cuda.c: extract out ppcg_start_block and ppcg_end_block
[ppcg.git] / gpu.c
blob65fef5e6d1b735ef33445271d1d6202b79d7d9db
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012 Ecole Normale Superieure
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
16 #include <isl/polynomial.h>
17 #include <isl/union_set.h>
18 #include <isl/aff.h>
19 #include <isl/ilp.h>
20 #include <isl/flow.h>
21 #include <isl/band.h>
22 #include <isl/schedule.h>
23 #include <isl/options.h>
24 #include <isl/ast_build.h>
26 #include "gpu.h"
27 #include "schedule.h"
28 #include "ppcg_options.h"
30 /* The fields stride, shift and shift_map only contain valid information
31 * if shift != NULL.
32 * If so, they express that current index is such that if you add shift,
33 * then the result is always a multiple of stride.
34 * shift_map contains the mapping
36 * i -> (i + shift)/stride
38 * Let D represent the initial shared_len dimensions of the computed schedule.
39 * The spaces of "lb" and "shift" are of the form
41 * D -> [b]
43 * "shift_map" is of the form
45 * [D -> i] -> [D -> (i + shift(D))/stride]
47 struct gpu_array_bound {
48 isl_int size;
49 isl_aff *lb;
51 isl_int stride;
52 isl_aff *shift;
53 isl_basic_map *shift_map;
56 struct gpu_array_info;
58 /* A group of array references in a kernel that should be handled together.
59 * If private_bound is not NULL, then it is mapped to registers.
60 * Otherwise, if shared_bound is not NULL, it is mapped to shared memory.
61 * Otherwise, it is accessed from global memory.
63 struct gpu_array_ref_group {
64 /* The references in this group access this array. */
65 struct gpu_array_info *array;
66 /* Position of this group in the list of reference groups of array. */
67 int nr;
69 /* The following fields are use during the construction of the groups.
70 * access is the combined access relation relative to the shared
71 * memory tiling. In particular, the domain of the map corresponds
72 * to the first shared_len dimensions of the computed schedule.
73 * write is set if any access in the group is a write.
75 isl_map *access;
76 int write;
78 /* For each index, size and offset of piece in shared memory. */
79 struct gpu_array_bound *shared_bound;
81 /* For each index, size and offset of piece in private memory. */
82 struct gpu_array_bound *private_bound;
84 /* References in this group; point to elements of a linked list. */
85 int n_ref;
86 struct gpu_stmt_access **refs;
88 /* Last shared memory tile dimension that affects tile of this group. */
89 int last_shared;
92 struct gpu_gen {
93 isl_ctx *ctx;
94 struct ppcg_options *options;
96 struct gpu_prog *prog;
98 /* tile, grid and block sizes for each kernel */
99 isl_union_map *sizes;
101 /* Identifier of current kernel. */
102 int kernel_id;
103 /* Pointer to the current kernel. */
104 struct ppcg_kernel *kernel;
106 /* First tile dimension. */
107 int tile_first;
108 /* Number of tile dimensions. */
109 int tile_len;
110 /* Number of initial parallel loops among tile dimensions. */
111 int n_parallel;
113 /* Number of dimensions determining shared memory. */
114 int shared_len;
116 /* Number of rows in the untiled schedule. */
117 int untiled_len;
118 /* Number of rows in the tiled schedule. */
119 int tiled_len;
120 /* Number of rows in schedule after tiling/wrapping over threads. */
121 int thread_tiled_len;
123 /* Global untiled schedule. */
124 isl_union_map *sched;
125 /* Local (per kernel launch) tiled schedule. */
126 isl_union_map *tiled_sched;
127 /* Local schedule per shared memory tile loop iteration. */
128 isl_union_map *local_sched;
130 /* Local tiled schedule projected onto the shared tile loops and
131 * the loops that will be wrapped over the threads,
132 * with all shared tile loops parametrized.
134 isl_union_map *shared_sched;
135 /* Projects out the loops that will be wrapped over the threads
136 * from shared_sched.
138 isl_union_map *shared_proj;
140 /* A map that takes the range of shared_sched as input,
141 * wraps the appropriate loops over the threads and then projects
142 * out these loops.
144 isl_map *privatization;
146 /* A map from the shared memory tile loops and the thread indices
147 * (as parameters) to the set of accessed memory elements that
148 * will be accessed through private copies.
150 isl_union_map *private_access;
152 /* The schedule for the current private/shared access
153 * (within print_private_access or print_shared_access).
155 isl_map *copy_sched;
156 /* The array reference group corresponding to copy_sched. */
157 struct gpu_array_ref_group *copy_group;
158 /* copy_group->private_bound or copy_group->shared_bound */
159 struct gpu_array_bound *copy_bound;
161 /* First loop to unroll (or -1 if none) in the current part of the
162 * schedule.
164 int first_unroll;
166 int n_grid;
167 int n_block;
168 /* Note: in the input file, the sizes of the grid and the blocks
169 * are specified in the order x, y, z, but internally, the sizes
170 * are stored in reverse order, so that the last element always
171 * refers to the x dimension.
173 int grid_dim[2];
174 int block_dim[3];
175 int *tile_size;
178 /* Print the name of the local copy of a given group of array references.
180 static __isl_give isl_printer *print_array_name(__isl_take isl_printer *p,
181 struct gpu_array_ref_group *group)
183 int global = 0;
185 if (group->private_bound)
186 p = isl_printer_print_str(p, "private_");
187 else if (group->shared_bound)
188 p = isl_printer_print_str(p, "shared_");
189 else
190 global = 1;
191 p = isl_printer_print_str(p, group->array->name);
192 if (!global && group->array->n_group > 1) {
193 p = isl_printer_print_str(p, "_");
194 p = isl_printer_print_int(p, group->nr);
197 return p;
200 /* Collect all references to the given array and store pointers to them
201 * in array->refs.
203 static void collect_references(struct gpu_prog *prog,
204 struct gpu_array_info *array)
206 int i;
207 int n;
209 n = 0;
210 for (i = 0; i < prog->n_stmts; ++i) {
211 struct gpu_stmt *stmt = &prog->stmts[i];
212 struct gpu_stmt_access *access;
214 for (access = stmt->accesses; access; access = access->next) {
215 const char *name;
216 name = isl_map_get_tuple_name(access->access,
217 isl_dim_out);
218 if (name && !strcmp(array->name, name))
219 n++;
223 array->n_ref = n;
224 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
225 assert(array->refs);
227 n = 0;
228 for (i = 0; i < prog->n_stmts; ++i) {
229 struct gpu_stmt *stmt = &prog->stmts[i];
230 struct gpu_stmt_access *access;
232 for (access = stmt->accesses; access; access = access->next) {
233 const char *name;
234 name = isl_map_get_tuple_name(access->access,
235 isl_dim_out);
236 if (!name || strcmp(array->name, name))
237 continue;
239 array->refs[n++] = access;
244 static struct gpu_array_bound *create_bound_list(isl_ctx *ctx, int n_index)
246 int i;
247 struct gpu_array_bound *bound;
249 bound = isl_alloc_array(ctx, struct gpu_array_bound, n_index);
250 assert(bound);
252 for (i = 0; i < n_index; ++i) {
253 isl_int_init(bound[i].size);
254 bound[i].lb = NULL;
255 isl_int_init(bound[i].stride);
256 bound[i].shift = NULL;
257 bound[i].shift_map = NULL;
260 return bound;
263 static void free_bound_list(struct gpu_array_bound *bound, int n_index)
265 int j;
267 if (!bound)
268 return;
270 for (j = 0; j < n_index; ++j) {
271 isl_int_clear(bound[j].size);
272 isl_int_clear(bound[j].stride);
273 isl_aff_free(bound[j].lb);
274 isl_aff_free(bound[j].shift);
275 isl_basic_map_free(bound[j].shift_map);
277 free(bound);
280 static struct pet_array *find_array(struct ppcg_scop *scop,
281 __isl_keep isl_set *accessed)
283 int i;
284 isl_id *id;
286 id = isl_set_get_tuple_id(accessed);
288 for (i = 0; i < scop->n_array; ++i) {
289 isl_id *id_i;
291 id_i = isl_set_get_tuple_id(scop->arrays[i]->extent);
292 isl_id_free(id_i);
293 if (id == id_i)
294 break;
296 isl_id_free(id);
298 return i < scop->n_array ? scop->arrays[i] : NULL;
301 /* Compute bounds on the host arrays based on the accessed elements
302 * and collect all references to the array.
304 * If the array is zero-dimensional, i.e., a scalar, we check
305 * whether it is read-only.
307 static int extract_array_info(__isl_take isl_set *array, void *user)
309 int i;
310 struct gpu_prog *prog = (struct gpu_prog *)user;
311 const char *name;
312 int n_index;
313 isl_pw_aff **bounds;
314 struct pet_array *pa;
316 n_index = isl_set_dim(array, isl_dim_set);
317 name = isl_set_get_tuple_name(array);
318 bounds = isl_alloc_array(isl_set_get_ctx(array),
319 isl_pw_aff *, n_index);
320 assert(bounds);
321 prog->array[prog->n_array].dim = isl_set_get_space(array);
322 prog->array[prog->n_array].name = strdup(name);
323 prog->array[prog->n_array].n_index = n_index;
324 prog->array[prog->n_array].bound = bounds;
326 pa = find_array(prog->scop, array);
327 assert(pa);
329 prog->array[prog->n_array].type = strdup(pa->element_type);
330 prog->array[prog->n_array].size = pa->element_size;
332 if (n_index == 0) {
333 isl_set *space;
334 isl_union_map *write;
335 int empty;
337 write = isl_union_map_copy(prog->write);
338 space = isl_set_universe(isl_set_get_space(array));
339 write = isl_union_map_intersect_range(write,
340 isl_union_set_from_set(space));
341 empty = isl_union_map_is_empty(write);
342 isl_union_map_free(write);
344 prog->array[prog->n_array].read_only = empty;
347 for (i = 0; i < n_index; ++i) {
348 isl_set *dom;
349 isl_local_space *ls;
350 isl_aff *one;
351 isl_pw_aff *bound;
352 isl_set *size = i == 0 ? array : pa->extent;
354 bound = isl_set_dim_max(isl_set_copy(size), i);
355 assert(bound);
356 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
357 ls = isl_local_space_from_space(isl_set_get_space(dom));
358 one = isl_aff_zero_on_domain(ls);
359 one = isl_aff_add_constant_si(one, 1);
360 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
361 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
363 bounds[i] = bound;
366 collect_references(prog, &prog->array[prog->n_array]);
368 prog->n_array++;
370 isl_set_free(array);
371 return 0;
374 void collect_array_info(struct gpu_prog *prog)
376 isl_union_set *arrays;
378 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
379 arrays = isl_union_set_union(arrays,
380 isl_union_map_range(isl_union_map_copy(prog->write)));
381 arrays = isl_union_set_coalesce(arrays);
383 prog->n_array = isl_union_set_n_set(arrays);
384 prog->array = isl_alloc_array(prog->ctx,
385 struct gpu_array_info, prog->n_array);
386 assert(prog->array);
387 prog->n_array = 0;
388 isl_union_set_foreach_set(arrays, &extract_array_info, prog);
389 isl_union_set_free(arrays);
392 static void free_array_info(struct gpu_prog *prog)
394 int i, j;
396 for (i = 0; i < prog->n_array; ++i) {
397 int n_index = prog->array[i].n_index;
398 free(prog->array[i].type);
399 free(prog->array[i].name);
400 for (j = 0; j < n_index; ++j)
401 isl_pw_aff_free(prog->array[i].bound[j]);
402 isl_space_free(prog->array[i].dim);
403 free(prog->array[i].bound);
404 free(prog->array[i].refs);
406 free(prog->array);
409 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
410 * as an array or through a pointer reference, but as single data element. At
411 * the moment, scalars are represented as zero dimensional arrays.
413 int gpu_array_is_scalar(struct gpu_array_info *array)
415 return (array->n_index == 0);
418 /* Is "array" a read-only scalar?
420 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
422 return gpu_array_is_scalar(array) && array->read_only;
425 /* Internal data structure for extract_size_of_type.
426 * "type" specifies the name of the space that we want to extract.
427 * "res" is used to store the subset of that space.
429 struct ppcg_extract_size_data {
430 const char *type;
431 isl_set *res;
434 /* This function is called for each set in a union_set.
435 * If the name of the set matches data->type, we store the
436 * set in data->res.
438 static int extract_size_of_type(__isl_take isl_set *size, void *user)
440 struct ppcg_extract_size_data *data = user;
441 const char *name;
443 name = isl_set_get_tuple_name(size);
444 if (name && !strcmp(name, data->type)) {
445 data->res = size;
446 return -1;
449 isl_set_free(size);
450 return 0;
453 /* Given a union map { kernel[i] -> *[...] },
454 * return the range in the space called "type" for the kernel with
455 * sequence number "id".
457 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
458 const char *type, int id)
460 isl_space *space;
461 isl_set *dom;
462 isl_union_set *local_sizes;
463 struct ppcg_extract_size_data data = { type, NULL };
465 if (!sizes)
466 return NULL;
468 space = isl_union_map_get_space(sizes);
469 space = isl_space_set_from_params(space);
470 space = isl_space_add_dims(space, isl_dim_set, 1);
471 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
472 dom = isl_set_universe(space);
473 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
475 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
476 isl_union_map_copy(sizes));
477 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
478 isl_union_set_free(local_sizes);
479 return data.res;
482 /* Given a singleton set, extract the first (at most *len) elements
483 * of the single integer tuple into *sizes and update *len if needed.
485 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
487 int i;
488 int dim;
489 isl_int v;
491 if (!set)
492 return;
494 dim = isl_set_dim(set, isl_dim_set);
495 if (dim < *len)
496 *len = dim;
498 isl_int_init(v);
500 for (i = 0; i < *len; ++i) {
501 int ok;
503 ok = isl_set_plain_is_fixed(set, isl_dim_set, i, &v);
504 assert(ok);
506 sizes[i] = isl_int_get_si(v);
509 isl_int_clear(v);
511 isl_set_free(set);
514 /* Extract user specified "tile" sizes from the "sizes" command line option,
515 * defaulting to option->tile_size in each dimension.
517 static void read_tile_sizes(struct gpu_gen *gen)
519 int n;
520 isl_set *size;
522 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
523 assert(gen->tile_size);
524 for (n = 0; n < gen->tile_len; ++n)
525 gen->tile_size[n] = gen->options->tile_size;
527 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
528 read_sizes_from_set(size, gen->tile_size, &gen->tile_len);
530 if (gen->n_parallel > gen->tile_len)
531 gen->n_parallel = gen->tile_len;
534 /* Extract user specified "block" sizes from the "sizes" command line option,
535 * after filling in some potentially useful defaults.
537 static void read_block_sizes(struct gpu_gen *gen)
539 int n;
540 isl_set *size;
542 n = gen->n_parallel;
543 gen->n_block = (n <= 3) ? n : 3;
544 switch (gen->n_block) {
545 case 1:
546 gen->block_dim[0] = 512;
547 break;
548 case 2:
549 gen->block_dim[0] = 32;
550 gen->block_dim[1] = 16;
551 break;
552 default:
553 gen->block_dim[0] = 32;
554 gen->block_dim[1] = 4;
555 gen->block_dim[2] = 4;
556 break;
559 size = extract_sizes(gen->sizes, "block", gen->kernel_id);
560 read_sizes_from_set(size, gen->block_dim, &gen->n_block);
563 /* Extract user specified "grid" sizes from the "sizes" command line option,
564 * after filling in some potentially useful defaults.
566 static void read_grid_sizes(struct gpu_gen *gen)
568 int n = gen->n_parallel;
569 isl_set *size;
571 gen->n_grid = (n <= 2) ? n : 2;
572 switch (gen->n_grid) {
573 case 1:
574 gen->grid_dim[0] = 32768;
575 break;
576 default:
577 gen->grid_dim[0] = 256;
578 gen->grid_dim[1] = 256;
579 break;
582 size = extract_sizes(gen->sizes, "grid", gen->kernel_id);
583 read_sizes_from_set(size, gen->grid_dim, &gen->n_grid);
586 /* Extract user specified sizes from the "sizes" command line option
587 * after filling in some potentially useful defaults.
589 static void read_sizes(struct gpu_gen *gen)
591 read_tile_sizes(gen);
592 read_block_sizes(gen);
593 read_grid_sizes(gen);
596 static void free_stmts(struct gpu_stmt *stmts, int n)
598 int i;
600 for (i = 0; i < n; ++i) {
601 struct gpu_stmt_access *access, *next;
603 for (access = stmts[i].accesses; access; access = next) {
604 next = access->next;
605 isl_map_free(access->access);
606 free(access);
609 isl_id_free(stmts[i].id);
611 free(stmts);
614 void clear_gpu_gen(struct gpu_gen *gen)
616 isl_union_map_free(gen->sizes);
617 isl_union_map_free(gen->sched);
620 /* Construct a map from a domain of dimensionality "len"
621 * to a domain of dimensionality "len" + "tile_len" that tiles
622 * the "tile_len" coordinates starting at "first".
623 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
624 * "dim" prescribes the parameters.
626 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
627 int first, int tile_len, int *tile_size)
629 int i;
630 isl_int v;
631 isl_basic_map *bmap;
632 isl_constraint *c;
633 isl_local_space *ls;
635 isl_int_init(v);
637 dim = isl_space_add_dims(dim, isl_dim_in, len);
638 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
639 bmap = isl_basic_map_universe(isl_space_copy(dim));
640 ls = isl_local_space_from_space(dim);
642 for (i = 0; i < len - tile_len; ++i) {
643 int j = i < first ? i : i + tile_len;
644 int k = i < first ? i : i + 2 * tile_len;
646 c = isl_equality_alloc(isl_local_space_copy(ls));
647 isl_int_set_si(v, -1);
648 isl_constraint_set_coefficient(c, isl_dim_in, j, v);
649 isl_int_set_si(v, 1);
650 isl_constraint_set_coefficient(c, isl_dim_out, k, v);
651 bmap = isl_basic_map_add_constraint(bmap, c);
654 for (i = 0; i < tile_len; ++i) {
655 c = isl_equality_alloc(isl_local_space_copy(ls));
656 isl_int_set_si(v, -1);
657 isl_constraint_set_coefficient(c, isl_dim_in, first + i, v);
658 isl_int_set_si(v, tile_size[i]);
659 isl_constraint_set_coefficient(c, isl_dim_out, first + i, v);
660 isl_int_set_si(v, 1);
661 isl_constraint_set_coefficient(c, isl_dim_out,
662 first + i + tile_len, v);
663 bmap = isl_basic_map_add_constraint(bmap, c);
665 c = isl_inequality_alloc(isl_local_space_copy(ls));
666 isl_int_set_si(v, 1);
667 isl_constraint_set_coefficient(c, isl_dim_out,
668 first + i + tile_len, v);
669 bmap = isl_basic_map_add_constraint(bmap, c);
671 c = isl_inequality_alloc(isl_local_space_copy(ls));
672 isl_int_set_si(v, -1);
673 isl_constraint_set_coefficient(c, isl_dim_out,
674 first + i + tile_len, v);
675 isl_int_set_si(v, tile_size[i] - 1);
676 isl_constraint_set_constant(c, v);
677 bmap = isl_basic_map_add_constraint(bmap, c);
680 isl_local_space_free(ls);
681 isl_int_clear(v);
683 return isl_map_from_basic_map(bmap);
686 /* Construct a map from a domain of dimensionality "len"
687 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
688 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
689 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
690 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
691 * that are projected out at the end.
