update isl for removal of isl_div
[ppcg.git] / cuda.c
blobd6e7b1d14bc48a6959e1092300b9e8b63e2b95af
1 /*
2 * Copyright 2010-2011 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <assert.h>
12 #include <stdlib.h>
14 #include <isl/polynomial.h>
15 #include <isl/union_set.h>
16 #include <isl/aff.h>
17 #include <isl/ilp.h>
18 #include <isl/flow.h>
19 #include <isl/band.h>
20 #include <isl/schedule.h>
21 #include <isl/options.h>
22 #include <cloog/isl/cloog.h>
24 #include "cuda.h"
25 #include "cuda_common.h"
26 #include "gpucode.h"
27 #include "schedule.h"
28 #include "ppcg_options.h"
30 /* The fields stride, shift and shift_map only contain valid information
31 * if shift != NULL.
32 * If so, they express that current index is such that if you add shift,
33 * then the result is always a multiple of stride.
34 * shift_map contains the mapping
36 * i -> (i + shift)/stride
38 struct cuda_array_bound {
39 isl_int size;
40 isl_aff *lb;
42 isl_int stride;
43 isl_qpolynomial *shift;
44 isl_basic_map *shift_map;
47 struct cuda_array_info;
49 /* A group of array references in a kernel that should be handled together.
50 * If private_bound is not NULL, then it is mapped to registers.
51 * Otherwise, if shared_bound is not NULL, it is mapped to shared memory.
52 * Otherwise, it is accesses from global memory.
54 struct cuda_array_ref_group {
55 /* The references in this group access this array. */
56 struct cuda_array_info *array;
57 /* Position of this group in the list of reference groups of array. */
58 int nr;
60 /* The following fields are use during the construction of the groups.
61 * access is the combined access relation relative to the shared
62 * memory tiling.
63 * write is set if any access in the group is a write.
65 isl_map *access;
66 int write;
68 /* For each index, size and offset of piece in shared memory. */
69 struct cuda_array_bound *shared_bound;
71 /* For each index, size and offset of piece in private memory. */
72 struct cuda_array_bound *private_bound;
74 /* References in this group; point to elements of a linked list. */
75 int n_ref;
76 struct cuda_stmt_access **refs;
79 struct cuda_array_info {
80 isl_space *dim;
81 /* Element type. */
82 char *type;
83 /* Name of the array. */
84 char *name;
85 /* Number of indices. */
86 unsigned n_index;
87 /* For each index, a bound on the array in that direction. */
88 isl_pw_aff **bound;
89 /* For each index, bound[i] specialized to the current kernel. */
90 isl_pw_aff **local_bound;
92 /* All references to this array; point to elements of a linked list. */
93 int n_ref;
94 struct cuda_stmt_access **refs;
96 /* The reference groups associated to this array. */
97 int n_group;
98 struct cuda_array_ref_group **groups;
100 /* Last shared memory tile dimension that affects tile of this array. */
101 int last_shared;
102 /* Dimension at which copying to/from shared memory is printed.
103 * if >= 0, then the value is >= last_shared
104 * if -1, then the copying is done at the leaf level.
106 int print_shared_level;
109 /* Print the name of the local copy of a given group of array references.
111 static void print_array_name(FILE *out, struct cuda_array_ref_group *group)
113 int global = 0;
115 if (group->private_bound)
116 fprintf(out, "private_");
117 else if (group->shared_bound)
118 fprintf(out, "shared_");
119 else
120 global = 1;
121 fprintf(out, "%s", group->array->name);
122 if (!global && group->array->n_group > 1)
123 fprintf(out, "_%d", group->nr);
126 /* Collect all references to the given array and store pointers to them
127 * in array->refs.
129 static void collect_references(struct cuda_gen *gen,
130 struct cuda_array_info *array)
132 int i;
133 int n;
135 n = 0;
136 for (i = 0; i < gen->n_stmts; ++i) {
137 struct cuda_stmt *stmt = &gen->stmts[i];
138 struct cuda_stmt_access *access;
140 for (access = stmt->accesses; access; access = access->next) {
141 const char *name;
142 name = isl_map_get_tuple_name(access->access,
143 isl_dim_out);
144 if (name && !strcmp(array->name, name))
145 n++;
149 array->n_ref = n;
150 array->refs = isl_alloc_array(gen->ctx, struct cuda_stmt_access *, n);
151 assert(array->refs);
153 n = 0;
154 for (i = 0; i < gen->n_stmts; ++i) {
155 struct cuda_stmt *stmt = &gen->stmts[i];
156 struct cuda_stmt_access *access;
158 for (access = stmt->accesses; access; access = access->next) {
159 const char *name;
160 name = isl_map_get_tuple_name(access->access,
161 isl_dim_out);
162 if (!name || strcmp(array->name, name))
163 continue;
165 array->refs[n++] = access;
170 static struct cuda_array_bound *create_bound_list(isl_ctx *ctx, int n_index)
172 int i;
173 struct cuda_array_bound *bound;
175 bound = isl_alloc_array(ctx, struct cuda_array_bound, n_index);
176 assert(bound);
178 for (i = 0; i < n_index; ++i) {
179 isl_int_init(bound[i].size);
180 bound[i].lb = NULL;
181 isl_int_init(bound[i].stride);
182 bound[i].shift = NULL;
183 bound[i].shift_map = NULL;
186 return bound;
189 static void free_bound_list(struct cuda_array_bound *bound, int n_index)
191 int j;
193 if (!bound)
194 return;
196 for (j = 0; j < n_index; ++j) {
197 isl_int_clear(bound[j].size);
198 isl_int_clear(bound[j].stride);
199 isl_aff_free(bound[j].lb);
200 isl_qpolynomial_free(bound[j].shift);
201 isl_basic_map_free(bound[j].shift_map);
203 free(bound);
206 static struct pet_array *find_array(struct pet_scop *scop,
207 __isl_keep isl_set *accessed)
209 int i;
210 isl_id *id;
212 id = isl_set_get_tuple_id(accessed);
214 for (i = 0; i < scop->n_array; ++i) {
215 isl_id *id_i;
217 id_i = isl_set_get_tuple_id(scop->arrays[i]->extent);
218 isl_id_free(id_i);
219 if (id == id_i)
220 break;
222 isl_id_free(id);
224 return i < scop->n_array ? scop->arrays[i] : NULL;
227 /* Compute bounds on the host arrays based on the accessed elements
228 * and collect all references to the array.
230 static int extract_array_info(__isl_take isl_set *array, void *user)
232 int i;
233 struct cuda_gen *gen = (struct cuda_gen *)user;
234 const char *name;
235 int n_index;
236 isl_pw_aff **bounds;
237 isl_pw_aff **local_bounds;
238 struct pet_array *pa;
240 n_index = isl_set_dim(array, isl_dim_set);
241 name = isl_set_get_tuple_name(array);
242 bounds = isl_alloc_array(isl_set_get_ctx(array),
243 isl_pw_aff *, n_index);
244 assert(bounds);
245 local_bounds = isl_calloc_array(isl_set_get_ctx(array),
246 isl_pw_aff *, n_index);
247 assert(local_bounds);
248 gen->array[gen->n_array].dim = isl_set_get_space(array);
249 gen->array[gen->n_array].name = strdup(name);
250 gen->array[gen->n_array].n_index = n_index;
251 gen->array[gen->n_array].bound = bounds;
252 gen->array[gen->n_array].local_bound = local_bounds;
254 pa = find_array(gen->scop, array);
255 assert(pa);
257 gen->array[gen->n_array].type = strdup(pa->element_type);
259 for (i = 0; i < n_index; ++i) {
260 isl_set *dom;
261 isl_local_space *ls;
262 isl_aff *one;
263 isl_pw_aff *bound;
264 isl_set *size = i == 0 ? array : pa->extent;
266 bound = isl_set_dim_max(isl_set_copy(size), i);
267 assert(bound);
268 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
269 ls = isl_local_space_from_space(isl_set_get_space(dom));
270 one = isl_aff_zero_on_domain(ls);
271 one = isl_aff_add_constant_si(one, 1);
272 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
273 bound = isl_pw_aff_gist(bound, isl_set_copy(gen->context));
275 bounds[i] = bound;
278 collect_references(gen, &gen->array[gen->n_array]);
280 gen->n_array++;
282 isl_set_free(array);
283 return 0;
286 void collect_array_info(struct cuda_gen *gen)
288 isl_union_set *arrays;
290 arrays = isl_union_map_range(isl_union_map_copy(gen->read));
291 arrays = isl_union_set_union(arrays,
292 isl_union_map_range(isl_union_map_copy(gen->write)));
293 arrays = isl_union_set_coalesce(arrays);
295 gen->n_array = isl_union_set_n_set(arrays);
296 gen->array = isl_alloc_array(gen->ctx,
297 struct cuda_array_info, gen->n_array);
298 assert(gen->array);
299 gen->n_array = 0;
300 isl_union_set_foreach_set(arrays, &extract_array_info, gen);
301 isl_union_set_free(arrays);
304 static void free_array_info(struct cuda_gen *gen)
306 int i, j;
308 for (i = 0; i < gen->n_array; ++i) {
309 int n_index = gen->array[i].n_index;
310 free(gen->array[i].type);
311 free(gen->array[i].name);
312 for (j = 0; j < n_index; ++j) {
313 isl_pw_aff_free(gen->array[i].bound[j]);
314 isl_pw_aff_free(gen->array[i].local_bound[j]);
316 isl_space_free(gen->array[i].dim);
317 free(gen->array[i].bound);
318 free(gen->array[i].local_bound);
319 free(gen->array[i].refs);
321 free(gen->array);
324 static void declare_device_arrays(struct cuda_gen *gen)
326 int i;
328 for (i = 0; i < gen->n_array; ++i)
329 fprintf(gen->cuda.host_c, "%s *dev_%s;\n",
330 gen->array[i].type, gen->array[i].name);
331 fprintf(gen->cuda.host_c, "\n");
334 static void print_array_size(struct cuda_gen *gen, FILE *out,
335 struct cuda_array_info *array)
337 int i;
338 isl_printer *prn;
340 prn = isl_printer_to_file(gen->ctx, out);
341 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
342 for (i = 0; i < array->n_index; ++i) {
343 prn = isl_printer_print_str(prn, "(");
344 prn = isl_printer_print_pw_aff(prn, array->bound[i]);
345 prn = isl_printer_print_str(prn, ") * ");
347 prn = isl_printer_print_str(prn, "sizeof(");
348 prn = isl_printer_print_str(prn, array->type);
349 prn = isl_printer_print_str(prn, ")");
350 isl_printer_free(prn);
353 static void allocate_device_arrays(struct cuda_gen *gen)
355 int i;
357 for (i = 0; i < gen->n_array; ++i) {
358 fprintf(gen->cuda.host_c,
359 "cudaCheckReturn(cudaMalloc((void **) &dev_%s, ",
360 gen->array[i].name);
361 print_array_size(gen, gen->cuda.host_c, &gen->array[i]);
362 fprintf(gen->cuda.host_c, "));\n");
364 fprintf(gen->cuda.host_c, "\n");
367 static void free_device_arrays(struct cuda_gen *gen)
369 int i;
371 for (i = 0; i < gen->n_array; ++i)
372 fprintf(gen->cuda.host_c, "cudaCheckReturn(cudaFree(dev_%s));\n",
373 gen->array[i].name);
376 /* Check if a cuda array is a scalar. A scalar is a value that is not stored
377 * as an array or through a pointer reference, but as single data element. At
378 * the moment, scalars are represented as zero dimensional arrays.
380 static int cuda_array_is_scalar(struct cuda_array_info *array)
382 return (array->n_index == 0);
385 static void copy_arrays_to_device(struct cuda_gen *gen)
387 int i;
389 for (i = 0; i < gen->n_array; ++i) {
390 isl_space *dim;
391 isl_set *read_i;
392 int empty;
394 dim = isl_space_copy(gen->array[i].dim);
395 read_i = isl_union_set_extract_set(gen->copy_in, dim);
396 empty = isl_set_fast_is_empty(read_i);
397 isl_set_free(read_i);
398 if (empty)
399 continue;
401 fprintf(gen->cuda.host_c, "cudaCheckReturn(cudaMemcpy(dev_%s,",
402 gen->array[i].name);
404 if (cuda_array_is_scalar(&(gen->array[i])))
405 fprintf(gen->cuda.host_c, " &%s, ",
406 gen->array[i].name);
407 else
408 fprintf(gen->cuda.host_c, " %s, ", gen->array[i].name);
410 print_array_size(gen, gen->cuda.host_c, &gen->array[i]);
411 fprintf(gen->cuda.host_c, ", cudaMemcpyHostToDevice));\n");
413 fprintf(gen->cuda.host_c, "\n");
416 static void copy_arrays_from_device(struct cuda_gen *gen)
418 int i;
419 isl_union_set *write;
420 write = isl_union_map_range(isl_union_map_copy(gen->write));
422 for (i = 0; i < gen->n_array; ++i) {
423 isl_space *dim;
424 isl_set *write_i;
425 int empty;
427 dim = isl_space_copy(gen->array[i].dim);
428 write_i = isl_union_set_extract_set(write, dim);
429 empty = isl_set_fast_is_empty(write_i);
430 isl_set_free(write_i);
431 if (empty)
432 continue;
434 fprintf(gen->cuda.host_c,
435 "cudaCheckReturn(cudaMemcpy(%s, dev_%s, ",
436 gen->array[i].name, gen->array[i].name);
437 print_array_size(gen, gen->cuda.host_c, &gen->array[i]);
438 fprintf(gen->cuda.host_c, ", cudaMemcpyDeviceToHost));\n");
441 isl_union_set_free(write);
442 fprintf(gen->cuda.host_c, "\n");
445 static void read_sizes_from_file(struct cuda_gen *gen, const char *filename,
446 int *sizes, int len)
448 int i;
449 FILE *file;
451 file = fopen(filename, "r");
452 if (!file)
453 return;
455 for (i = 0; i < len; ++i)
456 if (fscanf(file, "%d", &sizes[i]) < 1)
457 break;
459 fclose(file);
462 static void reverse_list(int *list, int len)
464 int i;
465 int t;
467 for (i = 0; 2 * i < len; ++i) {
468 t = list[i];
469 list[i] = list[len - 1 - i];
470 list[len - 1 - i] = t;
474 /* Read user specified sizes from "tile.sizes", "block.sizes" and "grid.sizes"
475 * after filling in some potentially useful defaults.
477 static void read_sizes(struct cuda_gen *gen)
479 int n;
481 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
482 assert(gen->tile_size);
483 for (n = 0; n < gen->tile_len; ++n)
484 gen->tile_size[n] = gen->options->tile_size;
485 read_sizes_from_file(gen, "tile.sizes", gen->tile_size, gen->tile_len);
487 n = gen->n_parallel;
488 gen->n_block = (n <= 3) ? n : 3;
489 switch (gen->n_block) {
490 case 1:
491 gen->block_dim[0] = 512;
492 break;
493 case 2:
494 gen->block_dim[0] = 32;
495 gen->block_dim[1] = 16;
496 break;
497 default:
498 gen->block_dim[0] = 32;
499 gen->block_dim[1] = 4;
500 gen->block_dim[2] = 4;
501 break;
503 read_sizes_from_file(gen, "block.sizes", gen->block_dim, gen->n_block);
504 reverse_list(gen->block_dim, gen->n_block);
506 gen->n_grid = (n <= 2) ? n : 2;
507 switch (gen->n_grid) {
508 case 1:
509 gen->grid_dim[0] = 32768;
510 break;
511 default:
512 gen->grid_dim[0] = 256;
513 gen->grid_dim[1] = 256;
514 break;
516 read_sizes_from_file(gen, "grid.sizes", gen->grid_dim, gen->n_grid);
517 reverse_list(gen->grid_dim, gen->n_grid);
520 static void free_stmts(struct cuda_stmt *stmts, int n)
522 int i;
524 for (i = 0; i < n; ++i) {
525 struct cuda_stmt_access *access, *next;
527 for (access = stmts[i].accesses; access; access = next) {
528 next = access->next;
529 isl_map_free(access->access);
530 free(access);
533 isl_set_free(stmts[i].domain);
535 free(stmts);
538 void clear_cuda_gen(struct cuda_gen *gen)
540 free_stmts(gen->stmts, gen->n_stmts);
541 free_array_info(gen);
542 isl_set_free(gen->context);
543 isl_union_set_free(gen->copy_in);
544 isl_union_map_free(gen->sched);
545 isl_union_map_free(gen->read);
546 isl_union_map_free(gen->write);
549 static void print_reverse_list(FILE *out, int len, int *list)
551 int i;
553 for (i = 0; i < len; ++i) {
554 if (i)
555 fprintf(out, ", ");
556 fprintf(out, "%d", list[len - 1 - i]);
560 static void print_kernel_launch(struct cuda_gen *gen,
561 __isl_keep isl_union_set *arrays)
563 int i;
564 int first = 1;
565 unsigned nparam;
566 isl_space *dim;
568 print_indent(gen->code.dst, gen->code.indent);
569 fprintf(gen->code.dst, "kernel%d <<<k%d_dimGrid, k%d_dimBlock>>> (",
570 gen->kernel_id, gen->kernel_id, gen->kernel_id);
571 fprintf(gen->cuda.kernel_c, "__global__ void kernel%d(",
572 gen->kernel_id);
573 fprintf(gen->cuda.kernel_h, "__global__ void kernel%d(",
574 gen->kernel_id);
576 for (i = 0; i < gen->n_array; ++i) {
577 isl_space *dim;
578 isl_set *arr;
579 int empty;
581 dim = isl_space_copy(gen->array[i].dim);
582 arr = isl_union_set_extract_set(arrays, dim);
583 empty = isl_set_fast_is_empty(arr);
584 isl_set_free(arr);
585 if (empty)
586 continue;
588 if (!first) {
589 fprintf(gen->code.dst, ", ");
590 fprintf(gen->cuda.kernel_c, ", ");
591 fprintf(gen->cuda.kernel_h, ", ");
594 fprintf(gen->code.dst, "dev_%s", gen->array[i].name);
595 fprintf(gen->cuda.kernel_c, "%s *%s",
596 gen->array[i].type, gen->array[i].name);
597 fprintf(gen->cuda.kernel_h, "%s *%s",
598 gen->array[i].type, gen->array[i].name);
600 first = 0;
603 dim = isl_union_set_get_space(arrays);
604 nparam = isl_space_dim(dim, isl_dim_param);
605 for (i = 0; i < nparam; ++i) {
606 const char *name = isl_space_get_dim_name(dim, isl_dim_param, i);
607 if (!first) {
608 fprintf(gen->code.dst, ", ");
609 fprintf(gen->cuda.kernel_c, ", ");
610 fprintf(gen->cuda.kernel_h, ", ");
612 fprintf(gen->code.dst, "%s", name);
613 fprintf(gen->cuda.kernel_c, "int %s", name);
614 fprintf(gen->cuda.kernel_h, "int %s", name);
615 first = 0;
617 isl_space_free(dim);
619 for (i = 0; i < gen->tile_first; ++i) {
620 if (!first) {
621 fprintf(gen->code.dst, ", ");
622 fprintf(gen->cuda.kernel_c, ", ");
623 fprintf(gen->cuda.kernel_h, ", ");
625 fprintf(gen->code.dst, "h%d", i);
626 fprintf(gen->cuda.kernel_c, "int h%d", i);
627 fprintf(gen->cuda.kernel_h, "int h%d", i);
628 first = 0;
631 fprintf(gen->code.dst, ");\n");
632 fprintf(gen->cuda.kernel_c, ")\n");
633 fprintf(gen->cuda.kernel_h, ");\n");
635 fprintf(gen->code.dst, "cudaCheckKernel();\n");
638 /* Construct a map from a domain of dimensionality "len"
639 * to a domain of dimensionality "len" + "tile_len" that tiles
640 * the "tile_len" coordinates starting at "first".
