2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
22 #include <isl/schedule.h>
23 #include <isl/schedule_node.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
30 #include "ppcg_options.h"
33 /* The fields stride and shift only contain valid information
35 * If so, they express that current index is such that if you add shift,
36 * then the result is always a multiple of stride.
37 * Let D represent the initial shared_len dimensions of the computed schedule.
38 * The spaces of "lb" and "shift" are of the form
42 struct gpu_array_bound
{
50 /* A tile of an array.
52 * n is the dimension of the array.
53 * bound is an array of size "n" representing the lower bound
54 * and size for each index.
56 * tiling maps a tile in the global array to the corresponding
57 * shared/private memory tile and is of the form
59 * { [D[i] -> A[a]] -> T[(a + shift(i))/stride - lb(i)] }
61 * where D represents the initial shared_len dimensions
62 * of the computed schedule.
64 struct gpu_array_tile
{
66 struct gpu_array_bound
*bound
;
67 isl_multi_aff
*tiling
;
70 struct gpu_array_info
;
72 /* A group of array references in a kernel that should be handled together.
73 * If private_tile is not NULL, then it is mapped to registers.
74 * Otherwise, if shared_tile is not NULL, it is mapped to shared memory.
75 * Otherwise, it is accessed from global memory.
77 struct gpu_array_ref_group
{
78 /* The references in this group access this array. */
79 struct gpu_array_info
*array
;
80 /* Position of this group in the list of reference groups of array. */
83 /* The following fields are use during the construction of the groups.
84 * access is the combined access relation relative to the shared
85 * memory tiling. In particular, the domain of the map corresponds
86 * to the first shared_len dimensions of the computed schedule.
87 * write is set if any access in the group is a write.
88 * exact_write is set if all writes are definite writes.
89 * slice is set if there is at least one access in the group
90 * that refers to more than one element
97 /* The shared memory tile, NULL if none. */
98 struct gpu_array_tile
*shared_tile
;
100 /* The private memory tile, NULL if none. */
101 struct gpu_array_tile
*private_tile
;
103 /* References in this group; point to elements of a linked list. */
105 struct gpu_stmt_access
**refs
;
107 /* Last shared memory tile dimension that affects tile of this group. */
113 struct ppcg_options
*options
;
115 /* Callback for printing of AST in appropriate format. */
116 __isl_give isl_printer
*(*print
)(__isl_take isl_printer
*p
,
117 struct gpu_prog
*prog
, __isl_keep isl_ast_node
*tree
,
118 struct gpu_types
*types
, void *user
);
121 struct gpu_prog
*prog
;
122 /* The generated AST. */
125 /* The sequence of types for which a definition has been printed. */
126 struct gpu_types types
;
128 /* User specified tile, grid and block sizes for each kernel */
129 isl_union_map
*sizes
;
131 /* Effectively used tile, grid and block sizes for each kernel */
132 isl_union_map
*used_sizes
;
134 /* Identifier of current kernel. */
136 /* Pointer to the current kernel. */
137 struct ppcg_kernel
*kernel
;
138 /* Does the computed schedule exhibit any parallelism? */
141 /* First tile dimension. */
143 /* Number of tile dimensions. */
145 /* Number of initial parallel loops among tile dimensions. */
148 /* Number of dimensions determining shared memory. */
151 /* Number of rows in the untiled schedule. */
153 /* Number of rows in the tiled schedule. */
155 /* Number of rows in schedule after tiling/wrapping over threads. */
156 int thread_tiled_len
;
158 /* Global untiled schedule. */
159 isl_union_map
*sched
;
160 /* Local (per kernel launch) tiled schedule. */
161 isl_union_map
*tiled_sched
;
162 /* Local schedule per shared memory tile loop iteration. */
163 isl_union_map
*local_sched
;
165 /* Local tiled schedule projected onto the shared tile loops and
166 * the loops that will be wrapped over the threads,
167 * with all shared tile loops parametrized.
169 isl_union_map
*shared_sched
;
170 /* Projects out the loops that will be wrapped over the threads
173 isl_union_map
*shared_proj
;
175 /* A map that takes the range of shared_sched as input,
176 * wraps the appropriate loops over the threads and then projects
179 isl_map
*privatization
;
181 /* The array reference group corresponding to copy_sched. */
182 struct gpu_array_ref_group
*copy_group
;
184 /* Is any array in the current kernel marked force_private? */
185 int any_force_private
;
187 /* First loop to unroll (or -1 if none) in the current part of the
194 /* Note: in the input file, the sizes of the grid and the blocks
195 * are specified in the order x, y, z, but internally, the sizes
196 * are stored in reverse order, so that the last element always
197 * refers to the x dimension.
204 /* Print the name of the local copy of a given group of array references.
206 static __isl_give isl_printer
*print_array_name(__isl_take isl_printer
*p
,
207 struct gpu_array_ref_group
*group
)
211 if (group
->private_tile
)
212 p
= isl_printer_print_str(p
, "private_");
213 else if (group
->shared_tile
)
214 p
= isl_printer_print_str(p
, "shared_");
217 p
= isl_printer_print_str(p
, group
->array
->name
);
218 if (!global
&& group
->array
->n_group
> 1) {
219 p
= isl_printer_print_str(p
, "_");
220 p
= isl_printer_print_int(p
, group
->nr
);
226 /* Collect all references to the given array and store pointers to them
229 * If the array contains structures, then there is no need to collect
230 * the references since we will not be computing any reference groups.
232 static void collect_references(struct gpu_prog
*prog
,
233 struct gpu_array_info
*array
)
238 if (array
->has_compound_element
)
242 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
243 struct gpu_stmt
*stmt
= &prog
->stmts
[i
];
244 struct gpu_stmt_access
*access
;
246 for (access
= stmt
->accesses
; access
; access
= access
->next
) {
248 name
= isl_map_get_tuple_name(access
->access
,
250 if (name
&& !strcmp(array
->name
, name
))
256 array
->refs
= isl_alloc_array(prog
->ctx
, struct gpu_stmt_access
*, n
);
260 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
261 struct gpu_stmt
*stmt
= &prog
->stmts
[i
];
262 struct gpu_stmt_access
*access
;
264 for (access
= stmt
->accesses
; access
; access
= access
->next
) {
266 name
= isl_map_get_tuple_name(access
->access
,
268 if (!name
|| strcmp(array
->name
, name
))
271 array
->refs
[n
++] = access
;
276 /* Create a gpu_array_tile for an array of dimension "n_index".
278 static struct gpu_array_tile
*create_tile(isl_ctx
*ctx
, int n_index
)
281 struct gpu_array_tile
*tile
;
283 tile
= isl_calloc_type(ctx
, struct gpu_array_tile
);
288 tile
->bound
= isl_alloc_array(ctx
, struct gpu_array_bound
, n_index
);
291 for (i
= 0; i
< n_index
; ++i
) {
292 tile
->bound
[i
].size
= NULL
;
293 tile
->bound
[i
].lb
= NULL
;
294 tile
->bound
[i
].stride
= NULL
;
295 tile
->bound
[i
].shift
= NULL
;
301 static void *free_tile(struct gpu_array_tile
*tile
)
308 for (j
= 0; j
< tile
->n
; ++j
) {
309 isl_val_free(tile
->bound
[j
].size
);
310 isl_val_free(tile
->bound
[j
].stride
);
311 isl_aff_free(tile
->bound
[j
].lb
);
312 isl_aff_free(tile
->bound
[j
].shift
);
315 isl_multi_aff_free(tile
->tiling
);
321 /* Compute and return the extent of "array", taking into account the set of
324 * In particular, the extent in the outer dimension is taken
325 * from "accessed", while the extents in the remaining dimensions
326 * are taken from array->extent.
328 * The extent in the outer dimension cannot be taken from array->extent
329 * because that may be unbounded. Furthermore, even if it is bounded,
330 * it may be larger than the piece of the array that is being accessed.
332 static __isl_give isl_set
*compute_extent(struct pet_array
*array
,
333 __isl_keep isl_set
*accessed
)
340 extent
= isl_set_copy(array
->extent
);
342 n_index
= isl_set_dim(accessed
, isl_dim_set
);
346 extent
= isl_set_project_out(extent
, isl_dim_set
, 0, 1);
347 outer
= isl_set_copy(accessed
);
348 outer
= isl_set_project_out(outer
, isl_dim_set
, 1, n_index
- 1);
349 extent
= isl_set_flat_product(outer
, extent
);
350 id
= isl_set_get_tuple_id(accessed
);
351 extent
= isl_set_set_tuple_id(extent
, id
);
356 /* Is the array "array" being extracted a read-only scalar?
358 * That is, is "array" a scalar that is never possibly written to.
359 * An array containing structures is never considered to be a scalar.
361 static int is_read_only_scalar(struct gpu_array_info
*array
,
362 struct gpu_prog
*prog
)
365 isl_union_map
*write
;
368 if (array
->has_compound_element
)
370 if (array
->n_index
!= 0)
373 write
= isl_union_map_copy(prog
->may_write
);
374 space
= isl_set_universe(isl_space_copy(array
->space
));
375 write
= isl_union_map_intersect_range(write
,
376 isl_union_set_from_set(space
));
377 empty
= isl_union_map_is_empty(write
);
378 isl_union_map_free(write
);
383 /* Compute bounds on the host array "pa" based on the corresponding
384 * accessed elements in "arrays"
385 * and collect all references to the array.
386 * Store the results in "info".
388 * If the array is zero-dimensional and does not contain structures,
389 * i.e., if the array is a scalar, we check whether it is read-only.
390 * We also check whether the array is accessed at all.
392 static int extract_array_info(struct gpu_prog
*prog
,
393 struct gpu_array_info
*info
, struct pet_array
*pa
,
394 __isl_keep isl_union_set
*arrays
)
400 isl_set
*accessed
, *extent
;
402 n_index
= isl_set_dim(pa
->extent
, isl_dim_set
);
403 name
= isl_set_get_tuple_name(pa
->extent
);
404 bounds
= isl_alloc_array(prog
->ctx
, isl_pw_aff
*, n_index
);
408 info
->space
= isl_set_get_space(pa
->extent
);
409 info
->name
= strdup(name
);
410 info
->n_index
= n_index
;
411 info
->bound
= bounds
;
412 info
->linearize
= prog
->scop
->options
->linearize_device_arrays
;
414 info
->type
= strdup(pa
->element_type
);
415 info
->size
= pa
->element_size
;
416 info
->local
= pa
->declared
&& !pa
->exposed
;
417 info
->has_compound_element
= pa
->element_is_record
;
418 info
->read_only_scalar
= is_read_only_scalar(info
, prog
);
420 accessed
= isl_union_set_extract_set(arrays
,
421 isl_space_copy(info
->space
));
422 empty
= isl_set_is_empty(accessed
);
423 extent
= compute_extent(pa
, accessed
);
424 isl_set_free(accessed
);
425 info
->extent
= extent
;
428 info
->accessed
= !empty
;
429 for (i
= 0; i
< n_index
; ++i
) {
435 dom
= isl_set_copy(extent
);
436 dom
= isl_set_project_out(dom
, isl_dim_set
, i
+ 1,
438 dom
= isl_set_project_out(dom
, isl_dim_set
, 0, i
);
439 if (!isl_set_dim_has_upper_bound(dom
, isl_dim_set
, 0)) {
440 fprintf(stderr
, "unable to determine extent of '%s' "
441 "in dimension %d\n", info
->name
, i
);
442 dom
= isl_set_free(dom
);
444 bound
= isl_set_dim_max(dom
, 0);
445 dom
= isl_pw_aff_domain(isl_pw_aff_copy(bound
));
446 ls
= isl_local_space_from_space(isl_set_get_space(dom
));
447 one
= isl_aff_zero_on_domain(ls
);
448 one
= isl_aff_add_constant_si(one
, 1);
449 bound
= isl_pw_aff_add(bound
, isl_pw_aff_alloc(dom
, one
));
450 bound
= isl_pw_aff_gist(bound
, isl_set_copy(prog
->context
));
453 if (!isl_pw_aff_is_cst(bound
))
457 collect_references(prog
, info
);
462 /* Remove independence from the order constraints "order" on array "array".
463 * Since the pairs of iterations in the filter relation of an independence
464 * are guaranteed to be completely independent by the user, there is
465 * no need to ensure that live ranges are ordered along thong pairs.
466 * We make an exception for local variables, though, as the independence
467 * guarantee does not apply to those.
469 * The order constraints are used in two places.
470 * Those on scalars are used in check_scalar_live_ranges to check if
471 * we need to force the scalar to be private. Any non-local scalar
472 * should not be forced scalar if it only appears in independent loops.
473 * Those on non-scalars are added to the coincidence constraints
474 * in compute_schedule because we do not support any array expansion.
475 * Accesses to non-local arrays should not prevent a loop from being
476 * considered coincident so we should indeed remove those constraints
477 * from the order constraints.
479 static __isl_give isl_union_map
*remove_independences(struct gpu_prog
*prog
,
480 struct gpu_array_info
*array
, __isl_take isl_union_map
*order
)
484 for (i
= 0; i
< prog
->scop
->pet
->n_independence
; ++i
) {
485 struct pet_independence
*pi
= prog
->scop
->pet
->independences
[i
];
486 if (isl_union_set_contains(pi
->local
, array
->space
))
489 order
= isl_union_map_subtract(order
,
490 isl_union_map_copy(pi
->filter
));
496 /* For each array in "prog", store the (untagged) order dependences
497 * derived from the array in array->dep_order.
498 * In particular, consider all references that access the given array
499 * and take the order dependences that have one of these references
500 * as source. (Since an order dependence relates two references to
501 * the same array, the target of these order dependences will also
502 * be one of these references.)
503 * Additionally, store the union of these array->dep_order relations
504 * for all non-scalar arrays in prog->array_order.
506 void collect_order_dependences(struct gpu_prog
*prog
)
510 isl_union_map
*accesses
;
512 space
= isl_union_map_get_space(prog
->read
);
513 prog
->array_order
= isl_union_map_empty(space
);
515 accesses
= isl_union_map_copy(prog
->scop
->tagged_reads
);
516 accesses
= isl_union_map_union(accesses
,
517 isl_union_map_copy(prog
->scop
->tagged_may_writes
));
518 accesses
= isl_union_map_universe(accesses
);
519 accesses
= isl_union_map_apply_range(accesses
,
520 isl_union_map_copy(prog
->to_outer
));
522 for (i
= 0; i
< prog
->n_array
; ++i
) {
523 struct gpu_array_info
*array
= &prog
->array
[i
];
526 isl_union_map
*order
;
528 set
= isl_set_universe(isl_space_copy(array
->space
));
529 uset
= isl_union_set_from_set(set
);
530 uset
= isl_union_map_domain(
531 isl_union_map_intersect_range(isl_union_map_copy(accesses
),
533 order
= isl_union_map_copy(prog
->scop
->tagged_dep_order
);
534 order
= isl_union_map_intersect_domain(order
, uset
);
535 order
= isl_union_map_zip(order
);
536 order
= isl_union_set_unwrap(isl_union_map_domain(order
));
537 order
= remove_independences(prog
, array
, order
);
538 array
->dep_order
= order
;
540 if (gpu_array_is_scalar(array
) && !array
->has_compound_element
)
543 prog
->array_order
= isl_union_map_union(prog
->array_order
,
544 isl_union_map_copy(array
->dep_order
));
547 isl_union_map_free(accesses
);
550 /* Construct a gpu_array_info for each array referenced by prog->scop and
551 * collect them in prog->array.
553 * The sizes are based on the extents and the set of possibly accessed
554 * elements by "prog".
555 * If there are any member accesses involved, then they are first mapped
556 * to the outer arrays of structs.
558 * If we are allowing live range reordering, then also set
559 * the dep_order field. Otherwise leave it NULL.
561 static int collect_array_info(struct gpu_prog
*prog
)
565 isl_union_set
*arrays
;
567 arrays
= isl_union_map_range(isl_union_map_copy(prog
->read
));
568 arrays
= isl_union_set_union(arrays
,
569 isl_union_map_range(isl_union_map_copy(prog
->may_write
)));
571 arrays
= isl_union_set_apply(arrays
,
572 isl_union_map_copy(prog
->to_outer
));
574 arrays
= isl_union_set_coalesce(arrays
);
576 prog
->n_array
= prog
->scop
->pet
->n_array
;
577 prog
->array
= isl_calloc_array(prog
->ctx
,
578 struct gpu_array_info
, prog
->n_array
);
580 for (i
= 0; i
< prog
->scop
->pet
->n_array
; ++i
)
581 if (extract_array_info(prog
, &prog
->array
[i
],
582 prog
->scop
->pet
->arrays
[i
], arrays
) < 0)
585 isl_union_set_free(arrays
);
587 if (prog
->scop
->options
->live_range_reordering
)
588 collect_order_dependences(prog
);
593 static void free_array_info(struct gpu_prog
*prog
)
597 for (i
= 0; i
< prog
->n_array
; ++i
) {
598 int n_index
= prog
->array
[i
].n_index
;
599 free(prog
->array
[i
].type
);
600 free(prog
->array
[i
].name
);
601 for (j
= 0; j
< n_index
; ++j
)
602 isl_pw_aff_free(prog
->array
[i
].bound
[j
]);
603 isl_space_free(prog
->array
[i
].space
);
604 isl_set_free(prog
->array
[i
].extent
);
605 free(prog
->array
[i
].bound
);
606 free(prog
->array
[i
].refs
);
607 isl_union_map_free(prog
->array
[i
].dep_order
);
612 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
613 * as an array or through a pointer reference, but as a single data element.
614 * At the moment, scalars are represented as zero-dimensional arrays.
615 * Note that the single data element may be an entire structure.
617 int gpu_array_is_scalar(struct gpu_array_info
*array
)
619 return array
->n_index
== 0;
622 /* Is "array" a read-only scalar?
624 int gpu_array_is_read_only_scalar(struct gpu_array_info
*array
)
626 return array
->read_only_scalar
;
629 /* Return the set of parameter values for which the array has a positive
630 * size in all dimensions.
631 * If the sizes are only valid for some parameter values, then those
632 * constraints are also taken into account.
634 __isl_give isl_set
*gpu_array_positive_size_guard(struct gpu_array_info
*array
)
640 space
= isl_space_params(isl_space_copy(array
->space
));
641 guard
= isl_set_universe(space
);
643 for (i
= 0; i
< array
->n_index
; ++i
) {
645 isl_set
*guard_i
, *zero
;
647 bound
= isl_pw_aff_copy(array
->bound
[i
]);
648 guard_i
= isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound
));
649 zero
= isl_pw_aff_zero_set(bound
);
650 guard_i
= isl_set_subtract(guard_i
, zero
);
651 guard
= isl_set_intersect(guard
, guard_i
);
657 /* Internal data structure for extract_size_of_type.
658 * "type" specifies the name of the space that we want to extract.
659 * "res" is used to store the subset of that space.
661 struct ppcg_extract_size_data
{
666 /* This function is called for each set in a union_set.
667 * If the name of the set matches data->type, we store the
670 static int extract_size_of_type(__isl_take isl_set
*size
, void *user
)
672 struct ppcg_extract_size_data
*data
= user
;
675 name
= isl_set_get_tuple_name(size
);
676 if (name
&& !strcmp(name
, data
->type
)) {
685 /* Given a union map { kernel[i] -> *[...] },
686 * return the range in the space called "type" for the kernel with
687 * sequence number "id".
689 static __isl_give isl_set
*extract_sizes(__isl_keep isl_union_map
*sizes
,
690 const char *type
, int id
)
694 isl_union_set
*local_sizes
;
695 struct ppcg_extract_size_data data
= { type
, NULL
};
700 space
= isl_union_map_get_space(sizes
);
701 space
= isl_space_set_from_params(space
);
702 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
703 space
= isl_space_set_tuple_name(space
, isl_dim_set
, "kernel");
704 dom
= isl_set_universe(space
);
705 dom
= isl_set_fix_si(dom
, isl_dim_set
, 0, id
);
707 local_sizes
= isl_union_set_apply(isl_union_set_from_set(dom
),
708 isl_union_map_copy(sizes
));
709 isl_union_set_foreach_set(local_sizes
, &extract_size_of_type
, &data
);
710 isl_union_set_free(local_sizes
);
714 /* Given a singleton set, extract the first (at most *len) elements
715 * of the single integer tuple into *sizes and update *len if needed.
717 static void read_sizes_from_set(__isl_take isl_set
*set
, int *sizes
, int *len
)
725 dim
= isl_set_dim(set
, isl_dim_set
);
729 for (i
= 0; i
< *len
; ++i
) {
732 v
= isl_set_plain_get_val_if_fixed(set
, isl_dim_set
, i
);
735 sizes
[i
] = isl_val_get_num_si(v
);
742 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
743 * if the option debug->dump_sizes is set.
745 static void set_used_sizes(struct gpu_gen
*gen
, const char *type
, int id
,
752 if (!gen
->options
->debug
->dump_sizes
)
755 space
= isl_union_map_get_space(gen
->used_sizes
);
756 space
= isl_space_set_from_params(space
);
757 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
758 space
= isl_space_set_tuple_name(space
, isl_dim_set
, "kernel");
759 space
= isl_space_from_domain(space
);
760 space
= isl_space_add_dims(space
, isl_dim_out
, len
);
761 space
= isl_space_set_tuple_name(space
, isl_dim_out
, type
);
763 map
= isl_map_universe(space
);
764 map
= isl_map_fix_si(map
, isl_dim_in
, 0, id
);
765 for (i
= 0; i
< len
; ++i
)
766 map
= isl_map_fix_si(map
, isl_dim_out
, i
, sizes
[i
]);
768 gen
->used_sizes
= isl_union_map_add_map(gen
->used_sizes
, map
);
771 /* Extract user specified "tile" sizes from the "sizes" command line option,
772 * defaulting to option->tile_size in each dimension.
773 * Add the effectively used sizes to gen->used_sizes.
775 static void read_tile_sizes(struct gpu_gen
*gen
)
780 gen
->tile_size
= isl_alloc_array(gen
->ctx
, int, gen
->tile_len
);
781 assert(gen
->tile_size
);
782 for (n
= 0; n
< gen
->tile_len
; ++n
)
783 gen
->tile_size
[n
] = gen
->options
->tile_size
;
785 size
= extract_sizes(gen
->sizes
, "tile", gen
->kernel_id
);
786 read_sizes_from_set(size
, gen
->tile_size
, &gen
->tile_len
);
787 set_used_sizes(gen
, "tile", gen
->kernel_id
,
788 gen
->tile_size
, gen
->tile_len
);
790 if (gen
->n_parallel
> gen
->tile_len
)
791 gen
->n_parallel
= gen
->tile_len
;
794 /* Extract user specified "block" sizes from the "sizes" command line option,
795 * after filling in some potentially useful defaults.
796 * Add the effectively used sizes to gen->used_sizes.
798 static void read_block_sizes(struct gpu_gen
*gen
)
804 gen
->n_block
= (n
<= 3) ? n
: 3;
805 switch (gen
->n_block
) {
807 gen
->block_dim
[0] = 512;
810 gen
->block_dim
[0] = 32;
811 gen
->block_dim
[1] = 16;
814 gen
->block_dim
[0] = 32;
815 gen
->block_dim
[1] = 4;
816 gen
->block_dim
[2] = 4;
820 size
= extract_sizes(gen
->sizes
, "block", gen
->kernel_id
);
821 read_sizes_from_set(size
, gen
->block_dim
, &gen
->n_block
);
822 set_used_sizes(gen
, "block", gen
->kernel_id
,
823 gen
->block_dim
, gen
->n_block
);
826 /* Extract user specified "grid" sizes from the "sizes" command line option,
827 * after filling in some potentially useful defaults.
828 * Add the effectively used sizes to gen->used_sizes.
830 static void read_grid_sizes(struct gpu_gen
*gen
)
832 int n
= gen
->n_parallel
;
835 gen
->n_grid
= (n
<= 2) ? n
: 2;
836 switch (gen
->n_grid
) {
838 gen
->grid_dim
[0] = 32768;
841 gen
->grid_dim
[0] = 256;
842 gen
->grid_dim
[1] = 256;
846 size
= extract_sizes(gen
->sizes
, "grid", gen
->kernel_id
);
847 read_sizes_from_set(size
, gen
->grid_dim
, &gen
->n_grid
);
848 set_used_sizes(gen
, "grid", gen
->kernel_id
, gen
->grid_dim
, gen
->n_grid
);
851 /* Extract user specified sizes from the "sizes" command line option
852 * after filling in some potentially useful defaults.
854 static void read_sizes(struct gpu_gen
*gen
)
856 read_tile_sizes(gen
);
857 read_block_sizes(gen
);
858 read_grid_sizes(gen
);
861 static void *free_stmts(struct gpu_stmt
*stmts
, int n
)
868 for (i
= 0; i
< n
; ++i
) {
869 struct gpu_stmt_access
*access
, *next
;
871 for (access
= stmts
[i
].accesses
; access
; access
= next
) {
873 isl_id_free(access
->ref_id
);
874 isl_map_free(access
->access
);
875 isl_map_free(access
->tagged_access
);
879 isl_id_free(stmts
[i
].id
);
886 /* Construct a map from a domain of dimensionality "len"
887 * to a domain of dimensionality "len" + "tile_len" that tiles
888 * the "tile_len" coordinates starting at "first".
889 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
890 * "dim" prescribes the parameters.
