move align_range to schedule.c
[ppcg.git] / cuda.c
blob05520628a85aa708a894a2a3448040cb5eaf11e9
1 /*
2 * Copyright 2010-2011 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <assert.h>
12 #include <stdlib.h>
14 #include <isl/polynomial.h>
15 #include <isl/union_set.h>
16 #include <isl/aff.h>
17 #include <isl/ilp.h>
18 #include <isl/flow.h>
19 #include <isl/band.h>
20 #include <isl/schedule.h>
21 #include <isl/options.h>
22 #include <cloog/isl/cloog.h>
24 #include "cuda.h"
25 #include "cuda_common.h"
26 #include "clast_printer.h"
27 #include "schedule.h"
28 #include "pet_printer.h"
29 #include "ppcg_options.h"
31 /* The fields stride, shift and shift_map only contain valid information
32 * if shift != NULL.
33 * If so, they express that current index is such that if you add shift,
34 * then the result is always a multiple of stride.
35 * shift_map contains the mapping
37 * i -> (i + shift)/stride
39 struct cuda_array_bound {
40 isl_int size;
41 isl_aff *lb;
43 isl_int stride;
44 isl_aff *shift;
45 isl_basic_map *shift_map;
48 struct cuda_array_info;
50 /* A group of array references in a kernel that should be handled together.
51 * If private_bound is not NULL, then it is mapped to registers.
52 * Otherwise, if shared_bound is not NULL, it is mapped to shared memory.
53 * Otherwise, it is accessed from global memory.
55 struct cuda_array_ref_group {
56 /* The references in this group access this array. */
57 struct cuda_array_info *array;
58 /* Position of this group in the list of reference groups of array. */
59 int nr;
61 /* The following fields are use during the construction of the groups.
62 * access is the combined access relation relative to the shared
63 * memory tiling.
64 * write is set if any access in the group is a write.
66 isl_map *access;
67 int write;
69 /* For each index, size and offset of piece in shared memory. */
70 struct cuda_array_bound *shared_bound;
72 /* For each index, size and offset of piece in private memory. */
73 struct cuda_array_bound *private_bound;
75 /* References in this group; point to elements of a linked list. */
76 int n_ref;
77 struct cuda_stmt_access **refs;
79 /* Last shared memory tile dimension that affects tile of this group. */
80 int last_shared;
81 /* Dimension at which copying to/from shared memory is printed.
82 * if >= 0, then the value is >= last_shared
83 * if -1, then the copying is done at the leaf level.
85 int print_shared_level;
88 struct cuda_array_info {
89 isl_space *dim;
90 /* Element type. */
91 char *type;
92 /* Element size. */
93 int size;
94 /* Name of the array. */
95 char *name;
96 /* Number of indices. */
97 unsigned n_index;
98 /* For each index, a bound on the array in that direction. */
99 isl_pw_aff **bound;
100 /* For each index, bound[i] specialized to the current kernel. */
101 isl_pw_aff **local_bound;
103 /* All references to this array; point to elements of a linked list. */
104 int n_ref;
105 struct cuda_stmt_access **refs;
107 /* The reference groups associated to this array. */
108 int n_group;
109 struct cuda_array_ref_group **groups;
111 /* For scalars, is this scalar read-only within the entire program? */
112 int read_only;
115 /* Print the name of the local copy of a given group of array references.
117 static __isl_give isl_printer *print_array_name(__isl_take isl_printer *p,
118 struct cuda_array_ref_group *group)
120 int global = 0;
122 if (group->private_bound)
123 p = isl_printer_print_str(p, "private_");
124 else if (group->shared_bound)
125 p = isl_printer_print_str(p, "shared_");
126 else
127 global = 1;
128 p = isl_printer_print_str(p, group->array->name);
129 if (!global && group->array->n_group > 1) {
130 p = isl_printer_print_str(p, "_");
131 p = isl_printer_print_int(p, group->nr);
134 return p;
137 /* Collect all references to the given array and store pointers to them
138 * in array->refs.
140 static void collect_references(struct cuda_gen *gen,
141 struct cuda_array_info *array)
143 int i;
144 int n;
146 n = 0;
147 for (i = 0; i < gen->n_stmts; ++i) {
148 struct cuda_stmt *stmt = &gen->stmts[i];
149 struct cuda_stmt_access *access;
151 for (access = stmt->accesses; access; access = access->next) {
152 const char *name;
153 name = isl_map_get_tuple_name(access->access,
154 isl_dim_out);
155 if (name && !strcmp(array->name, name))
156 n++;
160 array->n_ref = n;
161 array->refs = isl_alloc_array(gen->ctx, struct cuda_stmt_access *, n);
162 assert(array->refs);
164 n = 0;
165 for (i = 0; i < gen->n_stmts; ++i) {
166 struct cuda_stmt *stmt = &gen->stmts[i];
167 struct cuda_stmt_access *access;
169 for (access = stmt->accesses; access; access = access->next) {
170 const char *name;
171 name = isl_map_get_tuple_name(access->access,
172 isl_dim_out);
173 if (!name || strcmp(array->name, name))
174 continue;
176 array->refs[n++] = access;
181 static struct cuda_array_bound *create_bound_list(isl_ctx *ctx, int n_index)
183 int i;
184 struct cuda_array_bound *bound;
186 bound = isl_alloc_array(ctx, struct cuda_array_bound, n_index);
187 assert(bound);
189 for (i = 0; i < n_index; ++i) {
190 isl_int_init(bound[i].size);
191 bound[i].lb = NULL;
192 isl_int_init(bound[i].stride);
193 bound[i].shift = NULL;
194 bound[i].shift_map = NULL;
197 return bound;
200 static void free_bound_list(struct cuda_array_bound *bound, int n_index)
202 int j;
204 if (!bound)
205 return;
207 for (j = 0; j < n_index; ++j) {
208 isl_int_clear(bound[j].size);
209 isl_int_clear(bound[j].stride);
210 isl_aff_free(bound[j].lb);
211 isl_aff_free(bound[j].shift);
212 isl_basic_map_free(bound[j].shift_map);
214 free(bound);
217 static struct pet_array *find_array(struct pet_scop *scop,
218 __isl_keep isl_set *accessed)
220 int i;
221 isl_id *id;
223 id = isl_set_get_tuple_id(accessed);
225 for (i = 0; i < scop->n_array; ++i) {
226 isl_id *id_i;
228 id_i = isl_set_get_tuple_id(scop->arrays[i]->extent);
229 isl_id_free(id_i);
230 if (id == id_i)
231 break;
233 isl_id_free(id);
235 return i < scop->n_array ? scop->arrays[i] : NULL;
238 /* Compute bounds on the host arrays based on the accessed elements
239 * and collect all references to the array.
241 * If the array is zero-dimensional, i.e., a scalar, we check
242 * whether it is read-only.
244 static int extract_array_info(__isl_take isl_set *array, void *user)
246 int i;
247 struct cuda_gen *gen = (struct cuda_gen *)user;
248 const char *name;
249 int n_index;
250 isl_pw_aff **bounds;
251 isl_pw_aff **local_bounds;
252 struct pet_array *pa;
254 n_index = isl_set_dim(array, isl_dim_set);
255 name = isl_set_get_tuple_name(array);
256 bounds = isl_alloc_array(isl_set_get_ctx(array),
257 isl_pw_aff *, n_index);
258 assert(bounds);
259 local_bounds = isl_calloc_array(isl_set_get_ctx(array),
260 isl_pw_aff *, n_index);
261 assert(local_bounds);
262 gen->array[gen->n_array].dim = isl_set_get_space(array);
263 gen->array[gen->n_array].name = strdup(name);
264 gen->array[gen->n_array].n_index = n_index;
265 gen->array[gen->n_array].bound = bounds;
266 gen->array[gen->n_array].local_bound = local_bounds;
268 pa = find_array(gen->scop, array);
269 assert(pa);
271 gen->array[gen->n_array].type = strdup(pa->element_type);
272 gen->array[gen->n_array].size = pa->element_size;
274 if (n_index == 0) {
275 isl_set *space;
276 isl_union_map *write;
277 int empty;
279 write = isl_union_map_copy(gen->write);
280 space = isl_set_universe(isl_set_get_space(array));
281 write = isl_union_map_intersect_range(write,
282 isl_union_set_from_set(space));
283 empty = isl_union_map_is_empty(write);
284 isl_union_map_free(write);
286 gen->array[gen->n_array].read_only = empty;
289 for (i = 0; i < n_index; ++i) {
290 isl_set *dom;
291 isl_local_space *ls;
292 isl_aff *one;
293 isl_pw_aff *bound;
294 isl_set *size = i == 0 ? array : pa->extent;
296 bound = isl_set_dim_max(isl_set_copy(size), i);
297 assert(bound);
298 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
299 ls = isl_local_space_from_space(isl_set_get_space(dom));
300 one = isl_aff_zero_on_domain(ls);
301 one = isl_aff_add_constant_si(one, 1);
302 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
303 bound = isl_pw_aff_gist(bound, isl_set_copy(gen->context));
305 bounds[i] = bound;
308 collect_references(gen, &gen->array[gen->n_array]);
310 gen->n_array++;
312 isl_set_free(array);
313 return 0;
316 void collect_array_info(struct cuda_gen *gen)
318 isl_union_set *arrays;
320 arrays = isl_union_map_range(isl_union_map_copy(gen->read));
321 arrays = isl_union_set_union(arrays,
322 isl_union_map_range(isl_union_map_copy(gen->write)));
323 arrays = isl_union_set_coalesce(arrays);
325 gen->n_array = isl_union_set_n_set(arrays);
326 gen->array = isl_alloc_array(gen->ctx,
327 struct cuda_array_info, gen->n_array);
328 assert(gen->array);
329 gen->n_array = 0;
330 isl_union_set_foreach_set(arrays, &extract_array_info, gen);
331 isl_union_set_free(arrays);
334 static void free_array_info(struct cuda_gen *gen)
336 int i, j;
338 for (i = 0; i < gen->n_array; ++i) {
339 int n_index = gen->array[i].n_index;
340 free(gen->array[i].type);
341 free(gen->array[i].name);
342 for (j = 0; j < n_index; ++j) {
343 isl_pw_aff_free(gen->array[i].bound[j]);
344 isl_pw_aff_free(gen->array[i].local_bound[j]);
346 isl_space_free(gen->array[i].dim);
347 free(gen->array[i].bound);
348 free(gen->array[i].local_bound);
349 free(gen->array[i].refs);
351 free(gen->array);
354 /* Check if a cuda array is a scalar. A scalar is a value that is not stored
355 * as an array or through a pointer reference, but as single data element. At
356 * the moment, scalars are represented as zero dimensional arrays.
358 static int cuda_array_is_scalar(struct cuda_array_info *array)
360 return (array->n_index == 0);
363 /* Is "array" a read-only scalar?
365 static int cuda_array_is_read_only_scalar(struct cuda_array_info *array)
367 return cuda_array_is_scalar(array) && array->read_only;
370 static void declare_device_arrays(struct cuda_gen *gen)
372 int i;
374 for (i = 0; i < gen->n_array; ++i) {
375 if (cuda_array_is_read_only_scalar(&gen->array[i]))
376 continue;
377 fprintf(gen->cuda.host_c, "%s *dev_%s;\n",
378 gen->array[i].type, gen->array[i].name);
380 fprintf(gen->cuda.host_c, "\n");
383 static void print_array_size(struct cuda_gen *gen, FILE *out,
384 struct cuda_array_info *array)
386 int i;
387 isl_printer *prn;
389 prn = isl_printer_to_file(gen->ctx, out);
390 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
391 for (i = 0; i < array->n_index; ++i) {
392 prn = isl_printer_print_str(prn, "(");
393 prn = isl_printer_print_pw_aff(prn, array->bound[i]);
394 prn = isl_printer_print_str(prn, ") * ");
396 prn = isl_printer_print_str(prn, "sizeof(");
397 prn = isl_printer_print_str(prn, array->type);
398 prn = isl_printer_print_str(prn, ")");
399 isl_printer_free(prn);
402 static void allocate_device_arrays(struct cuda_gen *gen)
404 int i;
406 for (i = 0; i < gen->n_array; ++i) {
407 if (cuda_array_is_read_only_scalar(&gen->array[i]))
408 continue;
409 fprintf(gen->cuda.host_c,
410 "cudaCheckReturn(cudaMalloc((void **) &dev_%s, ",
411 gen->array[i].name);
412 print_array_size(gen, gen->cuda.host_c, &gen->array[i]);
413 fprintf(gen->cuda.host_c, "));\n");
415 fprintf(gen->cuda.host_c, "\n");
418 static void free_device_arrays(struct cuda_gen *gen)
420 int i;
422 for (i = 0; i < gen->n_array; ++i) {
423 if (cuda_array_is_read_only_scalar(&gen->array[i]))
424 continue;
425 fprintf(gen->cuda.host_c, "cudaCheckReturn(cudaFree(dev_%s));\n",
426 gen->array[i].name);
430 static void copy_arrays_to_device(struct cuda_gen *gen)
432 int i;
434 for (i = 0; i < gen->n_array; ++i) {
435 isl_space *dim;
436 isl_set *read_i;
437 int empty;
439 if (cuda_array_is_read_only_scalar(&gen->array[i]))
440 continue;
442 dim = isl_space_copy(gen->array[i].dim);
443 read_i = isl_union_set_extract_set(gen->copy_in, dim);
444 empty = isl_set_fast_is_empty(read_i);
445 isl_set_free(read_i);
446 if (empty)
447 continue;
449 fprintf(gen->cuda.host_c, "cudaCheckReturn(cudaMemcpy(dev_%s,",
450 gen->array[i].name);
452 if (cuda_array_is_scalar(&(gen->array[i])))
453 fprintf(gen->cuda.host_c, " &%s, ",
454 gen->array[i].name);
455 else
456 fprintf(gen->cuda.host_c, " %s, ", gen->array[i].name);
458 print_array_size(gen, gen->cuda.host_c, &gen->array[i]);
459 fprintf(gen->cuda.host_c, ", cudaMemcpyHostToDevice));\n");
461 fprintf(gen->cuda.host_c, "\n");
464 static void copy_arrays_from_device(struct cuda_gen *gen)
466 int i;
467 isl_union_set *write;
468 write = isl_union_map_range(isl_union_map_copy(gen->write));
470 for (i = 0; i < gen->n_array; ++i) {
471 isl_space *dim;
472 isl_set *write_i;
473 int empty;
475 dim = isl_space_copy(gen->array[i].dim);
476 write_i = isl_union_set_extract_set(write, dim);
477 empty = isl_set_fast_is_empty(write_i);
478 isl_set_free(write_i);
479 if (empty)
480 continue;
482 fprintf(gen->cuda.host_c, "cudaCheckReturn(cudaMemcpy(");
483 if (cuda_array_is_scalar(&gen->array[i]))
484 fprintf(gen->cuda.host_c, "&%s, ", gen->array[i].name);
485 else
486 fprintf(gen->cuda.host_c, "%s, ", gen->array[i].name);
487 fprintf(gen->cuda.host_c, "dev_%s, ", gen->array[i].name);
488 print_array_size(gen, gen->cuda.host_c, &gen->array[i]);
489 fprintf(gen->cuda.host_c, ", cudaMemcpyDeviceToHost));\n");
492 isl_union_set_free(write);
493 fprintf(gen->cuda.host_c, "\n");
496 /* Internal data structure for extract_size_of_type.
497 * "type" specifies the name of the space that we want to extract.
498 * "res" is used to store the subset of that space.
500 struct ppcg_extract_size_data {
501 const char *type;
502 isl_set *res;
505 /* This function is called for each set in a union_set.
506 * If the name of the set matches data->type, we store the
507 * set in data->res.
509 static int extract_size_of_type(__isl_take isl_set *size, void *user)
511 struct ppcg_extract_size_data *data = user;
512 const char *name;
514 name = isl_set_get_tuple_name(size);
515 if (name && !strcmp(name, data->type)) {
516 data->res = size;
517 return -1;
520 isl_set_free(size);
521 return 0;
524 /* Given a union map { kernel[i] -> *[...] },
525 * return the range in the space called "type" for the kernel with
526 * sequence number "id".
528 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
529 const char *type, int id)
531 isl_space *space;
532 isl_set *dom;
533 isl_union_set *local_sizes;
534 struct ppcg_extract_size_data data = { type, NULL };
536 if (!sizes)
537 return NULL;
539 space = isl_union_map_get_space(sizes);
540 space = isl_space_set_from_params(space);
541 space = isl_space_add_dims(space, isl_dim_set, 1);
542 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
543 dom = isl_set_universe(space);
544 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
546 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
547 isl_union_map_copy(sizes));
548 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
549 isl_union_set_free(local_sizes);
550 return data.res;
553 /* Given a singleton set, extract the first (at most *len) elements
554 * of the single integer tuple into *sizes and update *len if needed.