641 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
642 * "dim" prescribes the parameters.
644 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
645 int first, int tile_len, int *tile_size)
647 int i;
648 isl_int v;
649 isl_basic_map *bmap;
650 isl_constraint *c;
651 isl_local_space *ls;
653 isl_int_init(v);
655 dim = isl_space_add_dims(dim, isl_dim_in, len);
656 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
657 bmap = isl_basic_map_universe(isl_space_copy(dim));
658 ls = isl_local_space_from_space(dim);
660 for (i = 0; i < len - tile_len; ++i) {
661 int j = i < first ? i : i + tile_len;
662 int k = i < first ? i : i + 2 * tile_len;
664 c = isl_equality_alloc(isl_local_space_copy(ls));
665 isl_int_set_si(v, -1);
666 isl_constraint_set_coefficient(c, isl_dim_in, j, v);
667 isl_int_set_si(v, 1);
668 isl_constraint_set_coefficient(c, isl_dim_out, k, v);
669 bmap = isl_basic_map_add_constraint(bmap, c);
672 for (i = 0; i < tile_len; ++i) {
673 c = isl_equality_alloc(isl_local_space_copy(ls));
674 isl_int_set_si(v, -1);
675 isl_constraint_set_coefficient(c, isl_dim_in, first + i, v);
676 isl_int_set_si(v, tile_size[i]);
677 isl_constraint_set_coefficient(c, isl_dim_out, first + i, v);
678 isl_int_set_si(v, 1);
679 isl_constraint_set_coefficient(c, isl_dim_out,
680 first + i + tile_len, v);
681 bmap = isl_basic_map_add_constraint(bmap, c);
683 c = isl_inequality_alloc(isl_local_space_copy(ls));
684 isl_int_set_si(v, 1);
685 isl_constraint_set_coefficient(c, isl_dim_out,
686 first + i + tile_len, v);
687 bmap = isl_basic_map_add_constraint(bmap, c);
689 c = isl_inequality_alloc(isl_local_space_copy(ls));
690 isl_int_set_si(v, -1);
691 isl_constraint_set_coefficient(c, isl_dim_out,
692 first + i + tile_len, v);
693 isl_int_set_si(v, tile_size[i] - 1);
694 isl_constraint_set_constant(c, v);
695 bmap = isl_basic_map_add_constraint(bmap, c);
698 isl_local_space_free(ls);
699 isl_int_clear(v);
701 return isl_map_from_basic_map(bmap);
704 /* Construct a map from a domain of dimensionality "len"
705 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
706 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
707 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
708 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
709 * that are projected out at the end.
710 * "dim" prescribes the parameters.
712 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
713 int first, int wrap_len, int *wrap_size)
715 int i;
716 isl_basic_map *bmap;
717 isl_constraint *c;
718 isl_local_space *ls;
720 dim = isl_space_add_dims(dim, isl_dim_in, len);
721 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
722 bmap = isl_basic_map_universe(isl_space_copy(dim));
723 ls = isl_local_space_from_space(dim);
725 for (i = 0; i < len; ++i) {
726 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
728 c = isl_equality_alloc(isl_local_space_copy(ls));
729 isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
730 isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
731 bmap = isl_basic_map_add_constraint(bmap, c);
734 for (i = 0; i < wrap_len; ++i) {
735 c = isl_equality_alloc(isl_local_space_copy(ls));
736 isl_constraint_set_coefficient_si(c, isl_dim_out,
737 first + i, -1);
738 isl_constraint_set_coefficient_si(c, isl_dim_out,
739 first + wrap_len + i, 1);
740 isl_constraint_set_coefficient_si(c, isl_dim_out,
741 first + 2 * wrap_len + i, wrap_size[i]);
742 bmap = isl_basic_map_add_constraint(bmap, c);
744 c = isl_inequality_alloc(isl_local_space_copy(ls));
745 isl_constraint_set_coefficient_si(c, isl_dim_out,
746 first + wrap_len + i, 1);
747 bmap = isl_basic_map_add_constraint(bmap, c);
749 c = isl_inequality_alloc(isl_local_space_copy(ls));
750 isl_constraint_set_coefficient_si(c, isl_dim_out,
751 first + wrap_len + i, -1);
752 isl_constraint_set_constant_si(c, wrap_size[i] - 1);
753 bmap = isl_basic_map_add_constraint(bmap, c);
756 isl_local_space_free(ls);
758 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
759 first + 2 * wrap_len, wrap_len);
761 return isl_map_from_basic_map(bmap);
764 /* Add "n" parameters named prefix%d.
766 static __isl_give isl_set *add_params( __isl_take isl_set *set,
767 int n, const char *prefix)
769 int i;
770 unsigned nparam;
771 char name[20];
773 nparam = isl_set_dim(set, isl_dim_param);
774 set = isl_set_add_dims(set, isl_dim_param, n);
776 for (i = 0; i < n; ++i) {
777 snprintf(name, sizeof(name), "%s%d", prefix, i);
778 set = isl_set_set_dim_name(set, isl_dim_param,
779 nparam + i, name);
782 return set;
785 /* Equate the "n" dimensions of "set" starting at "first" to
786 * freshly created parameters named prefix%d.
788 static __isl_give isl_set *parametrize(__isl_take isl_set *set,
789 int first, int n, const char *prefix)
791 int i;
792 unsigned nparam;
793 isl_int v;
794 isl_space *dim;
795 isl_basic_set *bset;
796 isl_constraint *c;
797 isl_local_space *ls;
799 nparam = isl_set_dim(set, isl_dim_param);
801 set = add_params(set, n, prefix);
803 dim = isl_set_get_space(set);
804 bset = isl_basic_set_universe(isl_space_copy(dim));
805 ls = isl_local_space_from_space(dim);
807 isl_int_init(v);
809 for (i = 0; i < n; ++i) {
810 c = isl_equality_alloc(isl_local_space_copy(ls));
811 isl_int_set_si(v, -1);
812 isl_constraint_set_coefficient(c, isl_dim_param, nparam + i, v);
813 isl_int_set_si(v, 1);
814 isl_constraint_set_coefficient(c, isl_dim_set, first + i, v);
815 bset = isl_basic_set_add_constraint(bset, c);
818 isl_int_clear(v);
819 isl_local_space_free(ls);
821 return isl_set_intersect(set, isl_set_from_basic_set(bset));
824 static __isl_give isl_set *parametrization(__isl_take isl_space *dim,
825 int len, int first, int n, const char *prefix)
827 isl_set *set;
829 dim = isl_space_add_dims(dim, isl_dim_set, len);
830 set = isl_set_universe(dim);
832 return parametrize(set, first, n, prefix);
835 /* Tile the B loops over the tile sizes and then tile/wrap
836 * the T1 loops over the blocks.
838 static __isl_give isl_union_map *tile_schedule(struct cuda_gen *gen,
839 __isl_take isl_union_map *sched)
841 isl_space *dim;
842 isl_map *tiling, *block_tiling;
844 dim = isl_union_map_get_space(sched);
845 tiling = tile(isl_space_copy(dim), gen->untiled_len,
846 gen->tile_first, gen->tile_len, gen->tile_size);
848 if (gen->options->wrap)
849 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
850 gen->tile_first, gen->n_grid, gen->grid_dim);
851 else
852 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
853 gen->tile_first, gen->n_grid, gen->grid_dim);
855 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
857 tiling = isl_map_apply_range(tiling, block_tiling);
859 sched = isl_union_map_apply_range(sched,
860 isl_union_map_from_map(tiling));
862 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
864 return sched;
867 static __isl_give isl_union_map *parametrize_tiled_schedule(
868 struct cuda_gen *gen, __isl_take isl_union_map *sched)
870 isl_space *dim;
871 isl_set *par;
873 dim = isl_union_map_get_space(sched);
874 par = parametrization(dim, gen->tiled_len, 0, gen->tile_first, "h");
875 sched = isl_union_map_intersect_range(sched,
876 isl_union_set_from_set(par));
878 dim = isl_union_map_get_space(sched);
879 par = parametrization(dim, gen->tiled_len,
880 gen->tile_first + gen->n_grid, gen->n_grid, "b");
881 sched = isl_union_map_intersect_range(sched,
882 isl_union_set_from_set(par));
884 return sched;
887 /* Tile/wrap the P1 loops over the threads.
889 static __isl_give isl_union_map *thread_tile_schedule(struct cuda_gen *gen,
890 __isl_take isl_union_map *sched)
892 isl_space *dim;
893 isl_map *tiling;
894 isl_set *par;
896 dim = isl_union_map_get_space(sched);
898 if (gen->options->wrap)
899 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
900 gen->shared_len, gen->n_block, gen->block_dim);
901 else
902 tiling = tile(isl_space_copy(dim), gen->tiled_len,
903 gen->shared_len, gen->n_block, gen->block_dim);
904 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
906 sched = isl_union_map_apply_range(sched,
907 isl_union_map_from_map(tiling));
909 par = parametrization(dim, gen->thread_tiled_len,
910 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
911 gen->n_block, "t");
912 sched = isl_union_map_intersect_range(sched,
913 isl_union_set_from_set(par));
915 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
917 return sched;
920 /* If the user asked for it, scale the shared memory tile loops
921 * (T1P and T2) of "sched" by gen->tile_size[i].
922 * If we are not performing "wrapping", then additionally scale the T1P
923 * loops by gen->grid_dim[i].
925 static __isl_give isl_union_map *scale_tile_loops(struct cuda_gen *gen,
926 __isl_take isl_union_map *sched)
928 int i;
929 isl_space *dim;
930 isl_basic_map *scale;
931 isl_constraint *c;
932 isl_local_space *ls;
934 if (!gen->options->scale_tile_loops)
935 return sched;
937 dim = isl_union_map_get_space(sched);
938 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
939 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
940 scale = isl_basic_map_universe(isl_space_copy(dim));
941 ls = isl_local_space_from_space(dim);
943 for (i = 0; i < gen->tiled_len; ++i) {
944 int f = 1;
946 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
947 f = gen->tile_size[i - gen->tile_first];
948 if (!gen->options->wrap)
949 f *= gen->grid_dim[i - gen->tile_first];
950 } else if (i >= gen->tile_first + gen->n_grid &&
951 i < gen->tile_first + gen->n_grid + gen->tile_len) {
952 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
955 c = isl_equality_alloc(isl_local_space_copy(ls));
956 isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
957 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
958 scale = isl_basic_map_add_constraint(scale, c);
961 isl_local_space_free(ls);
963 sched = isl_union_map_apply_range(sched,
964 isl_union_map_from_map(isl_map_from_basic_map(scale)));
966 return sched;
969 /* If we are not performing "wrapping" and if the user asked for it,
970 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
972 static __isl_give isl_union_map *scale_thread_tile_loops(struct cuda_gen *gen,
973 __isl_take isl_union_map *sched)
975 int i;
976 isl_space *dim;
977 isl_basic_map *scale;
978 isl_constraint *c;
979 isl_local_space *ls;
981 if (gen->options->wrap)
982 return sched;
983 if (!gen->options->scale_tile_loops)
984 return sched;
986 dim = isl_union_map_get_space(sched);
987 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
988 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
989 scale = isl_basic_map_universe(isl_space_copy(dim));
990 ls = isl_local_space_from_space(dim);
992 for (i = 0; i < gen->thread_tiled_len; ++i) {
993 int f = 1;
995 if (i >= gen->shared_len &&
996 i < gen->shared_len + gen->n_block)
997 f = gen->block_dim[i - gen->shared_len];
999 c = isl_equality_alloc(isl_local_space_copy(ls));
1000 isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1001 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1002 scale = isl_basic_map_add_constraint(scale, c);
1005 isl_local_space_free(ls);
1007 sched = isl_union_map_apply_range(sched,
1008 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1010 return sched;
1013 /* If we are not performing "wrapping" and if the user asked for it,
1014 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1016 static __isl_give isl_union_map *scale_access_tile_loops(struct cuda_gen *gen,
1017 __isl_take isl_union_map *sched, int len, int first, int n_tile)
1019 int i;
1020 isl_space *dim;
1021 isl_basic_map *scale;
1022 isl_constraint *c;
1023 isl_local_space *ls;
1025 if (gen->options->wrap)
1026 return sched;
1027 if (!gen->options->scale_tile_loops)
1028 return sched;
1030 dim = isl_union_map_get_space(sched);
1031 dim = isl_space_add_dims(dim, isl_dim_in, len);
1032 dim = isl_space_add_dims(dim, isl_dim_out, len);
1033 scale = isl_basic_map_universe(isl_space_copy(dim));
1034 ls = isl_local_space_from_space(dim);
1036 for (i = 0; i < len; ++i) {
1037 int f = 1;
1039 if (i >= first && i < first + n_tile)
1040 f = gen->block_dim[i - first];
1042 c = isl_equality_alloc(isl_local_space_copy(ls));
1043 isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1044 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1045 scale = isl_basic_map_add_constraint(scale, c);
1048 isl_local_space_free(ls);
1050 sched = isl_union_map_apply_range(sched,
1051 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1053 return sched;
1056 /* If print_user_stmt is set, we want to print the statements ourselves,
1057 * instead of relying on the C preprocessor. If so, we need to use
1058 * the stop option so that the domains will be saved on the statement
1059 * nodes.
1061 static void print_cloog_shared_body(struct cuda_gen *gen,
1062 __isl_keep isl_set *context, __isl_keep isl_union_map *sched, int len,
1063 void (*print_user_stmt)(struct gpucode_info *info,
1064 struct clast_user_stmt *s),
1065 int first_unroll)
1067 int i;
1068 CloogOptions *options;
1069 CloogDomain *cloog_context;
1070 CloogUnionDomain *ud;
1071 CloogInput *input;
1072 struct clast_stmt *stmt;
1073 char name[20];
1075 sched = isl_union_map_copy(sched);
1076 sched = isl_union_map_align_params(sched, isl_set_get_space(context));
1078 options = cloog_options_malloc(gen->state);
1079 options->language = LANGUAGE_C;
1080 options->strides = 1;
1081 options->sh = 1;
1082 options->f = len;
1083 options->l = -1;
1084 options->override = 1;
1085 options->save_domains = 1;
1086 options->noscalars = 1;
1087 options->first_unroll = first_unroll;
1089 ud = cloog_union_domain_from_isl_union_map(sched);
1090 for (i = 0; i < len; ++i) {
1091 snprintf(name, sizeof(name), "c%d", i);
1092 ud = cloog_union_domain_set_name(ud, CLOOG_SCAT, i, name);
1094 cloog_context = cloog_domain_from_isl_set(isl_set_copy(context));
1095 input = cloog_input_alloc(cloog_context, ud);
1097 stmt = cloog_clast_create_from_input(input, options);
1099 gen->stmt_code.indent = gen->kernel_code.indent;
1100 gen->stmt_code.dst = gen->cuda.kernel_c;
1101 gen->stmt_code.print_user_stmt = print_user_stmt;
1102 gen->stmt_code.print_user_stmt_list = NULL;
1103 gen->stmt_code.print_for_head = NULL;
1104 gen->stmt_code.print_for_foot = NULL;
1105 gen->stmt_code.user = gen;
1106 gpu_print_host_stmt(&gen->stmt_code, stmt);
1108 cloog_clast_free(stmt);
1109 cloog_options_free(options);
1112 /* Add "len" parameters p[i] called prefix%d,
1113 * with bounds to 0 <= p[i] < size[i].
