gpu: generate the AST from a single schedule tree
[ppcg.git] / gpu.c
blobbba50ec50375d814b369c4c54b41e9f53fdb4fae
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
19 #include <isl/aff.h>
20 #include <isl/ilp.h>
21 #include <isl/flow.h>
22 #include <isl/schedule.h>
23 #include <isl/schedule_node.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
27 #include "cpu.h"
28 #include "gpu.h"
29 #include "gpu_array_tile.h"
30 #include "gpu_group.h"
31 #include "gpu_tree.h"
32 #include "schedule.h"
33 #include "ppcg_options.h"
34 #include "print.h"
36 struct gpu_array_info;
38 /* Collect all references to the given array and store pointers to them
39 * in array->refs.
41 * If the array contains structures, then there is no need to collect
42 * the references since we will not be computing any reference groups.
44 static void collect_references(struct gpu_prog *prog,
45 struct gpu_array_info *array)
47 int i;
48 int n;
50 if (array->has_compound_element)
51 return;
53 n = 0;
54 for (i = 0; i < prog->n_stmts; ++i) {
55 struct gpu_stmt *stmt = &prog->stmts[i];
56 struct gpu_stmt_access *access;
58 for (access = stmt->accesses; access; access = access->next) {
59 const char *name;
60 name = isl_map_get_tuple_name(access->access,
61 isl_dim_out);
62 if (name && !strcmp(array->name, name))
63 n++;
67 array->n_ref = n;
68 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
69 assert(array->refs);
71 n = 0;
72 for (i = 0; i < prog->n_stmts; ++i) {
73 struct gpu_stmt *stmt = &prog->stmts[i];
74 struct gpu_stmt_access *access;
76 for (access = stmt->accesses; access; access = access->next) {
77 const char *name;
78 name = isl_map_get_tuple_name(access->access,
79 isl_dim_out);
80 if (!name || strcmp(array->name, name))
81 continue;
83 array->refs[n++] = access;
88 /* Compute and return the extent of "array", taking into account the set of
89 * accessed elements.
91 * In particular, the extent in the outer dimension is taken
92 * from "accessed", while the extents in the remaining dimensions
93 * are taken from array->extent.
95 * The extent in the outer dimension cannot be taken from array->extent
96 * because that may be unbounded. Furthermore, even if it is bounded,
97 * it may be larger than the piece of the array that is being accessed.
99 static __isl_give isl_set *compute_extent(struct pet_array *array,
100 __isl_keep isl_set *accessed)
102 int n_index;
103 isl_id *id;
104 isl_set *outer;
105 isl_set *extent;
107 extent = isl_set_copy(array->extent);
109 n_index = isl_set_dim(accessed, isl_dim_set);
110 if (n_index == 0)
111 return extent;
113 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
114 outer = isl_set_copy(accessed);
115 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
116 extent = isl_set_flat_product(outer, extent);
117 id = isl_set_get_tuple_id(accessed);
118 extent = isl_set_set_tuple_id(extent, id);
120 return extent;
123 /* Is the array "array" being extracted a read-only scalar?
125 * That is, is "array" a scalar that is never possibly written to.
126 * An array containing structures is never considered to be a scalar.
128 static int is_read_only_scalar(struct gpu_array_info *array,
129 struct gpu_prog *prog)
131 isl_set *space;
132 isl_union_map *write;
133 int empty;
135 if (array->has_compound_element)
136 return 0;
137 if (array->n_index != 0)
138 return 0;
140 write = isl_union_map_copy(prog->may_write);
141 space = isl_set_universe(isl_space_copy(array->space));
142 write = isl_union_map_intersect_range(write,
143 isl_union_set_from_set(space));
144 empty = isl_union_map_is_empty(write);
145 isl_union_map_free(write);
147 return empty;
150 /* Compute bounds on the host array "pa" based on the corresponding
151 * accessed elements in "arrays"
152 * and collect all references to the array.
153 * Store the results in "info".
155 * If the array is zero-dimensional and does not contain structures,
156 * i.e., if the array is a scalar, we check whether it is read-only.
157 * We also check whether the array is accessed at all.
159 static int extract_array_info(struct gpu_prog *prog,
160 struct gpu_array_info *info, struct pet_array *pa,
161 __isl_keep isl_union_set *arrays)
163 int i, empty;
164 const char *name;
165 int n_index;
166 isl_pw_aff **bounds;
167 isl_set *accessed, *extent;
169 n_index = isl_set_dim(pa->extent, isl_dim_set);
170 name = isl_set_get_tuple_name(pa->extent);
171 bounds = isl_alloc_array(prog->ctx, isl_pw_aff *, n_index);
172 if (!bounds)
173 return -1;
175 info->space = isl_set_get_space(pa->extent);
176 info->name = strdup(name);
177 info->n_index = n_index;
178 info->bound = bounds;
179 info->linearize = prog->scop->options->linearize_device_arrays;
181 info->type = strdup(pa->element_type);
182 info->size = pa->element_size;
183 info->local = pa->declared && !pa->exposed;
184 info->has_compound_element = pa->element_is_record;
185 info->read_only_scalar = is_read_only_scalar(info, prog);
187 accessed = isl_union_set_extract_set(arrays,
188 isl_space_copy(info->space));
189 empty = isl_set_is_empty(accessed);
190 extent = compute_extent(pa, accessed);
191 isl_set_free(accessed);
192 info->extent = extent;
193 if (empty < 0)
194 return -1;
195 info->accessed = !empty;
196 for (i = 0; i < n_index; ++i) {
197 isl_set *dom;
198 isl_local_space *ls;
199 isl_aff *one;
200 isl_pw_aff *bound;
202 dom = isl_set_copy(extent);
203 dom = isl_set_project_out(dom, isl_dim_set, i + 1,
204 n_index - (i + 1));
205 dom = isl_set_project_out(dom, isl_dim_set, 0, i);
206 if (!isl_set_dim_has_upper_bound(dom, isl_dim_set, 0)) {
207 fprintf(stderr, "unable to determine extent of '%s' "
208 "in dimension %d\n", info->name, i);
209 dom = isl_set_free(dom);
211 bound = isl_set_dim_max(dom, 0);
212 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
213 ls = isl_local_space_from_space(isl_set_get_space(dom));
214 one = isl_aff_zero_on_domain(ls);
215 one = isl_aff_add_constant_si(one, 1);
216 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
217 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
219 bounds[i] = bound;
220 if (!isl_pw_aff_is_cst(bound))
221 info->linearize = 1;
224 collect_references(prog, info);
226 return 0;
229 /* Remove independence from the order constraints "order" on array "array".
230 * Since the pairs of iterations in the filter relation of an independence
231 * are guaranteed to be completely independent by the user, there is
232 * no need to ensure that live ranges are ordered along thong pairs.
233 * We make an exception for local variables, though, as the independence
234 * guarantee does not apply to those.
236 * The order constraints are used in two places.
237 * Those on scalars are used in check_scalar_live_ranges to check if
238 * we need to force the scalar to be private. Any non-local scalar
239 * should not be forced scalar if it only appears in independent loops.
240 * Those on non-scalars are added to the coincidence constraints
241 * in compute_schedule because we do not support any array expansion.
242 * Accesses to non-local arrays should not prevent a loop from being
243 * considered coincident so we should indeed remove those constraints
244 * from the order constraints.
246 static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
247 struct gpu_array_info *array, __isl_take isl_union_map *order)
249 int i;
251 for (i = 0; i < prog->scop->pet->n_independence; ++i) {
252 struct pet_independence *pi = prog->scop->pet->independences[i];
253 if (isl_union_set_contains(pi->local, array->space))
254 continue;
256 order = isl_union_map_subtract(order,
257 isl_union_map_copy(pi->filter));
260 return order;
263 /* For each array in "prog", store the (untagged) order dependences
264 * derived from the array in array->dep_order.
265 * In particular, consider all references that access the given array
266 * and take the order dependences that have one of these references
267 * as source. (Since an order dependence relates two references to
268 * the same array, the target of these order dependences will also
269 * be one of these references.)
270 * Additionally, store the union of these array->dep_order relations
271 * for all non-scalar arrays in prog->array_order.
273 void collect_order_dependences(struct gpu_prog *prog)
275 int i;
276 isl_space *space;
277 isl_union_map *accesses;
279 space = isl_union_map_get_space(prog->read);
280 prog->array_order = isl_union_map_empty(space);
282 accesses = isl_union_map_copy(prog->scop->tagged_reads);
283 accesses = isl_union_map_union(accesses,
284 isl_union_map_copy(prog->scop->tagged_may_writes));
285 accesses = isl_union_map_universe(accesses);
286 accesses = isl_union_map_apply_range(accesses,
287 isl_union_map_copy(prog->to_outer));
289 for (i = 0; i < prog->n_array; ++i) {
290 struct gpu_array_info *array = &prog->array[i];
291 isl_set *set;
292 isl_union_set *uset;
293 isl_union_map *order;
295 set = isl_set_universe(isl_space_copy(array->space));
296 uset = isl_union_set_from_set(set);
297 uset = isl_union_map_domain(
298 isl_union_map_intersect_range(isl_union_map_copy(accesses),
299 uset));
300 order = isl_union_map_copy(prog->scop->tagged_dep_order);
301 order = isl_union_map_intersect_domain(order, uset);
302 order = isl_union_map_zip(order);
303 order = isl_union_set_unwrap(isl_union_map_domain(order));
304 order = remove_independences(prog, array, order);
305 array->dep_order = order;
307 if (gpu_array_is_scalar(array) && !array->has_compound_element)
308 continue;
310 prog->array_order = isl_union_map_union(prog->array_order,
311 isl_union_map_copy(array->dep_order));
314 isl_union_map_free(accesses);
317 /* Construct a gpu_array_info for each array referenced by prog->scop and
318 * collect them in prog->array.
320 * The sizes are based on the extents and the set of possibly accessed
321 * elements by "prog".
322 * If there are any member accesses involved, then they are first mapped
323 * to the outer arrays of structs.
325 * If we are allowing live range reordering, then also set
326 * the dep_order field. Otherwise leave it NULL.
328 static int collect_array_info(struct gpu_prog *prog)
330 int i;
331 int r = 0;
332 isl_union_set *arrays;
334 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
335 arrays = isl_union_set_union(arrays,
336 isl_union_map_range(isl_union_map_copy(prog->may_write)));
338 arrays = isl_union_set_apply(arrays,
339 isl_union_map_copy(prog->to_outer));
341 arrays = isl_union_set_coalesce(arrays);
343 prog->n_array = prog->scop->pet->n_array;
344 prog->array = isl_calloc_array(prog->ctx,
345 struct gpu_array_info, prog->n_array);
346 assert(prog->array);
347 for (i = 0; i < prog->scop->pet->n_array; ++i)
348 if (extract_array_info(prog, &prog->array[i],
349 prog->scop->pet->arrays[i], arrays) < 0)
350 r = -1;
352 isl_union_set_free(arrays);
354 if (prog->scop->options->live_range_reordering)
355 collect_order_dependences(prog);
357 return r;
360 static void free_array_info(struct gpu_prog *prog)
362 int i, j;
364 for (i = 0; i < prog->n_array; ++i) {
365 int n_index = prog->array[i].n_index;
366 free(prog->array[i].type);
367 free(prog->array[i].name);
368 for (j = 0; j < n_index; ++j)
369 isl_pw_aff_free(prog->array[i].bound[j]);
370 isl_space_free(prog->array[i].space);
371 isl_set_free(prog->array[i].extent);
372 free(prog->array[i].bound);
373 free(prog->array[i].refs);
374 isl_union_map_free(prog->array[i].dep_order);
376 free(prog->array);
379 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
380 * as an array or through a pointer reference, but as a single data element.
381 * At the moment, scalars are represented as zero-dimensional arrays.
382 * Note that the single data element may be an entire structure.
384 int gpu_array_is_scalar(struct gpu_array_info *array)
386 return array->n_index == 0;
389 /* Is "array" a read-only scalar?
391 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
393 return array->read_only_scalar;
396 /* Return the set of parameter values for which the array has a positive
397 * size in all dimensions.
398 * If the sizes are only valid for some parameter values, then those
399 * constraints are also taken into account.
401 __isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
403 int i;
404 isl_space *space;
405 isl_set *guard;
407 space = isl_space_params(isl_space_copy(array->space));
408 guard = isl_set_universe(space);
410 for (i = 0; i < array->n_index; ++i) {
411 isl_pw_aff *bound;
412 isl_set *guard_i, *zero;
414 bound = isl_pw_aff_copy(array->bound[i]);
415 guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
416 zero = isl_pw_aff_zero_set(bound);
417 guard_i = isl_set_subtract(guard_i, zero);
418 guard = isl_set_intersect(guard, guard_i);
421 return guard;
424 /* Internal data structure for extract_size_of_type.
425 * "type" specifies the name of the space that we want to extract.
426 * "res" is used to store the subset of that space.
428 struct ppcg_extract_size_data {
429 const char *type;
430 isl_set *res;
433 /* This function is called for each set in a union_set.
434 * If the name of the set matches data->type, we store the
435 * set in data->res.
437 static int extract_size_of_type(__isl_take isl_set *size, void *user)
439 struct ppcg_extract_size_data *data = user;
440 const char *name;
442 name = isl_set_get_tuple_name(size);
443 if (name && !strcmp(name, data->type)) {
444 data->res = size;
445 return -1;
448 isl_set_free(size);
449 return 0;
452 /* Given a union map { kernel[i] -> *[...] },
453 * return the range in the space called "type" for the kernel with
454 * sequence number "id".
456 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
457 const char *type, int id)
459 isl_space *space;
460 isl_set *dom;
461 isl_union_set *local_sizes;
462 struct ppcg_extract_size_data data = { type, NULL };
464 if (!sizes)
465 return NULL;
467 space = isl_union_map_get_space(sizes);
468 space = isl_space_set_from_params(space);
469 space = isl_space_add_dims(space, isl_dim_set, 1);
470 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
471 dom = isl_set_universe(space);
472 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
474 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
475 isl_union_map_copy(sizes));
476 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
477 isl_union_set_free(local_sizes);
478 return data.res;
481 /* Given a singleton set, extract the first (at most *len) elements
482 * of the single integer tuple into *sizes and update *len if needed.
484 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
486 int i;
487 int dim;
489 if (!set)
490 return;
492 dim = isl_set_dim(set, isl_dim_set);
493 if (dim < *len)
494 *len = dim;
496 for (i = 0; i < *len; ++i) {
497 isl_val *v;
499 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
500 assert(v);
502 sizes[i] = isl_val_get_num_si(v);
503 isl_val_free(v);
506 isl_set_free(set);
509 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
510 * if the option debug->dump_sizes is set.
512 static void set_used_sizes(struct gpu_gen *gen, const char *type, int id,
513 int *sizes, int len)
515 int i;
516 isl_space *space;
517 isl_map *map;
519 if (!gen->options->debug->dump_sizes)
520 return;
522 space = isl_union_map_get_space(gen->used_sizes);
523 space = isl_space_set_from_params(space);
524 space = isl_space_add_dims(space, isl_dim_set, 1);
525 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
526 space = isl_space_from_domain(space);
527 space = isl_space_add_dims(space, isl_dim_out, len);
528 space = isl_space_set_tuple_name(space, isl_dim_out, type);
530 map = isl_map_universe(space);
531 map = isl_map_fix_si(map, isl_dim_in, 0, id);
532 for (i = 0; i < len; ++i)
533 map = isl_map_fix_si(map, isl_dim_out, i, sizes[i]);
535 gen->used_sizes = isl_union_map_add_map(gen->used_sizes, map);
538 /* Extract user specified "tile" sizes from the "sizes" command line option,
539 * defaulting to option->tile_size in each dimension.
540 * *tile_len contains the maximum number of tile sizes needed.
541 * Update *tile_len to the number of specified tile sizes, if any, and
542 * return a pointer to the tile sizes (or NULL on error).
543 * Add the effectively used sizes to gen->used_sizes.
545 static int *read_tile_sizes(struct gpu_gen *gen, int *tile_len)
547 int n;
548 int *tile_size;
549 isl_set *size;
551 tile_size = isl_alloc_array(gen->ctx, int, *tile_len);
552 if (!tile_size)
553 return NULL;
554 for (n = 0; n < *tile_len; ++n)
555 tile_size[n] = gen->options->tile_size;
557 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
558 read_sizes_from_set(size, tile_size, tile_len);
559 set_used_sizes(gen, "tile", gen->kernel_id, tile_size, *tile_len);
561 return tile_size;
564 /* Extract user specified "block" sizes from the "sizes" command line option,
565 * after filling in some potentially useful defaults.
567 static void read_block_sizes(struct ppcg_kernel *kernel,
568 __isl_keep isl_union_map *sizes)
570 isl_set *size;
572 if (kernel->n_block > 3)
573 kernel->n_block = 3;
574 switch (kernel->n_block) {
575 case 1:
576 kernel->block_dim[0] = 512;
577 break;
578 case 2:
579 kernel->block_dim[0] = 32;
580 kernel->block_dim[1] = 16;
581 break;
582 default:
583 kernel->block_dim[0] = 32;
584 kernel->block_dim[1] = 4;
585 kernel->block_dim[2] = 4;
586 break;
589 size = extract_sizes(sizes, "block", kernel->id);
590 read_sizes_from_set(size, kernel->block_dim, &kernel->n_block);
593 /* Extract user specified "grid" sizes from the "sizes" command line option,
594 * after filling in some potentially useful defaults.
596 static void read_grid_sizes(struct ppcg_kernel *kernel,
597 __isl_keep isl_union_map *sizes)
599 isl_set *size;
601 if (kernel->n_grid > 2)
602 kernel->n_grid = 2;
603 switch (kernel->n_grid) {
604 case 1:
605 kernel->grid_dim[0] = 32768;
606 break;
607 default:
608 kernel->grid_dim[0] = 256;
609 kernel->grid_dim[1] = 256;
610 break;
613 size = extract_sizes(sizes, "grid", kernel->id);
614 read_sizes_from_set(size, kernel->grid_dim, &kernel->n_grid);
617 /* Extract user specified grid and block sizes from the gen->sizes
618 * command line option after filling in some potentially useful defaults.
619 * Store the extracted sizes in "kernel".
620 * Add the effectively used sizes to gen->used_sizes.
622 static void read_grid_and_block_sizes(struct ppcg_kernel *kernel,
623 struct gpu_gen *gen)
625 read_block_sizes(kernel, gen->sizes);
626 read_grid_sizes(kernel, gen->sizes);
627 set_used_sizes(gen, "block", kernel->id,
628 kernel->block_dim, kernel->n_block);
629 set_used_sizes(gen, "grid", kernel->id,
630 kernel->grid_dim, kernel->n_grid);
633 static void *free_stmts(struct gpu_stmt *stmts, int n)
635 int i;
637 if (!stmts)
638 return NULL;
640 for (i = 0; i < n; ++i) {
641 struct gpu_stmt_access *access, *next;
643 for (access = stmts[i].accesses; access; access = next) {
644 next = access->next;
645 isl_id_free(access->ref_id);
646 isl_map_free(access->access);
647 isl_map_free(access->tagged_access);
648 free(access);
651 isl_id_free(stmts[i].id);
653 free(stmts);
655 return NULL;
658 /* Construct a map from a domain of dimensionality "len"
659 * to a domain of dimensionality "len" + "tile_len" that tiles
660 * the "tile_len" coordinates starting at "first".
661 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
662 * "dim" prescribes the parameters.
664 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
665 int first, int tile_len, int *tile_size)
667 int i;
668 isl_basic_map *bmap;
669 isl_constraint *c;
670 isl_local_space *ls;
672 dim = isl_space_add_dims(dim, isl_dim_in, len);
673 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
674 bmap = isl_basic_map_universe(isl_space_copy(dim));
675 ls = isl_local_space_from_space(dim);
677 for (i = 0; i < len - tile_len; ++i) {
678 int j = i < first ? i : i + tile_len;
679 int k = i < first ? i : i + 2 * tile_len;
681 c = isl_equality_alloc(isl_local_space_copy(ls));
682 c = isl_constraint_set_coefficient_si(c, isl_dim_in, j, -1);
683 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
684 bmap = isl_basic_map_add_constraint(bmap, c);
687 for (i = 0; i < tile_len; ++i) {
688 c = isl_equality_alloc(isl_local_space_copy(ls));
689 c = isl_constraint_set_coefficient_si(c, isl_dim_in,
690 first + i, -1);
691 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
692 first + i, tile_size[i]);
693 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
694 first + i + tile_len, 1);
695 bmap = isl_basic_map_add_constraint(bmap, c);
697 c = isl_inequality_alloc(isl_local_space_copy(ls));
698 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
699 first + i + tile_len, 1);
700 bmap = isl_basic_map_add_constraint(bmap, c);
702 c = isl_inequality_alloc(isl_local_space_copy(ls));
703 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
704 first + i + tile_len, -1);
705 c = isl_constraint_set_constant_si(c, tile_size[i] - 1);
706 bmap = isl_basic_map_add_constraint(bmap, c);
709 isl_local_space_free(ls);
711 return isl_map_from_basic_map(bmap);
714 /* Construct a map from a domain of dimensionality "len"
715 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
716 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
717 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
718 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
719 * that are projected out at the end.
720 * "dim" prescribes the parameters.