892 static __isl_give isl_map
*tile(__isl_take isl_space
*dim
, int len
,
893 int first
, int tile_len
, int *tile_size
)
900 dim
= isl_space_add_dims(dim
, isl_dim_in
, len
);
901 dim
= isl_space_add_dims(dim
, isl_dim_out
, len
+ tile_len
);
902 bmap
= isl_basic_map_universe(isl_space_copy(dim
));
903 ls
= isl_local_space_from_space(dim
);
905 for (i
= 0; i
< len
- tile_len
; ++i
) {
906 int j
= i
< first
? i
: i
+ tile_len
;
907 int k
= i
< first
? i
: i
+ 2 * tile_len
;
909 c
= isl_equality_alloc(isl_local_space_copy(ls
));
910 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, j
, -1);
911 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, k
, 1);
912 bmap
= isl_basic_map_add_constraint(bmap
, c
);
915 for (i
= 0; i
< tile_len
; ++i
) {
916 c
= isl_equality_alloc(isl_local_space_copy(ls
));
917 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
,
919 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
920 first
+ i
, tile_size
[i
]);
921 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
922 first
+ i
+ tile_len
, 1);
923 bmap
= isl_basic_map_add_constraint(bmap
, c
);
925 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
926 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
927 first
+ i
+ tile_len
, 1);
928 bmap
= isl_basic_map_add_constraint(bmap
, c
);
930 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
931 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
932 first
+ i
+ tile_len
, -1);
933 c
= isl_constraint_set_constant_si(c
, tile_size
[i
] - 1);
934 bmap
= isl_basic_map_add_constraint(bmap
, c
);
937 isl_local_space_free(ls
);
939 return isl_map_from_basic_map(bmap
);
942 /* Construct a map from a domain of dimensionality "len"
943 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
944 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
945 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
946 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
947 * that are projected out at the end.
948 * "dim" prescribes the parameters.
950 static __isl_give isl_map
*wrap(__isl_take isl_space
*dim
, int len
,
951 int first
, int wrap_len
, int *wrap_size
)
958 dim
= isl_space_add_dims(dim
, isl_dim_in
, len
);
959 dim
= isl_space_add_dims(dim
, isl_dim_out
, len
+ 2 * wrap_len
);
960 bmap
= isl_basic_map_universe(isl_space_copy(dim
));
961 ls
= isl_local_space_from_space(dim
);
963 for (i
= 0; i
< len
; ++i
) {
964 int k
= i
< first
+ wrap_len
? i
: i
+ 2 * wrap_len
;
966 c
= isl_equality_alloc(isl_local_space_copy(ls
));
967 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, -1);
968 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, k
, 1);
969 bmap
= isl_basic_map_add_constraint(bmap
, c
);
972 for (i
= 0; i
< wrap_len
; ++i
) {
973 c
= isl_equality_alloc(isl_local_space_copy(ls
));
974 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
976 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
977 first
+ wrap_len
+ i
, 1);
978 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
979 first
+ 2 * wrap_len
+ i
, wrap_size
[i
]);
980 bmap
= isl_basic_map_add_constraint(bmap
, c
);
982 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
983 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
984 first
+ wrap_len
+ i
, 1);
985 bmap
= isl_basic_map_add_constraint(bmap
, c
);
987 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
988 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
989 first
+ wrap_len
+ i
, -1);
990 c
= isl_constraint_set_constant_si(c
, wrap_size
[i
] - 1);
991 bmap
= isl_basic_map_add_constraint(bmap
, c
);
994 isl_local_space_free(ls
);
996 bmap
= isl_basic_map_project_out(bmap
, isl_dim_out
,
997 first
+ 2 * wrap_len
, wrap_len
);
999 return isl_map_from_basic_map(bmap
);
1002 /* Add parameters with identifiers "ids" to "set".
1004 static __isl_give isl_set
*add_params(__isl_take isl_set
*set
,
1005 __isl_keep isl_id_list
*ids
)
1010 n
= isl_id_list_n_id(ids
);
1012 nparam
= isl_set_dim(set
, isl_dim_param
);
1013 set
= isl_set_add_dims(set
, isl_dim_param
, n
);
1015 for (i
= 0; i
< n
; ++i
) {
1018 id
= isl_id_list_get_id(ids
, i
);
1019 set
= isl_set_set_dim_id(set
, isl_dim_param
, nparam
+ i
, id
);
1025 /* Equate the dimensions of "set" starting at "first" to
1026 * freshly created parameters with identifiers "ids".
1027 * The number of equated dimensions is equal to the number of elements in "ids".
1029 static __isl_give isl_set
*parametrize(__isl_take isl_set
*set
,
1030 int first
, __isl_keep isl_id_list
*ids
)
1035 nparam
= isl_set_dim(set
, isl_dim_param
);
1037 set
= add_params(set
, ids
);
1039 n
= isl_id_list_n_id(ids
);
1040 for (i
= 0; i
< n
; ++i
)
1041 set
= isl_set_equate(set
, isl_dim_param
, nparam
+ i
,
1042 isl_dim_set
, first
+ i
);
1047 /* Given a parameter space "space", create a set of dimension "len"
1048 * of which the dimensions starting at "first" are equated to
1049 * freshly created parameters with identifiers "ids".
1051 static __isl_give isl_set
*parametrization(__isl_take isl_space
*space
,
1052 int len
, int first
, __isl_keep isl_id_list
*ids
)
1056 space
= isl_space_set_from_params(space
);
1057 space
= isl_space_add_dims(space
, isl_dim_set
, len
);
1058 set
= isl_set_universe(space
);
1060 return parametrize(set
, first
, ids
);
1063 /* Tile the B loops over the tile sizes and then tile/wrap
1064 * the T1 loops over the blocks.
1066 static __isl_give isl_union_map
*tile_schedule(struct gpu_gen
*gen
,
1067 __isl_take isl_union_map
*sched
)
1070 isl_map
*tiling
, *block_tiling
;
1072 dim
= isl_union_map_get_space(sched
);
1073 tiling
= tile(isl_space_copy(dim
), gen
->untiled_len
,
1074 gen
->tile_first
, gen
->tile_len
, gen
->tile_size
);
1076 if (gen
->options
->wrap
)
1077 block_tiling
= wrap(dim
, gen
->untiled_len
+ gen
->tile_len
,
1078 gen
->tile_first
, gen
->n_grid
, gen
->grid_dim
);
1080 block_tiling
= tile(dim
, gen
->untiled_len
+ gen
->tile_len
,
1081 gen
->tile_first
, gen
->n_grid
, gen
->grid_dim
);
1083 gen
->tiled_len
= gen
->untiled_len
+ gen
->tile_len
+ gen
->n_grid
;
1085 tiling
= isl_map_apply_range(tiling
, block_tiling
);
1087 sched
= isl_union_map_apply_range(sched
,
1088 isl_union_map_from_map(tiling
));
1090 gen
->shared_len
= gen
->tile_first
+ gen
->tile_len
+ gen
->n_grid
;
1095 /* Equate the "T1P" iterators in the tiled schedule "sched"
1096 * to the block dimensions.
1098 static __isl_give isl_union_map
*parametrize_tiled_schedule(
1099 struct gpu_gen
*gen
, __isl_take isl_union_map
*sched
)
1104 dim
= isl_union_map_get_space(sched
);
1105 par
= parametrization(dim
, gen
->tiled_len
,
1106 gen
->tile_first
+ gen
->n_grid
, gen
->kernel
->block_ids
);
1107 sched
= isl_union_map_intersect_range(sched
,
1108 isl_union_set_from_set(par
));
1113 /* Tile/wrap the P1 loops over the threads.
1115 static __isl_give isl_union_map
*thread_tile_schedule(struct gpu_gen
*gen
,
1116 __isl_take isl_union_map
*sched
)
1122 dim
= isl_union_map_get_space(sched
);
1124 if (gen
->options
->wrap
)
1125 tiling
= wrap(isl_space_copy(dim
), gen
->tiled_len
,
1126 gen
->shared_len
, gen
->n_block
, gen
->block_dim
);
1128 tiling
= tile(isl_space_copy(dim
), gen
->tiled_len
,
1129 gen
->shared_len
, gen
->n_block
, gen
->block_dim
);
1130 gen
->thread_tiled_len
= gen
->tiled_len
+ gen
->n_block
;
1132 sched
= isl_union_map_apply_range(sched
,
1133 isl_union_map_from_map(tiling
));
1135 par
= parametrization(dim
, gen
->thread_tiled_len
,
1136 gen
->tile_first
+ gen
->tile_len
+ gen
->n_grid
+ gen
->n_block
,
1137 gen
->kernel
->thread_ids
);
1138 sched
= isl_union_map_intersect_range(sched
,
1139 isl_union_set_from_set(par
));
1141 gen
->shared_len
= gen
->tile_first
+ gen
->tile_len
+ gen
->n_grid
;
1146 /* If the user asked for it, scale the shared memory tile loops
1147 * (T1T and T2) of "sched" by gen->tile_size[i].
1148 * If we are not performing "wrapping", then additionally scale the T1P
1149 * loops by gen->grid_dim[i].
1151 static __isl_give isl_union_map
*scale_tile_loops(struct gpu_gen
*gen
,
1152 __isl_take isl_union_map
*sched
)
1156 isl_basic_map
*scale
;
1158 isl_local_space
*ls
;
1160 if (!gen
->options
->scale_tile_loops
)
1163 dim
= isl_union_map_get_space(sched
);
1164 dim
= isl_space_add_dims(dim
, isl_dim_in
, gen
->tiled_len
);
1165 dim
= isl_space_add_dims(dim
, isl_dim_out
, gen
->tiled_len
);
1166 scale
= isl_basic_map_universe(isl_space_copy(dim
));
1167 ls
= isl_local_space_from_space(dim
);
1169 for (i
= 0; i
< gen
->tiled_len
; ++i
) {
1172 if (i
>= gen
->tile_first
&& i
< gen
->tile_first
+ gen
->n_grid
) {
1173 f
= gen
->tile_size
[i
- gen
->tile_first
];
1174 if (!gen
->options
->wrap
)
1175 f
*= gen
->grid_dim
[i
- gen
->tile_first
];
1176 } else if (i
>= gen
->tile_first
+ gen
->n_grid
&&
1177 i
< gen
->tile_first
+ gen
->n_grid
+ gen
->tile_len
) {
1178 f
= gen
->tile_size
[i
- (gen
->tile_first
+ gen
->n_grid
)];
1181 c
= isl_equality_alloc(isl_local_space_copy(ls
));
1182 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, f
);
1183 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
1184 scale
= isl_basic_map_add_constraint(scale
, c
);
1187 isl_local_space_free(ls
);
1189 sched
= isl_union_map_apply_range(sched
,
1190 isl_union_map_from_map(isl_map_from_basic_map(scale
)));
1195 /* If we are not performing "wrapping" and if the user asked for it,
1196 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
1198 static __isl_give isl_union_map
*scale_thread_tile_loops(struct gpu_gen
*gen
,
1199 __isl_take isl_union_map
*sched
)
1203 isl_basic_map
*scale
;
1205 isl_local_space
*ls
;
1207 if (gen
->options
->wrap
)
1209 if (!gen
->options
->scale_tile_loops
)
1212 dim
= isl_union_map_get_space(sched
);
1213 dim
= isl_space_add_dims(dim
, isl_dim_in
, gen
->thread_tiled_len
);
1214 dim
= isl_space_add_dims(dim
, isl_dim_out
, gen
->thread_tiled_len
);
1215 scale
= isl_basic_map_universe(isl_space_copy(dim
));
1216 ls
= isl_local_space_from_space(dim
);
1218 for (i
= 0; i
< gen
->thread_tiled_len
; ++i
) {
1221 if (i
>= gen
->shared_len
&&
1222 i
< gen
->shared_len
+ gen
->n_block
)
1223 f
= gen
->block_dim
[i
- gen
->shared_len
];
1225 c
= isl_equality_alloc(isl_local_space_copy(ls
));
1226 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, f
);
1227 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
1228 scale
= isl_basic_map_add_constraint(scale
, c
);
1231 isl_local_space_free(ls
);
1233 sched
= isl_union_map_apply_range(sched
,
1234 isl_union_map_from_map(isl_map_from_basic_map(scale
)));
1239 /* If we are not performing "wrapping" and if the user asked for it,
1240 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1242 static __isl_give isl_union_map
*scale_access_tile_loops(struct gpu_gen
*gen
,
1243 __isl_take isl_union_map
*sched
, int len
, int first
, int n_tile
)
1247 isl_basic_map
*scale
;
1249 isl_local_space
*ls
;
1251 if (gen
->options
->wrap
)
1253 if (!gen
->options
->scale_tile_loops
)
1256 dim
= isl_union_map_get_space(sched
);
1257 dim
= isl_space_add_dims(dim
, isl_dim_in
, len
);
1258 dim
= isl_space_add_dims(dim
, isl_dim_out
, len
);
1259 scale
= isl_basic_map_universe(isl_space_copy(dim
));
1260 ls
= isl_local_space_from_space(dim
);
1262 for (i
= 0; i
< len
; ++i
) {
1265 if (i
>= first
&& i
< first
+ n_tile
)
1266 f
= gen
->kernel
->block_dim
[i
- first
];
1268 c
= isl_equality_alloc(isl_local_space_copy(ls
));
1269 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, f
);
1270 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
1271 scale
= isl_basic_map_add_constraint(scale
, c
);
1274 isl_local_space_free(ls
);
1276 sched
= isl_union_map_apply_range(sched
,
1277 isl_union_map_from_map(isl_map_from_basic_map(scale
)));
1282 /* Add parameters p[i] with identifiers "ids" to "set",
1283 * with bounds to 0 <= p[i] < size[i].
1285 __isl_give isl_set
*add_bounded_parameters(__isl_take isl_set
*set
,
1286 int *size
, __isl_keep isl_id_list
*ids
)
1291 len
= isl_id_list_n_id(ids
);
1292 nparam
= isl_set_dim(set
, isl_dim_param
);
1293 set
= isl_set_add_dims(set
, isl_dim_param
, len
);
1295 for (i
= 0; i
< len
; ++i
) {
1298 id
= isl_id_list_get_id(ids
, i
);
1299 set
= isl_set_set_dim_id(set
, isl_dim_param
, nparam
+ i
, id
);
1300 set
= isl_set_lower_bound_si(set
, isl_dim_param
, nparam
+ i
, 0);
1301 set
= isl_set_upper_bound_si(set
, isl_dim_param
,
1302 nparam
+ i
, size
[i
] - 1);
1308 /* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
1311 * { : 0 <= p[i] < size[i] }
1313 * or an overapproximation.
1315 static __isl_give isl_set
*add_bounded_parameters_dynamic(
1316 __isl_take isl_set
*set
, __isl_keep isl_multi_pw_aff
*size
,
1317 __isl_keep isl_id_list
*ids
)
1322 isl_local_space
*ls
;
1324 len
= isl_multi_pw_aff_dim(size
, isl_dim_out
);
1325 nparam
= isl_set_dim(set
, isl_dim_param
);
1326 set
= isl_set_add_dims(set
, isl_dim_param
, len
);
1328 for (i
= 0; i
< len
; ++i
) {
1331 id
= isl_id_list_get_id(ids
, i
);
1332 set
= isl_set_set_dim_id(set
, isl_dim_param
, nparam
+ i
, id
);
1335 space
= isl_space_params(isl_set_get_space(set
));
1336 ls
= isl_local_space_from_space(space
);
1337 for (i
= 0; i
< len
; ++i
) {
1338 isl_pw_aff
*param
, *size_i
, *zero
;
1341 param
= isl_pw_aff_var_on_domain(isl_local_space_copy(ls
),
1342 isl_dim_param
, nparam
+ i
);
1344 size_i
= isl_multi_pw_aff_get_pw_aff(size
, i
);
1345 bound
= isl_pw_aff_lt_set(isl_pw_aff_copy(param
), size_i
);
1346 bound
= isl_set_from_basic_set(isl_set_simple_hull(bound
));
1347 set
= isl_set_intersect_params(set
, bound
);
1349 zero
= isl_pw_aff_zero_on_domain(isl_local_space_copy(ls
));
1350 bound
= isl_pw_aff_ge_set(param
, zero
);
1351 set
= isl_set_intersect_params(set
, bound
);
1353 isl_local_space_free(ls
);
1358 /* Construct a map from an access to group->array to the corresponding
1359 * shared/private memory tile.
1360 * The map is of the form
1362 * { [D[i] -> A[a]] -> T[t] }
1364 * where D represents the initial shared_len dimensions
1365 * of the computed schedule.
1367 static __isl_give isl_map
*shift_access(struct gpu_array_ref_group
*group
)
1369 struct gpu_array_tile
*tile
;
1370 isl_multi_aff
*tiling
;
1372 tile
= group
->private_tile
;
1374 tile
= group
->shared_tile
;
1376 tiling
= isl_multi_aff_copy(tile
->tiling
);
1378 return isl_map_from_multi_aff(tiling
);
1381 /* Does "map" have an obviously fixed value at variable "pos" of "type"?
1383 static int map_plain_is_fixed(isl_map
*map
, enum isl_dim_type type
,
1389 v
= isl_map_plain_get_val_if_fixed(map
, type
, pos
);
1392 fixed
= isl_val_is_int(v
);
1398 /* Given a schedule that iterates over all elements in a piece of an array,
1399 * perform tiling/wrapping over the threads.
1401 * In particular, we tile the final iterators so that the final thread
1402 * dimension runs over the final array dimension.
1403 * However, if those final iterators have only a single iteration,
1404 * we try to tile earlier iterators instead.
1406 static __isl_give isl_map
*tile_access_schedule(struct gpu_gen
*gen
,
1407 __isl_take isl_map
*sched
)
1410 isl_union_map
*usched
;
1413 unsigned nvar
= isl_map_dim(sched
, isl_dim_out
);
1417 n_tile
= gen
->kernel
->n_block
;
1418 if (n_tile
> nvar
) {
1420 sched
= isl_map_insert_dims(sched
,
1421 isl_dim_out
, 0, n_tile
- nvar
);
1422 for (i
= 0; i
< n_tile
- nvar
; ++i
)
1423 sched
= isl_map_fix_si(sched
, isl_dim_out
, i
, 0);
1427 first
= nvar
- n_tile
;
1429 for (; first
> 0; first
--)
1430 if (!map_plain_is_fixed(sched
, isl_dim_out
, first
+ n_tile
- 1))
1433 dim
= isl_map_get_space(sched
);
1434 dim
= isl_space_params(dim
);
1435 if (gen
->options
->wrap
)
1436 tiling
= wrap(isl_space_copy(dim
), nvar
, first
,
1437 n_tile
, gen
->kernel
->block_dim
);
1439 tiling
= tile(isl_space_copy(dim
), nvar
, first
,
1440 n_tile
, gen
->kernel
->block_dim
);
1441 sched
= isl_map_apply_range(sched
, tiling
);
1443 par
= parametrization(dim
, nvar
+ n_tile
, first
+ n_tile
,
1444 gen
->kernel
->thread_ids
);
1445 sched
= isl_map_intersect_range(sched
, par
);
1447 usched
= isl_union_map_from_map(sched
);
1448 usched
= scale_access_tile_loops(gen
, usched
, nvar
+ n_tile
,
1450 sched
= isl_map_from_union_map(usched
);
1455 /* Return the union of all read (read = 1) and/or write (write = 1)
1456 * access relations in the group.
1458 static __isl_give isl_union_map
*group_access_relation(
1459 struct gpu_array_ref_group
*group
, int read
, int write
)
1462 isl_union_map
*access
;
1464 access
= isl_union_map_empty(isl_map_get_space(group
->access
));
1465 for (i
= 0; i
< group
->n_ref
; ++i
) {
1468 if (!((read
&& group
->refs
[i
]->read
) ||
1469 (write
&& group
->refs
[i
]->write
)))
1471 map_i
= isl_map_copy(group
->refs
[i
]->access
);
1472 access
= isl_union_map_union(access
,
1473 isl_union_map_from_map(map_i
));
1479 /* Return the union of all tagged access relations in the group.
1481 static __isl_give isl_union_map
*group_tagged_access_relation(
1482 struct gpu_array_ref_group
*group
)
1485 isl_union_map
*access
;
1487 access
= isl_union_map_empty(isl_map_get_space(group
->access
));
1488 for (i
= 0; i
< group
->n_ref
; ++i
) {
1491 map_i
= isl_map_copy(group
->refs
[i
]->tagged_access
);
1492 access
= isl_union_map_union(access
,
1493 isl_union_map_from_map(map_i
));
1499 /* Return the extent of "array", recomputed from the bounds.
1500 * The recomputed extent may be simpler than the original extent.
1502 static __isl_give isl_set
*array_extent(struct gpu_array_info
*array
)
1507 isl_local_space
*ls
;
1510 id
= isl_set_get_tuple_id(array
->extent
);
1511 space
= isl_set_get_space(array
->extent
);
1512 extent
= isl_set_universe(isl_space_copy(space
));
1513 ls
= isl_local_space_from_space(space
);
1514 for (i
= 0; i
< array
->n_index
; ++i
) {
1520 extent
= isl_set_lower_bound_si(extent
, isl_dim_set
, i
, 0);
1522 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
1524 index
= isl_pw_aff_from_aff(aff
);
1525 bound
= isl_pw_aff_copy(array
->bound
[i
]);
1526 bound
= isl_pw_aff_from_range(bound
);
1527 bound
= isl_pw_aff_add_dims(bound
, isl_dim_in
, array
->n_index
);
1528 bound
= isl_pw_aff_set_tuple_id(bound
, isl_dim_in
,
1530 lt
= isl_pw_aff_lt_set(index
, bound
);
1531 extent
= isl_set_intersect(extent
, lt
);
1533 isl_local_space_free(ls
);
1539 /* Return a map from the first shared_len dimensions of the computed
1540 * schedule to the array tile in
1541 * global memory that corresponds to the shared memory copy.
1543 * In particular, return a map
1549 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
1553 * 0 <= a <= array_size - 1 (2)
1555 * Note that if some stride has been detected (i.e., when
1556 * group->shared_tile->bound[i].shift is set), then a in (1) refers
1557 * to the shifted and scaled down version.
1559 * Constraints (1) are obtained by mapping the size constraints on the
1560 * shared/private memory tile back to the access relation.
1561 * Constraints (2) are obtained from the (recomputed) extent.
1563 static __isl_give isl_map
*group_tile(struct gpu_array_ref_group
*group
)
1566 int n_index
= group
->array
->n_index
;
1572 space
= isl_multi_aff_get_space(group
->shared_tile
->tiling
);
1573 space
= isl_space_range(space
);
1574 local
= isl_set_universe(space
);
1575 for (i
= 0; i
< n_index
; ++i
) {
1578 local
= isl_set_lower_bound_si(local
, isl_dim_set
, i
, 0);
1579 bound
= isl_val_copy(group
->shared_tile
->bound
[i
].size
);
1580 bound
= isl_val_sub_ui(bound
, 1);
1581 local
= isl_set_upper_bound_val(local
, isl_dim_set
, i
, bound
);
1583 local
= isl_set_preimage_multi_aff(local
,
1584 isl_multi_aff_copy(group
->shared_tile
->tiling
));
1585 tile
= isl_set_unwrap(local
);
1586 extent
= array_extent(group
->array
);
1587 tile
= isl_map_intersect_range(tile
, extent
);
1592 /* Given a mapping "iterator_map" from the AST schedule to a domain,
1593 * return the corresponding mapping from the AST schedule to
1594 * to the first shared_len dimensions of the schedule computed by PPCG.
1596 static __isl_give isl_pw_multi_aff
*compute_sched_to_shared(struct gpu_gen
*gen
,
1597 __isl_take isl_pw_multi_aff
*iterator_map
)
1599 isl_union_map
*umap
;
1601 isl_map
*map
, *sched
;;
1603 space
= isl_space_range(isl_pw_multi_aff_get_space(iterator_map
));
1604 space
= isl_space_from_domain(space
);
1605 space
= isl_space_add_dims(space
, isl_dim_out
, gen
->shared_len
);
1607 umap
= isl_union_map_copy(gen
->shared_sched
);
1608 umap
= isl_union_map_apply_range(umap
,
1609 isl_union_map_copy(gen
->shared_proj
));
1610 map
= isl_union_map_extract_map(umap
, space
);
1611 isl_union_map_free(umap
);
1613 sched
= isl_map_preimage_domain_pw_multi_aff(map
, iterator_map
);
1614 sched
= isl_map_detect_equalities(sched
);
1616 return isl_pw_multi_aff_from_map(sched
);
1619 /* Set unroll[j] if the input dimension j is involved in
1620 * the index expression represented by ma.
1622 static int check_unroll(__isl_take isl_set
*set
, __isl_take isl_multi_aff
*ma
,
1626 int n_in
= isl_multi_aff_dim(ma
, isl_dim_in
);
1627 int n_out
= isl_multi_aff_dim(ma
, isl_dim_out
);
1630 for (i
= 0; i
< n_out
; ++i
) {
1633 aff
= isl_multi_aff_get_aff(ma
, i
);
1634 for (j
= 0; j
< n_in
; ++j
)
1635 if (isl_aff_involves_dims(aff
, isl_dim_in
, j
, 1))
1641 isl_multi_aff_free(ma
);
1645 /* Given an array pos mapping input dimensions to the corresponding
1646 * output dimension, construct the corresponding map.
1648 static __isl_give isl_map
*permutation(__isl_take isl_space
*dim
,
1653 isl_basic_map
*bmap
;
1654 isl_local_space
*ls
;
1656 dim
= isl_space_add_dims(dim
, isl_dim_in
, len
);
1657 dim
= isl_space_add_dims(dim
, isl_dim_out
, len
);
1658 bmap
= isl_basic_map_universe(isl_space_copy(dim
));
1659 ls
= isl_local_space_from_space(dim
);
1661 for (i
= 0; i
< len
; ++i
) {
1662 c
= isl_equality_alloc(isl_local_space_copy(ls
));
1663 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
,
1665 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, pos
[i
],
1667 bmap
= isl_basic_map_add_constraint(bmap
, c
);
1669 isl_local_space_free(ls
);
1671 return isl_map_from_basic_map(bmap
);
1674 /* Remove the private tiles from all array reference groups,
1675 * except for the groups of arrays that are marked force_private.