1115 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1116 int len, int *size, const char *prefix)
1118 int i;
1119 unsigned nparam;
1120 isl_int v;
1121 isl_space *dim;
1122 isl_basic_set *bset;
1123 isl_constraint *c;
1124 isl_local_space *ls;
1125 char name[20];
1127 nparam = isl_set_dim(set, isl_dim_param);
1128 set = isl_set_add_dims(set, isl_dim_param, len);
1130 for (i = 0; i < len; ++i) {
1131 snprintf(name, sizeof(name), "%s%d", prefix, i);
1132 set = isl_set_set_dim_name(set, isl_dim_param,
1133 nparam + i, name);
1136 dim = isl_set_get_space(set);
1137 bset = isl_basic_set_universe(isl_space_copy(dim));
1138 ls = isl_local_space_from_space(dim);
1140 isl_int_init(v);
1142 for (i = 0; i < len; ++i) {
1143 c = isl_inequality_alloc(isl_local_space_copy(ls));
1144 isl_int_set_si(v, 1);
1145 isl_constraint_set_coefficient(c, isl_dim_param, nparam + i, v);
1146 bset = isl_basic_set_add_constraint(bset, c);
1148 c = isl_inequality_alloc(isl_local_space_copy(ls));
1149 isl_int_set_si(v, -1);
1150 isl_constraint_set_coefficient(c, isl_dim_param, nparam + i, v);
1151 isl_int_set_si(v, size[i] - 1);
1152 isl_constraint_set_constant(c, v);
1153 bset = isl_basic_set_add_constraint(bset, c);
1156 isl_int_clear(v);
1157 isl_local_space_free(ls);
1159 return isl_set_intersect(set, isl_set_from_basic_set(bset));
1162 static void print_shared_body(struct cuda_gen *gen,
1163 __isl_keep isl_set *shared_domain, __isl_keep isl_union_map *sched,
1164 int len, void (*print_user_stmt)(struct gpucode_info *info,
1165 struct clast_user_stmt *s),
1166 int first_unroll)
1168 isl_set *context;
1170 context = isl_set_copy(shared_domain);
1171 context = parametrize(context, 0, gen->shared_len, "g");
1172 context = isl_set_project_out(context, isl_dim_set, 0, gen->shared_len);
1173 context = add_bounded_parameters(context,
1174 gen->n_block, gen->block_dim, "t");
1176 print_cloog_shared_body(gen, context, sched, len, print_user_stmt,
1177 first_unroll);
1179 isl_set_free(context);
1182 /* Given a tile of an array, construct a map that maps each element
1183 * of the tile to a copy of the tile shifted to the origin
1184 * (based on the lower bounds in group->private_bound or group->shared_bound).
1185 * If any of the indices is strided, then {private,shared}_bound[i].shift_map
1186 * is applied to the index first.
1187 * The domain of the resulting map is "access",
1188 * while the range space is anonymous.
1190 static __isl_give isl_map *shift_access(__isl_take isl_set *access,
1191 struct cuda_array_ref_group *group)
1193 int i;
1194 isl_space *dim;
1195 isl_basic_set *bset;
1196 isl_basic_map *bmap;
1197 isl_aff *lb;
1198 isl_basic_set *offset;
1199 isl_basic_map *shift;
1200 isl_basic_map *pre_shift;
1201 isl_map *sched;
1202 const char *name;
1203 struct cuda_array_bound *bounds;
1204 int n_index = group->array->n_index;
1206 bounds = group->private_bound;
1207 if (!bounds)
1208 bounds = group->shared_bound;
1210 dim = isl_set_get_space(access);
1211 dim = isl_space_drop_dims(dim, isl_dim_set, 0, n_index);
1212 offset = isl_basic_set_universe(dim);
1213 for (i = 0; i < n_index; ++i) {
1214 lb = isl_aff_copy(bounds[i].lb);
1215 bmap = isl_basic_map_from_aff(lb);
1216 bset = isl_basic_map_range(bmap);
1217 offset = isl_basic_set_flat_product(offset, bset);
1219 offset = isl_basic_set_neg(offset);
1221 dim = isl_space_map_from_set(isl_set_get_space(access));
1222 shift = isl_basic_map_identity(dim);
1223 shift = isl_basic_map_set_tuple_name(shift, isl_dim_out, NULL);
1225 bset = isl_basic_set_universe(isl_set_get_space(access));
1226 bmap = isl_basic_map_from_domain_and_range(bset, offset);
1228 shift = isl_basic_map_sum(shift, bmap);
1230 dim = isl_set_get_space(access);
1231 dim = isl_space_drop_dims(dim, isl_dim_set, 0, n_index);
1232 dim = isl_space_map_from_set(dim);
1233 pre_shift = isl_basic_map_universe(isl_space_copy(dim));
1234 dim = isl_space_add_dims(dim, isl_dim_in, 1);
1235 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1236 for (i = 0; i < n_index; ++i) {
1237 if (!bounds[i].shift_map)
1238 bmap = isl_basic_map_identity(isl_space_copy(dim));
1239 else
1240 bmap = isl_basic_map_copy(bounds[i].shift_map);
1241 pre_shift = isl_basic_map_flat_product(pre_shift, bmap);
1243 isl_space_free(dim);
1244 name = isl_basic_map_get_tuple_name(shift, isl_dim_in);
1245 pre_shift = isl_basic_map_set_tuple_name(pre_shift, isl_dim_in, name);
1246 pre_shift = isl_basic_map_set_tuple_name(pre_shift, isl_dim_out, name);
1247 shift = isl_basic_map_apply_range(pre_shift, shift);
1249 sched = isl_map_from_basic_map(shift);
1250 sched = isl_map_intersect_domain(sched, access);
1252 return sched;
1255 /* Construct a schedule for iterating over all elements in the given
1256 * piece of an array. The schedule iterates over a copy of the piece
1257 * that is shifted to the origin.
1258 * We subsequently also perform the tiling/wrapping over the threads.
1260 * In particular, we tile the final iterators so that the final thread
1261 * dimension runs over the final array dimension.
1262 * However, if those final iterators have only a single iteration,
1263 * we try to tile earlier iterators instead.
1265 static __isl_give isl_union_map *access_schedule(struct cuda_gen *gen,
1266 __isl_take isl_set *access, struct cuda_array_ref_group *group)
1268 isl_space *dim;
1269 isl_map *sched;
1270 isl_union_map *usched;
1271 isl_map *tiling;
1272 isl_set *par;
1273 unsigned nvar = isl_set_dim(access, isl_dim_set);
1274 int n_tile;
1275 int first;
1277 sched = shift_access(access, group);
1279 n_tile = gen->n_block;
1280 if (n_tile > nvar) {
1281 int i;
1282 sched = isl_map_insert_dims(sched,
1283 isl_dim_out, 0, n_tile - nvar);
1284 for (i = 0; i < n_tile - nvar; ++i)
1285 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1286 nvar = n_tile;
1289 first = nvar - n_tile;
1291 for (; first > 0; first --)
1292 if (!isl_map_plain_is_fixed(sched, isl_dim_out,
1293 first + n_tile - 1, NULL))
1294 break;
1296 dim = isl_map_get_space(sched);
1297 dim = isl_space_params(dim);
1298 if (gen->options->wrap)
1299 tiling = wrap(isl_space_copy(dim), nvar, first,
1300 n_tile, gen->block_dim);
1301 else
1302 tiling = tile(isl_space_copy(dim), nvar, first,
1303 n_tile, gen->block_dim);
1304 sched = isl_map_apply_range(sched, tiling);
1306 par = parametrization(dim, nvar + n_tile, first + n_tile, n_tile, "t");
1307 usched = isl_union_map_from_map(sched);
1308 usched = isl_union_map_intersect_range(usched,
1309 isl_union_set_from_set(par));
1311 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1312 first, n_tile);
1314 return usched;
1317 static void print_shared_access(struct cuda_gen *gen,
1318 __isl_keep isl_set *shared_domain, __isl_take isl_set *access,
1319 const char *type, struct cuda_array_ref_group *group)
1321 const char *array_name;
1322 char *name;
1323 isl_ctx *ctx;
1324 isl_union_map *sched;
1325 unsigned nvar = isl_set_dim(access, isl_dim_set);
1326 int n_tile;
1328 ctx = isl_set_get_ctx(access);
1329 array_name = isl_set_get_tuple_name(access);
1330 name = isl_alloc_array(ctx, char,
1331 strlen(type) + sizeof("_shared_") + strlen(array_name) + 20);
1332 if (group->array->n_group > 1)
1333 sprintf(name, "%s_shared_%s_%d", type, array_name, group->nr);
1334 else
1335 sprintf(name, "%s_shared_%s", type, array_name);
1336 access = isl_set_set_tuple_name(access, name);
1337 free(name);
1339 sched = access_schedule(gen, access, group);
1341 n_tile = gen->n_block;
1342 if (n_tile > nvar)
1343 n_tile = nvar;
1345 print_shared_body(gen, shared_domain, sched, nvar + n_tile, NULL, -1);
1347 isl_union_map_free(sched);
1350 /* Return the union of all read (read = 1) and/or write (write = 1)
1351 * access relations in the group.
1353 static __isl_give isl_union_map *group_access_relation(
1354 struct cuda_array_ref_group *group, int read, int write)
1356 int i;
1357 isl_union_map *access;
1359 access = isl_union_map_empty(isl_map_get_space(group->access));
1360 for (i = 0; i < group->n_ref; ++i) {
1361 isl_map *map_i;
1363 if (!((read && group->refs[i]->read) ||
1364 (write && group->refs[i]->write)))
1365 continue;
1366 map_i = isl_map_copy(group->refs[i]->access);
1367 access = isl_union_map_union(access,
1368 isl_union_map_from_map(map_i));
1371 return access;
1374 /* Check that none of the shared memory tiles involve any strides.
1376 static int no_strides(struct cuda_array_ref_group *group)
1378 int i;
1379 int n_index = group->array->n_index;
1381 for (i = 0; i < n_index; ++i)
1382 if (group->shared_bound[i].shift)
1383 return 0;
1385 return 1;
1388 /* Return a set containing the values of the given index i
1389 * of the elements in the array tile in global memory that corresponds
1390 * to the shared memory copy.
1391 * In particular, if a is the index, we return a set with constraints
1393 * tile_offset <= a <= tile_offset + tile_size - 1
1395 * and
1397 * 0 <= a <= array_size - 1
1400 static __isl_give isl_set *group_tile_dim(struct cuda_array_ref_group *group,
1401 int i)
1403 isl_basic_set *tile;
1404 isl_aff *aff;
1405 isl_constraint *c;
1406 isl_local_space *ls;
1407 isl_pw_aff *bound;
1408 isl_set *dom;
1409 isl_set *tile_set;
1411 aff = isl_aff_copy(group->shared_bound[i].lb);
1412 aff = isl_aff_add_dims(aff, isl_dim_in, 1);
1413 ls = isl_aff_get_domain_local_space(aff);
1414 aff = isl_aff_neg(aff);
1415 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1416 c = isl_inequality_from_aff(isl_aff_copy(aff));
1417 tile = isl_basic_set_from_constraint(c);
1419 aff = isl_aff_neg(aff);
1420 aff = isl_aff_add_constant(aff, group->shared_bound[i].size);
1421 aff = isl_aff_add_constant_si(aff, -1);
1422 c = isl_inequality_from_aff(aff);
1423 tile = isl_basic_set_add_constraint(tile, c);
1425 aff = isl_aff_zero_on_domain(ls);
1426 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1427 c = isl_inequality_from_aff(aff);
1428 tile = isl_basic_set_add_constraint(tile, c);
1430 bound = isl_pw_aff_copy(group->array->bound[i]);
1431 bound = isl_pw_aff_add_dims(bound, isl_dim_in, 1);
1432 ls = isl_local_space_from_space(isl_pw_aff_get_domain_space(bound));
1433 aff = isl_aff_zero_on_domain(ls);
1434 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1435 aff = isl_aff_add_constant_si(aff, 1);
1436 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
1438 tile_set = isl_pw_aff_ge_set(bound, isl_pw_aff_alloc(dom, aff));
1439 tile_set = isl_set_align_params(tile_set, isl_basic_set_get_space(tile));
1440 tile_set = isl_set_intersect(tile_set, isl_set_from_basic_set(tile));
1442 return tile_set;
1445 /* Return a set containing the elements in the array tile in
1446 * global memory that corresponds to the shared memory copy.
1448 static __isl_give isl_set *group_tile(struct cuda_array_ref_group *group)
1450 int i;
1451 int n_index = group->array->n_index;
1452 isl_set *tile;
1454 tile = group_tile_dim(group, 0);
1455 for (i = 1; i < n_index; ++i) {
1456 isl_set *tile_i;
1458 tile_i = group_tile_dim(group, i);
1459 tile = isl_set_flat_product(tile, tile_i);
1462 tile = isl_set_set_tuple_name(tile, group->array->name);
1464 return tile;
1467 /* Print code for reading into or writing from shared memory
1468 * the given array reference group.
1470 * sched maps the original iteration domains to the shared memory tile loops.
1472 * If we are performing a read from global memory to shared memory,
1473 * if the array involved is not a scalar and if the definition of the
1474 * shared memory tiles does not involve any strides, then we copy
1475 * the entire tile to shared memory. This may result in some extra
1476 * elements getting copied, but it should lead to simpler code
1477 * (which means that fewer registers may be needed) and less divergence.
1479 * Otherwise, we only copy the elements that will be read or have been written
1480 * in the kernel.
1482 * Note that the absence of stride requirement can easily be lifted.
1483 * We would just need to add constraints of the form
1485 * shift + a = stride * alpha
1487 static int print_group_shared_accesses(struct cuda_gen *gen,
1488 struct cuda_array_ref_group *group, const char *type,
1489 __isl_keep isl_set *shared_domain, __isl_keep isl_union_map *sched)
1491 int read;
1492 isl_union_map *access;
1493 isl_union_set *uset;
1494 isl_set *access_set;
1496 if (group->private_bound)
1497 return 0;
1498 if (!group->shared_bound)
1499 return 0;
1501 read = !strcmp(type, "read");
1503 access = group_access_relation(group, read, !read);
1504 access = isl_union_map_apply_domain(access, isl_union_map_copy(sched));
1505 uset = isl_union_map_range(access);
1507 if (isl_union_set_is_empty(uset)) {
1508 isl_union_set_free(uset);
1509 return 0;
1512 if (read && group->array->n_index > 0 && no_strides(group)) {
1513 isl_union_set_free(uset);
1514 access_set = group_tile(group);
1515 print_shared_access(gen, shared_domain, access_set,
1516 type, group);
1517 return 1;
1520 access_set = isl_set_from_union_set(uset);
1521 access_set = isl_set_coalesce(access_set);
1523 print_shared_access(gen, shared_domain, access_set, type, group);
1525 return 1;
1528 /* Print code for reading into or writing from shared memory at
1529 * the given level (-1 for innermost).
1531 * If we are not printing at the innermost level, then the dimensionality
1532 * of shared_domain may be smaller than gen->shared_len.
1533 * As the rest of the code assumes that the domain of access has
1534 * gen->shared_len dimensions, we therefore may need to embed this domain
1535 * in a higher dimensional space after intersection with shared_domain.
1537 static void print_shared_accesses(struct cuda_gen *gen,
1538 __isl_keep isl_set *shared_domain, __isl_keep isl_union_map *access,
1539 const char *type, int level)
1541 int i, j;
1542 isl_space *dim;
1543 isl_map *proj;
1544 isl_set *par;
1545 int shared_len = isl_set_dim(shared_domain, isl_dim_set);
1546 int sync = 0;
1547 isl_union_map *sched;
1549 shared_domain = isl_set_copy(shared_domain);
1550 sched = isl_union_map_copy(gen->tiled_sched);
1551 dim = isl_union_map_get_space(sched);
1552 proj = projection(dim, gen->tiled_len, shared_len);
1553 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
1554 sched = isl_union_map_intersect_range(sched,
1555 isl_union_set_from_set(isl_set_copy(shared_domain)));
1556 if (shared_len != gen->shared_len) {
1557 dim = isl_union_map_get_space(sched);
1558 proj = projection(dim, gen->shared_len, shared_len);
1559 proj = isl_map_reverse(proj);
1560 shared_domain = isl_set_apply(shared_domain,
1561 isl_map_copy(proj));
1562 sched = isl_union_map_apply_range(sched,
1563 isl_union_map_from_map(proj));
1566 dim = isl_union_map_get_space(sched);
1567 par = parametrization(dim, gen->shared_len, 0, gen->shared_len, "g");
1568 sched = isl_union_map_intersect_range(sched,
1569 isl_union_set_from_set(par));
1571 for (i = 0; i < gen->n_array; ++i) {
1572 struct cuda_array_info *array = &gen->array[i];
1574 if (gen->array[i].print_shared_level != level)
1575 continue;
1577 for (j = 0; j < array->n_group; ++j) {
1578 if (print_group_shared_accesses(gen, array->groups[j],
1579 type, shared_domain, sched))
1580 sync = 1;
1584 isl_union_map_free(sched);
1585 isl_set_free(shared_domain);
1587 if (sync) {
1588 print_indent(gen->cuda.kernel_c, gen->kernel_code.indent);
1589 fprintf(gen->cuda.kernel_c, "__syncthreads();\n");
1593 /* Given an index expression into a tile of an array, adjust the expression
1594 * to a shift of the tile to the origin
1595 * (based on the lower bounds in array->shared_bound).
1596 * If the index is strided, then we first add
1597 * bound->shift and divide by bound->stride.
1599 static __isl_give isl_qpolynomial *shift_index(__isl_take isl_qpolynomial *qp,
1600 struct cuda_array_info *array,
1601 struct cuda_array_bound *bound, __isl_take isl_set *domain)
1603 isl_qpolynomial *lb;
1605 if (bound->shift) {
1606 isl_qpolynomial *shift, *t;
1607 isl_int one;
1608 isl_space *dim;
1609 shift = bound->shift;
1610 shift = isl_qpolynomial_copy(shift);
1611 shift = isl_qpolynomial_project_domain_on_params(shift);
1612 shift = isl_qpolynomial_align_params(shift,
1613 isl_qpolynomial_get_space(qp));
1614 qp = isl_qpolynomial_add(qp, shift);
1615 dim = isl_qpolynomial_get_domain_space(qp);
1616 isl_int_init(one);
1617 isl_int_set_si(one, 1);
1618 t = isl_qpolynomial_rat_cst_on_domain(dim, one, bound->stride);
1619 isl_int_clear(one);
1620 qp = isl_qpolynomial_mul(qp, t);
1623 lb = isl_qpolynomial_from_aff(isl_aff_copy(bound->lb));
1624 lb = isl_qpolynomial_project_domain_on_params(lb);
1626 lb = isl_qpolynomial_align_params(lb, isl_qpolynomial_get_space(qp));
1628 qp = isl_qpolynomial_sub(qp, lb);
1629 qp = isl_qpolynomial_gist(qp, domain);
1631 return qp;
1634 /* This function is called for each access to an array in some statement
1635 * in the original code.
1636 * Replace that access by an access to shared or (linearized) global memory.
1637 * Since the array in shared memory is just
1638 * a shifted copy of part of the original array, we simply need
1639 * to subtract the lower bound, which was computed
1640 * in can_tile_for_shared_memory.