722 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
723 int first, int wrap_len, int *wrap_size)
725 int i;
726 isl_basic_map *bmap;
727 isl_constraint *c;
728 isl_local_space *ls;
730 dim = isl_space_add_dims(dim, isl_dim_in, len);
731 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
732 bmap = isl_basic_map_universe(isl_space_copy(dim));
733 ls = isl_local_space_from_space(dim);
735 for (i = 0; i < len; ++i) {
736 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
738 c = isl_equality_alloc(isl_local_space_copy(ls));
739 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
740 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
741 bmap = isl_basic_map_add_constraint(bmap, c);
744 for (i = 0; i < wrap_len; ++i) {
745 c = isl_equality_alloc(isl_local_space_copy(ls));
746 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
747 first + i, -1);
748 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
749 first + wrap_len + i, 1);
750 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
751 first + 2 * wrap_len + i, wrap_size[i]);
752 bmap = isl_basic_map_add_constraint(bmap, c);
754 c = isl_inequality_alloc(isl_local_space_copy(ls));
755 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
756 first + wrap_len + i, 1);
757 bmap = isl_basic_map_add_constraint(bmap, c);
759 c = isl_inequality_alloc(isl_local_space_copy(ls));
760 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
761 first + wrap_len + i, -1);
762 c = isl_constraint_set_constant_si(c, wrap_size[i] - 1);
763 bmap = isl_basic_map_add_constraint(bmap, c);
766 isl_local_space_free(ls);
768 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
769 first + 2 * wrap_len, wrap_len);
771 return isl_map_from_basic_map(bmap);
774 /* Tile the B loops over the tile sizes and then tile/wrap
775 * the T1 loops over the blocks.
777 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
778 __isl_take isl_union_map *sched)
780 struct ppcg_kernel *kernel = gen->kernel;
781 isl_space *dim;
782 isl_map *tiling, *block_tiling;
784 dim = isl_union_map_get_space(sched);
785 tiling = tile(isl_space_copy(dim), gen->untiled_len,
786 gen->tile_first, kernel->tile_len, kernel->tile_size);
788 if (gen->options->wrap)
789 block_tiling = wrap(dim, gen->untiled_len + kernel->tile_len,
790 gen->tile_first, kernel->n_grid, kernel->grid_dim);
791 else
792 block_tiling = tile(dim, gen->untiled_len + kernel->tile_len,
793 gen->tile_first, kernel->n_grid, kernel->grid_dim);
795 gen->tiled_len = gen->untiled_len + kernel->tile_len + kernel->n_grid;
797 tiling = isl_map_apply_range(tiling, block_tiling);
799 sched = isl_union_map_apply_range(sched,
800 isl_union_map_from_map(tiling));
802 gen->shared_len = gen->tile_first + kernel->tile_len + kernel->n_grid;
804 return sched;
807 /* Equate the "T1P" iterators in the tiled schedule "sched"
808 * to the block dimensions.
810 static __isl_give isl_union_map *parametrize_tiled_schedule(
811 struct gpu_gen *gen, __isl_take isl_union_map *sched)
813 struct ppcg_kernel *kernel = gen->kernel;
814 isl_space *dim;
815 isl_set *par;
817 dim = isl_union_map_get_space(sched);
818 par = parametrization(dim, gen->tiled_len,
819 gen->tile_first + kernel->n_grid, kernel->block_ids);
820 sched = isl_union_map_intersect_range(sched,
821 isl_union_set_from_set(par));
823 return sched;
826 /* Tile/wrap the P1 loops over the threads.
828 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
829 __isl_take isl_union_map *sched)
831 struct ppcg_kernel *kernel = gen->kernel;
832 isl_space *dim;
833 isl_map *tiling;
834 isl_set *par;
836 dim = isl_union_map_get_space(sched);
838 if (gen->options->wrap)
839 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
840 gen->shared_len, kernel->n_block, kernel->block_dim);
841 else
842 tiling = tile(isl_space_copy(dim), gen->tiled_len,
843 gen->shared_len, kernel->n_block, kernel->block_dim);
844 gen->thread_tiled_len = gen->tiled_len + kernel->n_block;
846 sched = isl_union_map_apply_range(sched,
847 isl_union_map_from_map(tiling));
849 par = parametrization(dim, gen->thread_tiled_len,
850 gen->tile_first + kernel->tile_len +
851 kernel->n_grid + kernel->n_block, kernel->thread_ids);
852 sched = isl_union_map_intersect_range(sched,
853 isl_union_set_from_set(par));
855 gen->shared_len = gen->tile_first + kernel->tile_len + kernel->n_grid;
857 return sched;
860 /* If the user asked for it, scale the shared memory tile loops
861 * (T1T and T2) of "sched" by kernel->tile_size[i].
862 * If we are not performing "wrapping", then additionally scale the T1P
863 * loops by kernel->grid_dim[i].
865 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
866 __isl_take isl_union_map *sched)
868 struct ppcg_kernel *kernel = gen->kernel;
869 int i;
870 isl_space *dim;
871 isl_basic_map *scale;
872 isl_constraint *c;
873 isl_local_space *ls;
875 if (!gen->options->scale_tile_loops)
876 return sched;
878 dim = isl_union_map_get_space(sched);
879 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
880 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
881 scale = isl_basic_map_universe(isl_space_copy(dim));
882 ls = isl_local_space_from_space(dim);
884 for (i = 0; i < gen->tiled_len; ++i) {
885 int f = 1;
887 if (i >= gen->tile_first &&
888 i < gen->tile_first + kernel->n_grid) {
889 f = kernel->tile_size[i - gen->tile_first];
890 if (!gen->options->wrap)
891 f *= kernel->grid_dim[i - gen->tile_first];
892 } else if (i >= gen->tile_first + kernel->n_grid &&
893 i < gen->tile_first + kernel->n_grid +
894 kernel->tile_len) {
895 f = kernel->tile_size[i -
896 (gen->tile_first + kernel->n_grid)];
899 c = isl_equality_alloc(isl_local_space_copy(ls));
900 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
901 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
902 scale = isl_basic_map_add_constraint(scale, c);
905 isl_local_space_free(ls);
907 sched = isl_union_map_apply_range(sched,
908 isl_union_map_from_map(isl_map_from_basic_map(scale)));
910 return sched;
913 /* If we are not performing "wrapping" and if the user asked for it,
914 * scale the thread tile loops (P1T) of "sched" by kernel->block_dim[i].
916 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
917 __isl_take isl_union_map *sched)
919 int i;
920 isl_space *dim;
921 isl_basic_map *scale;
922 isl_constraint *c;
923 isl_local_space *ls;
925 if (gen->options->wrap)
926 return sched;
927 if (!gen->options->scale_tile_loops)
928 return sched;
930 dim = isl_union_map_get_space(sched);
931 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
932 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
933 scale = isl_basic_map_universe(isl_space_copy(dim));
934 ls = isl_local_space_from_space(dim);
936 for (i = 0; i < gen->thread_tiled_len; ++i) {
937 int f = 1;
939 if (i >= gen->shared_len &&
940 i < gen->shared_len + gen->kernel->n_block)
941 f = gen->kernel->block_dim[i - gen->shared_len];
943 c = isl_equality_alloc(isl_local_space_copy(ls));
944 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
945 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
946 scale = isl_basic_map_add_constraint(scale, c);
949 isl_local_space_free(ls);
951 sched = isl_union_map_apply_range(sched,
952 isl_union_map_from_map(isl_map_from_basic_map(scale)));
954 return sched;
957 /* If we are not performing "wrapping" and if the user asked for it,
958 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
960 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
961 __isl_take isl_union_map *sched, int len, int first, int n_tile)
963 int i;
964 isl_space *dim;
965 isl_basic_map *scale;
966 isl_constraint *c;
967 isl_local_space *ls;
969 if (gen->options->wrap)
970 return sched;
971 if (!gen->options->scale_tile_loops)
972 return sched;
974 dim = isl_union_map_get_space(sched);
975 dim = isl_space_add_dims(dim, isl_dim_in, len);
976 dim = isl_space_add_dims(dim, isl_dim_out, len);
977 scale = isl_basic_map_universe(isl_space_copy(dim));
978 ls = isl_local_space_from_space(dim);
980 for (i = 0; i < len; ++i) {
981 int f = 1;
983 if (i >= first && i < first + n_tile)
984 f = gen->kernel->block_dim[i - first];
986 c = isl_equality_alloc(isl_local_space_copy(ls));
987 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
988 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
989 scale = isl_basic_map_add_constraint(scale, c);
992 isl_local_space_free(ls);
994 sched = isl_union_map_apply_range(sched,
995 isl_union_map_from_map(isl_map_from_basic_map(scale)));
997 return sched;
1000 /* Add parameters p[i] with identifiers "ids" to "set",
1001 * with bounds to 0 <= p[i] < size[i].
1003 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1004 int *size, __isl_keep isl_id_list *ids)
1006 int i, len;
1007 unsigned nparam;
1009 len = isl_id_list_n_id(ids);
1010 nparam = isl_set_dim(set, isl_dim_param);
1011 set = isl_set_add_dims(set, isl_dim_param, len);
1013 for (i = 0; i < len; ++i) {
1014 isl_id *id;
1016 id = isl_id_list_get_id(ids, i);
1017 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
1018 set = isl_set_lower_bound_si(set, isl_dim_param, nparam + i, 0);
1019 set = isl_set_upper_bound_si(set, isl_dim_param,
1020 nparam + i, size[i] - 1);
1023 return set;
1026 /* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
1027 * with
1029 * { : 0 <= p[i] < size[i] }
1031 * or an overapproximation.
1033 static __isl_give isl_set *add_bounded_parameters_dynamic(
1034 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1035 __isl_keep isl_id_list *ids)
1037 int i, len;
1038 unsigned nparam;
1039 isl_space *space;
1040 isl_local_space *ls;
1042 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1043 nparam = isl_set_dim(set, isl_dim_param);
1044 set = isl_set_add_dims(set, isl_dim_param, len);
1046 for (i = 0; i < len; ++i) {
1047 isl_id *id;
1049 id = isl_id_list_get_id(ids, i);
1050 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
1053 space = isl_space_params(isl_set_get_space(set));
1054 ls = isl_local_space_from_space(space);
1055 for (i = 0; i < len; ++i) {
1056 isl_pw_aff *param, *size_i, *zero;
1057 isl_set *bound;
1059 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1060 isl_dim_param, nparam + i);
1062 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1063 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1064 bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
1065 set = isl_set_intersect_params(set, bound);
1067 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1068 bound = isl_pw_aff_ge_set(param, zero);
1069 set = isl_set_intersect_params(set, bound);
1071 isl_local_space_free(ls);
1073 return set;
1076 /* Construct a map from an access to group->array to the corresponding
1077 * shared/private memory tile.
1078 * The map is of the form
1080 * { [D[i] -> A[a]] -> T[t] }
1082 * where D represents the initial shared_len dimensions
1083 * of the computed schedule.
1085 static __isl_give isl_map *shift_access(struct gpu_array_ref_group *group)
1087 struct gpu_array_tile *tile;
1088 isl_multi_aff *tiling;
1090 tile = group->private_tile;
1091 if (!tile)
1092 tile = group->shared_tile;
1094 tiling = isl_multi_aff_copy(tile->tiling);
1096 return isl_map_from_multi_aff(tiling);
1099 /* Given a schedule that iterates over all elements in a piece of an array,
1100 * perform tiling/wrapping over the threads.
1102 * In particular, we tile the final iterators so that the final thread
1103 * dimension runs over the final array dimension.
1104 * However, if those final iterators have only a single iteration,
1105 * we try to tile earlier iterators instead.
1107 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1108 __isl_take isl_map *sched)
1110 isl_space *dim;
1111 isl_union_map *usched;
1112 isl_map *tiling;
1113 isl_set *par;
1114 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1115 int n_tile;
1116 int first;
1118 n_tile = gen->kernel->n_block;
1119 if (n_tile > nvar) {
1120 int i;
1121 sched = isl_map_insert_dims(sched,
1122 isl_dim_out, 0, n_tile - nvar);
1123 for (i = 0; i < n_tile - nvar; ++i)
1124 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1125 nvar = n_tile;
1128 first = nvar - n_tile;
1130 for (; first > 0; first --)
1131 if (!map_plain_is_fixed(sched, isl_dim_out, first + n_tile - 1))
1132 break;
1134 dim = isl_map_get_space(sched);
1135 dim = isl_space_params(dim);
1136 if (gen->options->wrap)
1137 tiling = wrap(isl_space_copy(dim), nvar, first,
1138 n_tile, gen->kernel->block_dim);
1139 else
1140 tiling = tile(isl_space_copy(dim), nvar, first,
1141 n_tile, gen->kernel->block_dim);
1142 sched = isl_map_apply_range(sched, tiling);
1144 par = parametrization(dim, nvar + n_tile, first + n_tile,
1145 gen->kernel->thread_ids);
1146 sched = isl_map_intersect_range(sched, par);
1148 usched = isl_union_map_from_map(sched);
1149 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1150 first, n_tile);
1151 sched = isl_map_from_union_map(usched);
1153 return sched;
1156 /* Return the union of all tagged access relations in the group.
1158 static __isl_give isl_union_map *group_tagged_access_relation(
1159 struct gpu_array_ref_group *group)
1161 int i;
1162 isl_union_map *access;
1164 access = isl_union_map_empty(isl_map_get_space(group->access));
1165 for (i = 0; i < group->n_ref; ++i) {
1166 isl_map *map_i;
1168 map_i = isl_map_copy(group->refs[i]->tagged_access);
1169 access = isl_union_map_union(access,
1170 isl_union_map_from_map(map_i));
1173 return access;
1176 /* Return the extent of "array", recomputed from the bounds.
1177 * The recomputed extent may be simpler than the original extent.
1179 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
1181 int i;
1182 isl_id *id;
1183 isl_space *space;
1184 isl_local_space *ls;
1185 isl_set *extent;
1187 id = isl_set_get_tuple_id(array->extent);
1188 space = isl_set_get_space(array->extent);
1189 extent = isl_set_universe(isl_space_copy(space));
1190 ls = isl_local_space_from_space(space);
1191 for (i = 0; i < array->n_index; ++i) {
1192 isl_pw_aff *bound;
1193 isl_aff *aff;
1194 isl_pw_aff *index;
1195 isl_set *lt;
1197 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
1199 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1200 isl_dim_set, i);
1201 index = isl_pw_aff_from_aff(aff);
1202 bound = isl_pw_aff_copy(array->bound[i]);
1203 bound = isl_pw_aff_from_range(bound);
1204 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
1205 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
1206 isl_id_copy(id));
1207 lt = isl_pw_aff_lt_set(index, bound);
1208 extent = isl_set_intersect(extent, lt);
1210 isl_local_space_free(ls);
1211 isl_id_free(id);
1213 return extent;
1216 /* Return a map from the first group->depth dimensions of the computed
1217 * schedule to the array tile in
1218 * global memory that corresponds to the shared memory copy.
1220 * In particular, return a map
1222 * { D[i] -> A[a] }
1224 * with constraints
1226 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
1228 * and
1230 * 0 <= a <= array_size - 1 (2)
1232 * Note that if some stride has been detected (i.e., when
1233 * group->shared_tile->bound[i].shift is set), then a in (1) refers
1234 * to the shifted and scaled down version.
1236 * Constraints (1) are obtained by mapping the size constraints on the
1237 * shared/private memory tile back to the access relation.
1238 * Constraints (2) are obtained from the (recomputed) extent.
1240 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1242 int i;
1243 int n_index = group->array->n_index;
1244 isl_map *tile;
1245 isl_space *space;
1246 isl_set *local;
1247 isl_set *extent;
1249 space = isl_multi_aff_get_space(group->shared_tile->tiling);
1250 space = isl_space_range(space);
1251 local = isl_set_universe(space);
1252 for (i = 0; i < n_index; ++i) {
1253 isl_val *bound;
1255 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
1256 bound = isl_val_copy(group->shared_tile->bound[i].size);
1257 bound = isl_val_sub_ui(bound, 1);
1258 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
1260 local = isl_set_preimage_multi_aff(local,
1261 isl_multi_aff_copy(group->shared_tile->tiling));
1262 tile = isl_set_unwrap(local);
1263 extent = array_extent(group->array);
1264 tile = isl_map_intersect_range(tile, extent);
1266 return tile;
1269 /* Given a mapping "iterator_map" from the AST schedule to a domain,
1270 * return the corresponding mapping from the AST schedule to
1271 * to the outer kernel->shared_schedule_dim dimensions of
1272 * the schedule computed by PPCG for this kernel.
1274 * Note that kernel->shared_schedule_dim is at least as large as
1275 * the largest depth of any array reference group associated to the kernel.
1276 * This is needed as the returned schedule is used to extract a mapping
1277 * to the outer group->depth dimensions in transform_index.
1279 static __isl_give isl_pw_multi_aff *compute_sched_to_shared(
1280 struct ppcg_kernel *kernel, __isl_take isl_pw_multi_aff *iterator_map)
1282 isl_union_pw_multi_aff *upma;
1283 isl_pw_multi_aff *pma;
1284 isl_space *space;
1286 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
1287 space = isl_space_from_domain(space);
1288 space = isl_space_add_dims(space, isl_dim_out,
1289 kernel->shared_schedule_dim);
1291 upma = isl_union_pw_multi_aff_copy(kernel->shared_schedule);
1292 pma = isl_union_pw_multi_aff_extract_pw_multi_aff(upma, space);
1293 isl_union_pw_multi_aff_free(upma);
1295 return isl_pw_multi_aff_pullback_pw_multi_aff(pma, iterator_map);
1298 /* Set unroll[j] if the input dimension j is involved in
1299 * the index expression represented by ma.
1301 static int check_unroll(__isl_take isl_set *set, __isl_take isl_multi_aff *ma,
1302 void *user)
1304 int i, j;
1305 int n_in = isl_multi_aff_dim(ma, isl_dim_in);
1306 int n_out = isl_multi_aff_dim(ma, isl_dim_out);
1307 int *unroll = user;
1309 for (i = 0; i < n_out; ++i) {
1310 isl_aff *aff;
1312 aff = isl_multi_aff_get_aff(ma, i);
1313 for (j = 0; j < n_in; ++j)
1314 if (isl_aff_involves_dims(aff, isl_dim_in, j, 1))
1315 unroll[j] = 1;
1316 isl_aff_free(aff);
1319 isl_set_free(set);
1320 isl_multi_aff_free(ma);
1321 return 0;
1324 /* Given an array pos mapping input dimensions to the corresponding
1325 * output dimension, construct the corresponding map.
1327 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1328 int *pos, int len)
1330 int i;
1331 isl_constraint *c;
1332 isl_basic_map *bmap;
1333 isl_local_space *ls;
1335 dim = isl_space_add_dims(dim, isl_dim_in, len);
1336 dim = isl_space_add_dims(dim, isl_dim_out, len);
1337 bmap = isl_basic_map_universe(isl_space_copy(dim));
1338 ls = isl_local_space_from_space(dim);
1340 for (i = 0; i < len; ++i) {
1341 c = isl_equality_alloc(isl_local_space_copy(ls));
1342 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i,
1343 -1);
1344 c = isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i],
1346 bmap = isl_basic_map_add_constraint(bmap, c);
1348 isl_local_space_free(ls);
1350 return isl_map_from_basic_map(bmap);
1353 /* Find all loops involved in any of the index expressions for any of
1354 * the private accesses that require unrolling, move them innermost
1355 * and then mark them as requiring unrolling by setting gen->first_unroll.
1356 * The loops involved should all be parallel because of the checks
1357 * we performed in check_private_group_access. Moving them innermost
1358 * is therefore a valid transformation.
1360 * Loops up to gen->shared_len are generated before the mapping to
1361 * threads is applied. They should therefore be ignored.
1363 * We compute the hidden equalities of the schedule first
1364 * since we will need them in our calls to isl_pw_multi_aff_from_map
1365 * and because we want to make sure that the same equalities
1366 * are also available to the code generator.
1368 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1369 __isl_take isl_union_map *sched)
1371 struct ppcg_kernel *kernel = gen->kernel;
1372 int i, j;
1373 int unroll[gen->thread_tiled_len];
1374 int perm[gen->thread_tiled_len];
1375 isl_space *dim;
1376 isl_map *permute;
1377 int len = gen->shared_len + kernel->n_parallel + kernel->n_block;
1379 gen->first_unroll = -1;
1381 sched = isl_union_map_detect_equalities(sched);
1382 for (i = 0; i < gen->thread_tiled_len; ++i)
1383 unroll[i] = 0;
1384 for (i = 0; i < kernel->n_array; ++i) {
1385 struct gpu_local_array_info *array = &kernel->array[i];
1387 for (j = 0; j < array->n_group; ++j) {
1388 isl_union_map *access;
1389 isl_map *acc;
1390 isl_pw_multi_aff *pma;
1391 struct gpu_array_ref_group *group = array->groups[j];
1393 if (!array->groups[j]->private_tile)
1394 continue;
1395 if (!gpu_array_ref_group_requires_unroll(group))
1396 continue;
1398 access = gpu_array_ref_group_access_relation(
1399 array->groups[j], 1, 1);
1400 access = isl_union_map_apply_domain(access,
1401 isl_union_map_copy(sched));
1403 acc = isl_map_from_union_map(access);
1404 pma = isl_pw_multi_aff_from_map(acc);
1405 isl_pw_multi_aff_foreach_piece(pma,
1406 &check_unroll, unroll);
1408 isl_pw_multi_aff_free(pma);
1412 for (i = gen->shared_len; i < len; ++i)
1413 if (unroll[i])
1414 break;
1416 if (i >= len)
1417 return sched;
1419 for (i = len; i < gen->thread_tiled_len; ++i)
1420 if (unroll[i])
1421 return sched;
1423 j = 0;
1424 for (i = 0; i < gen->shared_len; ++i)
1425 perm[i] = j++;
1426 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1427 if (!unroll[i])
1428 perm[i] = j++;
1429 gen->first_unroll = j - gen->shared_len;
1430 for (i = gen->shared_len; i < len; ++i)
1431 if (unroll[i])
1432 perm[i] = j++;
1434 dim = isl_union_map_get_space(sched);
1435 permute = permutation(dim, perm, gen->thread_tiled_len);
1436 sched = isl_union_map_apply_range(sched,
1437 isl_union_map_from_map(permute));
1439 return sched;
1442 /* Construct a map with input the shared tile loops and the loops that
1443 * will be wrapped around the threads that relates these later loops
1444 * to the thread indices and then projects them out.