556 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
558 int i;
559 int dim;
560 isl_int v;
562 if (!set)
563 return;
565 dim = isl_set_dim(set, isl_dim_set);
566 if (dim < *len)
567 *len = dim;
569 isl_int_init(v);
571 for (i = 0; i < *len; ++i) {
572 int ok;
574 ok = isl_set_plain_is_fixed(set, isl_dim_set, i, &v);
575 assert(ok);
577 sizes[i] = isl_int_get_si(v);
580 isl_int_clear(v);
582 isl_set_free(set);
585 /* Extract user specified "tile" sizes from the "sizes" command line option,
586 * defaulting to option->tile_size in each dimension.
588 static void read_tile_sizes(struct cuda_gen *gen)
590 int n;
591 isl_set *size;
593 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
594 assert(gen->tile_size);
595 for (n = 0; n < gen->tile_len; ++n)
596 gen->tile_size[n] = gen->options->tile_size;
598 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
599 read_sizes_from_set(size, gen->tile_size, &gen->tile_len);
601 if (gen->n_parallel > gen->tile_len)
602 gen->n_parallel = gen->tile_len;
605 /* Extract user specified "block" sizes from the "sizes" command line option,
606 * after filling in some potentially useful defaults.
608 static void read_block_sizes(struct cuda_gen *gen)
610 int n;
611 isl_set *size;
613 n = gen->n_parallel;
614 gen->n_block = (n <= 3) ? n : 3;
615 switch (gen->n_block) {
616 case 1:
617 gen->block_dim[0] = 512;
618 break;
619 case 2:
620 gen->block_dim[0] = 32;
621 gen->block_dim[1] = 16;
622 break;
623 default:
624 gen->block_dim[0] = 32;
625 gen->block_dim[1] = 4;
626 gen->block_dim[2] = 4;
627 break;
630 size = extract_sizes(gen->sizes, "block", gen->kernel_id);
631 read_sizes_from_set(size, gen->block_dim, &gen->n_block);
634 /* Extract user specified "grid" sizes from the "sizes" command line option,
635 * after filling in some potentially useful defaults.
637 static void read_grid_sizes(struct cuda_gen *gen)
639 int n = gen->n_parallel;
640 isl_set *size;
642 gen->n_grid = (n <= 2) ? n : 2;
643 switch (gen->n_grid) {
644 case 1:
645 gen->grid_dim[0] = 32768;
646 break;
647 default:
648 gen->grid_dim[0] = 256;
649 gen->grid_dim[1] = 256;
650 break;
653 size = extract_sizes(gen->sizes, "grid", gen->kernel_id);
654 read_sizes_from_set(size, gen->grid_dim, &gen->n_grid);
657 /* Extract user specified sizes from the "sizes" command line option
658 * after filling in some potentially useful defaults.
660 static void read_sizes(struct cuda_gen *gen)
662 read_tile_sizes(gen);
663 read_block_sizes(gen);
664 read_grid_sizes(gen);
667 static void free_stmts(struct cuda_stmt *stmts, int n)
669 int i;
671 for (i = 0; i < n; ++i) {
672 struct cuda_stmt_access *access, *next;
674 for (access = stmts[i].accesses; access; access = next) {
675 next = access->next;
676 isl_map_free(access->access);
677 free(access);
680 isl_set_free(stmts[i].domain);
682 free(stmts);
685 void clear_cuda_gen(struct cuda_gen *gen)
687 free_stmts(gen->stmts, gen->n_stmts);
688 free_array_info(gen);
689 isl_union_map_free(gen->sizes);
690 isl_set_free(gen->context);
691 isl_union_set_free(gen->copy_in);
692 isl_union_map_free(gen->sched);
693 isl_union_map_free(gen->read);
694 isl_union_map_free(gen->write);
697 static void print_reverse_list(FILE *out, int len, int *list)
699 int i;
701 if (len == 0)
702 return;
704 fprintf(out, "(");
705 for (i = 0; i < len; ++i) {
706 if (i)
707 fprintf(out, ", ");
708 fprintf(out, "%d", list[len - 1 - i]);
710 fprintf(out, ")");
713 static void print_kernel_launch(struct cuda_gen *gen,
714 __isl_keep isl_union_set *arrays)
716 int i;
717 int first = 1;
718 unsigned nparam;
719 isl_space *dim;
721 print_indent(gen->code.dst, gen->code.indent);
722 fprintf(gen->code.dst, "kernel%d <<<k%d_dimGrid, k%d_dimBlock>>> (",
723 gen->kernel_id, gen->kernel_id, gen->kernel_id);
724 fprintf(gen->cuda.kernel_c, "__global__ void kernel%d(",
725 gen->kernel_id);
726 fprintf(gen->cuda.kernel_h, "__global__ void kernel%d(",
727 gen->kernel_id);
729 for (i = 0; i < gen->n_array; ++i) {
730 isl_space *dim;
731 isl_set *arr;
732 int empty;
734 dim = isl_space_copy(gen->array[i].dim);
735 arr = isl_union_set_extract_set(arrays, dim);
736 empty = isl_set_fast_is_empty(arr);
737 isl_set_free(arr);
738 if (empty)
739 continue;
741 if (!first) {
742 fprintf(gen->code.dst, ", ");
743 fprintf(gen->cuda.kernel_c, ", ");
744 fprintf(gen->cuda.kernel_h, ", ");
747 if (cuda_array_is_read_only_scalar(&gen->array[i])) {
748 fprintf(gen->code.dst, "%s", gen->array[i].name);
749 fprintf(gen->cuda.kernel_c, "%s %s",
750 gen->array[i].type, gen->array[i].name);
751 fprintf(gen->cuda.kernel_h, "%s %s",
752 gen->array[i].type, gen->array[i].name);
753 } else {
754 fprintf(gen->code.dst, "dev_%s", gen->array[i].name);
755 fprintf(gen->cuda.kernel_c, "%s *%s",
756 gen->array[i].type, gen->array[i].name);
757 fprintf(gen->cuda.kernel_h, "%s *%s",
758 gen->array[i].type, gen->array[i].name);
761 first = 0;
764 dim = isl_union_set_get_space(arrays);
765 nparam = isl_space_dim(dim, isl_dim_param);
766 for (i = 0; i < nparam; ++i) {
767 const char *name = isl_space_get_dim_name(dim, isl_dim_param, i);
768 if (!first) {
769 fprintf(gen->code.dst, ", ");
770 fprintf(gen->cuda.kernel_c, ", ");
771 fprintf(gen->cuda.kernel_h, ", ");
773 fprintf(gen->code.dst, "%s", name);
774 fprintf(gen->cuda.kernel_c, "int %s", name);
775 fprintf(gen->cuda.kernel_h, "int %s", name);
776 first = 0;
778 isl_space_free(dim);
780 for (i = 0; i < gen->tile_first; ++i) {
781 if (!first) {
782 fprintf(gen->code.dst, ", ");
783 fprintf(gen->cuda.kernel_c, ", ");
784 fprintf(gen->cuda.kernel_h, ", ");
786 fprintf(gen->code.dst, "h%d", i);
787 fprintf(gen->cuda.kernel_c, "int h%d", i);
788 fprintf(gen->cuda.kernel_h, "int h%d", i);
789 first = 0;
792 fprintf(gen->code.dst, ");\n");
793 fprintf(gen->cuda.kernel_c, ")\n");
794 fprintf(gen->cuda.kernel_h, ");\n");
796 fprintf(gen->code.dst, "cudaCheckKernel();\n");
799 /* Construct a map from a domain of dimensionality "len"
800 * to a domain of dimensionality "len" + "tile_len" that tiles
801 * the "tile_len" coordinates starting at "first".
802 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
803 * "dim" prescribes the parameters.
805 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
806 int first, int tile_len, int *tile_size)
808 int i;
809 isl_int v;
810 isl_basic_map *bmap;
811 isl_constraint *c;
812 isl_local_space *ls;
814 isl_int_init(v);
816 dim = isl_space_add_dims(dim, isl_dim_in, len);
817 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
818 bmap = isl_basic_map_universe(isl_space_copy(dim));
819 ls = isl_local_space_from_space(dim);
821 for (i = 0; i < len - tile_len; ++i) {
822 int j = i < first ? i : i + tile_len;
823 int k = i < first ? i : i + 2 * tile_len;
825 c = isl_equality_alloc(isl_local_space_copy(ls));
826 isl_int_set_si(v, -1);
827 isl_constraint_set_coefficient(c, isl_dim_in, j, v);
828 isl_int_set_si(v, 1);
829 isl_constraint_set_coefficient(c, isl_dim_out, k, v);
830 bmap = isl_basic_map_add_constraint(bmap, c);
833 for (i = 0; i < tile_len; ++i) {
834 c = isl_equality_alloc(isl_local_space_copy(ls));
835 isl_int_set_si(v, -1);
836 isl_constraint_set_coefficient(c, isl_dim_in, first + i, v);
837 isl_int_set_si(v, tile_size[i]);
838 isl_constraint_set_coefficient(c, isl_dim_out, first + i, v);
839 isl_int_set_si(v, 1);
840 isl_constraint_set_coefficient(c, isl_dim_out,
841 first + i + tile_len, v);
842 bmap = isl_basic_map_add_constraint(bmap, c);
844 c = isl_inequality_alloc(isl_local_space_copy(ls));
845 isl_int_set_si(v, 1);
846 isl_constraint_set_coefficient(c, isl_dim_out,
847 first + i + tile_len, v);
848 bmap = isl_basic_map_add_constraint(bmap, c);
850 c = isl_inequality_alloc(isl_local_space_copy(ls));
851 isl_int_set_si(v, -1);
852 isl_constraint_set_coefficient(c, isl_dim_out,
853 first + i + tile_len, v);
854 isl_int_set_si(v, tile_size[i] - 1);
855 isl_constraint_set_constant(c, v);
856 bmap = isl_basic_map_add_constraint(bmap, c);
859 isl_local_space_free(ls);
860 isl_int_clear(v);
862 return isl_map_from_basic_map(bmap);
865 /* Construct a map from a domain of dimensionality "len"
866 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
867 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
868 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
869 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
870 * that are projected out at the end.
871 * "dim" prescribes the parameters.
873 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
874 int first, int wrap_len, int *wrap_size)
876 int i;
877 isl_basic_map *bmap;
878 isl_constraint *c;
879 isl_local_space *ls;
881 dim = isl_space_add_dims(dim, isl_dim_in, len);
882 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
883 bmap = isl_basic_map_universe(isl_space_copy(dim));
884 ls = isl_local_space_from_space(dim);
886 for (i = 0; i < len; ++i) {
887 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
889 c = isl_equality_alloc(isl_local_space_copy(ls));
890 isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
891 isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
892 bmap = isl_basic_map_add_constraint(bmap, c);
895 for (i = 0; i < wrap_len; ++i) {
896 c = isl_equality_alloc(isl_local_space_copy(ls));
897 isl_constraint_set_coefficient_si(c, isl_dim_out,
898 first + i, -1);
899 isl_constraint_set_coefficient_si(c, isl_dim_out,
900 first + wrap_len + i, 1);
901 isl_constraint_set_coefficient_si(c, isl_dim_out,
902 first + 2 * wrap_len + i, wrap_size[i]);
903 bmap = isl_basic_map_add_constraint(bmap, c);
905 c = isl_inequality_alloc(isl_local_space_copy(ls));
906 isl_constraint_set_coefficient_si(c, isl_dim_out,
907 first + wrap_len + i, 1);
908 bmap = isl_basic_map_add_constraint(bmap, c);
910 c = isl_inequality_alloc(isl_local_space_copy(ls));
911 isl_constraint_set_coefficient_si(c, isl_dim_out,
912 first + wrap_len + i, -1);
913 isl_constraint_set_constant_si(c, wrap_size[i] - 1);
914 bmap = isl_basic_map_add_constraint(bmap, c);
917 isl_local_space_free(ls);
919 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
920 first + 2 * wrap_len, wrap_len);
922 return isl_map_from_basic_map(bmap);
925 /* Add "n" parameters named prefix%d.
927 static __isl_give isl_set *add_params( __isl_take isl_set *set,
928 int n, const char *prefix)
930 int i;
931 unsigned nparam;
932 char name[20];
934 nparam = isl_set_dim(set, isl_dim_param);
935 set = isl_set_add_dims(set, isl_dim_param, n);
937 for (i = 0; i < n; ++i) {
938 snprintf(name, sizeof(name), "%s%d", prefix, i);
939 set = isl_set_set_dim_name(set, isl_dim_param,
940 nparam + i, name);
943 return set;
946 /* Equate the "n" dimensions of "set" starting at "first" to
947 * freshly created parameters named prefix%d.
949 static __isl_give isl_set *parametrize(__isl_take isl_set *set,
950 int first, int n, const char *prefix)
952 int i;
953 unsigned nparam;
954 isl_int v;
955 isl_space *dim;
956 isl_basic_set *bset;
957 isl_constraint *c;
958 isl_local_space *ls;
960 nparam = isl_set_dim(set, isl_dim_param);
962 set = add_params(set, n, prefix);
964 dim = isl_set_get_space(set);
965 bset = isl_basic_set_universe(isl_space_copy(dim));
966 ls = isl_local_space_from_space(dim);
968 isl_int_init(v);
970 for (i = 0; i < n; ++i) {
971 c = isl_equality_alloc(isl_local_space_copy(ls));
972 isl_int_set_si(v, -1);
973 isl_constraint_set_coefficient(c, isl_dim_param, nparam + i, v);
974 isl_int_set_si(v, 1);
975 isl_constraint_set_coefficient(c, isl_dim_set, first + i, v);
976 bset = isl_basic_set_add_constraint(bset, c);
979 isl_int_clear(v);
980 isl_local_space_free(ls);
982 return isl_set_intersect(set, isl_set_from_basic_set(bset));
985 /* Given a parameter space "space", create a set of dimension "len"
986 * of which the "n" dimensions starting at "first" are equated to
987 * freshly created parameters named prefix%d.
989 static __isl_give isl_set *parametrization(__isl_take isl_space *space,
990 int len, int first, int n, const char *prefix)
992 isl_set *set;
994 space = isl_space_set_from_params(space);
995 space = isl_space_add_dims(space, isl_dim_set, len);
996 set = isl_set_universe(space);
998 return parametrize(set, first, n, prefix);
1001 /* Tile the B loops over the tile sizes and then tile/wrap
1002 * the T1 loops over the blocks.
1004 static __isl_give isl_union_map *tile_schedule(struct cuda_gen *gen,
1005 __isl_take isl_union_map *sched)
1007 isl_space *dim;
1008 isl_map *tiling, *block_tiling;
1010 dim = isl_union_map_get_space(sched);
1011 tiling = tile(isl_space_copy(dim), gen->untiled_len,
1012 gen->tile_first, gen->tile_len, gen->tile_size);
1014 if (gen->options->wrap)
1015 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
1016 gen->tile_first, gen->n_grid, gen->grid_dim);
1017 else
1018 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
1019 gen->tile_first, gen->n_grid, gen->grid_dim);
1021 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
1023 tiling = isl_map_apply_range(tiling, block_tiling);
1025 sched = isl_union_map_apply_range(sched,
1026 isl_union_map_from_map(tiling));
1028 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
1030 return sched;
1033 /* Equate the "T1P" iterators in the tiled schedule "sched"
1034 * to the block dimensions.
1036 static __isl_give isl_union_map *parametrize_tiled_schedule(
1037 struct cuda_gen *gen, __isl_take isl_union_map *sched)
1039 isl_space *dim;
1040 isl_set *par;
1042 dim = isl_union_map_get_space(sched);
1043 par = parametrization(dim, gen->tiled_len, 0, gen->tile_first, "h");
1044 sched = isl_union_map_intersect_range(sched,
1045 isl_union_set_from_set(par));
1047 dim = isl_union_map_get_space(sched);
1048 par = parametrization(dim, gen->tiled_len,
1049 gen->tile_first + gen->n_grid, gen->n_grid, "b");
1050 sched = isl_union_map_intersect_range(sched,
1051 isl_union_set_from_set(par));
1053 return sched;
1056 /* Tile/wrap the P1 loops over the threads.
1058 static __isl_give isl_union_map *thread_tile_schedule(struct cuda_gen *gen,
1059 __isl_take isl_union_map *sched)
1061 isl_space *dim;
1062 isl_map *tiling;
1063 isl_set *par;
1065 dim = isl_union_map_get_space(sched);
1067 if (gen->options->wrap)
1068 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
1069 gen->shared_len, gen->n_block, gen->block_dim);
1070 else
1071 tiling = tile(isl_space_copy(dim), gen->tiled_len,
1072 gen->shared_len, gen->n_block, gen->block_dim);
1073 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
1075 sched = isl_union_map_apply_range(sched,
1076 isl_union_map_from_map(tiling));
1078 par = parametrization(dim, gen->thread_tiled_len,
1079 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
1080 gen->n_block, "t");
1081 sched = isl_union_map_intersect_range(sched,
1082 isl_union_set_from_set(par));
1084 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
1086 return sched;
1089 /* If the user asked for it, scale the shared memory tile loops
1090 * (T1T and T2) of "sched" by gen->tile_size[i].
1091 * If we are not performing "wrapping", then additionally scale the T1P
1092 * loops by gen->grid_dim[i].