1641 * If any of the indices is strided, then we first add
1642 * shared_bound[i].shift and divide by shared_bound[i].stride.
1644 * If the given array is accessed directly from global memory,
1645 * we don't need to perform any shifting and simply simplify
1646 * expression in the context of the domain instead.
1648 * If the array space (range of access) has no name, then we are
1649 * accessing an iterator in the original program.
1651 static void print_access(struct cuda_gen *gen, __isl_take isl_map *access,
1652 int group_nr)
1654 int i;
1655 const char *name;
1656 unsigned n_index;
1657 struct cuda_array_info *array = NULL;
1658 isl_printer *prn;
1659 isl_basic_set *aff;
1660 isl_set *data_set;
1661 isl_set *domain;
1662 struct cuda_array_bound *bounds = NULL;
1664 access = isl_map_align_params(access,
1665 isl_set_get_space(gen->stmt_domain));
1667 data_set = isl_set_apply(isl_set_copy(gen->stmt_domain), access);
1669 name = isl_set_get_tuple_name(data_set);
1671 if (!name)
1672 fprintf(gen->cuda.kernel_c, "(");
1673 else {
1674 struct cuda_array_ref_group *group;
1676 for (i = 0; i < gen->n_array; ++i) {
1677 if (strcmp(name, gen->array[i].name))
1678 continue;
1679 array = &gen->array[i];
1681 assert(array);
1682 group = array->groups[group_nr];
1683 bounds = group->private_bound;
1684 if (!bounds)
1685 bounds = group->shared_bound;
1687 print_array_name(gen->cuda.kernel_c, group);
1689 if (cuda_array_is_scalar(array)) {
1690 isl_set_free(data_set);
1691 return;
1694 fprintf(gen->cuda.kernel_c, "[");
1698 n_index = isl_set_dim(data_set, isl_dim_set);
1699 aff = isl_set_affine_hull(data_set);
1701 prn = isl_printer_to_file(gen->ctx, gen->cuda.kernel_c);
1702 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
1704 if (!bounds)
1705 for (i = 0; i + 1 < n_index; ++i)
1706 prn = isl_printer_print_str(prn, "(");
1708 for (i = 0; i < n_index; ++i) {
1709 isl_constraint *c;
1710 isl_qpolynomial *qp;
1711 int ok;
1713 ok = isl_basic_set_has_defining_equality(aff,
1714 isl_dim_out, i, &c);
1715 assert(ok);
1716 qp = isl_qpolynomial_from_constraint(c, isl_dim_out, i);
1717 qp = isl_qpolynomial_project_domain_on_params(qp);
1719 if (!array) {
1720 prn = isl_printer_print_qpolynomial(prn, qp);
1721 isl_qpolynomial_free(qp);
1722 continue;
1725 domain = isl_set_copy(gen->stmt_domain);
1726 domain = isl_set_project_out(domain, isl_dim_set, 0,
1727 isl_set_dim(domain, isl_dim_set));
1728 if (!bounds)
1729 qp = isl_qpolynomial_gist(qp, domain);
1730 else
1731 qp = shift_index(qp, array, &bounds[i], domain);
1733 if (i) {
1734 if (!bounds) {
1735 prn = isl_printer_print_str(prn, ") * (");
1736 prn = isl_printer_print_pw_aff(prn,
1737 array->local_bound[i]);
1738 prn = isl_printer_print_str(prn, ") + ");
1739 } else
1740 prn = isl_printer_print_str(prn, "][");
1742 prn = isl_printer_print_qpolynomial(prn, qp);
1743 isl_qpolynomial_free(qp);
1745 if (!name)
1746 prn = isl_printer_print_str(prn, ")");
1747 else
1748 prn = isl_printer_print_str(prn, "]");
1749 isl_printer_free(prn);
1751 isl_basic_set_free(aff);
1754 static struct cuda_stmt_access *print_expr(struct cuda_gen *gen, FILE *out,
1755 struct pet_expr *expr, struct cuda_stmt_access *access, int outer)
1757 int i;
1759 switch (expr->type) {
1760 case pet_expr_double:
1761 fprintf(out, "%g", expr->d);
1762 break;
1763 case pet_expr_access:
1764 print_access(gen, isl_map_copy(access->access), access->group);
1765 access = access->next;
1766 break;
1767 case pet_expr_unary:
1768 if (!outer)
1769 fprintf(out, "(");
1770 fprintf(out, " %s ", pet_op_str(expr->op));
1771 access = print_expr(gen, out, expr->args[pet_un_arg],
1772 access, 0);
1773 if (!outer)
1774 fprintf(out, ")");
1775 break;
1776 case pet_expr_binary:
1777 if (!outer)
1778 fprintf(out, "(");
1779 access = print_expr(gen, out, expr->args[pet_bin_lhs],
1780 access, 0);
1781 fprintf(out, " %s ", pet_op_str(expr->op));
1782 access = print_expr(gen, out, expr->args[pet_bin_rhs],
1783 access, 0);
1784 if (!outer)
1785 fprintf(out, ")");
1786 break;
1787 case pet_expr_ternary:
1788 if (!outer)
1789 fprintf(out, "(");
1790 access = print_expr(gen, out, expr->args[pet_ter_cond],
1791 access, 0);
1792 fprintf(out, " ? ");
1793 access = print_expr(gen, out, expr->args[pet_ter_true],
1794 access, 0);
1795 fprintf(out, " : ");
1796 access = print_expr(gen, out, expr->args[pet_ter_false],
1797 access, 0);
1798 if (!outer)
1799 fprintf(out, ")");
1800 break;
1801 case pet_expr_call:
1802 fprintf(out, "%s(", expr->name);
1803 for (i = 0; i < expr->n_arg; ++i) {
1804 if (i)
1805 fprintf(out, ", ");
1806 access = print_expr(gen, out, expr->args[i],
1807 access, 1);
1809 fprintf(out, ")");
1811 return access;
1814 static void print_stmt_body(struct cuda_gen *gen,
1815 FILE *out, struct cuda_stmt *stmt)
1817 print_expr(gen, out, stmt->body, stmt->accesses, 1);
1818 fprintf(out, ";\n");
1821 /* This function is called for each leaf in the innermost clast,
1822 * i.e., for each statemetn.
1823 * We print the statement body, simplifying the accesses based
1824 * on the schedule.
1826 static void print_statement(struct gpucode_info *code,
1827 struct clast_user_stmt *u)
1829 struct cuda_gen *gen = code->user;
1830 isl_space *dim;
1831 isl_set *par;
1832 isl_set *stmt_domain;
1833 isl_union_map *stmt_sched;
1834 isl_union_set *uset;
1835 int nr;
1836 struct cuda_stmt *stmt;
1838 nr = atoi(u->statement->name + 2);
1839 stmt = &gen->stmts[nr];
1841 stmt_domain = extract_host_domain(u);
1843 stmt_sched = isl_union_map_intersect_range(
1844 isl_union_map_copy(gen->local_sched),
1845 isl_union_set_from_set(extend(stmt_domain,
1846 gen->thread_tiled_len)));
1847 dim = isl_union_map_get_space(stmt_sched);
1848 par = parametrization(dim, gen->thread_tiled_len, 0,
1849 gen->thread_tiled_len, "c");
1850 stmt_sched = isl_union_map_intersect_range(stmt_sched,
1851 isl_union_set_from_set(par));
1853 uset = isl_union_map_domain(stmt_sched);
1854 dim = isl_union_set_get_space(uset);
1855 dim = isl_space_add_dims(dim, isl_dim_set,
1856 isl_set_dim(stmt->domain, isl_dim_set));
1857 dim = isl_space_set_tuple_name(dim, isl_dim_set, u->statement->name);
1858 gen->stmt_domain = isl_union_set_extract_set(uset, dim);
1859 isl_union_set_free(uset);
1861 print_indent(code->dst, code->indent);
1862 print_stmt_body(gen, code->dst, stmt);
1864 isl_set_free(gen->stmt_domain);
1867 /* Print an access to the element in the global memory copy of the
1868 * given array that corresponds to element [qp[0]][qp[1]]...
1869 * of the original array.
1870 * The copy in global memory has been linearized, so we need to take
1871 * the array size into account.
1873 static void print_private_global_index(isl_ctx *ctx, FILE *out,
1874 struct cuda_array_info *array, __isl_keep isl_qpolynomial **qp)
1876 int i;
1877 isl_printer *prn;
1879 fprintf(out, "%s[", array->name);
1880 prn = isl_printer_to_file(ctx, out);
1881 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
1882 for (i = 0; i + 1 < array->n_index; ++i)
1883 prn = isl_printer_print_str(prn, "(");
1884 for (i = 0; i < array->n_index; ++i) {
1885 if (i) {
1886 prn = isl_printer_print_str(prn, ") * (");
1887 prn = isl_printer_print_pw_aff(prn,
1888 array->local_bound[i]);
1889 prn = isl_printer_print_str(prn, ") + ");
1891 prn = isl_printer_print_qpolynomial(prn, qp[i]);
1893 isl_printer_free(prn);
1894 fprintf(out, "]");
1897 /* Print an access to the element in the shared memory copy of the
1898 * given array reference group that corresponds to element [qps[0]][qps[1]]...
1899 * of the original array.
1900 * Since the array in shared memory is just a shifted copy of part
1901 * of the original array, we simply need to subtract the lower bound,
1902 * which was computed in can_tile_for_shared_memory.
1903 * If any of the indices is strided, then we first add
1904 * shared_bound[i].shift and divide by shared_bound[i].stride.
1906 static void print_private_local_index(isl_ctx *ctx, FILE *out,
1907 struct cuda_array_ref_group *group,
1908 __isl_keep isl_qpolynomial **qps, __isl_keep isl_set *domain)
1910 int i;
1911 isl_printer *prn;
1912 struct cuda_array_info *array = group->array;
1913 struct cuda_array_bound *bounds = group->private_bound;
1915 print_array_name(out, group);
1916 for (i = 0; i < array->n_index; ++i) {
1917 isl_qpolynomial *qp = isl_qpolynomial_copy(qps[i]);
1919 qp = shift_index(qp, array, &bounds[i], isl_set_copy(domain));
1921 fprintf(out, "[");
1922 prn = isl_printer_to_file(ctx, out);
1923 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
1924 prn = isl_printer_print_qpolynomial(prn, qp);
1925 isl_printer_free(prn);
1926 fprintf(out, "]");
1927 isl_qpolynomial_free(qp);
1931 /* This function is called for each leaf in the clast of the code
1932 * for copying to or from private memory.
1933 * The statement name is read_private_<array> or write_private_<array>.
1935 * The schedule iterates over the array elements, so we can use
1936 * the domain of private_sched at the current scheduling position
1937 * as the index of the array.
1939 static void print_private_copy_statement(struct gpucode_info *code,
1940 struct clast_user_stmt *u)
1942 struct cuda_gen *gen = code->user;
1943 isl_set *domain;
1944 isl_map *sched;
1945 struct cuda_array_ref_group *group = gen->private_group;
1946 int i;
1947 unsigned n_in;
1948 unsigned n_out;
1949 isl_space *dim;
1950 isl_set *param;
1951 isl_set *index;
1952 isl_basic_set *aff;
1953 isl_ctx *ctx;
1954 isl_qpolynomial **qp;
1955 int read;
1957 read = !strncmp(u->statement->name, "read", 4);
1959 domain = extract_host_domain(u);
1960 assert(domain);
1962 sched = isl_map_copy(gen->private_sched);
1963 sched = isl_map_reverse(sched);
1964 sched = isl_map_intersect_domain(sched, domain);
1965 n_in = isl_map_dim(sched, isl_dim_in);
1966 n_out = isl_map_dim(sched, isl_dim_out);
1967 dim = isl_map_get_space(sched);
1968 dim = isl_space_drop_dims(dim, isl_dim_in, 0, n_in);
1969 dim = isl_space_drop_dims(dim, isl_dim_out, 0, n_out);
1970 param = parametrization(dim, n_in, 0, n_in, "c");
1971 sched = isl_map_align_params(sched, isl_set_get_space(param));
1972 sched = isl_map_intersect_domain(sched, param);
1973 index = isl_map_range(sched);
1974 domain = isl_set_copy(index);
1975 aff = isl_set_affine_hull(index);
1976 domain = isl_set_project_out(domain, isl_dim_set, 0, n_out);
1978 ctx = isl_basic_set_get_ctx(aff);
1979 qp = isl_alloc_array(ctx, isl_qpolynomial *, n_out);
1980 assert(qp);
1982 for (i = 0; i < n_out; ++i) {
1983 isl_constraint *c;
1984 int ok;
1986 ok = isl_basic_set_has_defining_equality(aff,
1987 isl_dim_set, i, &c);
1988 assert(ok);
1989 qp[i] = isl_qpolynomial_from_constraint(c, isl_dim_set, i);
1990 qp[i] = isl_qpolynomial_project_domain_on_params(qp[i]);
1993 print_indent(code->dst, code->indent);
1994 if (read) {
1995 print_private_local_index(ctx, code->dst, group, qp, domain);
1996 fprintf(code->dst, " = ");
1997 print_private_global_index(ctx, code->dst, group->array, qp);
1998 } else {
1999 print_private_global_index(ctx, code->dst, group->array, qp);
2000 fprintf(code->dst, " = ");
2001 print_private_local_index(ctx, code->dst, group, qp, domain);
2003 fprintf(code->dst, ";\n");
2005 for (i = 0; i < n_out; ++i)
2006 isl_qpolynomial_free(qp[i]);
2007 free(qp);
2009 isl_basic_set_free(aff);
2010 isl_set_free(domain);
2013 static void print_private_access(struct cuda_gen *gen,
2014 __isl_keep isl_set *shared_domain, __isl_take isl_set *access,
2015 const char *type, struct cuda_array_ref_group *group)
2017 const char *array_name;
2018 char *name;
2019 isl_ctx *ctx;
2020 unsigned nvar = isl_set_dim(access, isl_dim_set);
2021 isl_union_map *usched;
2023 if (isl_set_fast_is_empty(access)) {
2024 isl_set_free(access);
2025 return;
2028 ctx = isl_set_get_ctx(access);
2029 array_name = isl_set_get_tuple_name(access);
2030 name = isl_alloc_array(ctx, char,
2031 strlen(type) + sizeof("_private_") + strlen(array_name) + 20);
2032 if (group->array->n_group > 1)
2033 sprintf(name, "%s_private_%s_%d", type, array_name, group->nr);
2034 else
2035 sprintf(name, "%s_private_%s", type, array_name);
2036 access = isl_set_set_tuple_name(access, name);
2037 free(name);
2039 gen->private_sched = shift_access(access, group);
2040 gen->private_group = group;
2042 usched = isl_union_map_from_map(isl_map_copy(gen->private_sched));
2043 print_shared_body(gen, shared_domain, usched, nvar,
2044 &print_private_copy_statement, 1);
2045 isl_union_map_free(usched);
2047 isl_map_free(gen->private_sched);
2050 /* Print code for reading into or writing from private memory
2051 * the given array reference group.
2053 * sched maps the original iteration domains to the shared memory tile loops.
2055 static void print_group_private_accesses(struct cuda_gen *gen,
2056 struct cuda_array_ref_group *group,
2057 const char *type, __isl_keep isl_set *shared_domain,
2058 unsigned first_shared, int shared_len, __isl_keep isl_union_map *sched)
2060 int read;
2061 isl_union_map *access;
2062 isl_union_set *uset;
2063 isl_set *access_set;
2065 if (!group->private_bound)
2066 return;
2068 read = !strcmp(type, "read");
2070 access = group_access_relation(group, read, !read);
2071 access = isl_union_map_apply_domain(access, isl_union_map_copy(sched));
2072 access = isl_union_map_intersect(access,
2073 isl_union_map_copy(gen->private_access));
2074 uset = isl_union_map_range(access);
2076 if (isl_union_set_is_empty(uset)) {
2077 isl_union_set_free(uset);
2078 return;
2081 access_set = isl_set_from_union_set(uset);
2082 access_set = isl_set_coalesce(access_set);
2083 access_set = isl_set_eliminate(access_set, isl_dim_param,
2084 first_shared + shared_len,
2085 gen->shared_len - shared_len);
2087 print_private_access(gen, shared_domain, access_set, type, group);
2090 /* Print code for reading into or writing from private memory at
2091 * the given level (-1 for innermost).
2093 * If we are not printing at the innermost level, then the dimensionality
2094 * of shared_domain may be smaller than gen->shared_len.
2095 * As the rest of the code assumes that the domain of access has
2096 * gen->shared_len dimensions, we therefore may need to embed this domain
2097 * in a higher dimensional space after intersection with shared_domain.
2099 * This code is very similar to print_shared_accesses.
2100 * The main difference is that we to take into account gen->private_access.
2102 static void print_private_accesses(struct cuda_gen *gen,
2103 __isl_keep isl_set *shared_domain, __isl_keep isl_union_map *access,
2104 const char *type, int level)
2106 int i, j;
2107 isl_space *dim;
2108 isl_map *proj;
2109 int shared_len = isl_set_dim(shared_domain, isl_dim_set);
2110 unsigned first_shared;
2111 isl_union_map *sched;
2113 shared_domain = isl_set_copy(shared_domain);
2114 sched = isl_union_map_copy(gen->tiled_sched);
2115 dim = isl_union_map_get_space(sched);
2116 first_shared = isl_space_dim(dim, isl_dim_param);
2117 proj = projection(dim, gen->tiled_len, shared_len);
2118 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
2119 sched = isl_union_map_intersect_range(sched,
2120 isl_union_set_from_set(isl_set_copy(shared_domain)));
2121 if (shared_len != gen->shared_len) {
2122 dim = isl_union_map_get_space(sched);
2123 proj = projection(dim, gen->shared_len, shared_len);
2124 proj = isl_map_reverse(proj);
2125 shared_domain = isl_set_apply(shared_domain,
2126 isl_map_copy(proj));
2127 sched = isl_union_map_apply_range(sched,
2128 isl_union_map_from_map(proj));
2131 for (i = 0; i < gen->n_array; ++i) {
2132 struct cuda_array_info *array = &gen->array[i];
2134 if (gen->array[i].print_shared_level != level)
2135 continue;
2137 for (j = 0; j < array->n_group; ++j)
2138 print_group_private_accesses(gen, array->groups[j],
2139 type, shared_domain,
2140 first_shared, shared_len, sched);
2143 isl_union_map_free(sched);
2144 isl_set_free(shared_domain);
2147 /* Set unroll[j] if the input dimension j is involved in
2148 * the index expression represented by bmap.