1446 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
1448 struct ppcg_kernel *kernel = gen->kernel;
1449 isl_map *priv;
1450 isl_map *tiling;
1451 isl_map *proj;
1452 isl_set *par;
1453 isl_space *dim;
1455 dim = isl_union_map_get_space(gen->shared_sched);
1457 if (gen->options->wrap)
1458 tiling = wrap(isl_space_copy(dim),
1459 gen->shared_len + kernel->n_block,
1460 gen->shared_len, kernel->n_block, kernel->block_dim);
1461 else
1462 tiling = tile(isl_space_copy(dim),
1463 gen->shared_len + kernel->n_block,
1464 gen->shared_len, kernel->n_block, kernel->block_dim);
1466 priv = tiling;
1468 par = parametrization(dim, gen->shared_len + 2 * kernel->n_block,
1469 gen->tile_first + kernel->tile_len +
1470 kernel->n_grid + kernel->n_block, kernel->thread_ids);
1472 priv = isl_map_align_params(priv, isl_set_get_space(par));
1473 priv = isl_map_intersect_range(priv, par);
1475 dim = isl_map_get_space(priv);
1476 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
1477 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
1478 proj = projection(dim, gen->shared_len + 2 * kernel->n_block,
1479 gen->shared_len);
1481 priv = isl_map_apply_range(priv, proj);
1483 return priv;
1486 /* If max_shared_memory is not set to infinity (-1), then make
1487 * sure that the total amount of shared memory required by the
1488 * array reference groups mapped to shared memory by "kernel"
1489 * is no larger than this maximum.
1491 * We apply a greedy approach and discard (keep in global memory)
1492 * those groups that would result in a total memory size that
1493 * is larger than the maximum.
1495 * This function should be called after any function that may
1496 * affect the decision on whether to place a reference group
1497 * in private, shared or global memory.
1499 static void check_shared_memory_bound(struct ppcg_kernel *kernel)
1501 int i, j;
1502 isl_val *left, *size;
1504 if (kernel->options->max_shared_memory < 0)
1505 return;
1507 left = isl_val_int_from_si(kernel->ctx,
1508 kernel->options->max_shared_memory);
1510 for (i = 0; i < kernel->n_array; ++i) {
1511 struct gpu_local_array_info *local = &kernel->array[i];
1513 for (j = 0; j < local->n_group; ++j) {
1514 struct gpu_array_ref_group *group;
1516 group = local->groups[j];
1517 if (group->private_tile)
1518 continue;
1519 if (!group->shared_tile)
1520 continue;
1522 size = gpu_array_tile_size(group->shared_tile);
1523 size = isl_val_mul_ui(size, local->array->size);
1525 if (isl_val_le(size, left)) {
1526 left = isl_val_sub(left, size);
1527 continue;
1529 isl_val_free(size);
1531 group->shared_tile =
1532 gpu_array_tile_free(group->shared_tile);
1536 isl_val_free(left);
1539 /* Compute a tiling for all the array reference groups in "kernel".
1541 static void compute_group_tilings(struct ppcg_kernel *kernel)
1543 int i, j;
1545 for (i = 0; i < kernel->n_array; ++i) {
1546 struct gpu_local_array_info *array = &kernel->array[i];
1548 for (j = 0; j < array->n_group; ++j)
1549 gpu_array_ref_group_compute_tiling(array->groups[j]);
1553 /* Take tiled_sched, project it onto the shared tile loops and
1554 * the loops that will be wrapped over the threads and
1555 * store the result in gen->shared_sched.
1556 * Also compute a projection that projects out the loops that will be
1557 * wrapped over the threads and store this projection in gen->shared_proj.
1559 static void compute_shared_sched(struct gpu_gen *gen)
1561 isl_space *dim;
1562 isl_map *proj;
1563 isl_set *par;
1564 isl_union_map *sched;
1566 sched = isl_union_map_copy(gen->tiled_sched);
1568 dim = isl_union_map_get_space(sched);
1569 proj = projection(dim, gen->tiled_len,
1570 gen->shared_len + gen->kernel->n_block);
1571 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
1573 dim = isl_union_map_get_space(sched);
1574 proj = projection(dim, gen->shared_len + gen->kernel->n_block,
1575 gen->shared_len);
1577 gen->shared_sched = sched;
1578 gen->shared_proj = isl_union_map_from_map(proj);
1581 /* Compute the size of a bounding box around the origin and "set",
1582 * where "set" is assumed to contain only non-negative elements.
1583 * In particular, compute the maximal value of "set" in each direction
1584 * and add one.
1586 static __isl_give isl_multi_pw_aff *extract_size(__isl_take isl_set *set,
1587 __isl_take isl_set *context)
1589 int i, n;
1590 isl_multi_pw_aff *mpa;
1592 context = isl_set_params(context);
1593 n = isl_set_dim(set, isl_dim_set);
1594 mpa = isl_multi_pw_aff_zero(isl_set_get_space(set));
1595 for (i = 0; i < n; ++i) {
1596 isl_space *space;
1597 isl_aff *one;
1598 isl_pw_aff *bound;
1600 bound = isl_set_dim_max(isl_set_copy(set), i);
1601 bound = isl_pw_aff_coalesce(bound);
1602 bound = isl_pw_aff_gist(bound, isl_set_copy(context));
1604 space = isl_pw_aff_get_domain_space(bound);
1605 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1606 one = isl_aff_add_constant_si(one, 1);
1607 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
1608 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
1610 isl_set_free(set);
1611 isl_set_free(context);
1613 return mpa;
1616 /* Compute the effective grid size as a list of the sizes in each dimension.
1618 * The grid size specified by the user or set by default
1619 * in read_grid_sizes() and applied by the block filter,
1620 * may be too large for the given code in the sense that
1621 * it may contain blocks that don't need to execute anything.
1622 * We therefore don't return this grid size, but instead the
1623 * smallest grid size that ensures that all blocks that actually
1624 * execute code are included in the grid.
1626 * We first extract a description of the grid, i.e., the possible values
1627 * of the block ids, from the domain elements in "domain" and
1628 * kernel->block_filter.
1629 * The block ids are parameters in kernel->block_filter.
1630 * We simply need to change them into set dimensions.
1632 * Then, for each block dimension, we compute the maximal value of the block id
1633 * and add one.
1635 static __isl_give isl_multi_pw_aff *extract_grid_size(
1636 struct ppcg_kernel *kernel, __isl_take isl_union_set *domain)
1638 int i;
1639 isl_set *grid;
1641 domain = isl_union_set_intersect(domain,
1642 isl_union_set_copy(kernel->block_filter));
1643 grid = isl_union_set_params(domain);
1644 grid = isl_set_from_params(grid);
1645 grid = isl_set_add_dims(grid, isl_dim_set, kernel->n_grid);
1646 for (i = 0; i < kernel->n_grid; ++i) {
1647 int pos;
1648 isl_id *id;
1650 id = isl_id_list_get_id(kernel->block_ids, i);
1651 pos = isl_set_find_dim_by_id(grid, isl_dim_param, id);
1652 isl_id_free(id);
1653 assert(pos >= 0);
1654 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
1655 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
1658 return extract_size(grid, isl_set_copy(kernel->context));
1661 /* Compute the size of a fixed bounding box around the origin and "set",
1662 * where "set" is assumed to contain only non-negative elements,
1663 * and store the results in "size".
1664 * In particular, compute the maximal value of "set" in each direction
1665 * and add one.
1667 static void extract_fixed_size(__isl_take isl_set *set, int *size)
1669 int i, n;
1670 isl_local_space *ls;
1671 isl_aff *obj;
1673 n = isl_set_dim(set, isl_dim_set);
1674 ls = isl_local_space_from_space(isl_set_get_space(set));
1675 obj = isl_aff_zero_on_domain(ls);
1676 for (i = 0; i < n; ++i) {
1677 isl_val *max;
1679 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
1680 max = isl_set_max_val(set, obj);
1681 size[i] = isl_val_get_num_si(max) + 1;
1682 isl_val_free(max);
1683 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
1685 isl_aff_free(obj);
1686 isl_set_free(set);
1689 /* Compute the effective block size as a list of the sizes in each dimension
1690 * and store the sizes in kernel->block_dim.
1692 * The block size specified by the user or set by default
1693 * in read_block_sizes() and applied by the thread filter,
1694 * may be too large for the given code in the sense that
1695 * it may contain threads that don't need to execute anything.
1696 * We therefore update this block size in kernel->block_dim
1697 * to the smallest block size that ensures that all threads
1698 * that actually execute code are included in the block.
1700 * The possible values of the thread ids is obtained from
1701 * the domain elements "domain" and kernel->thread_filter.
1702 * The current implementation eliminates all parameters, ensuring
1703 * that the size is a fixed constant in each dimension.
1704 * In principle we could also compute parametric sizes.
1705 * We would have to make sure to project out all b%d and t%d parameters,
1706 * however.
1708 static void extract_block_size(struct ppcg_kernel *kernel,
1709 __isl_take isl_union_set *domain)
1711 int i;
1712 int nparam;
1713 isl_set *block;
1715 domain = isl_union_set_intersect(domain,
1716 isl_union_set_copy(kernel->thread_filter));
1717 block = isl_union_set_params(domain);
1718 block = isl_set_from_params(block);
1719 block = isl_set_add_dims(block, isl_dim_set, kernel->n_block);
1720 for (i = 0; i < kernel->n_block; ++i) {
1721 int pos;
1722 isl_id *id;
1724 id = isl_id_list_get_id(kernel->thread_ids, i);
1725 pos = isl_set_find_dim_by_id(block, isl_dim_param, id);
1726 isl_id_free(id);
1727 assert(pos >= 0);
1728 block = isl_set_equate(block, isl_dim_param, pos,
1729 isl_dim_set, i);
1731 nparam = isl_set_dim(block, isl_dim_param);
1732 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
1734 extract_fixed_size(block, kernel->block_dim);
1737 struct ppcg_kernel *ppcg_kernel_free(struct ppcg_kernel *kernel)
1739 int i, j;
1741 if (!kernel)
1742 return NULL;
1744 isl_id_list_free(kernel->block_ids);
1745 isl_id_list_free(kernel->thread_ids);
1746 isl_multi_pw_aff_free(kernel->grid_size);
1747 isl_set_free(kernel->context);
1748 isl_union_set_free(kernel->core);
1749 isl_union_set_free(kernel->arrays);
1750 isl_space_free(kernel->space);
1751 isl_ast_node_free(kernel->tree);
1752 isl_union_set_free(kernel->block_filter);
1753 isl_union_set_free(kernel->thread_filter);
1754 isl_union_pw_multi_aff_free(kernel->shared_schedule);
1756 for (i = 0; i < kernel->n_array; ++i) {
1757 struct gpu_local_array_info *array = &kernel->array[i];
1759 for (j = 0; j < array->n_group; ++j)
1760 gpu_array_ref_group_free(array->groups[j]);
1761 free(array->groups);
1763 isl_pw_aff_list_free(array->bound);
1765 free(kernel->array);
1767 for (i = 0; i < kernel->n_var; ++i) {
1768 free(kernel->var[i].name);
1769 isl_vec_free(kernel->var[i].size);
1771 free(kernel->var);
1772 free(kernel->tile_size);
1774 free(kernel);
1776 return NULL;
1779 /* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
1781 static void ppcg_kernel_free_wrap(void *user)
1783 struct ppcg_kernel *kernel = user;
1785 ppcg_kernel_free(kernel);
1788 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
1789 struct ppcg_kernel_var *var)
1791 int j;
1792 struct gpu_array_tile *tile;
1793 isl_printer *p;
1794 char *name;
1796 var->array = group->array;
1798 tile = group->private_tile;
1799 var->type = ppcg_access_private;
1800 if (!tile) {
1801 tile = group->shared_tile;
1802 var->type = ppcg_access_shared;
1805 p = isl_printer_to_str(ctx);
1806 p = gpu_array_ref_group_print_name(group, p);
1807 var->name = isl_printer_get_str(p);
1808 isl_printer_free(p);
1810 var->size = isl_vec_alloc(ctx, group->array->n_index);
1812 for (j = 0; j < group->array->n_index; ++j)
1813 var->size = isl_vec_set_element_val(var->size, j,
1814 isl_val_copy(tile->bound[j].size));
1817 static void create_kernel_vars(struct ppcg_kernel *kernel)
1819 int i, j, n;
1821 n = 0;
1822 for (i = 0; i < kernel->n_array; ++i) {
1823 struct gpu_local_array_info *array = &kernel->array[i];
1825 for (j = 0; j < array->n_group; ++j) {
1826 struct gpu_array_ref_group *group = array->groups[j];
1827 if (group->private_tile || group->shared_tile)
1828 ++n;
1832 kernel->n_var = n;
1833 kernel->var = isl_calloc_array(kernel->ctx, struct ppcg_kernel_var, n);
1834 assert(kernel->var);
1836 n = 0;
1837 for (i = 0; i < kernel->n_array; ++i) {
1838 struct gpu_local_array_info *array = &kernel->array[i];
1840 for (j = 0; j < array->n_group; ++j) {
1841 struct gpu_array_ref_group *group = array->groups[j];
1842 if (!group->private_tile && !group->shared_tile)
1843 continue;
1844 create_kernel_var(kernel->ctx, group, &kernel->var[n]);
1845 ++n;
1850 /* Replace "pa" by the zero function defined over the universe domain
1851 * in the space of "pa".
1853 static __isl_give isl_pw_aff *set_universally_zero(__isl_take isl_pw_aff *pa)
1855 isl_space *space;
1856 isl_aff *zero;
1858 space = isl_space_domain(isl_pw_aff_get_space(pa));
1859 isl_pw_aff_free(pa);
1860 zero = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1862 return isl_pw_aff_from_aff(zero);
1865 /* The sizes of the arrays on the host that have been computed by
1866 * extract_array_info may depend on the parameters. Use the extra
1867 * constraints on the parameters that are valid at "host_domain"
1868 * to simplify these expressions and store the results in kernel->array.
1870 * We only need these localized bounds for arrays that are accessed
1871 * by the current kernel. If we have found at least one reference group
1872 * then the array is accessed by the kernel. If the array has compound
1873 * elements then we skipped the construction of array reference groups.
1875 * The resulting sizes may be functions that are nowhere defined
1876 * in case the access function cannot possibly access anything inside
1877 * the kernel for some reason. If so, they are replaced by the zero
1878 * function. Since the access function cannot actually access anything,
1879 * there is no harm in printing the array sizes as zero.
1881 static void localize_bounds(struct ppcg_kernel *kernel,
1882 __isl_keep isl_set *host_domain)
1884 int i, j;
1885 isl_set *context;
1887 context = isl_set_copy(host_domain);
1888 context = isl_set_params(context);
1890 for (i = 0; i < kernel->n_array; ++i) {
1891 struct gpu_local_array_info *local = &kernel->array[i];
1892 isl_pw_aff_list *bound;
1893 int n_index;
1895 if (local->n_group == 0 && !local->array->has_compound_element)
1896 continue;
1898 n_index = local->array->n_index;
1899 bound = isl_pw_aff_list_alloc(kernel->ctx, n_index);
1901 for (j = 0; j < n_index; ++j) {
1902 isl_pw_aff *pwaff;
1903 int empty;
1905 pwaff = isl_pw_aff_copy(local->array->bound[j]);
1906 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
1907 empty = isl_pw_aff_is_empty(pwaff);
1908 if (empty < 0)
1909 pwaff = isl_pw_aff_free(pwaff);
1910 else if (empty)
1911 pwaff = set_universally_zero(pwaff);
1912 bound = isl_pw_aff_list_add(bound, pwaff);
1915 local->n_index = n_index;
1916 local->bound = bound;
1918 isl_set_free(context);
1921 /* Create the array of gpu_local_array_info structures "array"
1922 * inside "kernel". The number of elements in this array is
1923 * the same as the number of arrays in "prog".
1924 * Initialize the "array" field of each local array to point
1925 * to the corresponding array in "prog".
1927 static struct ppcg_kernel *ppcg_kernel_create_local_arrays(
1928 struct ppcg_kernel *kernel, struct gpu_prog *prog)
1930 int i;
1931 isl_ctx *ctx;
1933 ctx = isl_set_get_ctx(prog->context);
1934 kernel->array = isl_calloc_array(ctx,
1935 struct gpu_local_array_info, prog->n_array);
1936 if (!kernel->array)
1937 return ppcg_kernel_free(kernel);
1938 kernel->n_array = prog->n_array;
1940 for (i = 0; i < prog->n_array; ++i)
1941 kernel->array[i].array = &prog->array[i];
1943 return kernel;
1946 /* Find the element in gen->stmt that has the given "id".
1947 * Return NULL if no such gpu_stmt can be found.
1949 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
1951 int i;
1953 for (i = 0; i < prog->n_stmts; ++i) {
1954 if (id == prog->stmts[i].id)
1955 break;
1958 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
1961 void ppcg_kernel_stmt_free(void *user)
1963 int i;
1964 struct ppcg_kernel_stmt *stmt = user;
1966 if (!stmt)
1967 return;
1969 switch (stmt->type) {
1970 case ppcg_kernel_copy:
1971 isl_ast_expr_free(stmt->u.c.index);
1972 isl_ast_expr_free(stmt->u.c.local_index);
1973 break;
1974 case ppcg_kernel_domain:
1975 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
1976 break;
1977 case ppcg_kernel_sync:
1978 break;
1981 free(stmt);
1984 /* Return the gpu_stmt_access in the list "accesses" that corresponds
1985 * to "ref_id".
1987 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
1988 __isl_keep isl_id *ref_id)
1990 struct gpu_stmt_access *access;
1992 for (access = accesses; access; access = access->next)
1993 if (access->ref_id == ref_id)
1994 return access;
1996 return NULL;
1999 /* Return the index of the array called "name" in the list of arrays.
2001 static int find_array_index(struct ppcg_kernel *kernel, const char *name)
2003 int i;
2005 for (i = 0; i < kernel->n_array; ++i)
2006 if (!strcmp(name, kernel->array[i].array->name))
2007 return i;
2009 return -1;
2012 /* Internal data structure for the index and AST expression transformation
2013 * callbacks for pet_stmt_build_ast_exprs.
2015 * "accesses" is the list of gpu_stmt_access in the statement.
2016 * "iterator_map" expresses the statement iterators in terms of
2017 * the AST loop iterators.
2018 * "sched2shared" expresses the outer shared_schedule_dim dimensions of
2019 * the kernel schedule in terms of the AST loop iterators.
2021 * The following fields are set in transform_index and used in transform_expr.
2022 * "array" is the array that is being accessed.
2023 * "global" is set if the global array is accessed (rather than
2024 * shared/private memory).
2025 * "local_array" refers to information on the array specialized
2026 * to the current kernel.
2028 struct ppcg_transform_data {
2029 struct gpu_gen *gen;
2030 struct gpu_stmt_access *accesses;
2031 isl_pw_multi_aff *iterator_map;
2032 isl_pw_multi_aff *sched2shared;
2034 struct gpu_array_info *array;
2035 int global;
2036 struct gpu_local_array_info *local_array;
2039 /* Return the name of the outer array (of structs) accessed by "access".
2041 static const char *get_outer_array_name(__isl_keep isl_map *access)
2043 isl_space *space;
2044 const char *name;
2046 space = isl_space_range(isl_map_get_space(access));
2047 while (space && isl_space_is_wrapping(space))
2048 space = isl_space_domain(isl_space_unwrap(space));
2049 name = isl_space_get_tuple_name(space, isl_dim_set);
2050 isl_space_free(space);
2052 return name;
2055 /* Return a pointer to the gpu_array_ref_group in "local"
2056 * that contains the reference "access".
2057 * Return NULL if no such group can be found.
2059 static struct gpu_array_ref_group *find_ref_group(
2060 struct gpu_local_array_info *local, struct gpu_stmt_access *access)
2062 int i, j;
2064 for (i = 0; i < local->n_group; ++i) {
2065 struct gpu_array_ref_group *group = local->groups[i];
2067 for (j = 0; j < group->n_ref; ++j)
2068 if (group->refs[j] == access)
2069 return group;
2072 return NULL;
2075 /* Index transformation callback for pet_stmt_build_ast_exprs.
2077 * "index" expresses the array indices in terms of statement iterators
2079 * We first reformulate "index" in terms of the AST loop iterators.
2080 * Then we check if we are accessing the global array or
2081 * a shared/private copy. In the former case, we simply return
2082 * the updated index. If "index" is an affine expression rather
2083 * than an array access, then we also return the updated index here.
2085 * If no reference groups have been computed for the array,
2086 * then we can only be accessing the global array.