1677 static void remove_private_tiles(struct gpu_gen
*gen
)
1681 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
1682 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
1684 if (array
->force_private
)
1687 for (j
= 0; j
< array
->n_group
; ++j
) {
1688 struct gpu_array_ref_group
*group
= array
->groups
[j
];
1690 group
->private_tile
= free_tile(group
->private_tile
);
1695 /* Find all loops involved in any of the index expressions for any of
1696 * the private accesses, move them innermost and then mark them as
1697 * requiring unrolling by setting gen->first_unroll.
1698 * The loops involved should all be parallel because of the checks
1699 * we performed in check_private_group_access. Moving them innermost
1700 * is therefore a valid transformation.
1702 * If any of the arrays are marked force_private, however, then
1703 * those loops may not be parallel with respect to the marked arrays.
1704 * If any of the loops would have to be moved innermost for the
1705 * (non forced) private accesses and if there are any force_private
1706 * arrays, then we revert the decision to map the selected arrays
1707 * to private memory. An alternative solution would be to expand
1708 * the force_private arrays.
1710 * Loops up to gen->shared_len are generated before the mapping to
1711 * threads is applied. They should therefore be ignored.
1713 * We compute the hidden equalities of the schedule first
1714 * since we will need them in our calls to isl_pw_multi_aff_from_map
1715 * and because we want to make sure that the same equalities
1716 * are also available to the code generator.
1718 static __isl_give isl_union_map
*interchange_for_unroll(struct gpu_gen
*gen
,
1719 __isl_take isl_union_map
*sched
)
1722 int unroll
[gen
->thread_tiled_len
];
1723 int perm
[gen
->thread_tiled_len
];
1726 int len
= gen
->shared_len
+ gen
->n_parallel
+ gen
->n_block
;
1728 gen
->first_unroll
= -1;
1730 sched
= isl_union_map_detect_equalities(sched
);
1731 for (i
= 0; i
< gen
->thread_tiled_len
; ++i
)
1733 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
1734 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
1736 for (j
= 0; j
< array
->n_group
; ++j
) {
1737 isl_union_map
*access
;
1739 isl_pw_multi_aff
*pma
;
1741 if (!array
->groups
[j
]->private_tile
)
1744 access
= group_access_relation(array
->groups
[j
], 1, 1);
1745 access
= isl_union_map_apply_domain(access
,
1746 isl_union_map_copy(sched
));
1748 acc
= isl_map_from_union_map(access
);
1749 pma
= isl_pw_multi_aff_from_map(acc
);
1750 isl_pw_multi_aff_foreach_piece(pma
,
1751 &check_unroll
, unroll
);
1753 isl_pw_multi_aff_free(pma
);
1757 for (i
= gen
->shared_len
; i
< len
; ++i
)
1764 for (i
= len
; i
< gen
->thread_tiled_len
; ++i
)
1768 if (gen
->any_force_private
) {
1769 remove_private_tiles(gen
);
1774 for (i
= 0; i
< gen
->shared_len
; ++i
)
1776 for (i
= gen
->shared_len
; i
< gen
->thread_tiled_len
; ++i
)
1779 gen
->first_unroll
= j
- gen
->shared_len
;
1780 for (i
= gen
->shared_len
; i
< len
; ++i
)
1784 dim
= isl_union_map_get_space(sched
);
1785 permute
= permutation(dim
, perm
, gen
->thread_tiled_len
);
1786 sched
= isl_union_map_apply_range(sched
,
1787 isl_union_map_from_map(permute
));
1792 /* Given a constraint
1794 * a(p,i) + j = g f(e)
1796 * or -a(p,i) - j = g f(e) if sign < 0,
1797 * store a(p,i) in bound->shift and g (stride) in bound->stride.
1798 * a(p,i) is assumed to be an expression in only the parameters
1799 * and the input dimensions.
1801 static void extract_stride(__isl_keep isl_constraint
*c
,
1802 struct gpu_array_bound
*bound
, __isl_keep isl_val
*stride
, int sign
)
1811 isl_val_free(bound
->stride
);
1812 bound
->stride
= isl_val_copy(stride
);
1814 space
= isl_constraint_get_space(c
);
1815 space
= isl_space_domain(space
);
1817 nparam
= isl_space_dim(space
, isl_dim_param
);
1818 nvar
= isl_space_dim(space
, isl_dim_set
);
1820 v
= isl_constraint_get_constant_val(c
);
1823 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
1824 aff
= isl_aff_set_constant_val(aff
, v
);
1826 for (i
= 0; i
< nparam
; ++i
) {
1827 if (!isl_constraint_involves_dims(c
, isl_dim_param
, i
, 1))
1829 v
= isl_constraint_get_coefficient_val(c
, isl_dim_param
, i
);
1832 aff
= isl_aff_add_coefficient_val(aff
, isl_dim_param
, i
, v
);
1835 for (i
= 0; i
< nvar
; ++i
) {
1836 if (!isl_constraint_involves_dims(c
, isl_dim_in
, i
, 1))
1838 v
= isl_constraint_get_coefficient_val(c
, isl_dim_in
, i
);
1841 aff
= isl_aff_add_coefficient_val(aff
, isl_dim_in
, i
, v
);
1847 /* Given an equality constraint of a map with a single output dimension j,
1848 * check if the constraint is of the form
1850 * a(p,i) + j = g f(e)
1852 * with a(p,i) an expression in the parameters and input dimensions
1853 * and f(e) an expression in the existentially quantified variables.
1854 * If so, and if g is larger than any such g from a previously considered
1855 * constraint, then call extract_stride to record the stride information
1858 static int check_stride_constraint(__isl_take isl_constraint
*c
, void *user
)
1864 struct gpu_array_bound
*bound
= user
;
1866 ctx
= isl_constraint_get_ctx(c
);
1867 n_div
= isl_constraint_dim(c
, isl_dim_div
);
1868 v
= isl_constraint_get_coefficient_val(c
, isl_dim_out
, 0);
1870 if (n_div
&& (isl_val_is_one(v
) || isl_val_is_negone(v
))) {
1871 int s
= isl_val_sgn(v
);
1872 isl_val
*stride
= isl_val_zero(ctx
);
1875 for (i
= 0; i
< n_div
; ++i
) {
1876 v
= isl_constraint_get_coefficient_val(c
,
1878 stride
= isl_val_gcd(stride
, v
);
1880 if (!isl_val_is_zero(stride
) &&
1881 isl_val_gt(stride
, bound
->stride
))
1882 extract_stride(c
, bound
, stride
, s
);
1884 isl_val_free(stride
);
1888 isl_constraint_free(c
);
1892 /* Given contraints on an array index i, check if we can find
1893 * a shift a(p) and a stride g such that
1895 * a(p) + i = 0 mod g
1897 * If so, record the information in bound and apply the mapping
1898 * i -> (i + a(p))/g to the array index in bounds and return
1899 * the new constraints.
1900 * If not, simply return the original constraints.
1902 * If bounds is a subset of the space
1906 * then the bound recorded in bound->shift is of the form
1910 * with s(D) equal to a(p) above.
1911 * Next, we construct a mapping of the form
1913 * [D -> i] -> [D -> (i + S(D))/g]
1915 * This mapping is computed as follows.
1916 * We first introduce "i" in the domain through precomposition
1917 * with [D -> i] -> D obtaining
1921 * Adding [D -> i] -> i produces
1923 * [D -> i] -> i + s(D)
1925 * and the domain product with [D -> i] -> D yields
1927 * [D -> i] -> [D -> i + s(D)]
1929 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
1931 static __isl_give isl_basic_map
*check_stride(struct gpu_array_bound
*bound
,
1932 __isl_take isl_basic_map
*bounds
)
1935 isl_basic_map
*hull
;
1936 isl_basic_map
*shift
, *id
, *bmap
, *scale
;
1937 isl_basic_set
*bset
;
1940 bound
->stride
= NULL
;
1942 hull
= isl_basic_map_affine_hull(isl_basic_map_copy(bounds
));
1944 isl_basic_map_foreach_constraint(hull
, &check_stride_constraint
, bound
);
1946 isl_basic_map_free(hull
);
1951 shift
= isl_basic_map_from_aff(isl_aff_copy(bound
->shift
));
1952 space
= isl_basic_map_get_space(bounds
);
1953 bmap
= isl_basic_map_domain_map(isl_basic_map_universe(space
));
1954 shift
= isl_basic_map_apply_range(bmap
, shift
);
1955 space
= isl_basic_map_get_space(bounds
);
1956 id
= isl_basic_map_range_map(isl_basic_map_universe(space
));
1957 shift
= isl_basic_map_sum(id
, shift
);
1958 space
= isl_basic_map_get_space(bounds
);
1959 id
= isl_basic_map_domain_map(isl_basic_map_universe(space
));
1960 shift
= isl_basic_map_range_product(id
, shift
);
1962 space
= isl_space_domain(isl_basic_map_get_space(bounds
));
1963 id
= isl_basic_map_identity(isl_space_map_from_set(space
));
1964 space
= isl_space_range(isl_basic_map_get_space(bounds
));
1965 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
1966 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, 0, 1);
1967 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(bound
->stride
));
1968 scale
= isl_basic_map_from_aff(aff
);
1969 scale
= isl_basic_map_product(id
, scale
);
1971 bmap
= isl_basic_map_apply_range(shift
, scale
);
1972 bset
= isl_basic_set_apply(isl_basic_map_wrap(bounds
), bmap
);
1973 bounds
= isl_basic_set_unwrap(bset
);
1978 /* Data used in compute_array_dim_size and compute_size_in_direction.
1980 * pos is the position of the variable representing the array index,
1981 * i.e., the variable for which want to compute the size. This variable
1982 * is also the last variable in the set.
1984 struct gpu_size_info
{
1985 isl_basic_set
*bset
;
1986 struct gpu_array_bound
*bound
;
1990 /* Given a constraint from the basic set describing the bounds on
1991 * an array index, check if it is a lower bound, say m i >= b(x), and,
1992 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
1993 * upper bound. If so, and if this bound is smaller than any bound
1994 * derived from earlier constraints, set the size to this bound on
1995 * the expression and the lower bound to ceil(b(x)/m).
1997 static int compute_size_in_direction(__isl_take isl_constraint
*c
, void *user
)
1999 struct gpu_size_info
*size
= user
;
2006 nparam
= isl_basic_set_dim(size
->bset
, isl_dim_param
);
2007 n_div
= isl_constraint_dim(c
, isl_dim_div
);
2009 if (isl_constraint_involves_dims(c
, isl_dim_div
, 0, n_div
) ||
2010 !isl_constraint_is_lower_bound(c
, isl_dim_set
, size
->pos
)) {
2011 isl_constraint_free(c
);
2015 aff
= isl_constraint_get_bound(c
, isl_dim_set
, size
->pos
);
2016 aff
= isl_aff_ceil(aff
);
2018 lb
= isl_aff_copy(aff
);
2020 aff
= isl_aff_neg(aff
);
2021 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, size
->pos
, 1);
2023 v
= isl_basic_set_max_val(size
->bset
, aff
);
2026 if (isl_val_is_int(v
)) {
2027 v
= isl_val_add_ui(v
, 1);
2028 if (!size
->bound
->size
|| isl_val_lt(v
, size
->bound
->size
)) {
2029 isl_val_free(size
->bound
->size
);
2030 size
->bound
->size
= isl_val_copy(v
);
2031 lb
= isl_aff_drop_dims(lb
, isl_dim_in
, size
->pos
, 1);
2032 isl_aff_free(size
->bound
->lb
);
2033 size
->bound
->lb
= isl_aff_copy(lb
);
2039 isl_constraint_free(c
);
2044 /* Given a basic map "bounds" that maps parameters and input dimensions
2045 * to a single output dimension, look for an expression in the parameters
2046 * and input dimensions such that the range of the output dimension shifted
2047 * by this expression is a constant.
2049 * In particular, we currently only consider lower bounds on the output
2050 * dimension as candidate expressions.
2052 static int compute_array_dim_size(struct gpu_array_bound
*bound
,
2053 __isl_take isl_basic_map
*bounds
)
2055 struct gpu_size_info size
;
2057 bounds
= isl_basic_map_detect_equalities(bounds
);
2058 bounds
= check_stride(bound
, bounds
);
2064 size
.pos
= isl_basic_map_dim(bounds
, isl_dim_in
);
2065 size
.bset
= isl_basic_map_wrap(bounds
);
2066 size
.bset
= isl_basic_set_flatten(size
.bset
);
2067 size
.bset
= isl_set_simple_hull(isl_basic_set_compute_divs(size
.bset
));
2068 isl_basic_set_foreach_constraint(size
.bset
, &compute_size_in_direction
,
2070 isl_basic_set_free(size
.bset
);
2072 return bound
->size
? 0 : -1;
2075 /* Check if we can find a memory tile for the given array
2076 * based on the given accesses, and if so, put the results in "tile".
2078 * We project the accesses on each index in turn and look for a parametric
2079 * offset such that the size is constant.
2081 static int can_tile(__isl_keep isl_map
*access
, struct gpu_array_tile
*tile
)
2085 for (i
= 0; i
< tile
->n
; ++i
) {
2087 isl_basic_map
*hull
;
2089 access_i
= isl_map_copy(access
);
2090 access_i
= isl_map_project_out(access_i
, isl_dim_out
, 0, i
);
2091 access_i
= isl_map_project_out(access_i
, isl_dim_out
,
2092 1, tile
->n
- (i
+ 1));
2093 access_i
= isl_map_compute_divs(access_i
);
2094 hull
= isl_map_simple_hull(access_i
);
2095 if (compute_array_dim_size(&tile
->bound
[i
], hull
) < 0)
2102 /* Construct a map with input the shared tile loops and the loops that
2103 * will be wrapped around the threads that relates these later loops
2104 * to the thread indices and then projects them out.
2106 static __isl_give isl_map
*compute_privatization(struct gpu_gen
*gen
)
2114 dim
= isl_union_map_get_space(gen
->shared_sched
);
2116 if (gen
->options
->wrap
)
2117 tiling
= wrap(isl_space_copy(dim
), gen
->shared_len
+ gen
->n_block
,
2118 gen
->shared_len
, gen
->n_block
, gen
->block_dim
);
2120 tiling
= tile(isl_space_copy(dim
), gen
->shared_len
+ gen
->n_block
,
2121 gen
->shared_len
, gen
->n_block
, gen
->block_dim
);
2125 par
= parametrization(dim
, gen
->shared_len
+ 2 * gen
->n_block
,
2126 gen
->tile_first
+ gen
->tile_len
+ gen
->n_grid
+ gen
->n_block
,
2127 gen
->kernel
->thread_ids
);
2129 priv
= isl_map_align_params(priv
, isl_set_get_space(par
));
2130 priv
= isl_map_intersect_range(priv
, par
);
2132 dim
= isl_map_get_space(priv
);
2133 dim
= isl_space_drop_dims(dim
, isl_dim_in
, 0, isl_space_dim(dim
, isl_dim_in
));
2134 dim
= isl_space_drop_dims(dim
, isl_dim_out
, 0, isl_space_dim(dim
, isl_dim_out
));
2135 proj
= projection(dim
, gen
->shared_len
+ 2 * gen
->n_block
,
2138 priv
= isl_map_apply_range(priv
, proj
);
2143 /* Construct a map from domain_dim to domain_dim that increments
2144 * the dimension at position "pos" and leaves all other dimensions
2147 static __isl_give isl_map
*next(__isl_take isl_space
*domain_dim
, int pos
)
2150 int len
= isl_space_dim(domain_dim
, isl_dim_set
);
2152 isl_basic_map
*next
;
2153 isl_local_space
*ls
;
2155 dim
= isl_space_map_from_set(domain_dim
);
2156 next
= isl_basic_map_universe(isl_space_copy(dim
));
2157 ls
= isl_local_space_from_space(dim
);
2159 for (i
= 0; i
< len
; ++i
) {
2162 c
= isl_equality_alloc(isl_local_space_copy(ls
));
2163 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, 1);
2164 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
2166 c
= isl_constraint_set_constant_si(c
, 1);
2167 next
= isl_basic_map_add_constraint(next
, c
);
2170 isl_local_space_free(ls
);
2172 return isl_map_from_basic_map(next
);
2175 /* Check if the given access is coalesced.
2176 * That is, check whether incrementing the dimension that will get
2177 * wrapped over the last thread index results in incrementing
2178 * the last array index.
2180 * This function is only called for access relations without reuse and
2181 * kernels with at least one block dimension.
2183 static int access_is_coalesced(struct gpu_gen
*gen
,
2184 __isl_keep isl_union_map
*access
)
2187 isl_map
*access_map
;
2188 isl_map
*next_thread_x
;
2189 isl_map
*next_element
;
2193 access
= isl_union_map_copy(access
);
2194 access
= isl_union_map_apply_domain(access
,
2195 isl_union_map_copy(gen
->tiled_sched
));
2196 access_map
= isl_map_from_union_map(access
);
2198 dim
= isl_map_get_space(access_map
);
2199 dim
= isl_space_domain(dim
);
2200 next_thread_x
= next(dim
, gen
->shared_len
+ gen
->n_block
- 1);
2202 dim
= isl_map_get_space(access_map
);
2203 dim
= isl_space_range(dim
);
2204 next_element
= next(dim
, isl_space_dim(dim
, isl_dim_set
) - 1);
2206 map
= isl_map_apply_domain(next_thread_x
, isl_map_copy(access_map
));
2207 map
= isl_map_apply_range(map
, access_map
);
2209 coalesced
= isl_map_is_subset(map
, next_element
);
2211 isl_map_free(next_element
);
2217 /* Given an access relation in terms of the first gen->shared_len + gen->n_block
2218 * dimensions of the computed schedule, check if it is bijective for
2219 * fixed values of the first gen->shared_len dimensions.
2220 * We perform this check by equating these dimensions to parameters.
2222 static int access_is_bijective(struct gpu_gen
*gen
, __isl_keep isl_map
*access
)
2229 access
= isl_map_copy(access
);
2230 space
= isl_space_params(isl_map_get_space(access
));
2231 ids
= ppcg_scop_generate_names(gen
->prog
->scop
, gen
->shared_len
, "s");
2232 par
= parametrization(space
, gen
->shared_len
+ gen
->n_block
, 0, ids
);
2233 isl_id_list_free(ids
);
2234 access
= isl_map_intersect_domain(access
, par
);
2235 res
= isl_map_is_bijective(access
);
2236 isl_map_free(access
);
2241 /* Look for the last shared tile loop that affects the offset of "tile"
2242 * and return the result.
2243 * If there is no such loop, then return the index of the loop
2244 * before the first shared tile loop, in particular gen->tile_first - 1.
2246 static int compute_tile_last_shared(struct gpu_gen
*gen
,
2247 struct gpu_array_tile
*tile
)
2251 for (j
= gen
->shared_len
- 1; j
>= gen
->tile_first
; --j
) {
2252 for (i
= 0; i
< tile
->n
; ++i
) {
2256 lb
= tile
->bound
[i
].lb
;
2257 if (isl_aff_involves_dims(lb
, isl_dim_in
, j
, 1))
2260 shift
= tile
->bound
[i
].shift
;
2263 if (isl_aff_involves_dims(shift
, isl_dim_in
, j
, 1))
2273 /* Look for the last shared tile loop that affects the offset of the
2274 * shared or private tile and store the result in group->last_shared.
2275 * If there is no such loop, then group->last_shared is set to a value
2276 * before the first shared tile loop, in particular gen->tile_first - 1.
2277 * If there is no tile defined on the array reference group,
2278 * then set group->last_shared to gen->shared_len - 1.
2280 static void set_last_shared(struct gpu_gen
*gen
,
2281 struct gpu_array_ref_group
*group
)
2283 struct gpu_array_tile
*tile
;
2285 group
->last_shared
= gen
->shared_len
- 1;
2287 tile
= group
->private_tile
;
2289 tile
= group
->shared_tile
;
2293 group
->last_shared
= compute_tile_last_shared(gen
, tile
);
2296 /* Compute the size of the tile specified by "tile"
2297 * in number of elements and return the result.
2299 static __isl_give isl_val
*tile_size(isl_ctx
*ctx
, struct gpu_array_tile
*tile
)
2304 size
= isl_val_one(ctx
);
2306 for (i
= 0; i
< tile
->n
; ++i
)
2307 size
= isl_val_mul(size
, isl_val_copy(tile
->bound
[i
].size
));
2312 /* If max_shared_memory is not set to infinity (-1), then make
2313 * sure that the total amount of shared memory required by the
2314 * array reference groups mapped to shared memory is no larger
2315 * than this maximum.
2317 * We apply a greedy approach and discard (keep in global memory)
2318 * those groups that would result in a total memory size that
2319 * is larger than the maximum.
2321 * This function should be called after any function that may
2322 * affect the decision on whether to place a reference group
2323 * in private, shared or global memory.
2325 static void check_shared_memory_bound(struct gpu_gen
*gen
)
2328 isl_val
*left
, *size
;
2330 if (gen
->options
->max_shared_memory
< 0)
2333 left
= isl_val_int_from_si(gen
->ctx
, gen
->options
->max_shared_memory
);
2335 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
2336 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
2338 for (j
= 0; j
< array
->n_group
; ++j
) {
2339 struct gpu_array_ref_group
*group
;
2341 group
= array
->groups
[j
];
2342 if (group
->private_tile
)
2344 if (!group
->shared_tile
)
2347 size
= tile_size(gen
->ctx
, group
->shared_tile
);
2348 size
= isl_val_mul_ui(size
, array
->size
);
2350 if (isl_val_le(size
, left
)) {
2351 left
= isl_val_sub(left
, size
);
2356 group
->shared_tile
= free_tile(group
->shared_tile
);
2363 /* Given a description of an array tile "tile" and the "space"
2367 * where D represents the first shared_len schedule dimensions
2368 * and A represents the array, construct an isl_multi_aff
2370 * { [D[i] -> A[a]] -> A'[a'] }
2372 * with A' a scaled down copy of A according to the shifts and strides
2373 * in "tile". In particular,
2375 * a' = (a + shift(i))/stride
2377 * "insert_array" represents
2381 * and is used to insert A into the domain of functions that only
2384 static __isl_give isl_multi_aff
*strided_tile(
2385 struct gpu_array_tile
*tile
, __isl_keep isl_space
*space
,
2386 __isl_keep isl_multi_aff
*insert_array
)
2390 isl_multi_aff
*shift
;
2391 isl_multi_val
*stride
;
2393 isl_local_space
*ls
;
2394 isl_multi_aff
*tiling
;
2396 ctx
= isl_space_get_ctx(space
);
2397 space2
= isl_space_domain(isl_space_copy(space
));
2398 ls
= isl_local_space_from_space(space2
);
2399 space2
= isl_space_range(isl_space_copy(space
));
2400 stride
= isl_multi_val_zero(space2
);
2401 shift
= isl_multi_aff_zero(isl_space_copy(space
));
2403 for (i
= 0; i
< tile
->n
; ++i
) {
2404 struct gpu_array_bound
*bound
= &tile
->bound
[i
];
2408 if (tile
->bound
[i
].shift
) {
2409 stride_i
= isl_val_copy(bound
->stride
);
2410 shift_i
= isl_aff_copy(bound
->shift
);
2412 stride_i
= isl_val_one(ctx
);
2413 shift_i
= isl_aff_zero_on_domain(
2414 isl_local_space_copy(ls
));
2417 stride
= isl_multi_val_set_val(stride
, i
, stride_i
);
2418 shift
= isl_multi_aff_set_aff(shift
, i
, shift_i
);
2420 isl_local_space_free(ls
);
2422 shift
= isl_multi_aff_pullback_multi_aff(shift
,
2423 isl_multi_aff_copy(insert_array
));
2425 tiling
= isl_multi_aff_range_map(isl_space_copy(space
));
2426 tiling
= isl_multi_aff_add(tiling
, shift
);
2427 tiling
= isl_multi_aff_scale_down_multi_val(tiling
, stride
);
2432 /* Compute a tiling for the array reference group "group".
2434 * The tiling is of the form
2436 * { [D[i] -> A[a]] -> T[t] }
2438 * where D represents the first shared_len schedule dimensions,
2439 * A represents the global array and T represents the shared or
2440 * private memory tile. The name of T is the name of the local
2443 * If there is any stride in the accesses, then the mapping is
2445 * t = (a + shift(i))/stride - lb(i)
2447 * otherwise, it is simply
2451 static void compute_group_tiling(struct gpu_array_ref_group
*group
)
2454 struct gpu_array_tile
*tile
;
2455 struct gpu_array_info
*array
= group
->array
;
2457 isl_multi_aff
*tiling
, *lb
, *insert_array
;
2461 tile
= group
->private_tile
;
2463 tile
= group
->shared_tile
;
2467 space
= isl_map_get_space(group
->access
);
2468 insert_array
= isl_multi_aff_domain_map(isl_space_copy(space
));
2470 for (i
= 0; i
< tile
->n
; ++i
)
2471 if (tile
->bound
[i
].shift
)
2475 tiling
= strided_tile(tile
, space
, insert_array
);
2477 tiling
= isl_multi_aff_range_map(isl_space_copy(space
));
2479 lb
= isl_multi_aff_zero(space
);
2480 for (i
= 0; i
< tile
->n
; ++i
) {
2481 isl_aff
*lb_i
= isl_aff_copy(tile
->bound
[i
].lb
);
2482 lb
= isl_multi_aff_set_aff(lb
, i
, lb_i
);
2484 lb
= isl_multi_aff_pullback_multi_aff(lb
, insert_array
);
2486 tiling
= isl_multi_aff_sub(tiling
, lb
);
2488 p
= isl_printer_to_str(isl_multi_aff_get_ctx(tiling
));
2489 p
= print_array_name(p
, group
);
2490 local_name
= isl_printer_get_str(p
);
2491 isl_printer_free(p
);
2492 tiling
= isl_multi_aff_set_tuple_name(tiling
, isl_dim_out
, local_name
);
2495 tile
->tiling
= tiling
;
2498 /* Compute a tiling for all the array reference groups.
2500 static void compute_group_tilings(struct gpu_gen
*gen
)
2504 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
2505 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
2507 for (j
= 0; j
< array
->n_group
; ++j
)
2508 compute_group_tiling(array
->groups
[j
]);
2512 /* Fill up the groups array with singleton groups, i.e., one group
2513 * per reference, initializing the array, access, write, n_ref and refs fields.