2150 static int check_unroll(__isl_take isl_basic_map *bmap, void *user)
2152 int i, j;
2153 int n_in = isl_basic_map_dim(bmap, isl_dim_in);
2154 int n_out = isl_basic_map_dim(bmap, isl_dim_out);
2155 int *unroll = user;
2157 for (i = 0; i < n_out; ++i) {
2158 isl_constraint *c;
2159 int ok;
2161 ok = isl_basic_map_has_defining_equality(bmap,
2162 isl_dim_out, i, &c);
2163 assert(ok);
2164 for (j = 0; j < n_in; ++j)
2165 if (isl_constraint_involves_dims(c, isl_dim_in, j, 1))
2166 unroll[j] = 1;
2167 isl_constraint_free(c);
2170 isl_basic_map_free(bmap);
2171 return 0;
2174 /* Given an array pos mapping input dimensions to the corresponding
2175 * output dimension, construct the corresponding map.
2177 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
2178 int *pos, int len)
2180 int i;
2181 isl_constraint *c;
2182 isl_basic_map *bmap;
2183 isl_local_space *ls;
2185 dim = isl_space_add_dims(dim, isl_dim_in, len);
2186 dim = isl_space_add_dims(dim, isl_dim_out, len);
2187 bmap = isl_basic_map_universe(isl_space_copy(dim));
2188 ls = isl_local_space_from_space(dim);
2190 for (i = 0; i < len; ++i) {
2191 c = isl_equality_alloc(isl_local_space_copy(ls));
2192 isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
2193 isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i], 1);
2194 bmap = isl_basic_map_add_constraint(bmap, c);
2196 isl_local_space_free(ls);
2198 return isl_map_from_basic_map(bmap);
2201 /* Find all loops involved in any of the index expressions for any of
2202 * the private accesses, move them innermost and then mark them as
2203 * requiring unrolling by setting gen->first_unroll.
2204 * The loops involved should all be parallel because of the checks
2205 * we performed in check_private_group_access. Moving them innermost
2206 * is therefore a valid transformation.
2208 static __isl_give isl_union_map *interchange_for_unroll(struct cuda_gen *gen,
2209 __isl_take isl_union_map *sched)
2211 int i, j;
2212 int unroll[gen->thread_tiled_len];
2213 int perm[gen->thread_tiled_len];
2214 isl_space *dim;
2215 isl_map *permute;
2216 int len = gen->shared_len + gen->n_parallel + gen->n_block;
2218 gen->first_unroll = -1;
2220 for (i = 0; i < gen->thread_tiled_len; ++i)
2221 unroll[i] = 0;
2222 for (i = 0; i < gen->n_array; ++i) {
2223 struct cuda_array_info *array = &gen->array[i];
2225 for (j = 0; j < array->n_group; ++j) {
2226 isl_union_map *access;
2227 isl_map *acc;
2229 if (!array->groups[j]->private_bound)
2230 continue;
2232 access = group_access_relation(array->groups[j], 1, 1);
2233 access = isl_union_map_apply_domain(access,
2234 isl_union_map_copy(sched));
2236 acc = isl_map_from_union_map(access);
2237 isl_map_foreach_basic_map(acc, &check_unroll, unroll);
2239 isl_map_free(acc);
2243 for (i = 0; i < gen->shared_len; ++i)
2244 if (unroll[i])
2245 return sched;
2247 for (i = gen->shared_len; i < len; ++i)
2248 if (unroll[i])
2249 break;
2251 if (i >= len)
2252 return sched;
2254 for (i = len; i < gen->thread_tiled_len; ++i)
2255 if (unroll[i])
2256 return sched;
2258 j = 0;
2259 for (i = 0; i < gen->thread_tiled_len; ++i)
2260 if (!unroll[i])
2261 perm[i] = j++;
2262 gen->first_unroll = 1 + j;
2263 for (i = 0; i < len; ++i)
2264 if (unroll[i])
2265 perm[i] = j++;
2267 dim = isl_union_map_get_space(sched);
2268 permute = permutation(dim, perm, gen->thread_tiled_len);
2269 sched = isl_union_map_apply_range(sched,
2270 isl_union_map_from_map(permute));
2272 return sched;
2275 /* This function is called for each leaf in the clast of the kernel code.
2276 * We first specialize the schedule to the site of the leaf and
2277 * print code for reading into shared memory, performing the actual
2278 * computations and writing from shared memory, with the required
2279 * synchronizations.
2281 static void print_kernel_user(struct gpucode_info *code,
2282 struct clast_user_stmt *u)
2284 struct cuda_gen *gen = code->user;
2285 isl_set *shared_domain;
2287 shared_domain = extract_entire_host_domain(u);
2289 print_shared_accesses(gen, shared_domain, gen->read, "read", -1);
2291 print_private_accesses(gen, shared_domain, gen->read, "read", -1);
2293 print_shared_body(gen, shared_domain, gen->local_sched,
2294 gen->thread_tiled_len, &print_statement,
2295 gen->first_unroll);
2297 print_private_accesses(gen, shared_domain, gen->write, "write", -1);
2299 print_indent(gen->cuda.kernel_c, gen->kernel_code.indent);
2300 fprintf(gen->cuda.kernel_c, "__syncthreads();\n");
2302 print_shared_accesses(gen, shared_domain, gen->write, "write", -1);
2304 isl_set_free(shared_domain);
2307 /* Check if we need to perform any copying to shared memory at this level
2308 * and if so, print the copying instructions.
2309 * Any array for which we are allowed to print copying instructions at
2310 * this level, but haven't done so already, is printed.
2312 static void print_kernel_for_head(struct gpucode_info *code,
2313 struct clast_for *f)
2315 int i;
2316 struct cuda_gen *gen = code->user;
2317 isl_set *domain;
2318 int level;
2319 int print = 0;
2321 domain = isl_set_from_cloog_domain(cloog_domain_copy(f->domain));
2322 level = isl_set_dim(domain, isl_dim_set) - 1;
2324 for (i = 0; i < gen->n_array; ++i) {
2325 if (gen->array[i].print_shared_level >= 0)
2326 continue;
2327 if (gen->array[i].last_shared > level)
2328 continue;
2329 gen->array[i].print_shared_level = level;
2330 print = 1;
2333 if (print) {
2334 print_shared_accesses(gen, domain, gen->read, "read", level);
2335 print_private_accesses(gen, domain, gen->read, "read", level);
2338 isl_set_free(domain);
2341 /* Print instructions for copying from shared memory for each array
2342 * for which print_kernel_for_head has added copying instructions
2343 * to shared memory.
2345 static void print_kernel_for_foot(struct gpucode_info *code,
2346 struct clast_for *f)
2348 int i;
2349 struct cuda_gen *gen = code->user;
2350 isl_set *domain;
2351 int level;
2352 int print = 0;
2354 domain = isl_set_from_cloog_domain(cloog_domain_copy(f->domain));
2355 level = isl_set_dim(domain, isl_dim_set) - 1;
2357 for (i = 0; i < gen->n_array; ++i) {
2358 if (gen->array[i].print_shared_level != level)
2359 continue;
2360 print = 1;
2361 break;
2364 if (print) {
2365 print_private_accesses(gen, domain, gen->write, "write", level);
2366 print_shared_accesses(gen, domain, gen->write, "write", level);
2369 isl_set_free(domain);
2372 /* Use CLooG to generate code for the outer gen->shared_first loops
2373 * of the local schedule "sched".
2374 * The pretty printing of this code is handled by gpu_print_host_stmt,
2375 * which calls print_kernel_user for each iteration of the shared tile loops.
2377 static void print_cloog_kernel_body(struct cuda_gen *gen,
2378 __isl_keep isl_set *context, __isl_keep isl_union_map *sched)
2380 int i;
2381 CloogOptions *options;
2382 CloogDomain *cloog_context;
2383 CloogUnionDomain *ud;
2384 CloogInput *input;
2385 struct clast_stmt *stmt;
2386 char name[20];
2388 sched = isl_union_map_copy(sched);
2389 sched = isl_union_map_align_params(sched, isl_set_get_space(context));
2391 options = cloog_options_malloc(gen->state);
2392 options->language = LANGUAGE_C;
2393 options->strides = 1;
2394 options->sh = 1;
2395 options->stop = gen->shared_len;
2396 options->f = gen->tiled_len;
2397 options->l = gen->tiled_len;
2398 options->save_domains = 1;
2399 options->noscalars = 1;
2401 ud = cloog_union_domain_from_isl_union_map(sched);
2402 for (i = 0; i < gen->shared_len; ++i) {
2403 snprintf(name, sizeof(name), "g%d", i);
2404 ud = cloog_union_domain_set_name(ud, CLOOG_SCAT, i, name);
2406 cloog_context = cloog_domain_from_isl_set(isl_set_copy(context));
2407 input = cloog_input_alloc(cloog_context, ud);
2409 stmt = cloog_clast_create_from_input(input, options);
2411 gen->kernel_code.indent = 4;
2412 gen->kernel_code.dst = gen->cuda.kernel_c;
2413 gen->kernel_code.print_user_stmt = NULL;
2414 gen->kernel_code.print_user_stmt_list = &print_kernel_user;
2415 gen->kernel_code.print_for_head = &print_kernel_for_head;
2416 gen->kernel_code.print_for_foot = &print_kernel_for_foot;
2417 gen->kernel_code.user = gen;
2418 gpu_print_host_stmt(&gen->kernel_code, stmt);
2420 cloog_clast_free(stmt);
2421 cloog_options_free(options);
2424 static void print_kernel_iterators(struct cuda_gen *gen)
2426 int i;
2427 const char *block_dims[] = { "blockIdx.x", "blockIdx.y" };
2428 const char *thread_dims[] = { "threadIdx.x", "threadIdx.y",
2429 "threadIdx.z" };
2431 if (gen->n_grid > 0) {
2432 print_indent(gen->cuda.kernel_c, 4);
2433 fprintf(gen->cuda.kernel_c, "int ");
2434 for (i = 0; i < gen->n_grid; ++i) {
2435 if (i)
2436 fprintf(gen->cuda.kernel_c, ", ");
2437 fprintf(gen->cuda.kernel_c, "b%d = %s",
2438 i, block_dims[gen->n_grid - 1 - i]);
2440 fprintf(gen->cuda.kernel_c, ";\n");
2443 if (gen->n_block > 0) {
2444 print_indent(gen->cuda.kernel_c, 4);
2445 fprintf(gen->cuda.kernel_c, "int ");
2446 for (i = 0; i < gen->n_block; ++i) {
2447 if (i)
2448 fprintf(gen->cuda.kernel_c, ", ");
2449 fprintf(gen->cuda.kernel_c, "t%d = %s",
2450 i, thread_dims[gen->n_block - 1 - i]);
2452 fprintf(gen->cuda.kernel_c, ";\n");
2456 static void print_group_shared_array(struct cuda_gen *gen,
2457 struct cuda_array_ref_group *group)
2459 int j;
2460 struct cuda_array_bound *bounds;
2462 bounds = group->private_bound;
2463 if (!bounds)
2464 bounds = group->shared_bound;
2465 if (!bounds)
2466 return;
2468 print_indent(gen->cuda.kernel_c, 4);
2469 fprintf(gen->cuda.kernel_c, "%s%s ",
2470 group->private_bound ? "" : "__shared__ ", group->array->type);
2471 print_array_name(gen->cuda.kernel_c, group);
2472 for (j = 0; j < group->array->n_index; ++j) {
2473 fprintf(gen->cuda.kernel_c, "[");
2474 isl_int_print(gen->cuda.kernel_c, bounds[j].size, 0);
2475 fprintf(gen->cuda.kernel_c, "]");
2477 fprintf(gen->cuda.kernel_c, ";\n");
2480 static void print_shared_arrays(struct cuda_gen *gen)
2482 int i, j;
2484 for (i = 0; i < gen->n_array; ++i) {
2485 struct cuda_array_info *array = &gen->array[i];
2487 for (j = 0; j < array->n_group; ++j)
2488 print_group_shared_array(gen, array->groups[j]);
2492 static void print_kernel_body(struct cuda_gen *gen,
2493 __isl_keep isl_set *host_domain, __isl_keep isl_union_map *sched)
2495 isl_set *context;
2497 context = isl_set_copy(host_domain);
2498 context = parametrize(context, 0, gen->tile_first, "h");
2499 context = isl_set_project_out(context, isl_dim_set, 0, gen->tile_first);
2500 context = add_bounded_parameters(context,
2501 gen->n_grid, gen->grid_dim, "b");
2503 print_kernel_iterators(gen);
2504 print_shared_arrays(gen);
2506 fprintf(gen->cuda.kernel_c, "\n");
2508 print_cloog_kernel_body(gen, context, sched);
2510 isl_set_free(context);
2513 /* Given a constraint
2515 * a(p,i) + j = g f(e)
2517 * or -a(p,i) - j = g f(e) if sign < 0,
2518 * store a(p,i) in bound->shift and g (stride) in bound->stride.
2519 * a(p,i) is assumed to be an expression in only the parameters.
2521 static void extract_stride(__isl_keep isl_constraint *c,
2522 struct cuda_array_bound *bound, isl_int stride, int sign)
2524 int i;
2525 isl_int v;
2526 isl_int one;
2527 isl_space *dim;
2528 unsigned nparam;
2529 isl_qpolynomial *qp;
2531 isl_int_set(bound->stride, stride);
2533 dim = isl_constraint_get_space(c);
2534 dim = isl_space_params(dim);
2536 nparam = isl_space_dim(dim, isl_dim_param);
2538 isl_int_init(v);
2539 isl_int_init(one);
2540 isl_int_set_si(one, 1);
2542 isl_constraint_get_constant(c, &v);
2543 if (sign < 0)
2544 isl_int_neg(v, v);
2545 qp = isl_qpolynomial_rat_cst_on_domain(isl_space_copy(dim), v, one);
2547 for (i = 0; i < nparam; ++i) {
2548 isl_qpolynomial *t, *p;
2550 isl_constraint_get_coefficient(c, isl_dim_param, i, &v);
2551 if (isl_int_is_zero(v))
2552 continue;
2553 if (sign < 0)
2554 isl_int_neg(v, v);
2555 t = isl_qpolynomial_rat_cst_on_domain(isl_space_copy(dim), v, one);
2556 p = isl_qpolynomial_var_on_domain(isl_space_copy(dim), isl_dim_param, i);
2557 t = isl_qpolynomial_mul(t, p);
2558 qp = isl_qpolynomial_add(qp, t);
2561 isl_space_free(dim);
2562 isl_int_clear(one);
2563 isl_int_clear(v);
2565 bound->shift = qp;
2568 /* Given an equality constraint of a map with a single output dimension j,
2569 * check if the constraint is of the form
2571 * a(p,i) + j = g f(e)
2573 * with a(p,i) an expression in the parameters and input dimensions
2574 * and f(e) an expression in the existentially quantified variables.
2575 * If so, and if g is larger than any such g from a previously considered
2576 * constraint, then call extract_stride. to record the stride information
2577 * in bound.
2579 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
2581 int i;
2582 isl_int v, stride;
2583 unsigned n_div;
2584 struct cuda_array_bound *bound = user;
2586 isl_int_init(v);
2587 isl_int_init(stride);
2589 n_div = isl_constraint_dim(c, isl_dim_div);
2590 isl_constraint_get_coefficient(c, isl_dim_out, 0, &v);
2592 if (n_div && (isl_int_is_one(v) || isl_int_is_negone(v))) {
2593 int s = isl_int_sgn(v);
2594 isl_int_set_si(stride, 0);
2595 for (i = 0; i < n_div; ++i) {
2596 isl_constraint_get_coefficient(c, isl_dim_div, i, &v);
2597 isl_int_gcd(stride, stride, v);
2599 if (!isl_int_is_zero(stride) &&
2600 isl_int_gt(stride, bound->stride))
2601 extract_stride(c, bound, stride, s);
2604 isl_int_clear(stride);
2605 isl_int_clear(v);
2607 isl_constraint_free(c);
2608 return 0;
2611 /* Given contraints on an array index i, check if we can find
2612 * a shift a(p) and a stride g such that
2614 * a(p) + i = 0 mod g
2616 * If so, record the information in bound and apply the mapping
2617 * i -> (i + a(p))/g to the array index in bounds and return
2618 * the new constraints.
2619 * If not, simply return the original constraints.
2621 static __isl_give isl_basic_map *check_stride(struct cuda_gen *gen,
2622 struct cuda_array_bound *bound, __isl_take isl_basic_map *bounds)
2624 isl_space *dim;
2625 isl_basic_map *aff;
2626 isl_basic_map *shift;
2627 isl_qpolynomial *qp, *t;
2628 isl_int one;
2630 isl_int_set_si(bound->stride, -1);
2632 aff = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
2634 isl_basic_map_foreach_constraint(aff, &check_stride_constraint, bound);
2636 isl_basic_map_free(aff);
2638 if (isl_int_is_neg(bound->stride))
2639 return bounds;
2641 qp = isl_qpolynomial_copy(bound->shift);
2642 qp = isl_qpolynomial_add_dims(qp, isl_dim_in, 1);
2643 dim = isl_qpolynomial_get_domain_space(qp);
2644 t = isl_qpolynomial_var_on_domain(isl_space_copy(dim), isl_dim_set, 0);
2645 qp = isl_qpolynomial_add(qp, t);
2646 isl_int_init(one);
2647 isl_int_set_si(one, 1);
2648 t = isl_qpolynomial_rat_cst_on_domain(dim, one, bound->stride);
2649 isl_int_clear(one);
2650 qp = isl_qpolynomial_mul(qp, t);
2651 shift = isl_basic_map_from_qpolynomial(qp);
2653 bound->shift_map = isl_basic_map_copy(shift);
2654 bounds = isl_basic_map_apply_range(bounds, shift);
2656 return bounds;
2659 struct cuda_size_info {
2660 isl_basic_set *bset;
2661 struct cuda_array_bound *bound;
2662 int pos;
2665 /* Given a constraint from the basic set describing the bounds on
2666 * an array index, check if it is a lower bound, say m i >= b(x), and,
2667 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
2668 * upper bound. If so, and if this bound is smaller than any bound
2669 * derived from earlier constraints, set the size to this bound on
2670 * the expression and the lower bound to ceil(b(x)/m).