2088 * Otherwise, we apply the tiling to the index.
2089 * This tiling is of the form
2091 * [D -> A] -> T
2093 * where D corresponds to the outer group->depth dimensions of
2094 * the kernel schedule.
2095 * The index is of the form
2097 * L -> A
2099 * We update the tiling to refer to the AST loop iterators
2101 * [L -> A] -> T
2103 * and modify index to keep track of those iterators
2105 * L -> [L -> A]
2107 * Combining these two yields a tiled index expression in terms
2108 * of the AST loop iterators
2110 * L -> T
2112 static __isl_give isl_multi_pw_aff *transform_index(
2113 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
2114 void *user)
2116 struct ppcg_transform_data *data = user;
2117 struct gpu_stmt_access *access;
2118 struct gpu_array_ref_group *group;
2119 struct gpu_array_tile *tile;
2120 isl_pw_multi_aff *iterator_map;
2121 int i;
2122 int dim;
2123 const char *name;
2124 isl_space *space;
2125 isl_multi_pw_aff *tiling;
2126 isl_pw_multi_aff *pma;
2127 isl_multi_pw_aff *mpa;
2128 isl_pw_multi_aff *sched2depth;
2130 data->array = NULL;
2132 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
2133 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
2135 access = find_access(data->accesses, ref_id);
2136 if (!access)
2137 return index;
2138 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
2139 return index;
2141 name = get_outer_array_name(access->access);
2142 i = find_array_index(data->gen->kernel, name);
2143 if (i < 0)
2144 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
2145 "cannot find array",
2146 return isl_multi_pw_aff_free(index));
2147 data->array = &data->gen->prog->array[i];
2148 data->local_array = &data->gen->kernel->array[i];
2150 group = find_ref_group(data->local_array, access);
2151 if (!group) {
2152 data->global = 1;
2153 return index;
2156 tile = group->private_tile;
2157 if (!tile)
2158 tile = group->shared_tile;
2159 data->global = !tile;
2160 if (!tile)
2161 return index;
2163 space = isl_space_range(isl_multi_pw_aff_get_space(index));
2164 space = isl_space_map_from_set(space);
2165 pma = isl_pw_multi_aff_identity(space);
2166 sched2depth = isl_pw_multi_aff_copy(data->sched2shared);
2167 dim = isl_pw_multi_aff_dim(sched2depth, isl_dim_out);
2168 sched2depth = isl_pw_multi_aff_drop_dims(sched2depth, isl_dim_out,
2169 group->depth, dim - group->depth);
2170 pma = isl_pw_multi_aff_product(sched2depth, pma);
2171 tiling = isl_multi_pw_aff_from_multi_aff(
2172 isl_multi_aff_copy(tile->tiling));
2173 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
2175 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
2176 space = isl_space_map_from_set(space);
2177 mpa = isl_multi_pw_aff_identity(space);
2178 index = isl_multi_pw_aff_range_product(mpa, index);
2179 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
2181 return index;
2184 /* Dereference "expr" by adding an index [0].
2185 * The original "expr" is assumed not to have any indices.
2187 * If "expr" is a member access, then the dereferencing needs
2188 * to be applied to the structure argument of this member access.
2190 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
2192 isl_ctx *ctx;
2193 isl_ast_expr *arg0, *res;
2194 isl_ast_expr_list *list;
2196 arg0 = isl_ast_expr_get_op_arg(expr, 0);
2197 if (!arg0)
2198 return isl_ast_expr_free(expr);
2199 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
2200 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
2201 isl_ast_expr *arg;
2203 arg = isl_ast_expr_get_op_arg(arg0, 0);
2204 arg = dereference(arg);
2205 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
2206 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
2208 return expr;
2210 isl_ast_expr_free(arg0);
2212 ctx = isl_ast_expr_get_ctx(expr);
2213 res = isl_ast_expr_from_val(isl_val_zero(ctx));
2214 list = isl_ast_expr_list_from_ast_expr(res);
2215 res = isl_ast_expr_get_op_arg(expr, 0);
2216 res = isl_ast_expr_access(res, list);
2217 isl_ast_expr_free(expr);
2219 return res;
2222 /* Linearize the index expression "expr" based on the array bounds
2223 * of "array".
2225 * That is, transform expression
2227 * A[i_0][i_1]...[i_n]
2229 * to
2231 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
2233 * where b_0, b_1, ..., b_n are the bounds on the array.
2235 * If the base of "expr" is a member access, then the linearization needs
2236 * to be applied to the structure argument of this member access.
2238 * In the base case, if "expr" has no arguments (other than the name of
2239 * the array), then we are passing an entire array to a function.
2240 * In this case, there is nothing to linearize.
2241 * Note that at this point an expression with no arguments can
2242 * only be an entire array because the scalar case and
2243 * the case of single struct are handled by the caller.
2245 * If the number of specified index expressions in "expr"
2246 * is smaller than the dimension of the accessed array,
2247 * then the missing i_j also do not appear in the linearized expression.
2248 * Furthermore, since such an expression does not refer to a single
2249 * element while the default linearized expression would refer to
2250 * a single element, we return the expression
2252 * A + (..((i_0 * b_1 + i_1) ... ) * b_n]
2254 * instead. Note that because of the special case handling above,
2255 * we can assume here that here that there is at least one index expression.
2257 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
2258 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
2260 int i, n;
2261 isl_ctx *ctx;
2262 isl_set *context;
2263 isl_ast_expr *arg0;
2264 isl_ast_expr *res;
2265 isl_ast_expr_list *list;
2266 isl_ast_build *build;
2268 arg0 = isl_ast_expr_get_op_arg(expr, 0);
2269 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
2270 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
2271 isl_ast_expr *arg;
2273 arg = isl_ast_expr_get_op_arg(arg0, 0);
2274 arg = gpu_local_array_info_linearize_index(array, arg);
2275 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
2276 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
2278 return expr;
2280 isl_ast_expr_free(arg0);
2282 if (isl_ast_expr_get_op_n_arg(expr) == 1)
2283 return expr;
2285 ctx = isl_ast_expr_get_ctx(expr);
2286 context = isl_set_universe(isl_space_params_alloc(ctx, 0));
2287 build = isl_ast_build_from_context(context);
2289 n = isl_ast_expr_get_op_n_arg(expr);
2290 res = isl_ast_expr_get_op_arg(expr, 1);
2291 for (i = 1; i < array->n_index; ++i) {
2292 isl_pw_aff *bound_i;
2293 isl_ast_expr *expr_i;
2295 bound_i = isl_pw_aff_list_get_pw_aff(array->bound, i);
2296 expr_i = isl_ast_build_expr_from_pw_aff(build, bound_i);
2297 res = isl_ast_expr_mul(res, expr_i);
2299 if (i + 1 >= n)
2300 continue;
2301 expr_i = isl_ast_expr_get_op_arg(expr, i + 1);
2302 res = isl_ast_expr_add(res, expr_i);
2305 isl_ast_build_free(build);
2307 if (1 + array->n_index > n) {
2308 res = isl_ast_expr_add(isl_ast_expr_get_op_arg(expr, 0), res);
2309 } else {
2310 list = isl_ast_expr_list_from_ast_expr(res);
2311 res = isl_ast_expr_get_op_arg(expr, 0);
2312 res = isl_ast_expr_access(res, list);
2315 isl_ast_expr_free(expr);
2317 return res;
2320 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
2322 * If the AST expression refers to an array that is not accessed
2323 * at all, then this means the value of the expression is not used,
2324 * so we might as well print zero (NULL pointer) instead.
2326 * If the AST expression refers to a global scalar that is not
2327 * a read-only scalar, then its address was passed to the kernel and
2328 * we need to dereference it.
2330 * If the AST expression refers to an access to a global array,
2331 * then we linearize the access exploiting the bounds in data->local_array.
2333 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
2334 __isl_keep isl_id *id, void *user)
2336 struct ppcg_transform_data *data = user;
2338 if (!data->array)
2339 return expr;
2340 if (!data->array->accessed) {
2341 isl_ctx *ctx;
2343 ctx = isl_ast_expr_get_ctx(expr);
2344 isl_ast_expr_free(expr);
2345 return isl_ast_expr_from_val(isl_val_zero(ctx));
2347 if (gpu_array_is_read_only_scalar(data->array))
2348 return expr;
2349 if (!data->global)
2350 return expr;
2351 if (data->array->n_index == 0)
2352 return dereference(expr);
2353 if (!data->array->linearize)
2354 return expr;
2356 return gpu_local_array_info_linearize_index(data->local_array, expr);
2359 /* This function is called for each instance of a user statement
2360 * in the kernel, identified by "gpu_stmt".
2362 * We attach a struct ppcg_kernel_stmt to the "node", containing
2363 * a computed AST expression for each access.
2364 * These AST expressions are computed from iterator_map,
2365 * which expresses the domain
2366 * elements in terms of the generated loops, and sched2shared,
2367 * which expresses the outer shared_schedule_dim dimensions of
2368 * the kernel schedule computed by PPCG in terms of the generated loops.
2370 static __isl_give isl_ast_node *create_domain_leaf(struct gpu_gen *gen,
2371 __isl_take isl_ast_node *node, __isl_keep isl_ast_build *build,
2372 struct gpu_stmt *gpu_stmt)
2374 struct ppcg_transform_data data;
2375 struct ppcg_kernel_stmt *stmt;
2376 isl_id *id;
2377 isl_pw_multi_aff *sched2shared;
2378 isl_map *map;
2379 isl_pw_multi_aff *iterator_map;
2380 isl_union_map *schedule;
2382 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
2383 if (!stmt)
2384 return isl_ast_node_free(node);
2386 schedule = isl_ast_build_get_schedule(build);
2387 map = isl_map_reverse(isl_map_from_union_map(schedule));
2388 iterator_map = isl_pw_multi_aff_from_map(map);
2389 sched2shared = compute_sched_to_shared(gen->kernel,
2390 isl_pw_multi_aff_copy(iterator_map));
2392 stmt->type = ppcg_kernel_domain;
2393 stmt->u.d.stmt = gpu_stmt;
2395 data.gen = gen;
2396 data.accesses = stmt->u.d.stmt->accesses;
2397 data.iterator_map = iterator_map;
2398 data.sched2shared = sched2shared;
2399 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
2400 build, &transform_index, &data,
2401 &transform_expr, &data);
2403 isl_pw_multi_aff_free(iterator_map);
2404 isl_pw_multi_aff_free(sched2shared);
2406 id = isl_id_alloc(gen->ctx, NULL, stmt);
2407 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
2408 return isl_ast_node_set_annotation(node, id);
2411 /* This function is called for each statement node in the AST
2412 * for copying to or from shared/private memory.
2413 * Attach a pointer to a ppcg_kernel_stmt representing the copy
2414 * statement to the node.
2415 * The statement name is "read" or "write", depending on whether we are
2416 * reading from global memory or writing to global memory.
2418 * The schedule is of the form
2420 * type[D -> A] -> L
2422 * where D corresponds to the outer group->depth dimensions of
2423 * the kernel schedule, A to the global array and L to the outer
2424 * generated AST schedule.
2425 * We compute the inverse and strip off the type, resulting in
2427 * L -> [D -> A]
2429 * We combine this mapping with on the one hand the projection
2431 * [D -> A] -> A
2433 * and on the other hand the group tiling
2435 * [D -> A] -> T
2437 * resulting in
2439 * L -> A and L -> T
2441 * and store the corresponding expressions in stmt->index and stmt->local_index,
2442 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
2444 static __isl_give isl_ast_node *create_access_leaf(struct gpu_gen *gen,
2445 struct gpu_array_ref_group *group, __isl_take isl_ast_node *node,
2446 __isl_keep isl_ast_build *build)
2448 struct ppcg_kernel_stmt *stmt;
2449 struct gpu_array_tile *tile;
2450 isl_id *id;
2451 isl_ast_expr *expr;
2452 isl_space *space;
2453 isl_map *access;
2454 isl_pw_multi_aff *pma, *pma2;
2455 const char *type;
2457 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
2458 if (!stmt)
2459 return isl_ast_node_free(node);
2461 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
2462 type = isl_map_get_tuple_name(access, isl_dim_in);
2463 stmt->u.c.read = !strcmp(type, "read");
2464 access = isl_map_reverse(access);
2465 pma = isl_pw_multi_aff_from_map(access);
2466 pma = isl_pw_multi_aff_reset_tuple_id(pma, isl_dim_out);
2468 space = isl_space_range(isl_pw_multi_aff_get_space(pma));
2469 space = isl_space_unwrap(space);
2470 pma2 = isl_pw_multi_aff_range_map(space);
2471 pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2,
2472 isl_pw_multi_aff_copy(pma));
2473 expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
2474 stmt->u.c.index = expr;
2476 tile = gpu_array_ref_group_tile(group);
2477 pma2 = isl_pw_multi_aff_from_multi_aff(
2478 isl_multi_aff_copy(tile->tiling));
2479 pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2, pma);
2480 expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
2481 stmt->u.c.local_index = expr;
2483 stmt->u.c.array = group->array;
2484 stmt->u.c.local_array = group->local_array;
2485 stmt->type = ppcg_kernel_copy;
2487 id = isl_id_alloc(gen->ctx, NULL, stmt);
2488 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
2489 return isl_ast_node_set_annotation(node, id);
2492 /* Create a synchronization ppcg_kernel_stmt and
2493 * attach it to the node "node" representing the synchronization.
2495 static __isl_give isl_ast_node *create_sync_leaf(
2496 struct gpu_gen *gen, __isl_take isl_ast_node *node,
2497 __isl_keep isl_ast_build *build)
2499 struct ppcg_kernel_stmt *stmt;
2500 isl_id *id;
2502 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
2503 if (!stmt)
2504 return isl_ast_node_free(node);
2506 stmt->type = ppcg_kernel_sync;
2507 id = isl_id_alloc(gen->ctx, NULL, stmt);
2508 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
2509 return isl_ast_node_set_annotation(node, id);
2512 /* This function is called for each instance of a user statement
2513 * in the kernel. This may be one of the original user statements
2514 * or a statement introduced by PPCG.
2516 * We assume that the original user statements only have a name
2517 * and no user pointer. The statements introduced by PPCG
2518 * on the other hand all have a user pointer.
2520 * If the user statement is one of the original user statements
2521 * (one with no user pointer), then we call create_domain_leaf. Otherwise,
2522 * we check if it is a copy or synchronization statement and
2523 * call the appropriate functions.
2525 static __isl_give isl_ast_node *at_domain(__isl_take isl_ast_node *node,
2526 __isl_keep isl_ast_build *build, void *user)
2528 struct gpu_gen *gen = (struct gpu_gen *) user;
2529 isl_ast_expr *expr, *arg;
2530 isl_id *id;
2531 int is_sync;
2532 const char *name;
2533 void *p;
2535 expr = isl_ast_node_user_get_expr(node);
2536 arg = isl_ast_expr_get_op_arg(expr, 0);
2537 id = isl_ast_expr_get_id(arg);
2538 name = isl_id_get_name(id);
2539 p = isl_id_get_user(id);
2540 isl_ast_expr_free(expr);
2541 isl_ast_expr_free(arg);
2543 if (!p) {
2544 struct gpu_stmt *gpu_stmt;
2546 gpu_stmt = find_stmt(gen->prog, id);
2547 isl_id_free(id);
2548 if (!gpu_stmt)
2549 isl_die(gen->ctx, isl_error_internal,
2550 "statement not found",
2551 return isl_ast_node_free(node));
2553 return create_domain_leaf(gen, node, build, gpu_stmt);
2556 is_sync = gpu_tree_id_is_sync(id, gen->kernel);
2557 isl_id_free(id);
2558 if (is_sync < 0)
2559 return isl_ast_node_free(node);
2560 if (!strcmp(name, "read") || !strcmp(name, "write")) {
2561 struct gpu_array_ref_group *group = p;
2562 return create_access_leaf(gen, group, node, build);
2564 if (!is_sync)
2565 isl_die(gen->ctx, isl_error_internal,
2566 "unknown statement type",
2567 return isl_ast_node_free(node));
2568 return create_sync_leaf(gen, node, build);
2571 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
2572 * have value 0) and all even schedule dimensions as "unroll".
2574 * That is, the options look as follows
2576 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
2577 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
2579 * The even positions are used to be able to schedule copying blocks
2580 * and synchronization before or after each level of the shared memory
2581 * tile loops and we want to make sure that code for these is generated
2582 * separately (within each level).
2584 static __isl_give isl_ast_build *set_atomic_and_unroll(
2585 __isl_take isl_ast_build *build,
2586 __isl_take isl_space *space, int sched_len)
2588 isl_ctx *ctx;
2589 isl_map *map;
2590 isl_constraint *c;
2591 isl_union_map *opt;
2592 isl_local_space *ls;
2593 int i, n;
2595 ctx = isl_ast_build_get_ctx(build);
2597 space = isl_space_params(space);
2598 space = isl_space_add_dims(space, isl_dim_set, sched_len);
2599 space = isl_space_from_domain(space);
2600 space = isl_space_add_dims(space, isl_dim_out, 2);
2601 map = isl_map_universe(isl_space_copy(space));
2602 for (i = 0; i < sched_len; i += 2)
2603 map = isl_map_fix_si(map, isl_dim_in, i, 0);
2604 ls = isl_local_space_from_space(isl_map_get_space(map));
2605 c = isl_equality_alloc(ls);
2606 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
2607 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
2608 c = isl_constraint_set_constant_si(c, 1);
2609 map = isl_map_add_constraint(map, c);
2610 map = isl_map_project_out(map, isl_dim_out, 1, 1);
2611 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
2612 opt = isl_union_map_from_map(map);
2614 map = isl_map_universe(space);
2615 ls = isl_local_space_from_space(isl_map_get_space(map));
2616 c = isl_equality_alloc(ls);
2617 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
2618 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
2619 map = isl_map_add_constraint(map, c);
2620 map = isl_map_project_out(map, isl_dim_out, 1, 1);
2621 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
2622 opt = isl_union_map_add_map(opt, map);
2624 build = isl_ast_build_set_options(build, opt);
2626 return build;
2629 /* Return a map that maps a space of dimension gen->shared_len
2630 * to its last dimensions starting at gen->tile_first.
2631 * The range is of dimension
2633 * 2 * (gen->shared_len - gen->tile_first) + 1
2635 * The input dimensions are mapped to the odd dimensions in the output,
2636 * while the even dimensions (except 2*pos) are fixed to 0.
2637 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
2638 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
2639 * are mapped to the output. The remaining input dimensions are projected
2640 * out and the corresponding output dimensions are fixed to 0.
2642 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
2643 __isl_take isl_space *space, int pos, int val)
2645 int i, n;
2646 isl_map *proj;
2648 space = isl_space_set_from_params(space);
2649 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
2650 space = isl_space_map_from_set(space);
2651 proj = isl_map_identity(space);
2652 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
2653 n = gen->shared_len - gen->tile_first;
2654 for (i = 0; i <= n; ++i) {
2655 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
2656 if (i == pos)
2657 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
2658 else
2659 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
2662 if (pos < 0)
2663 return proj;
2665 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
2666 gen->shared_len - (gen->tile_first + pos));
2667 for (i = pos; i < n; ++i)
2668 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
2670 return proj;
2673 /* Given the AST context schedule "schedule" and the mapping from
2674 * domains to the shared tile loops "shared_sched", add a schedule
2675 * for a synchronization operation at position "val" of loop level "pos".
2677 * schedule is of the form
2679 * D -> L
2681 * (with D the iteration domains and L the already generated loops),
2682 * while shared_sched is of the form
2684 * D -> S
2686 * We combine them into
2688 * L -> S
2690 * apply a mapping
2692 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
2694 * and use the result as a schedule for "sync".
2696 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
2697 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
2698 __isl_keep isl_union_map *shared_sched, int pos, int val)
2700 isl_space *space;
2701 isl_map *proj, *map;
2703 shared_sched = isl_union_map_copy(shared_sched);
2704 schedule = isl_union_map_copy(schedule);
2706 space = isl_union_map_get_space(shared_sched);
2707 schedule = isl_union_map_apply_domain(shared_sched, schedule);
2708 map = isl_map_from_union_map(schedule);
2710 proj = insert_even(gen, space, pos, val);
2711 map = isl_map_apply_range(map, proj);
2712 map = isl_map_from_range(isl_map_wrap(map));
2713 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
2715 res = isl_union_map_add_map(res, map);
2717 return res;
2720 /* Given a set of wrapped references "ref", return the corresponding
2721 * access relations based on the tagged access relations "tagged".
2723 * The elements of "ref" are of the form
2725 * [D -> R]
2727 * with D an iteration domains and R a reference.
2728 * The elements of "tagged" are of the form
2730 * [D -> R] -> A
2732 * with A an array.
2734 * Extend "tagged" to include the iteration domain in the range, i.e.,
2736 * [D -> R] -> [D -> A]
2738 * apply the result to "ref" and then unwrap the resulting set
2739 * to obtain relations of the form
2741 * D -> A
2743 static __isl_give isl_union_map *wrapped_reference_to_access(
2744 __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
2746 isl_union_map *tag2access;
2748 tag2access = isl_union_map_copy(tagged);
2749 tag2access = isl_union_map_universe(tag2access);
2750 tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
2751 tag2access = isl_union_map_domain_map(tag2access);
2752 tag2access = isl_union_map_range_product(tag2access, tagged);
2754 ref = isl_union_set_coalesce(ref);
2755 ref = isl_union_set_apply(ref, tag2access);
2757 return isl_union_set_unwrap(ref);
2760 /* Given an access relation "access" from "group", remove those reads
2761 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
2762 * communicate data within the same iteration of "sched".