692 * "dim" prescribes the parameters.
694 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
695 int first, int wrap_len, int *wrap_size)
697 int i;
698 isl_basic_map *bmap;
699 isl_constraint *c;
700 isl_local_space *ls;
702 dim = isl_space_add_dims(dim, isl_dim_in, len);
703 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
704 bmap = isl_basic_map_universe(isl_space_copy(dim));
705 ls = isl_local_space_from_space(dim);
707 for (i = 0; i < len; ++i) {
708 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
710 c = isl_equality_alloc(isl_local_space_copy(ls));
711 isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
712 isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
713 bmap = isl_basic_map_add_constraint(bmap, c);
716 for (i = 0; i < wrap_len; ++i) {
717 c = isl_equality_alloc(isl_local_space_copy(ls));
718 isl_constraint_set_coefficient_si(c, isl_dim_out,
719 first + i, -1);
720 isl_constraint_set_coefficient_si(c, isl_dim_out,
721 first + wrap_len + i, 1);
722 isl_constraint_set_coefficient_si(c, isl_dim_out,
723 first + 2 * wrap_len + i, wrap_size[i]);
724 bmap = isl_basic_map_add_constraint(bmap, c);
726 c = isl_inequality_alloc(isl_local_space_copy(ls));
727 isl_constraint_set_coefficient_si(c, isl_dim_out,
728 first + wrap_len + i, 1);
729 bmap = isl_basic_map_add_constraint(bmap, c);
731 c = isl_inequality_alloc(isl_local_space_copy(ls));
732 isl_constraint_set_coefficient_si(c, isl_dim_out,
733 first + wrap_len + i, -1);
734 isl_constraint_set_constant_si(c, wrap_size[i] - 1);
735 bmap = isl_basic_map_add_constraint(bmap, c);
738 isl_local_space_free(ls);
740 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
741 first + 2 * wrap_len, wrap_len);
743 return isl_map_from_basic_map(bmap);
746 /* Add "n" parameters named prefix%d.
748 static __isl_give isl_set *add_params( __isl_take isl_set *set,
749 int n, const char *prefix)
751 int i;
752 unsigned nparam;
753 char name[20];
755 nparam = isl_set_dim(set, isl_dim_param);
756 set = isl_set_add_dims(set, isl_dim_param, n);
758 for (i = 0; i < n; ++i) {
759 snprintf(name, sizeof(name), "%s%d", prefix, i);
760 set = isl_set_set_dim_name(set, isl_dim_param,
761 nparam + i, name);
764 return set;
767 /* Equate the "n" dimensions of "set" starting at "first" to
768 * freshly created parameters named prefix%d.
770 static __isl_give isl_set *parametrize(__isl_take isl_set *set,
771 int first, int n, const char *prefix)
773 int i;
774 unsigned nparam;
775 isl_int v;
776 isl_space *dim;
777 isl_basic_set *bset;
778 isl_constraint *c;
779 isl_local_space *ls;
781 nparam = isl_set_dim(set, isl_dim_param);
783 set = add_params(set, n, prefix);
785 dim = isl_set_get_space(set);
786 bset = isl_basic_set_universe(isl_space_copy(dim));
787 ls = isl_local_space_from_space(dim);
789 isl_int_init(v);
791 for (i = 0; i < n; ++i) {
792 c = isl_equality_alloc(isl_local_space_copy(ls));
793 isl_int_set_si(v, -1);
794 isl_constraint_set_coefficient(c, isl_dim_param, nparam + i, v);
795 isl_int_set_si(v, 1);
796 isl_constraint_set_coefficient(c, isl_dim_set, first + i, v);
797 bset = isl_basic_set_add_constraint(bset, c);
800 isl_int_clear(v);
801 isl_local_space_free(ls);
803 return isl_set_intersect(set, isl_set_from_basic_set(bset));
806 /* Given a parameter space "space", create a set of dimension "len"
807 * of which the "n" dimensions starting at "first" are equated to
808 * freshly created parameters named prefix%d.
810 static __isl_give isl_set *parametrization(__isl_take isl_space *space,
811 int len, int first, int n, const char *prefix)
813 isl_set *set;
815 space = isl_space_set_from_params(space);
816 space = isl_space_add_dims(space, isl_dim_set, len);
817 set = isl_set_universe(space);
819 return parametrize(set, first, n, prefix);
822 /* Tile the B loops over the tile sizes and then tile/wrap
823 * the T1 loops over the blocks.
825 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
826 __isl_take isl_union_map *sched)
828 isl_space *dim;
829 isl_map *tiling, *block_tiling;
831 dim = isl_union_map_get_space(sched);
832 tiling = tile(isl_space_copy(dim), gen->untiled_len,
833 gen->tile_first, gen->tile_len, gen->tile_size);
835 if (gen->options->wrap)
836 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
837 gen->tile_first, gen->n_grid, gen->grid_dim);
838 else
839 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
840 gen->tile_first, gen->n_grid, gen->grid_dim);
842 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
844 tiling = isl_map_apply_range(tiling, block_tiling);
846 sched = isl_union_map_apply_range(sched,
847 isl_union_map_from_map(tiling));
849 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
851 return sched;
854 /* Equate the "T1P" iterators in the tiled schedule "sched"
855 * to the block dimensions.
857 static __isl_give isl_union_map *parametrize_tiled_schedule(
858 struct gpu_gen *gen, __isl_take isl_union_map *sched)
860 isl_space *dim;
861 isl_set *par;
863 dim = isl_union_map_get_space(sched);
864 par = parametrization(dim, gen->tiled_len,
865 gen->tile_first + gen->n_grid, gen->n_grid, "b");
866 sched = isl_union_map_intersect_range(sched,
867 isl_union_set_from_set(par));
869 return sched;
872 /* Tile/wrap the P1 loops over the threads.
874 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
875 __isl_take isl_union_map *sched)
877 isl_space *dim;
878 isl_map *tiling;
879 isl_set *par;
881 dim = isl_union_map_get_space(sched);
883 if (gen->options->wrap)
884 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
885 gen->shared_len, gen->n_block, gen->block_dim);
886 else
887 tiling = tile(isl_space_copy(dim), gen->tiled_len,
888 gen->shared_len, gen->n_block, gen->block_dim);
889 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
891 sched = isl_union_map_apply_range(sched,
892 isl_union_map_from_map(tiling));
894 par = parametrization(dim, gen->thread_tiled_len,
895 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
896 gen->n_block, "t");
897 sched = isl_union_map_intersect_range(sched,
898 isl_union_set_from_set(par));
900 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
902 return sched;
905 /* If the user asked for it, scale the shared memory tile loops
906 * (T1T and T2) of "sched" by gen->tile_size[i].
907 * If we are not performing "wrapping", then additionally scale the T1P
908 * loops by gen->grid_dim[i].
910 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
911 __isl_take isl_union_map *sched)
913 int i;
914 isl_space *dim;
915 isl_basic_map *scale;
916 isl_constraint *c;
917 isl_local_space *ls;
919 if (!gen->options->scale_tile_loops)
920 return sched;
922 dim = isl_union_map_get_space(sched);
923 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
924 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
925 scale = isl_basic_map_universe(isl_space_copy(dim));
926 ls = isl_local_space_from_space(dim);
928 for (i = 0; i < gen->tiled_len; ++i) {
929 int f = 1;
931 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
932 f = gen->tile_size[i - gen->tile_first];
933 if (!gen->options->wrap)
934 f *= gen->grid_dim[i - gen->tile_first];
935 } else if (i >= gen->tile_first + gen->n_grid &&
936 i < gen->tile_first + gen->n_grid + gen->tile_len) {
937 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
940 c = isl_equality_alloc(isl_local_space_copy(ls));
941 isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
942 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
943 scale = isl_basic_map_add_constraint(scale, c);
946 isl_local_space_free(ls);
948 sched = isl_union_map_apply_range(sched,
949 isl_union_map_from_map(isl_map_from_basic_map(scale)));
951 return sched;
954 /* If we are not performing "wrapping" and if the user asked for it,
955 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
957 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
958 __isl_take isl_union_map *sched)
960 int i;
961 isl_space *dim;
962 isl_basic_map *scale;
963 isl_constraint *c;
964 isl_local_space *ls;
966 if (gen->options->wrap)
967 return sched;
968 if (!gen->options->scale_tile_loops)
969 return sched;
971 dim = isl_union_map_get_space(sched);
972 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
973 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
974 scale = isl_basic_map_universe(isl_space_copy(dim));
975 ls = isl_local_space_from_space(dim);
977 for (i = 0; i < gen->thread_tiled_len; ++i) {
978 int f = 1;
980 if (i >= gen->shared_len &&
981 i < gen->shared_len + gen->n_block)
982 f = gen->block_dim[i - gen->shared_len];
984 c = isl_equality_alloc(isl_local_space_copy(ls));
985 isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
986 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
987 scale = isl_basic_map_add_constraint(scale, c);
990 isl_local_space_free(ls);
992 sched = isl_union_map_apply_range(sched,
993 isl_union_map_from_map(isl_map_from_basic_map(scale)));
995 return sched;
998 /* If we are not performing "wrapping" and if the user asked for it,
999 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1001 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
1002 __isl_take isl_union_map *sched, int len, int first, int n_tile)
1004 int i;
1005 isl_space *dim;
1006 isl_basic_map *scale;
1007 isl_constraint *c;
1008 isl_local_space *ls;
1010 if (gen->options->wrap)
1011 return sched;
1012 if (!gen->options->scale_tile_loops)
1013 return sched;
1015 dim = isl_union_map_get_space(sched);
1016 dim = isl_space_add_dims(dim, isl_dim_in, len);
1017 dim = isl_space_add_dims(dim, isl_dim_out, len);
1018 scale = isl_basic_map_universe(isl_space_copy(dim));
1019 ls = isl_local_space_from_space(dim);
1021 for (i = 0; i < len; ++i) {
1022 int f = 1;
1024 if (i >= first && i < first + n_tile)
1025 f = gen->block_dim[i - first];
1027 c = isl_equality_alloc(isl_local_space_copy(ls));
1028 isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1029 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1030 scale = isl_basic_map_add_constraint(scale, c);
1033 isl_local_space_free(ls);
1035 sched = isl_union_map_apply_range(sched,
1036 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1038 return sched;
1041 /* Add "len" parameters p[i] called prefix%d,
1042 * with bounds to 0 <= p[i] < size[i].
1044 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1045 int len, int *size, const char *prefix)
1047 int i;
1048 unsigned nparam;
1049 isl_int v;
1050 isl_space *dim;
1051 isl_basic_set *bset;
1052 isl_constraint *c;
1053 isl_local_space *ls;
1054 char name[20];
1056 nparam = isl_set_dim(set, isl_dim_param);
1057 set = isl_set_add_dims(set, isl_dim_param, len);
1059 for (i = 0; i < len; ++i) {
1060 snprintf(name, sizeof(name), "%s%d", prefix, i);
1061 set = isl_set_set_dim_name(set, isl_dim_param,
1062 nparam + i, name);
1065 dim = isl_set_get_space(set);
1066 bset = isl_basic_set_universe(isl_space_copy(dim));
1067 ls = isl_local_space_from_space(dim);
1069 isl_int_init(v);
1071 for (i = 0; i < len; ++i) {
1072 c = isl_inequality_alloc(isl_local_space_copy(ls));
1073 isl_int_set_si(v, 1);
1074 isl_constraint_set_coefficient(c, isl_dim_param, nparam + i, v);
1075 bset = isl_basic_set_add_constraint(bset, c);
1077 c = isl_inequality_alloc(isl_local_space_copy(ls));
1078 isl_int_set_si(v, -1);
1079 isl_constraint_set_coefficient(c, isl_dim_param, nparam + i, v);
1080 isl_int_set_si(v, size[i] - 1);
1081 isl_constraint_set_constant(c, v);
1082 bset = isl_basic_set_add_constraint(bset, c);
1085 isl_int_clear(v);
1086 isl_local_space_free(ls);
1088 return isl_set_intersect(set, isl_set_from_basic_set(bset));
1091 /* Add "len" parameters p[i] called prefix%d,
1092 * with bounds to 0 <= p[i] < size[i].
1094 static __isl_give isl_set *add_bounded_parameters_dynamic(
1095 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1096 const char *prefix)
1098 int i, len;
1099 unsigned nparam;
1100 isl_space *space;
1101 isl_local_space *ls;
1102 char name[20];
1104 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1105 nparam = isl_set_dim(set, isl_dim_param);
1106 set = isl_set_add_dims(set, isl_dim_param, len);
1108 for (i = 0; i < len; ++i) {
1109 snprintf(name, sizeof(name), "%s%d", prefix, i);
1110 set = isl_set_set_dim_name(set, isl_dim_param,
1111 nparam + i, name);
1114 space = isl_space_params(isl_set_get_space(set));
1115 ls = isl_local_space_from_space(space);
1116 for (i = 0; i < len; ++i) {
1117 isl_pw_aff *param, *size_i, *zero;
1118 isl_set *bound;
1120 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1121 isl_dim_param, nparam + i);
1123 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1124 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1125 set = isl_set_intersect_params(set, bound);
1127 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1128 bound = isl_pw_aff_ge_set(param, zero);
1129 set = isl_set_intersect_params(set, bound);
1131 isl_local_space_free(ls);
1133 return set;
1136 /* Given a mapping "sched" of the form
1138 * [D -> A] -> [D -> T(A)]
1140 * apply the mapping encoded in bounds[i].shift_map to the range of "sched".
1141 * The mappings in bounds[i].shift_map are of the form
1143 * [D -> a] -> [D -> s(D,a)]
1145 * We first compose them with a mapping
1147 * [D -> v] -> v
1149 * (If bounds[i].shift_map is not set, then it is assumed to be
1150 * an identity mapping and then we use this second mapping instead.)
1151 * This results in
1153 * [D -> a] -> s(D,a)
1155 * We precompose them with a projection on the i th dimension to obtain
1157 * [D -> T] -> s(D,T)
1159 * and collect these into
1161 * [D -> T] -> S(D,T)
1163 * Introducing D in the range yields
1165 * [D -> T] -> [D -> S(D,T)]
1167 * and application to "sched" yields
1169 * [D -> A] -> [D -> S(D,T(A))]
1171 static __isl_give isl_map *pre_shift(__isl_take isl_map *sched,
1172 int n_index, struct gpu_array_bound *bounds)
1174 int i;
1175 isl_ctx *ctx = isl_map_get_ctx(sched);
1176 isl_space *space, *space2;
1177 isl_basic_map *def;
1178 isl_map *map, *id, *pre_shift;
1180 space = isl_space_range(isl_map_get_space(sched));
1181 space2 = isl_space_from_domain(isl_space_copy(space));
1182 pre_shift = isl_map_universe(space2);
1183 space = isl_space_domain(isl_space_unwrap(space));
1184 id = isl_map_identity(isl_space_map_from_set(isl_space_copy(space)));
1185 space = isl_space_from_domain(space);
1186 space = isl_space_add_dims(space, isl_dim_out, 1);
1187 def = isl_basic_map_range_map(isl_basic_map_universe(space));
1189 for (i = 0; i < n_index; ++i) {
1190 isl_basic_map *bmap, *drop;
1191 isl_map *proj;
1193 space = isl_space_alloc(ctx, 0, n_index, n_index);
1194 proj = isl_map_identity(space);
1195 proj = isl_map_project_out(proj, isl_dim_out,
1196 i + 1, n_index - (i + 1));
1197 proj = isl_map_project_out(proj, isl_dim_out, 0, i);
1198 proj = isl_map_product(isl_map_copy(id), proj);
1200 if (!bounds[i].shift_map)
1201 bmap = isl_basic_map_copy(def);
1202 else {
1203 bmap = isl_basic_map_copy(bounds[i].shift_map);
1204 bmap = isl_basic_map_apply_range(bmap,
1205 isl_basic_map_copy(def));
1208 map = isl_map_from_basic_map(bmap);
1209 map = isl_map_apply_range(proj, map);
1210 pre_shift = isl_map_flat_range_product(pre_shift, map);
1213 isl_map_free(id);
1214 isl_basic_map_free(def);
1216 space = isl_space_domain(isl_map_get_space(pre_shift));
1217 map = isl_map_domain_map(isl_map_universe(isl_space_unwrap(space)));
1218 pre_shift = isl_map_range_product(map, pre_shift);
1220 sched = isl_map_apply_range(sched, pre_shift);
1222 return sched;
1225 /* Given an access relation to a tile of an array, construct a map that
1226 * maps each element in the space of the access relation
1227 * to a copy of the tile shifted to the origin
1228 * (based on the lower bounds in group->private_bound or group->shared_bound).
1229 * If any of the indices is strided, then {private,shared}_bound[i].shift_map
1230 * is applied to the index first.
1231 * The domain space of the resulting map is that of access "access",
1232 * while the range space is anonymous.
1233 * The resulting map only encodes the mapping to the shift tile and
1234 * not the constraints of "access".
1236 * Let the space of the access relation be
1238 * D -> A
1240 * We first construct an identity relation on a wrapped copy of this space,
1241 * except that it strips off the name of array
1243 * [D -> A] -> [D -> T(A)] (1)
1245 * The bounds in bounds[i].lb are of the form
1247 * D -> b(D)
1249 * We collect them into
1251 * D -> B(D)
1253 * and then transform them into
1255 * [D -> T] -> T - B(D) (2)
1257 * Combining those two mappings (1) and (2) yields
1259 * [D -> A] -> T(A) - B(D)
1261 * If there are any strides, then (1) is first transformed into (1')
1263 * [D -> A] -> [D -> T'(A)] (1')
1265 * by a call to pre_shift.
1267 static __isl_give isl_map *shift_access(__isl_take isl_map *access,
1268 struct gpu_array_ref_group *group)
1270 int i;
1271 isl_space *space;
1272 isl_map *id1, *id2;
1273 isl_map *map;
1274 isl_map *shift;
1275 isl_map *sched;
1276 struct gpu_array_bound *bounds;
1277 int n_index = group->array->n_index;
1279 bounds = group->private_bound;
1280 if (!bounds)
1281 bounds = group->shared_bound;
1283 space = isl_space_domain(isl_map_get_space(access));
1284 space = isl_space_map_from_set(space);
1285 id1 = isl_map_identity(space);
1286 space = isl_space_range(isl_map_get_space(access));
1287 space = isl_space_map_from_set(space);
1288 space = isl_space_set_tuple_name(space, isl_dim_out, NULL);
1289 id2 = isl_map_identity(space);
1290 sched = isl_map_product(id1, id2);
1292 space = isl_space_unwrap(isl_space_range(isl_map_get_space(sched)));
1293 space = isl_space_from_domain(isl_space_domain(space));
1294 shift = isl_map_universe(space);
1295 for (i = 0; i < n_index; ++i) {
1296 map = isl_map_from_aff(isl_aff_copy(bounds[i].lb));
1297 shift = isl_map_flat_range_product(shift, map);
1300 space = isl_space_unwrap(isl_space_range(isl_map_get_space(sched)));
1301 map = isl_map_universe(space);
1302 id1 = isl_map_range_map(isl_map_copy(map));
1303 map = isl_map_domain_map(map);
1304 shift = isl_map_neg(shift);
1305 shift = isl_map_apply_range(map, shift);
1306 shift = isl_map_sum(id1, shift);
1308 for (i = 0; i < n_index; ++i)
1309 if (bounds[i].shift_map)
1310 break;
1312 if (i < n_index)
1313 sched = pre_shift(sched, n_index, bounds);
1315 sched = isl_map_apply_range(sched, shift);
1317 isl_map_free(access);
1319 return sched;
1322 /* Given a schedule that iterates over all elements in a piece of an array,
1323 * perform tiling/wrapping over the threads.