2672 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
2674 struct cuda_size_info *size = user;
2675 unsigned nparam;
2676 unsigned n_div;
2677 isl_int v;
2679 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
2680 n_div = isl_constraint_dim(c, isl_dim_div);
2682 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div)) {
2683 isl_constraint_free(c);
2684 return 0;
2687 isl_int_init(v);
2689 isl_constraint_get_coefficient(c, isl_dim_set, size->pos, &v);
2691 if (isl_int_is_pos(v)) {
2692 isl_aff *aff;
2693 isl_aff *lb;
2694 enum isl_lp_result res;
2696 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
2697 aff = isl_aff_ceil(aff);
2699 lb = isl_aff_copy(aff);
2701 aff = isl_aff_neg(aff);
2702 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
2704 res = isl_basic_set_max(size->bset, aff, &v);
2705 isl_aff_free(aff);
2707 if (res == isl_lp_ok) {
2708 isl_int_add_ui(v, v, 1);
2709 if (isl_int_is_neg(size->bound->size) ||
2710 isl_int_lt(v, size->bound->size)) {
2711 isl_int_set(size->bound->size, v);
2712 lb = isl_aff_drop_dims(lb, isl_dim_in,
2713 0, size->pos + 1);
2714 isl_aff_free(size->bound->lb);
2715 size->bound->lb = isl_aff_copy(lb);
2718 isl_aff_free(lb);
2721 isl_int_clear(v);
2722 isl_constraint_free(c);
2724 return 0;
2727 /* Given a basic map "bounds" that maps parameters and input dimensions
2728 * to a single output dimension, look for an expression in the parameters
2729 * and input dimensions such that the range of the output dimension shifted
2730 * by this expression is a constant.
2732 * In particular, we currently only consider lower bounds on the output
2733 * dimension as candidate expressions.
2735 static int compute_array_dim_size(struct cuda_gen *gen,
2736 struct cuda_array_bound *bound, __isl_take isl_basic_map *bounds)
2738 struct cuda_size_info size;
2740 bounds = check_stride(gen, bound, bounds);
2742 isl_int_set_si(bound->size, -1);
2743 bound->lb = NULL;
2745 size.bound = bound;
2746 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
2747 size.bset = isl_basic_map_wrap(bounds);
2748 size.bset = isl_basic_set_flatten(size.bset);
2749 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
2750 &size);
2751 isl_basic_set_free(size.bset);
2753 return isl_int_is_nonneg(bound->size) ? 0 : -1;
2756 /* Check if we can find a shared memory tile for the given array
2757 * based on the given accesses, and if so, put the results
2758 * in array->shared_bound.
2760 * We project the accesses on each index in turn and look for a parametric
2761 * offset such that the size is constant.
2763 static int can_tile_for_shared_memory(struct cuda_gen *gen,
2764 struct cuda_array_info *array, __isl_keep isl_map *access,
2765 struct cuda_array_bound *bounds)
2767 int i;
2769 for (i = 0; i < array->n_index; ++i) {
2770 isl_map *access_i;
2771 isl_basic_map *hull;
2773 access_i = isl_map_copy(access);
2774 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
2775 access_i = isl_map_project_out(access_i, isl_dim_out,
2776 1, array->n_index - (i + 1));
2777 access_i = isl_map_compute_divs(access_i);
2778 hull = isl_map_simple_hull(access_i);
2779 if (compute_array_dim_size(gen, &bounds[i], hull) < 0)
2780 return 0;
2783 return 1;
2786 /* Construct a map with input the shared tile loops and the loops that
2787 * will be wrapped around the threads that relates these later loops
2788 * to the thread indices and the projects them out.
2790 static __isl_give isl_map *compute_privatization(struct cuda_gen *gen)
2792 isl_map *priv;
2793 isl_map *tiling;
2794 isl_map *proj;
2795 isl_set *par;
2796 isl_space *dim;
2798 dim = isl_union_map_get_space(gen->shared_sched);
2800 if (gen->options->wrap)
2801 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
2802 gen->shared_len, gen->n_block, gen->block_dim);
2803 else
2804 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
2805 gen->shared_len, gen->n_block, gen->block_dim);
2807 priv = tiling;
2809 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
2810 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
2811 gen->n_block, "t");
2813 priv = isl_map_align_params(priv, isl_set_get_space(par));
2814 priv = isl_map_intersect_range(priv, par);
2816 dim = isl_map_get_space(priv);
2817 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
2818 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
2819 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
2820 gen->shared_len);
2822 priv = isl_map_apply_range(priv, proj);
2824 return priv;
2827 /* Construct a map from domain_dim to domain_dim that increments
2828 * the dimension at position "pos" and leaves all other dimensions
2829 * constant.
2831 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
2833 int i;
2834 int len = isl_space_dim(domain_dim, isl_dim_set);
2835 isl_space *dim;
2836 isl_basic_map *next;
2837 isl_local_space *ls;
2839 dim = isl_space_map_from_set(domain_dim);
2840 next = isl_basic_map_universe(isl_space_copy(dim));
2841 ls = isl_local_space_from_space(dim);
2843 for (i = 0; i < len; ++i) {
2844 isl_constraint *c;
2846 c = isl_equality_alloc(isl_local_space_copy(ls));
2847 isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
2848 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
2849 if (i == pos)
2850 isl_constraint_set_constant_si(c, 1);
2851 next = isl_basic_map_add_constraint(next, c);
2854 isl_local_space_free(ls);
2856 return isl_map_from_basic_map(next);
2859 /* Check if the given access is coalesced.
2860 * That is, check whether incrementing the dimension that will get
2861 * wrapped over the last thread index results in incrementing
2862 * the last array index.
2864 * This function is only called for access relations without reuse.
2866 static int access_is_coalesced(struct cuda_gen *gen,
2867 __isl_keep isl_union_map *access)
2869 isl_space *dim;
2870 isl_map *access_map;
2871 isl_map *next_thread_x;
2872 isl_map *next_element;
2873 isl_map *map;
2874 int coalesced;
2876 access = isl_union_map_copy(access);
2877 access = isl_union_map_apply_domain(access,
2878 isl_union_map_copy(gen->tiled_sched));
2879 access_map = isl_map_from_union_map(access);
2881 dim = isl_map_get_space(access_map);
2882 dim = isl_space_domain(dim);
2883 next_thread_x = next(dim, gen->shared_len + gen->n_block - 1);
2885 dim = isl_map_get_space(access_map);
2886 dim = isl_space_range(dim);
2887 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
2889 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
2890 map = isl_map_apply_range(map, access_map);
2892 coalesced = isl_map_is_subset(map, next_element);
2894 isl_map_free(next_element);
2895 isl_map_free(map);
2897 return coalesced;
2900 /* For the given array reference group, check whether the access is private
2901 * to the thread. That is, check that any given array element
2902 * is only accessed by a single thread.
2903 * We compute an access relation that maps the shared tile loop iterators
2904 * and the shared point loop iterators that will be wrapped over the
2905 * threads to the array elements.
2906 * We actually check that those iterators that will be wrapped
2907 * partition the array space. This check is stricter than necessary
2908 * since several iterations may be mapped onto the same thread
2909 * and then they could be allowed to access the same memory elements,
2910 * but our check does not allow this situation.
2912 * We also check that the index expression only depends on parallel
2913 * loops. That way, we can move those loops innermost and unroll them.
2914 * Again, we use a test that is stricter than necessary.
2915 * We actually check whether the index expression only depends
2916 * on the iterators that are wrapped over the threads.
2917 * These are necessarily parallel, but there may be more parallel loops.
2919 * Combining the injectivity of the first test with the single-valuedness
2920 * of the second test, we simply test for bijectivity.
2922 * If it turns out we can use registers, we compute the private memory
2923 * tile size using can_tile_for_shared_memory, after introducing a dependence
2924 * on the thread indices.
2926 * Before performing any of the above computations, we first check
2927 * if there is any reuse on the reference group. If not, we simply
2928 * return. If, moreover, the access is coalesced then we also remove
2929 * the shared memory tiling since we should just use global memory instead.
2931 static void check_private_group_access(struct cuda_gen *gen,
2932 struct cuda_array_ref_group *group)
2934 isl_map *acc;
2935 isl_union_map *access;
2936 int n_index = group->array->n_index;
2938 access = group_access_relation(group, 1, 1);
2939 if (isl_union_map_is_injective(access)) {
2940 if (group->shared_bound && access_is_coalesced(gen, access)) {
2941 free_bound_list(group->shared_bound, n_index);
2942 group->shared_bound = NULL;
2944 isl_union_map_free(access);
2945 return;
2947 access = isl_union_map_apply_domain(access,
2948 isl_union_map_copy(gen->shared_sched));
2950 acc = isl_map_from_union_map(access);
2952 if (!isl_map_is_bijective(acc)) {
2953 isl_map_free(acc);
2954 return;
2957 group->private_bound = create_bound_list(gen->ctx, n_index);
2958 acc = isl_map_align_params(acc, isl_map_get_space(gen->privatization));
2959 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
2960 if (!can_tile_for_shared_memory(gen, group->array, acc,
2961 group->private_bound)) {
2962 free_bound_list(group->private_bound, n_index);
2963 group->private_bound = NULL;
2966 isl_map_free(acc);
2969 /* Look for the last shared tile loop that affects the offset of the
2970 * shared or private tile and store the result in array->last_shared.
2972 static void set_last_shared(struct cuda_gen *gen,
2973 struct cuda_array_ref_group *group)
2975 int i, j;
2976 struct cuda_array_bound *bounds;
2977 unsigned first_shared = gen->first_shared;
2978 int n_index = group->array->n_index;
2980 bounds = group->private_bound;
2981 if (!bounds)
2982 bounds = group->shared_bound;
2983 if (!bounds)
2984 return;
2986 for (j = gen->shared_len - 1; j >= 0; --j) {
2987 for (i = 0; i < n_index; ++i) {
2988 isl_aff *lb;
2989 isl_qpolynomial *shift;
2991 lb = bounds[i].lb;
2992 if (isl_aff_involves_dims(lb, isl_dim_param,
2993 first_shared + j, 1))
2994 break;
2996 shift = bounds[i].shift;
2997 if (!shift)
2998 continue;
2999 if (isl_qpolynomial_involves_dims(shift, isl_dim_param,
3000 first_shared + j, 1))
3001 break;
3003 if (i < n_index)
3004 break;
3006 group->array->last_shared = j;
3009 /* Compute the sizes of all private arrays for the current kernel,
3010 * as well as the offsets of the private pieces in the original arrays.
3011 * If we cannot or don't want to privatize a given array group,
3012 * we use the shared memory tile sizes computed in
3013 * compute_group_shared_bound instead.
3015 * If a given Array only has a single reference group and if we have
3016 * been able to find a privated or shared tile,
3017 * we also look for the last shared tile loop that affects the offset
3018 * (and therefore the array tile) and store the result in array->last_shared.
3020 * A privatized copy of all access relations from reference groups that
3021 * are mapped to private memory is stored in gen->privatization.
3023 static void compute_private_size(struct cuda_gen *gen)
3025 int i, j;
3026 isl_union_map *private;
3028 if (!gen->options->use_private_memory)
3029 return;
3031 private = isl_union_map_empty(isl_union_map_get_space(gen->shared_sched));
3033 for (i = 0; i < gen->n_array; ++i) {
3034 struct cuda_array_info *array = &gen->array[i];
3036 for (j = 0; j < array->n_group; ++j) {
3037 check_private_group_access(gen, array->groups[j]);
3039 if (!array->groups[j]->private_bound)
3040 continue;
3042 private = isl_union_map_union(private,
3043 group_access_relation(array->groups[j], 1, 1));
3046 array->last_shared = gen->shared_len - 1;
3047 array->print_shared_level = -1;
3049 if (array->n_group != 1)
3050 continue;
3051 set_last_shared(gen, array->groups[0]);
3054 if (isl_union_map_is_empty(private))
3055 isl_union_map_free(private);
3056 else {
3057 isl_union_map *priv;
3059 private = isl_union_map_apply_domain(private,
3060 isl_union_map_copy(gen->shared_sched));
3061 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
3062 private = isl_union_map_apply_domain(private, priv);
3063 gen->private_access = private;
3067 /* Fill up the groups array with singleton groups, i.e., one group
3068 * per reference, initializing the array, access, write and refs fields.
3069 * In particular the access field is initialized to the scheduled
3070 * access relation of the array reference.
3072 * Return the number of elements initialized, i.e., the number of
3073 * active references in the current kernel.
3075 static int populate_array_references(struct cuda_gen *gen,
3076 struct cuda_array_info *array, __isl_keep isl_union_map *sched,
3077 struct cuda_array_ref_group **groups)
3079 int i;
3080 int n;
3081 isl_ctx *ctx = isl_union_map_get_ctx(sched);
3083 n = 0;
3084 for (i = 0; i < array->n_ref; ++i) {
3085 isl_union_map *umap;
3086 isl_map *map;
3087 struct cuda_array_ref_group *group;
3088 struct cuda_stmt_access *access = array->refs[i];
3090 map = isl_map_copy(access->access);
3091 umap = isl_union_map_from_map(map);
3092 umap = isl_union_map_apply_domain(umap,
3093 isl_union_map_copy(sched));
3095 if (isl_union_map_is_empty(umap)) {
3096 isl_union_map_free(umap);
3097 continue;
3100 map = isl_map_from_union_map(umap);
3102 group = isl_calloc_type(ctx, struct cuda_array_ref_group);
3103 assert(group);
3104 group->array = array;
3105 group->access = map;
3106 group->write = access->write;
3107 group->refs = &array->refs[i];
3109 groups[n++] = group;
3112 return n;
3115 static void free_array_ref_group(struct cuda_array_ref_group *group,
3116 int n_index)
3118 if (!group)
3119 return;
3120 free_bound_list(group->shared_bound, n_index);
3121 free_bound_list(group->private_bound, n_index);
3122 isl_map_free(group->access);
3123 free(group->refs);
3124 free(group);
3127 /* If two groups have overlapping access relations and if one of them
3128 * involves a write, then merge the two groups into one.
3130 * We keep track of the grouping in "leader". leader[j] points to
3131 * an earlier group array element that belongs to the same group,
3132 * or the array element j itself if this element is the first in the group.
3134 * Return the number of group leaders.
3136 static int group_overlapping_writes(int n,
3137 struct cuda_array_ref_group **groups, int *leader)
3139 int i, j;
3140 int n_group = n;
3142 for (i = 0; i < n; ++i) {
3143 int l = i;
3144 groups[l]->n_ref = 1;
3145 for (j = i - 1; j >= 0; --j) {
3146 isl_map *map;
3147 int empty;
3149 if (leader[j] != j)
3150 continue;
3151 if (!groups[l]->write && !groups[j]->write)
3152 continue;
3154 map = isl_map_intersect(isl_map_copy(groups[l]->access),
3155 isl_map_copy(groups[j]->access));
3156 empty = isl_map_is_empty(map);
3157 isl_map_free(map);
3159 if (empty)
3160 continue;
3162 groups[j]->access = isl_map_union(groups[j]->access,
3163 groups[l]->access);
3164 groups[j]->write = 1;
3165 groups[l]->access = NULL;
3166 groups[j]->n_ref += groups[l]->n_ref;
3167 l = leader[l] = j;
3168 n_group--;
3170 leader[i] = l;
3173 return n_group;
3176 /* Compute the size of the shared array corresponding to the given array
3177 * array refrence group, based on the accesses from the current kernel,
3178 * as well as the offset of the shared piece in the original array.
3180 static void compute_group_shared_bound(struct cuda_gen *gen,
3181 struct cuda_array_info *array, struct cuda_array_ref_group *group)
3183 isl_ctx *ctx = isl_space_get_ctx(array->dim);
3185 if (!gen->options->use_shared_memory)
3186 return;
3188 group->shared_bound = create_bound_list(ctx, array->n_index);
3189 if (!can_tile_for_shared_memory(gen, array, group->access,
3190 group->shared_bound)) {
3191 free_bound_list(group->shared_bound, array->n_index);
3192 group->shared_bound = NULL;
3196 /* Given an initial grouping of array references and shared memory tiles
3197 * for each group that allows for a shared memory tile, merge two groups
3198 * if both have a shared memory tile and if the merged group also has
3199 * a shared memory tile.
3201 * Return the number of group leaders after merging.
3203 static int group_common_shared_memory_tile(struct cuda_gen *gen,
3204 struct cuda_array_info *array, int n,
3205 struct cuda_array_ref_group **groups, int *leader, int n_group)
3207 int i, j;
3208 isl_ctx *ctx = isl_space_get_ctx(array->dim);
3210 for (i = 0; n_group > 1 && i < n; ++i) {
3211 int l = i;
3212 if (leader[i] != i)
3213 continue;
3214 if (!groups[i]->shared_bound)
3215 continue;
3216 for (j = i - 1; j >= 0; --j) {
3217 isl_map *map;
3218 int empty;
3219 struct cuda_array_bound *shared_bound;
3221 if (leader[j] != j)
3222 continue;
3223 if (!groups[j]->shared_bound)
3224 continue;
3226 map = isl_map_intersect(isl_map_copy(groups[l]->access),
3227 isl_map_copy(groups[j]->access));
3228 empty = isl_map_is_empty(map);
3229 isl_map_free(map);
3231 if (empty)
3232 continue;
3234 map = isl_map_union(isl_map_copy(groups[l]->access),
3235 isl_map_copy(groups[j]->access));
3236 shared_bound = create_bound_list(ctx, array->n_index);
3237 if (!can_tile_for_shared_memory(gen, array, map,
3238 shared_bound)) {
3239 isl_map_free(map);
3240 free_bound_list(shared_bound, array->n_index);
3241 continue;
3244 free_bound_list(groups[j]->shared_bound,
3245 array->n_index);
3246 groups[j]->shared_bound = shared_bound;
3247 isl_map_free(groups[j]->access);
3248 groups[j]->access = map;
3249 groups[j]->n_ref += groups[l]->n_ref;
3250 l = leader[l] = j;
3251 n_group--;
3255 return n_group;
3258 /* Extract an array of array reference groups from the array of references
3259 * and the grouping information in "leader".