1094 static __isl_give isl_union_map *scale_tile_loops(struct cuda_gen *gen,
1095 __isl_take isl_union_map *sched)
1097 int i;
1098 isl_space *dim;
1099 isl_basic_map *scale;
1100 isl_constraint *c;
1101 isl_local_space *ls;
1103 if (!gen->options->scale_tile_loops)
1104 return sched;
1106 dim = isl_union_map_get_space(sched);
1107 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
1108 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
1109 scale = isl_basic_map_universe(isl_space_copy(dim));
1110 ls = isl_local_space_from_space(dim);
1112 for (i = 0; i < gen->tiled_len; ++i) {
1113 int f = 1;
1115 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
1116 f = gen->tile_size[i - gen->tile_first];
1117 if (!gen->options->wrap)
1118 f *= gen->grid_dim[i - gen->tile_first];
1119 } else if (i >= gen->tile_first + gen->n_grid &&
1120 i < gen->tile_first + gen->n_grid + gen->tile_len) {
1121 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
1124 c = isl_equality_alloc(isl_local_space_copy(ls));
1125 isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1126 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1127 scale = isl_basic_map_add_constraint(scale, c);
1130 isl_local_space_free(ls);
1132 sched = isl_union_map_apply_range(sched,
1133 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1135 return sched;
1138 /* If we are not performing "wrapping" and if the user asked for it,
1139 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
1141 static __isl_give isl_union_map *scale_thread_tile_loops(struct cuda_gen *gen,
1142 __isl_take isl_union_map *sched)
1144 int i;
1145 isl_space *dim;
1146 isl_basic_map *scale;
1147 isl_constraint *c;
1148 isl_local_space *ls;
1150 if (gen->options->wrap)
1151 return sched;
1152 if (!gen->options->scale_tile_loops)
1153 return sched;
1155 dim = isl_union_map_get_space(sched);
1156 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
1157 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
1158 scale = isl_basic_map_universe(isl_space_copy(dim));
1159 ls = isl_local_space_from_space(dim);
1161 for (i = 0; i < gen->thread_tiled_len; ++i) {
1162 int f = 1;
1164 if (i >= gen->shared_len &&
1165 i < gen->shared_len + gen->n_block)
1166 f = gen->block_dim[i - gen->shared_len];
1168 c = isl_equality_alloc(isl_local_space_copy(ls));
1169 isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1170 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1171 scale = isl_basic_map_add_constraint(scale, c);
1174 isl_local_space_free(ls);
1176 sched = isl_union_map_apply_range(sched,
1177 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1179 return sched;
1182 /* If we are not performing "wrapping" and if the user asked for it,
1183 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1185 static __isl_give isl_union_map *scale_access_tile_loops(struct cuda_gen *gen,
1186 __isl_take isl_union_map *sched, int len, int first, int n_tile)
1188 int i;
1189 isl_space *dim;
1190 isl_basic_map *scale;
1191 isl_constraint *c;
1192 isl_local_space *ls;
1194 if (gen->options->wrap)
1195 return sched;
1196 if (!gen->options->scale_tile_loops)
1197 return sched;
1199 dim = isl_union_map_get_space(sched);
1200 dim = isl_space_add_dims(dim, isl_dim_in, len);
1201 dim = isl_space_add_dims(dim, isl_dim_out, len);
1202 scale = isl_basic_map_universe(isl_space_copy(dim));
1203 ls = isl_local_space_from_space(dim);
1205 for (i = 0; i < len; ++i) {
1206 int f = 1;
1208 if (i >= first && i < first + n_tile)
1209 f = gen->block_dim[i - first];
1211 c = isl_equality_alloc(isl_local_space_copy(ls));
1212 isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1213 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1214 scale = isl_basic_map_add_constraint(scale, c);
1217 isl_local_space_free(ls);
1219 sched = isl_union_map_apply_range(sched,
1220 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1222 return sched;
1225 /* If print_user_stmt is set, we want to print the statements ourselves,
1226 * instead of relying on the C preprocessor. If so, we need to use
1227 * the stop option so that the domains will be saved on the statement
1228 * nodes.
1230 static void print_cloog_shared_body(struct cuda_gen *gen,
1231 __isl_keep isl_set *context, __isl_keep isl_union_map *sched, int len,
1232 void (*print_user_stmt)(struct clast_printer_info *info,
1233 struct clast_user_stmt *s),
1234 int first_unroll)
1236 int i;
1237 CloogOptions *options;
1238 CloogDomain *cloog_context;
1239 CloogUnionDomain *ud;
1240 CloogInput *input;
1241 struct clast_stmt *stmt;
1242 char name[20];
1244 sched = isl_union_map_copy(sched);
1245 sched = isl_union_map_align_params(sched, isl_set_get_space(context));
1247 options = cloog_options_malloc(gen->state);
1248 options->language = CLOOG_LANGUAGE_C;
1249 options->strides = 1;
1250 options->sh = 1;
1251 options->f = len;
1252 options->l = -1;
1253 options->override = 1;
1254 options->save_domains = 1;
1255 options->noscalars = 1;
1256 options->first_unroll = first_unroll;
1258 ud = cloog_union_domain_from_isl_union_map(sched);
1259 for (i = 0; i < len; ++i) {
1260 snprintf(name, sizeof(name), "c%d", i);
1261 ud = cloog_union_domain_set_name(ud, CLOOG_SCAT, i, name);
1263 cloog_context = cloog_domain_from_isl_set(isl_set_copy(context));
1264 input = cloog_input_alloc(cloog_context, ud);
1266 stmt = cloog_clast_create_from_input(input, options);
1268 gen->stmt_code.indent = gen->kernel_code.indent;
1269 gen->stmt_code.dst = gen->cuda.kernel_c;
1270 gen->stmt_code.print_user_stmt = print_user_stmt;
1271 gen->stmt_code.print_user_stmt_list = NULL;
1272 gen->stmt_code.print_for_head = NULL;
1273 gen->stmt_code.print_for_foot = NULL;
1274 gen->stmt_code.user = gen;
1275 print_clast(&gen->stmt_code, stmt);
1277 cloog_clast_free(stmt);
1278 cloog_options_free(options);
1281 /* Add "len" parameters p[i] called prefix%d,
1282 * with bounds to 0 <= p[i] < size[i].
1284 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1285 int len, int *size, const char *prefix)
1287 int i;
1288 unsigned nparam;
1289 isl_int v;
1290 isl_space *dim;
1291 isl_basic_set *bset;
1292 isl_constraint *c;
1293 isl_local_space *ls;
1294 char name[20];
1296 nparam = isl_set_dim(set, isl_dim_param);
1297 set = isl_set_add_dims(set, isl_dim_param, len);
1299 for (i = 0; i < len; ++i) {
1300 snprintf(name, sizeof(name), "%s%d", prefix, i);
1301 set = isl_set_set_dim_name(set, isl_dim_param,
1302 nparam + i, name);
1305 dim = isl_set_get_space(set);
1306 bset = isl_basic_set_universe(isl_space_copy(dim));
1307 ls = isl_local_space_from_space(dim);
1309 isl_int_init(v);
1311 for (i = 0; i < len; ++i) {
1312 c = isl_inequality_alloc(isl_local_space_copy(ls));
1313 isl_int_set_si(v, 1);
1314 isl_constraint_set_coefficient(c, isl_dim_param, nparam + i, v);
1315 bset = isl_basic_set_add_constraint(bset, c);
1317 c = isl_inequality_alloc(isl_local_space_copy(ls));
1318 isl_int_set_si(v, -1);
1319 isl_constraint_set_coefficient(c, isl_dim_param, nparam + i, v);
1320 isl_int_set_si(v, size[i] - 1);
1321 isl_constraint_set_constant(c, v);
1322 bset = isl_basic_set_add_constraint(bset, c);
1325 isl_int_clear(v);
1326 isl_local_space_free(ls);
1328 return isl_set_intersect(set, isl_set_from_basic_set(bset));
1331 static void print_shared_body(struct cuda_gen *gen,
1332 __isl_keep isl_set *shared_domain, __isl_keep isl_union_map *sched,
1333 int len, void (*print_user_stmt)(struct clast_printer_info *info,
1334 struct clast_user_stmt *s),
1335 int first_unroll)
1337 isl_set *context;
1339 context = isl_set_copy(shared_domain);
1340 context = parametrize(context, 0, gen->shared_len, "g");
1341 context = isl_set_project_out(context, isl_dim_set, 0, gen->shared_len);
1342 context = add_bounded_parameters(context,
1343 gen->n_block, gen->block_dim, "t");
1345 print_cloog_shared_body(gen, context, sched, len, print_user_stmt,
1346 first_unroll);
1348 isl_set_free(context);
1351 /* Given a tile of an array, construct a map that maps each element
1352 * of the tile to a copy of the tile shifted to the origin
1353 * (based on the lower bounds in group->private_bound or group->shared_bound).
1354 * If any of the indices is strided, then {private,shared}_bound[i].shift_map
1355 * is applied to the index first.
1356 * The domain of the resulting map is "access",
1357 * while the range space is anonymous.
1359 static __isl_give isl_map *shift_access(__isl_take isl_set *access,
1360 struct cuda_array_ref_group *group)
1362 int i;
1363 isl_space *dim;
1364 isl_basic_set *bset;
1365 isl_basic_map *bmap;
1366 isl_aff *lb;
1367 isl_basic_set *offset;
1368 isl_basic_map *shift;
1369 isl_basic_map *pre_shift;
1370 isl_map *sched;
1371 const char *name;
1372 struct cuda_array_bound *bounds;
1373 int n_index = group->array->n_index;
1375 bounds = group->private_bound;
1376 if (!bounds)
1377 bounds = group->shared_bound;
1379 dim = isl_set_get_space(access);
1380 dim = isl_space_drop_dims(dim, isl_dim_set, 0, n_index);
1381 offset = isl_basic_set_universe(dim);
1382 for (i = 0; i < n_index; ++i) {
1383 lb = isl_aff_copy(bounds[i].lb);
1384 bmap = isl_basic_map_from_aff(lb);
1385 bset = isl_basic_map_range(bmap);
1386 offset = isl_basic_set_flat_product(offset, bset);
1388 offset = isl_basic_set_neg(offset);
1390 dim = isl_space_map_from_set(isl_set_get_space(access));
1391 shift = isl_basic_map_identity(dim);
1392 shift = isl_basic_map_set_tuple_name(shift, isl_dim_out, NULL);
1394 bset = isl_basic_set_universe(isl_set_get_space(access));
1395 bmap = isl_basic_map_from_domain_and_range(bset, offset);
1397 shift = isl_basic_map_sum(shift, bmap);
1399 dim = isl_set_get_space(access);
1400 dim = isl_space_drop_dims(dim, isl_dim_set, 0, n_index);
1401 dim = isl_space_map_from_set(dim);
1402 pre_shift = isl_basic_map_universe(isl_space_copy(dim));
1403 dim = isl_space_add_dims(dim, isl_dim_in, 1);
1404 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1405 for (i = 0; i < n_index; ++i) {
1406 if (!bounds[i].shift_map)
1407 bmap = isl_basic_map_identity(isl_space_copy(dim));
1408 else
1409 bmap = isl_basic_map_copy(bounds[i].shift_map);
1410 pre_shift = isl_basic_map_flat_product(pre_shift, bmap);
1412 isl_space_free(dim);
1413 name = isl_basic_map_get_tuple_name(shift, isl_dim_in);
1414 pre_shift = isl_basic_map_set_tuple_name(pre_shift, isl_dim_in, name);
1415 pre_shift = isl_basic_map_set_tuple_name(pre_shift, isl_dim_out, name);
1416 shift = isl_basic_map_apply_range(pre_shift, shift);
1418 sched = isl_map_from_basic_map(shift);
1419 sched = isl_map_intersect_domain(sched, access);
1421 return sched;
1424 /* Construct a schedule for iterating over all elements in the given
1425 * piece of an array. The schedule iterates over a copy of the piece
1426 * that is shifted to the origin.
1427 * We subsequently also perform the tiling/wrapping over the threads.
1429 * In particular, we tile the final iterators so that the final thread
1430 * dimension runs over the final array dimension.
1431 * However, if those final iterators have only a single iteration,
1432 * we try to tile earlier iterators instead.
1434 static __isl_give isl_union_map *access_schedule(struct cuda_gen *gen,
1435 __isl_take isl_set *access, struct cuda_array_ref_group *group)
1437 isl_space *dim;
1438 isl_map *sched;
1439 isl_union_map *usched;
1440 isl_map *tiling;
1441 isl_set *par;
1442 unsigned nvar = isl_set_dim(access, isl_dim_set);
1443 int n_tile;
1444 int first;
1446 sched = shift_access(access, group);
1448 n_tile = gen->n_block;
1449 if (n_tile > nvar) {
1450 int i;
1451 sched = isl_map_insert_dims(sched,
1452 isl_dim_out, 0, n_tile - nvar);
1453 for (i = 0; i < n_tile - nvar; ++i)
1454 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1455 nvar = n_tile;
1458 first = nvar - n_tile;
1460 for (; first > 0; first --)
1461 if (!isl_map_plain_is_fixed(sched, isl_dim_out,
1462 first + n_tile - 1, NULL))
1463 break;
1465 dim = isl_map_get_space(sched);
1466 dim = isl_space_params(dim);
1467 if (gen->options->wrap)
1468 tiling = wrap(isl_space_copy(dim), nvar, first,
1469 n_tile, gen->block_dim);
1470 else
1471 tiling = tile(isl_space_copy(dim), nvar, first,
1472 n_tile, gen->block_dim);
1473 sched = isl_map_apply_range(sched, tiling);
1475 par = parametrization(dim, nvar + n_tile, first + n_tile, n_tile, "t");
1476 sched = isl_map_intersect_range(sched, par);
1478 usched = isl_union_map_from_map(sched);
1479 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1480 first, n_tile);
1482 return usched;
1485 /* Print an access to the element in the global memory copy of the
1486 * given array that corresponds to the element described by "pma".
1487 * of the original array.
1488 * The copy in global memory has been linearized, so we need to take
1489 * the array size into account.
1491 static void print_global_index(FILE *out,
1492 struct cuda_array_info *array, __isl_keep isl_pw_multi_aff *pma,
1493 __isl_keep isl_set *domain)
1495 int i;
1496 isl_ctx *ctx = isl_pw_multi_aff_get_ctx(pma);
1497 isl_printer *prn;
1499 if (cuda_array_is_scalar(array)) {
1500 fprintf(out, "*%s", array->name);
1501 return;
1504 fprintf(out, "%s[", array->name);
1505 prn = isl_printer_to_file(ctx, out);
1506 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
1507 for (i = 0; i + 1 < array->n_index; ++i)
1508 prn = isl_printer_print_str(prn, "(");
1509 for (i = 0; i < array->n_index; ++i) {
1510 isl_pw_aff *pa = isl_pw_multi_aff_get_pw_aff(pma, i);
1511 pa = isl_pw_aff_coalesce(pa);
1512 pa = isl_pw_aff_gist(pa, isl_set_copy(domain));
1513 if (i) {
1514 prn = isl_printer_print_str(prn, ") * (");
1515 prn = isl_printer_print_pw_aff(prn,
1516 array->local_bound[i]);
1517 prn = isl_printer_print_str(prn, ") + ");
1519 prn = isl_printer_print_pw_aff(prn, pa);
1520 isl_pw_aff_free(pa);
1522 isl_printer_free(prn);
1523 fprintf(out, "]");
1526 /* Given an index expression into a tile of an array, adjust the expression
1527 * to a shift of the tile to the origin
1528 * (based on the lower bounds in array->shared_bound).
1529 * If the index is strided, then we first add
1530 * bound->shift and divide by bound->stride.
1532 static __isl_give isl_pw_aff *shift_index(__isl_take isl_pw_aff *pa,
1533 struct cuda_array_info *array,
1534 struct cuda_array_bound *bound, __isl_take isl_set *domain)
1536 isl_aff *lb;
1537 isl_pw_aff *tmp;
1539 if (bound->shift) {
1540 isl_aff *shift;
1541 shift = bound->shift;
1542 shift = isl_aff_copy(shift);
1543 shift = isl_aff_project_domain_on_params(shift);
1544 shift = isl_aff_align_params(shift, isl_pw_aff_get_space(pa));
1545 tmp = isl_pw_aff_alloc(isl_set_copy(domain), shift);
1546 pa = isl_pw_aff_add(pa, tmp);
1547 pa = isl_pw_aff_scale_down(pa, bound->stride);
1550 lb = isl_aff_copy(bound->lb);
1551 lb = isl_aff_project_domain_on_params(lb);
1553 lb = isl_aff_align_params(lb, isl_pw_aff_get_space(pa));
1555 tmp = isl_pw_aff_alloc(isl_set_copy(domain), lb);
1556 pa = isl_pw_aff_sub(pa, tmp);
1557 pa = isl_pw_aff_coalesce(pa);
1558 pa = isl_pw_aff_gist(pa, domain);
1560 return pa;
1563 /* Print an access to the element in the private/shared memory copy of the
1564 * given array reference group that corresponds to the element described
1565 * by "pma" of the original array.