1325 * In particular, we tile the final iterators so that the final thread
1326 * dimension runs over the final array dimension.
1327 * However, if those final iterators have only a single iteration,
1328 * we try to tile earlier iterators instead.
1330 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1331 __isl_take isl_map *sched)
1333 isl_space *dim;
1334 isl_union_map *usched;
1335 isl_map *tiling;
1336 isl_set *par;
1337 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1338 int n_tile;
1339 int first;
1341 n_tile = gen->n_block;
1342 if (n_tile > nvar) {
1343 int i;
1344 sched = isl_map_insert_dims(sched,
1345 isl_dim_out, 0, n_tile - nvar);
1346 for (i = 0; i < n_tile - nvar; ++i)
1347 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1348 nvar = n_tile;
1351 first = nvar - n_tile;
1353 for (; first > 0; first --)
1354 if (!isl_map_plain_is_fixed(sched, isl_dim_out,
1355 first + n_tile - 1, NULL))
1356 break;
1358 dim = isl_map_get_space(sched);
1359 dim = isl_space_params(dim);
1360 if (gen->options->wrap)
1361 tiling = wrap(isl_space_copy(dim), nvar, first,
1362 n_tile, gen->block_dim);
1363 else
1364 tiling = tile(isl_space_copy(dim), nvar, first,
1365 n_tile, gen->block_dim);
1366 sched = isl_map_apply_range(sched, tiling);
1368 par = parametrization(dim, nvar + n_tile, first + n_tile, n_tile, "t");
1369 sched = isl_map_intersect_range(sched, par);
1371 usched = isl_union_map_from_map(sched);
1372 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1373 first, n_tile);
1374 sched = isl_map_from_union_map(usched);
1376 return sched;
1379 /* Given an index expression "pa" into a tile of an array, adjust the expression
1380 * to a shift of the tile to the origin
1381 * (based on the lower bounds in "bound".
1382 * If the index is strided, then we first add
1383 * bound->shift and divide by bound->stride.
1384 * In the end, we compute the gist with respect to "domain".
1386 * All of the input expression "pa", the set "domain" and
1387 * the output are expressed in terms of the AST schedule domain.
1388 * The expressions in "bound" are expressed
1389 * in terms of the first shared_len dimensions of the schedule computed by PPCG.
1390 * The mapping "sched2shared" maps the former domain to the latter domain.
1392 static __isl_give isl_pw_aff *shift_index(__isl_take isl_pw_aff *pa,
1393 struct gpu_array_info *array,
1394 struct gpu_array_bound *bound, __isl_take isl_set *domain,
1395 __isl_take isl_map *sched2shared)
1397 isl_map *map;
1398 isl_pw_aff *tmp;
1399 isl_pw_multi_aff *pma;
1401 if (bound->shift) {
1402 map = isl_map_from_aff(isl_aff_copy(bound->shift));
1403 map = isl_map_apply_range(isl_map_copy(sched2shared), map);
1404 pma = isl_pw_multi_aff_from_map(map);
1405 tmp = isl_pw_multi_aff_get_pw_aff(pma, 0);
1406 isl_pw_multi_aff_free(pma);
1407 pa = isl_pw_aff_add(pa, tmp);
1408 pa = isl_pw_aff_scale_down(pa, bound->stride);
1412 map = isl_map_from_aff(isl_aff_copy(bound->lb));
1413 map = isl_map_apply_range(sched2shared, map);
1414 pma = isl_pw_multi_aff_from_map(map);
1415 tmp = isl_pw_multi_aff_get_pw_aff(pma, 0);
1416 isl_pw_multi_aff_free(pma);
1417 pa = isl_pw_aff_sub(pa, tmp);
1418 pa = isl_pw_aff_coalesce(pa);
1419 pa = isl_pw_aff_gist(pa, domain);
1421 return pa;
1424 /* Return the union of all read (read = 1) and/or write (write = 1)
1425 * access relations in the group.
1427 static __isl_give isl_union_map *group_access_relation(
1428 struct gpu_array_ref_group *group, int read, int write)
1430 int i;
1431 isl_union_map *access;
1433 access = isl_union_map_empty(isl_map_get_space(group->access));
1434 for (i = 0; i < group->n_ref; ++i) {
1435 isl_map *map_i;
1437 if (!((read && group->refs[i]->read) ||
1438 (write && group->refs[i]->write)))
1439 continue;
1440 map_i = isl_map_copy(group->refs[i]->access);
1441 access = isl_union_map_union(access,
1442 isl_union_map_from_map(map_i));
1445 return access;
1448 /* Return a map from the first shared_len dimensions of the computed
1449 * schedule to the values of the given index "i"
1450 * of the elements in the array tile in global memory that corresponds
1451 * to the shared memory copy.
1452 * In particular, if a is the index, then the range of the map
1454 * { D -> [a] }
1456 * is constrained as follows
1458 * tile_offset(D) <= a <= tile_offset(D) + tile_size - 1 (1)
1460 * and
1462 * 0 <= a <= array_size - 1 (2)
1465 * Note that if some stride has been detected (i.e., when
1466 * group->shared_bound[i].shift is set), then offset and size (i.e.,
1467 * constraints (1)) apply to the shifted and scaled down copy of the tile.
1468 * These constraints therefore have to be mapped back to the original
1469 * array space using the inverse of the shift_map.
1471 static __isl_give isl_map *group_tile_dim(struct gpu_array_ref_group *group,
1472 int i)
1474 isl_aff *aff;
1475 isl_space *space;
1476 isl_map *map, *tile, *gt;
1477 isl_set *bound;
1479 map = isl_map_from_aff(isl_aff_copy(group->shared_bound[i].lb));
1480 space = isl_space_range(isl_map_get_space(map));
1481 map = isl_map_apply_range(map, isl_map_lex_le(isl_space_copy(space)));
1482 tile = map;
1484 aff = isl_aff_copy(group->shared_bound[i].lb);
1485 aff = isl_aff_add_constant(aff, group->shared_bound[i].size);
1486 map = isl_map_from_aff(aff);
1487 gt = isl_map_lex_gt(space);
1488 map = isl_map_apply_range(map, isl_map_copy(gt));
1489 tile = isl_map_intersect(tile, map);
1491 if (group->shared_bound[i].shift) {
1492 isl_basic_map *shift;
1493 shift = isl_basic_map_copy(group->shared_bound[i].shift_map);
1494 shift = isl_basic_map_reverse(shift);
1495 tile = isl_set_unwrap(isl_set_apply(isl_map_wrap(tile),
1496 isl_map_from_basic_map(shift)));
1499 tile = isl_map_lower_bound_si(tile, isl_dim_out, 0, 0);
1501 bound = isl_set_from_pw_aff(isl_pw_aff_copy(group->array->bound[i]));
1502 bound = isl_set_apply(bound, gt);
1503 tile = isl_map_intersect_range(tile, bound);
1505 return tile;
1508 /* Return a map from the first shared_len dimensions of the computed
1509 * schedule to the array tile in
1510 * global memory that corresponds to the shared memory copy.
1512 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1514 int i;
1515 int n_index = group->array->n_index;
1516 isl_map *tile;
1518 tile = group_tile_dim(group, 0);
1519 for (i = 1; i < n_index; ++i) {
1520 isl_map *tile_i;
1522 tile_i = group_tile_dim(group, i);
1523 tile = isl_map_flat_range_product(tile, tile_i);
1526 tile = isl_map_set_tuple_name(tile, isl_dim_out, group->array->name);
1528 return tile;
1531 /* Given a mapping "sched" from the AST schedule to a domain,
1532 * return the corresponding mapping from the AST schedule to
1533 * to the first shared_len dimensions of the schedule computed by PPCG.
1535 static __isl_give isl_map *compute_sched_to_shared(struct gpu_gen *gen,
1536 __isl_take isl_map *sched)
1538 isl_union_map *umap;
1539 isl_space *space;
1540 isl_map *map;
1542 space = isl_space_range(isl_map_get_space(sched));
1543 space = isl_space_from_domain(space);
1544 space = isl_space_add_dims(space, isl_dim_out, gen->shared_len);
1546 umap = isl_union_map_copy(gen->shared_sched);
1547 umap = isl_union_map_apply_range(umap,
1548 isl_union_map_copy(gen->shared_proj));
1549 map = isl_union_map_extract_map(umap, space);
1550 isl_union_map_free(umap);
1552 sched = isl_map_apply_range(sched, map);
1553 sched = isl_map_detect_equalities(sched);
1555 return sched;
1558 /* Set unroll[j] if the input dimension j is involved in
1559 * the index expression represented by bmap.
1561 static int check_unroll(__isl_take isl_basic_map *bmap, void *user)
1563 int i, j;
1564 int n_in = isl_basic_map_dim(bmap, isl_dim_in);
1565 int n_out = isl_basic_map_dim(bmap, isl_dim_out);
1566 int *unroll = user;
1568 for (i = 0; i < n_out; ++i) {
1569 isl_constraint *c;
1570 int ok;
1572 ok = isl_basic_map_has_defining_equality(bmap,
1573 isl_dim_out, i, &c);
1574 assert(ok);
1575 for (j = 0; j < n_in; ++j)
1576 if (isl_constraint_involves_dims(c, isl_dim_in, j, 1))
1577 unroll[j] = 1;
1578 isl_constraint_free(c);
1581 isl_basic_map_free(bmap);
1582 return 0;
1585 /* Given an array pos mapping input dimensions to the corresponding
1586 * output dimension, construct the corresponding map.
1588 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1589 int *pos, int len)
1591 int i;
1592 isl_constraint *c;
1593 isl_basic_map *bmap;
1594 isl_local_space *ls;
1596 dim = isl_space_add_dims(dim, isl_dim_in, len);
1597 dim = isl_space_add_dims(dim, isl_dim_out, len);
1598 bmap = isl_basic_map_universe(isl_space_copy(dim));
1599 ls = isl_local_space_from_space(dim);
1601 for (i = 0; i < len; ++i) {
1602 c = isl_equality_alloc(isl_local_space_copy(ls));
1603 isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
1604 isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i], 1);
1605 bmap = isl_basic_map_add_constraint(bmap, c);
1607 isl_local_space_free(ls);
1609 return isl_map_from_basic_map(bmap);
1612 /* Find all loops involved in any of the index expressions for any of
1613 * the private accesses, move them innermost and then mark them as
1614 * requiring unrolling by setting gen->first_unroll.
1615 * The loops involved should all be parallel because of the checks
1616 * we performed in check_private_group_access. Moving them innermost
1617 * is therefore a valid transformation.
1619 * Loops up to gen->shared_len are generated before the mapping to
1620 * threads is applied. They should therefore be ignored.
1622 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1623 __isl_take isl_union_map *sched)
1625 int i, j;
1626 int unroll[gen->thread_tiled_len];
1627 int perm[gen->thread_tiled_len];
1628 isl_space *dim;
1629 isl_map *permute;
1630 int len = gen->shared_len + gen->n_parallel + gen->n_block;
1632 gen->first_unroll = -1;
1634 for (i = 0; i < gen->thread_tiled_len; ++i)
1635 unroll[i] = 0;
1636 for (i = 0; i < gen->prog->n_array; ++i) {
1637 struct gpu_array_info *array = &gen->prog->array[i];
1639 for (j = 0; j < array->n_group; ++j) {
1640 isl_union_map *access;
1641 isl_map *acc;
1643 if (!array->groups[j]->private_bound)
1644 continue;
1646 access = group_access_relation(array->groups[j], 1, 1);
1647 access = isl_union_map_apply_domain(access,
1648 isl_union_map_copy(sched));
1650 acc = isl_map_from_union_map(access);
1651 isl_map_foreach_basic_map(acc, &check_unroll, unroll);
1653 isl_map_free(acc);
1657 for (i = gen->shared_len; i < len; ++i)
1658 if (unroll[i])
1659 break;
1661 if (i >= len)
1662 return sched;
1664 for (i = len; i < gen->thread_tiled_len; ++i)
1665 if (unroll[i])
1666 return sched;
1668 j = 0;
1669 for (i = 0; i < gen->shared_len; ++i)
1670 perm[i] = j++;
1671 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1672 if (!unroll[i])
1673 perm[i] = j++;
1674 gen->first_unroll = j - gen->shared_len;
1675 for (i = gen->shared_len; i < len; ++i)
1676 if (unroll[i])
1677 perm[i] = j++;
1679 dim = isl_union_map_get_space(sched);
1680 permute = permutation(dim, perm, gen->thread_tiled_len);
1681 sched = isl_union_map_apply_range(sched,
1682 isl_union_map_from_map(permute));
1684 return sched;
1687 /* Given a constraint
1689 * a(p,i) + j = g f(e)
1691 * or -a(p,i) - j = g f(e) if sign < 0,
1692 * store a(p,i) in bound->shift and g (stride) in bound->stride.
1693 * a(p,i) is assumed to be an expression in only the parameters
1694 * and the input dimensions.
1696 static void extract_stride(__isl_keep isl_constraint *c,
1697 struct gpu_array_bound *bound, isl_int stride, int sign)
1699 int i;
1700 isl_int v;
1701 isl_space *space;
1702 unsigned nparam;
1703 unsigned nvar;
1704 isl_aff *aff;
1706 isl_int_set(bound->stride, stride);
1708 space = isl_constraint_get_space(c);
1709 space = isl_space_domain(space);
1711 nparam = isl_space_dim(space, isl_dim_param);
1712 nvar = isl_space_dim(space, isl_dim_set);
1714 isl_int_init(v);
1716 isl_constraint_get_constant(c, &v);
1717 if (sign < 0)
1718 isl_int_neg(v, v);
1719 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1720 aff = isl_aff_set_constant(aff, v);
1722 for (i = 0; i < nparam; ++i) {
1723 isl_constraint_get_coefficient(c, isl_dim_param, i, &v);
1724 if (isl_int_is_zero(v))
1725 continue;
1726 if (sign < 0)
1727 isl_int_neg(v, v);
1728 aff = isl_aff_add_coefficient(aff, isl_dim_param, i, v);
1731 for (i = 0; i < nvar; ++i) {
1732 isl_constraint_get_coefficient(c, isl_dim_in, i, &v);
1733 if (isl_int_is_zero(v))
1734 continue;
1735 if (sign < 0)
1736 isl_int_neg(v, v);
1737 aff = isl_aff_add_coefficient(aff, isl_dim_in, i, v);
1740 isl_int_clear(v);
1742 bound->shift = aff;
1745 /* Given an equality constraint of a map with a single output dimension j,
1746 * check if the constraint is of the form
1748 * a(p,i) + j = g f(e)
1750 * with a(p,i) an expression in the parameters and input dimensions
1751 * and f(e) an expression in the existentially quantified variables.
1752 * If so, and if g is larger than any such g from a previously considered
1753 * constraint, then call extract_stride to record the stride information
1754 * in bound.
1756 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
1758 int i;
1759 isl_int v, stride;
1760 unsigned n_div;
1761 struct gpu_array_bound *bound = user;
1763 isl_int_init(v);
1764 isl_int_init(stride);
1766 n_div = isl_constraint_dim(c, isl_dim_div);
1767 isl_constraint_get_coefficient(c, isl_dim_out, 0, &v);
1769 if (n_div && (isl_int_is_one(v) || isl_int_is_negone(v))) {
1770 int s = isl_int_sgn(v);
1771 isl_int_set_si(stride, 0);
1772 for (i = 0; i < n_div; ++i) {
1773 isl_constraint_get_coefficient(c, isl_dim_div, i, &v);
1774 isl_int_gcd(stride, stride, v);
1776 if (!isl_int_is_zero(stride) &&
1777 isl_int_gt(stride, bound->stride))
1778 extract_stride(c, bound, stride, s);
1781 isl_int_clear(stride);
1782 isl_int_clear(v);
1784 isl_constraint_free(c);
1785 return 0;
1788 /* Given contraints on an array index i, check if we can find
1789 * a shift a(p) and a stride g such that
1791 * a(p) + i = 0 mod g
1793 * If so, record the information in bound and apply the mapping
1794 * i -> (i + a(p))/g to the array index in bounds and return
1795 * the new constraints.
1796 * If not, simply return the original constraints.
1798 * If bounds is a subset of the space
1800 * D -> i
1802 * then the bound recorded in bound->shift is of the form
1804 * D -> s(D)
1806 * with s(D) equal to a(p) above.
1807 * The mapping recorded in bound->shift_map is of the form
1809 * [D -> i] -> [D -> (i + S(D))/g]
1811 * This mapping is computed as follows.
1812 * We first introduce "i" in the domain through precomposition
1813 * with [D -> i] -> D obtaining
1815 * [D -> i] -> s(D)
1817 * Adding [D -> i] -> i produces
1819 * [D -> i] -> i + s(D)
1821 * and the domain product with [D -> i] -> D yields
1823 * [D -> i] -> [D -> i + s(D)]
1825 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
1827 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
1828 __isl_take isl_basic_map *bounds)
1830 isl_space *space;
1831 isl_basic_map *hull;
1832 isl_basic_map *shift, *id, *bmap, *scale;
1833 isl_basic_set *bset;
1834 isl_aff *aff;
1836 isl_int_set_si(bound->stride, -1);
1838 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
1840 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
1842 isl_basic_map_free(hull);
1844 if (isl_int_is_neg(bound->stride))
1845 return bounds;
1847 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
1848 space = isl_basic_map_get_space(bounds);
1849 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
1850 shift = isl_basic_map_apply_range(bmap, shift);
1851 space = isl_basic_map_get_space(bounds);
1852 id = isl_basic_map_range_map(isl_basic_map_universe(space));
1853 shift = isl_basic_map_sum(id, shift);
1854 space = isl_basic_map_get_space(bounds);
1855 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
1856 shift = isl_basic_map_range_product(id, shift);
1858 space = isl_space_domain(isl_basic_map_get_space(bounds));
1859 id = isl_basic_map_identity(isl_space_map_from_set(space));
1860 space = isl_space_range(isl_basic_map_get_space(bounds));
1861 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1862 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1863 aff = isl_aff_scale_down(aff, bound->stride);
1864 scale = isl_basic_map_from_aff(aff);
1865 scale = isl_basic_map_product(id, scale);
1867 bound->shift_map = isl_basic_map_apply_range(shift, scale);
1868 bmap = isl_basic_map_copy(bound->shift_map);
1869 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
1870 bounds = isl_basic_set_unwrap(bset);
1872 return bounds;
1875 /* Data used in compute_array_dim_size and compute_size_in_direction.