3261 * Store the results in array->n_group and array->groups.
3263 static void extract_array_groups(isl_ctx *ctx, struct cuda_array_info *array,
3264 int n, struct cuda_array_ref_group **groups, int *leader, int n_group)
3266 int i, j;
3268 for (i = 2; i < n; ++i)
3269 leader[i] = leader[leader[i]];
3271 array->n_group = n_group;
3272 array->groups = isl_alloc_array(ctx, struct cuda_array_ref_group *,
3273 n_group);
3274 assert(array->groups);
3276 j = 0;
3277 for (i = 0; i < n; ++i) {
3278 int k, l;
3279 struct cuda_stmt_access **refs;
3281 if (leader[i] != i) {
3282 groups[i]->refs = NULL;
3283 free_array_ref_group(groups[i], array->n_index);
3284 continue;
3287 refs = isl_alloc_array(ctx, struct cuda_stmt_access *,
3288 groups[i]->n_ref);
3289 assert(refs);
3290 l = 0;
3291 for (k = i; k < n; ++k)
3292 if (leader[k] == i) {
3293 refs[l++] = *groups[k]->refs;
3294 (*groups[k]->refs)->group = j;
3297 groups[i]->refs = refs;
3298 groups[i]->nr = j;
3299 array->groups[j++] = groups[i];
3303 /* Group array references that should be considered together when
3304 * deciding whether to access them from private, shared or global memory.
3306 * In particular, if two array references overlap and if one of them
3307 * is a write, then the two references are grouped together.
3308 * Furthermore, if two groups admit a shared memory tile and if the
3309 * combination of the two also admits a shared memory tile, we merge
3310 * the two groups.
3312 * During the construction the group->refs field points to a single
3313 * array reference inside the array of array references, while
3314 * group->n_ref contains the number of element in leader that
3315 * (directly or indirectly) point to this group, provided the group
3316 * is a leader.
3318 static void group_array_references(struct cuda_gen *gen,
3319 struct cuda_array_info *array, __isl_keep isl_union_map *sched)
3321 int i;
3322 int n, n_group;
3323 isl_ctx *ctx = isl_union_map_get_ctx(sched);
3324 struct cuda_array_ref_group **groups;
3325 int *leader;
3327 groups = isl_calloc_array(ctx, struct cuda_array_ref_group *,
3328 array->n_ref);
3329 assert(groups);
3331 n = populate_array_references(gen, array, sched, groups);
3333 leader = isl_alloc_array(ctx, int, n);
3334 assert(leader);
3336 n_group = group_overlapping_writes(n, groups, leader);
3338 for (i = 0; i < n; ++i)
3339 if (leader[i] == i)
3340 compute_group_shared_bound(gen, array, groups[i]);
3342 n_group = group_common_shared_memory_tile(gen, array, n, groups,
3343 leader, n_group);
3345 extract_array_groups(ctx, array, n, groups, leader, n_group);
3347 free(leader);
3348 free(groups);
3351 /* Take tiled_sched, project it onto the shared tile loops and
3352 * the loops that will be wrapped over the threads,
3353 * parametrize the shared tile loops and store the result in gen->shared_sched.
3354 * The position of the first of these parameters is stored in gen->first_shared.
3355 * Also compute a projection that projects out the loops that will be
3356 * wrapped over the threads and store this projection in gen->shared_proj.
3358 static void compute_shared_sched(struct cuda_gen *gen)
3360 isl_space *dim;
3361 isl_map *proj;
3362 isl_set *par;
3363 isl_union_map *sched;
3365 sched = isl_union_map_copy(gen->tiled_sched);
3367 dim = isl_union_map_get_space(sched);
3368 gen->first_shared = isl_space_dim(dim, isl_dim_param);
3369 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
3370 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3372 dim = isl_union_map_get_space(sched);
3373 par = parametrization(dim, gen->shared_len + gen->n_block,
3374 0, gen->shared_len, "g");
3375 sched = isl_union_map_intersect_range(sched,
3376 isl_union_set_from_set(par));
3378 dim = isl_union_map_get_space(sched);
3379 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
3381 gen->shared_sched = sched;
3382 gen->shared_proj = isl_union_map_from_map(proj);
3385 /* Group references of all arrays in the program.
3387 static void group_references(struct cuda_gen *gen)
3389 int i;
3390 isl_union_map *sched;
3392 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
3393 isl_union_map_copy(gen->shared_proj));
3395 for (i = 0; i < gen->n_array; ++i)
3396 group_array_references(gen, &gen->array[i], sched);
3398 isl_union_map_free(sched);
3401 /* Free all array information that is local to the current kernel.
3403 static void free_local_array_info(struct cuda_gen *gen)
3405 int i, j;
3407 for (i = 0; i < gen->n_array; ++i) {
3408 struct cuda_array_info *array = &gen->array[i];
3410 for (j = 0; j < array->n_group; ++j)
3411 free_array_ref_group(array->groups[j], array->n_index);
3412 free(array->groups);
3414 if (array->n_group == 0)
3415 continue;
3416 for (j = 0; j < gen->array[i].n_index; ++j) {
3417 isl_pw_aff_free(gen->array[i].local_bound[j]);
3418 gen->array[i].local_bound[j] = NULL;
3423 static void print_iterator_list(FILE *out, int len, const char *prefix,
3424 int parens)
3426 int i;
3428 fprintf(out, "(");
3429 for (i = 0; i < len; ++i) {
3430 if (i)
3431 fprintf(out, ", ");
3432 if (parens)
3433 fprintf(out, "(%s%d)", prefix, i);
3434 else
3435 fprintf(out, "%s%d", prefix, i);
3437 fprintf(out, ")");
3440 /* Print an access to the element in the global memory copy of the
3441 * given array that corresponds to element [a0][a1]... of the original array.
3442 * The copy in global memory has been linearized, so we need to take
3443 * the array size into account.
3445 static void print_global_index(isl_ctx *ctx, FILE *out,
3446 struct cuda_array_info *array)
3448 int i;
3449 isl_printer *prn;
3451 if (cuda_array_is_scalar(array)) {
3452 fprintf(out, "*%s", array->name);
3453 return;
3456 fprintf(out, "%s[", array->name);
3457 for (i = 0; i + 1 < array->n_index; ++i)
3458 fprintf(out, "(");
3459 for (i = 0; i < array->n_index; ++i) {
3460 if (i) {
3461 prn = isl_printer_to_file(ctx, out);
3462 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
3463 prn = isl_printer_print_str(prn, ") * (");
3464 prn = isl_printer_print_pw_aff(prn,
3465 array->local_bound[i]);
3466 prn = isl_printer_print_str(prn, ") + ");
3467 isl_printer_free(prn);
3469 fprintf(out, "a%d", i);
3471 fprintf(out, "]");
3474 /* Print an access to the element in the shared memory copy of the
3475 * given array that corresponds to element [a0][a1]... of the original array.
3476 * Since the array in shared memory is just a shifted copy of part
3477 * of the original array, we simply need to subtract the lower bound,
3478 * which was computed in can_tile_for_shared_memory.
3479 * If any of the indices is strided, then we first add
3480 * shared_bound[i].shift and divide by shared_bound[i].stride.
3482 static void print_local_index(FILE *out, struct cuda_array_ref_group *group)
3484 int i;
3485 isl_ctx *ctx;
3486 isl_printer *prn;
3487 struct cuda_array_bound *bounds = group->shared_bound;
3489 ctx = isl_space_get_ctx(group->array->dim);
3490 print_array_name(out, group);
3491 for (i = 0; i < group->array->n_index; ++i) {
3492 fprintf(out, "[(a%d", i);
3493 if (bounds[i].shift) {
3494 fprintf(out, " + (");
3495 prn = isl_printer_to_file(ctx, out);
3496 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
3497 prn = isl_printer_print_qpolynomial(prn,
3498 bounds[i].shift);
3499 prn = isl_printer_print_str(prn, "))/");
3500 prn = isl_printer_print_isl_int(prn,
3501 bounds[i].stride);
3502 isl_printer_free(prn);
3503 } else
3504 fprintf(out, ")");
3505 fprintf(out, " - (");
3506 prn = isl_printer_to_file(ctx, out);
3507 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
3508 prn = isl_printer_print_aff(prn, bounds[i].lb);
3509 isl_printer_free(prn);
3510 fprintf(out, ")]");
3514 /* Print '#define's for copying data from global memory to shared
3515 * memory and back for the given array.
3517 static void print_array_copy_defines(struct cuda_gen *gen,
3518 struct cuda_array_ref_group *group)
3520 int i;
3521 const char *type[] = { "read", "write" };
3522 struct cuda_array_info *array = group->array;
3523 int n_index = array->n_index;
3525 for (i = 0; i < 2; ++i) {
3526 fprintf(gen->cuda.kernel_c, "#define %s_", type[i]);
3527 print_array_name(gen->cuda.kernel_c, group);
3528 print_iterator_list(gen->cuda.kernel_c, n_index, "a", 0);
3529 fprintf(gen->cuda.kernel_c, " %s_", type[i]);
3530 print_array_name(gen->cuda.kernel_c, group);
3531 fprintf(gen->cuda.kernel_c, "_");
3532 print_iterator_list(gen->cuda.kernel_c, n_index, "a", 1);
3533 fprintf(gen->cuda.kernel_c, "\n");
3535 fprintf(gen->cuda.kernel_c, "#define %s_", type[i]);
3536 print_array_name(gen->cuda.kernel_c, group);
3537 fprintf(gen->cuda.kernel_c, "_");
3538 print_iterator_list(gen->cuda.kernel_c, n_index, "a", 0);
3539 if (i) {
3540 fprintf(gen->cuda.kernel_c, " ");
3541 print_global_index(gen->ctx, gen->cuda.kernel_c, array);
3542 fprintf(gen->cuda.kernel_c, " = ");
3543 print_local_index(gen->cuda.kernel_c, group);
3544 } else {
3545 fprintf(gen->cuda.kernel_c, " ");
3546 print_local_index(gen->cuda.kernel_c, group);
3547 fprintf(gen->cuda.kernel_c, " = ");
3548 print_global_index(gen->ctx, gen->cuda.kernel_c, array);
3550 fprintf(gen->cuda.kernel_c, "\n");
3554 static void print_copy_defines(struct cuda_gen *gen)
3556 int i, j;
3558 for (i = 0; i < gen->n_array; ++i) {
3559 struct cuda_array_info *array = &gen->array[i];
3561 for (j = 0; j < array->n_group; ++j) {
3562 if (array->groups[j]->private_bound)
3563 continue;
3564 if (!array->groups[j]->shared_bound)
3565 continue;
3566 print_array_copy_defines(gen, array->groups[j]);
3571 /* The sizes of the arrays on the host that have been computed by
3572 * extract_array_info may depend on the parameters. Use the extra
3573 * constraints on the parameters that are valid at "host_domain"
3574 * to simplify these expressions.
3576 static void localize_bounds(struct cuda_gen *gen,
3577 __isl_keep isl_set *host_domain)
3579 int i, j;
3580 isl_set *context;
3582 context = isl_set_copy(host_domain);
3583 context = isl_set_params(host_domain);
3585 for (i = 0; i < gen->n_array; ++i) {
3586 struct cuda_array_info *array = &gen->array[i];
3588 if (array->n_group == 0)
3589 continue;
3591 for (j = 0; j < array->n_index; ++j) {
3592 isl_pw_aff *pwaff;
3594 pwaff = isl_pw_aff_copy(array->bound[j]);
3595 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
3596 array->local_bound[j] = pwaff;
3599 isl_set_free(context);
3602 /* Set gen->tile_len and gen->n_parallel to those of the first statement
3603 * in the statement list u.
3604 * Because of the way the schedule is constructed, the other statements
3605 * in the list, if any, should have the same values for these properties.
3607 static void set_tile_len(struct cuda_gen *gen, struct clast_user_stmt *u)
3609 int nr;
3610 struct cuda_stmt *stmt;
3612 nr = atoi(u->statement->name + 2);
3613 stmt = &gen->stmts[nr];
3615 gen->tile_len = stmt->tile_len;
3616 gen->n_parallel = stmt->n_parallel;
3619 /* This function is called for each leaf in the clast of the host code.
3620 * We first specialize the schedule to the site of the leaf, compute
3621 * the size of shared memory and then print the body of host code
3622 * and the associated kernel (through a call to print_kernel_body).
3624 static void print_host_user(struct gpucode_info *code,
3625 struct clast_user_stmt *u)
3627 struct cuda_gen *gen = code->user;
3628 isl_space *dim;
3629 isl_set *par;
3630 isl_set *host_domain;
3631 isl_union_map *access;
3632 isl_union_map *local_sched;
3633 isl_union_set *arrays;
3635 set_tile_len(gen, u);
3636 read_sizes(gen);
3638 host_domain = extract_entire_host_domain(u);
3640 local_sched = isl_union_map_intersect_range(
3641 isl_union_map_copy(gen->sched),
3642 isl_union_set_from_set(extend(isl_set_copy(host_domain),
3643 gen->untiled_len)));
3644 access = isl_union_map_union(isl_union_map_copy(gen->read),
3645 isl_union_map_copy(gen->write));
3646 access = isl_union_map_apply_domain(access,
3647 isl_union_map_copy(local_sched));
3648 arrays = isl_union_map_range(access);
3650 print_indent(code->dst, code->indent);
3651 fprintf(code->dst, "dim3 k%d_dimBlock(", gen->kernel_id);
3652 print_reverse_list(code->dst, gen->n_block, gen->block_dim);
3653 fprintf(code->dst, ");\n");
3655 print_indent(code->dst, code->indent);
3656 fprintf(code->dst, "dim3 k%d_dimGrid(", gen->kernel_id);
3657 print_reverse_list(code->dst, gen->n_grid, gen->grid_dim);
3658 fprintf(code->dst, ");\n");
3660 gen->tiled_sched = tile_schedule(gen, local_sched);
3661 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
3662 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
3664 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
3666 dim = isl_union_map_get_space(gen->local_sched);
3667 par = parametrization(dim, gen->tiled_len, 0, gen->shared_len, "g");
3668 gen->local_sched = isl_union_map_intersect_range(gen->local_sched,
3669 isl_union_set_from_set(par));
3671 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
3672 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
3674 gen->private_access = NULL;
3675 compute_shared_sched(gen);
3676 gen->privatization = compute_privatization(gen);
3677 group_references(gen);
3678 compute_private_size(gen);
3679 localize_bounds(gen, host_domain);
3681 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
3683 print_copy_defines(gen);
3684 print_kernel_launch(gen, arrays);
3686 fprintf(gen->cuda.kernel_c, "{\n");
3688 print_kernel_body(gen, host_domain, gen->tiled_sched);
3690 fprintf(gen->cuda.kernel_c, "}\n");
3692 free_local_array_info(gen);
3693 isl_map_free(gen->privatization);
3694 isl_union_map_free(gen->private_access);
3695 isl_union_map_free(gen->local_sched);
3696 isl_union_map_free(gen->tiled_sched);
3697 isl_union_map_free(gen->shared_sched);
3698 isl_union_map_free(gen->shared_proj);
3699 isl_union_set_free(arrays);
3700 isl_set_free(host_domain);
3702 free(gen->tile_size);
3703 gen->kernel_id++;
3706 /* Use CLooG to generate code for the outer gen->tile_first loops
3707 * of the global schedule in gen->sched.
3708 * The pretty printing of this code is handled by gpu_print_host_stmt,
3709 * which calls print_host_user for each kernel invocation location.
3711 static void print_cloog_host_code(struct cuda_gen *gen)
3713 int i;
3714 isl_set *context;
3715 isl_union_map *sched;
3716 CloogOptions *options;
3717 CloogDomain *cloog_context;
3718 CloogUnionDomain *ud;
3719 CloogInput *input;
3720 struct clast_stmt *stmt;
3721 char name[20];
3723 options = cloog_options_malloc(gen->state);
3724 options->language = LANGUAGE_C;
3725 options->otl = 0;
3726 options->strides = 1;
3727 options->stop = gen->tile_first;
3728 options->f = gen->untiled_len;
3729 options->l = gen->untiled_len;
3730 options->save_domains = 1;
3731 options->noscalars = 1;
3733 sched = isl_union_map_copy(gen->sched);
3734 ud = cloog_union_domain_from_isl_union_map(sched);
3735 for (i = 0; i < options->stop; ++i) {
3736 snprintf(name, sizeof(name), "h%d", i);
3737 ud = cloog_union_domain_set_name(ud, CLOOG_SCAT, i, name);
3739 context = isl_set_copy(gen->context);
3740 cloog_context = cloog_domain_from_isl_set(context);
3741 input = cloog_input_alloc(cloog_context, ud);
3743 stmt = cloog_clast_create_from_input(input, options);
3745 gen->code.indent = 0;
3746 gen->code.dst = gen->cuda.host_c;
3747 gen->code.print_user_stmt = NULL;
3748 gen->code.print_user_stmt_list = &print_host_user;
3749 gen->code.print_for_head = NULL;
3750 gen->code.print_for_foot = NULL;
3751 gen->code.user = gen;
3752 gpu_print_host_stmt(&gen->code, stmt);
3754 cloog_clast_free(stmt);
3755 cloog_options_free(options);
3756 fprintf(gen->cuda.host_c, "\n");
3759 void print_cuda_macros(struct cuda_gen *gen)
3761 const char *macros =
3762 "#define cudaCheckReturn(ret) assert((ret) == cudaSuccess)\n"
3763 "#define cudaCheckKernel()"
3764 " assert(cudaGetLastError() == cudaSuccess)\n\n";
3765 fputs(macros, gen->cuda.host_c);
3768 void print_host_code(struct cuda_gen *gen)
3770 fprintf(gen->cuda.host_c, "{\n");
3771 print_cloog_macros(gen->cuda.host_c);
3772 print_cloog_macros(gen->cuda.kernel_c);
3774 print_cuda_macros(gen);
3776 declare_device_arrays(gen);
3778 allocate_device_arrays(gen);
3779 copy_arrays_to_device(gen);
3781 gen->kernel_id = 0;
3782 print_cloog_host_code(gen);
3784 copy_arrays_from_device(gen);
3785 free_device_arrays(gen);
3787 fprintf(gen->cuda.host_c, "}\n");
3790 __isl_give isl_set *add_context_from_str(__isl_take isl_set *set,
3791 const char *str)
3793 isl_ctx *ctx;
3794 isl_set *context;
3796 if (!str)
3797 return set;
3799 ctx = isl_set_get_ctx(set);
3800 context = isl_set_read_from_str(ctx, str, -1);
3801 context = isl_set_align_params(context, isl_set_get_space(set));
3802 set = isl_set_intersect(set, context);
3804 return set;
3807 /* Return the union of all iteration domains of the gen->stmts[i].