2764 * If the access is a read then it is either an element of
2766 * live_in union (range flow)
2768 * where live_in and flow may be overapproximations, or
2769 * it reads an uninitialized value (that is not live-in because
2770 * there is an intermediate kill) or it reads a value that was
2771 * written within the same (compound) statement instance.
2772 * If the access is a write then it is either an element of
2774 * live_out union (domain flow)
2776 * or it writes a value that is never read (and is not live-out
2777 * because of an intermediate kill) or only
2778 * within the same (compound) statement instance.
2779 * In both cases, the access relation is also a subset of
2780 * the group access relation.
2782 * The cases where an uninitialized value is read or a value is written
2783 * that is never read or where the dataflow occurs within a statement
2784 * instance are also considered local and may also be removed.
2786 * Essentially, we compute the intersection of "access" with either
2788 * live_in union (range non-local-flow)
2790 * or
2792 * live_out union (domain non-local-flow)
2794 * We first construct a relation "local"
2796 * [[D -> R] -> [D' -> R']]
2798 * of pairs of domain iterations accessing the reference group
2799 * and references in the group that are coscheduled by "sched".
2801 * If this relation does not intersect the dataflow dependences,
2802 * then there is nothing we can possibly remove, unless the dataflow
2803 * dependences themselves only relate a subset of the accesses.
2804 * In particular, the accesses may not be involved in any dataflow
2805 * dependences, either because they are uninitialized reads/dead writes
2806 * or because the dataflow occurs inside a statement instance.
2808 * Since the computation below may break up the access relation
2809 * into smaller pieces, we only perform the intersection with
2810 * the non-local dependent accesses if the local pairs
2811 * intersect the dataflow dependences. Otherwise, we intersect
2812 * with the universe of the non-local dependent accesses.
2813 * This should at least remove accesses from statements that
2814 * do not participate in any dependences.
2816 * In particular, we remove the "local" dataflow dependences from
2817 * the set of all dataflow dependences.
2818 * Note that if the potential dataflow dependences are an overapproximation
2819 * of the actual dataflow dependences, then the result remains an
2820 * overapproximation of the non-local dataflow dependences.
2821 * Copying to/from global memory is only needed for the references
2822 * in the domain/range of the result or for accesses that are live out/in
2823 * for the entire scop.
2825 * We therefore map the domain/range of the "external" relation
2826 * to the corresponding access relation and take the union with
2827 * the live out/in relation.
2829 static __isl_give isl_union_map *remove_local_accesses(
2830 struct gpu_prog *prog, struct gpu_array_ref_group *group,
2831 __isl_take isl_union_map *access, __isl_take isl_union_map *sched,
2832 int read)
2834 int empty;
2835 isl_union_pw_multi_aff *tagger;
2836 isl_union_set *domain;
2837 isl_union_map *local, *tagged, *external;
2838 isl_union_set *tag_set;
2840 if (isl_union_map_is_empty(access)) {
2841 isl_union_map_free(sched);
2842 return access;
2845 tagged = group_tagged_access_relation(group);
2847 tagger = isl_union_pw_multi_aff_copy(prog->scop->tagger);
2848 domain = isl_union_map_domain(isl_union_map_copy(tagged));
2849 tagger = isl_union_pw_multi_aff_intersect_domain(tagger, domain);
2850 sched = isl_union_map_preimage_domain_union_pw_multi_aff(sched, tagger);
2852 local = isl_union_map_apply_range(sched,
2853 isl_union_map_reverse(isl_union_map_copy(sched)));
2854 local = isl_union_map_intersect(local,
2855 isl_union_map_copy(prog->scop->tagged_dep_flow));
2857 empty = isl_union_map_is_empty(local);
2859 external = isl_union_map_copy(prog->scop->tagged_dep_flow);
2860 external = isl_union_map_intersect_params(external,
2861 isl_set_copy(prog->scop->context));
2862 external = isl_union_map_subtract(external, local);
2864 if (read) {
2865 tag_set = isl_union_map_range(external);
2866 external = wrapped_reference_to_access(tag_set, tagged);
2867 external = isl_union_map_union(external,
2868 isl_union_map_copy(prog->scop->live_in));
2869 } else {
2870 tag_set = isl_union_map_domain(external);
2871 external = wrapped_reference_to_access(tag_set, tagged);
2872 external = isl_union_map_union(external,
2873 isl_union_map_copy(prog->scop->live_out));
2876 if (empty < 0)
2877 external = isl_union_map_free(external);
2878 else if (empty)
2879 external = isl_union_map_universe(external);
2881 access = isl_union_map_intersect(access, external);
2883 return access;
2886 /* Given an access relation "access" from "group", remove those reads
2887 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
2888 * communicate data within the same iteration of the schedule at the
2889 * position where the copying of the group is inserted.
2890 * "node" points to this position, i.e., the depth at "node"
2891 * is equal to group->depth.
2893 * We extract a schedule that picks out the iterations of the outer
2894 * group->depth dimensions and call remove_local_accesses.
2896 static __isl_give isl_union_map *remove_local_accesses_group(
2897 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
2898 __isl_take isl_union_map *access, __isl_keep isl_schedule_node *node,
2899 int read)
2901 isl_union_map *sched;
2903 if (isl_union_map_is_empty(access))
2904 return access;
2906 sched = isl_schedule_node_get_prefix_schedule_relation(node);
2908 return remove_local_accesses(kernel->prog, group, access, sched, read);
2911 /* Attach "id" to the given node.
2913 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
2914 __isl_keep isl_ast_build *build, void *user)
2916 isl_id *id = user;
2918 node = isl_ast_node_set_annotation(node, id);
2920 return node;
2923 /* Construct an AST node for performing a kernel launch and attach
2924 * the information about the kernel to that node.
2925 * "kernel_id" has name "kernel" and contains a pointer
2926 * to the ppcg_kernel structure.
2928 * The kernel AST has been constructed in the context of the range
2929 * of "schedule". In particular, the grid size has been computed
2930 * in the context. We therefore still need to make sure that these
2931 * constraints are expressed in the code. We do this by creating a schedule
2933 * kernel[] -> [S -> []]
2935 * where S is the schedule domain, i.e., the range of "schedule".
2936 * The AST generation will then create a single call surrounded by
2937 * all the condition in "S" that have not been expressed yet.
2939 * The kernel information is attached to this node in attach_id.
2941 static __isl_give isl_ast_node *construct_launch(
2942 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
2943 __isl_take isl_id *kernel_id)
2945 isl_ctx *ctx;
2946 isl_union_set *domain;
2947 isl_set *set;
2948 isl_map *map;
2949 isl_ast_node *node;
2951 ctx = isl_ast_build_get_ctx(build);
2953 domain = isl_union_map_range(schedule);
2954 set = isl_set_from_union_set(domain);
2955 map = isl_map_from_domain(set);
2956 map = isl_map_from_range(isl_map_wrap(map));
2957 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
2958 schedule = isl_union_map_from_map(map);
2960 build = isl_ast_build_set_at_each_domain(build, &attach_id, kernel_id);
2961 node = isl_ast_build_node_from_schedule_map(build, schedule);
2962 isl_ast_build_free(build);
2964 return node;
2967 /* This function is called before the AST generator starts traversing
2968 * the schedule subtree of a node with mark "mark".
2970 * If the mark is called "kernel", store the mark itself in gen->kernel_mark
2971 * and the kernel pointer in gen->kernel for use in at_domain.
2973 static int before_mark(__isl_keep isl_id *mark,
2974 __isl_keep isl_ast_build *build, void *user)
2976 struct gpu_gen *gen = user;
2978 if (!mark)
2979 return -1;
2980 if (!strcmp(isl_id_get_name(mark), "kernel")) {
2981 gen->kernel_mark = isl_id_copy(mark);
2982 gen->kernel = isl_id_get_user(mark);
2984 return 0;
2987 /* This function is called after the AST generator has finished traversing
2988 * the schedule subtree of a mark node. "node" points to the corresponding
2989 * mark AST node.
2991 * If the mark is called "kernel", then replace "node" by a user node
2992 * that "calls" the kernel, representing the launch of the kernel.
2993 * The original "node" is stored inside the kernel object so that
2994 * it can be used to print the device code.
2995 * Note that this assumes that a kernel is only launched once.
2996 * Also clear the kernel and kernel_mark fields of gen.
2998 static __isl_give isl_ast_node *after_mark(__isl_take isl_ast_node *node,
2999 __isl_keep isl_ast_build *build, void *user)
3001 isl_ctx *ctx;
3002 isl_id *id;
3003 isl_ast_expr *expr;
3004 isl_ast_expr_list *list;
3005 struct ppcg_kernel *kernel;
3006 struct gpu_gen *gen = user;
3008 ctx = isl_ast_node_get_ctx(node);
3009 id = isl_ast_node_mark_get_id(node);
3010 if (!id)
3011 return isl_ast_node_free(node);
3012 if (strcmp(isl_id_get_name(id), "kernel") || !gen->kernel) {
3013 isl_id_free(id);
3014 return node;
3016 gen->kernel_mark = isl_id_free(gen->kernel_mark);
3017 kernel = gen->kernel;
3018 gen->kernel = NULL;
3019 kernel->space = isl_ast_build_get_schedule_space(build);
3020 kernel->tree = isl_ast_node_mark_get_node(node);
3021 isl_ast_node_free(node);
3023 expr = isl_ast_expr_from_id(isl_id_copy(id));
3024 list = isl_ast_expr_list_alloc(ctx, 0);
3025 expr = isl_ast_expr_call(expr, list);
3026 node = isl_ast_node_alloc_user(expr);
3027 node = isl_ast_node_set_annotation(node, id);
3029 return node;
3032 static int update_depth(__isl_keep isl_schedule_node *node, void *user)
3034 int *depth = user;
3035 int node_depth;
3037 if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
3038 return 1;
3039 node_depth = isl_schedule_node_get_schedule_depth(node);
3040 if (node_depth > *depth)
3041 *depth = node_depth;
3043 return 0;
3046 /* Use isl to generate code for both the host and the device
3047 * from gen->schedule.
3048 * The device code is marked by "kernel" mark nodes in the schedule tree,
3049 * containing a pointer to a ppcg_kernel object.
3050 * The returned AST only contains the AST for the host code.
3051 * The ASTs for the device code are embedded in ppcg_kernel objects
3052 * attached to the leaf nodes that call "kernel".
3054 static __isl_give isl_ast_node *generate_code(struct gpu_gen *gen)
3056 isl_ast_build *build;
3057 isl_ast_node *tree;
3058 isl_schedule *schedule;
3059 isl_id_list *iterators;
3060 int depth;
3062 depth = 0;
3063 if (isl_schedule_foreach_schedule_node(gen->schedule, &update_depth,
3064 &depth) < 0)
3065 return NULL;
3066 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
3067 iterators = ppcg_scop_generate_names(gen->prog->scop, depth, "c");
3068 build = isl_ast_build_set_iterators(build, iterators);
3069 build = isl_ast_build_set_at_each_domain(build, &at_domain, gen);
3070 build = isl_ast_build_set_before_each_mark(build, &before_mark, gen);
3071 build = isl_ast_build_set_after_each_mark(build, &after_mark, gen);
3072 schedule = isl_schedule_copy(gen->schedule);
3073 tree = isl_ast_build_node_from_schedule(build, schedule);
3074 isl_ast_build_free(build);
3076 return tree;
3079 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
3081 if (!str)
3082 return NULL;
3083 return isl_union_map_read_from_str(ctx, str);
3086 /* Information about the outermost tilable bands in the forest of bands.
3088 * prefix is the (padded) schedule leading up to the outermost tilable bands.
3090 * tile_first is the number of schedule dimensions in prefix.
3092 * suffix is the schedule of the outermost tilable bands and their descendants.
3094 struct band_info {
3095 struct gpu_gen *gen;
3096 int tile_first;
3097 isl_union_map *prefix;
3098 isl_union_map *suffix;
3101 /* Construct an isl_multi_val for use as tile sizes for tiling "node"
3102 * from the elements in "tile_size".
3104 static __isl_give isl_multi_val *construct_band_tiles_sizes(
3105 __isl_keep isl_schedule_node *node, int *tile_size)
3107 int i, n;
3108 isl_ctx *ctx;
3109 isl_space *space;
3110 isl_multi_val *mv;
3112 if (!node)
3113 return NULL;
3115 ctx = isl_schedule_node_get_ctx(node);
3116 space = isl_schedule_node_band_get_space(node);
3117 n = isl_schedule_node_band_n_member(node);
3118 mv = isl_multi_val_zero(space);
3119 for (i = 0; i < n; ++i) {
3120 isl_val *v;
3122 v = isl_val_int_from_si(ctx, tile_size[i]);
3123 mv = isl_multi_val_set_val(mv, i, v);
3126 return mv;
3129 /* Replace the partial schedule S of the band node "node" by
3131 * floor(S/f)
3133 * or
3135 * f * floor(S/f)
3137 * if scale_tile_loops is set, with f the integers in "factor".
3138 * The list that "factor" points to is assumed to contain at least
3139 * as many elements as the number of members in the band.
3141 static __isl_give isl_schedule_node *snap_band_to_sizes(
3142 __isl_take isl_schedule_node *node, int *factor,
3143 struct ppcg_options *options)
3145 isl_multi_val *mv;
3147 mv = construct_band_tiles_sizes(node, factor);
3148 node = isl_schedule_node_band_scale_down(node, isl_multi_val_copy(mv));
3149 if (options->scale_tile_loops)
3150 node = isl_schedule_node_band_scale(node,
3151 isl_multi_val_copy(mv));
3152 isl_multi_val_free(mv);
3154 return node;
3157 /* Tile "band" with tile size specified by "sizes".
3159 * Since the tile loops will be mapped to block ids, we forcibly
3160 * turn off tile loop scaling. We may want to enable tile loop scaling
3161 * at some later point, but then we would have to support the detection
3162 * of strides during the mapping to block ids.
3163 * Similarly, since the point loops will be mapped to thread ids,
3164 * we forcibly shift the point loops so that they start at zero.
3166 static __isl_give isl_schedule_node *tile_band(
3167 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
3169 isl_ctx *ctx = isl_schedule_node_get_ctx(node);
3170 int scale_tile;
3171 int shift_point;
3173 scale_tile = isl_options_get_tile_scale_tile_loops(ctx);
3174 isl_options_set_tile_scale_tile_loops(ctx, 0);
3175 shift_point = isl_options_get_tile_shift_point_loops(ctx);
3176 isl_options_set_tile_shift_point_loops(ctx, 1);
3178 node = isl_schedule_node_band_tile(node, sizes);
3180 isl_options_set_tile_scale_tile_loops(ctx, scale_tile);
3181 isl_options_set_tile_shift_point_loops(ctx, shift_point);
3183 return node;
3186 /* Extract the set of parameter values and outer schedule dimensions
3187 * for which any statement instance
3188 * in the kernel inserted at "node" needs to be executed.
3189 * Intersect the set of parameter values derived from the host schedule
3190 * relation with the context of "prog".
3192 static __isl_give isl_set *extract_context(__isl_keep isl_schedule_node *node,
3193 struct gpu_prog *prog)
3195 isl_union_map *schedule;
3196 isl_union_set *schedule_domain;
3197 isl_set *context;
3198 int empty;
3200 schedule = isl_schedule_node_get_prefix_schedule_relation(node);
3201 schedule_domain = isl_union_map_range(schedule);
3202 empty = isl_union_set_is_empty(schedule_domain);
3203 if (empty < 0) {
3204 isl_union_set_free(schedule_domain);
3205 return NULL;
3207 if (empty) {
3208 int depth;
3209 isl_space *space;
3211 space = isl_union_set_get_space(schedule_domain);
3212 isl_union_set_free(schedule_domain);
3213 space = isl_space_set_from_params(space);
3214 depth = isl_schedule_node_get_schedule_depth(node);
3215 space = isl_space_add_dims(space, isl_dim_set, depth);
3216 context = isl_set_empty(space);
3217 } else {
3218 context = isl_set_from_union_set(schedule_domain);
3220 context = isl_set_intersect_params(context,
3221 isl_set_copy(prog->context));
3223 return context;
3226 /* Return the set of outer array elements accessed by
3227 * by the statement instance in "domain" in "prog".
3229 static __isl_give isl_union_set *accessed_by_domain(
3230 __isl_take isl_union_set *domain, struct gpu_prog *prog)
3232 isl_union_map *access;
3233 isl_union_set *arrays;
3235 access = isl_union_map_union(isl_union_map_copy(prog->read),
3236 isl_union_map_copy(prog->may_write));
3237 access = isl_union_map_intersect_domain(access, domain);
3238 arrays = isl_union_map_range(access);
3239 arrays = isl_union_set_apply(arrays,
3240 isl_union_map_copy(prog->to_outer));
3242 return arrays;
3245 /* Return the number of outer band members of the band node "node"
3246 * that are marked coincident.
3248 static int n_outer_coincidence(__isl_keep isl_schedule_node *node)
3250 int i, n;
3252 n = isl_schedule_node_band_n_member(node);
3254 for (i = 0; i < n; ++i)
3255 if (!isl_schedule_node_band_member_get_coincident(node, i))
3256 break;
3258 return i;
3261 /* If the band node "node" has more than "n" members, then split off
3262 * the first "n" of them.
3264 static __isl_give isl_schedule_node *split_band(
3265 __isl_take isl_schedule_node *node, int n)
3267 int dim;
3269 dim = isl_schedule_node_band_n_member(node);
3270 if (n < dim)
3271 node = isl_schedule_node_band_split(node, n);
3273 return node;
3276 /* Scale a band node that may have been split by split_band.
3277 * "sizes" are the scaling factors for the original node.
3278 * "node" either points to the original band node, or the outer
3279 * of the two pieces after splitting.
3281 * If the number of elements in "node" is smaller than the number of
3282 * elements in "sizes", then some splitting has occurred and we split
3283 * "sizes" in the same way.
3285 static __isl_give isl_schedule_node *scale_band(
3286 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
3288 int n, dim;
3290 n = isl_multi_val_dim(sizes, isl_dim_set);
3291 dim = isl_schedule_node_band_n_member(node);
3292 if (n > dim) {
3293 isl_multi_val *sizes2;
3295 sizes2 = isl_multi_val_copy(sizes);
3296 sizes = isl_multi_val_drop_dims(sizes,
3297 isl_dim_set, dim, n - dim);
3298 sizes2 = isl_multi_val_drop_dims(sizes2, isl_dim_set, 0, dim);
3299 node = isl_schedule_node_child(node, 0);
3300 node = isl_schedule_node_band_scale(node, sizes2);
3301 node = isl_schedule_node_parent(node);
3304 return isl_schedule_node_band_scale(node, sizes);
3307 /* Return an isl_multi_aff, with as elements the parameters in "space"
3308 * that have the names specified by the elements in "names".
3309 * If (some of) these parameters do not already appear in "space",
3310 * then they are added first.
3312 static __isl_give isl_multi_aff *parameter_vector(__isl_take isl_space *space,
3313 __isl_keep isl_id_list *names)
3315 int i, n;
3316 isl_local_space *ls;
3317 isl_multi_aff *ma;
3319 if (!names)
3320 space = isl_space_free(space);
3322 n = isl_id_list_n_id(names);
3323 for (i = 0; i < n; ++i) {
3324 int pos;
3325 isl_id *id;
3327 id = isl_id_list_get_id(names, i);
3328 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
3329 if (pos >= 0) {
3330 isl_id_free(id);
3331 continue;
3333 pos = isl_space_dim(space, isl_dim_param);
3334 space = isl_space_add_dims(space, isl_dim_param, 1);
3335 space = isl_space_set_dim_id(space, isl_dim_param, pos, id);
3337 ma = isl_multi_aff_zero(isl_space_copy(space));
3338 ls = isl_local_space_from_space(isl_space_domain(space));
3339 for (i = 0; i < n; ++i) {
3340 int pos;
3341 isl_id *id;
3342 isl_aff *aff;
3344 id = isl_id_list_get_id(names, i);
3345 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
3346 isl_id_free(id);
3347 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
3348 isl_dim_param, pos);
3349 ma = isl_multi_aff_set_aff(ma, i, aff);
3351 isl_local_space_free(ls);
3353 return ma;
3356 /* Return constraints on the domain elements that equate a sequence of
3357 * parameters called "names", to the partial schedule
3358 * of "node" modulo the integers in "size".
3359 * The number of elements in the array "size" should be equal
3360 * to the number of elements in "names".
3361 * The number of members of the band node "node" should be smaller
3362 * than or equal to this number. If it is smaller, then the first
3363 * elements of "names" are equated to zero.