2514 * In particular the access field is initialized to the scheduled
2515 * access relation of the array reference.
2517 * Return the number of elements initialized, i.e., the number of
2518 * active references in the current kernel.
2520 static int populate_array_references(struct gpu_array_info
*array
,
2521 __isl_keep isl_union_map
*sched
, struct gpu_array_ref_group
**groups
)
2525 isl_ctx
*ctx
= isl_union_map_get_ctx(sched
);
2528 for (i
= 0; i
< array
->n_ref
; ++i
) {
2529 isl_union_map
*umap
;
2531 struct gpu_array_ref_group
*group
;
2532 struct gpu_stmt_access
*access
= array
->refs
[i
];
2534 map
= isl_map_copy(access
->access
);
2535 umap
= isl_union_map_from_map(map
);
2536 umap
= isl_union_map_apply_domain(umap
,
2537 isl_union_map_copy(sched
));
2539 if (isl_union_map_is_empty(umap
)) {
2540 isl_union_map_free(umap
);
2544 map
= isl_map_from_union_map(umap
);
2545 map
= isl_map_detect_equalities(map
);
2547 group
= isl_calloc_type(ctx
, struct gpu_array_ref_group
);
2549 group
->array
= array
;
2550 group
->access
= map
;
2551 group
->write
= access
->write
;
2552 group
->exact_write
= access
->exact_write
;
2553 group
->slice
= access
->n_index
< array
->n_index
;
2554 group
->refs
= &array
->refs
[i
];
2557 groups
[n
++] = group
;
2563 /* If group->n_ref == 1, then group->refs was set by
2564 * populate_array_references to point directly into
2565 * group->array->refs and should not be freed.
2566 * If group->n_ref > 1, then group->refs was set by join_groups
2567 * to point to a newly allocated array.
2569 static void free_array_ref_group(struct gpu_array_ref_group
*group
)
2573 free_tile(group
->shared_tile
);
2574 free_tile(group
->private_tile
);
2575 isl_map_free(group
->access
);
2576 if (group
->n_ref
> 1)
2581 /* Given a map where the input dimensions represent the tile loops,
2582 * eliminate the innermost of those that have a fixed value
2583 * until we reach one that does not (obviously) have a fixed value.
2585 static __isl_give isl_map
*eliminate_fixed_inner_loops(
2586 __isl_take isl_map
*access
)
2590 n
= isl_map_dim(access
, isl_dim_in
);
2592 for (i
= n
- 1; i
>= 0; --i
) {
2593 if (!map_plain_is_fixed(access
, isl_dim_in
, i
))
2595 access
= isl_map_eliminate(access
, isl_dim_in
, i
, 1);
2600 /* Check if the access relations of group1 and group2 overlap within
2601 * the innermost loop. In particular, ignore any inner dimension
2602 * with a fixed value.
2603 * The copying to and from shared memory will be performed within
2604 * the innermost actual loop so we are only allowed to consider
2605 * the dimensions up to that innermost loop while checking whether
2606 * two access relations overlap.
2608 static int accesses_overlap(struct gpu_array_ref_group
*group1
,
2609 struct gpu_array_ref_group
*group2
)
2612 isl_map
*access1
, *access2
;
2614 access1
= isl_map_copy(group1
->access
);
2615 access1
= eliminate_fixed_inner_loops(access1
);
2616 access2
= isl_map_copy(group2
->access
);
2617 access2
= eliminate_fixed_inner_loops(access2
);
2618 access1
= isl_map_intersect(access1
, access2
);
2619 empty
= isl_map_is_empty(access1
);
2620 isl_map_free(access1
);
2625 /* Combine the given two groups into a single group, containing
2626 * the references of both groups.
2628 static struct gpu_array_ref_group
*join_groups(
2629 struct gpu_array_ref_group
*group1
,
2630 struct gpu_array_ref_group
*group2
)
2634 struct gpu_array_ref_group
*group
;
2636 ctx
= isl_map_get_ctx(group1
->access
);
2637 group
= isl_calloc_type(ctx
, struct gpu_array_ref_group
);
2639 group
->array
= group1
->array
;
2640 group
->access
= isl_map_union(isl_map_copy(group1
->access
),
2641 isl_map_copy(group2
->access
));
2642 group
->write
= group1
->write
|| group2
->write
;
2643 group
->exact_write
= group1
->exact_write
&& group2
->exact_write
;
2644 group
->slice
= group1
->slice
|| group2
->slice
;
2645 group
->n_ref
= group1
->n_ref
+ group2
->n_ref
;
2646 group
->refs
= isl_alloc_array(ctx
, struct gpu_stmt_access
*,
2648 assert(group
->refs
);
2649 for (i
= 0; i
< group1
->n_ref
; ++i
)
2650 group
->refs
[i
] = group1
->refs
[i
];
2651 for (i
= 0; i
< group2
->n_ref
; ++i
)
2652 group
->refs
[group1
->n_ref
+ i
] = group2
->refs
[i
];
2657 /* Combine the given two groups into a single group and free
2658 * the original two groups.
2660 static struct gpu_array_ref_group
*join_groups_and_free(
2661 struct gpu_array_ref_group
*group1
,
2662 struct gpu_array_ref_group
*group2
)
2664 struct gpu_array_ref_group
*group
;
2666 group
= join_groups(group1
, group2
);
2667 free_array_ref_group(group1
);
2668 free_array_ref_group(group2
);
2672 /* Report that the array reference group with the given access relation
2673 * is not mapped to shared memory in the given kernel because
2674 * it does not exhibit any reuse and is considered to be coalesced.
2676 static void report_no_reuse_and_coalesced(struct ppcg_kernel
*kernel
,
2677 __isl_keep isl_union_map
*access
)
2682 ctx
= isl_union_map_get_ctx(access
);
2683 p
= isl_printer_to_file(ctx
, stdout
);
2684 p
= isl_printer_print_str(p
, "Array reference group ");
2685 p
= isl_printer_print_union_map(p
, access
);
2686 p
= isl_printer_print_str(p
,
2687 " not considered for mapping to shared memory in kernel");
2688 p
= isl_printer_print_int(p
, kernel
->id
);
2689 p
= isl_printer_print_str(p
,
2690 " because it exhibits no reuse and is considered to be coalesced");
2691 p
= isl_printer_end_line(p
);
2692 isl_printer_free(p
);
2695 /* Compute the private and/or shared memory tiles for the array
2696 * reference group "group" of array "array".
2697 * Return 0 on success and -1 on error.
2699 * If the array is a read-only scalar or if the user requested
2700 * not to use shared or private memory, then we do not need to do anything.
2702 * If any reference in the reference group accesses more than one element,
2703 * then we would have to make sure that the layout in shared memory
2704 * is the same as that in global memory. Since we do not handle this yet
2705 * (and it may not even be possible), we refuse to map to private or
2706 * shared memory in such cases.
2708 * If the array group involves any may writes (that are not must writes),
2709 * then we would have to make sure that we load the data into shared/private
2710 * memory first in case the data is not written by the kernel
2711 * (but still written back out to global memory).
2712 * Since we don't have any such mechanism at the moment, we don't
2713 * compute shared/private tiles for groups involving may writes.
2715 * We only try to compute a shared memory tile if there is any reuse
2716 * or if the access is not coalesced.
2718 * For computing a private memory tile, we also require that there is
2719 * some reuse. Moreover, we require that the access is private
2720 * to the thread. That is, we check that any given array element
2721 * is only accessed by a single thread.
2722 * We compute an access relation that maps the shared tile loop iterators
2723 * and the shared point loop iterators that will be wrapped over the
2724 * threads to the array elements.
2725 * We actually check that those iterators that will be wrapped
2726 * partition the array space. This check is stricter than necessary
2727 * since several iterations may be mapped onto the same thread
2728 * and then they could be allowed to access the same memory elements,
2729 * but our check does not allow this situation.
2731 * We also check that the index expression only depends on parallel
2732 * loops. That way, we can move those loops innermost and unroll them.
2733 * Again, we use a test that is stricter than necessary.
2734 * We actually check whether the index expression only depends
2735 * on the iterators that are wrapped over the threads.
2736 * These are necessarily parallel, but there may be more parallel loops.
2738 * Combining the injectivity of the first test with the single-valuedness
2739 * of the second test, we simply test for bijectivity.
2741 * If the array is marked force_private, then we bypass all checks
2742 * and assume we can (and should) use registers.
2744 * If it turns out we can (or have to) use registers, we compute
2745 * the private memory tile size using can_tile, after introducing a dependence
2746 * on the thread indices.
2748 static int compute_group_bounds_core(struct gpu_gen
*gen
,
2749 struct gpu_array_ref_group
*group
)
2751 isl_ctx
*ctx
= isl_space_get_ctx(group
->array
->space
);
2752 isl_union_map
*access
;
2753 int n_index
= group
->array
->n_index
;
2754 int no_reuse
, coalesced
;
2756 int force_private
= group
->array
->force_private
;
2757 int use_shared
= gen
->options
->use_shared_memory
&& gen
->n_block
> 0;
2758 int use_private
= force_private
|| gen
->options
->use_private_memory
;
2760 if (!use_shared
&& !use_private
)
2762 if (gpu_array_is_read_only_scalar(group
->array
))
2764 if (!force_private
&& !group
->exact_write
)
2769 access
= group_access_relation(group
, 1, 1);
2770 no_reuse
= isl_union_map_is_injective(access
);
2771 if (use_shared
&& no_reuse
)
2772 coalesced
= access_is_coalesced(gen
, access
);
2774 if (gen
->options
->debug
->verbose
&& use_shared
&& no_reuse
&& coalesced
)
2775 report_no_reuse_and_coalesced(gen
->kernel
, access
);
2777 if (use_shared
&& (!no_reuse
|| !coalesced
)) {
2778 group
->shared_tile
= create_tile(ctx
, group
->array
->n_index
);
2779 if (!can_tile(group
->access
, group
->shared_tile
))
2780 group
->shared_tile
= free_tile(group
->shared_tile
);
2783 if (!force_private
&& (!use_private
|| no_reuse
)) {
2784 isl_union_map_free(access
);
2788 access
= isl_union_map_apply_domain(access
,
2789 isl_union_map_copy(gen
->shared_sched
));
2791 acc
= isl_map_from_union_map(access
);
2793 if (!force_private
&& !access_is_bijective(gen
, acc
)) {
2798 group
->private_tile
= create_tile(gen
->ctx
, n_index
);
2799 acc
= isl_map_apply_domain(acc
, isl_map_copy(gen
->privatization
));
2800 if (!can_tile(acc
, group
->private_tile
))
2801 group
->private_tile
= free_tile(group
->private_tile
);
2805 if (force_private
&& !group
->private_tile
)
2806 isl_die(ctx
, isl_error_internal
,
2807 "unable to map array reference group to registers",
2813 /* Compute the private and/or shared memory tiles for the array
2814 * reference group "group" of array "array" and set last_shared.
2815 * Return 0 on success and -1 on error.
2817 static int compute_group_bounds(struct gpu_gen
*gen
,
2818 struct gpu_array_ref_group
*group
)
2820 if (compute_group_bounds_core(gen
, group
) < 0)
2822 set_last_shared(gen
, group
);
2827 /* If two groups have overlapping access relations (as determined by
2828 * the "overlap" function) and if one of them involves a write,
2829 * then merge the two groups into one.
2830 * If "compute_bounds" is set, then call compute_group_bounds
2831 * on the merged groups.
2833 * Return the updated number of groups.
2834 * Return -1 on error.
2836 static int group_writes(struct gpu_gen
*gen
,
2837 int n
, struct gpu_array_ref_group
**groups
,
2838 int (*overlap
)(struct gpu_array_ref_group
*group1
,
2839 struct gpu_array_ref_group
*group2
), int compute_bounds
)
2843 for (i
= 0; i
< n
; ++i
) {
2844 for (j
= n
- 1; j
> i
; --j
) {
2845 if (!groups
[i
]->write
&& !groups
[j
]->write
)
2848 if (!overlap(groups
[i
], groups
[j
]))
2851 groups
[i
] = join_groups_and_free(groups
[i
], groups
[j
]);
2853 groups
[j
] = groups
[n
- 1];
2854 groups
[n
- 1] = NULL
;
2857 if (compute_bounds
&&
2858 compute_group_bounds(gen
, groups
[i
]) < 0)
2866 /* If two groups have overlapping access relations (within the innermost
2867 * loop) and if one of them involves a write, then merge the two groups
2870 * Return the updated number of groups.
2872 static int group_overlapping_writes(struct gpu_gen
*gen
,
2873 int n
, struct gpu_array_ref_group
**groups
)
2875 return group_writes(gen
, n
, groups
, &accesses_overlap
, 0);
2878 /* Check if the access relations of group1 and group2 overlap within
2879 * the outermost min(group1->last_shared, group2->last_shared) loops.
2881 static int last_shared_accesses_overlap(struct gpu_array_ref_group
*group1
,
2882 struct gpu_array_ref_group
*group2
)
2887 isl_map
*map_i
, *map_j
, *map
;
2889 last_shared
= group1
->last_shared
;
2890 if (group2
->last_shared
< last_shared
)
2891 last_shared
= group2
->last_shared
;
2892 map_i
= isl_map_copy(group1
->access
);
2893 dim
= isl_map_dim(map_i
, isl_dim_in
);
2894 map_i
= isl_map_eliminate(map_i
, isl_dim_in
,
2895 last_shared
+ 1, dim
- (last_shared
+ 1));
2896 map_j
= isl_map_copy(group2
->access
);
2897 map_j
= isl_map_eliminate(map_j
, isl_dim_in
,
2898 last_shared
+ 1, dim
- (last_shared
+ 1));
2899 map
= isl_map_intersect(map_i
, map_j
);
2900 empty
= isl_map_is_empty(map
);
2906 /* If two groups have overlapping access relations (within the outer
2907 * last_shared loops) and if one of them involves a write,
2908 * then merge the two groups into one.
2910 * Return the updated number of groups.
2912 static int group_last_shared_overlapping_writes(struct gpu_gen
*gen
, int n
,
2913 struct gpu_array_ref_group
**groups
)
2915 return group_writes(gen
, n
, groups
, &last_shared_accesses_overlap
, 1);
2918 /* Is the size of the tile specified by "tile" smaller than the sum of
2919 * the sizes of the tiles specified by "tile1" and "tile2"?
2921 static int smaller_tile(isl_ctx
*ctx
, struct gpu_array_tile
*tile
,
2922 struct gpu_array_tile
*tile1
, struct gpu_array_tile
*tile2
)
2925 isl_val
*size
, *size1
, *size2
;
2927 size
= tile_size(ctx
, tile
);
2928 size1
= tile_size(ctx
, tile1
);
2929 size2
= tile_size(ctx
, tile2
);
2931 size
= isl_val_sub(size
, size1
);
2932 size
= isl_val_sub(size
, size2
);
2933 smaller
= isl_val_is_neg(size
);
2940 /* Given an initial grouping of array references and shared memory tiles
2941 * for each group that allows for a shared memory tile, merge two groups
2942 * if both have a shared memory tile, the merged group also has
2943 * a shared memory tile and the size of the tile for the merge group
2944 * is smaller than the sum of the tile sizes of the individual groups.
2946 * If merging two groups decreases the "last_shared" dimension of
2947 * one or both of the two groups, then we need to check for overlapping
2950 * Return the number of groups after merging.
2951 * Return -1 on error.
2953 static int group_common_shared_memory_tile(struct gpu_gen
*gen
,
2954 struct gpu_array_info
*array
, int n
,
2955 struct gpu_array_ref_group
**groups
)
2958 int recompute_overlap
= 0;
2959 isl_ctx
*ctx
= isl_space_get_ctx(array
->space
);
2961 for (i
= 0; i
< n
; ++i
) {
2962 if (!groups
[i
]->shared_tile
)
2964 for (j
= n
- 1; j
> i
; --j
) {
2967 struct gpu_array_ref_group
*group
;
2969 if (!groups
[j
]->shared_tile
)
2972 map
= isl_map_intersect(isl_map_copy(groups
[i
]->access
),
2973 isl_map_copy(groups
[j
]->access
));
2974 empty
= isl_map_is_empty(map
);
2980 group
= join_groups(groups
[i
], groups
[j
]);
2981 if (compute_group_bounds(gen
, group
) < 0) {
2982 free_array_ref_group(group
);
2985 if (!group
->shared_tile
||
2986 !smaller_tile(ctx
, group
->shared_tile
,
2987 groups
[i
]->shared_tile
,
2988 groups
[j
]->shared_tile
)) {
2989 free_array_ref_group(group
);
2993 if (group
->last_shared
< groups
[i
]->last_shared
||
2994 group
->last_shared
< groups
[j
]->last_shared
)
2995 recompute_overlap
= 1;
2996 free_array_ref_group(groups
[i
]);
2997 free_array_ref_group(groups
[j
]);
3000 groups
[j
] = groups
[n
- 1];
3005 if (recompute_overlap
)
3006 n
= group_last_shared_overlapping_writes(gen
, n
, groups
);
3010 /* Set array->n_group and array->groups to n and groups.
3012 * Additionally, set the "nr" field of each group
3013 * and the "group" field of each reference in each group.
3015 static void set_array_groups(struct gpu_array_info
*array
,
3016 int n
, struct gpu_array_ref_group
**groups
)
3021 array
->groups
= groups
;
3023 for (i
= 0; i
< n
; ++i
) {
3026 for (j
= 0; j
< groups
[i
]->n_ref
; ++j
)
3027 groups
[i
]->refs
[j
]->group
= i
;
3031 /* Group array references that should be considered together when
3032 * deciding whether to access them from private, shared or global memory.
3033 * Return -1 on error.
3035 * In particular, if two array references overlap and if one of them
3036 * is a write, then the two references are grouped together.
3037 * We first perform an initial grouping based only on the access relation.
3038 * After computing shared and private memory tiles, we check for
3039 * overlapping writes again, but this time taking into account
3040 * the "last_shared" property.
3042 * Furthermore, if two groups admit a shared memory tile and if the
3043 * combination of the two also admits a shared memory tile, we merge
3046 * If the array contains structures, then there is no need to compute
3047 * reference groups since we do not map such arrays to private or shared
3050 static int group_array_references(struct gpu_gen
*gen
,
3051 struct gpu_array_info
*array
, __isl_keep isl_union_map
*sched
)
3055 isl_ctx
*ctx
= isl_union_map_get_ctx(sched
);
3056 struct gpu_array_ref_group
**groups
;
3058 if (array
->has_compound_element
)
3061 groups
= isl_calloc_array(ctx
, struct gpu_array_ref_group
*,
3066 n
= populate_array_references(array
, sched
, groups
);
3068 n
= group_overlapping_writes(gen
, n
, groups
);
3070 for (i
= 0; i
< n
; ++i
)
3071 if (compute_group_bounds(gen
, groups
[i
]) < 0)
3074 n
= group_last_shared_overlapping_writes(gen
, n
, groups
);
3076 n
= group_common_shared_memory_tile(gen
, array
, n
, groups
);
3078 set_array_groups(array
, n
, groups
);
3083 for (i
= 0; i
< array
->n_ref
; ++i
)
3084 free_array_ref_group(groups
[i
]);
3088 /* Take tiled_sched, project it onto the shared tile loops and
3089 * the loops that will be wrapped over the threads and
3090 * store the result in gen->shared_sched.
3091 * Also compute a projection that projects out the loops that will be
3092 * wrapped over the threads and store this projection in gen->shared_proj.
3094 static void compute_shared_sched(struct gpu_gen
*gen
)
3099 isl_union_map
*sched
;
3101 sched
= isl_union_map_copy(gen
->tiled_sched
);
3103 dim
= isl_union_map_get_space(sched
);
3104 proj
= projection(dim
, gen
->tiled_len
, gen
->shared_len
+ gen
->n_block
);
3105 sched
= isl_union_map_apply_range(sched
, isl_union_map_from_map(proj
));
3107 dim
= isl_union_map_get_space(sched
);
3108 proj
= projection(dim
, gen
->shared_len
+ gen
->n_block
, gen
->shared_len
);
3110 gen
->shared_sched
= sched
;
3111 gen
->shared_proj
= isl_union_map_from_map(proj
);
3114 /* For each scalar in the input program, check if there are any
3115 * order dependences active inside the current kernel, within
3116 * the same iteration of the host schedule.
3117 * If so, mark the scalar as force_private so that it will be
3118 * mapped to a register.
3120 static void check_scalar_live_ranges(struct gpu_gen
*gen
)
3124 isl_union_map
*sched
;
3125 isl_union_set
*domain
;
3126 isl_union_map
*same_host_iteration
;
3128 gen
->any_force_private
= 0;
3130 if (!gen
->options
->live_range_reordering
)
3133 sched
= gen
->shared_sched
;
3134 sched
= isl_union_map_universe(isl_union_map_copy(sched
));
3135 domain
= isl_union_map_domain(sched
);
3137 sched
= isl_union_map_copy(gen
->sched
);
3138 proj
= projection(isl_union_map_get_space(sched
),
3139 gen
->untiled_len
, gen
->tile_first
);
3140 sched
= isl_union_map_apply_range(sched
, isl_union_map_from_map(proj
));
3141 same_host_iteration
= isl_union_map_apply_range(sched
,
3142 isl_union_map_reverse(isl_union_map_copy(sched
)));
3144 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
3145 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
3146 isl_union_map
*order
;
3148 array
->force_private
= 0;
3149 if (array
->n_index
!= 0)
3151 order
= isl_union_map_copy(array
->dep_order
);
3152 order
= isl_union_map_intersect_domain(order
,
3153 isl_union_set_copy(domain
));
3154 order
= isl_union_map_intersect_range(order
,
3155 isl_union_set_copy(domain
));
3156 order
= isl_union_map_intersect(order
,
3157 isl_union_map_copy(same_host_iteration
));
3158 if (!isl_union_map_is_empty(order
)) {
3159 array
->force_private
= 1;
3160 gen
->any_force_private
= 1;
3162 isl_union_map_free(order
);
3165 isl_union_map_free(same_host_iteration
);
3166 isl_union_set_free(domain
);
3169 /* Group references of all arrays in the program.
3171 static int group_references(struct gpu_gen
*gen
)
3175 isl_union_map
*sched
;
3177 sched
= isl_union_map_apply_range(isl_union_map_copy(gen
->shared_sched
),
3178 isl_union_map_copy(gen
->shared_proj
));
3180 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
3181 r
= group_array_references(gen
, &gen
->prog
->array
[i
], sched
);
3186 isl_union_map_free(sched
);
3191 /* Free all array information that is local to the current kernel.
3193 static void free_local_array_info(struct gpu_gen
*gen
)
3197 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
3198 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
3200 for (j
= 0; j
< array
->n_group
; ++j
)
3201 free_array_ref_group(array
->groups
[j
]);
3202 free(array
->groups
);
3206 /* Compute the size of a bounding box around the origin and "set",
3207 * where "set" is assumed to contain only non-negative elements.
3208 * In particular, compute the maximal value of "set" in each direction
3211 static __isl_give isl_multi_pw_aff
*extract_size(__isl_take isl_set
*set
,
3212 __isl_keep isl_set
*context
)
3215 isl_multi_pw_aff
*mpa
;
3217 n
= isl_set_dim(set
, isl_dim_set
);
3218 mpa
= isl_multi_pw_aff_zero(isl_set_get_space(set
));
3219 for (i
= 0; i
< n
; ++i
) {
3224 bound
= isl_set_dim_max(isl_set_copy(set
), i
);
3225 bound
= isl_pw_aff_coalesce(bound
);
3226 bound
= isl_pw_aff_gist(bound
, isl_set_copy(context
));
3228 space
= isl_pw_aff_get_domain_space(bound
);
3229 one
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
3230 one
= isl_aff_add_constant_si(one
, 1);
3231 bound
= isl_pw_aff_add(bound
, isl_pw_aff_from_aff(one
));
3232 mpa
= isl_multi_pw_aff_set_pw_aff(mpa
, i
, bound
);
3239 /* Compute the effective grid size as a list of the sizes in each dimension.
3241 * The grid size specified by the user or set by default
3242 * in read_grid_sizes() and applied in tile_schedule(),
3243 * may be too large for the given code in the sense that
3244 * it may contain blocks that don't need to execute anything.
3245 * We therefore don't return this grid size, but instead the
3246 * smallest grid size that ensures that all blocks that actually
3247 * execute code are included in the grid.
3249 * We first extract a description of the grid, i.e., the possible values
3250 * of the block ids, from gen->tiled_sched.
3251 * The block ids are parameters in gen->tiled_sched.
3252 * We simply need to change them into set dimensions.
3254 * Then, for each block dimension, we compute the maximal value of the block id
3257 static __isl_give isl_multi_pw_aff
*extract_grid_size(struct gpu_gen
*gen
,
3258 struct ppcg_kernel
*kernel
)
3263 grid
= isl_union_map_params(isl_union_map_copy(gen
->tiled_sched
));
3264 grid
= isl_set_from_params(grid
);
3265 grid
= isl_set_add_dims(grid
, isl_dim_set
, gen
->n_grid
);
3266 for (i
= 0; i
< gen
->n_grid
; ++i
) {
3270 id
= isl_id_list_get_id(kernel
->block_ids
, i
);
3271 pos
= isl_set_find_dim_by_id(grid
, isl_dim_param
, id
);
3274 grid
= isl_set_equate(grid
, isl_dim_param
, pos
, isl_dim_set
, i
);
3275 grid
= isl_set_project_out(grid
, isl_dim_param
, pos
, 1);
3278 return extract_size(grid
, kernel
->context
);
3281 /* Compute the size of a fixed bounding box around the origin and "set",
3282 * where "set" is assumed to contain only non-negative elements,
3283 * and store the results in "size".