1566 * Since the array in private/shared memory is just a shifted copy of part
1567 * of the original array, we simply need to subtract the lower bound,
1568 * which was computed in can_tile_for_shared_memory.
1569 * If any of the indices is strided, then we first add
1570 * bounds[i].shift and divide by bounds[i].stride.
1572 static void print_local_index(FILE *out,
1573 struct cuda_array_ref_group *group, struct cuda_array_bound *bounds,
1574 __isl_keep isl_pw_multi_aff *pma, __isl_keep isl_set *domain)
1576 int i;
1577 isl_ctx *ctx = isl_pw_multi_aff_get_ctx(pma);
1578 isl_printer *prn;
1579 struct cuda_array_info *array = group->array;
1581 prn = isl_printer_to_file(ctx, out);
1582 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
1584 prn = print_array_name(prn, group);
1585 for (i = 0; i < array->n_index; ++i) {
1586 isl_pw_aff *pa = isl_pw_multi_aff_get_pw_aff(pma, i);
1588 pa = shift_index(pa, array, &bounds[i], isl_set_copy(domain));
1590 fprintf(out, "[");
1591 prn = isl_printer_print_pw_aff(prn, pa);
1592 fprintf(out, "]");
1593 isl_pw_aff_free(pa);
1596 isl_printer_free(prn);
1599 /* This function is called for each leaf in the clast of the code
1600 * for copying to or from shared/private memory.
1601 * The statement name is {read,write}_{shared,private}_<array>.
1603 * The schedule iterates over the array elements, so we can use
1604 * the domain of copy_sched at the current scheduling position
1605 * as the index of the array.
1607 static void print_copy_statement(struct clast_printer_info *code,
1608 struct clast_user_stmt *u)
1610 struct cuda_gen *gen = code->user;
1611 isl_set *domain;
1612 isl_map *sched;
1613 struct cuda_array_ref_group *group = gen->copy_group;
1614 struct cuda_array_bound *bounds = gen->copy_bound;
1615 unsigned n_in;
1616 isl_space *dim;
1617 isl_set *param;
1618 isl_set *index;
1619 isl_pw_multi_aff *pma;
1620 int read;
1622 read = !strncmp(u->statement->name, "read", 4);
1624 domain = extract_host_domain(u);
1625 assert(domain);
1627 sched = isl_map_copy(gen->copy_sched);
1628 sched = isl_map_reverse(sched);
1629 sched = isl_map_intersect_domain(sched, domain);
1630 n_in = isl_map_dim(sched, isl_dim_in);
1631 dim = isl_map_get_space(sched);
1632 dim = isl_space_params(dim);
1633 param = parametrization(dim, n_in, 0, n_in, "c");
1634 sched = isl_map_align_params(sched, isl_set_get_space(param));
1635 sched = isl_map_intersect_domain(sched, param);
1636 index = isl_map_range(sched);
1637 domain = isl_set_copy(index);
1638 pma = isl_pw_multi_aff_from_set(index);
1639 pma = isl_pw_multi_aff_coalesce(pma);
1640 domain = isl_set_params(domain);
1642 print_indent(code->dst, code->indent);
1643 if (read) {
1644 print_local_index(code->dst, group, bounds, pma, domain);
1645 fprintf(code->dst, " = ");
1646 print_global_index(code->dst, group->array, pma, domain);
1647 } else {
1648 print_global_index(code->dst, group->array, pma, domain);
1649 fprintf(code->dst, " = ");
1650 print_local_index(code->dst, group, bounds, pma, domain);
1652 fprintf(code->dst, ";\n");
1654 isl_pw_multi_aff_free(pma);
1655 isl_set_free(domain);
1658 static void print_shared_access(struct cuda_gen *gen,
1659 __isl_keep isl_set *shared_domain, __isl_take isl_set *access,
1660 const char *type, struct cuda_array_ref_group *group)
1662 const char *array_name;
1663 char *name;
1664 isl_ctx *ctx;
1665 isl_union_map *sched;
1666 unsigned nvar = isl_set_dim(access, isl_dim_set);
1667 int n_tile;
1669 ctx = isl_set_get_ctx(access);
1670 array_name = isl_set_get_tuple_name(access);
1671 name = isl_alloc_array(ctx, char,
1672 strlen(type) + sizeof("_shared_") + strlen(array_name) + 20);
1673 if (group->array->n_group > 1)
1674 sprintf(name, "%s_shared_%s_%d", type, array_name, group->nr);
1675 else
1676 sprintf(name, "%s_shared_%s", type, array_name);
1677 access = isl_set_set_tuple_name(access, name);
1678 free(name);
1680 sched = access_schedule(gen, access, group);
1682 n_tile = gen->n_block;
1683 if (n_tile > nvar)
1684 n_tile = nvar;
1686 gen->copy_sched = isl_map_from_union_map(isl_union_map_copy(sched));
1687 gen->copy_group = group;
1688 gen->copy_bound = group->shared_bound;
1690 print_shared_body(gen, shared_domain, sched, nvar + n_tile,
1691 &print_copy_statement, -1);
1693 isl_union_map_free(sched);
1694 isl_map_free(gen->copy_sched);
1697 /* Return the union of all read (read = 1) and/or write (write = 1)
1698 * access relations in the group.
1700 static __isl_give isl_union_map *group_access_relation(
1701 struct cuda_array_ref_group *group, int read, int write)
1703 int i;
1704 isl_union_map *access;
1706 access = isl_union_map_empty(isl_map_get_space(group->access));
1707 for (i = 0; i < group->n_ref; ++i) {
1708 isl_map *map_i;
1710 if (!((read && group->refs[i]->read) ||
1711 (write && group->refs[i]->write)))
1712 continue;
1713 map_i = isl_map_copy(group->refs[i]->access);
1714 access = isl_union_map_union(access,
1715 isl_union_map_from_map(map_i));
1718 return access;
1721 /* Check that none of the shared memory tiles involve any strides.
1723 static int no_strides(struct cuda_array_ref_group *group)
1725 int i;
1726 int n_index = group->array->n_index;
1728 for (i = 0; i < n_index; ++i)
1729 if (group->shared_bound[i].shift)
1730 return 0;
1732 return 1;
1735 /* Return a set containing the values of the given index i
1736 * of the elements in the array tile in global memory that corresponds
1737 * to the shared memory copy.
1738 * In particular, if a is the index, we return a set with constraints
1740 * tile_offset <= a <= tile_offset + tile_size - 1
1742 * and
1744 * 0 <= a <= array_size - 1
1747 static __isl_give isl_set *group_tile_dim(struct cuda_array_ref_group *group,
1748 int i)
1750 isl_basic_set *tile;
1751 isl_aff *aff;
1752 isl_constraint *c;
1753 isl_local_space *ls;
1754 isl_pw_aff *bound;
1755 isl_set *dom;
1756 isl_set *tile_set;
1758 aff = isl_aff_copy(group->shared_bound[i].lb);
1759 aff = isl_aff_add_dims(aff, isl_dim_in, 1);
1760 ls = isl_aff_get_domain_local_space(aff);
1761 aff = isl_aff_neg(aff);
1762 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1763 c = isl_inequality_from_aff(isl_aff_copy(aff));
1764 tile = isl_basic_set_from_constraint(c);
1766 aff = isl_aff_neg(aff);
1767 aff = isl_aff_add_constant(aff, group->shared_bound[i].size);
1768 aff = isl_aff_add_constant_si(aff, -1);
1769 c = isl_inequality_from_aff(aff);
1770 tile = isl_basic_set_add_constraint(tile, c);
1772 aff = isl_aff_zero_on_domain(ls);
1773 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1774 c = isl_inequality_from_aff(aff);
1775 tile = isl_basic_set_add_constraint(tile, c);
1777 bound = isl_pw_aff_copy(group->array->bound[i]);
1778 bound = isl_pw_aff_add_dims(bound, isl_dim_in, 1);
1779 ls = isl_local_space_from_space(isl_pw_aff_get_domain_space(bound));
1780 aff = isl_aff_zero_on_domain(ls);
1781 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1782 aff = isl_aff_add_constant_si(aff, 1);
1783 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
1785 tile_set = isl_pw_aff_ge_set(bound, isl_pw_aff_alloc(dom, aff));
1786 tile_set = isl_set_align_params(tile_set, isl_basic_set_get_space(tile));
1787 tile_set = isl_set_intersect(tile_set, isl_set_from_basic_set(tile));
1789 return tile_set;
1792 /* Return a set containing the elements in the array tile in
1793 * global memory that corresponds to the shared memory copy.
1795 static __isl_give isl_set *group_tile(struct cuda_array_ref_group *group)
1797 int i;
1798 int n_index = group->array->n_index;
1799 isl_set *tile;
1801 tile = group_tile_dim(group, 0);
1802 for (i = 1; i < n_index; ++i) {
1803 isl_set *tile_i;
1805 tile_i = group_tile_dim(group, i);
1806 tile = isl_set_flat_product(tile, tile_i);
1809 tile = isl_set_set_tuple_name(tile, group->array->name);
1811 return tile;
1814 /* Print code for reading into or writing from shared memory
1815 * the given array reference group.
1817 * sched maps the original iteration domains to the shared memory tile loops.
1819 * If we are performing a read from global memory to shared memory,
1820 * if the array involved is not a scalar and if the definition of the
1821 * shared memory tiles does not involve any strides, then we copy
1822 * the entire tile to shared memory. This may result in some extra
1823 * elements getting copied, but it should lead to simpler code
1824 * (which means that fewer registers may be needed) and less divergence.
1826 * Otherwise, we only copy the elements that will be read or have been written
1827 * in the kernel.
1829 * Note that the absence of stride requirement can easily be lifted.
1830 * We would just need to add constraints of the form
1832 * shift + a = stride * alpha
1834 static int print_group_shared_accesses(struct cuda_gen *gen,
1835 struct cuda_array_ref_group *group, const char *type,
1836 __isl_keep isl_set *shared_domain, __isl_keep isl_union_map *sched)
1838 int read;
1839 isl_union_map *access;
1840 isl_union_set *uset;
1841 isl_set *access_set;
1843 if (group->private_bound)
1844 return 0;
1845 if (!group->shared_bound)
1846 return 0;
1848 read = !strcmp(type, "read");
1850 access = group_access_relation(group, read, !read);
1851 access = isl_union_map_apply_domain(access, isl_union_map_copy(sched));
1852 uset = isl_union_map_range(access);
1854 if (isl_union_set_is_empty(uset)) {
1855 isl_union_set_free(uset);
1856 return 0;
1859 if (read && group->array->n_index > 0 && no_strides(group)) {
1860 isl_union_set_free(uset);
1861 access_set = group_tile(group);
1862 print_shared_access(gen, shared_domain, access_set,
1863 type, group);
1864 return 1;
1867 access_set = isl_set_from_union_set(uset);
1868 access_set = isl_set_coalesce(access_set);
1870 print_shared_access(gen, shared_domain, access_set, type, group);
1872 return 1;
1875 /* Print code for reading into or writing from shared memory at
1876 * the given level (-1 for innermost).
1878 * If we are not printing at the innermost level, then the dimensionality
1879 * of shared_domain may be smaller than gen->shared_len.
1880 * As the rest of the code assumes that the domain of access has
1881 * gen->shared_len dimensions, we therefore may need to embed this domain
1882 * in a higher dimensional space after intersection with shared_domain.
1884 static void print_shared_accesses(struct cuda_gen *gen,
1885 __isl_keep isl_set *shared_domain, __isl_keep isl_union_map *access,
1886 const char *type, int level)
1888 int i, j;
1889 isl_space *dim;
1890 isl_map *proj;
1891 isl_set *par;
1892 int shared_len = isl_set_dim(shared_domain, isl_dim_set);
1893 int sync = 0;
1894 isl_union_map *sched;
1896 shared_domain = isl_set_copy(shared_domain);
1897 sched = isl_union_map_copy(gen->tiled_sched);
1898 dim = isl_union_map_get_space(sched);
1899 proj = projection(dim, gen->tiled_len, shared_len);
1900 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
1901 sched = isl_union_map_intersect_range(sched,
1902 isl_union_set_from_set(isl_set_copy(shared_domain)));
1903 if (shared_len != gen->shared_len) {
1904 dim = isl_union_map_get_space(sched);
1905 proj = projection(dim, gen->shared_len, shared_len);
1906 proj = isl_map_reverse(proj);
1907 shared_domain = isl_set_apply(shared_domain,
1908 isl_map_copy(proj));
1909 sched = isl_union_map_apply_range(sched,
1910 isl_union_map_from_map(proj));
1913 dim = isl_union_map_get_space(sched);
1914 par = parametrization(dim, gen->shared_len, 0, gen->shared_len, "g");
1915 sched = isl_union_map_intersect_range(sched,
1916 isl_union_set_from_set(par));
1918 for (i = 0; i < gen->n_array; ++i) {
1919 struct cuda_array_info *array = &gen->array[i];
1921 for (j = 0; j < array->n_group; ++j) {
1922 if (array->groups[j]->print_shared_level != level)
1923 continue;
1925 if (print_group_shared_accesses(gen, array->groups[j],
1926 type, shared_domain, sched))
1927 sync = 1;
1931 isl_union_map_free(sched);
1932 isl_set_free(shared_domain);
1934 if (sync) {
1935 print_indent(gen->cuda.kernel_c, gen->kernel_code.indent);
1936 fprintf(gen->cuda.kernel_c, "__syncthreads();\n");
1940 /* This function is called for each access to an array in some statement
1941 * in the original code.
1942 * Replace that access by an access to shared or (linearized) global memory.
1943 * Since the array in shared memory is just
1944 * a shifted copy of part of the original array, we simply need
1945 * to subtract the lower bound, which was computed
1946 * in can_tile_for_shared_memory.
1947 * If any of the indices is strided, then we first add
1948 * shared_bound[i].shift and divide by shared_bound[i].stride.
1950 * If the given array is accessed directly from global memory,
1951 * we don't need to perform any shifting and simply simplify
1952 * the expression in the context of the domain instead.
1954 * If the array space (range of access) has no name, then we are
1955 * accessing an iterator in the original program.
1957 static __isl_give isl_printer *print_access(__isl_take isl_printer *p,
1958 struct cuda_gen *gen, __isl_take isl_map *access, int group_nr)
1960 int i;
1961 const char *name;
1962 unsigned n_index;
1963 struct cuda_array_info *array = NULL;
1964 isl_pw_multi_aff *pma;
1965 isl_set *data_set;
1966 isl_set *domain;
1967 struct cuda_array_bound *bounds = NULL;
1969 access = isl_map_align_params(access,
1970 isl_set_get_space(gen->stmt_domain));
1972 data_set = isl_set_apply(isl_set_copy(gen->stmt_domain), access);
1974 name = isl_set_get_tuple_name(data_set);
1976 if (!name)
1977 fprintf(gen->cuda.kernel_c, "(");
1978 else {
1979 struct cuda_array_ref_group *group;
1981 for (i = 0; i < gen->n_array; ++i) {
1982 if (strcmp(name, gen->array[i].name))
1983 continue;
1984 array = &gen->array[i];
1986 assert(array);
1987 group = array->groups[group_nr];
1988 bounds = group->private_bound;
1989 if (!bounds)
1990 bounds = group->shared_bound;
1992 if (!bounds && cuda_array_is_scalar(array) && !array->read_only)
1993 fprintf(gen->cuda.kernel_c, "*");
1994 p = print_array_name(p, group);
1996 if (cuda_array_is_scalar(array)) {
1997 isl_set_free(data_set);
1998 return p;
2001 fprintf(gen->cuda.kernel_c, "[");
2005 n_index = isl_set_dim(data_set, isl_dim_set);
2006 pma = isl_pw_multi_aff_from_set(data_set);
2007 pma = isl_pw_multi_aff_coalesce(pma);
2009 if (!bounds)
2010 for (i = 0; i + 1 < n_index; ++i)
2011 p = isl_printer_print_str(p, "(");
2013 for (i = 0; i < n_index; ++i) {
2014 isl_pw_aff *index;
2016 index = isl_pw_multi_aff_get_pw_aff(pma, i);
2018 if (!array) {
2019 p = isl_printer_print_pw_aff(p, index);
2020 isl_pw_aff_free(index);
2021 continue;
2024 domain = isl_set_copy(gen->stmt_domain);
2025 domain = isl_set_params(domain);
2026 if (!bounds) {
2027 index = isl_pw_aff_coalesce(index);
2028 index = isl_pw_aff_gist(index, domain);
2029 } else
2030 index = shift_index(index, array, &bounds[i], domain);
2032 if (i) {
2033 if (!bounds) {
2034 p = isl_printer_print_str(p, ") * (");
2035 p = isl_printer_print_pw_aff(p,
2036 array->local_bound[i]);
2037 p = isl_printer_print_str(p, ") + ");
2038 } else
2039 p = isl_printer_print_str(p, "][");
2041 p = isl_printer_print_pw_aff(p, index);
2042 isl_pw_aff_free(index);
2044 if (!name)
2045 p = isl_printer_print_str(p, ")");
2046 else
2047 p = isl_printer_print_str(p, "]");
2049 isl_pw_multi_aff_free(pma);
2051 return p;
2054 struct cuda_access_print_info {
2055 struct cuda_gen *gen;
2056 struct cuda_stmt_access *access;
2059 /* To print the cuda accesses we walk the list of cuda accesses simultaneously
2060 * with the pet printer. This means that whenever the pet printer prints a
2061 * pet access expression we have the corresponding cuda access available and can
2062 * print the modified access.