3365 static __isl_give isl_union_set *set_schedule_modulo(
3366 __isl_keep isl_schedule_node *node, __isl_keep isl_id_list *names,
3367 int *size)
3369 int n, n_zero;
3370 isl_space *space;
3371 isl_multi_aff *ma;
3372 isl_multi_union_pw_aff *mupa, *mupa2;
3373 isl_multi_val *mv;
3374 isl_union_set *domain;
3376 if (!node)
3377 return NULL;
3378 n = isl_id_list_n_id(names);
3379 if (n == 0)
3380 return isl_schedule_node_get_universe_domain(node);
3381 n_zero = n - isl_schedule_node_band_n_member(node);
3383 mupa = isl_schedule_node_band_get_partial_schedule(node);
3384 mv = construct_band_tiles_sizes(node, size + n_zero);
3385 mupa = isl_multi_union_pw_aff_mod_multi_val(mupa, mv);
3387 space = isl_multi_union_pw_aff_get_space(mupa);
3388 space = isl_space_params(space);
3389 space = isl_space_set_from_params(space);
3390 space = isl_space_add_dims(space, isl_dim_set, n_zero);
3391 ma = isl_multi_aff_zero(space);
3393 domain = isl_schedule_node_get_universe_domain(node);
3394 mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(
3395 isl_union_set_copy(domain), ma);
3396 mupa = isl_multi_union_pw_aff_range_product(mupa2, mupa);
3398 space = isl_multi_union_pw_aff_get_space(mupa);
3399 ma = parameter_vector(space, names);
3401 mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(domain, ma);
3402 mupa = isl_multi_union_pw_aff_sub(mupa, mupa2);
3404 return isl_multi_union_pw_aff_zero_union_set(mupa);
3407 /* Insert a context node at "node" introducing the block and thread
3408 * identifiers along with their bounds, which are stored in kernel->grid_size
3409 * and kernel->block_dim.
3410 * Note that the bounds on the block identifiers may implicitly impose
3411 * constraints on the parameters. A guard needs to be inserted
3412 * in the schedule tree to ensure that those bounds hold at "node".
3413 * This guard is inserted in insert_guard.
3415 static __isl_give isl_schedule_node *insert_context(struct ppcg_kernel *kernel,
3416 __isl_take isl_schedule_node *node)
3418 isl_set *context;
3420 context = isl_set_universe(isl_set_get_space(kernel->context));
3422 context = add_bounded_parameters_dynamic(context,
3423 kernel->grid_size, kernel->block_ids);
3424 context = add_bounded_parameters(context,
3425 kernel->block_dim, kernel->thread_ids);
3427 node = isl_schedule_node_insert_context(node, context);
3429 return node;
3432 /* Insert a guard that eliminates kernel launches where the kernel
3433 * obviously does not have any work to do.
3435 * In particular, eliminate kernel launches where there are obviously
3436 * zero blocks.
3437 * Use the same block size constraints that are used to create the context
3438 * to ensure that all constraints implicit in the constructed context
3439 * are imposed by the guard.
3441 * Additionally, add other constraints that are valid
3442 * for each executed instance ("context"), as long as this does not result
3443 * in a disjunction.
3445 static __isl_give isl_schedule_node *insert_guard(
3446 __isl_take isl_schedule_node *node, __isl_keep isl_set *context,
3447 __isl_keep isl_multi_pw_aff *size, struct ppcg_scop *scop)
3449 unsigned nparam, n;
3450 isl_set *guard;
3451 isl_id_list *ids;
3453 guard = isl_set_copy(context);
3454 guard = isl_set_compute_divs(guard);
3455 guard = isl_set_from_basic_set(isl_set_simple_hull(guard));
3457 nparam = isl_set_dim(guard, isl_dim_param);
3458 n = isl_multi_pw_aff_dim(size, isl_dim_out);
3459 ids = ppcg_scop_generate_names(scop, n, "__ppcg_tmp");
3460 guard = add_bounded_parameters_dynamic(guard, size, ids);
3461 isl_id_list_free(ids);
3462 guard = isl_set_project_out(guard, isl_dim_param, nparam, n);
3464 node = isl_schedule_node_insert_guard(node, guard);
3466 return node;
3469 /* Does any array reference group mapping require the band that is mapped
3470 * to threads to be unrolled?
3472 static int kernel_requires_unroll(struct ppcg_kernel *kernel)
3474 int i, j;
3476 for (i = 0; i < kernel->n_array; ++i) {
3477 struct gpu_local_array_info *array = &kernel->array[i];
3479 for (j = 0; j < array->n_group; ++j) {
3480 struct gpu_array_ref_group *group = array->groups[j];
3481 if (gpu_array_ref_group_requires_unroll(group))
3482 return 1;
3486 return 0;
3489 /* Mark the given band node "node" for unrolling by the AST generator and
3490 * then sink it to the leaves of the schedule tree.
3491 * All dimensions of "node" are assumed to be coincident, such that this
3492 * sinking is a valid operation.
3494 static __isl_give isl_schedule_node *unroll(__isl_take isl_schedule_node *node)
3496 int i, n;
3498 n = isl_schedule_node_band_n_member(node);
3499 for (i = 0; i < n; ++i)
3500 node = isl_schedule_node_band_member_set_ast_loop_type(node, i,
3501 isl_ast_loop_unroll);
3503 node = isl_schedule_node_band_sink(node);
3505 return node;
3508 /* Is there any write in "kernel" that writes directly to global memory?
3509 * That is, is there any array reference group that involves a write and
3510 * that is not mapped to private or shared memory?
3512 static int any_global_write(struct ppcg_kernel *kernel)
3514 int i, j;
3516 for (i = 0; i < kernel->n_array; ++i) {
3517 struct gpu_local_array_info *array = &kernel->array[i];
3519 for (j = 0; j < array->n_group; ++j) {
3520 struct gpu_array_ref_group *group = array->groups[j];
3522 if (!group->write)
3523 continue;
3524 if (group->private_tile || group->shared_tile)
3525 continue;
3526 return 1;
3530 return 0;
3533 /* Insert a synchronization node in the schedule tree of "node"
3534 * after the core computation of "kernel" at the level of the band
3535 * that is mapped to threads, except if that level is equal to
3536 * that of the band that is mapped to blocks.
3537 * "node" is assumed to point to the kernel node.
3539 static __isl_give isl_schedule_node *add_sync(struct ppcg_kernel *kernel,
3540 __isl_take isl_schedule_node *node)
3542 int kernel_depth;
3544 kernel_depth = isl_schedule_node_get_schedule_depth(node);
3546 node = gpu_tree_move_down_to_thread(node, kernel->core);
3547 if (kernel_depth == isl_schedule_node_get_schedule_depth(node))
3548 return gpu_tree_move_up_to_kernel(node);
3550 node = gpu_tree_ensure_following_sync(node, kernel);
3552 node = gpu_tree_move_up_to_kernel(node);
3554 return node;
3557 /* Return a read ("read" is 1) or write access relation for "group"
3558 * with those accesses removed that are only needed to communicate data
3559 * within the subtree of the schedule rooted at "node".
3560 * Furthermore, include the prefix schedule at "node".
3561 * That is, return a relation of the form
3563 * S -> [D -> A]
3565 * with D the outer schedule dimensions at "node".
3567 static __isl_give isl_union_map *anchored_non_local_accesses(
3568 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3569 __isl_take isl_schedule_node *node, int read)
3571 isl_union_map *access;
3572 isl_union_map *prefix;
3574 access = gpu_array_ref_group_access_relation(group, read, !read);
3575 access = remove_local_accesses_group(kernel, group, access, node, read);
3576 prefix = isl_schedule_node_get_prefix_schedule_relation(node);
3577 access = isl_union_map_range_product(prefix, access);
3579 return access;
3582 /* Given an array reference group "group", create a mapping
3584 * read[D -> A] -> [D -> A]
3586 * if "read" is set or
3588 * write[D -> A] -> [D -> A]
3590 * if "read" is not set.
3591 * D corresponds to the outer group->depth dimensions of
3592 * the kernel schedule.
3594 static __isl_give isl_multi_aff *create_from_access(isl_ctx *ctx,
3595 struct gpu_array_ref_group *group, int read)
3597 isl_space *space;
3598 isl_id *id;
3600 space = isl_space_copy(group->array->space);
3601 space = isl_space_from_range(space);
3602 space = isl_space_add_dims(space, isl_dim_in, group->depth);
3603 space = isl_space_wrap(space);
3604 space = isl_space_map_from_set(space);
3606 id = isl_id_alloc(ctx, read ? "read" : "write", group);
3607 space = isl_space_set_tuple_id(space, isl_dim_in, id);
3609 return isl_multi_aff_identity(space);
3612 /* Add copy statements to the schedule tree of "node"
3613 * for reading from global memory to private memory (if "read" is set) or
3614 * for writing back from private memory to global memory
3615 * (if "read" is not set) for the array reference group "group" that
3616 * is mapped to private memory.
3617 * On input, "node" points to the kernel node, and it is moved
3618 * back there on output.
3620 * The copies are performed in the order of the array elements.
3621 * The copy statement instances include a reference to the outer
3622 * group->depth dimensions of the kernel schedule for ease of
3623 * combining them with the group tiling.
3625 * That is, the extra schedule is of the form
3627 * type[D -> A] -> A
3629 * where D corresponds to the outer group->depth dimensions of
3630 * the kernel schedule and A to the global array.
3631 * This schedule is unrolled because registers are not addressable.
3633 * The copying is inserted in the schedule tree through an extension
3634 * of the form
3636 * D -> type[D -> A]
3638 * where the extra domain elements type[D -> A] are those accessed
3639 * by the group.
3640 * A filter is inserted on type[D -> A] to ensure that the element
3641 * is read/written by the same thread that needs the element.
3642 * This filter is obtained by applying
3644 * S -> type[D -> A]
3646 * to the thread filter for the core statements.
3648 * The extension is inserted before the core computation in case of a read
3649 * and after the core computation in case of a write.
3650 * In the latter case, we also make sure that there is a synchronization
3651 * node after the write to global memory, unless this write is performed
3652 * at the outer level of the kernel.
3653 * In principle, this synchronization could be inserted higher
3654 * in the schedule tree depending on where the corresponding reads
3655 * from global memory are performed.
3657 static __isl_give isl_schedule_node *add_copies_group_private(
3658 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3659 __isl_take isl_schedule_node *node, int read)
3661 isl_union_map *access;
3662 isl_union_map *prefix;
3663 isl_union_set *domain;
3664 isl_space *space;
3665 isl_multi_aff *from_access;
3666 isl_multi_pw_aff *mpa;
3667 isl_multi_union_pw_aff *mupa;
3668 isl_schedule_node *graft;
3669 isl_union_set *filter;
3670 int kernel_depth;
3671 int empty;
3673 kernel_depth = isl_schedule_node_get_schedule_depth(node);
3674 node = gpu_tree_move_down_to_depth(node, group->depth, kernel->core);
3676 access = anchored_non_local_accesses(kernel, group, node, read);
3677 empty = isl_union_map_is_empty(access);
3678 if (empty < 0 || empty) {
3679 isl_union_map_free(access);
3680 if (empty < 0)
3681 return isl_schedule_node_free(node);
3682 return gpu_tree_move_up_to_kernel(node);
3685 from_access = create_from_access(kernel->ctx, group, read);
3686 space = isl_space_domain(isl_multi_aff_get_space(from_access));
3687 access = isl_union_map_preimage_range_multi_aff(access, from_access);
3689 filter = isl_union_set_copy(kernel->thread_filter);
3690 filter = isl_union_set_apply(filter, isl_union_map_copy(access));
3691 filter = isl_union_set_detect_equalities(filter);
3692 filter = isl_union_set_coalesce(filter);
3694 domain = isl_union_map_range(access);
3695 access = isl_union_set_wrapped_domain_map(domain);
3696 access = isl_union_map_reverse(access);
3697 access = isl_union_map_coalesce(access);
3698 graft = isl_schedule_node_from_extension(access);
3700 space = isl_space_map_from_set(space);
3701 mpa = isl_multi_pw_aff_identity(space);
3702 mpa = isl_multi_pw_aff_range_factor_range(mpa);
3703 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3705 graft = isl_schedule_node_child(graft, 0);
3706 graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
3707 graft = unroll(graft);
3709 graft = isl_schedule_node_insert_filter(graft, filter);
3711 graft = isl_schedule_node_parent(graft);
3713 if (read)
3714 node = isl_schedule_node_graft_before(node, graft);
3715 else {
3716 node = isl_schedule_node_graft_after(node, graft);
3717 if (kernel_depth < group->depth) {
3718 node = isl_schedule_node_parent(node);
3719 node = isl_schedule_node_next_sibling(node);
3720 node = isl_schedule_node_child(node, 0);
3721 node = gpu_tree_ensure_following_sync(node, kernel);
3725 node = gpu_tree_move_up_to_kernel(node);
3727 return node;
3730 /* Add copy statements to the schedule tree of "node"
3731 * for reading from global memory to shared memory (if "read" is set) or
3732 * for writing back from shared memory to global memory
3733 * (if "read" is not set) for the array reference group "group" that
3734 * is mapped to shared memory.
3735 * On input, "node" points to the kernel node, and it is moved
3736 * back there on output.
3738 * The copies are performed in the order of the corresponding shared
3739 * memory tile.
3740 * The copy statement instances include a reference to the outer
3741 * group->depth dimensions of the kernel schedule for ease of
3742 * combining them with the group tiling.
3744 * If we are performing a read from global memory to shared memory and
3745 * if the array involved is not a scalar, then we copy
3746 * the entire tile to shared memory. This may result in some extra
3747 * elements getting copied, but it should lead to simpler code
3748 * (which means that fewer registers may be needed) and less divergence.
3750 * Otherwise, we only copy the elements that will be read or have been written
3751 * in the kernel.
3753 * That is, the extra schedule is of the form
3755 * type[D -> A] -> T
3757 * where D corresponds to the outer group->depth dimensions of
3758 * the kernel schedule, A to the global array and T is the corresponding
3759 * shared memory tile.
3761 * The copying is inserted in the schedule tree through an extension
3762 * of the form
3764 * D -> type[D -> A]
3766 * where the extra domain elements type[D -> A] are those accessed
3767 * by the group. In the case of read from a non-scalar, this set
3768 * is replaced by the entire shared memory tile.
3770 * A filter is inserted on type[D -> A] to map the copy instances
3771 * to the threads. In particular, the thread identifiers are
3772 * equated to the position inside the shared memory tile (T)
3773 * modulo the block size.
3774 * We try to align the innermost tile dimension with the innermost
3775 * thread identifier (x) as a heuristic to improve coalescing.
3776 * In particular, if the dimension of the tile is greater than
3777 * the dimension of the block, then the schedule mapping to the tile
3778 * is broken up into two pieces and the filter is applied to the inner part.
3779 * If, on the other hand, the dimension of the tile is smaller than
3780 * the dimension of the block, then the initial thread identifiers
3781 * are equated to zero and the remaining thread identifiers are
3782 * matched to the memory tile.
3784 * The extension is inserted before the core computation in case of a read
3785 * and after the core computation in case of a write.
3786 * In the case of a read, we first need to make sure there is some
3787 * synchronization before the core computation such that we can put the read
3788 * from global memory to shared memory before that synchronization.
3789 * This ensures that all threads have finished copying into shared memory
3790 * before the shared memory is used.
3791 * We also need to make sure that there is a synchronization node after
3792 * the core computation to ensure that the next load into shared memory
3793 * only happens after all data has been used. There is no need for
3794 * this synchronization if we are at the outer level since then there
3795 * won't be a next load.
3796 * In the case of a write, we need to make sure there is some synchronization
3797 * after the core computation such taht we can put the write from shared
3798 * memory to global memory after that synchronization.
3799 * Unless we are at the outer level, we also need a synchronization node
3800 * after the write to ensure the data is saved to global memory
3801 * before the next iteration write to the same shared memory.
3802 * It also makes sure the data has arrived in global memory before
3803 * it is read in a subsequent iteration.
3805 static __isl_give isl_schedule_node *add_copies_group_shared(
3806 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3807 __isl_take isl_schedule_node *node, int read)
3809 struct gpu_array_tile *tile;
3810 isl_union_map *access;
3811 isl_union_set *domain;
3812 isl_union_set *sync;
3813 isl_multi_aff *ma;
3814 isl_multi_aff *from_access;
3815 isl_multi_pw_aff *mpa;
3816 isl_multi_union_pw_aff *mupa;
3817 isl_schedule_node *graft;
3818 isl_union_set *filter;
3819 int skip;
3820 int kernel_depth;
3821 int empty;
3823 kernel_depth = isl_schedule_node_get_schedule_depth(node);
3824 node = gpu_tree_move_down_to_depth(node, group->depth, kernel->core);
3826 access = anchored_non_local_accesses(kernel, group, node, read);
3827 empty = isl_union_map_is_empty(access);
3828 if (empty < 0 || empty) {
3829 isl_union_map_free(access);
3830 if (empty < 0)
3831 return isl_schedule_node_free(node);
3832 return gpu_tree_move_up_to_kernel(node);
3835 from_access = create_from_access(kernel->ctx, group, read);
3837 tile = gpu_array_ref_group_tile(group);
3838 ma = isl_multi_aff_copy(tile->tiling);
3839 ma = isl_multi_aff_pullback_multi_aff(ma,
3840 isl_multi_aff_copy(from_access));
3841 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3842 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3844 domain = isl_union_map_range(access);
3846 if (read && !gpu_array_is_scalar(group->array)) {
3847 isl_map *map;
3848 isl_union_set_free(domain);
3849 map = group_tile(group);
3850 domain = isl_union_set_from_set(isl_map_wrap(map));
3853 domain = isl_union_set_preimage_multi_aff(domain, from_access);
3854 access = isl_union_set_wrapped_domain_map(domain);
3855 access = isl_union_map_reverse(access);
3856 access = isl_union_map_coalesce(access);
3857 graft = isl_schedule_node_from_extension(access);
3859 graft = isl_schedule_node_child(graft, 0);
3861 graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
3863 if (tile->n > kernel->n_block && kernel->n_block > 0) {
3864 graft = isl_schedule_node_band_split(graft,
3865 tile->n - kernel->n_block);
3866 graft = isl_schedule_node_child(graft, 0);
3868 if (tile->n < kernel->n_block)
3869 skip = kernel->n_block - tile->n;
3870 else
3871 skip = 0;
3872 filter = set_schedule_modulo(graft, kernel->thread_ids,
3873 kernel->block_dim);
3874 if (!kernel->options->wrap)
3875 graft = snap_band_to_sizes(graft, kernel->block_dim + skip,
3876 kernel->options);
3877 if (tile->n > kernel->n_block && kernel->n_block > 0)
3878 graft = isl_schedule_node_parent(graft);
3879 graft = isl_schedule_node_insert_filter(graft, filter);
3881 while (graft && isl_schedule_node_has_parent(graft))
3882 graft = isl_schedule_node_parent(graft);
3884 if (read) {
3885 if (kernel_depth < group->depth)
3886 node = gpu_tree_ensure_sync_after_core(node, kernel);
3887 node = gpu_tree_move_left_to_sync(node, kernel);
3888 node = isl_schedule_node_graft_before(node, graft);
3889 } else {
3890 node = gpu_tree_move_right_to_sync(node, kernel);
3891 node = isl_schedule_node_graft_after(node, graft);
3892 node = isl_schedule_node_parent(node);
3893 node = isl_schedule_node_next_sibling(node);
3894 node = isl_schedule_node_child(node, 0);
3895 if (kernel_depth < group->depth)
3896 node = gpu_tree_ensure_following_sync(node, kernel);
3899 node = gpu_tree_move_up_to_kernel(node);
3901 return node;
3904 /* Check whether the array reference group "group" is mapped to
3905 * private or shared memory and, if so,
3906 * add copy statements to the schedule tree of "node"
3907 * for reading from global memory to private or shared memory
3908 * (if "read" is set) or for writing back from private or shared memory
3909 * to global memory (if "read" is not set) for this group.
3910 * On input, "node" points to the kernel node, and it is moved
3911 * back there on output.
3913 static __isl_give isl_schedule_node *add_copies_group(
3914 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3915 __isl_take isl_schedule_node *node, int read)
3917 if (group->private_tile)
3918 return add_copies_group_private(kernel, group, node, read);
3919 if (group->shared_tile)
3920 return add_copies_group_shared(kernel, group, node, read);
3921 return node;
3924 /* For each array reference group that is mapped to private or shared memory,
3925 * add copy statements to the schedule tree of "node"
3926 * for reading from global memory to private or shared memory
3927 * and for writing back.
3928 * On input, "node" points to the kernel node, and it is moved
3929 * back there on output.
3931 static __isl_give isl_schedule_node *add_copies(struct ppcg_kernel *kernel,
3932 __isl_take isl_schedule_node *node)
3934 int i, j;
3936 for (i = 0; i < kernel->n_array; ++i) {
3937 struct gpu_local_array_info *array = &kernel->array[i];
3939 for (j = 0; j < array->n_group; ++j) {
3940 struct gpu_array_ref_group *group = array->groups[j];
3942 node = add_copies_group(kernel, group, node, 1);
3943 if (!node)
3944 return NULL;
3945 node = add_copies_group(kernel, group, node, 0);
3946 if (!node)
3947 return NULL;
3951 return node;
3954 /* Mark all dimensions in the current band node atomic.
3956 static __isl_give isl_schedule_node *atomic(__isl_take isl_schedule_node *node)
3958 int i, n;
3960 n = isl_schedule_node_band_n_member(node);
3961 for (i = 0; i < n; ++i)
3962 node = isl_schedule_node_band_member_set_ast_loop_type(node, i,
3963 isl_ast_loop_atomic);
3965 return node;
3968 /* Mark "node" atomic, if it is a band node.
3969 * Do the same for all ancestors.
3970 * Return a pointer to "node" (in the updated schedule tree).