3284 * In particular, compute the maximal value of "set" in each direction
3287 static void extract_fixed_size(__isl_take isl_set
*set
, int *size
)
3290 isl_local_space
*ls
;
3293 n
= isl_set_dim(set
, isl_dim_set
);
3294 ls
= isl_local_space_from_space(isl_set_get_space(set
));
3295 obj
= isl_aff_zero_on_domain(ls
);
3296 for (i
= 0; i
< n
; ++i
) {
3299 obj
= isl_aff_set_coefficient_si(obj
, isl_dim_in
, i
, 1);
3300 max
= isl_set_max_val(set
, obj
);
3301 size
[i
] = isl_val_get_num_si(max
) + 1;
3303 obj
= isl_aff_set_coefficient_si(obj
, isl_dim_in
, i
, 0);
3309 /* Compute the effective block size as a list of the sizes in each dimension
3310 * and store the sizes in kernel->block_dim.
3312 * The block size specified by the user or set by default
3313 * in read_block_sizes() and applied in thread_tile_schedule(),
3314 * may be too large for the given code in the sense that
3315 * it may contain threads that don't need to execute anything.
3316 * We therefore don't store this block size in kernel->block_dim,
3317 * but instead the smallest block size that ensures that all threads
3318 * that actually execute code are included in the block.
3320 * The current implementation eliminates all parameters, ensuring
3321 * that the size is a fixed constant in each dimension.
3322 * In principle we could also compute parametric sizes.
3323 * We would have to make sure to project out all b%d and t%d parameters,
3326 static void extract_block_size(struct gpu_gen
*gen
, struct ppcg_kernel
*kernel
)
3331 isl_multi_pw_aff
*mpa
;
3333 block
= isl_union_map_params(isl_union_map_copy(gen
->local_sched
));
3334 block
= isl_set_from_params(block
);
3335 block
= isl_set_add_dims(block
, isl_dim_set
, gen
->n_block
);
3336 kernel
->n_block
= gen
->n_block
;
3337 for (i
= 0; i
< gen
->n_block
; ++i
) {
3341 id
= isl_id_list_get_id(kernel
->thread_ids
, i
);
3342 pos
= isl_set_find_dim_by_id(block
, isl_dim_param
, id
);
3345 block
= isl_set_equate(block
, isl_dim_param
, pos
,
3348 nparam
= isl_set_dim(block
, isl_dim_param
);
3349 block
= isl_set_project_out(block
, isl_dim_param
, 0, nparam
);
3351 extract_fixed_size(block
, kernel
->block_dim
);
3354 void ppcg_kernel_free(void *user
)
3356 struct ppcg_kernel
*kernel
= user
;
3362 isl_id_list_free(kernel
->block_ids
);
3363 isl_id_list_free(kernel
->thread_ids
);
3364 isl_multi_pw_aff_free(kernel
->grid_size
);
3365 isl_set_free(kernel
->context
);
3366 isl_union_set_free(kernel
->arrays
);
3367 isl_space_free(kernel
->space
);
3368 isl_ast_node_free(kernel
->tree
);
3370 for (i
= 0; i
< kernel
->n_array
; ++i
)
3371 isl_pw_aff_list_free(kernel
->array
[i
].bound
);
3372 free(kernel
->array
);
3374 for (i
= 0; i
< kernel
->n_var
; ++i
) {
3375 free(kernel
->var
[i
].name
);
3376 isl_vec_free(kernel
->var
[i
].size
);
3383 static void create_kernel_var(isl_ctx
*ctx
, struct gpu_array_ref_group
*group
,
3384 struct ppcg_kernel_var
*var
)
3387 struct gpu_array_tile
*tile
;
3391 var
->array
= group
->array
;
3393 tile
= group
->private_tile
;
3394 var
->type
= ppcg_access_private
;
3396 tile
= group
->shared_tile
;
3397 var
->type
= ppcg_access_shared
;
3400 p
= isl_printer_to_str(ctx
);
3401 p
= print_array_name(p
, group
);
3402 var
->name
= isl_printer_get_str(p
);
3403 isl_printer_free(p
);
3405 var
->size
= isl_vec_alloc(ctx
, group
->array
->n_index
);
3407 for (j
= 0; j
< group
->array
->n_index
; ++j
)
3408 var
->size
= isl_vec_set_element_val(var
->size
, j
,
3409 isl_val_copy(tile
->bound
[j
].size
));
3412 static void create_kernel_vars(struct gpu_gen
*gen
, struct ppcg_kernel
*kernel
)
3417 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
3418 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
3420 for (j
= 0; j
< array
->n_group
; ++j
) {
3421 struct gpu_array_ref_group
*group
= array
->groups
[j
];
3422 if (group
->private_tile
|| group
->shared_tile
)
3428 kernel
->var
= isl_calloc_array(gen
->ctx
, struct ppcg_kernel_var
, n
);
3429 assert(kernel
->var
);
3432 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
3433 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
3435 for (j
= 0; j
< array
->n_group
; ++j
) {
3436 struct gpu_array_ref_group
*group
= array
->groups
[j
];
3437 if (!group
->private_tile
&& !group
->shared_tile
)
3439 create_kernel_var(gen
->ctx
, group
, &kernel
->var
[n
]);
3445 /* Replace "pa" by the zero function defined over the universe domain
3446 * in the space of "pa".
3448 static __isl_give isl_pw_aff
*set_universally_zero(__isl_take isl_pw_aff
*pa
)
3453 space
= isl_space_domain(isl_pw_aff_get_space(pa
));
3454 isl_pw_aff_free(pa
);
3455 zero
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
3457 return isl_pw_aff_from_aff(zero
);
3460 /* The sizes of the arrays on the host that have been computed by
3461 * extract_array_info may depend on the parameters. Use the extra
3462 * constraints on the parameters that are valid at "host_domain"
3463 * to simplify these expressions and store the results in kernel->array.
3465 * We only need these localized bounds for arrays that are accessed
3466 * by the current kernel. If we have found at least one reference group
3467 * then the array is accessed by the kernel. If the array has compound
3468 * elements then we skipped the construction of array reference groups.
3470 * The resulting sizes may be functions that are nowhere defined
3471 * in case the access function cannot possibly access anything inside
3472 * the kernel for some reason. If so, they are replaced by the zero
3473 * function. Since the access function cannot actually access anything,
3474 * there is no harm in printing the array sizes as zero.
3476 static void localize_bounds(struct gpu_gen
*gen
, struct ppcg_kernel
*kernel
,
3477 __isl_keep isl_set
*host_domain
)
3482 kernel
->array
= isl_calloc_array(gen
->ctx
,
3483 struct gpu_local_array_info
, gen
->prog
->n_array
);
3484 assert(kernel
->array
);
3485 kernel
->n_array
= gen
->prog
->n_array
;
3487 context
= isl_set_copy(host_domain
);
3488 context
= isl_set_params(context
);
3490 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
3491 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
3492 isl_pw_aff_list
*local
;
3494 if (array
->n_group
== 0 && !array
->has_compound_element
)
3497 local
= isl_pw_aff_list_alloc(gen
->ctx
, array
->n_index
);
3499 for (j
= 0; j
< array
->n_index
; ++j
) {
3503 pwaff
= isl_pw_aff_copy(array
->bound
[j
]);
3504 pwaff
= isl_pw_aff_gist(pwaff
, isl_set_copy(context
));
3505 empty
= isl_pw_aff_is_empty(pwaff
);
3507 pwaff
= isl_pw_aff_free(pwaff
);
3509 pwaff
= set_universally_zero(pwaff
);
3510 local
= isl_pw_aff_list_add(local
, pwaff
);
3513 kernel
->array
[i
].n_index
= array
->n_index
;
3514 kernel
->array
[i
].bound
= local
;
3516 isl_set_free(context
);
3519 /* Find the element in gen->stmt that has the given "id".
3520 * Return NULL if no such gpu_stmt can be found.
3522 static struct gpu_stmt
*find_stmt(struct gpu_prog
*prog
, __isl_keep isl_id
*id
)
3526 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
3527 if (id
== prog
->stmts
[i
].id
)
3531 return i
< prog
->n_stmts
? &prog
->stmts
[i
] : NULL
;
3534 /* Set gen->tile_len and gen->n_parallel to those of the statement
3535 * affected by the first map (part of the schedule)
3536 * on which this function is called.
3537 * Because of the way the schedule is constructed, the other statements
3538 * in the list, if any, should have the same values for these properties.
3540 static int extract_tile_len(__isl_take isl_map
*map
, void *user
)
3542 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
3544 struct gpu_stmt
*stmt
;
3546 id
= isl_map_get_tuple_id(map
, isl_dim_in
);
3547 stmt
= find_stmt(gen
->prog
, id
);
3553 isl_die(gen
->ctx
, isl_error_unknown
,
3554 "statement not found", return -1);
3556 gen
->tile_len
= stmt
->tile_len
;
3557 gen
->n_parallel
= stmt
->n_parallel
;
3562 void ppcg_kernel_stmt_free(void *user
)
3565 struct ppcg_kernel_stmt
*stmt
= user
;
3570 switch (stmt
->type
) {
3571 case ppcg_kernel_copy
:
3572 isl_ast_expr_free(stmt
->u
.c
.index
);
3573 isl_ast_expr_free(stmt
->u
.c
.local_index
);
3575 case ppcg_kernel_domain
:
3576 isl_id_to_ast_expr_free(stmt
->u
.d
.ref2expr
);
3578 case ppcg_kernel_sync
:
3585 /* Set the options of "context" to
3587 * { space -> [x] : x >= first }
3589 static __isl_give isl_ast_build
*set_unroll(
3590 __isl_take isl_ast_build
*build
, __isl_take isl_space
*space
,
3597 ctx
= isl_ast_build_get_ctx(build
);
3599 space
= isl_space_from_domain(space
);
3600 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
3601 space
= isl_space_set_tuple_name(space
, isl_dim_out
, "unroll");
3602 unroll
= isl_map_universe(space
);
3603 unroll
= isl_map_lower_bound_si(unroll
, isl_dim_out
, 0, first
);
3604 opt
= isl_union_map_from_map(unroll
);
3606 build
= isl_ast_build_set_options(build
, opt
);
3611 /* Extend the schedule "schedule" with the part of "extension"
3612 * starting at "first" up to "len".
3614 static __isl_give isl_union_map
*extend_schedule(
3615 __isl_take isl_union_map
*schedule
,
3616 __isl_take isl_union_map
*extension
, int first
, int len
)
3620 isl_union_map
*umap
;
3623 space
= isl_union_map_get_space(schedule
);
3624 space
= isl_space_set_from_params(space
);
3625 space
= isl_space_add_dims(space
, isl_dim_set
, len
);
3626 proj
= isl_set_identity(isl_set_universe(space
));
3627 proj
= isl_map_project_out(proj
, isl_dim_out
, 0, first
);
3628 extension
= isl_union_map_apply_range(extension
,
3629 isl_union_map_from_map(proj
));
3631 schedule
= isl_union_map_range_product(schedule
, extension
);
3636 /* Return the gpu_stmt_access in the list "accesses" that corresponds
3639 static struct gpu_stmt_access
*find_access(struct gpu_stmt_access
*accesses
,
3640 __isl_keep isl_id
*ref_id
)
3642 struct gpu_stmt_access
*access
;
3644 for (access
= accesses
; access
; access
= access
->next
)
3645 if (access
->ref_id
== ref_id
)
3651 /* Return the index of the array called "name" in the list of arrays.
3653 static int find_array_index(struct gpu_gen
*gen
, const char *name
)
3657 for (i
= 0; i
< gen
->prog
->n_array
; ++i
)
3658 if (!strcmp(name
, gen
->prog
->array
[i
].name
))
3664 /* Internal data structure for the index and AST expression transformation
3665 * callbacks for pet_stmt_build_ast_exprs.
3667 * "accesses" is the list of gpu_stmt_access in the statement.
3668 * "iterator_map" expresses the statement iterators in terms of
3669 * the AST loop iterators.
3670 * "sched2shared" expresses the first shared_len dimensions of
3671 * the computed schedule in terms of the AST loop iterators.
3673 * The following fields are set in transform_index and used in transform_expr.
3674 * "array" is the array that is being accessed.
3675 * "global" is set if the global array is accessed (rather than
3676 * shared/private memory).
3677 * "local_array" refers to information on the array specialized
3678 * to the current kernel.
3680 struct ppcg_transform_data
{
3681 struct gpu_gen
*gen
;
3682 struct gpu_stmt_access
*accesses
;
3683 isl_pw_multi_aff
*iterator_map
;
3684 isl_pw_multi_aff
*sched2shared
;
3686 struct gpu_array_info
*array
;
3688 struct gpu_local_array_info
*local_array
;
3691 /* Return the name of the outer array (of structs) accessed by "access".
3693 static const char *get_outer_array_name(__isl_keep isl_map
*access
)
3698 space
= isl_space_range(isl_map_get_space(access
));
3699 while (space
&& isl_space_is_wrapping(space
))
3700 space
= isl_space_domain(isl_space_unwrap(space
));
3701 name
= isl_space_get_tuple_name(space
, isl_dim_set
);
3702 isl_space_free(space
);
3707 /* Index transformation callback for pet_stmt_build_ast_exprs.
3709 * "index" expresses the array indices in terms of statement iterators
3711 * We first reformulate "index" in terms of the AST loop iterators.
3712 * Then we check if we are accessing the global array or
3713 * a shared/private copy. In the former case, we simply return
3714 * the updated index. If "index" is an affine expression rather
3715 * than an array access, then we also return the updated index here.
3717 * If no reference groups have been computed for the array,
3718 * then we can only be accessing the global array.
3720 * Otherwise, we apply the tiling to the index.
3721 * This tiling is of the form
3725 * The index is of the form
3729 * We update the tiling to refer to the AST loop iterators
3733 * and modify index to keep track of those iterators
3737 * Combining these two yields a tiled index expression in terms
3738 * of the AST loop iterators
3742 static __isl_give isl_multi_pw_aff
*transform_index(
3743 __isl_take isl_multi_pw_aff
*index
, __isl_keep isl_id
*ref_id
,
3746 struct ppcg_transform_data
*data
= user
;
3747 struct gpu_stmt_access
*access
;
3748 struct gpu_array_ref_group
*group
;
3749 struct gpu_array_tile
*tile
;
3750 isl_pw_multi_aff
*iterator_map
;
3754 isl_multi_pw_aff
*tiling
;
3755 isl_pw_multi_aff
*pma
;
3756 isl_multi_pw_aff
*mpa
;
3760 iterator_map
= isl_pw_multi_aff_copy(data
->iterator_map
);
3761 index
= isl_multi_pw_aff_pullback_pw_multi_aff(index
, iterator_map
);
3763 access
= find_access(data
->accesses
, ref_id
);
3766 if (!isl_map_has_tuple_name(access
->access
, isl_dim_out
))
3769 name
= get_outer_array_name(access
->access
);
3770 i
= find_array_index(data
->gen
, name
);
3772 isl_die(isl_multi_pw_aff_get_ctx(index
), isl_error_internal
,
3773 "cannot find array",
3774 return isl_multi_pw_aff_free(index
));
3775 data
->array
= &data
->gen
->prog
->array
[i
];
3776 data
->local_array
= &data
->gen
->kernel
->array
[i
];
3778 if (access
->group
< 0) {
3783 group
= data
->array
->groups
[access
->group
];
3784 tile
= group
->private_tile
;
3786 tile
= group
->shared_tile
;
3787 data
->global
= !tile
;
3791 space
= isl_space_range(isl_multi_pw_aff_get_space(index
));
3792 space
= isl_space_map_from_set(space
);
3793 pma
= isl_pw_multi_aff_identity(space
);
3794 pma
= isl_pw_multi_aff_product(
3795 isl_pw_multi_aff_copy(data
->sched2shared
), pma
);
3796 tiling
= isl_multi_pw_aff_from_multi_aff(
3797 isl_multi_aff_copy(tile
->tiling
));
3798 tiling
= isl_multi_pw_aff_pullback_pw_multi_aff(tiling
, pma
);
3800 space
= isl_space_domain(isl_multi_pw_aff_get_space(index
));
3801 space
= isl_space_map_from_set(space
);
3802 mpa
= isl_multi_pw_aff_identity(space
);
3803 index
= isl_multi_pw_aff_range_product(mpa
, index
);
3804 index
= isl_multi_pw_aff_pullback_multi_pw_aff(tiling
, index
);
3809 /* Dereference "expr" by adding an index [0].
3810 * The original "expr" is assumed not to have any indices.
3812 * If "expr" is a member access, then the dereferencing needs
3813 * to be applied to the structure argument of this member access.
3815 static __isl_give isl_ast_expr
*dereference(__isl_take isl_ast_expr
*expr
)
3818 isl_ast_expr
*arg0
, *res
;
3819 isl_ast_expr_list
*list
;
3821 arg0
= isl_ast_expr_get_op_arg(expr
, 0);
3823 return isl_ast_expr_free(expr
);
3824 if (isl_ast_expr_get_type(arg0
) == isl_ast_expr_op
&&
3825 isl_ast_expr_get_op_type(arg0
) == isl_ast_op_member
) {
3828 arg
= isl_ast_expr_get_op_arg(arg0
, 0);
3829 arg
= dereference(arg
);
3830 arg0
= isl_ast_expr_set_op_arg(arg0
, 0, arg
);
3831 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
3835 isl_ast_expr_free(arg0
);
3837 ctx
= isl_ast_expr_get_ctx(expr
);
3838 res
= isl_ast_expr_from_val(isl_val_zero(ctx
));
3839 list
= isl_ast_expr_list_from_ast_expr(res
);
3840 res
= isl_ast_expr_get_op_arg(expr
, 0);
3841 res
= isl_ast_expr_access(res
, list
);
3842 isl_ast_expr_free(expr
);
3847 /* Linearize the index expression "expr" based on the array bounds
3850 * That is, transform expression
3852 * A[i_0][i_1]...[i_n]
3856 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
3858 * where b_0, b_1, ..., b_n are the bounds on the array.
3860 * If the base of "expr" is a member access, then the linearization needs
3861 * to be applied to the structure argument of this member access.
3863 * In the base case, if "expr" has no arguments (other than the name of
3864 * the array), then we are passing an entire array to a function.
3865 * In this case, there is nothing to linearize.
3866 * Note that at this point an expression with no arguments can
3867 * only be an entire array because the scalar case and
3868 * the case of single struct are handled by the caller.
3870 * If the number of specified index expressions in "expr"
3871 * is smaller than the dimension of the accessed array,
3872 * then the missing i_j also do not appear in the linearized expression.
3873 * Furthermore, since such an expression does not refer to a single
3874 * element while the default linearized expression would refer to
3875 * a single element, we return the expression
3877 * A + (..((i_0 * b_1 + i_1) ... ) * b_n]
3879 * instead. Note that because of the special case handling above,
3880 * we can assume here that here that there is at least one index expression.
3882 __isl_give isl_ast_expr
*gpu_local_array_info_linearize_index(
3883 struct gpu_local_array_info
*array
, __isl_take isl_ast_expr
*expr
)
3890 isl_ast_expr_list
*list
;
3891 isl_ast_build
*build
;
3893 arg0
= isl_ast_expr_get_op_arg(expr
, 0);
3894 if (isl_ast_expr_get_type(arg0
) == isl_ast_expr_op
&&
3895 isl_ast_expr_get_op_type(arg0
) == isl_ast_op_member
) {
3898 arg
= isl_ast_expr_get_op_arg(arg0
, 0);
3899 arg
= gpu_local_array_info_linearize_index(array
, arg
);
3900 arg0
= isl_ast_expr_set_op_arg(arg0
, 0, arg
);
3901 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
3905 isl_ast_expr_free(arg0
);
3907 if (isl_ast_expr_get_op_n_arg(expr
) == 1)
3910 ctx
= isl_ast_expr_get_ctx(expr
);
3911 context
= isl_set_universe(isl_space_params_alloc(ctx
, 0));
3912 build
= isl_ast_build_from_context(context
);
3914 n
= isl_ast_expr_get_op_n_arg(expr
);
3915 res
= isl_ast_expr_get_op_arg(expr
, 1);
3916 for (i
= 1; i
< array
->n_index
; ++i
) {
3917 isl_pw_aff
*bound_i
;
3918 isl_ast_expr
*expr_i
;
3920 bound_i
= isl_pw_aff_list_get_pw_aff(array
->bound
, i
);
3921 expr_i
= isl_ast_build_expr_from_pw_aff(build
, bound_i
);
3922 res
= isl_ast_expr_mul(res
, expr_i
);
3926 expr_i
= isl_ast_expr_get_op_arg(expr
, i
+ 1);
3927 res
= isl_ast_expr_add(res
, expr_i
);
3930 isl_ast_build_free(build
);
3932 if (1 + array
->n_index
> n
) {
3933 res
= isl_ast_expr_add(isl_ast_expr_get_op_arg(expr
, 0), res
);
3935 list
= isl_ast_expr_list_from_ast_expr(res
);
3936 res
= isl_ast_expr_get_op_arg(expr
, 0);
3937 res
= isl_ast_expr_access(res
, list
);
3940 isl_ast_expr_free(expr
);
3945 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
3947 * If the AST expression refers to an array that is not accessed
3948 * at all, then this means the value of the expression is not used,
3949 * so we might as well print zero (NULL pointer) instead.
3951 * If the AST expression refers to a global scalar that is not
3952 * a read-only scalar, then its address was passed to the kernel and
3953 * we need to dereference it.
3955 * If the AST expression refers to an access to a global array,
3956 * then we linearize the access exploiting the bounds in data->local_array.
3958 static __isl_give isl_ast_expr
*transform_expr(__isl_take isl_ast_expr
*expr
,
3959 __isl_keep isl_id
*id
, void *user
)
3961 struct ppcg_transform_data
*data
= user
;
3965 if (!data
->array
->accessed
) {
3968 ctx
= isl_ast_expr_get_ctx(expr
);
3969 isl_ast_expr_free(expr
);
3970 return isl_ast_expr_from_val(isl_val_zero(ctx
));
3972 if (gpu_array_is_read_only_scalar(data
->array
))
3976 if (data
->array
->n_index
== 0)
3977 return dereference(expr
);
3978 if (!data
->array
->linearize
)
3981 return gpu_local_array_info_linearize_index(data
->local_array
, expr
);
3984 /* This function is called for each instance of a user statement
3987 * We attach a struct ppcg_kernel_stmt to the "node", containing
3988 * a computed AST expression for each access.
3989 * These AST expressions are computed from iterator_map,
3990 * which expresses the domain
3991 * elements in terms of the generated loops, and sched2shared,
3992 * which expresses the first shared_len dimensions of the schedule
3993 * computed by PPCG in terms of the generated loops.
3995 static __isl_give isl_ast_node
*at_each_domain(__isl_take isl_ast_node
*node
,
3996 __isl_keep isl_ast_build
*build
, void *user
)
3998 struct ppcg_transform_data data
;
3999 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
4000 struct ppcg_kernel_stmt
*stmt
;
4002 isl_pw_multi_aff
*sched2shared
;
4004 isl_pw_multi_aff
*iterator_map
;
4005 isl_ast_expr
*expr
, *arg
;
4006 isl_union_map
*schedule
;
4008 stmt
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel_stmt
);
4010 return isl_ast_node_free(node
);
4012 expr
= isl_ast_node_user_get_expr(node
);
4013 arg
= isl_ast_expr_get_op_arg(expr
, 0);
4014 id
= isl_ast_expr_get_id(arg
);
4016 schedule
= isl_ast_build_get_schedule(build
);
4017 map
= isl_map_reverse(isl_map_from_union_map(schedule
));
4018 iterator_map
= isl_pw_multi_aff_from_map(map
);
4019 sched2shared
= compute_sched_to_shared(gen
,
4020 isl_pw_multi_aff_copy(iterator_map
));
4022 stmt
->type
= ppcg_kernel_domain
;
4023 stmt
->u
.d
.stmt
= find_stmt(gen
->prog
, id
);
4024 if (!stmt
->u
.d
.stmt
)
4025 isl_die(gen
->ctx
, isl_error_internal
,
4026 "statement not found", goto error
);
4029 data
.accesses
= stmt
->u
.d
.stmt
->accesses
;
4030 data
.iterator_map
= iterator_map
;
4031 data
.sched2shared
= sched2shared
;
4032 stmt
->u
.d
.ref2expr
= pet_stmt_build_ast_exprs(stmt
->u
.d
.stmt
->stmt
,
4033 build
, &transform_index
, &data
,
4034 &transform_expr
, &data
);
4037 isl_pw_multi_aff_free(iterator_map
);
4038 isl_pw_multi_aff_free(sched2shared
);
4039 isl_ast_expr_free(arg
);
4040 isl_ast_expr_free(expr
);
4042 id
= isl_id_alloc(gen
->ctx
, NULL
, stmt
);
4043 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
4044 return isl_ast_node_set_annotation(node
, id
);
4047 isl_pw_multi_aff_free(iterator_map
);
4048 ppcg_kernel_stmt_free(stmt
);
4049 isl_pw_multi_aff_free(sched2shared
);
4050 return isl_ast_node_free(node
);
4053 /* This function is called when code has been generated for the shared
4054 * tile loops. The "schedule" refers only to the original statements.
4056 * We extend the schedule with that part of gen->local_sched that hasn't
4057 * been taken into account yet. This introduces parameters referring
4058 * to thread ids in the schedule, so we add them (with the appropriate
4059 * bounds to the context as well).
4060 * Finally, we set the appropriate unrolling options
4061 * if gen->first_unroll is set.