2064 static __isl_give isl_printer *print_cuda_access(__isl_take isl_printer *p,
2065 struct pet_expr *expr, void *usr)
2067 struct cuda_access_print_info *info =
2068 (struct cuda_access_print_info *) usr;
2070 p = print_access(p, info->gen, isl_map_copy(info->access->access),
2071 info->access->group);
2072 info->access = info->access->next;
2074 return p;
2077 static void print_stmt_body(struct cuda_gen *gen,
2078 FILE *out, struct cuda_stmt *stmt)
2080 struct cuda_access_print_info info;
2081 isl_printer *p;
2083 p = isl_printer_to_file(gen->ctx, out);
2084 p = isl_printer_set_output_format(p, ISL_FORMAT_C);
2086 info.gen = gen;
2087 info.access = stmt->accesses;
2089 p = print_pet_expr(p, stmt->body, &print_cuda_access, &info);
2090 fprintf(out, ";\n");
2092 isl_printer_free(p);
2095 /* This function is called for each leaf in the innermost clast,
2096 * i.e., for each statement.
2097 * We print the statement body, simplifying the accesses based
2098 * on the schedule.
2100 static void print_statement(struct clast_printer_info *code,
2101 struct clast_user_stmt *u)
2103 struct cuda_gen *gen = code->user;
2104 isl_space *dim;
2105 isl_set *par;
2106 isl_set *stmt_domain;
2107 isl_union_map *stmt_sched;
2108 isl_union_set *uset;
2109 int nr;
2110 struct cuda_stmt *stmt;
2112 nr = atoi(u->statement->name + 2);
2113 stmt = &gen->stmts[nr];
2115 stmt_domain = extract_host_domain(u);
2117 stmt_sched = isl_union_map_intersect_range(
2118 isl_union_map_copy(gen->local_sched),
2119 isl_union_set_from_set(extend(stmt_domain,
2120 gen->thread_tiled_len)));
2121 dim = isl_union_map_get_space(stmt_sched);
2122 par = parametrization(dim, gen->thread_tiled_len, 0,
2123 gen->thread_tiled_len, "c");
2124 stmt_sched = isl_union_map_intersect_range(stmt_sched,
2125 isl_union_set_from_set(par));
2127 uset = isl_union_map_domain(stmt_sched);
2128 dim = isl_union_set_get_space(uset);
2129 dim = isl_space_add_dims(dim, isl_dim_set,
2130 isl_set_dim(stmt->domain, isl_dim_set));
2131 dim = isl_space_set_tuple_name(dim, isl_dim_set, u->statement->name);
2132 gen->stmt_domain = isl_union_set_extract_set(uset, dim);
2133 isl_union_set_free(uset);
2135 print_indent(code->dst, code->indent);
2136 print_stmt_body(gen, code->dst, stmt);
2138 isl_set_free(gen->stmt_domain);
2141 static void print_private_access(struct cuda_gen *gen,
2142 __isl_keep isl_set *shared_domain, __isl_take isl_set *access,
2143 const char *type, struct cuda_array_ref_group *group)
2145 const char *array_name;
2146 char *name;
2147 isl_ctx *ctx;
2148 unsigned nvar = isl_set_dim(access, isl_dim_set);
2149 isl_union_map *usched;
2151 if (isl_set_fast_is_empty(access)) {
2152 isl_set_free(access);
2153 return;
2156 ctx = isl_set_get_ctx(access);
2157 array_name = isl_set_get_tuple_name(access);
2158 name = isl_alloc_array(ctx, char,
2159 strlen(type) + sizeof("_private_") + strlen(array_name) + 20);
2160 if (group->array->n_group > 1)
2161 sprintf(name, "%s_private_%s_%d", type, array_name, group->nr);
2162 else
2163 sprintf(name, "%s_private_%s", type, array_name);
2164 access = isl_set_set_tuple_name(access, name);
2165 free(name);
2167 gen->copy_sched = shift_access(access, group);
2168 gen->copy_group = group;
2169 gen->copy_bound = group->private_bound;
2171 usched = isl_union_map_from_map(isl_map_copy(gen->copy_sched));
2172 print_shared_body(gen, shared_domain, usched, nvar,
2173 &print_copy_statement, 1);
2174 isl_union_map_free(usched);
2176 isl_map_free(gen->copy_sched);
2179 /* Print code for reading into or writing from private memory
2180 * the given array reference group.
2182 * sched maps the original iteration domains to the shared memory tile loops.
2184 static void print_group_private_accesses(struct cuda_gen *gen,
2185 struct cuda_array_ref_group *group,
2186 const char *type, __isl_keep isl_set *shared_domain,
2187 unsigned first_shared, int shared_len, __isl_keep isl_union_map *sched)
2189 int read;
2190 isl_union_map *access;
2191 isl_union_set *uset;
2192 isl_set *access_set;
2194 if (!group->private_bound)
2195 return;
2197 read = !strcmp(type, "read");
2199 access = group_access_relation(group, read, !read);
2200 access = isl_union_map_apply_domain(access, isl_union_map_copy(sched));
2201 access = isl_union_map_intersect(access,
2202 isl_union_map_copy(gen->private_access));
2203 uset = isl_union_map_range(access);
2205 if (isl_union_set_is_empty(uset)) {
2206 isl_union_set_free(uset);
2207 return;
2210 access_set = isl_set_from_union_set(uset);
2211 access_set = isl_set_coalesce(access_set);
2212 access_set = isl_set_eliminate(access_set, isl_dim_param,
2213 first_shared + shared_len,
2214 gen->shared_len - shared_len);
2216 print_private_access(gen, shared_domain, access_set, type, group);
2219 /* Print code for reading into or writing from private memory at
2220 * the given level (-1 for innermost).
2222 * If we are not printing at the innermost level, then the dimensionality
2223 * of shared_domain may be smaller than gen->shared_len.
2224 * As the rest of the code assumes that the domain of access has
2225 * gen->shared_len dimensions, we therefore may need to embed this domain
2226 * in a higher dimensional space after intersection with shared_domain.
2228 * This code is very similar to print_shared_accesses.
2229 * The main difference is that we to take into account gen->private_access.
2231 static void print_private_accesses(struct cuda_gen *gen,
2232 __isl_keep isl_set *shared_domain, __isl_keep isl_union_map *access,
2233 const char *type, int level)
2235 int i, j;
2236 isl_space *dim;
2237 isl_map *proj;
2238 int shared_len = isl_set_dim(shared_domain, isl_dim_set);
2239 unsigned first_shared;
2240 isl_union_map *sched;
2242 shared_domain = isl_set_copy(shared_domain);
2243 sched = isl_union_map_copy(gen->tiled_sched);
2244 dim = isl_union_map_get_space(sched);
2245 first_shared = isl_space_dim(dim, isl_dim_param);
2246 proj = projection(dim, gen->tiled_len, shared_len);
2247 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
2248 sched = isl_union_map_intersect_range(sched,
2249 isl_union_set_from_set(isl_set_copy(shared_domain)));
2250 if (shared_len != gen->shared_len) {
2251 dim = isl_union_map_get_space(sched);
2252 proj = projection(dim, gen->shared_len, shared_len);
2253 proj = isl_map_reverse(proj);
2254 shared_domain = isl_set_apply(shared_domain,
2255 isl_map_copy(proj));
2256 sched = isl_union_map_apply_range(sched,
2257 isl_union_map_from_map(proj));
2260 for (i = 0; i < gen->n_array; ++i) {
2261 struct cuda_array_info *array = &gen->array[i];
2263 for (j = 0; j < array->n_group; ++j) {
2264 if (array->groups[j]->print_shared_level != level)
2265 continue;
2267 print_group_private_accesses(gen, array->groups[j],
2268 type, shared_domain,
2269 first_shared, shared_len, sched);
2273 isl_union_map_free(sched);
2274 isl_set_free(shared_domain);
2277 /* Set unroll[j] if the input dimension j is involved in
2278 * the index expression represented by bmap.
2280 static int check_unroll(__isl_take isl_basic_map *bmap, void *user)
2282 int i, j;
2283 int n_in = isl_basic_map_dim(bmap, isl_dim_in);
2284 int n_out = isl_basic_map_dim(bmap, isl_dim_out);
2285 int *unroll = user;
2287 for (i = 0; i < n_out; ++i) {
2288 isl_constraint *c;
2289 int ok;
2291 ok = isl_basic_map_has_defining_equality(bmap,
2292 isl_dim_out, i, &c);
2293 assert(ok);
2294 for (j = 0; j < n_in; ++j)
2295 if (isl_constraint_involves_dims(c, isl_dim_in, j, 1))
2296 unroll[j] = 1;
2297 isl_constraint_free(c);
2300 isl_basic_map_free(bmap);
2301 return 0;
2304 /* Given an array pos mapping input dimensions to the corresponding
2305 * output dimension, construct the corresponding map.
2307 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
2308 int *pos, int len)
2310 int i;
2311 isl_constraint *c;
2312 isl_basic_map *bmap;
2313 isl_local_space *ls;
2315 dim = isl_space_add_dims(dim, isl_dim_in, len);
2316 dim = isl_space_add_dims(dim, isl_dim_out, len);
2317 bmap = isl_basic_map_universe(isl_space_copy(dim));
2318 ls = isl_local_space_from_space(dim);
2320 for (i = 0; i < len; ++i) {
2321 c = isl_equality_alloc(isl_local_space_copy(ls));
2322 isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
2323 isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i], 1);
2324 bmap = isl_basic_map_add_constraint(bmap, c);
2326 isl_local_space_free(ls);
2328 return isl_map_from_basic_map(bmap);
2331 /* Find all loops involved in any of the index expressions for any of
2332 * the private accesses, move them innermost and then mark them as
2333 * requiring unrolling by setting gen->first_unroll.
2334 * The loops involved should all be parallel because of the checks
2335 * we performed in check_private_group_access. Moving them innermost
2336 * is therefore a valid transformation.
2338 * Loops up to gen->shared_len are generated before the mapping to
2339 * threads is applied. They should therefore be ignored.
2341 static __isl_give isl_union_map *interchange_for_unroll(struct cuda_gen *gen,
2342 __isl_take isl_union_map *sched)
2344 int i, j;
2345 int unroll[gen->thread_tiled_len];
2346 int perm[gen->thread_tiled_len];
2347 isl_space *dim;
2348 isl_map *permute;
2349 int len = gen->shared_len + gen->n_parallel + gen->n_block;
2351 gen->first_unroll = -1;
2353 for (i = 0; i < gen->thread_tiled_len; ++i)
2354 unroll[i] = 0;
2355 for (i = 0; i < gen->n_array; ++i) {
2356 struct cuda_array_info *array = &gen->array[i];
2358 for (j = 0; j < array->n_group; ++j) {
2359 isl_union_map *access;
2360 isl_map *acc;
2362 if (!array->groups[j]->private_bound)
2363 continue;
2365 access = group_access_relation(array->groups[j], 1, 1);
2366 access = isl_union_map_apply_domain(access,
2367 isl_union_map_copy(sched));
2369 acc = isl_map_from_union_map(access);
2370 isl_map_foreach_basic_map(acc, &check_unroll, unroll);
2372 isl_map_free(acc);
2376 for (i = gen->shared_len; i < len; ++i)
2377 if (unroll[i])
2378 break;
2380 if (i >= len)
2381 return sched;
2383 for (i = len; i < gen->thread_tiled_len; ++i)
2384 if (unroll[i])
2385 return sched;
2387 j = 0;
2388 for (i = 0; i < gen->shared_len; ++i)
2389 perm[i] = j++;
2390 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
2391 if (!unroll[i])
2392 perm[i] = j++;
2393 gen->first_unroll = 1 + j;
2394 for (i = gen->shared_len; i < len; ++i)
2395 if (unroll[i])
2396 perm[i] = j++;
2398 dim = isl_union_map_get_space(sched);
2399 permute = permutation(dim, perm, gen->thread_tiled_len);
2400 sched = isl_union_map_apply_range(sched,
2401 isl_union_map_from_map(permute));
2403 return sched;
2406 /* This function is called for each leaf in the clast of the kernel code.
2407 * We first specialize the schedule to the site of the leaf and
2408 * print code for reading into shared memory, performing the actual
2409 * computations and writing from shared memory, with the required
2410 * synchronizations.
2412 static void print_kernel_user(struct clast_printer_info *code,
2413 struct clast_user_stmt *u)
2415 struct cuda_gen *gen = code->user;
2416 isl_set *shared_domain;
2418 shared_domain = extract_entire_host_domain(&u->stmt);
2420 print_shared_accesses(gen, shared_domain, gen->read, "read", -1);
2422 print_private_accesses(gen, shared_domain, gen->read, "read", -1);
2424 print_shared_body(gen, shared_domain, gen->local_sched,
2425 gen->thread_tiled_len, &print_statement,
2426 gen->first_unroll);
2428 print_private_accesses(gen, shared_domain, gen->write, "write", -1);
2430 print_indent(gen->cuda.kernel_c, gen->kernel_code.indent);
2431 fprintf(gen->cuda.kernel_c, "__syncthreads();\n");
2433 print_shared_accesses(gen, shared_domain, gen->write, "write", -1);
2435 isl_set_free(shared_domain);
2438 /* Check if we need to perform any copying to shared memory at this level
2439 * and if so, print the copying instructions.
2440 * Any array for which we are allowed to print copying instructions at
2441 * this level, but haven't done so already, is printed.
2443 static void copy_to_local(struct cuda_gen *gen, __isl_keep isl_set *domain)
2445 int i, j;
2446 int level;
2447 int print = 0;
2449 level = isl_set_dim(domain, isl_dim_set);
2451 for (i = 0; i < gen->n_array; ++i) {
2452 struct cuda_array_info *array = &gen->array[i];
2454 for (j = 0; j < array->n_group; ++j) {
2455 if (array->groups[j]->print_shared_level >= 0)
2456 continue;
2457 if (array->groups[j]->last_shared >= level)
2458 continue;
2459 array->groups[j]->print_shared_level = level;
2460 print = 1;
2464 if (print) {
2465 print_shared_accesses(gen, domain, gen->read, "read", level);
2466 print_private_accesses(gen, domain, gen->read, "read", level);
2471 /* This function is called for each for loop in the clast,
2472 * right after the opening brace has been printed.
2474 * Print copying instructions to shared or private memory if needed.
2476 static void print_kernel_for_head(struct clast_printer_info *code,
2477 struct clast_for *f)
2479 struct cuda_gen *gen = code->user;
2480 isl_set *domain;
2482 domain = isl_set_from_cloog_domain(cloog_domain_copy(f->domain));
2483 copy_to_local(gen, domain);
2485 isl_set_free(domain);
2488 /* Print instructions for copying from shared memory for each array
2489 * for which print_kernel_for_head has added copying instructions
2490 * to shared memory.
2492 static void copy_from_local(struct cuda_gen *gen, __isl_keep isl_set *domain)
2494 int i, j;
2495 int level;
2496 int print = 0;
2498 level = isl_set_dim(domain, isl_dim_set);
2500 for (i = 0; i < gen->n_array; ++i) {
2501 struct cuda_array_info *array = &gen->array[i];
2503 for (j = 0; j < array->n_group; ++j) {
2504 if (array->groups[j]->print_shared_level != level)
2505 continue;
2506 print = 1;
2507 break;
2509 if (print)
2510 break;
2513 if (print) {
2514 print_private_accesses(gen, domain, gen->write, "write", level);
2515 print_shared_accesses(gen, domain, gen->write, "write", level);
2519 /* This function is called for each for loop in the clast,
2520 * right before the closing brace is printed.
2522 * Print copying instructions from shared or private memory if needed.
2524 static void print_kernel_for_foot(struct clast_printer_info *code,
2525 struct clast_for *f)
2527 struct cuda_gen *gen = code->user;
2528 isl_set *domain;
2530 domain = isl_set_from_cloog_domain(cloog_domain_copy(f->domain));
2531 copy_from_local(gen, domain);
2533 isl_set_free(domain);
2536 /* Use CLooG to generate code for the outer gen->shared_first loops
2537 * of the local schedule "sched".
2538 * The pretty printing of this code is handled by print_clast,
2539 * which calls print_kernel_user for each iteration of the shared tile loops.