1877 * pos is the position of the variable representing the array index,
1878 * i.e., the variable for which want to compute the size. This variable
1879 * is also the last variable in the set.
1881 struct gpu_size_info {
1882 isl_basic_set *bset;
1883 struct gpu_array_bound *bound;
1884 int pos;
1887 /* Given a constraint from the basic set describing the bounds on
1888 * an array index, check if it is a lower bound, say m i >= b(x), and,
1889 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
1890 * upper bound. If so, and if this bound is smaller than any bound
1891 * derived from earlier constraints, set the size to this bound on
1892 * the expression and the lower bound to ceil(b(x)/m).
1894 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
1896 struct gpu_size_info *size = user;
1897 unsigned nparam;
1898 unsigned n_div;
1899 isl_int v;
1901 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
1902 n_div = isl_constraint_dim(c, isl_dim_div);
1904 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div)) {
1905 isl_constraint_free(c);
1906 return 0;
1909 isl_int_init(v);
1911 isl_constraint_get_coefficient(c, isl_dim_set, size->pos, &v);
1913 if (isl_int_is_pos(v)) {
1914 isl_aff *aff;
1915 isl_aff *lb;
1916 enum isl_lp_result res;
1918 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
1919 aff = isl_aff_ceil(aff);
1921 lb = isl_aff_copy(aff);
1923 aff = isl_aff_neg(aff);
1924 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
1926 res = isl_basic_set_max(size->bset, aff, &v);
1927 isl_aff_free(aff);
1929 if (res == isl_lp_ok) {
1930 isl_int_add_ui(v, v, 1);
1931 if (isl_int_is_neg(size->bound->size) ||
1932 isl_int_lt(v, size->bound->size)) {
1933 isl_int_set(size->bound->size, v);
1934 lb = isl_aff_drop_dims(lb, isl_dim_in,
1935 size->pos, 1);
1936 isl_aff_free(size->bound->lb);
1937 size->bound->lb = isl_aff_copy(lb);
1940 isl_aff_free(lb);
1943 isl_int_clear(v);
1944 isl_constraint_free(c);
1946 return 0;
1949 /* Given a basic map "bounds" that maps parameters and input dimensions
1950 * to a single output dimension, look for an expression in the parameters
1951 * and input dimensions such that the range of the output dimension shifted
1952 * by this expression is a constant.
1954 * In particular, we currently only consider lower bounds on the output
1955 * dimension as candidate expressions.
1957 static int compute_array_dim_size(struct gpu_array_bound *bound,
1958 __isl_take isl_basic_map *bounds)
1960 struct gpu_size_info size;
1962 bounds = isl_basic_map_detect_equalities(bounds);
1963 bounds = check_stride(bound, bounds);
1965 isl_int_set_si(bound->size, -1);
1966 bound->lb = NULL;
1968 size.bound = bound;
1969 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
1970 size.bset = isl_basic_map_wrap(bounds);
1971 size.bset = isl_basic_set_flatten(size.bset);
1972 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
1973 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
1974 &size);
1975 isl_basic_set_free(size.bset);
1977 return isl_int_is_nonneg(bound->size) ? 0 : -1;
1980 /* Check if we can find a shared memory tile for the given array
1981 * based on the given accesses, and if so, put the results
1982 * in array->shared_bound.
1984 * We project the accesses on each index in turn and look for a parametric
1985 * offset such that the size is constant.
1987 static int can_tile_for_shared_memory(struct gpu_array_info *array,
1988 __isl_keep isl_map *access, struct gpu_array_bound *bounds)
1990 int i;
1992 for (i = 0; i < array->n_index; ++i) {
1993 isl_map *access_i;
1994 isl_basic_map *hull;
1996 access_i = isl_map_copy(access);
1997 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
1998 access_i = isl_map_project_out(access_i, isl_dim_out,
1999 1, array->n_index - (i + 1));
2000 access_i = isl_map_compute_divs(access_i);
2001 hull = isl_map_simple_hull(access_i);
2002 if (compute_array_dim_size(&bounds[i], hull) < 0)
2003 return 0;
2006 return 1;
2009 /* Construct a map with input the shared tile loops and the loops that
2010 * will be wrapped around the threads that relates these later loops
2011 * to the thread indices and then projects them out.
2013 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
2015 isl_map *priv;
2016 isl_map *tiling;
2017 isl_map *proj;
2018 isl_set *par;
2019 isl_space *dim;
2021 dim = isl_union_map_get_space(gen->shared_sched);
2023 if (gen->options->wrap)
2024 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
2025 gen->shared_len, gen->n_block, gen->block_dim);
2026 else
2027 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
2028 gen->shared_len, gen->n_block, gen->block_dim);
2030 priv = tiling;
2032 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
2033 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
2034 gen->n_block, "t");
2036 priv = isl_map_align_params(priv, isl_set_get_space(par));
2037 priv = isl_map_intersect_range(priv, par);
2039 dim = isl_map_get_space(priv);
2040 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
2041 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
2042 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
2043 gen->shared_len);
2045 priv = isl_map_apply_range(priv, proj);
2047 return priv;
2050 /* Construct a map from domain_dim to domain_dim that increments
2051 * the dimension at position "pos" and leaves all other dimensions
2052 * constant.
2054 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
2056 int i;
2057 int len = isl_space_dim(domain_dim, isl_dim_set);
2058 isl_space *dim;
2059 isl_basic_map *next;
2060 isl_local_space *ls;
2062 dim = isl_space_map_from_set(domain_dim);
2063 next = isl_basic_map_universe(isl_space_copy(dim));
2064 ls = isl_local_space_from_space(dim);
2066 for (i = 0; i < len; ++i) {
2067 isl_constraint *c;
2069 c = isl_equality_alloc(isl_local_space_copy(ls));
2070 isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
2071 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
2072 if (i == pos)
2073 isl_constraint_set_constant_si(c, 1);
2074 next = isl_basic_map_add_constraint(next, c);
2077 isl_local_space_free(ls);
2079 return isl_map_from_basic_map(next);
2082 /* Check if the given access is coalesced.
2083 * That is, check whether incrementing the dimension that will get
2084 * wrapped over the last thread index results in incrementing
2085 * the last array index.
2087 * This function is only called for access relations without reuse.
2089 static int access_is_coalesced(struct gpu_gen *gen,
2090 __isl_keep isl_union_map *access)
2092 isl_space *dim;
2093 isl_map *access_map;
2094 isl_map *next_thread_x;
2095 isl_map *next_element;
2096 isl_map *map;
2097 int coalesced;
2099 access = isl_union_map_copy(access);
2100 access = isl_union_map_apply_domain(access,
2101 isl_union_map_copy(gen->tiled_sched));
2102 access_map = isl_map_from_union_map(access);
2104 dim = isl_map_get_space(access_map);
2105 dim = isl_space_domain(dim);
2106 next_thread_x = next(dim, gen->shared_len + gen->n_block - 1);
2108 dim = isl_map_get_space(access_map);
2109 dim = isl_space_range(dim);
2110 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
2112 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
2113 map = isl_map_apply_range(map, access_map);
2115 coalesced = isl_map_is_subset(map, next_element);
2117 isl_map_free(next_element);
2118 isl_map_free(map);
2120 return coalesced;
2123 /* Given an access relation in terms of the first gen->shared_len + gen->n_block
2124 * dimensions of the computed schedule, check if it is bijective for
2125 * fixed values of the first gen->shared_len dimensions.
2126 * We perform this check by equating these dimensions to parameters.
2128 static int access_is_bijective(struct gpu_gen *gen, __isl_keep isl_map *access)
2130 int res;
2131 isl_set *par;
2132 isl_space *space;
2134 access = isl_map_copy(access);
2135 space = isl_space_params(isl_map_get_space(access));
2136 par = parametrization(space, gen->shared_len + gen->n_block,
2137 0, gen->shared_len, "s");
2138 access = isl_map_intersect_domain(access, par);
2139 res = isl_map_is_bijective(access);
2140 isl_map_free(access);
2142 return res;
2145 /* For the given array reference group, check whether the access is private
2146 * to the thread. That is, check that any given array element
2147 * is only accessed by a single thread.
2148 * We compute an access relation that maps the shared tile loop iterators
2149 * and the shared point loop iterators that will be wrapped over the
2150 * threads to the array elements.
2151 * We actually check that those iterators that will be wrapped
2152 * partition the array space. This check is stricter than necessary
2153 * since several iterations may be mapped onto the same thread
2154 * and then they could be allowed to access the same memory elements,
2155 * but our check does not allow this situation.
2157 * We also check that the index expression only depends on parallel
2158 * loops. That way, we can move those loops innermost and unroll them.
2159 * Again, we use a test that is stricter than necessary.
2160 * We actually check whether the index expression only depends
2161 * on the iterators that are wrapped over the threads.
2162 * These are necessarily parallel, but there may be more parallel loops.
2164 * Combining the injectivity of the first test with the single-valuedness
2165 * of the second test, we simply test for bijectivity.
2167 * If it turns out we can use registers, we compute the private memory
2168 * tile size using can_tile_for_shared_memory, after introducing a dependence
2169 * on the thread indices.
2171 * Before performing any of the above computations, we first check
2172 * if there is any reuse on the reference group. If not, we simply
2173 * return. If, moreover, the access is coalesced then we also remove
2174 * the shared memory tiling since we should just use global memory instead.
2176 static void check_private_group_access(struct gpu_gen *gen,
2177 struct gpu_array_ref_group *group)
2179 isl_map *acc;
2180 isl_union_map *access;
2181 int n_index = group->array->n_index;
2183 access = group_access_relation(group, 1, 1);
2184 if (isl_union_map_is_injective(access)) {
2185 if (group->shared_bound && access_is_coalesced(gen, access)) {
2186 free_bound_list(group->shared_bound, n_index);
2187 group->shared_bound = NULL;
2189 isl_union_map_free(access);
2190 return;
2192 access = isl_union_map_apply_domain(access,
2193 isl_union_map_copy(gen->shared_sched));
2195 acc = isl_map_from_union_map(access);
2197 if (!access_is_bijective(gen, acc)) {
2198 isl_map_free(acc);
2199 return;
2202 group->private_bound = create_bound_list(gen->ctx, n_index);
2203 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
2204 if (!can_tile_for_shared_memory(group->array, acc,
2205 group->private_bound)) {
2206 free_bound_list(group->private_bound, n_index);
2207 group->private_bound = NULL;
2210 isl_map_free(acc);
2213 /* Look for the last shared tile loop that affects the offset of the
2214 * shared or private tile and store the result in array->last_shared.
2215 * If there is no such loop, then array->last_shared is set to a value
2216 * before the first shared tile loop, in particular gen->tile_first - 1.
2218 static void set_last_shared(struct gpu_gen *gen,
2219 struct gpu_array_ref_group *group)
2221 int i, j;
2222 struct gpu_array_bound *bounds;
2223 int n_index = group->array->n_index;
2225 bounds = group->private_bound;
2226 if (!bounds)
2227 bounds = group->shared_bound;
2228 if (!bounds)
2229 return;
2231 for (j = gen->shared_len - 1; j >= gen->tile_first; --j) {
2232 for (i = 0; i < n_index; ++i) {
2233 isl_aff *lb;
2234 isl_aff *shift;
2236 lb = bounds[i].lb;
2237 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
2238 break;
2240 shift = bounds[i].shift;
2241 if (!shift)
2242 continue;
2243 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
2244 break;
2246 if (i < n_index)
2247 break;
2249 group->last_shared = j;
2252 /* Compute the sizes of all private arrays for the current kernel,
2253 * as well as the offsets of the private pieces in the original arrays.
2254 * If we cannot or don't want to privatize a given array group,
2255 * we use the shared memory tile sizes computed in
2256 * compute_group_shared_bound instead.
2258 * If we have been able to find a private or shared tile,
2259 * we also look for the last shared tile loop that affects the offset
2260 * (and therefore the group tile) and store the result in group->last_shared.
2262 * A privatized copy of all access relations from reference groups that
2263 * are mapped to private memory is stored in gen->privatization.
2265 static void compute_private_size(struct gpu_gen *gen)
2267 int i, j;
2268 isl_union_map *private;
2270 if (!gen->options->use_private_memory)
2271 return;
2273 private = isl_union_map_empty(isl_union_map_get_space(gen->shared_sched));
2275 for (i = 0; i < gen->prog->n_array; ++i) {
2276 struct gpu_array_info *array = &gen->prog->array[i];
2278 if (gpu_array_is_read_only_scalar(array))
2279 continue;
2281 for (j = 0; j < array->n_group; ++j) {
2282 check_private_group_access(gen, array->groups[j]);
2284 if (!array->groups[j]->private_bound)
2285 continue;
2287 private = isl_union_map_union(private,
2288 group_access_relation(array->groups[j], 1, 1));
2291 for (j = 0; j < array->n_group; ++j) {
2292 array->groups[j]->last_shared = gen->shared_len - 1;
2293 set_last_shared(gen, array->groups[j]);
2297 if (isl_union_map_is_empty(private))
2298 isl_union_map_free(private);
2299 else {
2300 isl_union_map *priv;
2302 private = isl_union_map_apply_domain(private,
2303 isl_union_map_copy(gen->shared_sched));
2304 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
2305 private = isl_union_map_apply_domain(private, priv);
2306 gen->private_access = private;
2310 /* Compute the size of the tile specified by the list "bound" of n_index
2311 * gpu_array_bounds in number of elements and put the result in *size.
2313 static void tile_size(unsigned n_index, struct gpu_array_bound *bound,
2314 isl_int *size)
2316 int i;
2318 isl_int_set_si(*size, 1);
2320 for (i = 0; i < n_index; ++i)
2321 isl_int_mul(*size, *size, bound[i].size);
2324 /* If max_shared_memory is not set to infinity (-1), then make
2325 * sure that the total amount of shared memory required by the
2326 * array reference groups mapped to shared memory is no larger
2327 * than this maximum.
2329 * We apply a greedy approach and discard (keep in global memory)
2330 * those groups that would result in a total memory size that
2331 * is larger than the maximum.
2333 static void check_shared_memory_bound(struct gpu_gen *gen)
2335 int i, j;
2336 isl_int left, size;
2338 if (gen->options->max_shared_memory < 0)
2339 return;
2341 isl_int_init(left);
2342 isl_int_init(size);
2343 isl_int_set_si(left, gen->options->max_shared_memory);
2345 for (i = 0; i < gen->prog->n_array; ++i) {
2346 struct gpu_array_info *array = &gen->prog->array[i];
2348 for (j = 0; j < array->n_group; ++j) {
2349 struct gpu_array_ref_group *group;
2351 group = array->groups[j];
2352 if (!group->shared_bound)
2353 continue;
2355 tile_size(array->n_index, group->shared_bound, &size);
2356 isl_int_mul_ui(size, size, array->size);
2358 if (isl_int_le(size, left)) {
2359 isl_int_sub(left, left, size);
2360 continue;
2363 free_bound_list(group->shared_bound, array->n_index);
2364 group->shared_bound = NULL;
2368 isl_int_clear(size);
2369 isl_int_clear(left);
2372 /* Fill up the groups array with singleton groups, i.e., one group
2373 * per reference, initializing the array, access, write and refs fields.
2374 * In particular the access field is initialized to the scheduled
2375 * access relation of the array reference.
2377 * Return the number of elements initialized, i.e., the number of
2378 * active references in the current kernel.
2380 static int populate_array_references(struct gpu_array_info *array,
2381 __isl_keep isl_union_map *sched, struct gpu_array_ref_group **groups)
2383 int i;
2384 int n;
2385 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2387 n = 0;
2388 for (i = 0; i < array->n_ref; ++i) {
2389 isl_union_map *umap;
2390 isl_map *map;
2391 struct gpu_array_ref_group *group;
2392 struct gpu_stmt_access *access = array->refs[i];
2394 map = isl_map_copy(access->access);
2395 umap = isl_union_map_from_map(map);
2396 umap = isl_union_map_apply_domain(umap,
2397 isl_union_map_copy(sched));
2399 if (isl_union_map_is_empty(umap)) {
2400 isl_union_map_free(umap);
2401 continue;
2404 map = isl_map_from_union_map(umap);
2405 map = isl_map_detect_equalities(map);
2407 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2408 assert(group);
2409 group->array = array;
2410 group->access = map;
2411 group->write = access->write;
2412 group->refs = &array->refs[i];
2414 groups[n++] = group;
2417 return n;
2420 static void free_array_ref_group(struct gpu_array_ref_group *group,
2421 int n_index)
2423 if (!group)
2424 return;
2425 free_bound_list(group->shared_bound, n_index);
2426 free_bound_list(group->private_bound, n_index);
2427 isl_map_free(group->access);
2428 free(group->refs);
2429 free(group);
2432 /* Given a map where the input dimensions represent the tile loops,
2433 * eliminate the innermost of those that have a fixed value
2434 * until we reach one that does not (obviously) have a fixed value.
2436 static __isl_give isl_map *eliminate_fixed_inner_loops(
2437 __isl_take isl_map *access)
2439 int i, n;
2441 n = isl_map_dim(access, isl_dim_in);
2443 for (i = n - 1; i >= 0; --i) {
2444 if (!isl_map_plain_is_fixed(access, isl_dim_in, i, NULL))
2445 break;
2446 access = isl_map_eliminate(access, isl_dim_in, i, 1);
2448 return access;
2451 /* Check if the access relations of group1 and group2 overlap within
2452 * the innermost loop. In particular, ignore any inner dimension
2453 * with a fixed value.
2454 * The copying to and from shared memory will be performed within
2455 * the innermost actual loop so we are only allowed to consider
2456 * the dimensions up to that innermost loop while checking whether
2457 * two access relations overlap.
2459 static int accesses_overlap(struct gpu_array_ref_group *group1,
2460 struct gpu_array_ref_group *group2)
2462 int empty;
2463 isl_map *access1, *access2;
2465 access1 = isl_map_copy(group1->access);
2466 access1 = eliminate_fixed_inner_loops(access1);
2467 access2 = isl_map_copy(group2->access);
2468 access2 = eliminate_fixed_inner_loops(access2);
2469 access1 = isl_map_intersect(access1, access2);
2470 empty = isl_map_is_empty(access1);
2471 isl_map_free(access1);
2473 return !empty;
2476 /* If two groups have overlapping access relations (within the innermost
2477 * loop) and if one of them involves a write, then merge the two groups
2478 * into one.
2480 * We keep track of the grouping in "leader". leader[j] points to
2481 * an earlier group array element that belongs to the same group,
2482 * or the array element j itself if this element is the first in the group.
2484 * Return the number of group leaders.