4063 static __isl_give isl_ast_node
*create_domain_leaf(
4064 __isl_take isl_union_map
*schedule
, __isl_take isl_ast_build
*build
,
4067 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
4069 isl_union_map
*sched
;
4072 isl_id_list
*iterators
;
4075 schedule
= extend_schedule(schedule
,
4076 isl_union_map_copy(gen
->local_sched
),
4077 gen
->shared_len
, gen
->thread_tiled_len
);
4079 space
= isl_ast_build_get_schedule_space(build
);
4080 set
= isl_set_universe(space
);
4081 set
= add_bounded_parameters(set
, gen
->kernel
->block_dim
,
4082 gen
->kernel
->thread_ids
);
4083 build
= isl_ast_build_restrict(build
, set
);
4085 n
= gen
->thread_tiled_len
- gen
->shared_len
;
4087 if (gen
->first_unroll
>= 0) {
4088 space
= isl_space_set_alloc(gen
->ctx
, 0, n
);
4089 build
= set_unroll(build
, space
, gen
->first_unroll
);
4091 iterators
= ppcg_scop_generate_names(gen
->prog
->scop
, n
, "c");
4092 build
= isl_ast_build_set_iterators(build
, iterators
);
4093 build
= isl_ast_build_set_at_each_domain(build
, &at_each_domain
, gen
);
4094 tree
= isl_ast_build_ast_from_schedule(build
, schedule
);
4095 isl_ast_build_free(build
);
4100 /* This function is called for each statement node in the AST of the code
4101 * for copying to or from shared/private memory.
4102 * Attach a pointer to a ppcg_kernel_stmt representing the copy
4103 * statement to the node.
4104 * The statement name is "read" or "write", depending on whether we are
4105 * reading from global memory or writing to global memory.
4106 * The name of the T space is {shared,private}_<array>.
4108 * The schedule is of the form
4112 * where A refers to a piece of an array and T to the corresponding
4113 * shifted tile. We split this schedule into mappings L -> A and L -> T
4114 * and store the corresponding expressions in stmt->index and stmt->local_index,
4115 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
4117 static __isl_give isl_ast_node
*attach_copy_stmt(__isl_take isl_ast_node
*node
,
4118 __isl_keep isl_ast_build
*build
, void *user
)
4120 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
4121 struct ppcg_kernel_stmt
*stmt
;
4125 isl_map
*access
, *local_access
, *map
;
4126 isl_pw_multi_aff
*pma
;
4130 stmt
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel_stmt
);
4132 return isl_ast_node_free(node
);
4134 access
= isl_map_from_union_map(isl_ast_build_get_schedule(build
));
4135 type
= isl_map_get_tuple_name(access
, isl_dim_in
);
4136 stmt
->u
.c
.read
= !strcmp(type
, "read");
4137 access
= isl_map_reverse(access
);
4138 space
= isl_space_unwrap(isl_space_range(isl_map_get_space(access
)));
4139 local_access
= isl_map_copy(access
);
4141 map
= isl_map_domain_map(isl_map_universe(isl_space_copy(space
)));
4142 id
= isl_map_get_tuple_id(access
, isl_dim_out
);
4143 map
= isl_map_set_tuple_id(map
, isl_dim_in
, id
);
4144 access
= isl_map_apply_range(access
, map
);
4145 pma
= isl_pw_multi_aff_from_map(access
);
4146 expr
= isl_ast_build_access_from_pw_multi_aff(build
, pma
);
4147 stmt
->u
.c
.index
= expr
;
4149 map
= isl_map_range_map(isl_map_universe(space
));
4150 id
= isl_map_get_tuple_id(local_access
, isl_dim_out
);
4151 map
= isl_map_set_tuple_id(map
, isl_dim_in
, id
);
4152 local_access
= isl_map_apply_range(local_access
, map
);
4153 pma
= isl_pw_multi_aff_from_map(local_access
);
4154 expr
= isl_ast_build_access_from_pw_multi_aff(build
, pma
);
4155 stmt
->u
.c
.local_index
= expr
;
4157 stmt
->u
.c
.array
= gen
->copy_group
->array
;
4158 array_index
= stmt
->u
.c
.array
- gen
->prog
->array
;
4159 stmt
->u
.c
.local_array
= &gen
->kernel
->array
[array_index
];
4160 stmt
->type
= ppcg_kernel_copy
;
4162 id
= isl_id_alloc(gen
->ctx
, NULL
, stmt
);
4163 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
4164 return isl_ast_node_set_annotation(node
, id
);
4167 /* Given a schedule of the form
4171 * (with S the first shared_len dimensions of the computed schedule,
4172 * A the array and L the schedule correponding to the generated loops),
4173 * indicating where to copy the array elements that need to be copied,
4174 * construct code for performing the copying.
4176 * "group" is the array reference group that is being copied
4177 * "type" is either "read" or "write"
4178 * private is set if copying needs to be performed to/from registers
4180 * We first construct a mapping to a shifted tile of the array,
4182 * [S -> A] -> T(S,A) (1)
4184 * If private is set, then we also use this mapping as a schedule
4185 * (which is already thread-specific and will be completely unrolled).
4186 * Otherwise, we wrap/tile the range over the threads.
4189 * [S -> A] -> T'(S,A)
4191 * Combined with the given schedule, we have
4193 * [S -> A] -> [L -> T'(S,A)] (2)
4195 * From the shifted tile mapping, we construct a mapping
4197 * [S -> A] -> [A -> T(S,A)]
4199 * and apply it to the schedule (2), obtaining
4201 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
4203 * Note that we can project out S because it is uniquely defined by L.
4205 static __isl_give isl_ast_node
*copy_access(struct gpu_gen
*gen
,
4206 __isl_take isl_map
*sched
,
4207 const char *type
, struct gpu_array_ref_group
*group
,
4208 __isl_take isl_ast_build
*build
, int private)
4212 isl_map
*schedule
, *shift
, *map
;
4214 isl_id_list
*iterators
;
4217 shift
= shift_access(group
);
4219 schedule
= isl_map_copy(shift
);
4220 schedule
= isl_map_reset_tuple_id(schedule
, isl_dim_out
);
4222 schedule
= tile_access_schedule(gen
, schedule
);
4224 n
= isl_map_dim(schedule
, isl_dim_out
);
4225 set
= isl_set_universe(isl_ast_build_get_schedule_space(build
));
4226 set
= add_bounded_parameters(set
, gen
->kernel
->block_dim
,
4227 gen
->kernel
->thread_ids
);
4229 schedule
= isl_map_range_product(sched
, schedule
);
4231 space
= isl_space_domain(isl_map_get_space(shift
));
4232 map
= isl_map_range_map(isl_map_universe(isl_space_unwrap(space
)));
4233 map
= isl_map_range_product(map
, shift
);
4235 schedule
= isl_map_apply_domain(schedule
, map
);
4237 schedule
= isl_map_set_tuple_name(schedule
, isl_dim_in
, type
);
4239 build
= isl_ast_build_restrict(build
, set
);
4241 gen
->copy_group
= group
;
4244 space
= isl_space_range(isl_map_get_space(schedule
));
4245 space
= isl_space_range(isl_space_unwrap(space
));
4246 build
= set_unroll(build
, space
, 0);
4248 iterators
= ppcg_scop_generate_names(gen
->prog
->scop
, n
, "c");
4249 build
= isl_ast_build_set_iterators(build
, iterators
);
4250 build
= isl_ast_build_set_at_each_domain(build
, &attach_copy_stmt
, gen
);
4251 tree
= isl_ast_build_ast_from_schedule(build
,
4252 isl_union_map_from_map(schedule
));
4253 isl_ast_build_free(build
);
4258 /* Return code for reading into or writing from shared memory
4259 * the given array reference group.
4261 * If we are performing a read from global memory to shared memory and
4262 * if the array involved is not a scalar, then we copy
4263 * the entire tile to shared memory. This may result in some extra
4264 * elements getting copied, but it should lead to simpler code
4265 * (which means that fewer registers may be needed) and less divergence.
4267 * Otherwise, we only copy the elements that will be read or have been written
4271 * The input "sched" is of the form.
4275 * with S the first shared_len dimensions of the computed schedule,
4276 * A the array and L the schedule correponding to the generated loops.
4278 * We first drop "type",
4282 * If the above conditions are satisfied, we project out A,
4287 * and then introduce the group tile [S -> T], resulting in
4291 static __isl_give isl_ast_node
*copy_group_shared_accesses(
4292 struct gpu_gen
*gen
, struct gpu_array_ref_group
*group
,
4293 __isl_take isl_map
*sched
, __isl_take isl_ast_build
*build
)
4297 isl_union_map
*access
;
4299 type
= isl_map_get_tuple_name(sched
, isl_dim_in
);
4300 read
= !strcmp(type
, "read");
4302 sched
= isl_map_reset_tuple_id(sched
, isl_dim_in
);
4304 if (read
&& !gpu_array_is_scalar(group
->array
)) {
4308 space
= isl_space_domain(isl_map_get_space(sched
));
4309 space
= isl_space_unwrap(space
);
4310 map
= isl_map_domain_map(isl_map_universe(space
));
4311 sched
= isl_map_apply_domain(sched
, map
);
4313 map
= group_tile(group
);
4314 map
= isl_map_reverse(isl_map_domain_map(map
));
4315 sched
= isl_map_apply_domain(sched
, map
);
4318 return copy_access(gen
, sched
, type
, group
, build
, 0);
4321 /* Return code for reading into or writing from private memory
4322 * the given array reference group.
4324 * Let S be the first shared_len dimensions of the computed schedule,
4325 * D the iteration domains, A the array and L the schedule correponding
4326 * to the generated loops.
4327 * "sched" is of the form
4331 * where type is either "read" or "write".
4332 * We apply the privatization D -> S(t), with t the thread ids,
4333 * to the access relation D -> A to obtain the privatized access relation
4337 * We drop the type from "sched" and intersect with the privatized access
4338 * relation to obtain
4342 static __isl_give isl_ast_node
*copy_group_private_accesses(
4343 struct gpu_gen
*gen
, struct gpu_array_ref_group
*group
,
4344 __isl_take isl_map
*sched
, __isl_take isl_ast_build
*build
)
4348 isl_union_map
*priv
;
4349 isl_union_map
*access
;
4350 isl_map
*access_map
;
4352 type
= isl_map_get_tuple_name(sched
, isl_dim_in
);
4353 read
= !strcmp(type
, "read");
4355 priv
= isl_union_map_from_map(isl_map_copy(gen
->privatization
));
4356 priv
= isl_union_map_apply_range(isl_union_map_copy(gen
->shared_sched
),
4359 access
= group_access_relation(group
, read
, !read
);
4360 access
= isl_union_map_apply_domain(access
, priv
);
4361 access_map
= isl_map_from_union_map(access
);
4363 sched
= isl_map_reset_tuple_id(sched
, isl_dim_in
);
4364 sched
= isl_map_intersect_domain(sched
, isl_map_wrap(access_map
));
4366 return copy_access(gen
, sched
, type
, group
, build
, 1);
4369 /* Return code for reading into or writing from shared or private memory.
4371 * "schedule" is of the form
4375 * with S be the first shared_len dimensions of the computed schedule,
4376 * A the array and L the schedule correponding to the generated loops.
4377 * The array reference group is attached to "type".
4379 static __isl_give isl_ast_node
*create_access_leaf(
4380 struct gpu_gen
*gen
, __isl_take isl_map
*schedule
,
4381 __isl_take isl_ast_build
*build
)
4383 struct gpu_array_ref_group
*group
;
4386 id
= isl_map_get_tuple_id(schedule
, isl_dim_in
);
4387 group
= isl_id_get_user(id
);
4390 if (group
->private_tile
)
4391 return copy_group_private_accesses(gen
, group
, schedule
,
4394 return copy_group_shared_accesses(gen
, group
, schedule
,
4398 /* Create a domain node representing a synchronization.
4400 static __isl_give isl_ast_node
*create_sync_leaf(
4401 struct gpu_gen
*gen
, __isl_take isl_map
*schedule
,
4402 __isl_take isl_ast_build
*build
)
4404 struct ppcg_kernel_stmt
*stmt
;
4410 isl_map_free(schedule
);
4412 stmt
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel_stmt
);
4416 stmt
->type
= ppcg_kernel_sync
;
4418 space
= isl_ast_build_get_schedule_space(build
);
4419 space
= isl_space_from_domain(space
);
4420 space
= isl_space_set_tuple_name(space
, isl_dim_out
, "sync");
4421 expr
= isl_ast_build_call_from_pw_multi_aff(build
,
4422 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space
)));
4423 node
= isl_ast_node_alloc_user(expr
);
4424 isl_ast_build_free(build
);
4426 id
= isl_id_alloc(gen
->ctx
, NULL
, stmt
);
4427 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
4428 return isl_ast_node_set_annotation(node
, id
);
4431 /* This function is called during the code generation at the point
4432 * where the schedule domain element is completely determined by
4433 * the generated code. The input schedule contains the original
4434 * statements as well as synchronization and copy "statements".
4435 * The latter are scheduled at different points than any of the original
4436 * statements, so they will only arrive here in isolation.
4438 * If the current schedule only refers to a single statement,
4439 * we check if it is a copy or synchronization statement and
4440 * call the appropriate functions.
4441 * Otherwise, we assume we are dealing with the original statements
4442 * and we call create_domain_leaf.
4444 static __isl_give isl_ast_node
*create_kernel_leaf(
4445 __isl_take isl_ast_build
*build
, void *user
)
4447 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
4449 isl_union_map
*schedule
;
4452 schedule
= isl_ast_build_get_schedule(build
);
4454 if (isl_union_map_n_map(schedule
) != 1)
4455 return create_domain_leaf(schedule
, build
, user
);
4457 map
= isl_map_from_union_map(schedule
);
4458 name
= isl_map_get_tuple_name(map
, isl_dim_in
);
4459 if (!strcmp(name
, "read") || !strcmp(name
, "write"))
4460 return create_access_leaf(gen
, map
, build
);
4461 if (!strcmp(name
, "sync"))
4462 return create_sync_leaf(gen
, map
, build
);
4464 return create_domain_leaf(isl_union_map_from_map(map
), build
, user
);
4467 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
4468 * have value 0) and all even schedule dimensions as "unroll".
4470 * That is, the options look as follows
4472 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
4473 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
4475 * The even positions are used to be able to schedule copying blocks
4476 * and synchronization before or after each level of the shared memory
4477 * tile loops and we want to make sure that code for these is generated
4478 * separately (within each level).
4480 static __isl_give isl_ast_build
*set_atomic_and_unroll(
4481 __isl_take isl_ast_build
*build
,
4482 __isl_take isl_space
*space
, int sched_len
)
4488 isl_local_space
*ls
;
4491 ctx
= isl_ast_build_get_ctx(build
);
4493 space
= isl_space_params(space
);
4494 space
= isl_space_add_dims(space
, isl_dim_set
, sched_len
);
4495 space
= isl_space_from_domain(space
);
4496 space
= isl_space_add_dims(space
, isl_dim_out
, 2);
4497 map
= isl_map_universe(isl_space_copy(space
));
4498 for (i
= 0; i
< sched_len
; i
+= 2)
4499 map
= isl_map_fix_si(map
, isl_dim_in
, i
, 0);
4500 ls
= isl_local_space_from_space(isl_map_get_space(map
));
4501 c
= isl_equality_alloc(ls
);
4502 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, 0, 1);
4503 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, 1, 2);
4504 c
= isl_constraint_set_constant_si(c
, 1);
4505 map
= isl_map_add_constraint(map
, c
);
4506 map
= isl_map_project_out(map
, isl_dim_out
, 1, 1);
4507 map
= isl_map_set_tuple_name(map
, isl_dim_out
, "atomic");
4508 opt
= isl_union_map_from_map(map
);
4510 map
= isl_map_universe(space
);
4511 ls
= isl_local_space_from_space(isl_map_get_space(map
));
4512 c
= isl_equality_alloc(ls
);
4513 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, 0, 1);
4514 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, 1, 2);
4515 map
= isl_map_add_constraint(map
, c
);
4516 map
= isl_map_project_out(map
, isl_dim_out
, 1, 1);
4517 map
= isl_map_set_tuple_name(map
, isl_dim_out
, "unroll");
4518 opt
= isl_union_map_add_map(opt
, map
);
4520 build
= isl_ast_build_set_options(build
, opt
);
4525 /* Return a map that maps a space of dimension gen->shared_len
4526 * to its last dimensions starting at gen->tile_first.
4527 * The range is of dimension
4529 * 2 * (gen->shared_len - gen->tile_first) + 1
4531 * The input dimensions are mapped to the odd dimensions in the output,
4532 * while the even dimensions (except 2*pos) are fixed to 0.
4533 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
4534 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
4535 * are mapped to the output. The remaining input dimensions are projected
4536 * out and the corresponding output dimensions are fixed to 0.
4538 static __isl_give isl_map
*insert_even(struct gpu_gen
*gen
,
4539 __isl_take isl_space
*space
, int pos
, int val
)
4544 space
= isl_space_set_from_params(space
);
4545 space
= isl_space_add_dims(space
, isl_dim_set
, gen
->shared_len
);
4546 space
= isl_space_map_from_set(space
);
4547 proj
= isl_map_identity(space
);
4548 proj
= isl_map_project_out(proj
, isl_dim_out
, 0, gen
->tile_first
);
4549 n
= gen
->shared_len
- gen
->tile_first
;
4550 for (i
= 0; i
<= n
; ++i
) {
4551 proj
= isl_map_insert_dims(proj
, isl_dim_out
, 2 * i
, 1);
4553 proj
= isl_map_fix_si(proj
, isl_dim_out
, 2 * i
, val
);
4555 proj
= isl_map_fix_si(proj
, isl_dim_out
, 2 * i
, 0);
4561 proj
= isl_map_eliminate(proj
, isl_dim_in
, gen
->tile_first
+ pos
,
4562 gen
->shared_len
- (gen
->tile_first
+ pos
));
4563 for (i
= pos
; i
< n
; ++i
)
4564 proj
= isl_map_fix_si(proj
, isl_dim_out
, 2 * i
+ 1, 0);
4569 /* Given the AST context schedule "schedule" and the mapping from
4570 * domains to the shared tile loops "shared_sched", add a schedule
4571 * for a synchronization operation at position "val" of loop level "pos".
4573 * schedule is of the form
4577 * (with D the iteration domains and L the already generated loops),
4578 * while shared_sched is of the form
4582 * We combine them into
4588 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4590 * and use the result as a schedule for "sync".
4592 static __isl_give isl_union_map
*add_sync_schedule(struct gpu_gen
*gen
,
4593 __isl_take isl_union_map
*res
, __isl_keep isl_union_map
*schedule
,
4594 __isl_keep isl_union_map
*shared_sched
, int pos
, int val
)
4597 isl_map
*proj
, *map
;
4599 shared_sched
= isl_union_map_copy(shared_sched
);
4600 schedule
= isl_union_map_copy(schedule
);
4602 space
= isl_union_map_get_space(shared_sched
);
4603 schedule
= isl_union_map_apply_domain(shared_sched
, schedule
);
4604 map
= isl_map_from_union_map(schedule
);
4606 proj
= insert_even(gen
, space
, pos
, val
);
4607 map
= isl_map_apply_range(map
, proj
);
4608 map
= isl_map_from_range(isl_map_wrap(map
));
4609 map
= isl_map_set_tuple_name(map
, isl_dim_in
, "sync");
4611 res
= isl_union_map_add_map(res
, map
);
4616 /* Given a set of wrapped references "ref", return the corresponding
4617 * access relations based on the tagged access relations "tagged".
4619 * The elements of "ref" are of the form
4623 * with D an iteration domains and R a reference.
4624 * The elements of "tagged" are of the form
4630 * Extend "tagged" to include the iteration domain in the range, i.e.,
4632 * [D -> R] -> [D -> A]
4634 * apply the result to "ref" and then unwrap the resulting set
4635 * to obtain relations of the form
4639 static __isl_give isl_union_map
*wrapped_reference_to_access(
4640 __isl_take isl_union_set
*ref
, __isl_take isl_union_map
*tagged
)
4642 isl_union_map
*tag2access
;
4644 tag2access
= isl_union_map_copy(tagged
);
4645 tag2access
= isl_union_map_universe(tag2access
);
4646 tag2access
= isl_union_set_unwrap(isl_union_map_domain(tag2access
));
4647 tag2access
= isl_union_map_domain_map(tag2access
);
4648 tag2access
= isl_union_map_range_product(tag2access
, tagged
);
4650 ref
= isl_union_set_coalesce(ref
);
4651 ref
= isl_union_set_apply(ref
, tag2access
);
4653 return isl_union_set_unwrap(ref
);
4656 /* Given an access relation "access" from "group", remove those reads
4657 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
4658 * communicate data within the same iteration of the last_shared dimension
4661 * If the access is a read then it is either an element of
4663 * live_in union (range flow)
4665 * where live_in and flow may be overapproximations, or
4666 * it reads an uninitialized value (that is not live-in because
4667 * there is an intermediate kill) or it reads a value that was
4668 * written within the same (compound) statement instance.
4669 * If the access is a write then it is either an element of
4671 * live_out union (domain flow)
4673 * or it writes a value that is never read (and is not live-out
4674 * because of an intermediate kill) or only
4675 * within the same (compound) statement instance.
4676 * In both cases, the access relation is also a subset of
4677 * the group access relation.
4679 * The cases where an uninitialized value is read or a value is written
4680 * that is never read or where the dataflow occurs within a statement
4681 * instance are also considered local and may also be removed.
4683 * Essentially, we compute the intersection of "access" with either
4685 * live_in union (range non-local-flow)
4689 * live_out union (domain non-local-flow)
4691 * We first construct a relation "local"
4693 * [[D -> R] -> [D' -> R']]
4695 * of pairs of domain iterations accessing the reference group
4696 * and references in the group that are scheduled to the same iteration
4697 * of the last_shared dimension.
4699 * If this relation does not intersect the dataflow dependences,
4700 * then there is nothing we can possibly remove, unless the dataflow
4701 * dependences themselves only relate a subset of the accesses.
4702 * In particular, the accesses may not be involved in any dataflow
4703 * dependences, either because they are uninitialized reads/dead writes
4704 * or because the dataflow occurs inside a statement instance.
4706 * Since the computation below may break up the access relation
4707 * into smaller pieces, we only perform the intersection with
4708 * the non-local dependent accesses if the local pairs
4709 * intersect the dataflow dependences. Otherwise, we intersect
4710 * with the universe of the non-local dependent accesses.
4711 * This should at least remove accesses from statements that
4712 * do not participate in any dependences.
4714 * In particular, we remove the "local" dataflow dependences from
4715 * the set of all dataflow dependences.
4716 * Note that if the potential dataflow dependences are an overapproximation
4717 * of the actual dataflow dependences, then the result remains an
4718 * overapproximation of the non-local dataflow dependences.
4719 * Copying to/from global memory is only needed for the references
4720 * in the domain/range of the result or for accesses that are live out/in
4721 * for the entire scop.
4723 * We therefore map the domain/range of the "external" relation
4724 * to the corresponding access relation and take the union with
4725 * the live out/in relation.
4727 static __isl_give isl_union_map
*remove_local_accesses(struct gpu_gen
*gen
,
4728 struct gpu_array_ref_group
*group
, __isl_take isl_union_map
*access
,
4732 isl_union_map
*tagger
;
4733 isl_union_set
*domain
;
4735 isl_union_map
*sched
, *local
, *tagged
, *external
;
4736 isl_union_set
*tag_set
;
4739 if (isl_union_map_is_empty(access
))
4742 tagged
= group_tagged_access_relation(group
);
4744 sched
= isl_union_map_copy(gen
->sched
);
4746 space
= isl_union_map_get_space(sched
);
4747 proj
= projection(space
, gen
->untiled_len
, group
->last_shared
+ 1);
4748 sched
= isl_union_map_apply_range(sched
, isl_union_map_from_map(proj
));
4750 tagger
= isl_union_map_copy(gen
->prog
->scop
->tagger
);
4751 domain
= isl_union_map_domain(isl_union_map_copy(tagged
));
4752 tagger
= isl_union_map_intersect_range(tagger
, domain
);
4753 sched
= isl_union_map_apply_domain(sched
, tagger
);
4755 local
= isl_union_map_apply_range(sched
,
4756 isl_union_map_reverse(isl_union_map_copy(sched
)));
4757 local
= isl_union_map_intersect(local
,
4758 isl_union_map_copy(gen
->prog
->scop
->tagged_dep_flow
));
4760 empty
= isl_union_map_is_empty(local
);
4762 external
= isl_union_map_copy(gen
->prog
->scop
->tagged_dep_flow
);
4763 external
= isl_union_map_intersect_params(external
,
4764 isl_set_copy(gen
->prog
->scop
->context
));
4765 external
= isl_union_map_subtract(external
, local
);
4768 tag_set
= isl_union_map_range(external
);
4769 external
= wrapped_reference_to_access(tag_set
, tagged
);
4770 external
= isl_union_map_union(external
,
4771 isl_union_map_copy(gen
->prog
->scop
->live_in
));
4773 tag_set
= isl_union_map_domain(external
);
4774 external
= wrapped_reference_to_access(tag_set
, tagged
);
4775 external
= isl_union_map_union(external
,
4776 isl_union_map_copy(gen
->prog
->scop
->live_out
));
4780 external
= isl_union_map_free(external
);
4782 external
= isl_union_map_universe(external
);
4784 access
= isl_union_map_intersect(access
, external
);
4789 /* Given the AST context schedule "schedule" and the mapping from
4790 * domains to the shared tile loops "shared_sched", add a schedule
4791 * for copying an array reference group to/from shared/private memory.
4792 * "read" is set if data should be copied from global memory
4793 * to shared/private memory.
4794 * "k" represents the current group
4795 * "s" is the total number of groups
4797 * We schedule an operation before or after the innermost loop
4798 * of "shared_sched" that affects the tile of the array reference group.
4800 * schedule is of the form
4804 * (with D the iteration domains and L the already generated loops),
4805 * while shared_sched is of the form
4809 * We first compute the access relation for the reference group
4813 * and remove from this access relation those reads or writes
4814 * that only needed to communicate data within the same iteration
4815 * of the last_shared dimension of the group.
4816 * We then combine what is left with shared_sched into
4820 * If this results in an empty relation, no copying needs to be performed
4822 * Otherwise, we invert the relation and combine it with "schedule" into
4826 * The actual additional piece of the schedule is obtained from combining
4832 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4834 * The position of "val" corresponds to the innermost loop that affects
4835 * the tile and the value indicates where the copying is scheduled
4836 * with respect to the actual kernel code (at value 0).
