function SYSMIS (num_var v)
968 case c;
970 return case_num (c, v) == SYSMIS;
972 no_opt boolean function VALUE (num_var v)
973 case c;
975 return case_num (c, v);
978 no_opt operator VEC_ELEM_NUM (idx)
979 vector v;
980 case c;
982 if (idx >= 1 && idx <= vector_get_var_cnt (v))
984 const struct variable *var = vector_get_var (v, (size_t) idx - 1);
985 double value = case_num (c, var);
986 return !var_is_num_missing (var, value, MV_USER) ? value : SYSMIS;
988 else
990 if (idx == SYSMIS)
991 msg (SE, _("SYSMIS is not a valid index value for vector "
992 "%s. The result will be set to SYSMIS."),
993 vector_get_name (v));
994 else
995 msg (SE, _("%g is not a valid index value for vector %s. "
996 "The result will be set to SYSMIS."),
997 idx, vector_get_name (v));
998 return SYSMIS;
1002 absorb_miss no_opt string operator VEC_ELEM_STR (idx)
1003 expression e;
1004 vector v;
1005 case c;
1007 if (idx >= 1 && idx <= vector_get_var_cnt (v))
1009 struct variable *var = vector_get_var (v, (size_t) idx - 1);
1010 return copy_string (e, CHAR_CAST_BUG (char *, case_str (c, var)),
1011 var_get_width (var));
1013 else
1015 if (idx == SYSMIS)
1016 msg (SE, _("SYSMIS is not a valid index value for vector "
1017 "%s. The result will be set to the empty string."),
1018 vector_get_name (v));
1019 else
1020 msg (SE, _("%g is not a valid index value for vector %s. "
1021 "The result will be set to the empty string."),
1022 idx, vector_get_name (v));
1023 return empty_string;
1027 // Terminals.
1029 no_opt operator NUM_VAR ()
1030 case c;
1031 num_var v;
1033 double d = case_num (c, v);
1034 return !var_is_num_missing (v, d, MV_USER) ? d : SYSMIS;
1037 no_opt string operator STR_VAR ()
1038 case c;
1039 expression e;
1040 str_var v;
1042 struct substring s = alloc_string (e, var_get_width (v));
1043 memcpy (s.string, case_str (c, v), var_get_width (v));
1044 return s;
1047 no_opt perm_only function LAG (num_var v, pos_int n_before)
1048 dataset ds;
1050 const struct ccase *c = lagged_case (ds, n_before);
1051 if (c != NULL)
1053 double x = case_num (c, v);
1054 return !var_is_num_missing (v, x, MV_USER) ? x : SYSMIS;
1056 else
1057 return SYSMIS;
1060 no_opt perm_only function LAG (num_var v)
1061 dataset ds;
1063 const struct ccase *c = lagged_case (ds, 1);
1064 if (c != NULL)
1066 double x = case_num (c, v);
1067 return !var_is_num_missing (v, x, MV_USER) ? x : SYSMIS;
1069 else
1070 return SYSMIS;
1073 no_opt perm_only string function LAG (str_var v, pos_int n_before)
1074 expression e;
1075 dataset ds;
1077 const struct ccase *c = lagged_case (ds, n_before);
1078 if (c != NULL)
1079 return copy_string (e, CHAR_CAST_BUG (char *, case_str (c, v)),
1080 var_get_width (v));
1081 else
1082 return empty_string;
1085 no_opt perm_only string function LAG (str_var v)
1086 expression e;
1087 dataset ds;
1089 const struct ccase *c = lagged_case (ds, 1);
1090 if (c != NULL)
1091 return copy_string (e, CHAR_CAST_BUG (char *, case_str (c, v)),
1092 var_get_width (v));
1093 else
1094 return empty_string;
1097 no_opt operator NUM_SYS ()
1098 case c;
1099 num_var v;
1101 return case_num (c, v) == SYSMIS;
1104 no_opt operator NUM_VAL ()
1105 case c;
1106 num_var v;
1108 return case_num (c, v);
1111 no_opt operator CASENUM ()
1112 case_idx idx;
1114 return idx;