2486 static int group_overlapping_writes(int n,
2487 struct gpu_array_ref_group **groups, int *leader)
2489 int i, j;
2490 int n_group = n;
2492 for (i = 0; i < n; ++i) {
2493 int l = i;
2494 groups[l]->n_ref = 1;
2495 for (j = i - 1; j >= 0; --j) {
2496 if (leader[j] != j)
2497 continue;
2498 if (!groups[l]->write && !groups[j]->write)
2499 continue;
2501 if (!accesses_overlap(groups[l], groups[j]))
2502 continue;
2504 groups[j]->access = isl_map_union(groups[j]->access,
2505 groups[l]->access);
2506 groups[j]->write = 1;
2507 groups[l]->access = NULL;
2508 groups[j]->n_ref += groups[l]->n_ref;
2509 l = leader[l] = j;
2510 n_group--;
2512 leader[i] = l;
2515 return n_group;
2518 /* Compute the size of the shared array corresponding to the given
2519 * array reference group, based on the accesses from the current kernel,
2520 * as well as the offset of the shared piece in the original array.
2522 static void compute_group_shared_bound(struct gpu_gen *gen,
2523 struct gpu_array_info *array, struct gpu_array_ref_group *group)
2525 isl_ctx *ctx = isl_space_get_ctx(array->dim);
2527 if (!gen->options->use_shared_memory)
2528 return;
2529 if (gpu_array_is_read_only_scalar(array))
2530 return;
2532 group->shared_bound = create_bound_list(ctx, array->n_index);
2533 if (!can_tile_for_shared_memory(array, group->access,
2534 group->shared_bound)) {
2535 free_bound_list(group->shared_bound, array->n_index);
2536 group->shared_bound = NULL;
2540 /* Is the size of the tile specified by "bound" smaller than the sum of
2541 * the sizes of the tiles specified by "bound1" and "bound2"?
2543 static int smaller_tile(unsigned n_index, struct gpu_array_bound *bound,
2544 struct gpu_array_bound *bound1, struct gpu_array_bound *bound2)
2546 int smaller;
2547 isl_int size, size1, size2;
2549 isl_int_init(size);
2550 isl_int_init(size1);
2551 isl_int_init(size2);
2553 tile_size(n_index, bound, &size);
2554 tile_size(n_index, bound1, &size1);
2555 tile_size(n_index, bound2, &size2);
2557 isl_int_sub(size, size, size1);
2558 isl_int_sub(size, size, size2);
2559 smaller = isl_int_is_neg(size);
2561 isl_int_clear(size2);
2562 isl_int_clear(size1);
2563 isl_int_clear(size);
2565 return smaller;
2568 /* Given an initial grouping of array references and shared memory tiles
2569 * for each group that allows for a shared memory tile, merge two groups
2570 * if both have a shared memory tile, the merged group also has
2571 * a shared memory tile and the size of the tile for the merge group
2572 * is smaller than the sum of the tile sizes of the individual groups.
2574 * Return the number of group leaders after merging.
2576 static int group_common_shared_memory_tile(struct gpu_array_info *array, int n,
2577 struct gpu_array_ref_group **groups, int *leader, int n_group)
2579 int i, j;
2580 isl_ctx *ctx = isl_space_get_ctx(array->dim);
2582 for (i = 0; n_group > 1 && i < n; ++i) {
2583 int l = i;
2584 if (leader[i] != i)
2585 continue;
2586 if (!groups[i]->shared_bound)
2587 continue;
2588 for (j = i - 1; j >= 0; --j) {
2589 isl_map *map;
2590 int empty;
2591 struct gpu_array_bound *shared_bound;
2593 if (leader[j] != j)
2594 continue;
2595 if (!groups[j]->shared_bound)
2596 continue;
2598 map = isl_map_intersect(isl_map_copy(groups[l]->access),
2599 isl_map_copy(groups[j]->access));
2600 empty = isl_map_is_empty(map);
2601 isl_map_free(map);
2603 if (empty)
2604 continue;
2606 map = isl_map_union(isl_map_copy(groups[l]->access),
2607 isl_map_copy(groups[j]->access));
2608 shared_bound = create_bound_list(ctx, array->n_index);
2609 if (!can_tile_for_shared_memory(array, map,
2610 shared_bound) ||
2611 !smaller_tile(array->n_index, shared_bound,
2612 groups[l]->shared_bound,
2613 groups[j]->shared_bound)) {
2614 isl_map_free(map);
2615 free_bound_list(shared_bound, array->n_index);
2616 continue;
2619 free_bound_list(groups[j]->shared_bound,
2620 array->n_index);
2621 groups[j]->shared_bound = shared_bound;
2622 isl_map_free(groups[j]->access);
2623 groups[j]->access = map;
2624 groups[j]->n_ref += groups[l]->n_ref;
2625 l = leader[l] = j;
2626 n_group--;
2630 return n_group;
2633 /* Extract an array of array reference groups from the array of references
2634 * and the grouping information in "leader".
2636 * Store the results in array->n_group and array->groups.
2638 static void extract_array_groups(isl_ctx *ctx, struct gpu_array_info *array,
2639 int n, struct gpu_array_ref_group **groups, int *leader, int n_group)
2641 int i, j;
2643 for (i = 2; i < n; ++i)
2644 leader[i] = leader[leader[i]];
2646 array->n_group = n_group;
2647 array->groups = isl_alloc_array(ctx, struct gpu_array_ref_group *,
2648 n_group);
2649 assert(array->groups);
2651 j = 0;
2652 for (i = 0; i < n; ++i) {
2653 int k, l;
2654 struct gpu_stmt_access **refs;
2656 if (leader[i] != i) {
2657 groups[i]->refs = NULL;
2658 free_array_ref_group(groups[i], array->n_index);
2659 continue;
2662 refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
2663 groups[i]->n_ref);
2664 assert(refs);
2665 l = 0;
2666 for (k = i; k < n; ++k)
2667 if (leader[k] == i) {
2668 refs[l++] = *groups[k]->refs;
2669 (*groups[k]->refs)->group = j;
2672 groups[i]->refs = refs;
2673 groups[i]->nr = j;
2674 array->groups[j++] = groups[i];
2678 /* Group array references that should be considered together when
2679 * deciding whether to access them from private, shared or global memory.
2681 * In particular, if two array references overlap and if one of them
2682 * is a write, then the two references are grouped together.
2683 * Furthermore, if two groups admit a shared memory tile and if the
2684 * combination of the two also admits a shared memory tile, we merge
2685 * the two groups.
2687 * During the construction the group->refs field points to a single
2688 * array reference inside the array of array references, while
2689 * group->n_ref contains the number of element in leader that
2690 * (directly or indirectly) point to this group, provided the group
2691 * is a leader.
2693 static void group_array_references(struct gpu_gen *gen,
2694 struct gpu_array_info *array, __isl_keep isl_union_map *sched)
2696 int i;
2697 int n, n_group;
2698 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2699 struct gpu_array_ref_group **groups;
2700 int *leader;
2702 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
2703 array->n_ref);
2704 assert(groups);
2706 n = populate_array_references(array, sched, groups);
2708 leader = isl_alloc_array(ctx, int, n);
2709 assert(leader);
2711 n_group = group_overlapping_writes(n, groups, leader);
2713 for (i = 0; i < n; ++i)
2714 if (leader[i] == i)
2715 compute_group_shared_bound(gen, array, groups[i]);
2717 n_group = group_common_shared_memory_tile(array, n, groups,
2718 leader, n_group);
2720 extract_array_groups(ctx, array, n, groups, leader, n_group);
2722 free(leader);
2723 free(groups);
2726 /* Take tiled_sched, project it onto the shared tile loops and
2727 * the loops that will be wrapped over the threads and
2728 * store the result in gen->shared_sched.
2729 * Also compute a projection that projects out the loops that will be
2730 * wrapped over the threads and store this projection in gen->shared_proj.
2732 static void compute_shared_sched(struct gpu_gen *gen)
2734 isl_space *dim;
2735 isl_map *proj;
2736 isl_set *par;
2737 isl_union_map *sched;
2739 sched = isl_union_map_copy(gen->tiled_sched);
2741 dim = isl_union_map_get_space(sched);
2742 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
2743 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
2745 dim = isl_union_map_get_space(sched);
2746 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
2748 gen->shared_sched = sched;
2749 gen->shared_proj = isl_union_map_from_map(proj);
2752 /* Group references of all arrays in the program.
2754 static void group_references(struct gpu_gen *gen)
2756 int i;
2757 isl_union_map *sched;
2759 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
2760 isl_union_map_copy(gen->shared_proj));
2762 for (i = 0; i < gen->prog->n_array; ++i)
2763 group_array_references(gen, &gen->prog->array[i], sched);
2765 isl_union_map_free(sched);
2768 /* Free all array information that is local to the current kernel.
2770 static void free_local_array_info(struct gpu_gen *gen)
2772 int i, j;
2774 for (i = 0; i < gen->prog->n_array; ++i) {
2775 struct gpu_array_info *array = &gen->prog->array[i];
2777 for (j = 0; j < array->n_group; ++j)
2778 free_array_ref_group(array->groups[j], array->n_index);
2779 free(array->groups);
2783 /* Compute the effective grid size as a list of the sizes in each dimension.
2785 * The grid size specified by the user or set by default
2786 * in read_grid_sizes() and applied in tile_schedule(),
2787 * may be too large for the given code in the sense that
2788 * it may contain blocks that don't need to execute anything.
2789 * We therefore don't return this grid size, but instead the
2790 * smallest grid size that ensures that all blocks that actually
2791 * execute code are included in the grid.
2793 * We first extract a description of the grid, i.e., the possible values
2794 * of the block ids, from gen->tiled_sched.
2795 * The block ids are parameters in gen->tiled_sched.
2796 * We simply need to change them into set dimensions.
2798 * Then, for each block dimension, we compute the maximal value of the block id
2799 * and add one.
2801 static __isl_give isl_multi_pw_aff *extract_grid_size(struct gpu_gen *gen,
2802 struct ppcg_kernel *kernel)
2804 int i;
2805 isl_set *grid;
2806 isl_multi_pw_aff *mpa;
2808 grid = isl_union_map_params(isl_union_map_copy(gen->tiled_sched));
2809 grid = isl_set_from_params(grid);
2810 grid = isl_set_add_dims(grid, isl_dim_set, gen->n_grid);
2811 for (i = 0; i < gen->n_grid; ++i) {
2812 int pos;
2813 char name[20];
2815 snprintf(name, sizeof(name), "b%d", i);
2816 pos = isl_set_find_dim_by_name(grid, isl_dim_param, name);
2817 assert(pos >= 0);
2818 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
2819 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
2822 mpa = isl_multi_pw_aff_zero(isl_set_get_space(grid));
2823 for (i = 0; i < gen->n_grid; ++i) {
2824 isl_space *space;
2825 isl_aff *one;
2826 isl_pw_aff *bound;
2828 bound = isl_set_dim_max(isl_set_copy(grid), i);
2829 bound = isl_pw_aff_coalesce(bound);
2830 bound = isl_pw_aff_gist(bound, isl_set_copy(kernel->context));
2832 space = isl_pw_aff_get_domain_space(bound);
2833 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2834 one = isl_aff_add_constant_si(one, 1);
2835 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
2836 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
2838 isl_set_free(grid);
2840 return mpa;
2843 void ppcg_kernel_free(void *user)
2845 struct ppcg_kernel *kernel = user;
2846 int i;
2848 if (!kernel)
2849 return;
2851 isl_multi_pw_aff_free(kernel->grid_size);
2852 isl_set_free(kernel->context);
2853 isl_union_set_free(kernel->arrays);
2854 isl_space_free(kernel->space);
2855 isl_ast_node_free(kernel->tree);
2857 for (i = 0; i < kernel->n_array; ++i)
2858 isl_pw_aff_list_free(kernel->array[i].bound);
2859 free(kernel->array);
2861 for (i = 0; i < kernel->n_var; ++i) {
2862 free(kernel->var[i].name);
2863 isl_vec_free(kernel->var[i].size);
2865 free(kernel->var);
2867 free(kernel);
2870 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
2871 struct ppcg_kernel_var *var)
2873 int j;
2874 struct gpu_array_bound *bounds;
2875 isl_printer *p;
2876 char *name;
2878 var->array = group->array;
2880 bounds = group->private_bound;
2881 var->type = ppcg_access_private;
2882 if (!bounds) {
2883 bounds = group->shared_bound;
2884 var->type = ppcg_access_shared;
2887 p = isl_printer_to_str(ctx);
2888 p = print_array_name(p, group);
2889 var->name = isl_printer_get_str(p);
2890 isl_printer_free(p);
2892 var->size = isl_vec_alloc(ctx, group->array->n_index);
2894 for (j = 0; j < group->array->n_index; ++j)
2895 var->size = isl_vec_set_element(var->size, j, bounds[j].size);
2898 static void create_kernel_vars(struct gpu_gen *gen, struct ppcg_kernel *kernel)
2900 int i, j, n;
2902 n = 0;
2903 for (i = 0; i < gen->prog->n_array; ++i) {
2904 struct gpu_array_info *array = &gen->prog->array[i];
2906 for (j = 0; j < array->n_group; ++j) {
2907 struct gpu_array_ref_group *group = array->groups[j];
2908 if (group->private_bound || group->shared_bound)
2909 ++n;
2913 kernel->n_var = n;
2914 kernel->var = isl_calloc_array(gen->ctx, struct ppcg_kernel_var, n);
2915 assert(kernel->var);
2917 n = 0;
2918 for (i = 0; i < gen->prog->n_array; ++i) {
2919 struct gpu_array_info *array = &gen->prog->array[i];
2921 for (j = 0; j < array->n_group; ++j) {
2922 struct gpu_array_ref_group *group = array->groups[j];
2923 if (!group->private_bound && !group->shared_bound)
2924 continue;
2925 create_kernel_var(gen->ctx, group, &kernel->var[n]);
2926 ++n;
2931 /* The sizes of the arrays on the host that have been computed by
2932 * extract_array_info may depend on the parameters. Use the extra
2933 * constraints on the parameters that are valid at "host_domain"
2934 * to simplify these expressions and store the results in kernel->array.
2936 static void localize_bounds(struct gpu_gen *gen, struct ppcg_kernel *kernel,
2937 __isl_keep isl_set *host_domain)
2939 int i, j;
2940 isl_set *context;
2942 kernel->array = isl_calloc_array(gen->ctx,
2943 struct gpu_local_array_info, gen->prog->n_array);
2944 assert(kernel->array);
2945 kernel->n_array = gen->prog->n_array;
2947 context = isl_set_copy(host_domain);
2948 context = isl_set_params(context);
2950 for (i = 0; i < gen->prog->n_array; ++i) {
2951 struct gpu_array_info *array = &gen->prog->array[i];
2952 isl_pw_aff_list *local;
2954 if (array->n_group == 0)
2955 continue;
2957 local = isl_pw_aff_list_alloc(gen->ctx, array->n_index);
2959 for (j = 0; j < array->n_index; ++j) {
2960 isl_pw_aff *pwaff;
2962 pwaff = isl_pw_aff_copy(array->bound[j]);
2963 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
2964 local = isl_pw_aff_list_add(local, pwaff);
2967 kernel->array[i].bound = local;
2969 isl_set_free(context);
2972 /* Find the element in gen->stmt that has the given "id".
2973 * Return NULL if no such gpu_stmt can be found.
2975 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
2977 int i;
2979 for (i = 0; i < prog->n_stmts; ++i) {
2980 if (id == prog->stmts[i].id)
2981 break;
2984 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
2987 /* Set gen->tile_len and gen->n_parallel to those of the statement
2988 * affected by the first map (part of the schedule)
2989 * on which this function is called.
2990 * Because of the way the schedule is constructed, the other statements
2991 * in the list, if any, should have the same values for these properties.
2993 static int extract_tile_len(__isl_take isl_map *map, void *user)
2995 struct gpu_gen *gen = (struct gpu_gen *) user;
2996 isl_id *id;
2997 struct gpu_stmt *stmt;
2999 id = isl_map_get_tuple_id(map, isl_dim_in);
3000 stmt = find_stmt(gen->prog, id);
3001 isl_id_free(id);
3003 isl_map_free(map);
3005 if (!stmt)
3006 isl_die(gen->ctx, isl_error_unknown,
3007 "statement not found", return -1);
3009 gen->tile_len = stmt->tile_len;
3010 gen->n_parallel = stmt->n_parallel;
3012 return -1;
3015 void ppcg_kernel_stmt_free(void *user)
3017 int i;
3018 struct ppcg_kernel_stmt *stmt = user;
3020 if (!stmt)
3021 return;
3023 switch (stmt->type) {
3024 case ppcg_kernel_copy:
3025 isl_ast_expr_free(stmt->u.c.index);
3026 isl_ast_expr_free(stmt->u.c.local_index);
3027 break;
3028 case ppcg_kernel_domain:
3029 for (i = 0; i < stmt->u.d.n_access; ++i) {
3030 isl_ast_expr_list_free(stmt->u.d.access[i].index);
3031 free(stmt->u.d.access[i].local_name);
3033 free(stmt->u.d.access);
3034 break;
3035 case ppcg_kernel_sync:
3036 break;
3039 free(stmt);
3042 /* Set the options of "context" to
3044 * { space -> [x] : x >= first }
3046 static __isl_give isl_ast_build *set_unroll(
3047 __isl_take isl_ast_build *build, __isl_take isl_space *space,
3048 int first)
3050 isl_ctx *ctx;
3051 isl_map *unroll;
3052 isl_union_map *opt;
3054 ctx = isl_ast_build_get_ctx(build);
3056 space = isl_space_from_domain(space);
3057 space = isl_space_add_dims(space, isl_dim_out, 1);
3058 space = isl_space_set_tuple_name(space, isl_dim_out, "unroll");
3059 unroll = isl_map_universe(space);
3060 unroll = isl_map_lower_bound_si(unroll, isl_dim_out, 0, first);
3061 opt = isl_union_map_from_map(unroll);
3063 build = isl_ast_build_set_options(build, opt);
3065 return build;
3068 /* Return a list of isl_ids of the form "prefix%d".
3070 static __isl_give isl_id_list *generate_names(isl_ctx *ctx,
3071 int n, const char *prefix)
3073 int i;
3074 char name[10];
3075 isl_id_list *names;
3077 names = isl_id_list_alloc(ctx, n);
3078 for (i = 0; i < n; ++i) {
3079 isl_id *id;
3081 snprintf(name, sizeof(name), "%s%d", prefix, i);
3082 id = isl_id_alloc(ctx, name, NULL);
3083 names = isl_id_list_add(names, id);
3086 return names;
3089 /* Extend the schedule "schedule" with the part of "extension"
3090 * starting at "first" up to "len".
3092 static __isl_give isl_union_map *extend_schedule(
3093 __isl_take isl_union_map *schedule,
3094 __isl_take isl_union_map *extension, int first, int len)
3096 isl_space *space;
3097 isl_map *proj;
3098 isl_union_map *umap;
3099 isl_set *set;
3101 space = isl_union_map_get_space(schedule);
3102 space = isl_space_set_from_params(space);
3103 space = isl_space_add_dims(space, isl_dim_set, len);
3104 proj = isl_set_identity(isl_set_universe(space));
3105 proj = isl_map_project_out(proj, isl_dim_out, 0, first);
3106 extension = isl_union_map_apply_range(extension,
3107 isl_union_map_from_map(proj));
3109 schedule = isl_union_map_range_product(schedule, extension);
3111 return schedule;
3114 /* This function is called for each access to an array in each instance
3115 * in the kernel of some statement in the original code.
3116 * Replace that access by an access to global, shared or private memory
3117 * and store the results in *kernel_access.