2541 static void print_cloog_kernel_body(struct cuda_gen *gen,
2542 __isl_keep isl_set *context, __isl_keep isl_union_map *sched)
2544 int i;
2545 CloogOptions *options;
2546 CloogDomain *cloog_context;
2547 CloogUnionDomain *ud;
2548 CloogInput *input;
2549 struct clast_stmt *stmt;
2550 char name[20];
2552 sched = isl_union_map_copy(sched);
2553 sched = isl_union_map_align_params(sched, isl_set_get_space(context));
2555 options = cloog_options_malloc(gen->state);
2556 options->language = CLOOG_LANGUAGE_C;
2557 options->strides = 1;
2558 options->sh = 1;
2559 options->stop = gen->shared_len;
2560 options->f = gen->tiled_len;
2561 options->l = gen->tiled_len;
2562 options->save_domains = 1;
2563 options->noscalars = 1;
2565 ud = cloog_union_domain_from_isl_union_map(sched);
2566 for (i = 0; i < gen->shared_len; ++i) {
2567 snprintf(name, sizeof(name), "g%d", i);
2568 ud = cloog_union_domain_set_name(ud, CLOOG_SCAT, i, name);
2570 cloog_context = cloog_domain_from_isl_set(isl_set_copy(context));
2571 input = cloog_input_alloc(cloog_context, ud);
2573 stmt = cloog_clast_create_from_input(input, options);
2575 gen->kernel_code.indent = 4;
2576 gen->kernel_code.dst = gen->cuda.kernel_c;
2577 gen->kernel_code.print_user_stmt = NULL;
2578 gen->kernel_code.print_user_stmt_list = &print_kernel_user;
2579 gen->kernel_code.print_for_head = &print_kernel_for_head;
2580 gen->kernel_code.print_for_foot = &print_kernel_for_foot;
2581 gen->kernel_code.user = gen;
2582 copy_to_local(gen, context);
2583 print_clast(&gen->kernel_code, stmt);
2584 copy_from_local(gen, context);
2586 cloog_clast_free(stmt);
2587 cloog_options_free(options);
2590 static void print_kernel_iterators(struct cuda_gen *gen)
2592 int i;
2593 const char *block_dims[] = { "blockIdx.x", "blockIdx.y" };
2594 const char *thread_dims[] = { "threadIdx.x", "threadIdx.y",
2595 "threadIdx.z" };
2597 if (gen->n_grid > 0) {
2598 print_indent(gen->cuda.kernel_c, 4);
2599 fprintf(gen->cuda.kernel_c, "int ");
2600 for (i = 0; i < gen->n_grid; ++i) {
2601 if (i)
2602 fprintf(gen->cuda.kernel_c, ", ");
2603 fprintf(gen->cuda.kernel_c, "b%d = %s",
2604 i, block_dims[gen->n_grid - 1 - i]);
2606 fprintf(gen->cuda.kernel_c, ";\n");
2609 if (gen->n_block > 0) {
2610 print_indent(gen->cuda.kernel_c, 4);
2611 fprintf(gen->cuda.kernel_c, "int ");
2612 for (i = 0; i < gen->n_block; ++i) {
2613 if (i)
2614 fprintf(gen->cuda.kernel_c, ", ");
2615 fprintf(gen->cuda.kernel_c, "t%d = %s",
2616 i, thread_dims[gen->n_block - 1 - i]);
2618 fprintf(gen->cuda.kernel_c, ";\n");
2622 static void print_group_shared_array(struct cuda_gen *gen,
2623 struct cuda_array_ref_group *group)
2625 int j;
2626 struct cuda_array_bound *bounds;
2627 isl_printer *p;
2629 bounds = group->private_bound;
2630 if (!bounds)
2631 bounds = group->shared_bound;
2632 if (!bounds)
2633 return;
2635 print_indent(gen->cuda.kernel_c, 4);
2636 fprintf(gen->cuda.kernel_c, "%s%s ",
2637 group->private_bound ? "" : "__shared__ ", group->array->type);
2638 p = isl_printer_to_file(gen->ctx, gen->cuda.kernel_c);
2639 p = print_array_name(p, group);
2640 isl_printer_free(p);
2641 for (j = 0; j < group->array->n_index; ++j) {
2642 fprintf(gen->cuda.kernel_c, "[");
2643 isl_int_print(gen->cuda.kernel_c, bounds[j].size, 0);
2644 fprintf(gen->cuda.kernel_c, "]");
2646 fprintf(gen->cuda.kernel_c, ";\n");
2649 static void print_shared_arrays(struct cuda_gen *gen)
2651 int i, j;
2653 for (i = 0; i < gen->n_array; ++i) {
2654 struct cuda_array_info *array = &gen->array[i];
2656 for (j = 0; j < array->n_group; ++j)
2657 print_group_shared_array(gen, array->groups[j]);
2661 static void print_kernel_body(struct cuda_gen *gen,
2662 __isl_keep isl_set *host_domain, __isl_keep isl_union_map *sched)
2664 isl_set *context;
2666 context = isl_set_copy(host_domain);
2667 context = parametrize(context, 0, gen->tile_first, "h");
2668 context = isl_set_project_out(context, isl_dim_set, 0, gen->tile_first);
2669 context = add_bounded_parameters(context,
2670 gen->n_grid, gen->grid_dim, "b");
2672 print_kernel_iterators(gen);
2673 print_shared_arrays(gen);
2675 fprintf(gen->cuda.kernel_c, "\n");
2677 print_cloog_kernel_body(gen, context, sched);
2679 isl_set_free(context);
2682 /* Given a constraint
2684 * a(p,i) + j = g f(e)
2686 * or -a(p,i) - j = g f(e) if sign < 0,
2687 * store a(p,i) in bound->shift and g (stride) in bound->stride.
2688 * a(p,i) is assumed to be an expression in only the parameters.
2690 static void extract_stride(__isl_keep isl_constraint *c,
2691 struct cuda_array_bound *bound, isl_int stride, int sign)
2693 int i;
2694 isl_int v;
2695 isl_space *dim;
2696 unsigned nparam;
2697 isl_aff *aff;
2699 isl_int_set(bound->stride, stride);
2701 dim = isl_constraint_get_space(c);
2702 dim = isl_space_params(dim);
2704 nparam = isl_space_dim(dim, isl_dim_param);
2706 isl_int_init(v);
2708 isl_constraint_get_constant(c, &v);
2709 if (sign < 0)
2710 isl_int_neg(v, v);
2711 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2712 aff = isl_aff_set_constant(aff, v);
2714 for (i = 0; i < nparam; ++i) {
2715 isl_constraint_get_coefficient(c, isl_dim_param, i, &v);
2716 if (isl_int_is_zero(v))
2717 continue;
2718 if (sign < 0)
2719 isl_int_neg(v, v);
2720 aff = isl_aff_add_coefficient(aff, isl_dim_param, i, v);
2723 isl_int_clear(v);
2725 bound->shift = aff;
2728 /* Given an equality constraint of a map with a single output dimension j,
2729 * check if the constraint is of the form
2731 * a(p,i) + j = g f(e)
2733 * with a(p,i) an expression in the parameters and input dimensions
2734 * and f(e) an expression in the existentially quantified variables.
2735 * If so, and if g is larger than any such g from a previously considered
2736 * constraint, then call extract_stride to record the stride information
2737 * in bound.
2739 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
2741 int i;
2742 isl_int v, stride;
2743 unsigned n_div;
2744 struct cuda_array_bound *bound = user;
2746 isl_int_init(v);
2747 isl_int_init(stride);
2749 n_div = isl_constraint_dim(c, isl_dim_div);
2750 isl_constraint_get_coefficient(c, isl_dim_out, 0, &v);
2752 if (n_div && (isl_int_is_one(v) || isl_int_is_negone(v))) {
2753 int s = isl_int_sgn(v);
2754 isl_int_set_si(stride, 0);
2755 for (i = 0; i < n_div; ++i) {
2756 isl_constraint_get_coefficient(c, isl_dim_div, i, &v);
2757 isl_int_gcd(stride, stride, v);
2759 if (!isl_int_is_zero(stride) &&
2760 isl_int_gt(stride, bound->stride))
2761 extract_stride(c, bound, stride, s);
2764 isl_int_clear(stride);
2765 isl_int_clear(v);
2767 isl_constraint_free(c);
2768 return 0;
2771 /* Given contraints on an array index i, check if we can find
2772 * a shift a(p) and a stride g such that
2774 * a(p) + i = 0 mod g
2776 * If so, record the information in bound and apply the mapping
2777 * i -> (i + a(p))/g to the array index in bounds and return
2778 * the new constraints.
2779 * If not, simply return the original constraints.
2781 static __isl_give isl_basic_map *check_stride(struct cuda_array_bound *bound,
2782 __isl_take isl_basic_map *bounds)
2784 isl_basic_map *aff;
2785 isl_basic_map *shift;
2786 isl_aff *aff_shift;
2788 isl_int_set_si(bound->stride, -1);
2790 aff = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
2792 isl_basic_map_foreach_constraint(aff, &check_stride_constraint, bound);
2794 isl_basic_map_free(aff);
2796 if (isl_int_is_neg(bound->stride))
2797 return bounds;
2799 aff_shift = isl_aff_copy(bound->shift);
2800 aff_shift = isl_aff_add_dims(aff_shift, isl_dim_in, 1);
2801 aff_shift = isl_aff_add_coefficient_si(aff_shift, isl_dim_in, 0, 1);
2802 aff_shift = isl_aff_scale_down(aff_shift, bound->stride);
2803 shift = isl_basic_map_from_aff(aff_shift);
2805 bound->shift_map = isl_basic_map_copy(shift);
2806 bounds = isl_basic_map_apply_range(bounds, shift);
2808 return bounds;
2811 struct cuda_size_info {
2812 isl_basic_set *bset;
2813 struct cuda_array_bound *bound;
2814 int pos;
2817 /* Given a constraint from the basic set describing the bounds on
2818 * an array index, check if it is a lower bound, say m i >= b(x), and,
2819 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
2820 * upper bound. If so, and if this bound is smaller than any bound
2821 * derived from earlier constraints, set the size to this bound on
2822 * the expression and the lower bound to ceil(b(x)/m).
2824 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
2826 struct cuda_size_info *size = user;
2827 unsigned nparam;
2828 unsigned n_div;
2829 isl_int v;
2831 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
2832 n_div = isl_constraint_dim(c, isl_dim_div);
2834 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div)) {
2835 isl_constraint_free(c);
2836 return 0;
2839 isl_int_init(v);
2841 isl_constraint_get_coefficient(c, isl_dim_set, size->pos, &v);
2843 if (isl_int_is_pos(v)) {
2844 isl_aff *aff;
2845 isl_aff *lb;
2846 enum isl_lp_result res;
2848 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
2849 aff = isl_aff_ceil(aff);
2851 lb = isl_aff_copy(aff);
2853 aff = isl_aff_neg(aff);
2854 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
2856 res = isl_basic_set_max(size->bset, aff, &v);
2857 isl_aff_free(aff);
2859 if (res == isl_lp_ok) {
2860 isl_int_add_ui(v, v, 1);
2861 if (isl_int_is_neg(size->bound->size) ||
2862 isl_int_lt(v, size->bound->size)) {
2863 isl_int_set(size->bound->size, v);
2864 lb = isl_aff_drop_dims(lb, isl_dim_in,
2865 0, size->pos + 1);
2866 isl_aff_free(size->bound->lb);
2867 size->bound->lb = isl_aff_copy(lb);
2870 isl_aff_free(lb);
2873 isl_int_clear(v);
2874 isl_constraint_free(c);
2876 return 0;
2879 /* Given a basic map "bounds" that maps parameters and input dimensions
2880 * to a single output dimension, look for an expression in the parameters
2881 * and input dimensions such that the range of the output dimension shifted
2882 * by this expression is a constant.
2884 * In particular, we currently only consider lower bounds on the output
2885 * dimension as candidate expressions.
2887 static int compute_array_dim_size(struct cuda_array_bound *bound,
2888 __isl_take isl_basic_map *bounds)
2890 struct cuda_size_info size;
2892 bounds = isl_basic_map_detect_equalities(bounds);
2893 bounds = check_stride(bound, bounds);
2895 isl_int_set_si(bound->size, -1);
2896 bound->lb = NULL;
2898 size.bound = bound;
2899 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
2900 size.bset = isl_basic_map_wrap(bounds);
2901 size.bset = isl_basic_set_flatten(size.bset);
2902 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
2903 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
2904 &size);
2905 isl_basic_set_free(size.bset);
2907 return isl_int_is_nonneg(bound->size) ? 0 : -1;
2910 /* Check if we can find a shared memory tile for the given array
2911 * based on the given accesses, and if so, put the results
2912 * in array->shared_bound.
2914 * We project the accesses on each index in turn and look for a parametric
2915 * offset such that the size is constant.
2917 static int can_tile_for_shared_memory(struct cuda_array_info *array,
2918 __isl_keep isl_map *access, struct cuda_array_bound *bounds)
2920 int i;
2922 for (i = 0; i < array->n_index; ++i) {
2923 isl_map *access_i;
2924 isl_basic_map *hull;
2926 access_i = isl_map_copy(access);
2927 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
2928 access_i = isl_map_project_out(access_i, isl_dim_out,
2929 1, array->n_index - (i + 1));
2930 access_i = isl_map_compute_divs(access_i);
2931 hull = isl_map_simple_hull(access_i);
2932 if (compute_array_dim_size(&bounds[i], hull) < 0)
2933 return 0;
2936 return 1;
2939 /* Construct a map with input the shared tile loops and the loops that
2940 * will be wrapped around the threads that relates these later loops
2941 * to the thread indices and then projects them out.
2943 static __isl_give isl_map *compute_privatization(struct cuda_gen *gen)
2945 isl_map *priv;
2946 isl_map *tiling;
2947 isl_map *proj;
2948 isl_set *par;
2949 isl_space *dim;
2951 dim = isl_union_map_get_space(gen->shared_sched);
2953 if (gen->options->wrap)
2954 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
2955 gen->shared_len, gen->n_block, gen->block_dim);
2956 else
2957 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
2958 gen->shared_len, gen->n_block, gen->block_dim);
2960 priv = tiling;
2962 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
2963 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
2964 gen->n_block, "t");
2966 priv = isl_map_align_params(priv, isl_set_get_space(par));
2967 priv = isl_map_intersect_range(priv, par);
2969 dim = isl_map_get_space(priv);
2970 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
2971 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
2972 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
2973 gen->shared_len);
2975 priv = isl_map_apply_range(priv, proj);
2977 return priv;
2980 /* Construct a map from domain_dim to domain_dim that increments
2981 * the dimension at position "pos" and leaves all other dimensions
2982 * constant.
2984 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
2986 int i;
2987 int len = isl_space_dim(domain_dim, isl_dim_set);
2988 isl_space *dim;
2989 isl_basic_map *next;
2990 isl_local_space *ls;
2992 dim = isl_space_map_from_set(domain_dim);
2993 next = isl_basic_map_universe(isl_space_copy(dim));
2994 ls = isl_local_space_from_space(dim);
2996 for (i = 0; i < len; ++i) {
2997 isl_constraint *c;
2999 c = isl_equality_alloc(isl_local_space_copy(ls));
3000 isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
3001 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
3002 if (i == pos)
3003 isl_constraint_set_constant_si(c, 1);
3004 next = isl_basic_map_add_constraint(next, c);
3007 isl_local_space_free(ls);
3009 return isl_map_from_basic_map(next);
3012 /* Check if the given access is coalesced.
3013 * That is, check whether incrementing the dimension that will get
3014 * wrapped over the last thread index results in incrementing
3015 * the last array index.
3017 * This function is only called for access relations without reuse.
3019 static int access_is_coalesced(struct cuda_gen *gen,
3020 __isl_keep isl_union_map *access)
3022 isl_space *dim;
3023 isl_map *access_map;
3024 isl_map *next_thread_x;
3025 isl_map *next_element;
3026 isl_map *map;
3027 int coalesced;
3029 access = isl_union_map_copy(access);
3030 access = isl_union_map_apply_domain(access,
3031 isl_union_map_copy(gen->tiled_sched));
3032 access_map = isl_map_from_union_map(access);
3034 dim = isl_map_get_space(access_map);
3035 dim = isl_space_domain(dim);
3036 next_thread_x = next(dim, gen->shared_len + gen->n_block - 1);
3038 dim = isl_map_get_space(access_map);
3039 dim = isl_space_range(dim);
3040 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
3042 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
3043 map = isl_map_apply_range(map, access_map);
3045 coalesced = isl_map_is_subset(map, next_element);
3047 isl_map_free(next_element);
3048 isl_map_free(map);
3050 return coalesced;
3053 /* For the given array reference group, check whether the access is private
3054 * to the thread. That is, check that any given array element
3055 * is only accessed by a single thread.
3056 * We compute an access relation that maps the shared tile loop iterators
3057 * and the shared point loop iterators that will be wrapped over the
3058 * threads to the array elements.
3059 * We actually check that those iterators that will be wrapped
3060 * partition the array space. This check is stricter than necessary
3061 * since several iterations may be mapped onto the same thread
3062 * and then they could be allowed to access the same memory elements,
3063 * but our check does not allow this situation.
3065 * We also check that the index expression only depends on parallel
3066 * loops. That way, we can move those loops innermost and unroll them.
3067 * Again, we use a test that is stricter than necessary.
3068 * We actually check whether the index expression only depends
3069 * on the iterators that are wrapped over the threads.
3070 * These are necessarily parallel, but there may be more parallel loops.