3972 static __isl_give isl_schedule_node *atomic_ancestors(
3973 __isl_take isl_schedule_node *node)
3975 int pos;
3977 if (!node)
3978 return NULL;
3979 if (!isl_schedule_node_has_parent(node))
3980 return node;
3982 pos = isl_schedule_node_get_child_position(node);
3983 node = isl_schedule_node_parent(node);
3984 if (isl_schedule_node_get_type(node) == isl_schedule_node_band)
3985 node = atomic(node);
3986 node = atomic_ancestors(node);
3987 node = isl_schedule_node_child(node, pos);
3989 return node;
3992 /* Group the domain elements into a single space, named kernelX,
3993 * with X the kernel sequence number "kernel_id".
3995 static __isl_give isl_schedule_node *group_statements(
3996 __isl_take isl_schedule_node *node, int kernel_id)
3998 char buffer[20];
3999 isl_id *id;
4001 if (!node)
4002 return NULL;
4004 snprintf(buffer, sizeof(buffer), "kernel%d", kernel_id);
4005 id = isl_id_alloc(isl_schedule_node_get_ctx(node), buffer, NULL);
4006 return isl_schedule_node_group(node, id);
4009 /* Create a ppcg_kernel representing the domain instances that reach "node"
4010 * and insert a mark node pointing to the ppcg_kernel before "node".
4011 * The band that "node" points to is the band that needs to be mapped
4012 * to block identifiers. The band that needs to be mapped to thread
4013 * identifiers should be marked by a "thread" mark by the caller.
4014 * This mark is removed by this function.
4015 * If "scale" is set, then the band that "node" points to is scaled
4016 * by "sizes".
4018 * Mark all outer band nodes as atomic to ensure each kernel is only
4019 * scheduled once.
4020 * If the domain elements that reach "node" live in more than one space,
4021 * then group the domain elements into a single space, named kernelX,
4022 * with X the kernel sequence number.
4024 * Insert a guard node governing the kernel node to ensure that
4025 * no kernels with zero blocks are launched.
4027 * Insert a context node describing the block and thread
4028 * identifiers inside the kernel mark.
4029 * The context node needs to be inserted after the effective block size
4030 * has been determined such that the bounds on the thread identifiers
4031 * would reflect the effective block size.
4032 * Insert a filter node inside the context node mapping the statement
4033 * instances to block identifiers. In particular, the block identifiers
4034 * are equated to the partial schedule of band that was marked for mapping
4035 * to blocks modulo the grid size.
4036 * Insert a filter node inside the "thread" mark mapping the statement
4037 * instances to thread identifiers. In particular, the thread identifiers
4038 * are equated to the partial schedule of band that was marked for mapping
4039 * to threads modulo the block size.
4041 * Compute array reference groups for all arrays, set the local
4042 * array bounds based on the set of domain instances that reach
4043 * the kernel node, check the total amount of shared memory used
4044 * and compute all group tilings.
4045 * The array reference groups are computed after the block filter
4046 * has been inserted because it affects the mapping to shared or
4047 * private memory. This computation also requires the thread filter
4048 * (in the ppcg_kernel object), but this thread filter should not
4049 * have been added to the schedule tree yet since the computation
4050 * requires the schedule of the band that needs to be mapped to
4051 * threads before the privatization is applied.
4053 * If any array reference group requires the band mapped to threads
4054 * to be unrolled, then we perform the required unrolling.
4056 * We save a copy of the schedule that may influence the mappings
4057 * to shared or private memory in kernel->shared_schedule.
4059 * Finally, we add synchronization and copy statements to the schedule tree,
4060 * remove the "thread" mark and create representations for the local
4061 * variables in the kernel.
4063 * Store a pointer to the created ppcg_kernel in gen->kernel.
4065 * We keep a copy of the isl_id that points to the kernel to ensure
4066 * that the kernel does not get destroyed if the schedule node
4067 * is freed due to some error condition.
4069 static __isl_give isl_schedule_node *create_kernel(struct gpu_gen *gen,
4070 __isl_take isl_schedule_node *node, int scale,
4071 __isl_keep isl_multi_val *sizes)
4073 struct ppcg_kernel *kernel;
4074 isl_id *id;
4075 isl_schedule_node *node_thread;
4076 isl_union_map *host_schedule;
4077 isl_set *host_domain;
4078 isl_union_set *domain;
4079 int single_statement;
4081 kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
4082 kernel = ppcg_kernel_create_local_arrays(kernel, gen->prog);
4083 if (!kernel)
4084 return isl_schedule_node_free(node);
4086 domain = isl_schedule_node_get_domain(node);
4087 single_statement = isl_union_set_n_set(domain) == 1;
4089 kernel->ctx = gen->ctx;
4090 kernel->prog = gen->prog;
4091 kernel->options = gen->options;
4092 kernel->context = extract_context(node, gen->prog);
4093 kernel->core = isl_union_set_universe(isl_union_set_copy(domain));
4094 kernel->arrays = accessed_by_domain(isl_union_set_copy(domain),
4095 gen->prog);
4096 kernel->tile_len = isl_schedule_node_band_n_member(node);
4097 kernel->n_parallel = n_outer_coincidence(node);
4098 kernel->n_grid = kernel->n_parallel;
4099 node_thread = isl_schedule_node_copy(node);
4100 node_thread = gpu_tree_move_down_to_thread(node_thread, kernel->core);
4101 node_thread = isl_schedule_node_child(node_thread, 0);
4102 kernel->n_block = n_outer_coincidence(node_thread);
4103 isl_schedule_node_free(node_thread);
4104 kernel->id = gen->kernel_id++;
4105 read_grid_and_block_sizes(kernel, gen);
4107 gen->kernel = kernel;
4109 host_schedule = isl_schedule_node_get_prefix_schedule_union_map(node);
4110 host_domain = isl_set_from_union_set(isl_union_map_range(
4111 host_schedule));
4113 node = atomic_ancestors(node);
4115 id = isl_id_alloc(gen->ctx, "kernel", kernel);
4116 id = isl_id_set_free_user(id, &ppcg_kernel_free_wrap);
4117 node = isl_schedule_node_insert_mark(node, isl_id_copy(id));
4119 if (!single_statement)
4120 node = group_statements(node, kernel->id);
4122 node = isl_schedule_node_child(node, 0);
4123 node = split_band(node, kernel->n_grid);
4124 kernel->block_ids = ppcg_scop_generate_names(gen->prog->scop,
4125 kernel->n_grid, "b");
4126 kernel->block_filter = set_schedule_modulo(node, kernel->block_ids,
4127 kernel->grid_dim);
4128 kernel->grid_size = extract_grid_size(kernel,
4129 isl_union_set_copy(domain));
4130 if (!kernel->options->wrap)
4131 node = snap_band_to_sizes(node, kernel->grid_dim,
4132 kernel->options);
4133 if (scale)
4134 node = scale_band(node, isl_multi_val_copy(sizes));
4135 node = isl_schedule_node_parent(node);
4136 if (!single_statement)
4137 node = isl_schedule_node_parent(node);
4138 node = insert_guard(node, kernel->context, kernel->grid_size,
4139 gen->prog->scop);
4140 node = gpu_tree_move_down_to_thread(node, kernel->core);
4141 node = isl_schedule_node_child(node, 0);
4142 node = split_band(node, kernel->n_block);
4143 kernel->thread_ids = ppcg_scop_generate_names(gen->prog->scop,
4144 kernel->n_block, "t");
4145 kernel->thread_filter = set_schedule_modulo(node, kernel->thread_ids,
4146 kernel->block_dim);
4147 extract_block_size(kernel, domain);
4149 node = gpu_tree_move_up_to_kernel(node);
4150 node = isl_schedule_node_child(node, 0);
4151 node = insert_context(kernel, node);
4152 node = isl_schedule_node_child(node, 0);
4153 node = isl_schedule_node_insert_filter(node,
4154 isl_union_set_copy(kernel->block_filter));
4156 node = gpu_tree_move_up_to_kernel(node);
4158 if (gpu_group_references(kernel, node) < 0)
4159 node = isl_schedule_node_free(node);
4160 localize_bounds(kernel, host_domain);
4161 isl_set_free(host_domain);
4163 check_shared_memory_bound(kernel);
4164 compute_group_tilings(kernel);
4166 node = gpu_tree_move_down_to_thread(node, kernel->core);
4167 node = isl_schedule_node_child(node, 0);
4168 if (!kernel->options->wrap)
4169 node = snap_band_to_sizes(node, kernel->block_dim,
4170 kernel->options);
4171 node = isl_schedule_node_insert_filter(node,
4172 isl_union_set_copy(kernel->thread_filter));
4173 if (kernel_requires_unroll(kernel)) {
4174 node = isl_schedule_node_child(node, 0);
4175 node = unroll(node);
4178 node = gpu_tree_move_up_to_thread(node);
4179 kernel->shared_schedule_dim =
4180 isl_schedule_node_get_schedule_depth(node);
4181 kernel->shared_schedule =
4182 isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node);
4184 node = gpu_tree_move_up_to_kernel(node);
4186 if (any_global_write(kernel))
4187 node = add_sync(kernel, node);
4188 node = add_copies(kernel, node);
4190 node = gpu_tree_move_down_to_thread(node, kernel->core);
4191 node = isl_schedule_node_delete(node);
4193 node = gpu_tree_move_up_to_kernel(node);
4195 create_kernel_vars(kernel);
4197 if (!single_statement)
4198 node = isl_schedule_node_parent(node);
4199 node = isl_schedule_node_parent(node);
4201 isl_id_free(id);
4202 return node;
4205 /* Insert a zero-dimensional permutable band at "node".
4207 static __isl_give isl_schedule_node *insert_empty_permutable_band(
4208 __isl_take isl_schedule_node *node)
4210 isl_space *space;
4211 isl_schedule *schedule;
4212 isl_union_set *domain;
4213 isl_multi_union_pw_aff *mupa;
4215 schedule = isl_schedule_node_get_schedule(node);
4216 domain = isl_schedule_get_domain(schedule);
4217 space = isl_union_set_get_space(domain);
4218 isl_union_set_free(domain);
4219 isl_schedule_free(schedule);
4221 space = isl_space_set_from_params(space);
4222 mupa = isl_multi_union_pw_aff_zero(space);
4223 node = isl_schedule_node_insert_partial_schedule(node, mupa);
4224 node = isl_schedule_node_band_set_permutable(node, 1);
4226 return node;
4229 /* Mark "node" as outer permutable.
4231 * If "node" originally points to a leaf, then insert a zero-dimensional
4232 * permutable band such that we can assume that "node" always
4233 * points to a band node.
4235 * Tile "node" using user specified tile sizes, after splitting the band
4236 * if the number of specified tile sizes is smaller than the dimension
4237 * of the band. Mark the point band of this tiling as the band that
4238 * needs to be mapped to threads.
4239 * Create a kernel representing the domain instances that reach "node" and
4240 * insert a mark node pointing to the ppcg_kernel before the band node.
4242 static __isl_give isl_schedule_node *mark_outer_permutable(
4243 struct gpu_gen *gen, __isl_take isl_schedule_node *node)
4245 struct ppcg_kernel *kernel;
4246 int scale;
4247 int tile_len;
4248 int *tile_size;
4249 isl_id *id;
4250 isl_multi_val *sizes;
4252 if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf)
4253 node = insert_empty_permutable_band(node);
4255 tile_len = isl_schedule_node_band_n_member(node);
4256 tile_size = read_tile_sizes(gen, &tile_len);
4257 if (!tile_size)
4258 return isl_schedule_node_free(node);
4259 if (tile_len < isl_schedule_node_band_n_member(node))
4260 node = isl_schedule_node_band_split(node, tile_len);
4261 sizes = construct_band_tiles_sizes(node, tile_size);
4262 node = tile_band(node, isl_multi_val_copy(sizes));
4263 node = isl_schedule_node_child(node, 0);
4264 id = isl_id_alloc(gen->ctx, "thread", NULL);
4265 node = isl_schedule_node_insert_mark(node, id);
4266 node = isl_schedule_node_parent(node);
4268 scale = gen->options->scale_tile_loops;
4269 node = create_kernel(gen, node, scale, sizes);
4270 isl_multi_val_free(sizes);
4271 if (!node)
4272 return NULL;
4273 kernel = gen->kernel;
4274 kernel->tile_len = tile_len;
4275 kernel->tile_size = tile_size;
4277 return node;
4280 static __isl_give isl_schedule_node *select_outer_band(struct gpu_gen *gen,
4281 __isl_take isl_schedule_node *node, int pos, struct band_info *info);
4283 /* Check if this band node is tilable and has any parallel loops. If so,
4284 * take it as the outermost tilable band. If not, continue looking for the
4285 * outermost tilable band in the children of the current band.
4286 * Return a pointer to the same node in a tree where all outermost tilable
4287 * bands in the current subtree have been replaced by mark nodes
4288 * containing a pointer to a ppcg_kernel object.
4290 static __isl_give isl_schedule_node *band_select_outer_band(struct gpu_gen *gen,
4291 __isl_take isl_schedule_node *node, int pos, struct band_info *info)
4293 int n = isl_schedule_node_band_n_member(node);
4294 int n_parallel;
4296 n_parallel = n_outer_coincidence(node);
4298 if (!isl_schedule_node_band_get_permutable(node) || n_parallel == 0) {
4299 node = isl_schedule_node_child(node, 0);
4300 node = select_outer_band(gen, node, pos + n, info);
4301 return isl_schedule_node_parent(node);
4304 gen->any_parallelism = 1;
4305 info->gen = gen;
4306 info->tile_first = pos;
4307 info->prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
4308 info->suffix = isl_schedule_node_get_subtree_schedule_union_map(node);
4310 node = mark_outer_permutable(gen, node);
4312 return node;
4315 /* Extend "umap" with coordinates with fixed value "val"
4316 * to a total length of "dst_len", assuming the original dimension is "src_len".
4318 static __isl_give isl_union_map *extend_range(
4319 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
4321 isl_space *dim;
4322 isl_map *map;
4323 int i;
4325 dim = isl_union_map_get_space(umap);
4326 map = isl_map_reverse(projection(dim, dst_len, src_len));
4327 for (i = src_len; i < dst_len; ++i)
4328 map = isl_map_fix_si(map, isl_dim_out, i, val);
4330 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
4332 return umap;
4335 /* Select the outermost bands in the elements of the sequence or set
4336 * node "node", align their prefix schedules and combine the resulting
4337 * prefix and suffix schedules into a single pair of prefix and
4338 * suffix schedules for the entire list.
4339 * Return a pointer to the same node in a tree where all outermost tilable
4340 * bands in the current subtree have been replaced by mark nodes
4341 * containing a pointer to a ppcg_kernel object.
4343 static __isl_give isl_schedule_node *list_select_outer_band(
4344 struct gpu_gen *gen, __isl_take isl_schedule_node *node, int pos,
4345 struct band_info *list_info)
4347 int i;
4348 int n = isl_schedule_node_n_children(node);
4349 isl_ctx *ctx = isl_schedule_node_get_ctx(node);
4350 struct band_info *info;
4351 int max_tile_first;
4352 isl_union_map *prefix;
4353 isl_union_map *suffix;
4355 assert(n >= 1);
4356 info = isl_calloc_array(ctx, struct band_info, n);
4357 assert(info);
4359 max_tile_first = 0;
4360 for (i = 0; i < n; ++i) {
4361 node = isl_schedule_node_child(node, i);
4362 node = select_outer_band(gen, node, pos, &info[i]);
4363 if (info[i].tile_first > max_tile_first)
4364 max_tile_first = info[i].tile_first;
4365 node = isl_schedule_node_parent(node);
4368 for (i = 0; i < n; ++i) {
4369 if (info[i].tile_first == max_tile_first)
4370 continue;
4371 info[i].prefix = extend_range(info[i].prefix,
4372 info[i].tile_first, max_tile_first, 0);
4373 info[i].tile_first = max_tile_first;
4376 prefix = info[0].prefix;
4377 suffix = info[0].suffix;
4379 for (i = 1; i < n; ++i) {
4380 prefix = isl_union_map_union(prefix, info[i].prefix);
4381 suffix = isl_union_map_union(suffix, info[i].suffix);
4384 list_info->tile_first = info[0].tile_first;
4385 list_info->prefix = prefix;
4386 list_info->suffix = suffix;
4388 free(info);
4389 return node;
4392 /* If we reach a leaf node, then we have not found any outer tilable
4393 * band with parallel loops, so consider the leaf node as the outermost
4394 * tilable band.
4395 * Return a pointer to a mark node containing a pointer
4396 * to a ppcg_kernel object inserted at the original leaf node.
4398 static __isl_give isl_schedule_node *leaf_select_outer_band(struct gpu_gen *gen,
4399 __isl_take isl_schedule_node *node, int pos, struct band_info *info)
4401 info->gen = gen;
4402 info->tile_first = pos;
4403 info->prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
4404 info->suffix = isl_schedule_node_get_subtree_schedule_union_map(node);
4406 node = mark_outer_permutable(gen, node);
4408 return node;
4411 /* Select the outermost tilable band in the subtree that "node" points to and
4412 * return a pointer to the same node in a tree where all outermost tilable
4413 * bands in the current subtree have been replaced by mark nodes
4414 * containing a pointer to a ppcg_kernel object.
4416 static __isl_give isl_schedule_node *select_outer_band(struct gpu_gen *gen,
4417 __isl_take isl_schedule_node *node, int pos, struct band_info *info)
4419 enum isl_schedule_node_type type;
4421 type = isl_schedule_node_get_type(node);
4422 switch (type) {
4423 case isl_schedule_node_domain:
4424 case isl_schedule_node_filter:
4425 node = isl_schedule_node_child(node, 0);
4426 node = select_outer_band(gen, node, pos, info);
4427 return isl_schedule_node_parent(node);
4428 case isl_schedule_node_leaf:
4429 return leaf_select_outer_band(gen, node, pos, info);
4430 case isl_schedule_node_band:
4431 return band_select_outer_band(gen, node, pos, info);
4432 case isl_schedule_node_set:
4433 case isl_schedule_node_sequence:
4434 return list_select_outer_band(gen, node, pos, info);
4435 default:
4436 isl_die(isl_schedule_node_get_ctx(node),
4437 isl_error_unsupported, "unhandled schedule node type",
4438 node = node);
4439 case isl_schedule_node_error:
4440 info->prefix = NULL;
4441 info->suffix = NULL;
4442 break;
4445 return isl_schedule_node_free(node);
4448 /* Select the outermost tilable band that (by construction)
4449 * has at least one parallel loop.
4450 * The starting position of the aligned band is stored in the pair
4451 * gen->tile_first.
4452 * The sizes and number of parallel loops may be different in different
4453 * parts of the band forest and are therefore stored in the gpu_stmts.
4455 * Return the complete schedule, with the tilable bands aligned
4456 * at gen->tile_first and padded with zero, if needed.
4457 * Store a schedule tree corresponding to the outer gen->tile_first
4458 * dimensions, with mark nodes containing pointers to ppcg_kernel objects,
4459 * in gen->schedule.
4461 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
4462 __isl_keep isl_schedule *schedule)
4464 isl_schedule_node *node;
4465 struct band_info info;
4467 node = isl_schedule_get_root(schedule);
4468 node = select_outer_band(gen, node, 0, &info);
4469 gen->schedule = isl_schedule_node_get_schedule(node);
4470 isl_schedule_node_free(node);
4472 gen->tile_first = info.tile_first;
4473 info.suffix = align_range(info.suffix);
4475 return isl_union_map_flat_range_product(info.prefix, info.suffix);
4478 /* Set gen->untiled_len to the number of scheduling dimensions
4479 * for the schedule of the first domain.
4480 * We assume here that this number is the same for all domains.
4482 static int set_untiled_len(__isl_take isl_map *map, void *user)
4484 unsigned *untiled_len = user;
4486 *untiled_len = isl_map_dim(map, isl_dim_out);
4488 isl_map_free(map);
4489 return -1;
4492 /* Compute an appropriate schedule based on the accesses in
4493 * gen->read and gen->write.
4495 * We use the dependences in gen->prog->scop to compute
4496 * a schedule that has a parallel loop in each tilable band.
4497 * Finally, we select the outermost tilable band.
4499 * If live range reordering is allowed, then we need to make sure
4500 * that live ranges on arrays are not run in parallel since doing
4501 * so would require array expansion. We therefore add the array
4502 * order dependences to the coincidence dependences. Non-zero array
4503 * order dependences will then prevent a schedule dimension from being
4504 * considered parallel.
4505 * Live ranges derived from scalars are allowed to be run in parallel
4506 * since we force the scalars to be mapped to private memory in
4507 * check_scalar_live_ranges.
4508 * If live range reordering is allowed, then the false dependences
4509 * are not added to the validity constraints as that would prevent
4510 * reordering. Instead, the external false dependences that enforce that reads
4511 * from potentially live-in data precede any later write and
4512 * that writes of potentially live-out data follow any other earlier write
4513 * are added to the validity and the coincidence constraints.
4514 * The false dependences are still added to the proximity constraints
4515 * for consistency with the case where live range reordering is not allowed.
4516 * The coincidence constraints then consist of flow dependences,
4517 * external false dependences and array order dependences.
4518 * The independences can be filtered out from the first two sets.
4519 * They have already been filtered out from the array order dependences
4520 * on a per array basis in collect_order_dependences.
4521 * There is no need for a per array handling of the other two sets
4522 * as there should be no flow or external false dependence on local
4523 * variables that can be filtered out.