3119 * Since the array in shared or private memory is just
3120 * a shifted copy of part of the original array, we simply need
3121 * to subtract the lower bound, which was computed
3122 * in can_tile_for_shared_memory.
3123 * If any of the indices is strided, then we first add
3124 * shared_bound[i].shift and divide by shared_bound[i].stride.
3126 * If the given array is accessed directly from global memory,
3127 * we don't need to perform any shifting and simply simplify
3128 * the expression in the context of the domain instead.
3130 * If the array space (range of access) has no name, then we are
3131 * accessing an iterator in the original program.
3133 * The input stmt_access->access relation maps the iteration domain
3134 * of the current statement to an array element.
3135 * The first step is to reformulate
3136 * this access relation in terms of the loop iterators of the generated
3137 * code through precomposition with gen->stmt_it.
3139 * The expressions in "bounds" are formulated in terms of the first
3140 * gen->shared_len dimensions of the computed schedule using the mapping
3141 * sched2shared which maps the loop iterators to these dimensions.
3143 static void compute_index_expression(struct gpu_gen *gen,
3144 struct ppcg_kernel_access *kernel_access,
3145 struct gpu_stmt_access *stmt_access, __isl_keep isl_map *stmt_it,
3146 __isl_keep isl_map *sched2shared, __isl_keep isl_ast_build *build)
3148 isl_map *access;
3149 isl_pw_multi_aff *pma;
3150 int i;
3151 unsigned n_index;
3152 struct gpu_array_bound *bounds = NULL;
3154 if (isl_map_has_tuple_name(stmt_access->access, isl_dim_out)) {
3155 int i;
3156 const char *name;
3157 struct gpu_array_ref_group *group;
3158 isl_printer *p;
3160 name = isl_map_get_tuple_name(stmt_access->access, isl_dim_out);
3162 for (i = 0; i < gen->prog->n_array; ++i) {
3163 if (strcmp(name, gen->prog->array[i].name))
3164 continue;
3165 kernel_access->array = &gen->prog->array[i];
3166 kernel_access->local_array = &gen->kernel->array[i];
3168 assert(kernel_access->array);
3169 group = kernel_access->array->groups[stmt_access->group];
3170 p = isl_printer_to_str(gen->ctx);
3171 p = print_array_name(p, group);
3172 kernel_access->local_name = isl_printer_get_str(p);
3173 isl_printer_free(p);
3174 bounds = group->private_bound;
3175 kernel_access->type = ppcg_access_private;
3176 if (!bounds) {
3177 bounds = group->shared_bound;
3178 kernel_access->type = ppcg_access_shared;
3181 if (!bounds)
3182 kernel_access->type = ppcg_access_global;
3184 n_index = isl_map_dim(stmt_access->access, isl_dim_out);
3185 kernel_access->index = isl_ast_expr_list_alloc(gen->ctx, n_index);
3187 if (n_index == 0)
3188 return;
3190 access = isl_map_copy(stmt_access->access);
3191 access = isl_map_apply_range(isl_map_copy(stmt_it), access);
3192 pma = isl_pw_multi_aff_from_map(access);
3193 pma = isl_pw_multi_aff_coalesce(pma);
3195 for (i = 0; i < n_index; ++i) {
3196 isl_set *domain;
3197 isl_pw_aff *index;
3198 isl_ast_expr *expr;
3200 index = isl_pw_multi_aff_get_pw_aff(pma, i);
3202 if (!kernel_access->array) {
3203 } else if (!bounds) {
3204 domain = isl_map_domain(isl_map_copy(stmt_it));
3205 index = isl_pw_aff_coalesce(index);
3206 index = isl_pw_aff_gist(index, domain);
3207 } else {
3208 domain = isl_map_domain(isl_map_copy(stmt_it));
3209 index = shift_index(index, kernel_access->array,
3210 &bounds[i], domain, isl_map_copy(sched2shared));
3213 expr = isl_ast_build_expr_from_pw_aff(build, index);
3215 kernel_access->index = isl_ast_expr_list_add(
3216 kernel_access->index, expr);
3219 isl_pw_multi_aff_free(pma);
3222 /* This function is called for each instance of a user statement
3223 * in the kernel.
3225 * We attach a struct ppcg_kernel_stmt to the "node", containing
3226 * local information about the accesses.
3227 * This information is computed from stmt_it, which expresses the domain
3228 * elements in terms of the generated loops, and sched2shared,
3229 * which expresses the first shared_len dimensions of the schedule
3230 * computed by PPCG in terms of the generated loops.
3232 static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
3233 __isl_keep isl_ast_build *build, void *user)
3235 struct gpu_gen *gen = (struct gpu_gen *) user;
3236 struct ppcg_kernel_stmt *stmt;
3237 isl_id *id;
3238 isl_map *stmt_it, *sched2shared;
3239 isl_ast_expr *expr, *arg;
3240 isl_union_map *schedule;
3241 int i, n;
3242 struct gpu_stmt_access *access;
3244 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3245 if (!stmt)
3246 return isl_ast_node_free(node);
3248 expr = isl_ast_node_user_get_expr(node);
3249 arg = isl_ast_expr_get_op_arg(expr, 0);
3250 id = isl_ast_expr_get_id(arg);
3252 schedule = isl_ast_build_get_schedule(build);
3253 stmt_it = isl_map_reverse(isl_map_from_union_map(schedule));
3254 sched2shared = compute_sched_to_shared(gen, isl_map_copy(stmt_it));
3256 stmt->type = ppcg_kernel_domain;
3257 stmt->u.d.stmt = find_stmt(gen->prog, id);
3258 if (!stmt->u.d.stmt)
3259 goto error;
3261 n = 0;
3262 for (access = stmt->u.d.stmt->accesses; access; access = access->next)
3263 ++n;
3265 stmt->u.d.access = isl_calloc_array(gen->ctx,
3266 struct ppcg_kernel_access, n);
3267 if (!stmt->u.d.access)
3268 goto error;
3270 stmt->u.d.n_access = n;
3272 access = stmt->u.d.stmt->accesses;
3273 for (i = 0; i < n; ++i, access = access->next) {
3274 compute_index_expression(gen, &stmt->u.d.access[i], access,
3275 stmt_it, sched2shared, build);
3278 isl_id_free(id);
3279 isl_map_free(stmt_it);
3280 isl_map_free(sched2shared);
3281 isl_ast_expr_free(arg);
3282 isl_ast_expr_free(expr);
3284 id = isl_id_alloc(gen->ctx, NULL, stmt);
3285 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3286 return isl_ast_node_set_annotation(node, id);
3287 error:
3288 isl_id_free(id);
3289 isl_map_free(stmt_it);
3290 ppcg_kernel_stmt_free(stmt);
3291 isl_map_free(sched2shared);
3292 return isl_ast_node_free(node);
3295 /* This function is called when code has been generated for the shared
3296 * tile loops. The "schedule" refers only to the original statements.
3298 * We extend the schedule with that part of gen->local_sched that hasn't
3299 * been taken into account yet. This introduces parameters referring
3300 * to thread ids in the schedule, so we add them (with the appropriate
3301 * bounds to the context as well).
3302 * Finally, we set the appropriate unrolling options
3303 * if gen->first_unroll is set.
3305 static __isl_give isl_ast_node *create_domain_leaf(
3306 __isl_take isl_union_map *schedule, __isl_take isl_ast_build *build,
3307 void *user)
3309 struct gpu_gen *gen = (struct gpu_gen *) user;
3310 isl_space *space;
3311 isl_union_map *sched;
3312 isl_ast_node *tree;
3313 isl_set *set;
3314 isl_id_list *iterators;
3315 int n;
3317 schedule = extend_schedule(schedule,
3318 isl_union_map_copy(gen->local_sched),
3319 gen->shared_len, gen->thread_tiled_len);
3321 space = isl_ast_build_get_schedule_space(build);
3322 set = isl_set_universe(space);
3323 set = add_bounded_parameters(set, gen->n_block, gen->block_dim, "t");
3324 build = isl_ast_build_restrict(build, set);
3326 n = gen->thread_tiled_len - gen->shared_len;
3328 if (gen->first_unroll >= 0) {
3329 space = isl_space_set_alloc(gen->ctx, 0, n);
3330 build = set_unroll(build, space, gen->first_unroll);
3332 iterators = generate_names(gen->ctx, n, "c");
3333 build = isl_ast_build_set_iterators(build, iterators);
3334 build = isl_ast_build_set_at_each_domain(build, &at_each_domain, gen);
3335 tree = isl_ast_build_ast_from_schedule(build, schedule);
3336 isl_ast_build_free(build);
3338 return tree;
3341 /* This function is called for each leaf in the AST of the code
3342 * for copying to or from shared/private memory.
3343 * The statement name is {read,write}_{shared,private}_<array>.
3345 * The schedule is of the form
3347 * [A -> T] -> L
3349 * where A refers to a piece of an array and T to the corresponding
3350 * shifted tile. We split this schedule into mappings L -> A and L -> T
3351 * and store the corresponding expressions in stmt->index and stmt->local_index,
3352 * where stmt represents the copy statement.
3354 static __isl_give isl_ast_node *create_copy_leaf(
3355 __isl_take isl_ast_build *build, void *user)
3357 struct gpu_gen *gen = (struct gpu_gen *) user;
3358 struct ppcg_kernel_stmt *stmt;
3359 isl_id *id;
3360 isl_ast_expr *expr;
3361 isl_ast_node *node;
3362 isl_space *space;
3363 isl_map *access, *local_access, *map;
3364 isl_pw_multi_aff *pma;
3365 const char *name;
3366 int array_index;
3368 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3369 if (!stmt)
3370 return isl_ast_build_free(build);
3372 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
3373 name = isl_map_get_tuple_name(access, isl_dim_in);
3374 stmt->u.c.read = !strncmp(name, "read", 4);
3375 access = isl_map_reverse(access);
3376 space = isl_space_unwrap(isl_space_range(isl_map_get_space(access)));
3377 local_access = isl_map_copy(access);
3379 map = isl_map_domain_map(isl_map_universe(isl_space_copy(space)));
3380 id = isl_map_get_tuple_id(access, isl_dim_out);
3381 map = isl_map_set_tuple_id(map, isl_dim_in, id);
3382 access = isl_map_apply_range(access, map);
3383 pma = isl_pw_multi_aff_from_map(access);
3384 expr = isl_ast_build_call_from_pw_multi_aff(build, pma);
3385 stmt->u.c.index = expr;
3387 map = isl_map_range_map(isl_map_universe(space));
3388 id = isl_map_get_tuple_id(local_access, isl_dim_out);
3389 map = isl_map_set_tuple_id(map, isl_dim_in, id);
3390 local_access = isl_map_apply_range(local_access, map);
3391 pma = isl_pw_multi_aff_from_map(local_access);
3392 expr = isl_ast_build_call_from_pw_multi_aff(build, pma);
3393 stmt->u.c.local_index = expr;
3395 stmt->u.c.array = gen->copy_group->array;
3396 array_index = stmt->u.c.array - gen->prog->array;
3397 stmt->u.c.local_array = &gen->kernel->array[array_index];
3398 stmt->type = ppcg_kernel_copy;
3400 space = isl_ast_build_get_schedule_space(build);
3401 space = isl_space_from_domain(space);
3402 space = isl_space_set_tuple_name(space, isl_dim_out, name);
3403 expr = isl_ast_build_call_from_pw_multi_aff(build,
3404 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
3405 node = isl_ast_node_alloc_user(expr);
3406 isl_ast_build_free(build);
3408 id = isl_id_alloc(gen->ctx, NULL, stmt);
3409 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3410 return isl_ast_node_set_annotation(node, id);
3413 /* Given a schedule of the form
3415 * [S -> A] -> L
3417 * (with S the first shared_len dimensions of the computed schedule,
3418 * A the array and L the schedule correponding to the generated loops),
3419 * indicating where the copying the array elements that need to be copied,
3420 * construct code for performing the copying.
3422 * "group" is the array reference group that is being copied
3423 * "type" is either "read" or "write"
3424 * private is set if copying needs to be performed to/from registers
3426 * We first construct a mapping to a shifted tile of the array,
3428 * [S -> A] -> T(S,A) (1)
3430 * If private is set, then we also use this mapping as a schedule
3431 * (which is already thread-specific and will be completely unrolled).
3432 * Otherwise, we wrap/tile the range over the threads.
3433 * The result is
3435 * [S -> A] -> T'(S,A)
3437 * Combined with the given schedule, we have
3439 * [S -> A] -> [L -> T'(S,A)] (2)
3441 * From the shifted tile mapping, we construct a mapping
3443 * [S -> A] -> [A -> T(S,A)]
3445 * and apply it to the schedule (2), obtaining
3447 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
3449 * Note that we can project out S because it is uniquely defined by L.
3451 static __isl_give isl_ast_node *copy_access(struct gpu_gen *gen,
3452 __isl_take isl_map *sched,
3453 const char *type, struct gpu_array_ref_group *group,
3454 __isl_take isl_ast_build *build, int private)
3456 const char *array_name;
3457 const char *mem = private ? "private" : "shared";
3458 char *name;
3459 isl_space *space;
3460 isl_ast_node *tree;
3461 isl_map *schedule, *shift, *map;
3462 isl_set *set;
3463 isl_id_list *iterators;
3464 int n;
3466 shift = isl_set_unwrap(isl_map_domain(isl_map_copy(sched)));
3467 array_name = isl_map_get_tuple_name(shift, isl_dim_out);
3468 shift = shift_access(shift, group);
3470 schedule = isl_map_copy(shift);
3471 if (!private)
3472 schedule = tile_access_schedule(gen, schedule);
3474 n = isl_map_dim(schedule, isl_dim_out);
3475 set = isl_set_universe(isl_ast_build_get_schedule_space(build));
3476 set = add_bounded_parameters(set, gen->n_block, gen->block_dim, "t");
3478 schedule = isl_map_range_product(sched, schedule);
3480 assert(array_name);
3481 name = isl_alloc_array(gen->ctx, char,
3482 strlen(type) + sizeof("_private_") + strlen(array_name) + 20);
3483 if (group->array->n_group > 1)
3484 sprintf(name, "%s_%s_%s_%d", type, mem, array_name, group->nr);
3485 else
3486 sprintf(name, "%s_%s_%s", type, mem, array_name);
3487 shift = isl_map_set_tuple_name(shift,
3488 isl_dim_out, name + strlen(type) + 1);
3490 space = isl_space_domain(isl_map_get_space(shift));
3491 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
3492 map = isl_map_range_product(map, shift);
3494 schedule = isl_map_apply_domain(schedule, map);
3496 schedule = isl_map_set_tuple_name(schedule, isl_dim_in, name);
3497 free(name);
3499 build = isl_ast_build_restrict(build, set);
3501 gen->copy_group = group;
3502 gen->copy_bound = group->shared_bound;
3504 if (private) {
3505 space = isl_space_range(isl_map_get_space(schedule));
3506 space = isl_space_range(isl_space_unwrap(space));
3507 build = set_unroll(build, space, 0);
3509 iterators = generate_names(gen->ctx, n, "c");
3510 build = isl_ast_build_set_iterators(build, iterators);
3511 build = isl_ast_build_set_create_leaf(build, &create_copy_leaf, gen);
3512 tree = isl_ast_build_ast_from_schedule(build,
3513 isl_union_map_from_map(schedule));
3514 isl_ast_build_free(build);
3516 return tree;
3519 /* Return code for reading into or writing from shared memory
3520 * the given array reference group.
3522 * If we are performing a read from global memory to shared memory and
3523 * if the array involved is not a scalar, then we copy
3524 * the entire tile to shared memory. This may result in some extra
3525 * elements getting copied, but it should lead to simpler code
3526 * (which means that fewer registers may be needed) and less divergence.
3528 * Otherwise, we only copy the elements that will be read or have been written
3529 * in the kernel.
3532 * The input "sched" is of the form.
3534 * type[S -> A] -> L
3536 * with S the first shared_len dimensions of the computed schedule,
3537 * A the array and L the schedule correponding to the generated loops.
3539 * We first drop "type",
3541 * [S -> A] -> L
3543 * If the above conditions are satisfied, we project out A,
3544 * resulting in
3546 * S -> L
3548 * and then introduce the group tile [S -> T], resulting in
3550 * [S -> T] -> L
3552 static __isl_give isl_ast_node *copy_group_shared_accesses(
3553 struct gpu_gen *gen, struct gpu_array_ref_group *group,
3554 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
3556 const char *type;
3557 int read;
3558 isl_union_map *access;
3560 type = isl_map_get_tuple_name(sched, isl_dim_in);
3561 read = !strcmp(type, "read");
3563 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
3565 if (read && group->array->n_index > 0) {
3566 isl_space *space;
3567 isl_map *map;
3569 space = isl_space_domain(isl_map_get_space(sched));
3570 space = isl_space_unwrap(space);
3571 map = isl_map_domain_map(isl_map_universe(space));
3572 sched = isl_map_apply_domain(sched, map);
3574 map = group_tile(group);
3575 map = isl_map_reverse(isl_map_domain_map(map));
3576 sched = isl_map_apply_domain(sched, map);
3579 return copy_access(gen, sched, type, group, build, 0);
3582 /* Return code for reading into or writing from private memory
3583 * the given array reference group.
3585 * Let S be the first shared_len dimensions of the computed schedule,
3586 * D the iteration domains, A the array and L the schedule correponding
3587 * to the generated loops.
3588 * "sched" is of the form
3590 * type[S -> A] -> L
3592 * where type is either "read" or "write".
3593 * We apply the privatization D -> S(t), with t the thread ids,
3594 * to the access relation D -> A to obtain the privatized access relation
3596 * S(t) -> A
3598 * We drop the type from "sched" and intersect with the privatized access
3599 * relation to obtain
3601 * [S(t) -> A] -> L
3603 static __isl_give isl_ast_node *copy_group_private_accesses(
3604 struct gpu_gen *gen, struct gpu_array_ref_group *group,
3605 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
3607 const char *type;
3608 int read;
3609 isl_union_map *priv;
3610 isl_union_map *access;
3611 isl_map *access_map;
3613 type = isl_map_get_tuple_name(sched, isl_dim_in);
3614 read = !strcmp(type, "read");
3616 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
3617 priv = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
3618 priv);
3620 access = group_access_relation(group, read, !read);
3621 access = isl_union_map_apply_domain(access, priv);
3622 access_map = isl_map_from_union_map(access);
3624 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
3625 sched = isl_map_intersect_domain(sched, isl_map_wrap(access_map));
3627 return copy_access(gen, sched, type, group, build, 1);
3630 /* Return code for reading into or writing from shared or private memory.
3632 * "schedule" is of the form
3634 * type[S -> A] -> L
3636 * with S be the first shared_len dimensions of the computed schedule,
3637 * A the array and L the schedule correponding to the generated loops.
3638 * The array reference group is attached to "type".
3640 static __isl_give isl_ast_node *create_access_leaf(
3641 struct gpu_gen *gen, __isl_take isl_map *schedule,
3642 __isl_take isl_ast_build *build)
3644 struct gpu_array_ref_group *group;
3645 isl_id *id;
3647 id = isl_map_get_tuple_id(schedule, isl_dim_in);
3648 group = isl_id_get_user(id);
3649 isl_id_free(id);
3651 if (group->private_bound)
3652 return copy_group_private_accesses(gen, group, schedule,
3653 build);
3654 else
3655 return copy_group_shared_accesses(gen, group, schedule,
3656 build);
3659 /* Create a domain node representing a synchronization.