3072 * Combining the injectivity of the first test with the single-valuedness
3073 * of the second test, we simply test for bijectivity.
3075 * If it turns out we can use registers, we compute the private memory
3076 * tile size using can_tile_for_shared_memory, after introducing a dependence
3077 * on the thread indices.
3079 * Before performing any of the above computations, we first check
3080 * if there is any reuse on the reference group. If not, we simply
3081 * return. If, moreover, the access is coalesced then we also remove
3082 * the shared memory tiling since we should just use global memory instead.
3084 static void check_private_group_access(struct cuda_gen *gen,
3085 struct cuda_array_ref_group *group)
3087 isl_map *acc;
3088 isl_union_map *access;
3089 int n_index = group->array->n_index;
3091 access = group_access_relation(group, 1, 1);
3092 if (isl_union_map_is_injective(access)) {
3093 if (group->shared_bound && access_is_coalesced(gen, access)) {
3094 free_bound_list(group->shared_bound, n_index);
3095 group->shared_bound = NULL;
3097 isl_union_map_free(access);
3098 return;
3100 access = isl_union_map_apply_domain(access,
3101 isl_union_map_copy(gen->shared_sched));
3103 acc = isl_map_from_union_map(access);
3105 if (!isl_map_is_bijective(acc)) {
3106 isl_map_free(acc);
3107 return;
3110 group->private_bound = create_bound_list(gen->ctx, n_index);
3111 acc = isl_map_align_params(acc, isl_map_get_space(gen->privatization));
3112 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
3113 if (!can_tile_for_shared_memory(group->array, acc,
3114 group->private_bound)) {
3115 free_bound_list(group->private_bound, n_index);
3116 group->private_bound = NULL;
3119 isl_map_free(acc);
3122 /* Look for the last shared tile loop that affects the offset of the
3123 * shared or private tile and store the result in array->last_shared.
3125 static void set_last_shared(struct cuda_gen *gen,
3126 struct cuda_array_ref_group *group)
3128 int i, j;
3129 struct cuda_array_bound *bounds;
3130 unsigned first_shared = gen->first_shared;
3131 int n_index = group->array->n_index;
3133 bounds = group->private_bound;
3134 if (!bounds)
3135 bounds = group->shared_bound;
3136 if (!bounds)
3137 return;
3139 for (j = gen->shared_len - 1; j >= 0; --j) {
3140 for (i = 0; i < n_index; ++i) {
3141 isl_aff *lb;
3142 isl_aff *shift;
3144 lb = bounds[i].lb;
3145 if (isl_aff_involves_dims(lb, isl_dim_param,
3146 first_shared + j, 1))
3147 break;
3149 shift = bounds[i].shift;
3150 if (!shift)
3151 continue;
3152 if (isl_aff_involves_dims(shift, isl_dim_param,
3153 first_shared + j, 1))
3154 break;
3156 if (i < n_index)
3157 break;
3159 group->last_shared = j;
3162 /* Compute the sizes of all private arrays for the current kernel,
3163 * as well as the offsets of the private pieces in the original arrays.
3164 * If we cannot or don't want to privatize a given array group,
3165 * we use the shared memory tile sizes computed in
3166 * compute_group_shared_bound instead.
3168 * If we have been able to find a private or shared tile,
3169 * we also look for the last shared tile loop that affects the offset
3170 * (and therefore the group tile) and store the result in group->last_shared.
3172 * A privatized copy of all access relations from reference groups that
3173 * are mapped to private memory is stored in gen->privatization.
3175 static void compute_private_size(struct cuda_gen *gen)
3177 int i, j;
3178 isl_union_map *private;
3180 if (!gen->options->use_private_memory)
3181 return;
3183 private = isl_union_map_empty(isl_union_map_get_space(gen->shared_sched));
3185 for (i = 0; i < gen->n_array; ++i) {
3186 struct cuda_array_info *array = &gen->array[i];
3188 if (cuda_array_is_read_only_scalar(array))
3189 continue;
3191 for (j = 0; j < array->n_group; ++j) {
3192 check_private_group_access(gen, array->groups[j]);
3194 if (!array->groups[j]->private_bound)
3195 continue;
3197 private = isl_union_map_union(private,
3198 group_access_relation(array->groups[j], 1, 1));
3201 for (j = 0; j < array->n_group; ++j) {
3202 array->groups[j]->last_shared = gen->shared_len - 1;
3203 array->groups[j]->print_shared_level = -1;
3204 set_last_shared(gen, array->groups[j]);
3208 if (isl_union_map_is_empty(private))
3209 isl_union_map_free(private);
3210 else {
3211 isl_union_map *priv;
3213 private = isl_union_map_apply_domain(private,
3214 isl_union_map_copy(gen->shared_sched));
3215 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
3216 private = isl_union_map_apply_domain(private, priv);
3217 gen->private_access = private;
3221 /* Compute the size of the tile specified by the list "bound" of n_index
3222 * cuda_array_bounds in number of elements and put the result in *size.
3224 static void tile_size(unsigned n_index, struct cuda_array_bound *bound,
3225 isl_int *size)
3227 int i;
3229 isl_int_set_si(*size, 1);
3231 for (i = 0; i < n_index; ++i)
3232 isl_int_mul(*size, *size, bound[i].size);
3235 /* If max_shared_memory is not set to infinity (-1), then make
3236 * sure that the total amount of shared memory required by the
3237 * array reference groups mapped to shared memory is no larger
3238 * than this maximum.
3240 * We apply a greedy approach and discard (keep in global memory)
3241 * those groups that would result in a total memory size that
3242 * is larger than the maximum.
3244 static void check_shared_memory_bound(struct cuda_gen *gen)
3246 int i, j;
3247 isl_int left, size;
3249 if (gen->options->max_shared_memory < 0)
3250 return;
3252 isl_int_init(left);
3253 isl_int_init(size);
3254 isl_int_set_si(left, gen->options->max_shared_memory);
3256 for (i = 0; i < gen->n_array; ++i) {
3257 struct cuda_array_info *array = &gen->array[i];
3259 for (j = 0; j < array->n_group; ++j) {
3260 struct cuda_array_ref_group *group;
3262 group = array->groups[j];
3263 if (!group->shared_bound)
3264 continue;
3266 tile_size(array->n_index, group->shared_bound, &size);
3267 isl_int_mul_ui(size, size, array->size);
3269 if (isl_int_le(size, left)) {
3270 isl_int_sub(left, left, size);
3271 continue;
3274 free_bound_list(group->shared_bound, array->n_index);
3275 group->shared_bound = NULL;
3279 isl_int_clear(size);
3280 isl_int_clear(left);
3283 /* Fill up the groups array with singleton groups, i.e., one group
3284 * per reference, initializing the array, access, write and refs fields.
3285 * In particular the access field is initialized to the scheduled
3286 * access relation of the array reference.
3288 * Return the number of elements initialized, i.e., the number of
3289 * active references in the current kernel.
3291 static int populate_array_references(struct cuda_array_info *array,
3292 __isl_keep isl_union_map *sched, struct cuda_array_ref_group **groups)
3294 int i;
3295 int n;
3296 isl_ctx *ctx = isl_union_map_get_ctx(sched);
3298 n = 0;
3299 for (i = 0; i < array->n_ref; ++i) {
3300 isl_union_map *umap;
3301 isl_map *map;
3302 struct cuda_array_ref_group *group;
3303 struct cuda_stmt_access *access = array->refs[i];
3305 map = isl_map_copy(access->access);
3306 umap = isl_union_map_from_map(map);
3307 umap = isl_union_map_apply_domain(umap,
3308 isl_union_map_copy(sched));
3310 if (isl_union_map_is_empty(umap)) {
3311 isl_union_map_free(umap);
3312 continue;
3315 map = isl_map_from_union_map(umap);
3316 map = isl_map_detect_equalities(map);
3318 group = isl_calloc_type(ctx, struct cuda_array_ref_group);
3319 assert(group);
3320 group->array = array;
3321 group->access = map;
3322 group->write = access->write;
3323 group->refs = &array->refs[i];
3325 groups[n++] = group;
3328 return n;
3331 static void free_array_ref_group(struct cuda_array_ref_group *group,
3332 int n_index)
3334 if (!group)
3335 return;
3336 free_bound_list(group->shared_bound, n_index);
3337 free_bound_list(group->private_bound, n_index);
3338 isl_map_free(group->access);
3339 free(group->refs);
3340 free(group);
3343 /* Given a set where the parameters gen->first_shared up to
3344 * gen->first_shared + gen->shared_len represent the tile loops,
3345 * eliminate the innermost of those that have a fixed value
3346 * until we reach one that does not (obviously) have a fixed value.
3348 static __isl_give isl_set *eliminate_fixed_inner_loops(struct cuda_gen *gen,
3349 __isl_take isl_set *access)
3351 int i;
3353 for (i = gen->shared_len - 1; i >= 0; --i) {
3354 int pos = gen->first_shared + i;
3355 if (!isl_set_plain_is_fixed(access, isl_dim_param, pos, NULL))
3356 break;
3357 access = isl_set_eliminate(access, isl_dim_param, pos, 1);
3359 return access;
3362 /* Check if the accessed set of group1 and group2 overlap within
3363 * the innermost loop. In particular, ignore any inner dimension
3364 * with a fixed value.
3365 * The copying to and from shared memory will be performed within
3366 * the innermost actual loop so we are only allowed to consider
3367 * the dimensions up to that innermost loop while checking whether
3368 * two access sets overlap.
3370 static int accesses_overlap(struct cuda_gen *gen,
3371 struct cuda_array_ref_group *group1,
3372 struct cuda_array_ref_group *group2)
3374 int empty;
3375 isl_set *access1, *access2;
3377 access1 = isl_map_range(isl_map_copy(group1->access));
3378 access1 = eliminate_fixed_inner_loops(gen, access1);
3379 access2 = isl_map_range(isl_map_copy(group2->access));
3380 access2 = eliminate_fixed_inner_loops(gen, access2);
3381 access1 = isl_set_intersect(access1, access2);
3382 empty = isl_set_is_empty(access1);
3383 isl_set_free(access1);
3385 return !empty;
3388 /* If two groups have overlapping access relations (within the innermost
3389 * loop) and if one of them involves a write, then merge the two groups
3390 * into one.
3392 * We keep track of the grouping in "leader". leader[j] points to
3393 * an earlier group array element that belongs to the same group,
3394 * or the array element j itself if this element is the first in the group.
3396 * Return the number of group leaders.
3398 static int group_overlapping_writes(struct cuda_gen *gen, int n,
3399 struct cuda_array_ref_group **groups, int *leader)
3401 int i, j;
3402 int n_group = n;
3404 for (i = 0; i < n; ++i) {
3405 int l = i;
3406 groups[l]->n_ref = 1;
3407 for (j = i - 1; j >= 0; --j) {
3408 if (leader[j] != j)
3409 continue;
3410 if (!groups[l]->write && !groups[j]->write)
3411 continue;
3413 if (!accesses_overlap(gen, groups[l], groups[j]))
3414 continue;
3416 groups[j]->access = isl_map_union(groups[j]->access,
3417 groups[l]->access);
3418 groups[j]->write = 1;
3419 groups[l]->access = NULL;
3420 groups[j]->n_ref += groups[l]->n_ref;
3421 l = leader[l] = j;
3422 n_group--;
3424 leader[i] = l;
3427 return n_group;
3430 /* Compute the size of the shared array corresponding to the given
3431 * array reference group, based on the accesses from the current kernel,
3432 * as well as the offset of the shared piece in the original array.
3434 static void compute_group_shared_bound(struct cuda_gen *gen,
3435 struct cuda_array_info *array, struct cuda_array_ref_group *group)
3437 isl_ctx *ctx = isl_space_get_ctx(array->dim);
3439 if (!gen->options->use_shared_memory)
3440 return;
3441 if (cuda_array_is_read_only_scalar(array))
3442 return;
3444 group->shared_bound = create_bound_list(ctx, array->n_index);
3445 if (!can_tile_for_shared_memory(array, group->access,
3446 group->shared_bound)) {
3447 free_bound_list(group->shared_bound, array->n_index);
3448 group->shared_bound = NULL;
3452 /* Is the size of the tile specified by "bound" smaller than the sum of
3453 * the sizes of the tiles specified by "bound1" and "bound2"?
3455 static int smaller_tile(unsigned n_index, struct cuda_array_bound *bound,
3456 struct cuda_array_bound *bound1, struct cuda_array_bound *bound2)
3458 int smaller;
3459 isl_int size, size1, size2;
3461 isl_int_init(size);
3462 isl_int_init(size1);
3463 isl_int_init(size2);
3465 tile_size(n_index, bound, &size);
3466 tile_size(n_index, bound1, &size1);
3467 tile_size(n_index, bound2, &size2);
3469 isl_int_sub(size, size, size1);
3470 isl_int_sub(size, size, size2);
3471 smaller = isl_int_is_neg(size);
3473 isl_int_clear(size2);
3474 isl_int_clear(size1);
3475 isl_int_clear(size);
3477 return smaller;
3480 /* Given an initial grouping of array references and shared memory tiles
3481 * for each group that allows for a shared memory tile, merge two groups
3482 * if both have a shared memory tile, the merged group also has
3483 * a shared memory tile and the size of the tile for the merge group
3484 * is smaller than the sum of the tile sizes of the individual groups.
3486 * Return the number of group leaders after merging.
3488 static int group_common_shared_memory_tile(struct cuda_gen *gen,
3489 struct cuda_array_info *array, int n,
3490 struct cuda_array_ref_group **groups, int *leader, int n_group)
3492 int i, j;
3493 isl_ctx *ctx = isl_space_get_ctx(array->dim);
3495 for (i = 0; n_group > 1 && i < n; ++i) {
3496 int l = i;
3497 if (leader[i] != i)
3498 continue;
3499 if (!groups[i]->shared_bound)
3500 continue;
3501 for (j = i - 1; j >= 0; --j) {
3502 isl_map *map;
3503 int empty;
3504 struct cuda_array_bound *shared_bound;
3506 if (leader[j] != j)
3507 continue;
3508 if (!groups[j]->shared_bound)
3509 continue;
3511 map = isl_map_intersect(isl_map_copy(groups[l]->access),
3512 isl_map_copy(groups[j]->access));
3513 empty = isl_map_is_empty(map);
3514 isl_map_free(map);
3516 if (empty)
3517 continue;
3519 map = isl_map_union(isl_map_copy(groups[l]->access),
3520 isl_map_copy(groups[j]->access));
3521 shared_bound = create_bound_list(ctx, array->n_index);
3522 if (!can_tile_for_shared_memory(array, map,
3523 shared_bound) ||
3524 !smaller_tile(array->n_index, shared_bound,
3525 groups[l]->shared_bound,
3526 groups[j]->shared_bound)) {
3527 isl_map_free(map);
3528 free_bound_list(shared_bound, array->n_index);
3529 continue;
3532 free_bound_list(groups[j]->shared_bound,
3533 array->n_index);
3534 groups[j]->shared_bound = shared_bound;
3535 isl_map_free(groups[j]->access);
3536 groups[j]->access = map;
3537 groups[j]->n_ref += groups[l]->n_ref;
3538 l = leader[l] = j;
3539 n_group--;
3543 return n_group;
3546 /* Extract an array of array reference groups from the array of references
3547 * and the grouping information in "leader".
3549 * Store the results in array->n_group and array->groups.
3551 static void extract_array_groups(isl_ctx *ctx, struct cuda_array_info *array,
3552 int n, struct cuda_array_ref_group **groups, int *leader, int n_group)
3554 int i, j;
3556 for (i = 2; i < n; ++i)
3557 leader[i] = leader[leader[i]];
3559 array->n_group = n_group;
3560 array->groups = isl_alloc_array(ctx, struct cuda_array_ref_group *,
3561 n_group);
3562 assert(array->groups);
3564 j = 0;
3565 for (i = 0; i < n; ++i) {
3566 int k, l;
3567 struct cuda_stmt_access **refs;
3569 if (leader[i] != i) {
3570 groups[i]->refs = NULL;
3571 free_array_ref_group(groups[i], array->n_index);
3572 continue;
3575 refs = isl_alloc_array(ctx, struct cuda_stmt_access *,
3576 groups[i]->n_ref);
3577 assert(refs);
3578 l = 0;
3579 for (k = i; k < n; ++k)
3580 if (leader[k] == i) {
3581 refs[l++] = *groups[k]->refs;
3582 (*groups[k]->refs)->group = j;
3585 groups[i]->refs = refs;
3586 groups[i]->nr = j;
3587 array->groups[j++] = groups[i];
3591 /* Group array references that should be considered together when
3592 * deciding whether to access them from private, shared or global memory.
3594 * In particular, if two array references overlap and if one of them
3595 * is a write, then the two references are grouped together.
3596 * Furthermore, if two groups admit a shared memory tile and if the
3597 * combination of the two also admits a shared memory tile, we merge
3598 * the two groups.
3600 * During the construction the group->refs field points to a single
3601 * array reference inside the array of array references, while
3602 * group->n_ref contains the number of element in leader that
3603 * (directly or indirectly) point to this group, provided the group
3604 * is a leader.