4525 static void compute_schedule(struct gpu_gen *gen)
4527 isl_union_set *domain;
4528 isl_union_map *dep_raw, *dep;
4529 isl_union_map *validity, *proximity, *coincidence;
4530 isl_union_map *sched;
4531 isl_schedule_constraints *sc;
4532 isl_schedule *schedule;
4534 domain = isl_union_set_copy(gen->prog->scop->domain);
4535 sc = isl_schedule_constraints_on_domain(isl_union_set_copy(domain));
4536 sc = isl_schedule_constraints_set_context(sc,
4537 isl_set_copy(gen->prog->scop->context));
4538 if (gen->options->live_range_reordering) {
4539 sc = isl_schedule_constraints_set_conditional_validity(sc,
4540 isl_union_map_copy(gen->prog->scop->tagged_dep_flow),
4541 isl_union_map_copy(gen->prog->scop->tagged_dep_order));
4542 proximity = isl_union_map_copy(gen->prog->scop->dep_flow);
4543 validity = isl_union_map_copy(proximity);
4544 validity = isl_union_map_union(validity,
4545 isl_union_map_copy(gen->prog->scop->dep_forced));
4546 proximity = isl_union_map_union(proximity,
4547 isl_union_map_copy(gen->prog->scop->dep_false));
4548 coincidence = isl_union_map_copy(validity);
4549 coincidence = isl_union_map_subtract(coincidence,
4550 isl_union_map_copy(gen->prog->scop->independence));
4551 coincidence = isl_union_map_union(coincidence,
4552 isl_union_map_copy(gen->prog->array_order));
4553 } else {
4554 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
4555 dep = isl_union_map_copy(gen->prog->scop->dep_false);
4556 dep = isl_union_map_union(dep, dep_raw);
4557 dep = isl_union_map_coalesce(dep);
4558 proximity = isl_union_map_copy(dep);
4559 coincidence = isl_union_map_copy(dep);
4560 validity = dep;
4562 sc = isl_schedule_constraints_set_validity(sc, validity);
4563 sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
4564 sc = isl_schedule_constraints_set_proximity(sc, proximity);
4566 if (gen->options->debug->dump_schedule_constraints)
4567 isl_schedule_constraints_dump(sc);
4568 schedule = isl_schedule_constraints_compute_schedule(sc);
4569 if (gen->options->debug->dump_schedule)
4570 isl_schedule_dump(schedule);
4572 sched = select_outer_tilable_band(gen, schedule);
4574 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
4575 sched = isl_union_map_intersect_domain(sched, domain);
4576 gen->sched = sched;
4578 isl_schedule_free(schedule);
4581 /* Compute the sets of outer array elements that need to be copied in and out.
4583 * In particular, for each array that is possibly written anywhere in
4584 * gen->prog and that is visible outside the corresponding scop,
4585 * we copy out its entire extent.
4587 * Any array elements that is read without first being written needs
4588 * to be copied in. Furthermore, if there are any array elements that
4589 * are copied out, but that may not be written inside gen->prog, then
4590 * they also need to be copied in to ensure that the value after execution
4591 * is the same as the value before execution, at least for those array
4592 * elements that may have their values preserved by the scop.
4593 * In case the array elements are structures, we need to take into
4594 * account that all members of the structures need to be written
4595 * by gen->prog before we can avoid copying the data structure in.
4597 * While computing the set of array elements that are copied out but
4598 * not necessarily written, we intersect both sets with the context.
4599 * This helps in those cases where the arrays are declared with a fixed size,
4600 * while the accesses are parametric and the context assigns a fixed value
4601 * to the parameters.
4603 * If an element from a local array is read without first being written,
4604 * then there is no point in copying it in since it cannot have been
4605 * written prior to the scop. Warn about the uninitialized read instead.
4607 static void compute_copy_in_and_out(struct gpu_gen *gen)
4609 int i;
4610 isl_union_set *local;
4611 isl_union_set *may_write, *must_write;
4612 isl_union_set *copy_in, *copy_out;
4613 isl_union_set *not_written;
4614 isl_union_map *uninitialized;
4615 isl_union_map *local_uninitialized;
4617 must_write = isl_union_map_range(
4618 isl_union_map_copy(gen->prog->must_write));
4619 must_write = isl_union_set_intersect_params(must_write,
4620 isl_set_copy(gen->prog->context));
4621 may_write = isl_union_map_range(
4622 isl_union_map_copy(gen->prog->may_write));
4623 may_write = isl_union_set_intersect_params(may_write,
4624 isl_set_copy(gen->prog->context));
4625 may_write = isl_union_set_universe(may_write);
4626 may_write = isl_union_set_apply(may_write,
4627 isl_union_map_copy(gen->prog->to_outer));
4628 copy_out = isl_union_set_empty(isl_union_set_get_space(may_write));
4629 local = isl_union_set_copy(copy_out);
4631 for (i = 0; i < gen->prog->n_array; ++i) {
4632 isl_space *space;
4633 isl_set *write_i;
4634 int empty;
4636 space = isl_space_copy(gen->prog->array[i].space);
4638 if (gen->prog->array[i].local) {
4639 isl_set *set;
4641 set = isl_set_universe(space);
4642 local = isl_union_set_add_set(local, set);
4643 continue;
4646 write_i = isl_union_set_extract_set(may_write, space);
4647 empty = isl_set_plain_is_empty(write_i);
4648 isl_set_free(write_i);
4649 if (empty)
4650 continue;
4652 write_i = isl_set_copy(gen->prog->array[i].extent);
4653 copy_out = isl_union_set_add_set(copy_out, write_i);
4655 isl_union_set_free(may_write);
4657 copy_out = isl_union_set_intersect_params(copy_out,
4658 isl_set_copy(gen->prog->context));
4660 gen->prog->copy_out = isl_union_set_copy(copy_out);
4662 copy_out = isl_union_set_apply(copy_out,
4663 isl_union_map_copy(gen->prog->to_inner));
4664 copy_out = isl_union_set_intersect(copy_out,
4665 isl_union_set_copy(gen->prog->may_persist));
4666 not_written = isl_union_set_subtract(copy_out, must_write);
4668 uninitialized = isl_union_map_copy(gen->prog->scop->live_in);
4669 local_uninitialized = isl_union_map_copy(uninitialized);
4671 local = isl_union_set_apply(local,
4672 isl_union_map_copy(gen->prog->to_inner));
4673 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
4674 local);
4675 if (!isl_union_map_is_empty(local_uninitialized)) {
4676 fprintf(stderr,
4677 "possibly uninitialized reads (not copied in):\n");
4678 isl_union_map_dump(local_uninitialized);
4680 uninitialized = isl_union_map_subtract(uninitialized,
4681 local_uninitialized);
4682 copy_in = isl_union_map_range(uninitialized);
4683 copy_in = isl_union_set_union(copy_in, not_written);
4684 copy_in = isl_union_set_apply(copy_in,
4685 isl_union_map_copy(gen->prog->to_outer));
4687 gen->prog->copy_in = copy_in;
4690 /* Internal data structure for extract_access.
4691 * "next_access" points to the end of a linked list that is extended
4692 * by extract_access.
4693 * "single_expression" is set if the access expressions belong to
4694 * an expression statement (i.e., a statement without internal control).
4695 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4697 struct ppcg_extract_access_data {
4698 struct gpu_stmt_access **next_access;
4699 int single_expression;
4700 isl_union_map *any_to_outer;
4703 /* Given a tagged access relation to a single array "tagged", extract it
4704 * as a map, taking into account that the input may be empty.
4705 * If the access relation is empty, then it does not contain
4706 * any space information, so we try to recover it from the index
4707 * expression.
4708 * The space of the index expression is of the form I -> A,
4709 * with I the statement instances and A the array, or [I -> F] -> A,
4710 * with F the filters corresponding to arguments.
4711 * We first drop F, if present, obtaining I -> A.
4712 * Then we construct I -> R, with R the reference tag,
4713 * combine the two into I -> [R -> A] and uncurry to obtain
4714 * the final result [I -> R] -> A.
4715 * Note that the index expression may have a lower dimension
4716 * than that of the array, but this dimension is not used
4717 * if the access relation is empty.
4719 static __isl_give isl_map *extract_single_tagged_access(
4720 __isl_take isl_union_map *tagged, __isl_keep pet_expr *expr)
4722 int empty;
4723 isl_id *id;
4724 isl_space *space, *space2;
4725 isl_multi_pw_aff *index;
4727 empty = isl_union_map_is_empty(tagged);
4728 if (empty < 0)
4729 goto error;
4730 if (!empty)
4731 return isl_map_from_union_map(tagged);
4732 isl_union_map_free(tagged);
4734 index = pet_expr_access_get_index(expr);
4735 space = isl_multi_pw_aff_get_space(index);
4736 isl_multi_pw_aff_free(index);
4737 if (isl_space_domain_is_wrapping(space))
4738 space = isl_space_domain_factor_domain(space);
4739 space2 = isl_space_copy(space);
4740 space2 = isl_space_from_domain(isl_space_domain(space));
4741 id = pet_expr_access_get_ref_id(expr);
4742 space2 = isl_space_set_tuple_id(space2, isl_dim_out, id);
4743 space = isl_space_range_product(space2, space);
4744 space = isl_space_uncurry(space);
4746 return isl_map_empty(space);
4747 error:
4748 isl_union_map_free(tagged);
4749 return NULL;
4752 /* Extract a gpu_stmt_access from "expr", append it to the list
4753 * that ends in *data->next_access and update the end of the list.
4754 * If the access expression performs a write, then it is considered
4755 * exact only if it appears in a single expression statement and
4756 * if its may access relation is equal to its must access relation.
4758 * The combined set of may accesses may be union if member accesses
4759 * are involved, but the entire set is derived from a single reference and
4760 * therefore from a single index expression. These accesses therefore
4761 * all map to the same outer array.
4763 static int extract_access(__isl_keep pet_expr *expr, void *user)
4765 struct ppcg_extract_access_data *data = user;
4766 isl_union_map *tagged;
4767 struct gpu_stmt_access *access;
4768 isl_ctx *ctx = pet_expr_get_ctx(expr);
4769 isl_multi_pw_aff *index;
4771 access = isl_alloc_type(ctx, struct gpu_stmt_access);
4772 assert(access);
4773 access->next = NULL;
4774 access->read = pet_expr_access_is_read(expr);
4775 access->write = pet_expr_access_is_write(expr);
4776 tagged = pet_expr_access_get_tagged_may_read(expr);
4777 tagged = isl_union_map_union(tagged,
4778 pet_expr_access_get_tagged_may_write(expr));
4779 tagged = isl_union_map_apply_range(tagged,
4780 isl_union_map_copy(data->any_to_outer));
4781 if (!access->write) {
4782 access->exact_write = 1;
4783 } else if (!data->single_expression) {
4784 access->exact_write = 0;
4785 } else {
4786 isl_union_map *must, *may;
4787 may = isl_union_map_copy(tagged);
4788 may = isl_union_map_domain_factor_domain(may);
4789 must = pet_expr_access_get_must_write(expr);
4790 access->exact_write = isl_union_map_is_equal(must, may);
4791 isl_union_map_free(must);
4792 isl_union_map_free(may);
4794 index = pet_expr_access_get_index(expr);
4795 access->n_index = isl_multi_pw_aff_dim(index, isl_dim_out);
4796 isl_multi_pw_aff_free(index);
4797 access->ref_id = pet_expr_access_get_ref_id(expr);
4798 access->tagged_access = extract_single_tagged_access(tagged, expr);
4799 access->access = isl_map_copy(access->tagged_access);
4800 access->access = isl_map_domain_factor_domain(access->access);
4802 *data->next_access = access;
4803 data->next_access = &(*data->next_access)->next;
4805 if (!access->access)
4806 return -1;
4808 return 0;
4811 /* Construct a linked list of gpu_stmt_access objects,
4812 * one for each access expression in the statement body.
4813 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4815 static int pet_stmt_extract_accesses(struct gpu_stmt *stmt,
4816 __isl_keep isl_union_map *any_to_outer)
4818 struct ppcg_extract_access_data data;
4820 stmt->accesses = NULL;
4821 data.next_access = &stmt->accesses;
4822 data.single_expression =
4823 pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
4824 data.any_to_outer = any_to_outer;
4825 return pet_tree_foreach_access_expr(stmt->stmt->body,
4826 &extract_access, &data);
4829 /* Return an array of gpu_stmt representing the statements in "scop".
4831 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
4832 __isl_keep isl_set *context, __isl_keep isl_union_map *any_to_outer)
4834 int i;
4835 struct gpu_stmt *stmts;
4837 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->pet->n_stmt);
4838 if (!stmts)
4839 return NULL;
4841 for (i = 0; i < scop->pet->n_stmt; ++i) {
4842 struct gpu_stmt *s = &stmts[i];
4844 s->id = isl_set_get_tuple_id(scop->pet->stmts[i]->domain);
4845 s->stmt = scop->pet->stmts[i];
4846 if (pet_stmt_extract_accesses(s, any_to_outer) < 0)
4847 return free_stmts(stmts, i + 1);
4850 return stmts;
4853 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
4855 static __isl_give isl_printer *print_gpu(__isl_take isl_printer *p, void *user)
4857 struct gpu_gen *gen = user;
4859 return gen->print(p, gen->prog, gen->tree, &gen->types,
4860 gen->print_user);
4863 /* Generate CUDA code for "scop" and print it to "p".
4864 * After generating an AST for the transformed scop as explained below,
4865 * we call "gen->print" to print the AST in the desired output format
4866 * to "p".
4868 * If it turns out that it does not make sense to generate GPU code,
4869 * then we generate CPU code instead.
4871 * The GPU code is generated in a context where at least one
4872 * statement instance is executed. The corresponding guard (if any) is printed
4873 * around the entire generated GPU code, except for the declaration
4874 * of the arrays that are visible outside of the scop and that therefore
4875 * cannot be declared inside the body of any possible guard.
4877 * We first compute a schedule that respects the dependences
4878 * of the original program and select the outermost bands
4879 * of tilable dimensions that have at least one parallel loop.
4881 * Each of these bands B is then tiled according to "tile" sizes, resulting
4882 * in two nested bands, with a kernel marker on top
4890 * We then split off at most 2 parallel dimensions from the T band and
4891 * at most 3 parallel dimension from the P band
4896 * T1
4898 * T2
4900 * P1
4902 * P2
4904 * A filter is introduced in front of T1 that maps the domain instances
4905 * to block identifiers. Similarly, a filter is introduced in front of P1
4906 * that maps the domain instances to thread identifiers.
4908 * For each iteration of the T2 band and for each array, we compute
4909 * the array elements accessed by that iteration, construct a rectangular
4910 * box around it and shift it to the origin. The result is used
4911 * as shared memory for the array.
4913 * Copying and synchronization statements are added to this schedule tree.
4914 * In principle, these are added in front of the P1 band, but some of
4915 * them may get hoisted up to higher levels.
4917 * The entire AST is then generated from the single resulting schedule tree.
4918 * During the generation the subtrees at kernel nodes (K) are saved
4919 * aside and replaced by kernel calls. The result is printed as host code
4920 * while the saved subtrees are printed as device code.
4922 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
4923 struct gpu_gen *gen, struct ppcg_scop *scop,
4924 struct ppcg_options *options)
4926 struct gpu_prog *prog;
4927 isl_ctx *ctx;
4928 isl_set *context, *guard;
4930 if (!scop)
4931 return isl_printer_free(p);
4933 ctx = isl_printer_get_ctx(p);
4934 prog = gpu_prog_alloc(ctx, scop);
4935 if (!prog)
4936 return isl_printer_free(p);
4938 context = isl_set_copy(prog->context);
4939 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
4940 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
4942 gen->prog = prog;
4943 gen->any_parallelism = 0;
4944 compute_schedule(gen);
4946 if (!gen->any_parallelism) {
4947 isl_set_free(context);
4948 isl_set_free(guard);
4949 p = print_cpu(p, scop, options);
4950 } else {
4951 compute_copy_in_and_out(gen);
4952 gen->tree = generate_code(gen);
4953 p = ppcg_print_exposed_declarations(p, prog->scop);
4954 p = ppcg_print_guarded(p, guard, context, &print_gpu, gen);
4955 isl_ast_node_free(gen->tree);
4958 isl_union_map_free(gen->sched);
4959 isl_schedule_free(gen->schedule);
4961 gpu_prog_free(prog);
4963 return p;
4966 /* Wrapper around generate for use as a ppcg_transform callback.
4968 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
4969 struct ppcg_scop *scop, void *user)
4971 struct gpu_gen *gen = user;
4973 return generate(p, gen, scop, gen->options);
4976 /* Transform the code in the file called "input" by replacing
4977 * all scops by corresponding GPU code and write the results to "out".
4979 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
4980 struct ppcg_options *options,
4981 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
4982 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
4983 struct gpu_types *types, void *user), void *user)
4985 struct gpu_gen gen;
4986 int r;
4987 int i;
4989 gen.ctx = ctx;
4990 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
4991 gen.options = options;
4992 gen.kernel_id = 0;
4993 gen.print = print;
4994 gen.print_user = user;
4995 gen.types.n = 0;
4996 gen.types.name = NULL;
4998 if (options->debug->dump_sizes) {
4999 isl_space *space = isl_space_params_alloc(ctx, 0);
5000 gen.used_sizes = isl_union_map_empty(space);
5003 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
5005 if (options->debug->dump_sizes) {
5006 isl_union_map_dump(gen.used_sizes);
5007 isl_union_map_free(gen.used_sizes);
5010 isl_union_map_free(gen.sizes);
5011 for (i = 0; i < gen.types.n; ++i)
5012 free(gen.types.name[i]);
5013 free(gen.types.name);
5015 return r;
5018 /* Compute the set of inner array elements that may have their values
5019 * preserved by "prog". In particular, collect the array elements of
5020 * arrays that are not local to "prog" and remove those elements that
5021 * are definitely killed or definitely written by "prog".
5023 static __isl_give isl_union_set *compute_may_persist(struct gpu_prog *prog)
5025 int i;
5026 isl_union_set *may_persist, *killed;
5027 isl_union_map *must_kill;
5029 may_persist = isl_union_set_empty(isl_set_get_space(prog->context));
5030 for (i = 0; i < prog->n_array; ++i) {
5031 isl_set *extent;
5033 if (prog->array[i].local)
5034 continue;
5036 extent = isl_set_copy(prog->array[i].extent);
5037 may_persist = isl_union_set_add_set(may_persist, extent);
5040 may_persist = isl_union_set_intersect_params(may_persist,
5041 isl_set_copy(prog->context));
5042 may_persist = isl_union_set_apply(may_persist,
5043 isl_union_map_copy(prog->to_inner));
5044 must_kill = isl_union_map_copy(prog->tagged_must_kill);
5045 killed = isl_union_map_range(must_kill);
5046 must_kill = isl_union_map_copy(prog->must_write);
5047 killed = isl_union_set_union(killed, isl_union_map_range(must_kill));
5049 may_persist = isl_union_set_subtract(may_persist, killed);
5050 return may_persist;
5053 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
5055 struct gpu_prog *prog;
5056 isl_space *space;
5057 isl_map *id;
5059 if (!scop)
5060 return NULL;
5062 prog = isl_calloc_type(ctx, struct gpu_prog);
5063 assert(prog);
5065 prog->ctx = ctx;
5066 prog->scop = scop;
5067 prog->context = isl_set_copy(scop->context);
5068 prog->n_stmts = scop->pet->n_stmt;
5069 prog->any_to_outer = pet_scop_compute_outer_to_any(scop->pet);
5070 prog->any_to_outer = isl_union_map_reverse(prog->any_to_outer);
5071 space = isl_union_map_get_space(prog->any_to_outer);
5072 space = isl_space_set_from_params(space);
5073 space = isl_space_add_dims(space, isl_dim_set, 1);
5074 space = isl_space_map_from_set(space);
5075 id = isl_map_identity(space);
5076 prog->any_to_outer = isl_union_map_add_map(prog->any_to_outer, id);
5077 prog->stmts = extract_stmts(ctx, scop,
5078 prog->context, prog->any_to_outer);
5079 prog->read = isl_union_map_copy(scop->reads);
5080 prog->may_write = isl_union_map_copy(scop->may_writes);
5081 prog->must_write = isl_union_map_copy(scop->must_writes);
5082 prog->tagged_must_kill = isl_union_map_copy(scop->tagged_must_kills);
5083 prog->to_inner = pet_scop_compute_outer_to_inner(scop->pet);
5084 prog->to_outer = isl_union_map_copy(prog->to_inner);
5085 prog->to_outer = isl_union_map_reverse(prog->to_outer);
5087 if (!prog->stmts)
5088 return gpu_prog_free(prog);
5090 if (collect_array_info(prog) < 0)
5091 return gpu_prog_free(prog);
5092 prog->may_persist = compute_may_persist(prog);
5094 return prog;
5097 void *gpu_prog_free(struct gpu_prog *prog)
5099 if (!prog)
5100 return NULL;
5101 free_array_info(prog);
5102 free_stmts(prog->stmts, prog->n_stmts);
5103 isl_union_map_free(prog->any_to_outer);
5104 isl_union_map_free(prog->to_outer);
5105 isl_union_map_free(prog->to_inner);
5106 isl_union_set_free(prog->copy_in);
5107 isl_union_set_free(prog->copy_out);
5108 isl_union_map_free(prog->read);
5109 isl_union_map_free(prog->may_write);
5110 isl_union_map_free(prog->must_write);
5111 isl_union_map_free(prog->tagged_must_kill);
5112 isl_union_map_free(prog->array_order);
5113 isl_union_set_free(prog->may_persist);
5114 isl_set_free(prog->context);
5115 free(prog);
5116 return NULL;