3661 static __isl_give isl_ast_node *create_sync_leaf(
3662 struct gpu_gen *gen, __isl_take isl_map *schedule,
3663 __isl_take isl_ast_build *build)
3665 struct ppcg_kernel_stmt *stmt;
3666 isl_id *id;
3667 isl_space *space;
3668 isl_ast_node *node;
3669 isl_ast_expr *expr;
3671 isl_map_free(schedule);
3673 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3674 if (!stmt)
3675 return NULL;
3677 stmt->type = ppcg_kernel_sync;
3679 space = isl_ast_build_get_schedule_space(build);
3680 space = isl_space_from_domain(space);
3681 space = isl_space_set_tuple_name(space, isl_dim_out, "sync");
3682 expr = isl_ast_build_call_from_pw_multi_aff(build,
3683 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
3684 node = isl_ast_node_alloc_user(expr);
3685 isl_ast_build_free(build);
3687 id = isl_id_alloc(gen->ctx, NULL, stmt);
3688 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3689 return isl_ast_node_set_annotation(node, id);
3692 /* This function is called during the code generation at the point
3693 * where the schedule domain element is completely determined by
3694 * the generated code. The input schedule contains the original
3695 * statements as well as synchronization and copy "statements".
3696 * The latter are scheduled at different points than any of the original
3697 * statements, so they will only arrive here in isolation.
3699 * If the current schedule only refers to a single statement,
3700 * we check if it is a copy or synchronization statement and
3701 * call the appropriate functions.
3702 * Otherwise, we assume we are dealing with the original statements
3703 * and we call create_domain_leaf.
3705 static __isl_give isl_ast_node *create_kernel_leaf(
3706 __isl_take isl_ast_build *build, void *user)
3708 struct gpu_gen *gen = (struct gpu_gen *) user;
3709 isl_map *map;
3710 isl_union_map *schedule;
3711 const char *name;
3713 schedule = isl_ast_build_get_schedule(build);
3715 if (isl_union_map_n_map(schedule) != 1)
3716 return create_domain_leaf(schedule, build, user);
3718 map = isl_map_from_union_map(schedule);
3719 name = isl_map_get_tuple_name(map, isl_dim_in);
3720 if (!strcmp(name, "read") || !strcmp(name, "write"))
3721 return create_access_leaf(gen, map, build);
3722 if (!strcmp(name, "sync"))
3723 return create_sync_leaf(gen, map, build);
3725 return create_domain_leaf(isl_union_map_from_map(map), build, user);
3728 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
3729 * have value 0) and all even schedule dimensions as "unroll".
3731 * That is, the options look as follows
3733 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
3734 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
3736 * The even positions are used to be able to schedule copying blocks
3737 * and synchronization before or after each level of the shared memory
3738 * tile loops and we want to make sure that code for these is generated
3739 * separately (within each level).
3741 static __isl_give isl_ast_build *set_atomic_and_unroll(
3742 __isl_take isl_ast_build *build,
3743 __isl_take isl_space *space, int sched_len)
3745 isl_ctx *ctx;
3746 isl_map *map;
3747 isl_constraint *c;
3748 isl_union_map *opt;
3749 isl_local_space *ls;
3750 int i, n;
3752 ctx = isl_ast_build_get_ctx(build);
3754 space = isl_space_params(space);
3755 space = isl_space_add_dims(space, isl_dim_set, sched_len);
3756 space = isl_space_from_domain(space);
3757 space = isl_space_add_dims(space, isl_dim_out, 2);
3758 map = isl_map_universe(isl_space_copy(space));
3759 for (i = 0; i < sched_len; i += 2)
3760 map = isl_map_fix_si(map, isl_dim_in, i, 0);
3761 ls = isl_local_space_from_space(isl_map_get_space(map));
3762 c = isl_equality_alloc(ls);
3763 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
3764 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
3765 c = isl_constraint_set_constant_si(c, 1);
3766 map = isl_map_add_constraint(map, c);
3767 map = isl_map_project_out(map, isl_dim_out, 1, 1);
3768 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
3769 opt = isl_union_map_from_map(map);
3771 map = isl_map_universe(space);
3772 ls = isl_local_space_from_space(isl_map_get_space(map));
3773 c = isl_equality_alloc(ls);
3774 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
3775 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
3776 map = isl_map_add_constraint(map, c);
3777 map = isl_map_project_out(map, isl_dim_out, 1, 1);
3778 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
3779 opt = isl_union_map_add_map(opt, map);
3781 build = isl_ast_build_set_options(build, opt);
3783 return build;
3786 /* Return a map that maps a space of dimension gen->shared_len
3787 * to its last dimensions starting at gen->tile_first.
3788 * The range is of dimension
3790 * 2 * (gen->shared_len - gen->tile_first) + 1
3792 * The input dimensions are mapped to the odd dimensions in the output,
3793 * while the even dimensions (except 2*pos) are fixed to 0.
3794 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
3795 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
3796 * are mapped to the output. The remaining input dimensions are projected
3797 * out and the corresponding output dimensions are fixed to 0.
3799 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
3800 __isl_take isl_space *space, int pos, int val)
3802 int i, n;
3803 isl_map *proj;
3805 space = isl_space_set_from_params(space);
3806 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
3807 space = isl_space_map_from_set(space);
3808 proj = isl_map_identity(space);
3809 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
3810 n = gen->shared_len - gen->tile_first;
3811 for (i = 0; i <= n; ++i) {
3812 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
3813 if (i == pos)
3814 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
3815 else
3816 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
3819 if (pos < 0)
3820 return proj;
3822 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
3823 gen->shared_len - (gen->tile_first + pos));
3824 for (i = pos; i < n; ++i)
3825 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
3827 return proj;
3830 /* Given the AST context schedule "schedule" and the mapping from
3831 * domains to the shared tile loops "shared_sched", add a schedule
3832 * for a synchronization operation at position "val" of loop level "pos".
3834 * schedule is of the form
3836 * D -> L
3838 * (with D the iteration domains and L the already generated loops),
3839 * while shared_sched is of the form
3841 * D -> S
3843 * We combine them into
3845 * L -> S
3847 * apply a mapping
3849 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3851 * and use the result as a schedule for "sync".
3853 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
3854 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
3855 __isl_keep isl_union_map *shared_sched, int pos, int val)
3857 isl_space *space;
3858 isl_map *proj, *map;
3860 shared_sched = isl_union_map_copy(shared_sched);
3861 schedule = isl_union_map_copy(schedule);
3863 space = isl_union_map_get_space(shared_sched);
3864 schedule = isl_union_map_apply_domain(shared_sched, schedule);
3865 map = isl_map_from_union_map(schedule);
3867 proj = insert_even(gen, space, pos, val);
3868 map = isl_map_apply_range(map, proj);
3869 map = isl_map_from_range(isl_map_wrap(map));
3870 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
3872 res = isl_union_map_add_map(res, map);
3874 return res;
3877 /* Given the AST context schedule "schedule" and the mapping from
3878 * domains to the shared tile loops "shared_sched", add a schedule
3879 * for copying an array reference group to/from shared/private memory.
3880 * "read" is set if data should be copied from global memory
3881 * to shared/private memory.
3882 * "k" represents the current group
3883 * "s" is the total number of groups
3885 * We schedule an operation before or after the innermost loop
3886 * of "shared_sched" that affects the tile of the array reference group.
3888 * schedule is of the form
3890 * D -> L
3892 * (with D the iteration domains and L the already generated loops),
3893 * while shared_sched is of the form
3895 * D -> S
3897 * We first compute the access relation for the reference group
3899 * D -> A
3901 * and combine it with shared_sched into
3903 * D -> [S -> A]
3905 * If this results in an empty relation, no copying needs to be performed
3906 * at this point.
3907 * Otherwise, we invert the relation and combine it with "schedule" into
3909 * [S -> A] -> L
3911 * The actual additional piece of the schedule is obtained from combining
3913 * [S -> A] -> S
3915 * with a mapping
3917 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3919 * The position of "val" corresponds to the innermost loop that affects
3920 * the tile and the value indicates where the copying is scheduled
3921 * with respect to the actual kernel code (at value 0).
3922 * Reads are schedule before the code, writes to global memory from
3923 * private memory are scheduled at values 1 to s, writes to global
3924 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
3926 * If we are scheduling a read from global memory to shared memory,
3927 * we insert a synchronization before the kernel code (at the innermost
3928 * level).
3929 * If we are scheduling a write to global memory, then we add
3930 * a synchronization after all writes (at value 2 *s + 2).
3931 * However, there is no need for a synchronization after the outermost loop.
3932 * A write to global memory from private memory at the innermost level
3933 * does not require a synchronization, because it is covered by
3934 * the synchronization after the kernel inserted by body_schedule.
3936 static __isl_give isl_union_map *add_group_schedule(struct gpu_gen *gen,
3937 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
3938 __isl_keep isl_union_map *shared_sched,
3939 struct gpu_array_ref_group *group, int read, int k, int s)
3941 int n;
3942 int pos, val;
3943 isl_space *space;
3944 isl_union_map *access;
3945 isl_map *map, *proj, *access_map;
3946 isl_id *id;
3948 access = group_access_relation(group, read, !read);
3949 access = isl_union_map_range_product(isl_union_map_copy(shared_sched),
3950 access);
3952 if (isl_union_map_is_empty(access)) {
3953 isl_union_map_free(access);
3954 return res;
3957 access = isl_union_map_reverse(access);
3958 access = isl_union_map_apply_range(access,
3959 isl_union_map_copy(schedule));
3960 access_map = isl_map_from_union_map(access);
3962 space = isl_space_copy(group->array->dim);
3963 space = isl_space_from_range(space);
3964 space = isl_space_add_dims(space, isl_dim_in, gen->shared_len);
3965 map = isl_map_domain_map(isl_map_universe(space));
3967 space = isl_union_map_get_space(schedule);
3968 pos = group->last_shared + 1 - gen->tile_first;
3969 if (read)
3970 val = -2 - k;
3971 else if (group->private_bound)
3972 val = 1 + k;
3973 else
3974 val = 1 + s + 1 + k;
3975 proj = insert_even(gen, space, pos, val);
3976 map = isl_map_apply_range(map, proj);
3978 access_map = isl_map_range_product(access_map, map);
3980 id = isl_id_alloc(gen->ctx, read ? "read" : "write", group);
3981 access_map = isl_map_set_tuple_id(access_map, isl_dim_in, id);
3983 res = isl_union_map_add_map(res, access_map);
3985 n = gen->shared_len - gen->tile_first;
3986 if (read) {
3987 if (!group->private_bound)
3988 res = add_sync_schedule(gen, res, schedule,
3989 shared_sched, n, -1);
3990 } else {
3991 if (pos == 0)
3992 return res;
3993 if (pos == n && group->private_bound)
3994 return res;
3995 res = add_sync_schedule(gen, res, schedule, shared_sched,
3996 pos, 2 * s + 2);
3999 return res;
4002 /* Return a schedule for the shared tile loops based on the current
4003 * AST context schedule.
4005 * We create a "shared_sched" that maps the domains to the first
4006 * shared_len dimensions of the computed schedule, project out the
4007 * first tile_first dimensions (as these are already covered by
4008 * the host code) and insert "statement-level" dimensions at even
4009 * positions so that we can schedule copy blocks and synchronization
4010 * before/after each level.
4012 * In particular, copy blocks are inserted inside the innermost
4013 * level that affect the tile. For the copying to global memory,
4014 * those from private memory are scheduled before those from shared
4015 * memory such that synchronization can be inserted between the two
4016 * at the innermost level.
4017 * Synchronization is inserted at the innermost level before the
4018 * actual kernel code if there is any copying from global memory
4019 * to shared memory. It is inserted unconditionally at the innermost
4020 * level after the actual kernel code and the copying to global memory
4021 * from private memory (if any). Finally, it is inserted after
4022 * any copying to global memory, except at the outermost level
4023 * and at the innermost level if there is no copying from shared
4024 * memory. The copying from private memory is covered by the unconditional
4025 * synchronization at the innermost level.
4027 static __isl_give isl_union_map *body_schedule(struct gpu_gen *gen,
4028 __isl_take isl_union_map *schedule)
4030 isl_space *space;
4031 isl_union_map *res;
4032 isl_union_map *shared_sched;
4033 isl_union_map *sched;
4034 isl_map *proj, *map;
4035 int i, j, k, s;
4037 shared_sched = isl_union_map_copy(gen->tiled_sched);
4038 proj = projection(isl_union_map_get_space(shared_sched),
4039 gen->tiled_len, gen->shared_len);
4040 shared_sched = isl_union_map_apply_range(shared_sched,
4041 isl_union_map_from_map(proj));
4042 space = isl_union_map_get_space(shared_sched);
4043 proj = insert_even(gen, space, -1, 0);
4044 sched = isl_union_map_apply_range(isl_union_map_copy(shared_sched),
4045 isl_union_map_from_map(proj));
4047 res = isl_union_map_range_product(isl_union_map_copy(schedule), sched);
4049 s = 0;
4050 for (i = 0; i < gen->prog->n_array; ++i)
4051 s += gen->prog->array[i].n_group;
4053 k = 0;
4054 for (i = 0; i < gen->prog->n_array; ++i) {
4055 struct gpu_array_info *array = &gen->prog->array[i];
4057 for (j = 0; j < array->n_group; ++j) {
4058 struct gpu_array_ref_group *group;
4060 group = array->groups[j];
4061 if (!group->private_bound && !group->shared_bound)
4062 continue;
4063 res = add_group_schedule(gen, res, schedule,
4064 shared_sched, group, 0, k, s);
4065 res = add_group_schedule(gen, res, schedule,
4066 shared_sched, group, 1, k, s);
4067 ++k;
4071 res = add_sync_schedule(gen, res, schedule, shared_sched,
4072 gen->shared_len - gen->tile_first, 1 + s);
4074 isl_union_map_free(shared_sched);
4075 isl_union_map_free(schedule);
4077 return res;
4080 /* Generate code for "kernel" in the given "context".
4082 * We first generate code for the shared tile loops (T1T, T1P and T2)
4083 * in a context that includes the block ids.
4084 * Within each iteration of these loops an additional code generation
4085 * is performed (within create_kernel_leaf) for the rest of the schedule
4086 * in a context that includes the thread ids.
4088 static __isl_give isl_ast_node *generate_kernel(struct gpu_gen *gen,
4089 __isl_keep isl_ast_build *build, __isl_keep isl_set *host_domain,
4090 __isl_keep isl_multi_pw_aff *grid_size)
4092 isl_space *space;
4093 isl_set *set;
4094 isl_id_list *iterators;
4095 isl_union_map *schedule;
4096 isl_ast_node *tree;
4097 int sched_len;
4099 schedule = isl_ast_build_get_schedule(build);
4101 build = isl_ast_build_copy(build);
4102 build = isl_ast_build_restrict(build, isl_set_copy(host_domain));
4103 space = isl_ast_build_get_schedule_space(build);
4104 set = isl_set_universe(isl_space_copy(space));
4105 set = add_bounded_parameters_dynamic(set, grid_size, "b");
4106 build = isl_ast_build_restrict(build, set);
4108 schedule = body_schedule(gen, schedule);
4110 sched_len = 2 * (gen->shared_len - gen->tile_first) + 1;
4112 build = set_atomic_and_unroll(build, space, sched_len);
4113 iterators = generate_names(gen->ctx, sched_len, "g");
4114 build = isl_ast_build_set_iterators(build, iterators);
4115 build = isl_ast_build_set_create_leaf(build, &create_kernel_leaf, gen);
4116 tree = isl_ast_build_ast_from_schedule(build, schedule);
4117 isl_ast_build_free(build);
4119 return tree;
4122 /* Attach "id" to the given node.
4124 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
4125 __isl_keep isl_ast_build *build, void *user)
4127 isl_id *id = user;
4129 node = isl_ast_node_set_annotation(node, id);
4131 return node;
4134 /* Construct an AST node for performing a kernel launch and attach
4135 * the information about the kernel to that node.
4137 * The kernel AST has been constructed in the context of the range
4138 * of "schedule". In particular, the grid size has been computed
4139 * in the context. We therefore still need to make sure that these
4140 * constraints are expressed in the code. We do this by creating a schedule
4142 * kernel[] -> [S -> []]
4144 * where S is the schedule domain, i.e., the range of "schedule".
4145 * The AST generation will then create a single call surrounded by
4146 * all the condition in "S" that have not been expressed yet.
4148 * The kernel information is attached to this node in attach_id.
4150 static __isl_give isl_ast_node *construct_launch(
4151 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
4152 __isl_take struct ppcg_kernel *kernel)
4154 isl_id *id;
4155 isl_ctx *ctx;
4156 isl_union_set *domain;
4157 isl_set *set;
4158 isl_map *map;
4159 isl_ast_node *node;
4161 ctx = isl_ast_build_get_ctx(build);
4163 id = isl_id_alloc(ctx, NULL, kernel);
4164 id = isl_id_set_free_user(id, &ppcg_kernel_free);
4166 domain = isl_union_map_range(schedule);
4167 set = isl_set_from_union_set(domain);
4168 map = isl_map_from_domain(set);
4169 map = isl_map_from_range(isl_map_wrap(map));
4170 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
4171 schedule = isl_union_map_from_map(map);
4173 build = isl_ast_build_set_at_each_domain(build, &attach_id, id);
4174 node = isl_ast_build_ast_from_schedule(build, schedule);
4175 isl_ast_build_free(build);
4177 return node;
4180 /* This function is called for each leaf in the AST of the host code.
4181 * We first specialize the schedule to the site of the leaf, compute
4182 * the size of shared memory and then construct the body of host code
4183 * and the associated kernel.
4185 * The necessary information for printing the kernel launch is
4186 * stored in a struct ppcg_kernel and attached to the leaf node
4187 * created to represent the launch.