4837 * Reads are schedule before the code, writes to global memory from
4838 * private memory are scheduled at values 1 to s, writes to global
4839 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
4841 * If we are scheduling a read from global memory to shared memory,
4842 * we insert a synchronization before the kernel code (at the innermost
4844 * If we are scheduling a write to global memory, then we add
4845 * a synchronization after all writes (at value 2 *s + 2).
4846 * However, there is no need for a synchronization after the outermost loop.
4847 * A write to global memory from private memory at the innermost level
4848 * does not require a synchronization, because it is covered by
4849 * the synchronization after the kernel inserted by body_schedule.
4851 static __isl_give isl_union_map
*add_group_schedule(struct gpu_gen
*gen
,
4852 __isl_take isl_union_map
*res
, __isl_keep isl_union_map
*schedule
,
4853 __isl_keep isl_union_map
*shared_sched
,
4854 struct gpu_array_ref_group
*group
, int read
, int k
, int s
)
4859 isl_union_map
*access
;
4860 isl_map
*map
, *proj
, *access_map
;
4863 access
= group_access_relation(group
, read
, !read
);
4864 access
= remove_local_accesses(gen
, group
, access
, read
);
4865 access
= isl_union_map_range_product(isl_union_map_copy(shared_sched
),
4868 if (isl_union_map_is_empty(access
)) {
4869 isl_union_map_free(access
);
4873 access
= isl_union_map_reverse(access
);
4874 access
= isl_union_map_apply_range(access
,
4875 isl_union_map_copy(schedule
));
4876 access_map
= isl_map_from_union_map(access
);
4878 space
= isl_space_copy(group
->array
->space
);
4879 space
= isl_space_from_range(space
);
4880 space
= isl_space_add_dims(space
, isl_dim_in
, gen
->shared_len
);
4881 map
= isl_map_domain_map(isl_map_universe(space
));
4883 space
= isl_union_map_get_space(schedule
);
4884 pos
= group
->last_shared
+ 1 - gen
->tile_first
;
4888 else if (group
->private_tile
)
4891 val
= 1 + s
+ 1 + k
;
4892 proj
= insert_even(gen
, space
, pos
, val
);
4893 map
= isl_map_apply_range(map
, proj
);
4895 access_map
= isl_map_range_product(access_map
, map
);
4897 id
= isl_id_alloc(gen
->ctx
, read
? "read" : "write", group
);
4898 access_map
= isl_map_set_tuple_id(access_map
, isl_dim_in
, id
);
4900 res
= isl_union_map_add_map(res
, access_map
);
4902 n
= gen
->shared_len
- gen
->tile_first
;
4904 if (!group
->private_tile
)
4905 res
= add_sync_schedule(gen
, res
, schedule
,
4906 shared_sched
, n
, -1);
4910 if (pos
== n
&& group
->private_tile
)
4912 res
= add_sync_schedule(gen
, res
, schedule
, shared_sched
,
4919 /* Return a schedule for the shared tile loops based on the current
4920 * AST context schedule.
4922 * We create a "shared_sched" that maps the domains to the first
4923 * shared_len dimensions of the computed schedule, project out the
4924 * first tile_first dimensions (as these are already covered by
4925 * the host code) and insert "statement-level" dimensions at even
4926 * positions so that we can schedule copy blocks and synchronization
4927 * before/after each level.
4929 * In particular, copy blocks are inserted inside the innermost
4930 * level that affect the tile. For the copying to global memory,
4931 * those from private memory are scheduled before those from shared
4932 * memory such that synchronization can be inserted between the two
4933 * at the innermost level.
4934 * Synchronization is inserted at the innermost level before the
4935 * actual kernel code if there is any copying from global memory
4936 * to shared memory. It is inserted unconditionally at the innermost
4937 * level after the actual kernel code and the copying to global memory
4938 * from private memory (if any). Finally, it is inserted after
4939 * any copying to global memory, except at the outermost level
4940 * and at the innermost level if there is no copying from shared
4941 * memory. The copying from private memory is covered by the unconditional
4942 * synchronization at the innermost level.
4944 static __isl_give isl_union_map
*body_schedule(struct gpu_gen
*gen
,
4945 __isl_take isl_union_map
*schedule
)
4949 isl_union_map
*shared_sched
;
4950 isl_union_map
*sched
;
4951 isl_map
*proj
, *map
;
4954 shared_sched
= isl_union_map_copy(gen
->tiled_sched
);
4955 proj
= projection(isl_union_map_get_space(shared_sched
),
4956 gen
->tiled_len
, gen
->shared_len
);
4957 shared_sched
= isl_union_map_apply_range(shared_sched
,
4958 isl_union_map_from_map(proj
));
4959 space
= isl_union_map_get_space(shared_sched
);
4960 proj
= insert_even(gen
, space
, -1, 0);
4961 sched
= isl_union_map_apply_range(isl_union_map_copy(shared_sched
),
4962 isl_union_map_from_map(proj
));
4964 res
= isl_union_map_range_product(isl_union_map_copy(schedule
), sched
);
4967 for (i
= 0; i
< gen
->prog
->n_array
; ++i
)
4968 s
+= gen
->prog
->array
[i
].n_group
;
4971 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
4972 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
4974 for (j
= 0; j
< array
->n_group
; ++j
) {
4975 struct gpu_array_ref_group
*group
;
4977 group
= array
->groups
[j
];
4978 if (!group
->private_tile
&& !group
->shared_tile
)
4980 res
= add_group_schedule(gen
, res
, schedule
,
4981 shared_sched
, group
, 0, k
, s
);
4982 res
= add_group_schedule(gen
, res
, schedule
,
4983 shared_sched
, group
, 1, k
, s
);
4988 res
= add_sync_schedule(gen
, res
, schedule
, shared_sched
,
4989 gen
->shared_len
- gen
->tile_first
, 1 + s
);
4991 isl_union_map_free(shared_sched
);
4992 isl_union_map_free(schedule
);
4997 /* Generate code for "kernel" in the given "context".
4999 * We first generate code for the shared tile loops (T1T, T1P and T2)
5000 * in a context that includes the block ids.
5001 * Within each iteration of these loops an additional code generation
5002 * is performed (within create_kernel_leaf) for the rest of the schedule
5003 * in a context that includes the thread ids.
5005 static __isl_give isl_ast_node
*generate_kernel(struct gpu_gen
*gen
,
5006 __isl_keep isl_ast_build
*build
, __isl_keep isl_set
*host_domain
,
5007 __isl_keep isl_multi_pw_aff
*grid_size
)
5011 isl_id_list
*iterators
;
5012 isl_union_map
*schedule
;
5016 schedule
= isl_ast_build_get_schedule(build
);
5018 build
= isl_ast_build_copy(build
);
5019 build
= isl_ast_build_restrict(build
, isl_set_copy(host_domain
));
5020 space
= isl_ast_build_get_schedule_space(build
);
5021 set
= isl_set_universe(isl_space_copy(space
));
5022 set
= add_bounded_parameters_dynamic(set
, grid_size
,
5023 gen
->kernel
->block_ids
);
5024 build
= isl_ast_build_restrict(build
, set
);
5026 schedule
= body_schedule(gen
, schedule
);
5028 sched_len
= 2 * (gen
->shared_len
- gen
->tile_first
) + 1;
5030 build
= set_atomic_and_unroll(build
, space
, sched_len
);
5031 iterators
= ppcg_scop_generate_names(gen
->prog
->scop
, sched_len
, "g");
5032 build
= isl_ast_build_set_iterators(build
, iterators
);
5033 build
= isl_ast_build_set_create_leaf(build
, &create_kernel_leaf
, gen
);
5034 tree
= isl_ast_build_ast_from_schedule(build
, schedule
);
5035 isl_ast_build_free(build
);
5040 /* Attach "id" to the given node.
5042 static __isl_give isl_ast_node
*attach_id(__isl_take isl_ast_node
*node
,
5043 __isl_keep isl_ast_build
*build
, void *user
)
5047 node
= isl_ast_node_set_annotation(node
, id
);
5052 /* Construct an AST node for performing a kernel launch and attach
5053 * the information about the kernel to that node.
5055 * The kernel AST has been constructed in the context of the range
5056 * of "schedule". In particular, the grid size has been computed
5057 * in the context. We therefore still need to make sure that these
5058 * constraints are expressed in the code. We do this by creating a schedule
5060 * kernel[] -> [S -> []]
5062 * where S is the schedule domain, i.e., the range of "schedule".
5063 * The AST generation will then create a single call surrounded by
5064 * all the condition in "S" that have not been expressed yet.
5066 * The kernel information is attached to this node in attach_id.
5068 static __isl_give isl_ast_node
*construct_launch(
5069 __isl_take isl_ast_build
*build
, __isl_take isl_union_map
*schedule
,
5070 __isl_take
struct ppcg_kernel
*kernel
)
5074 isl_union_set
*domain
;
5079 ctx
= isl_ast_build_get_ctx(build
);
5081 id
= isl_id_alloc(ctx
, NULL
, kernel
);
5082 id
= isl_id_set_free_user(id
, &ppcg_kernel_free
);
5084 domain
= isl_union_map_range(schedule
);
5085 set
= isl_set_from_union_set(domain
);
5086 map
= isl_map_from_domain(set
);
5087 map
= isl_map_from_range(isl_map_wrap(map
));
5088 map
= isl_map_set_tuple_name(map
, isl_dim_in
, "kernel");
5089 schedule
= isl_union_map_from_map(map
);
5091 build
= isl_ast_build_set_at_each_domain(build
, &attach_id
, id
);
5092 node
= isl_ast_build_ast_from_schedule(build
, schedule
);
5093 isl_ast_build_free(build
);
5098 /* This function is called for each leaf in the AST of the host code.
5099 * We first specialize the schedule to the site of the leaf, compute
5100 * the size of shared memory and then construct the body of the host code
5101 * and the associated kernel.
5103 * The necessary information for printing the kernel launch is
5104 * stored in a struct ppcg_kernel and attached to the leaf node
5105 * created to represent the launch.
5107 static __isl_give isl_ast_node
*create_host_leaf(
5108 __isl_take isl_ast_build
*build
, void *user
)
5110 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
5113 struct ppcg_kernel
*kernel
;
5114 isl_set
*host_domain
;
5115 isl_union_map
*schedule
;
5116 isl_union_map
*local_sched
;
5117 isl_union_map
*access
;
5118 isl_union_set
*domain
;
5121 schedule
= isl_ast_build_get_schedule(build
);
5123 isl_union_map_foreach_map(schedule
, &extract_tile_len
, gen
);
5126 domain
= isl_union_map_domain(isl_union_map_copy(schedule
));
5128 local_sched
= isl_union_map_copy(gen
->sched
);
5129 local_sched
= isl_union_map_intersect_domain(local_sched
, domain
);
5130 access
= isl_union_map_union(isl_union_map_copy(gen
->prog
->read
),
5131 isl_union_map_copy(gen
->prog
->may_write
));
5132 access
= isl_union_map_apply_domain(access
,
5133 isl_union_map_copy(local_sched
));
5135 kernel
= gen
->kernel
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel
);
5138 kernel
->block_ids
= ppcg_scop_generate_names(gen
->prog
->scop
,
5140 kernel
->thread_ids
= ppcg_scop_generate_names(gen
->prog
->scop
,
5143 gen
->tiled_sched
= tile_schedule(gen
, local_sched
);
5144 gen
->tiled_sched
= parametrize_tiled_schedule(gen
, gen
->tiled_sched
);
5145 gen
->tiled_sched
= scale_tile_loops(gen
, gen
->tiled_sched
);
5147 gen
->local_sched
= isl_union_map_copy(gen
->tiled_sched
);
5148 gen
->local_sched
= thread_tile_schedule(gen
, gen
->local_sched
);
5149 gen
->local_sched
= scale_thread_tile_loops(gen
, gen
->local_sched
);
5151 kernel
->id
= gen
->kernel_id
++;
5152 kernel
->context
= isl_union_map_params(isl_union_map_copy(schedule
));
5153 kernel
->grid_size
= extract_grid_size(gen
, kernel
);
5154 extract_block_size(gen
, kernel
);
5155 kernel
->arrays
= isl_union_map_range(access
);
5156 kernel
->arrays
= isl_union_set_apply(kernel
->arrays
,
5157 isl_union_map_copy(gen
->prog
->to_outer
));
5158 kernel
->space
= isl_ast_build_get_schedule_space(build
);
5160 compute_shared_sched(gen
);
5161 gen
->privatization
= compute_privatization(gen
);
5162 check_scalar_live_ranges(gen
);
5163 if (group_references(gen
) < 0)
5164 schedule
= isl_union_map_free(schedule
);
5165 host_domain
= isl_set_from_union_set(isl_union_map_range(
5166 isl_union_map_copy(schedule
)));
5167 localize_bounds(gen
, kernel
, host_domain
);
5169 gen
->local_sched
= interchange_for_unroll(gen
, gen
->local_sched
);
5170 check_shared_memory_bound(gen
);
5171 compute_group_tilings(gen
);
5173 kernel
->tree
= generate_kernel(gen
, build
, host_domain
,
5175 create_kernel_vars(gen
, kernel
);
5177 free_local_array_info(gen
);
5178 isl_map_free(gen
->privatization
);
5179 isl_union_map_free(gen
->local_sched
);
5180 isl_union_map_free(gen
->tiled_sched
);
5181 isl_union_map_free(gen
->shared_sched
);
5182 isl_union_map_free(gen
->shared_proj
);
5183 isl_set_free(host_domain
);
5184 free(gen
->tile_size
);
5186 node
= construct_launch(build
, schedule
, kernel
);
5190 isl_union_map_free(schedule
);
5194 /* Use isl to generate code for the outer gen->tile_first loops
5195 * of the global schedule in gen->sched, resulting in the host code.
5196 * Within each iteration of this partial schedule, i.e., for each kernel
5197 * launch, create_host_leaf takes care of generating the kernel code.
5199 static __isl_give isl_ast_node
*generate_host_code(struct gpu_gen
*gen
)
5201 isl_ast_build
*build
;
5203 isl_union_map
*sched
;
5205 isl_id_list
*iterators
;
5207 sched
= isl_union_map_copy(gen
->sched
);
5208 proj
= projection(isl_union_map_get_space(sched
),
5209 gen
->untiled_len
, gen
->tile_first
);
5210 sched
= isl_union_map_apply_range(sched
, isl_union_map_from_map(proj
));
5212 isl_options_set_ast_build_group_coscheduled(gen
->ctx
, 1);
5213 build
= isl_ast_build_from_context(isl_set_copy(gen
->prog
->context
));
5214 iterators
= ppcg_scop_generate_names(gen
->prog
->scop
,
5215 gen
->tile_first
, "h");
5216 build
= isl_ast_build_set_iterators(build
, iterators
);
5217 build
= isl_ast_build_set_create_leaf(build
, &create_host_leaf
, gen
);
5218 tree
= isl_ast_build_ast_from_schedule(build
, sched
);
5219 isl_ast_build_free(build
);
5224 __isl_give isl_union_map
*extract_sizes_from_str(isl_ctx
*ctx
, const char *str
)
5228 return isl_union_map_read_from_str(ctx
, str
);
5231 /* Information about the outermost tilable bands in the forest of bands.
5233 * tile_len and n_parallel are only sets on band_info structures
5234 * that correspond to outermost bands. For other bands (in particular,
5235 * ancestors of the outermost bands), n_parallal is set to 0.
5237 * prefix is the (padded) schedule leading up to the outermost tilable bands.
5239 * tile_first is the number of schedule dimensions in prefix.
5241 * suffix is the schedule of the outermost tilable bands and their descendants.
5244 struct gpu_gen
*gen
;
5248 isl_union_map
*prefix
;
5249 isl_union_map
*suffix
;
5252 /* Set tile_len and n_parallel of the statement to that of
5253 * their outermost band, recorded in the band_info.
5255 static int set_stmt_tile_len(__isl_take isl_map
*map
, void *user
)
5257 struct band_info
*info
= user
;
5258 struct gpu_stmt
*stmt
;
5261 id
= isl_map_get_tuple_id(map
, isl_dim_in
);
5262 stmt
= find_stmt(info
->gen
->prog
, id
);
5265 stmt
->tile_len
= info
->tile_len
;
5266 stmt
->n_parallel
= info
->n_parallel
;
5273 static void select_outer_band(struct gpu_gen
*gen
,
5274 __isl_take isl_schedule_node
*node
, int pos
, struct band_info
*info
);
5276 /* Check if this band node is tilable and has any parallel loops. If so,
5277 * take it as the outermost tilable band. If not, continue looking for the
5278 * outermost tilable band in the children of the current band.
5280 static void band_select_outer_band(struct gpu_gen
*gen
,
5281 __isl_take isl_schedule_node
*node
, int pos
, struct band_info
*info
)
5283 int n
= isl_schedule_node_band_n_member(node
);
5286 for (n_parallel
= 0; n_parallel
< n
; ++n_parallel
)
5287 if (!isl_schedule_node_band_member_get_coincident(node
,
5291 if (!isl_schedule_node_band_get_permutable(node
) || n_parallel
== 0) {
5292 node
= isl_schedule_node_child(node
, 0);
5293 select_outer_band(gen
, node
, pos
+ n
, info
);
5297 info
->n_parallel
= n_parallel
;
5298 gen
->any_parallelism
= 1;
5300 info
->tile_first
= pos
;
5302 info
->prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
5303 info
->suffix
= isl_schedule_node_get_subtree_schedule_union_map(node
);
5304 isl_union_map_foreach_map(info
->prefix
, &set_stmt_tile_len
, info
);
5306 isl_schedule_node_free(node
);
5309 /* Comparison function that returns a non-zero value for band_infos
5310 * with different tile_len fields or different n_parallel fields.
5312 static int cmp_band(const void *p1
, const void *p2
)
5314 const struct band_info
*info1
= p1
;
5315 const struct band_info
*info2
= p2
;
5317 if (info1
->tile_len
!= info2
->tile_len
)
5318 return info1
->tile_len
- info2
->tile_len
;
5320 return info1
->n_parallel
- info2
->n_parallel
;
5323 /* Extend "umap" with coordinates with fixed value "val"
5324 * to a total length of "dst_len", assuming the original dimension is "src_len".
5326 static __isl_give isl_union_map
*extend_range(
5327 __isl_take isl_union_map
*umap
, int src_len
, int dst_len
, int val
)
5333 dim
= isl_union_map_get_space(umap
);
5334 map
= isl_map_reverse(projection(dim
, dst_len
, src_len
));
5335 for (i
= src_len
; i
< dst_len
; ++i
)
5336 map
= isl_map_fix_si(map
, isl_dim_out
, i
, val
);
5338 umap
= isl_union_map_apply_range(umap
, isl_union_map_from_map(map
));
5343 /* Insert a new dimension at position "pos" in the range of "umap"
5344 * with fixed value "val", assuming the original dimension of the range
5345 * of "umap" is "src_len".
5347 static __isl_give isl_union_map
*insert_range(__isl_take isl_union_map
*umap
,
5348 int src_len
, int pos
, int val
)
5353 space
= isl_union_map_get_space(umap
);
5354 map
= project_out(space
, src_len
+ 1, pos
, 1);
5355 map
= isl_map_reverse(map
);
5356 map
= isl_map_fix_si(map
, isl_dim_out
, pos
, val
);
5358 umap
= isl_union_map_apply_range(umap
, isl_union_map_from_map(map
));
5363 /* Group bands with the same values for tile_len and n_parallel.
5364 * The prefix schedule is then extended with a fixed coordinate that
5365 * is different for each such group.
5366 * Note that the actual values for this coordinate are not important.
5367 * The bands have already been effectively separated at a higher level
5368 * or they are independent and may be executed in parallel.
5369 * The list of band_info has been sorted before this functions is called.
5371 static void separate_bands(struct band_info
*info
, int n
)
5376 for (i
= 0; i
< n
; ++i
) {
5377 int l
= info
[i
].tile_first
;
5380 (info
[i
].tile_len
!= info
[i
- 1].tile_len
||
5381 info
[i
].n_parallel
!= info
[i
- 1].n_parallel
))
5384 info
[i
].prefix
= extend_range(info
[i
].prefix
,
5386 info
[i
].tile_first
= l
+ 1;
5390 /* Select the outermost bands in the elements of the sequence or set
5391 * node "node", align their prefix schedules. Separate all bands
5392 * if "serialize" is set and otherwise separate bands with different values
5393 * for tile_len and/or n_parallel. Finally, combine the resulting
5394 * prefix and suffix schedules into a single pair of prefix and
5395 * suffix schedules for the entire list.
5397 static void list_select_outer_band(struct gpu_gen
*gen
,
5398 __isl_take isl_schedule_node
*node
, int pos
,
5399 struct band_info
*list_info
, int serialize
)
5402 int n
= isl_schedule_node_n_children(node
);
5403 isl_ctx
*ctx
= isl_schedule_node_get_ctx(node
);
5404 struct band_info
*info
;
5406 isl_union_map
*prefix
;
5407 isl_union_map
*suffix
;
5410 info
= isl_calloc_array(ctx
, struct band_info
, n
);
5414 for (i
= 0; i
< n
; ++i
) {
5415 isl_schedule_node
*child
;
5416 child
= isl_schedule_node_get_child(node
, i
);
5417 select_outer_band(gen
, child
, pos
, &info
[i
]);
5418 if (info
[i
].tile_first
> max_tile_first
)
5419 max_tile_first
= info
[i
].tile_first
;
5422 for (i
= 0; i
< n
; ++i
) {
5423 if (info
[i
].tile_first
== max_tile_first
)
5425 info
[i
].prefix
= extend_range(info
[i
].prefix
,
5426 info
[i
].tile_first
, max_tile_first
, 0);
5427 info
[i
].tile_first
= max_tile_first
;
5431 for (i
= 0; i
< n
; ++i
) {
5432 int l
= info
[i
].tile_first
;
5433 info
[i
].prefix
= insert_range(info
[i
].prefix
, l
,
5435 info
[i
].tile_first
= l
+ 1;
5438 qsort(info
, n
, sizeof(struct band_info
), &cmp_band
);
5440 for (i
= 0; i
< n
- 1; ++i
)
5441 if (info
[i
].tile_len
!= info
[i
+ 1].tile_len
||
5442 info
[i
].n_parallel
!= info
[i
+ 1].n_parallel
)
5446 separate_bands(info
, n
);
5449 prefix
= info
[0].prefix
;
5450 suffix
= info
[0].suffix
;
5452 for (i
= 1; i
< n
; ++i
) {
5453 prefix
= isl_union_map_union(prefix
, info
[i
].prefix
);
5454 suffix
= isl_union_map_union(suffix
, info
[i
].suffix
);
5457 list_info
->tile_first
= info
[0].tile_first
;
5458 list_info
->tile_len
= -1;
5459 list_info
->prefix
= prefix
;
5460 list_info
->suffix
= suffix
;
5462 isl_schedule_node_free(node
);
5466 /* Select the outermost bands in the elements of the set node "node".
5467 * If the schedule_separate_components is set, then separate all bands.
5469 static void set_select_outer_band(struct gpu_gen
*gen
,
5470 __isl_take isl_schedule_node
*node
, int pos
,
5471 struct band_info
*list_info
)
5473 isl_ctx
*ctx
= isl_schedule_node_get_ctx(node
);
5476 serialize
= isl_options_get_schedule_separate_components(ctx
);
5477 list_select_outer_band(gen
, node
, pos
, list_info
, serialize
);
5480 /* Select the outermost bands in the elements of the sequence node "node",
5481 * separating all bands.
5483 static void sequence_select_outer_band(struct gpu_gen
*gen
,
5484 __isl_take isl_schedule_node
*node
, int pos
,
5485 struct band_info
*list_info
)
5487 list_select_outer_band(gen
, node
, pos
, list_info
, 1);
5490 /* If we reach a leaf node, then we have not found any outer tilable
5491 * band with parallel loops, so consider the leaf node as the outermost
5494 static void leaf_select_outer_band(struct gpu_gen
*gen
,
5495 __isl_take isl_schedule_node
*node
, int pos
, struct band_info
*info
)
5498 info
->tile_first
= pos
;
5500 info
->prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
5501 info
->suffix
= isl_schedule_node_get_subtree_schedule_union_map(node
);
5502 isl_union_map_foreach_map(info
->prefix
, &set_stmt_tile_len
, info
);
5504 isl_schedule_node_free(node
);
5507 /* Select the outermost tilable band in the subtree that "node" points to.
5509 static void select_outer_band(struct gpu_gen
*gen
,
5510 __isl_take isl_schedule_node
*node
, int pos
, struct band_info
*info
)
5512 enum isl_schedule_node_type type
;
5514 type
= isl_schedule_node_get_type(node
);
5516 case isl_schedule_node_domain
:
5517 case isl_schedule_node_filter
:
5518 node
= isl_schedule_node_child(node
, 0);
5519 select_outer_band(gen
, node
, pos
, info
);
5521 case isl_schedule_node_leaf
:
5522 leaf_select_outer_band(gen
, node
, pos
, info
);
5524 case isl_schedule_node_band
:
5525 band_select_outer_band(gen
, node
, pos
, info
);
5527 case isl_schedule_node_set
:
5528 set_select_outer_band(gen
, node
, pos
, info
);
5530 case isl_schedule_node_sequence
:
5531 sequence_select_outer_band(gen
, node
, pos
, info
);
5534 isl_die(isl_schedule_node_get_ctx(node
),
5535 isl_error_unsupported
, "unhandled schedule node type",
5537 case isl_schedule_node_error
:
5538 info
->prefix
= NULL
;
5539 info
->suffix
= NULL
;
5543 isl_schedule_node_free(node
);
5546 /* Select the outermost tilable band that (by construction)
5547 * has at least one parallel loop.