3809 static __isl_give isl_union_set *extract_domain(struct cuda_gen *gen)
3811 int i;
3812 isl_union_set *domain;
3814 domain = isl_union_set_empty(isl_set_get_space(gen->context));
3815 for (i = 0; i < gen->n_stmts; ++i) {
3816 isl_set *domain_i;
3818 domain_i = isl_set_copy(gen->stmts[i].domain);
3819 domain = isl_union_set_union(domain,
3820 isl_union_set_from_set(domain_i));
3823 return domain;
3826 /* Information about the outermost tilable bands in the forest of bands.
3828 * tile_len and n_parallel are only sets on band_info structures
3829 * that correspond to outermost bands. For other bands (in particular,
3830 * ancestors of the outermost bands), n_parallal is set to 0.
3832 * prefix is the (padded) schedule leading up to the outermost tilable bands.
3834 * tile_first is the number of schedule dimensions in prefix.
3836 * suffix is the schedule of the outermost tilable bands and their descendants.
3838 struct band_info {
3839 struct cuda_gen *gen;
3840 int tile_first;
3841 int tile_len;
3842 int n_parallel;
3843 isl_union_map *prefix;
3844 isl_union_map *suffix;
3847 /* Set tile_len and n_parallel of the statement to that of
3848 * their outermost band, recorded in the band_info.
3850 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
3852 struct band_info *info = user;
3853 int nr;
3854 struct cuda_stmt *stmt;
3856 nr = atoi(isl_map_get_tuple_name(map, isl_dim_in) + 2);
3857 stmt = &info->gen->stmts[nr];
3859 stmt->tile_len = info->tile_len;
3860 stmt->n_parallel = info->n_parallel;
3862 isl_map_free(map);
3864 return 0;
3867 static void list_select_outer_band(struct cuda_gen *gen,
3868 __isl_take isl_band_list *list, int pos, struct band_info *list_info);
3870 /* Check if this band has any parallel loops. If so, take it as
3871 * the outermost tilable band. If not, continue looking for the
3872 * outermost tilable band in the children of the current band.
3874 static void band_select_outer_band(struct cuda_gen *gen,
3875 __isl_take isl_band *band, int pos, struct band_info *info)
3877 int n = isl_band_n_member(band);
3878 int n_parallel;
3880 for (n_parallel = 0; n_parallel < n; ++n_parallel)
3881 if (!isl_band_member_is_zero_distance(band, n_parallel))
3882 break;
3884 info->n_parallel = n_parallel;
3885 if (n_parallel) {
3886 info->gen = gen;
3887 info->tile_first = pos;
3888 info->tile_len = n;
3889 info->prefix = isl_band_get_prefix_schedule(band);
3890 info->suffix = isl_union_map_flat_range_product(
3891 isl_band_get_partial_schedule(band),
3892 isl_band_get_suffix_schedule(band));
3893 isl_union_map_foreach_map(info->prefix,
3894 &set_stmt_tile_len, info);
3895 } else {
3896 isl_band_list *children;
3897 if (!isl_band_has_children(band))
3898 isl_die(isl_band_get_ctx(band), isl_error_unknown,
3899 "unable to detect any parallelism", abort());
3900 children = isl_band_get_children(band);
3901 list_select_outer_band(gen, children, pos + n, info);
3904 isl_band_free(band);
3907 /* Comparison function that returns a non-zero value for band_infos
3908 * with different tile_len fields or different n_parallel fields.
3910 static int cmp_band(const void *p1, const void *p2)
3912 const struct band_info *info1 = p1;
3913 const struct band_info *info2 = p2;
3915 if (info1->tile_len != info2->tile_len)
3916 return info1->tile_len - info2->tile_len;
3918 return info1->n_parallel - info2->n_parallel;
3921 /* Extend "umap" with coordinates with fixed value "val"
3922 * to a total length of "dst_len", assuming the original dimension is "src_len".
3924 static __isl_give isl_union_map *extend_range(__isl_take isl_union_map *umap,
3925 int src_len, int dst_len, int val)
3927 isl_space *dim;
3928 isl_map *map;
3929 int i;
3931 dim = isl_union_map_get_space(umap);
3932 map = isl_map_reverse(projection(dim, dst_len, src_len));
3933 for (i = src_len; i < dst_len; ++i)
3934 map = isl_map_fix_si(map, isl_dim_out, i, val);
3936 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
3938 return umap;
3941 /* Group bands with the same values for tile_len and n_parallel.
3942 * The prefix schedule is then extended with a fixed coordinate that
3943 * is different for each such group.
3944 * Note that the actual values for this coordinate are not important.
3945 * The bands have already been effectively separated at a higher level
3946 * or they are independent and may be executed in parallel.
3947 * The list of band_info has been sorted before this functions is called.
3949 static void separate_bands(struct band_info *info, int n)
3951 int i;
3952 int j = 0;
3954 for (i = 0; i < n; ++i) {
3955 int l = info[i].tile_first;
3957 if (i &&
3958 (info[i].tile_len != info[i - 1].tile_len ||
3959 info[i].n_parallel != info[i - 1].n_parallel))
3960 j++;
3962 info[i].prefix = extend_range(info[i].prefix,
3963 l, l + 1, j);
3964 info[i].tile_first = l + 1;
3968 /* Select the outermost bands in the elements of the list, align
3969 * their prefix schedules, separate bands with different values
3970 * for tile_len and/or n_parallel and then combine the resulting
3971 * prefix and suffix schedules into a single pair of prefix and
3972 * suffix schedules for the entire list.
3974 static void list_select_outer_band(struct cuda_gen *gen,
3975 __isl_take isl_band_list *list, int pos, struct band_info *list_info)
3977 isl_band *band;
3978 int i;
3979 int n = isl_band_list_n_band(list);
3980 isl_ctx *ctx = isl_band_list_get_ctx(list);
3981 struct band_info *info;
3982 int max_tile_first;
3983 isl_union_map *prefix;
3984 isl_union_map *suffix;
3986 assert(n >= 1);
3987 info = isl_calloc_array(ctx, struct band_info, n);
3988 assert(info);
3990 max_tile_first = 0;
3991 for (i = 0; i < n; ++i) {
3992 band = isl_band_list_get_band(list, i);
3993 band_select_outer_band(gen, band, pos, &info[i]);
3994 if (info[i].tile_first > max_tile_first)
3995 max_tile_first = info[i].tile_first;
3998 for (i = 0; i < n; ++i) {
3999 if (info[i].tile_first == max_tile_first)
4000 continue;
4001 info[i].prefix = extend_range(info[i].prefix,
4002 info[i].tile_first, max_tile_first, 0);
4005 qsort(info, n, sizeof(struct band_info), &cmp_band);
4007 for (i = 0; i < n - 1; ++i)
4008 if (info[i].tile_len != info[i + 1].tile_len ||
4009 info[i].n_parallel != info[i + 1].n_parallel)
4010 break;
4012 if (i < n -1)
4013 separate_bands(info, n);
4015 prefix = info[0].prefix;
4016 suffix = info[0].suffix;
4018 for (i = 1; i < n; ++i) {
4019 prefix = isl_union_map_union(prefix, info[i].prefix);
4020 suffix = isl_union_map_union(suffix, info[i].suffix);
4023 list_info->tile_first = info[0].tile_first;
4024 list_info->tile_len = -1;
4025 list_info->prefix = prefix;
4026 list_info->suffix = suffix;
4028 isl_band_list_free(list);
4029 free(info);
4032 /* Set max_out to the maximal number of output dimensions over
4033 * all maps.
4035 static int update_max_out(__isl_take isl_map *map, void *user)
4037 int *max_out = user;
4038 int n_out = isl_map_dim(map, isl_dim_out);
4040 if (n_out > *max_out)
4041 *max_out = n_out;
4043 isl_map_free(map);
4044 return 0;
4047 struct align_range_data {
4048 int max_out;
4049 isl_union_map *res;
4052 /* Extend the dimension of the range of the given map to data->max_out and
4053 * then add the result to data->res.
4055 static int map_align_range(__isl_take isl_map *map, void *user)
4057 struct align_range_data *data = user;
4058 int i;
4059 isl_space *dim;
4060 isl_map *proj;
4061 int n_out = isl_map_dim(map, isl_dim_out);
4063 dim = isl_union_map_get_space(data->res);
4064 proj = isl_map_reverse(projection(dim, data->max_out, n_out));
4065 for (i = n_out; i < data->max_out; ++i)
4066 proj = isl_map_fix_si(proj, isl_dim_out, i, 0);
4068 map = isl_map_apply_range(map, proj);
4070 data->res = isl_union_map_add_map(data->res, map);
4072 return 0;
4075 /* Extend the ranges of the maps in the union map such they all have
4076 * the same dimension.
4078 static __isl_give isl_union_map *align_range(__isl_take isl_union_map *umap)
4080 struct align_range_data data;
4082 data.max_out = 0;
4083 isl_union_map_foreach_map(umap, &update_max_out, &data.max_out);
4085 data.res = isl_union_map_empty(isl_union_map_get_space(umap));
4086 isl_union_map_foreach_map(umap, &map_align_range, &data);
4088 isl_union_map_free(umap);
4089 return data.res;
4092 /* Select the outermost tilable band that (by construction)
4093 * has at least one parallel loop.
4094 * The starting position of the aligned band is stored in the pair
4095 * gen->tile_first.
4096 * The sizes and number of parallel loops may be different in different
4097 * parts of the band forest and are therefore stored in the cuda_stmts.
4099 * Return the complete schedule, with the tilable bands aligned
4100 * at gen->tile_first and padded with zero, if needed.
4102 static __isl_give isl_union_map *select_outer_tilable_band(struct cuda_gen *gen,
4103 __isl_keep isl_schedule *schedule)
4105 isl_band_list *list;
4106 struct band_info info;
4108 gen->n_parallel = 0;
4109 gen->tile_len = -1;
4111 list = isl_schedule_get_band_forest(schedule);
4113 list_select_outer_band(gen, list, 0, &info);
4115 gen->tile_first = info.tile_first;
4116 info.suffix = align_range(info.suffix);
4118 return isl_union_map_flat_range_product(info.prefix, info.suffix);
4121 /* Set gen->untiled_len to the number of scheduling dimensions
4122 * for the schedule of the first domain.
4123 * We assume here that this number is the same for all domains.
4125 static int set_untiled_len(__isl_take isl_map *map, void *user)
4127 unsigned *untiled_len = user;
4129 *untiled_len = isl_map_dim(map, isl_dim_out);
4131 isl_map_free(map);
4132 return -1;
4135 /* Compute an appropriate schedule based on the accesses in
4136 * gen->read and gen->write.
4138 * We first compute dependences and then use those to compute
4139 * a schedule that has a parallel loop in each tilable band.
4140 * Finally, we select the outermost tilable band.
4142 static void compute_schedule(struct cuda_gen *gen,
4143 __isl_take isl_union_map *sched)
4145 isl_ctx *ctx = isl_union_map_get_ctx(sched);
4146 isl_union_set *domain;
4147 isl_union_map *empty;
4148 isl_union_map *dep_raw, *dep2, *dep3, *dep;
4149 isl_union_map *uninitialized;
4150 isl_schedule *schedule;
4151 struct isl_options *options;
4153 empty = isl_union_map_empty(isl_union_map_get_space(sched));
4155 isl_union_map_compute_flow(isl_union_map_copy(gen->read),
4156 isl_union_map_copy(gen->write), empty,
4157 isl_union_map_copy(sched),
4158 &dep_raw, NULL, &uninitialized, NULL);
4159 isl_union_map_compute_flow(isl_union_map_copy(gen->write),
4160 isl_union_map_copy(gen->write),
4161 isl_union_map_copy(gen->read),
4162 isl_union_map_copy(sched),
4163 &dep2, &dep3, NULL, NULL);
4164 isl_union_map_free(sched);
4166 gen->copy_in = isl_union_map_range(uninitialized);
4168 dep = isl_union_map_union(dep2, dep3);
4169 dep = isl_union_map_union(dep, dep_raw);
4170 dep = isl_union_map_coalesce(dep);
4172 domain = extract_domain(gen);
4173 options = isl_ctx_peek_options(ctx, isl_options_arg);
4174 options->schedule_outer_zero_distance = 1;
4175 schedule = isl_union_set_compute_schedule(isl_union_set_copy(domain),
4176 isl_union_map_copy(dep), dep);
4178 sched = select_outer_tilable_band(gen, schedule);
4180 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
4181 sched = isl_union_map_intersect_domain(sched, domain);
4182 gen->sched = sched;
4184 isl_schedule_free(schedule);
4187 static struct cuda_stmt_access **expr_extract_access(struct pet_expr *expr,
4188 struct cuda_stmt_access **next_access)
4190 struct cuda_stmt_access *access;
4191 isl_ctx *ctx = isl_map_get_ctx(expr->acc.access);
4193 access = isl_alloc_type(ctx, struct cuda_stmt_access);
4194 assert(access);
4195 access->next = NULL;
4196 access->read = expr->acc.read;
4197 access->write = expr->acc.write;
4198 access->access = isl_map_copy(expr->acc.access);
4200 *next_access = access;
4201 next_access = &(*next_access)->next;
4202 return next_access;
4205 static struct cuda_stmt_access **expr_extract_accesses(struct pet_expr *expr,
4206 struct cuda_stmt_access **next_access)
4208 int i;
4210 for (i = 0; i < expr->n_arg; ++i)
4211 next_access = expr_extract_accesses(expr->args[i],
4212 next_access);
4214 if (expr->type == pet_expr_access)
4215 next_access = expr_extract_access(expr, next_access);
4217 return next_access;
4220 static void pet_stmt_extract_accesses(struct cuda_stmt *stmt)
4222 struct cuda_stmt_access **next_access = &stmt->accesses;
4224 stmt->accesses = NULL;
4225 expr_extract_accesses(stmt->body, next_access);
4228 /* Return an array of cuda_stmt representing the statements in "scop".
4230 static struct cuda_stmt *extract_stmts(isl_ctx *ctx, struct pet_scop *scop,
4231 __isl_keep isl_set *context)
4233 int i;
4234 struct cuda_stmt *stmts;
4236 stmts = isl_calloc_array(ctx, struct cuda_stmt, scop->n_stmt);
4237 assert(stmts);
4239 for (i = 0; i < scop->n_stmt; ++i) {
4240 struct cuda_stmt *s = &stmts[i];
4242 s->domain = isl_set_copy(scop->stmts[i]->domain);
4243 s->domain = isl_set_intersect(s->domain, isl_set_copy(context));
4244 s->body = scop->stmts[i]->body;
4245 pet_stmt_extract_accesses(s);
4248 return stmts;
4251 /* Replace the scop in the "input" file by equivalent code
4252 * that uses the GPU. "scop" is assumed to correspond to this scop.
4254 * We first compute a schedule that respects the dependences
4255 * of the original program and select the outermost band
4256 * of tilable dimensions that has at least one parallel loop.
4257 * We then have three blocks of dimensions
4259 * H B G
4261 * The tilable band "B" is first tiled according to "tile.sizes", resulting
4262 * in
4264 * H T P G
4266 * For each iteration of the T loop and for each array, we compute
4267 * the array elements accessed by that iteration, construct a rectangular
4268 * box around it and shift it to the origin. The result is used
4269 * as shared memory for the array.
4271 * We then split off at most 2 parallel loops from the T loops and
4272 * at most 3 parallel loops from the P loops
4274 * H T1 T2 P1 P2 G
4276 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
4277 * according to "grid.sizes"/"block.sizes".
4279 * H T1T T1P T2 P1T P1P P2 G
4281 * Finally, the T1P and P1P iterators are equated to the block and
4282 * thread dimensions respectively and so are effectively removed.
4283 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
4284 * are run on the GPU.
4286 * Code is generated in three stages. We first generate code for the
4287 * host (the H loops), with iterators h%d. Then, for each leaf node
4288 * of the resulting AST, we generate code for the shared loops (up to
4289 * and including T2), with iterators g%d and after equating the H loops
4290 * to h%d parameters and the T1P loops to the block dimensions.
4291 * Finally, we generate code for the remaining loops in a similar fashion.
4293 int cuda_pet(isl_ctx *ctx, struct pet_scop *scop, struct ppcg_options *options,
4294 const char *input)
4296 isl_union_map *sched;
4297 struct cuda_gen gen;
4299 if (!scop)
4300 return -1;
4302 scop = pet_scop_align_params(scop);
4304 gen.ctx = ctx;
4305 gen.context = isl_set_copy(scop->context);
4306 gen.context = add_context_from_str(gen.context, options->ctx);
4307 gen.n_stmts = scop->n_stmt;
4308 gen.stmts = extract_stmts(ctx, scop, gen.context);
4309 gen.read = pet_scop_collect_reads(scop);
4310 gen.write = pet_scop_collect_writes(scop);
4311 gen.options = options;
4312 gen.state = cloog_isl_state_malloc(gen.ctx);
4313 gen.scop = scop;
4315 cuda_open_files(&gen.cuda, input);
4317 collect_array_info(&gen);
4319 sched = pet_scop_collect_schedule(scop);
4321 compute_schedule(&gen, sched);
4323 print_host_code(&gen);
4325 cloog_state_free(gen.state);
4326 clear_cuda_gen(&gen);
4328 cuda_close_files(&gen.cuda);
4330 return 0;