4189 static __isl_give isl_ast_node *create_host_leaf(
4190 __isl_take isl_ast_build *build, void *user)
4192 struct gpu_gen *gen = (struct gpu_gen *) user;
4193 isl_id *id;
4194 isl_ast_node *node;
4195 struct ppcg_kernel *kernel;
4196 isl_set *host_domain;
4197 isl_union_map *schedule;
4198 isl_union_map *local_sched;
4199 isl_union_map *access;
4200 isl_union_set *domain;
4201 int i;
4203 schedule = isl_ast_build_get_schedule(build);
4205 isl_union_map_foreach_map(schedule, &extract_tile_len, gen);
4206 read_sizes(gen);
4208 domain = isl_union_map_domain(isl_union_map_copy(schedule));
4210 local_sched = isl_union_map_copy(gen->sched);
4211 local_sched = isl_union_map_intersect_domain(local_sched, domain);
4212 access = isl_union_map_union(isl_union_map_copy(gen->prog->read),
4213 isl_union_map_copy(gen->prog->write));
4214 access = isl_union_map_apply_domain(access,
4215 isl_union_map_copy(local_sched));
4217 gen->tiled_sched = tile_schedule(gen, local_sched);
4218 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
4219 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
4221 kernel = gen->kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
4222 if (!kernel)
4223 goto error;
4225 kernel->id = gen->kernel_id++;
4226 kernel->n_block = gen->n_block;
4227 for (i = 0; i < gen->n_block; ++i)
4228 kernel->block_dim[i] = gen->block_dim[i];
4229 kernel->n_grid = gen->n_grid;
4230 for (i = 0; i < gen->n_grid; ++i)
4231 kernel->grid_dim[i] = gen->grid_dim[i];
4232 kernel->context = isl_union_map_params(isl_union_map_copy(schedule));
4233 kernel->grid_size = extract_grid_size(gen, kernel);
4234 kernel->arrays = isl_union_map_range(access);
4235 kernel->space = isl_ast_build_get_schedule_space(build);
4237 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
4239 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
4240 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
4242 gen->private_access = NULL;
4243 compute_shared_sched(gen);
4244 gen->privatization = compute_privatization(gen);
4245 group_references(gen);
4246 compute_private_size(gen);
4247 check_shared_memory_bound(gen);
4248 host_domain = isl_set_from_union_set(isl_union_map_range(
4249 isl_union_map_copy(schedule)));
4250 localize_bounds(gen, kernel, host_domain);
4252 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
4254 kernel->tree = generate_kernel(gen, build, host_domain,
4255 kernel->grid_size);
4256 create_kernel_vars(gen, kernel);
4258 free_local_array_info(gen);
4259 isl_map_free(gen->privatization);
4260 isl_union_map_free(gen->private_access);
4261 isl_union_map_free(gen->local_sched);
4262 isl_union_map_free(gen->tiled_sched);
4263 isl_union_map_free(gen->shared_sched);
4264 isl_union_map_free(gen->shared_proj);
4265 isl_set_free(host_domain);
4266 free(gen->tile_size);
4268 node = construct_launch(build, schedule, kernel);
4270 return node;
4271 error:
4272 isl_union_map_free(schedule);
4273 return NULL;
4276 /* Use isl to generate code for the outer gen->tile_first loops
4277 * of the global schedule in gen->sched, resulting in the host code.
4278 * Within each iteration of this partial schedule, i.e., for each kernel
4279 * launch, create_host_leaf takes care of generating the kernel code.
4281 static __isl_give isl_ast_node *generate_host_code(struct gpu_gen *gen)
4283 isl_ast_build *build;
4284 isl_ast_node *tree;
4285 isl_union_map *sched;
4286 isl_map *proj;
4287 isl_id_list *iterators;
4289 sched = isl_union_map_copy(gen->sched);
4290 proj = projection(isl_union_map_get_space(sched),
4291 gen->untiled_len, gen->tile_first);
4292 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
4294 isl_options_set_ast_build_group_coscheduled(gen->ctx, 1);
4295 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
4296 iterators = generate_names(gen->ctx, gen->tile_first, "h");
4297 build = isl_ast_build_set_iterators(build, iterators);
4298 build = isl_ast_build_set_create_leaf(build, &create_host_leaf, gen);
4299 tree = isl_ast_build_ast_from_schedule(build, sched);
4300 isl_ast_build_free(build);
4302 return tree;
4305 __isl_give isl_set *add_context_from_str(__isl_take isl_set *set,
4306 const char *str)
4308 isl_ctx *ctx;
4309 isl_set *context;
4311 if (!str)
4312 return set;
4314 ctx = isl_set_get_ctx(set);
4315 context = isl_set_read_from_str(ctx, str);
4316 context = isl_set_align_params(context, isl_set_get_space(set));
4317 set = isl_set_intersect(set, context);
4319 return set;
4322 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
4324 if (!str)
4325 return NULL;
4326 return isl_union_map_read_from_str(ctx, str);
4329 /* Information about the outermost tilable bands in the forest of bands.
4331 * tile_len and n_parallel are only sets on band_info structures
4332 * that correspond to outermost bands. For other bands (in particular,
4333 * ancestors of the outermost bands), n_parallal is set to 0.
4335 * prefix is the (padded) schedule leading up to the outermost tilable bands.
4337 * tile_first is the number of schedule dimensions in prefix.
4339 * suffix is the schedule of the outermost tilable bands and their descendants.
4341 struct band_info {
4342 struct gpu_gen *gen;
4343 int tile_first;
4344 int tile_len;
4345 int n_parallel;
4346 isl_union_map *prefix;
4347 isl_union_map *suffix;
4350 /* Set tile_len and n_parallel of the statement to that of
4351 * their outermost band, recorded in the band_info.
4353 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
4355 struct band_info *info = user;
4356 struct gpu_stmt *stmt;
4357 isl_id *id;
4359 id = isl_map_get_tuple_id(map, isl_dim_in);
4360 stmt = find_stmt(info->gen->prog, id);
4361 isl_id_free(id);
4363 stmt->tile_len = info->tile_len;
4364 stmt->n_parallel = info->n_parallel;
4366 isl_map_free(map);
4368 return 0;
4371 static void list_select_outer_band(struct gpu_gen *gen,
4372 __isl_take isl_band_list *list, int pos, struct band_info *list_info);
4374 /* Check if this band has any parallel loops. If so, take it as
4375 * the outermost tilable band. If not, continue looking for the
4376 * outermost tilable band in the children of the current band.
4378 static void band_select_outer_band(struct gpu_gen *gen,
4379 __isl_take isl_band *band, int pos, struct band_info *info)
4381 int n = isl_band_n_member(band);
4382 int n_parallel;
4384 for (n_parallel = 0; n_parallel < n; ++n_parallel)
4385 if (!isl_band_member_is_zero_distance(band, n_parallel))
4386 break;
4388 info->n_parallel = n_parallel;
4389 if (n_parallel) {
4390 info->gen = gen;
4391 info->tile_first = pos;
4392 info->tile_len = n;
4393 info->prefix = isl_band_get_prefix_schedule(band);
4394 info->suffix = isl_union_map_flat_range_product(
4395 isl_band_get_partial_schedule(band),
4396 isl_band_get_suffix_schedule(band));
4397 isl_union_map_foreach_map(info->prefix,
4398 &set_stmt_tile_len, info);
4399 } else if (isl_band_has_children(band)) {
4400 isl_band_list *children;
4401 children = isl_band_get_children(band);
4402 list_select_outer_band(gen, children, pos + n, info);
4403 } else {
4404 info->gen = gen;
4405 info->tile_first = pos + n;
4406 info->tile_len = 0;
4407 info->prefix = isl_union_map_flat_range_product(
4408 isl_band_get_prefix_schedule(band),
4409 isl_band_get_partial_schedule(band));
4410 info->suffix = isl_band_get_suffix_schedule(band);
4411 isl_union_map_foreach_map(info->prefix,
4412 &set_stmt_tile_len, info);
4415 isl_band_free(band);
4418 /* Comparison function that returns a non-zero value for band_infos
4419 * with different tile_len fields or different n_parallel fields.
4421 static int cmp_band(const void *p1, const void *p2)
4423 const struct band_info *info1 = p1;
4424 const struct band_info *info2 = p2;
4426 if (info1->tile_len != info2->tile_len)
4427 return info1->tile_len - info2->tile_len;
4429 return info1->n_parallel - info2->n_parallel;
4432 /* Extend "umap" with coordinates with fixed value "val"
4433 * to a total length of "dst_len", assuming the original dimension is "src_len".
4435 static __isl_give isl_union_map *extend_range(
4436 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
4438 isl_space *dim;
4439 isl_map *map;
4440 int i;
4442 dim = isl_union_map_get_space(umap);
4443 map = isl_map_reverse(projection(dim, dst_len, src_len));
4444 for (i = src_len; i < dst_len; ++i)
4445 map = isl_map_fix_si(map, isl_dim_out, i, val);
4447 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
4449 return umap;
4452 /* Group bands with the same values for tile_len and n_parallel.
4453 * The prefix schedule is then extended with a fixed coordinate that
4454 * is different for each such group.
4455 * Note that the actual values for this coordinate are not important.
4456 * The bands have already been effectively separated at a higher level
4457 * or they are independent and may be executed in parallel.
4458 * The list of band_info has been sorted before this functions is called.
4460 static void separate_bands(struct band_info *info, int n)
4462 int i;
4463 int j = 0;
4465 for (i = 0; i < n; ++i) {
4466 int l = info[i].tile_first;
4468 if (i &&
4469 (info[i].tile_len != info[i - 1].tile_len ||
4470 info[i].n_parallel != info[i - 1].n_parallel))
4471 j++;
4473 info[i].prefix = extend_range(info[i].prefix,
4474 l, l + 1, j);
4475 info[i].tile_first = l + 1;
4479 /* Select the outermost bands in the elements of the list, align
4480 * their prefix schedules, separate bands with different values
4481 * for tile_len and/or n_parallel and then combine the resulting
4482 * prefix and suffix schedules into a single pair of prefix and
4483 * suffix schedules for the entire list.
4485 static void list_select_outer_band(struct gpu_gen *gen,
4486 __isl_take isl_band_list *list, int pos, struct band_info *list_info)
4488 isl_band *band;
4489 int i;
4490 int n = isl_band_list_n_band(list);
4491 isl_ctx *ctx = isl_band_list_get_ctx(list);
4492 struct band_info *info;
4493 int max_tile_first;
4494 isl_union_map *prefix;
4495 isl_union_map *suffix;
4497 assert(n >= 1);
4498 info = isl_calloc_array(ctx, struct band_info, n);
4499 assert(info);
4501 max_tile_first = 0;
4502 for (i = 0; i < n; ++i) {
4503 band = isl_band_list_get_band(list, i);
4504 band_select_outer_band(gen, band, pos, &info[i]);
4505 if (info[i].tile_first > max_tile_first)
4506 max_tile_first = info[i].tile_first;
4509 for (i = 0; i < n; ++i) {
4510 if (info[i].tile_first == max_tile_first)
4511 continue;
4512 info[i].prefix = extend_range(info[i].prefix,
4513 info[i].tile_first, max_tile_first, 0);
4514 info[i].tile_first = max_tile_first;
4517 qsort(info, n, sizeof(struct band_info), &cmp_band);
4519 for (i = 0; i < n - 1; ++i)
4520 if (info[i].tile_len != info[i + 1].tile_len ||
4521 info[i].n_parallel != info[i + 1].n_parallel)
4522 break;
4524 if (i < n -1)
4525 separate_bands(info, n);
4527 prefix = info[0].prefix;
4528 suffix = info[0].suffix;
4530 for (i = 1; i < n; ++i) {
4531 prefix = isl_union_map_union(prefix, info[i].prefix);
4532 suffix = isl_union_map_union(suffix, info[i].suffix);
4535 list_info->tile_first = info[0].tile_first;
4536 list_info->tile_len = -1;
4537 list_info->prefix = prefix;
4538 list_info->suffix = suffix;
4540 isl_band_list_free(list);
4541 free(info);
4544 /* Select the outermost tilable band that (by construction)
4545 * has at least one parallel loop.
4546 * The starting position of the aligned band is stored in the pair
4547 * gen->tile_first.
4548 * The sizes and number of parallel loops may be different in different
4549 * parts of the band forest and are therefore stored in the gpu_stmts.
4551 * Return the complete schedule, with the tilable bands aligned
4552 * at gen->tile_first and padded with zero, if needed.
4554 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
4555 __isl_keep isl_schedule *schedule)
4557 isl_band_list *list;
4558 struct band_info info;
4560 gen->n_parallel = 0;
4561 gen->tile_len = -1;
4563 list = isl_schedule_get_band_forest(schedule);
4565 list_select_outer_band(gen, list, 0, &info);
4567 gen->tile_first = info.tile_first;
4568 info.suffix = align_range(info.suffix);
4570 return isl_union_map_flat_range_product(info.prefix, info.suffix);
4573 /* Set gen->untiled_len to the number of scheduling dimensions
4574 * for the schedule of the first domain.
4575 * We assume here that this number is the same for all domains.
4577 static int set_untiled_len(__isl_take isl_map *map, void *user)
4579 unsigned *untiled_len = user;
4581 *untiled_len = isl_map_dim(map, isl_dim_out);
4583 isl_map_free(map);
4584 return -1;
4587 /* Compute an appropriate schedule based on the accesses in
4588 * gen->read and gen->write.
4590 * We first compute dependences and then use those to compute
4591 * a schedule that has a parallel loop in each tilable band.
4592 * Finally, we select the outermost tilable band.
4594 static void compute_schedule(struct gpu_gen *gen,
4595 __isl_take isl_union_map *sched)
4597 isl_union_set *domain;
4598 isl_union_map *empty;
4599 isl_union_map *dep_raw, *dep2, *dep3, *dep;
4600 isl_union_map *uninitialized;
4601 isl_schedule *schedule;
4603 empty = isl_union_map_empty(isl_union_map_get_space(sched));
4605 isl_union_map_compute_flow(isl_union_map_copy(gen->prog->read),
4606 isl_union_map_copy(gen->prog->write), empty,
4607 isl_union_map_copy(sched),
4608 &dep_raw, NULL, &uninitialized, NULL);
4609 isl_union_map_compute_flow(isl_union_map_copy(gen->prog->write),
4610 isl_union_map_copy(gen->prog->write),
4611 isl_union_map_copy(gen->prog->read),
4612 isl_union_map_copy(sched),
4613 &dep2, &dep3, NULL, NULL);
4614 isl_union_map_free(sched);
4616 gen->prog->copy_in = isl_union_map_range(uninitialized);
4618 dep = isl_union_map_union(dep2, dep3);
4619 dep = isl_union_map_union(dep, dep_raw);
4620 dep = isl_union_map_coalesce(dep);
4622 domain = isl_union_set_copy(gen->prog->scop->domain);
4623 domain = isl_union_set_intersect_params(domain,
4624 isl_set_copy(gen->prog->scop->context));
4625 schedule = isl_union_set_compute_schedule(isl_union_set_copy(domain),
4626 isl_union_map_copy(dep), dep);
4628 sched = select_outer_tilable_band(gen, schedule);
4630 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
4631 sched = isl_union_map_intersect_domain(sched, domain);
4632 gen->sched = sched;
4634 isl_schedule_free(schedule);
4637 static struct gpu_stmt_access **expr_extract_access(struct pet_expr *expr,
4638 struct gpu_stmt_access **next_access)
4640 struct gpu_stmt_access *access;
4641 isl_ctx *ctx = isl_map_get_ctx(expr->acc.access);
4643 access = isl_alloc_type(ctx, struct gpu_stmt_access);
4644 assert(access);
4645 access->next = NULL;
4646 access->read = expr->acc.read;
4647 access->write = expr->acc.write;
4648 access->access = isl_map_copy(expr->acc.access);
4650 *next_access = access;
4651 next_access = &(*next_access)->next;
4652 return next_access;
4655 static struct gpu_stmt_access **expr_extract_accesses(struct pet_expr *expr,
4656 struct gpu_stmt_access **next_access)
4658 int i;
4660 for (i = 0; i < expr->n_arg; ++i)
4661 next_access = expr_extract_accesses(expr->args[i],
4662 next_access);
4664 if (expr->type == pet_expr_access)
4665 next_access = expr_extract_access(expr, next_access);
4667 return next_access;
4670 static void pet_stmt_extract_accesses(struct gpu_stmt *stmt)
4672 struct gpu_stmt_access **next_access = &stmt->accesses;
4674 stmt->accesses = NULL;
4675 expr_extract_accesses(stmt->body, next_access);
4678 /* Return an array of gpu_stmt representing the statements in "scop".
4680 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
4681 __isl_keep isl_set *context)
4683 int i;
4684 struct gpu_stmt *stmts;
4686 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->n_stmt);
4687 assert(stmts);
4689 for (i = 0; i < scop->n_stmt; ++i) {
4690 struct gpu_stmt *s = &stmts[i];
4692 s->id = isl_set_get_tuple_id(scop->stmts[i]->domain);
4693 s->body = scop->stmts[i]->body;
4694 pet_stmt_extract_accesses(s);
4697 return stmts;
4700 /* Replace the scop in the "input" file by equivalent code
4701 * that uses the GPU. "scop" is assumed to correspond to this scop.
4703 * We first compute a schedule that respects the dependences
4704 * of the original program and select the outermost band
4705 * of tilable dimensions that has at least one parallel loop.
4706 * We then have three blocks of dimensions
4708 * H B G
4710 * The tilable band "B" is first tiled according to "tile" sizes, resulting
4711 * in
4713 * H T P G
4715 * For each iteration of the T loop and for each array, we compute
4716 * the array elements accessed by that iteration, construct a rectangular
4717 * box around it and shift it to the origin. The result is used
4718 * as shared memory for the array.
4720 * We then split off at most 2 parallel loops from the T loops and
4721 * at most 3 parallel loops from the P loops
4723 * H T1 T2 P1 P2 G
4725 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
4726 * according to "grid"/"block" sizes.
4728 * H T1T T1P T2 P1T P1P P2 G
4730 * Finally, the T1P and P1P iterators are equated to the block and
4731 * thread dimensions respectively and so are effectively removed.
4732 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
4733 * are run on the GPU.
4735 * Code is generated in three stages. We first generate code for the
4736 * host (the H loops), with iterators h%d. Then, for each leaf node
4737 * of the resulting AST, we generate code for the shared loops (up to
4738 * and including T2), with iterators g%d and after equating the H loops
4739 * to h%d parameters and the T1P loops to the block dimensions.
4740 * Finally, we generate code for the remaining loops in a similar fashion.
4742 __isl_give isl_ast_node *generate_gpu(isl_ctx *ctx, struct gpu_prog *prog,
4743 struct ppcg_options *options)
4745 isl_union_map *sched;
4746 struct gpu_gen gen;
4747 isl_ast_node *tree;
4749 if (!prog)
4750 return NULL;
4752 gen.ctx = ctx;
4753 gen.prog = prog;
4754 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
4755 gen.options = options;
4757 sched = isl_union_map_copy(prog->scop->schedule);
4759 compute_schedule(&gen, sched);
4761 gen.kernel_id = 0;
4762 tree = generate_host_code(&gen);
4764 clear_gpu_gen(&gen);
4766 return tree;
4769 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
4771 struct gpu_prog *prog;
4773 if (!scop)
4774 return NULL;
4776 prog = isl_calloc_type(ctx, struct gpu_prog);
4777 assert(prog);
4779 prog->ctx = ctx;
4780 prog->scop = scop;
4781 prog->context = isl_set_copy(scop->context);
4782 prog->n_stmts = scop->n_stmt;
4783 prog->stmts = extract_stmts(ctx, scop, prog->context);
4784 prog->read = isl_union_map_copy(scop->reads);
4785 prog->write = isl_union_map_copy(scop->writes);
4787 collect_array_info(prog);
4789 return prog;
4792 void gpu_prog_free(struct gpu_prog *prog)
4794 if (!prog)
4795 return;
4796 free_array_info(prog);
4797 free_stmts(prog->stmts, prog->n_stmts);
4798 isl_union_set_free(prog->copy_in);
4799 isl_union_map_free(prog->read);
4800 isl_union_map_free(prog->write);
4801 isl_set_free(prog->context);
4802 free(prog);