5548 * The starting position of the aligned band is stored in the pair
5550 * The sizes and number of parallel loops may be different in different
5551 * parts of the band forest and are therefore stored in the gpu_stmts.
5553 * Return the complete schedule, with the tilable bands aligned
5554 * at gen->tile_first and padded with zero, if needed.
5556 static __isl_give isl_union_map
*select_outer_tilable_band(struct gpu_gen
*gen
,
5557 __isl_keep isl_schedule
*schedule
)
5559 isl_schedule_node
*node
;
5560 struct band_info info
;
5562 gen
->n_parallel
= 0;
5565 node
= isl_schedule_get_root(schedule
);
5566 select_outer_band(gen
, node
, 0, &info
);
5568 gen
->tile_first
= info
.tile_first
;
5569 info
.suffix
= align_range(info
.suffix
);
5571 return isl_union_map_flat_range_product(info
.prefix
, info
.suffix
);
5574 /* Set gen->untiled_len to the number of scheduling dimensions
5575 * for the schedule of the first domain.
5576 * We assume here that this number is the same for all domains.
5578 static int set_untiled_len(__isl_take isl_map
*map
, void *user
)
5580 unsigned *untiled_len
= user
;
5582 *untiled_len
= isl_map_dim(map
, isl_dim_out
);
5588 /* Compute an appropriate schedule based on the accesses in
5589 * gen->read and gen->write.
5591 * We use the dependences in gen->prog->scop to compute
5592 * a schedule that has a parallel loop in each tilable band.
5593 * Finally, we select the outermost tilable band.
5595 * If live range reordering is allowed, then we need to make sure
5596 * that live ranges on arrays are not run in parallel since doing
5597 * so would require array expansion. We therefore add the array
5598 * order dependences to the coincidence dependences. Non-zero array
5599 * order dependences will then prevent a schedule dimension from being
5600 * considered parallel.
5601 * Live ranges derived from scalars are allowed to be run in parallel
5602 * since we force the scalars to be mapped to private memory in
5603 * check_scalar_live_ranges.
5604 * If live range reordering is allowed, then the false dependences
5605 * are not added to the validity constraints as that would prevent
5606 * reordering. Instead, the external false dependences that enforce that reads
5607 * from potentially live-in data precede any later write and
5608 * that writes of potentially live-out data follow any other earlier write
5609 * are added to the validity and the coincidence constraints.
5610 * The false dependences are still added to the proximity constraints
5611 * for consistency with the case where live range reordering is not allowed.
5612 * The coincidence constraints then consist of flow dependences,
5613 * external false dependences and array order dependences.
5614 * The independences can be filtered out from the first two sets.
5615 * They have already been filtered out from the array order dependences
5616 * on a per array basis in collect_order_dependences.
5617 * There is no need for a per array handling of the other two sets
5618 * as there should be no flow or external false dependence on local
5619 * variables that can be filtered out.
5621 static void compute_schedule(struct gpu_gen
*gen
)
5623 isl_union_set
*domain
;
5624 isl_union_map
*dep_raw
, *dep
;
5625 isl_union_map
*validity
, *proximity
, *coincidence
;
5626 isl_union_map
*sched
;
5627 isl_schedule_constraints
*sc
;
5628 isl_schedule
*schedule
;
5630 domain
= isl_union_set_copy(gen
->prog
->scop
->domain
);
5631 sc
= isl_schedule_constraints_on_domain(isl_union_set_copy(domain
));
5632 sc
= isl_schedule_constraints_set_context(sc
,
5633 isl_set_copy(gen
->prog
->scop
->context
));
5634 if (gen
->options
->live_range_reordering
) {
5635 sc
= isl_schedule_constraints_set_conditional_validity(sc
,
5636 isl_union_map_copy(gen
->prog
->scop
->tagged_dep_flow
),
5637 isl_union_map_copy(gen
->prog
->scop
->tagged_dep_order
));
5638 proximity
= isl_union_map_copy(gen
->prog
->scop
->dep_flow
);
5639 validity
= isl_union_map_copy(proximity
);
5640 validity
= isl_union_map_union(validity
,
5641 isl_union_map_copy(gen
->prog
->scop
->dep_external
));
5642 proximity
= isl_union_map_union(proximity
,
5643 isl_union_map_copy(gen
->prog
->scop
->dep_false
));
5644 coincidence
= isl_union_map_copy(validity
);
5645 coincidence
= isl_union_map_subtract(coincidence
,
5646 isl_union_map_copy(gen
->prog
->scop
->independence
));
5647 coincidence
= isl_union_map_union(coincidence
,
5648 isl_union_map_copy(gen
->prog
->array_order
));
5650 dep_raw
= isl_union_map_copy(gen
->prog
->scop
->dep_flow
);
5651 dep
= isl_union_map_copy(gen
->prog
->scop
->dep_false
);
5652 dep
= isl_union_map_union(dep
, dep_raw
);
5653 dep
= isl_union_map_coalesce(dep
);
5654 proximity
= isl_union_map_copy(dep
);
5655 coincidence
= isl_union_map_copy(dep
);
5658 sc
= isl_schedule_constraints_set_validity(sc
, validity
);
5659 sc
= isl_schedule_constraints_set_coincidence(sc
, coincidence
);
5660 sc
= isl_schedule_constraints_set_proximity(sc
, proximity
);
5662 if (gen
->options
->debug
->dump_schedule_constraints
)
5663 isl_schedule_constraints_dump(sc
);
5664 schedule
= isl_schedule_constraints_compute_schedule(sc
);
5665 if (gen
->options
->debug
->dump_schedule
)
5666 isl_schedule_dump(schedule
);
5668 sched
= select_outer_tilable_band(gen
, schedule
);
5670 isl_union_map_foreach_map(sched
, &set_untiled_len
, &gen
->untiled_len
);
5671 sched
= isl_union_map_intersect_domain(sched
, domain
);
5674 isl_schedule_free(schedule
);
5677 /* Compute the sets of outer array elements that need to be copied in and out.
5679 * In particular, for each array that is possibly written anywhere in
5680 * gen->prog and that is visible outside the corresponding scop,
5681 * we copy out its entire extent.
5683 * Any array elements that is read without first being written needs
5684 * to be copied in. Furthermore, if there are any array elements that
5685 * are copied out, but that may not be written inside gen->prog, then
5686 * they also need to be copied in to ensure that the value after execution
5687 * is the same as the value before execution, at least for those array
5688 * elements that may have their values preserved by the scop.
5689 * In case the array elements are structures, we need to take into
5690 * account that all members of the structures need to be written
5691 * by gen->prog before we can avoid copying the data structure in.
5693 * While computing the set of array elements that are copied out but
5694 * not necessarily written, we intersect both sets with the context.
5695 * This helps in those cases where the arrays are declared with a fixed size,
5696 * while the accesses are parametric and the context assigns a fixed value
5697 * to the parameters.
5699 * If an element from a local array is read without first being written,
5700 * then there is no point in copying it in since it cannot have been
5701 * written prior to the scop. Warn about the uninitialized read instead.
5703 static void compute_copy_in_and_out(struct gpu_gen
*gen
)
5706 isl_union_set
*local
;
5707 isl_union_set
*may_write
, *must_write
;
5708 isl_union_set
*copy_in
, *copy_out
;
5709 isl_union_set
*not_written
;
5710 isl_union_map
*uninitialized
;
5711 isl_union_map
*local_uninitialized
;
5713 must_write
= isl_union_map_range(
5714 isl_union_map_copy(gen
->prog
->must_write
));
5715 must_write
= isl_union_set_intersect_params(must_write
,
5716 isl_set_copy(gen
->prog
->context
));
5717 may_write
= isl_union_map_range(
5718 isl_union_map_copy(gen
->prog
->may_write
));
5719 may_write
= isl_union_set_intersect_params(may_write
,
5720 isl_set_copy(gen
->prog
->context
));
5721 may_write
= isl_union_set_universe(may_write
);
5722 may_write
= isl_union_set_apply(may_write
,
5723 isl_union_map_copy(gen
->prog
->to_outer
));
5724 copy_out
= isl_union_set_empty(isl_union_set_get_space(may_write
));
5725 local
= isl_union_set_copy(copy_out
);
5727 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
5732 space
= isl_space_copy(gen
->prog
->array
[i
].space
);
5734 if (gen
->prog
->array
[i
].local
) {
5737 set
= isl_set_universe(space
);
5738 local
= isl_union_set_add_set(local
, set
);
5742 write_i
= isl_union_set_extract_set(may_write
, space
);
5743 empty
= isl_set_plain_is_empty(write_i
);
5744 isl_set_free(write_i
);
5748 write_i
= isl_set_copy(gen
->prog
->array
[i
].extent
);
5749 copy_out
= isl_union_set_add_set(copy_out
, write_i
);
5751 isl_union_set_free(may_write
);
5753 copy_out
= isl_union_set_intersect_params(copy_out
,
5754 isl_set_copy(gen
->prog
->context
));
5756 gen
->prog
->copy_out
= isl_union_set_copy(copy_out
);
5758 copy_out
= isl_union_set_apply(copy_out
,
5759 isl_union_map_copy(gen
->prog
->to_inner
));
5760 copy_out
= isl_union_set_intersect(copy_out
,
5761 isl_union_set_copy(gen
->prog
->may_persist
));
5762 not_written
= isl_union_set_subtract(copy_out
, must_write
);
5764 uninitialized
= isl_union_map_copy(gen
->prog
->scop
->live_in
);
5765 local_uninitialized
= isl_union_map_copy(uninitialized
);
5767 local
= isl_union_set_apply(local
,
5768 isl_union_map_copy(gen
->prog
->to_inner
));
5769 local_uninitialized
= isl_union_map_intersect_range(local_uninitialized
,
5771 if (!isl_union_map_is_empty(local_uninitialized
)) {
5773 "possibly uninitialized reads (not copied in):\n");
5774 isl_union_map_dump(local_uninitialized
);
5776 uninitialized
= isl_union_map_subtract(uninitialized
,
5777 local_uninitialized
);
5778 copy_in
= isl_union_map_range(uninitialized
);
5779 copy_in
= isl_union_set_union(copy_in
, not_written
);
5780 copy_in
= isl_union_set_apply(copy_in
,
5781 isl_union_map_copy(gen
->prog
->to_outer
));
5783 gen
->prog
->copy_in
= copy_in
;
5786 /* Internal data structure for extract_access.
5787 * "next_access" points to the end of a linked list that is extended
5788 * by extract_access.
5789 * "single_expression" is set if the access expressions belong to
5790 * an expression statement (i.e., a statement without internal control).
5791 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5793 struct ppcg_extract_access_data
{
5794 struct gpu_stmt_access
**next_access
;
5795 int single_expression
;
5796 isl_union_map
*any_to_outer
;
5799 /* Given a tagged access relation to a single array "tagged", extract it
5800 * as a map, taking into account that the input may be empty.
5801 * If the access relation is empty, then it does not contain
5802 * any space information, so we try to recover it from the index
5804 * The space of the index expression is of the form I -> A,
5805 * with I the statement instances and A the array, or [I -> F] -> A,
5806 * with F the filters corresponding to arguments.
5807 * We first drop F, if present, obtaining I -> A.
5808 * Then we construct I -> R, with R the reference tag,
5809 * combine the two into I -> [R -> A] and uncurry to obtain
5810 * the final result [I -> R] -> A.
5811 * Note that the index expression may have a lower dimension
5812 * than that of the array, but this dimension is not used
5813 * if the access relation is empty.
5815 static __isl_give isl_map
*extract_single_tagged_access(
5816 __isl_take isl_union_map
*tagged
, __isl_keep pet_expr
*expr
)
5820 isl_space
*space
, *space2
;
5821 isl_multi_pw_aff
*index
;
5823 empty
= isl_union_map_is_empty(tagged
);
5827 return isl_map_from_union_map(tagged
);
5828 isl_union_map_free(tagged
);
5830 index
= pet_expr_access_get_index(expr
);
5831 space
= isl_multi_pw_aff_get_space(index
);
5832 isl_multi_pw_aff_free(index
);
5833 if (isl_space_domain_is_wrapping(space
))
5834 space
= isl_space_domain_factor_domain(space
);
5835 space2
= isl_space_copy(space
);
5836 space2
= isl_space_from_domain(isl_space_domain(space
));
5837 id
= pet_expr_access_get_ref_id(expr
);
5838 space2
= isl_space_set_tuple_id(space2
, isl_dim_out
, id
);
5839 space
= isl_space_range_product(space2
, space
);
5840 space
= isl_space_uncurry(space
);
5842 return isl_map_empty(space
);
5844 isl_union_map_free(tagged
);
5848 /* Extract a gpu_stmt_access from "expr", append it to the list
5849 * that ends in *data->next_access and update the end of the list.
5850 * If the access expression performs a write, then it is considered
5851 * exact only if it appears in a single expression statement and
5852 * if its may access relation is equal to its must access relation.
5854 * The combined set of may accesses may be union if member accesses
5855 * are involved, but the entire set is derived from a single reference and
5856 * therefore from a single index expression. These accesses therefore
5857 * all map to the same outer array.
5859 static int extract_access(__isl_keep pet_expr
*expr
, void *user
)
5861 struct ppcg_extract_access_data
*data
= user
;
5862 isl_union_map
*tagged
;
5863 struct gpu_stmt_access
*access
;
5864 isl_ctx
*ctx
= pet_expr_get_ctx(expr
);
5865 isl_multi_pw_aff
*index
;
5867 access
= isl_alloc_type(ctx
, struct gpu_stmt_access
);
5869 access
->next
= NULL
;
5870 access
->read
= pet_expr_access_is_read(expr
);
5871 access
->write
= pet_expr_access_is_write(expr
);
5872 tagged
= pet_expr_access_get_tagged_may_read(expr
);
5873 tagged
= isl_union_map_union(tagged
,
5874 pet_expr_access_get_tagged_may_write(expr
));
5875 tagged
= isl_union_map_apply_range(tagged
,
5876 isl_union_map_copy(data
->any_to_outer
));
5877 if (!access
->write
) {
5878 access
->exact_write
= 1;
5879 } else if (!data
->single_expression
) {
5880 access
->exact_write
= 0;
5882 isl_union_map
*must
, *may
;
5883 may
= isl_union_map_copy(tagged
);
5884 may
= isl_union_map_domain_factor_domain(may
);
5885 must
= pet_expr_access_get_must_write(expr
);
5886 access
->exact_write
= isl_union_map_is_equal(must
, may
);
5887 isl_union_map_free(must
);
5888 isl_union_map_free(may
);
5890 index
= pet_expr_access_get_index(expr
);
5891 access
->n_index
= isl_multi_pw_aff_dim(index
, isl_dim_out
);
5892 isl_multi_pw_aff_free(index
);
5893 access
->ref_id
= pet_expr_access_get_ref_id(expr
);
5895 access
->tagged_access
= extract_single_tagged_access(tagged
, expr
);
5896 access
->access
= isl_map_copy(access
->tagged_access
);
5897 access
->access
= isl_map_domain_factor_domain(access
->access
);
5899 *data
->next_access
= access
;
5900 data
->next_access
= &(*data
->next_access
)->next
;
5902 if (!access
->access
)
5908 /* Construct a linked list of gpu_stmt_access objects,
5909 * one for each access expression in the statement body.
5910 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5912 static int pet_stmt_extract_accesses(struct gpu_stmt
*stmt
,
5913 __isl_keep isl_union_map
*any_to_outer
)
5915 struct ppcg_extract_access_data data
;
5917 stmt
->accesses
= NULL
;
5918 data
.next_access
= &stmt
->accesses
;
5919 data
.single_expression
=
5920 pet_tree_get_type(stmt
->stmt
->body
) == pet_tree_expr
;
5921 data
.any_to_outer
= any_to_outer
;
5922 return pet_tree_foreach_access_expr(stmt
->stmt
->body
,
5923 &extract_access
, &data
);
5926 /* Return an array of gpu_stmt representing the statements in "scop".
5928 static struct gpu_stmt
*extract_stmts(isl_ctx
*ctx
, struct ppcg_scop
*scop
,
5929 __isl_keep isl_set
*context
, __isl_keep isl_union_map
*any_to_outer
)
5932 struct gpu_stmt
*stmts
;
5934 stmts
= isl_calloc_array(ctx
, struct gpu_stmt
, scop
->pet
->n_stmt
);
5938 for (i
= 0; i
< scop
->pet
->n_stmt
; ++i
) {
5939 struct gpu_stmt
*s
= &stmts
[i
];
5941 s
->id
= isl_set_get_tuple_id(scop
->pet
->stmts
[i
]->domain
);
5942 s
->stmt
= scop
->pet
->stmts
[i
];
5943 if (pet_stmt_extract_accesses(s
, any_to_outer
) < 0)
5944 return free_stmts(stmts
, i
+ 1);
5950 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
5952 static __isl_give isl_printer
*print_gpu(__isl_take isl_printer
*p
, void *user
)
5954 struct gpu_gen
*gen
= user
;
5956 return gen
->print(p
, gen
->prog
, gen
->tree
, &gen
->types
,
5960 /* Generate CUDA code for "scop" and print it to "p".
5961 * After generating an AST for the transformed scop as explained below,
5962 * we call "gen->print" to print the AST in the desired output format
5965 * If it turns out that it does not make sense to generate GPU code,
5966 * then we generate CPU code instead.
5968 * The GPU code is generated in a context where at least one
5969 * statement instance is executed. The corresponding guard (if any) is printed
5970 * around the entire generated GPU code, except for the declaration
5971 * of the arrays that are visible outside of the scop and that therefore
5972 * cannot be declared inside the body of any possible guard.
5974 * We first compute a schedule that respects the dependences
5975 * of the original program and select the outermost band
5976 * of tilable dimensions that has at least one parallel loop.
5977 * We then have three blocks of dimensions
5981 * The tilable band "B" is first tiled according to "tile" sizes, resulting
5986 * For each iteration of the T loop and for each array, we compute
5987 * the array elements accessed by that iteration, construct a rectangular
5988 * box around it and shift it to the origin. The result is used
5989 * as shared memory for the array.
5991 * We then split off at most 2 parallel loops from the T loops and
5992 * at most 3 parallel loops from the P loops
5996 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
5997 * according to "grid"/"block" sizes.
5999 * H T1T T1P T2 P1T P1P P2 G
6001 * Finally, the T1P and P1P iterators are equated to the block and
6002 * thread dimensions respectively and so are effectively removed.
6003 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
6004 * are run on the GPU.
6006 * Code is generated in three stages. We first generate code for the
6007 * host (the H loops), with iterators h%d. Then, for each leaf node
6008 * of the resulting AST, we generate code for the shared loops (up to
6009 * and including T2), with iterators g%d and after equating the H loops
6010 * to h%d parameters and the T1P loops to the block dimensions.
6011 * Finally, we generate code for the remaining loops in a similar fashion.
6013 static __isl_give isl_printer
*generate(__isl_take isl_printer
*p
,
6014 struct gpu_gen
*gen
, struct ppcg_scop
*scop
,
6015 struct ppcg_options
*options
)
6017 struct gpu_prog
*prog
;
6019 isl_set
*context
, *guard
;
6022 return isl_printer_free(p
);
6024 ctx
= isl_printer_get_ctx(p
);
6025 prog
= gpu_prog_alloc(ctx
, scop
);
6027 return isl_printer_free(p
);
6029 context
= isl_set_copy(prog
->context
);
6030 guard
= isl_union_set_params(isl_union_set_copy(prog
->scop
->domain
));
6031 prog
->context
= isl_set_intersect(prog
->context
, isl_set_copy(guard
));
6034 gen
->any_parallelism
= 0;
6035 compute_schedule(gen
);
6037 if (!gen
->any_parallelism
) {
6038 isl_set_free(context
);
6039 isl_set_free(guard
);
6040 p
= print_cpu(p
, scop
, options
);
6042 compute_copy_in_and_out(gen
);
6043 gen
->tree
= generate_host_code(gen
);
6044 p
= ppcg_print_exposed_declarations(p
, prog
->scop
);
6045 p
= ppcg_print_guarded(p
, guard
, context
, &print_gpu
, gen
);
6046 isl_ast_node_free(gen
->tree
);
6049 isl_union_map_free(gen
->sched
);
6051 gpu_prog_free(prog
);
6056 /* Wrapper around generate for use as a ppcg_transform callback.
6058 static __isl_give isl_printer
*generate_wrap(__isl_take isl_printer
*p
,
6059 struct ppcg_scop
*scop
, void *user
)
6061 struct gpu_gen
*gen
= user
;
6063 return generate(p
, gen
, scop
, gen
->options
);
6066 /* Transform the code in the file called "input" by replacing
6067 * all scops by corresponding GPU code and write the results to "out".
6069 int generate_gpu(isl_ctx
*ctx
, const char *input
, FILE *out
,
6070 struct ppcg_options
*options
,
6071 __isl_give isl_printer
*(*print
)(__isl_take isl_printer
*p
,
6072 struct gpu_prog
*prog
, __isl_keep isl_ast_node
*tree
,
6073 struct gpu_types
*types
, void *user
), void *user
)
6080 gen
.sizes
= extract_sizes_from_str(ctx
, options
->sizes
);
6081 gen
.options
= options
;
6084 gen
.print_user
= user
;
6086 gen
.types
.name
= NULL
;
6088 if (options
->debug
->dump_sizes
) {
6089 isl_space
*space
= isl_space_params_alloc(ctx
, 0);
6090 gen
.used_sizes
= isl_union_map_empty(space
);
6093 r
= ppcg_transform(ctx
, input
, out
, options
, &generate_wrap
, &gen
);
6095 if (options
->debug
->dump_sizes
) {
6096 isl_union_map_dump(gen
.used_sizes
);
6097 isl_union_map_free(gen
.used_sizes
);
6100 isl_union_map_free(gen
.sizes
);
6101 for (i
= 0; i
< gen
.types
.n
; ++i
)
6102 free(gen
.types
.name
[i
]);
6103 free(gen
.types
.name
);
6108 /* Compute the set of inner array elements that may have their values
6109 * preserved by "prog". In particular, collect the array elements of
6110 * arrays that are not local to "prog" and remove those elements that
6111 * are definitely killed or definitely written by "prog".
6113 static __isl_give isl_union_set
*compute_may_persist(struct gpu_prog
*prog
)
6116 isl_union_set
*may_persist
, *killed
;
6117 isl_union_map
*must_kill
;
6119 may_persist
= isl_union_set_empty(isl_set_get_space(prog
->context
));
6120 for (i
= 0; i
< prog
->n_array
; ++i
) {
6123 if (prog
->array
[i
].local
)
6126 extent
= isl_set_copy(prog
->array
[i
].extent
);
6127 may_persist
= isl_union_set_add_set(may_persist
, extent
);
6130 may_persist
= isl_union_set_intersect_params(may_persist
,
6131 isl_set_copy(prog
->context
));
6132 may_persist
= isl_union_set_apply(may_persist
,
6133 isl_union_map_copy(prog
->to_inner
));
6134 must_kill
= isl_union_map_copy(prog
->tagged_must_kill
);
6135 killed
= isl_union_map_range(must_kill
);
6136 must_kill
= isl_union_map_copy(prog
->must_write
);
6137 killed
= isl_union_set_union(killed
, isl_union_map_range(must_kill
));
6139 may_persist
= isl_union_set_subtract(may_persist
, killed
);
6143 struct gpu_prog
*gpu_prog_alloc(isl_ctx
*ctx
, struct ppcg_scop
*scop
)
6145 struct gpu_prog
*prog
;
6152 prog
= isl_calloc_type(ctx
, struct gpu_prog
);
6157 prog
->context
= isl_set_copy(scop
->context
);
6158 prog
->n_stmts
= scop
->pet
->n_stmt
;
6159 prog
->any_to_outer
= pet_scop_compute_outer_to_any(scop
->pet
);
6160 prog
->any_to_outer
= isl_union_map_reverse(prog
->any_to_outer
);
6161 space
= isl_union_map_get_space(prog
->any_to_outer
);
6162 space
= isl_space_set_from_params(space
);
6163 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
6164 space
= isl_space_map_from_set(space
);
6165 id
= isl_map_identity(space
);
6166 prog
->any_to_outer
= isl_union_map_add_map(prog
->any_to_outer
, id
);
6167 prog
->stmts
= extract_stmts(ctx
, scop
,
6168 prog
->context
, prog
->any_to_outer
);
6169 prog
->read
= isl_union_map_copy(scop
->reads
);
6170 prog
->may_write
= isl_union_map_copy(scop
->may_writes
);
6171 prog
->must_write
= isl_union_map_copy(scop
->must_writes
);
6172 prog
->tagged_must_kill
= isl_union_map_copy(scop
->tagged_must_kills
);
6173 prog
->to_inner
= pet_scop_compute_outer_to_inner(scop
->pet
);
6174 prog
->to_outer
= isl_union_map_copy(prog
->to_inner
);
6175 prog
->to_outer
= isl_union_map_reverse(prog
->to_outer
);
6178 return gpu_prog_free(prog
);
6180 if (collect_array_info(prog
) < 0)
6181 return gpu_prog_free(prog
);
6182 prog
->may_persist
= compute_may_persist(prog
);
6187 void *gpu_prog_free(struct gpu_prog
*prog
)
6191 free_array_info(prog
);
6192 free_stmts(prog
->stmts
, prog
->n_stmts
);
6193 isl_union_map_free(prog
->any_to_outer
);
6194 isl_union_map_free(prog
->to_outer
);
6195 isl_union_map_free(prog
->to_inner
);
6196 isl_union_set_free(prog
->copy_in
);
6197 isl_union_set_free(prog
->copy_out
);
6198 isl_union_map_free(prog
->read
);
6199 isl_union_map_free(prog
->may_write
);
6200 isl_union_map_free(prog
->must_write
);
6201 isl_union_map_free(prog
->tagged_must_kill
);
6202 isl_union_map_free(prog
->array_order
);
6203 isl_union_set_free(prog
->may_persist
);
6204 isl_set_free(prog
->context
);