3606 static void group_array_references(struct cuda_gen *gen,
3607 struct cuda_array_info *array, __isl_keep isl_union_map *sched)
3609 int i;
3610 int n, n_group;
3611 isl_ctx *ctx = isl_union_map_get_ctx(sched);
3612 struct cuda_array_ref_group **groups;
3613 int *leader;
3615 groups = isl_calloc_array(ctx, struct cuda_array_ref_group *,
3616 array->n_ref);
3617 assert(groups);
3619 n = populate_array_references(array, sched, groups);
3621 leader = isl_alloc_array(ctx, int, n);
3622 assert(leader);
3624 n_group = group_overlapping_writes(gen, n, groups, leader);
3626 for (i = 0; i < n; ++i)
3627 if (leader[i] == i)
3628 compute_group_shared_bound(gen, array, groups[i]);
3630 n_group = group_common_shared_memory_tile(gen, array, n, groups,
3631 leader, n_group);
3633 extract_array_groups(ctx, array, n, groups, leader, n_group);
3635 free(leader);
3636 free(groups);
3639 /* Take tiled_sched, project it onto the shared tile loops and
3640 * the loops that will be wrapped over the threads,
3641 * parametrize the shared tile loops and store the result in gen->shared_sched.
3642 * The position of the first of these parameters is stored in gen->first_shared.
3643 * Also compute a projection that projects out the loops that will be
3644 * wrapped over the threads and store this projection in gen->shared_proj.
3646 static void compute_shared_sched(struct cuda_gen *gen)
3648 isl_space *dim;
3649 isl_map *proj;
3650 isl_set *par;
3651 isl_union_map *sched;
3653 sched = isl_union_map_copy(gen->tiled_sched);
3655 dim = isl_union_map_get_space(sched);
3656 gen->first_shared = isl_space_dim(dim, isl_dim_param);
3657 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
3658 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3660 dim = isl_union_map_get_space(sched);
3661 par = parametrization(dim, gen->shared_len + gen->n_block,
3662 0, gen->shared_len, "g");
3663 sched = isl_union_map_intersect_range(sched,
3664 isl_union_set_from_set(par));
3666 dim = isl_union_map_get_space(sched);
3667 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
3669 gen->shared_sched = sched;
3670 gen->shared_proj = isl_union_map_from_map(proj);
3673 /* Group references of all arrays in the program.
3675 static void group_references(struct cuda_gen *gen)
3677 int i;
3678 isl_union_map *sched;
3680 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
3681 isl_union_map_copy(gen->shared_proj));
3683 for (i = 0; i < gen->n_array; ++i)
3684 group_array_references(gen, &gen->array[i], sched);
3686 isl_union_map_free(sched);
3689 /* Free all array information that is local to the current kernel.
3691 static void free_local_array_info(struct cuda_gen *gen)
3693 int i, j;
3695 for (i = 0; i < gen->n_array; ++i) {
3696 struct cuda_array_info *array = &gen->array[i];
3698 for (j = 0; j < array->n_group; ++j)
3699 free_array_ref_group(array->groups[j], array->n_index);
3700 free(array->groups);
3702 if (array->n_group == 0)
3703 continue;
3704 for (j = 0; j < gen->array[i].n_index; ++j) {
3705 isl_pw_aff_free(gen->array[i].local_bound[j]);
3706 gen->array[i].local_bound[j] = NULL;
3711 /* The sizes of the arrays on the host that have been computed by
3712 * extract_array_info may depend on the parameters. Use the extra
3713 * constraints on the parameters that are valid at "host_domain"
3714 * to simplify these expressions.
3716 static void localize_bounds(struct cuda_gen *gen,
3717 __isl_keep isl_set *host_domain)
3719 int i, j;
3720 isl_set *context;
3722 context = isl_set_copy(host_domain);
3723 context = isl_set_params(context);
3725 for (i = 0; i < gen->n_array; ++i) {
3726 struct cuda_array_info *array = &gen->array[i];
3728 if (array->n_group == 0)
3729 continue;
3731 for (j = 0; j < array->n_index; ++j) {
3732 isl_pw_aff *pwaff;
3734 pwaff = isl_pw_aff_copy(array->bound[j]);
3735 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
3736 array->local_bound[j] = pwaff;
3739 isl_set_free(context);
3742 /* Set gen->tile_len and gen->n_parallel to those of the first statement
3743 * in the statement list u.
3744 * Because of the way the schedule is constructed, the other statements
3745 * in the list, if any, should have the same values for these properties.
3747 static void set_tile_len(struct cuda_gen *gen, struct clast_user_stmt *u)
3749 int nr;
3750 struct cuda_stmt *stmt;
3752 nr = atoi(u->statement->name + 2);
3753 stmt = &gen->stmts[nr];
3755 gen->tile_len = stmt->tile_len;
3756 gen->n_parallel = stmt->n_parallel;
3759 /* Extract a description of the grid, i.e., the possible values
3760 * of the block ids, from gen->tiled_sched.
3761 * The block ids are parameters in gen->tiled_sched.
3762 * We simply need to change them into set dimensions.
3764 static __isl_give isl_set *extract_grid(struct cuda_gen *gen)
3766 int i;
3767 isl_set *grid;
3769 grid = isl_union_map_params(isl_union_map_copy(gen->tiled_sched));
3770 grid = isl_set_from_params(grid);
3771 grid = isl_set_add_dims(grid, isl_dim_set, gen->n_grid);
3772 for (i = 0; i < gen->n_grid; ++i) {
3773 int pos;
3774 char name[20];
3776 snprintf(name, sizeof(name), "b%d", i);
3777 pos = isl_set_find_dim_by_name(grid, isl_dim_param, name);
3778 assert(pos >= 0);
3779 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
3780 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
3783 return grid;
3786 /* Print the effective grid size as a list of the sizes in each
3787 * dimension, from innermost to outermost.
3789 * The grid size specified by the user or set by default
3790 * in read_grid_sizes() and applied in tile_schedule(),
3791 * may be too large for the given code in the sense that
3792 * it may contain blocks that don't need to execute anything.
3793 * We therefore don't print this grid size, but instead the
3794 * smallest grid size that ensures that all blocks that actually
3795 * execute code are included in the grid.
3797 * For each block dimension, we compute the maximal value of the block id
3798 * and add one.
3800 static void print_grid_size(struct cuda_gen *gen, __isl_take isl_set *context)
3802 int i;
3803 isl_printer *prn;
3804 isl_set *grid;
3806 if (gen->n_grid == 0) {
3807 isl_set_free(context);
3808 return;
3811 grid = extract_grid(gen);
3813 prn = isl_printer_to_file(gen->ctx, gen->cuda.host_c);
3814 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
3816 prn = isl_printer_print_str(prn, "(");
3817 for (i = gen->n_grid - 1; i >= 0; --i) {
3818 isl_space *space;
3819 isl_aff *one;
3820 isl_pw_aff *bound = isl_set_dim_max(isl_set_copy(grid), i);
3822 bound = isl_pw_aff_coalesce(bound);
3823 bound = isl_pw_aff_gist(bound, isl_set_copy(context));
3825 space = isl_pw_aff_get_domain_space(bound);
3826 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
3827 one = isl_aff_add_constant_si(one, 1);
3828 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
3829 prn = isl_printer_print_pw_aff(prn, bound);
3830 isl_pw_aff_free(bound);
3832 if (i > 0)
3833 prn = isl_printer_print_str(prn, ", ");
3835 prn = isl_printer_print_str(prn, ")");
3837 isl_printer_free(prn);
3838 isl_set_free(grid);
3839 isl_set_free(context);
3842 /* This function is called for each leaf in the clast of the host code.
3843 * We first specialize the schedule to the site of the leaf, compute
3844 * the size of shared memory and then print the body of host code
3845 * and the associated kernel (through a call to print_kernel_body).
3847 static void print_host_user(struct clast_printer_info *code,
3848 struct clast_user_stmt *u)
3850 struct cuda_gen *gen = code->user;
3851 isl_space *dim;
3852 isl_set *par;
3853 isl_set *host_domain;
3854 isl_union_map *access;
3855 isl_union_map *local_sched;
3856 isl_union_set *arrays;
3858 set_tile_len(gen, u);
3859 read_sizes(gen);
3861 host_domain = extract_entire_host_domain(&u->stmt);
3863 local_sched = isl_union_map_intersect_range(
3864 isl_union_map_copy(gen->sched),
3865 isl_union_set_from_set(extend(isl_set_copy(host_domain),
3866 gen->untiled_len)));
3867 access = isl_union_map_union(isl_union_map_copy(gen->read),
3868 isl_union_map_copy(gen->write));
3869 access = isl_union_map_apply_domain(access,
3870 isl_union_map_copy(local_sched));
3871 arrays = isl_union_map_range(access);
3873 print_indent(code->dst, code->indent);
3874 fprintf(code->dst, "dim3 k%d_dimBlock", gen->kernel_id);
3875 print_reverse_list(code->dst, gen->n_block, gen->block_dim);
3876 fprintf(code->dst, ";\n");
3878 gen->tiled_sched = tile_schedule(gen, local_sched);
3879 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
3880 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
3882 print_indent(code->dst, code->indent);
3883 fprintf(code->dst, "dim3 k%d_dimGrid", gen->kernel_id);
3884 print_grid_size(gen, isl_set_params(isl_set_copy(host_domain)));
3885 fprintf(code->dst, ";\n");
3887 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
3889 dim = isl_union_map_get_space(gen->local_sched);
3890 par = parametrization(dim, gen->tiled_len, 0, gen->shared_len, "g");
3891 gen->local_sched = isl_union_map_intersect_range(gen->local_sched,
3892 isl_union_set_from_set(par));
3894 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
3895 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
3897 gen->private_access = NULL;
3898 compute_shared_sched(gen);
3899 gen->privatization = compute_privatization(gen);
3900 group_references(gen);
3901 compute_private_size(gen);
3902 check_shared_memory_bound(gen);
3903 localize_bounds(gen, host_domain);
3905 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
3907 print_kernel_launch(gen, arrays);
3909 fprintf(gen->cuda.kernel_c, "{\n");
3911 print_kernel_body(gen, host_domain, gen->tiled_sched);
3913 fprintf(gen->cuda.kernel_c, "}\n");
3915 free_local_array_info(gen);
3916 isl_map_free(gen->privatization);
3917 isl_union_map_free(gen->private_access);
3918 isl_union_map_free(gen->local_sched);
3919 isl_union_map_free(gen->tiled_sched);
3920 isl_union_map_free(gen->shared_sched);
3921 isl_union_map_free(gen->shared_proj);
3922 isl_union_set_free(arrays);
3923 isl_set_free(host_domain);
3925 free(gen->tile_size);
3926 gen->kernel_id++;
3929 /* Use CLooG to generate code for the outer gen->tile_first loops
3930 * of the global schedule in gen->sched.
3931 * The pretty printing of this code is handled by print_clast,
3932 * which calls print_host_user for each kernel invocation location.
3934 static void print_cloog_host_code(struct cuda_gen *gen)
3936 int i;
3937 isl_set *context;
3938 isl_union_map *sched;
3939 CloogOptions *options;
3940 CloogDomain *cloog_context;
3941 CloogUnionDomain *ud;
3942 CloogInput *input;
3943 struct clast_stmt *stmt;
3944 char name[20];
3946 options = cloog_options_malloc(gen->state);
3947 options->language = CLOOG_LANGUAGE_C;
3948 options->otl = 0;
3949 options->strides = 1;
3950 options->stop = gen->tile_first;
3951 options->f = gen->untiled_len;
3952 options->l = gen->untiled_len;
3953 options->save_domains = 1;
3954 options->noscalars = 1;
3956 sched = isl_union_map_copy(gen->sched);
3957 ud = cloog_union_domain_from_isl_union_map(sched);
3958 for (i = 0; i < options->stop; ++i) {
3959 snprintf(name, sizeof(name), "h%d", i);
3960 ud = cloog_union_domain_set_name(ud, CLOOG_SCAT, i, name);
3962 context = isl_set_copy(gen->context);
3963 cloog_context = cloog_domain_from_isl_set(context);
3964 input = cloog_input_alloc(cloog_context, ud);
3966 stmt = cloog_clast_create_from_input(input, options);
3968 gen->code.indent = 0;
3969 gen->code.dst = gen->cuda.host_c;
3970 gen->code.print_user_stmt = NULL;
3971 gen->code.print_user_stmt_list = &print_host_user;
3972 gen->code.print_for_head = NULL;
3973 gen->code.print_for_foot = NULL;
3974 gen->code.user = gen;
3975 print_clast(&gen->code, stmt);
3977 cloog_clast_free(stmt);
3978 cloog_options_free(options);
3979 fprintf(gen->cuda.host_c, "\n");
3982 void print_cuda_macros(struct cuda_gen *gen)
3984 const char *macros =
3985 "#define cudaCheckReturn(ret) assert((ret) == cudaSuccess)\n"
3986 "#define cudaCheckKernel()"
3987 " assert(cudaGetLastError() == cudaSuccess)\n\n";
3988 fputs(macros, gen->cuda.host_c);
3991 void print_host_code(struct cuda_gen *gen)
3993 fprintf(gen->cuda.host_c, "{\n");
3994 print_cloog_macros(gen->cuda.host_c);
3995 print_cloog_macros(gen->cuda.kernel_c);
3997 print_cuda_macros(gen);
3999 declare_device_arrays(gen);
4001 allocate_device_arrays(gen);
4002 copy_arrays_to_device(gen);
4004 gen->kernel_id = 0;
4005 print_cloog_host_code(gen);
4007 copy_arrays_from_device(gen);
4008 free_device_arrays(gen);
4010 fprintf(gen->cuda.host_c, "}\n");
4013 __isl_give isl_set *add_context_from_str(__isl_take isl_set *set,
4014 const char *str)
4016 isl_ctx *ctx;
4017 isl_set *context;
4019 if (!str)
4020 return set;
4022 ctx = isl_set_get_ctx(set);
4023 context = isl_set_read_from_str(ctx, str);
4024 context = isl_set_align_params(context, isl_set_get_space(set));
4025 set = isl_set_intersect(set, context);
4027 return set;
4030 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
4032 if (!str)
4033 return NULL;
4034 return isl_union_map_read_from_str(ctx, str);
4037 /* Return the union of all iteration domains of the gen->stmts[i].
4039 static __isl_give isl_union_set *extract_domain(struct cuda_gen *gen)
4041 int i;
4042 isl_union_set *domain;
4044 domain = isl_union_set_empty(isl_set_get_space(gen->context));
4045 for (i = 0; i < gen->n_stmts; ++i) {
4046 isl_set *domain_i;
4048 domain_i = isl_set_copy(gen->stmts[i].domain);
4049 domain = isl_union_set_union(domain,
4050 isl_union_set_from_set(domain_i));
4053 return domain;
4056 /* Information about the outermost tilable bands in the forest of bands.
4058 * tile_len and n_parallel are only sets on band_info structures
4059 * that correspond to outermost bands. For other bands (in particular,
4060 * ancestors of the outermost bands), n_parallal is set to 0.
4062 * prefix is the (padded) schedule leading up to the outermost tilable bands.
4064 * tile_first is the number of schedule dimensions in prefix.
4066 * suffix is the schedule of the outermost tilable bands and their descendants.
4068 struct band_info {
4069 struct cuda_gen *gen;
4070 int tile_first;
4071 int tile_len;
4072 int n_parallel;
4073 isl_union_map *prefix;
4074 isl_union_map *suffix;
4077 /* Set tile_len and n_parallel of the statement to that of
4078 * their outermost band, recorded in the band_info.
4080 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
4082 struct band_info *info = user;
4083 int nr;
4084 struct cuda_stmt *stmt;
4086 nr = atoi(isl_map_get_tuple_name(map, isl_dim_in) + 2);
4087 stmt = &info->gen->stmts[nr];
4089 stmt->tile_len = info->tile_len;
4090 stmt->n_parallel = info->n_parallel;
4092 isl_map_free(map);
4094 return 0;
4097 static void list_select_outer_band(struct cuda_gen *gen,
4098 __isl_take isl_band_list *list, int pos, struct band_info *list_info);
4100 /* Check if this band has any parallel loops. If so, take it as
4101 * the outermost tilable band. If not, continue looking for the
4102 * outermost tilable band in the children of the current band.
4104 static void band_select_outer_band(struct cuda_gen *gen,
4105 __isl_take isl_band *band, int pos, struct band_info *info)
4107 int n = isl_band_n_member(band);
4108 int n_parallel;
4110 for (n_parallel = 0; n_parallel < n; ++n_parallel)
4111 if (!isl_band_member_is_zero_distance(band, n_parallel))
4112 break;
4114 info->n_parallel = n_parallel;
4115 if (n_parallel) {
4116 info->gen = gen;
4117 info->tile_first = pos;
4118 info->tile_len = n;
4119 info->prefix = isl_band_get_prefix_schedule(band);
4120 info->suffix = isl_union_map_flat_range_product(
4121 isl_band_get_partial_schedule(band),
4122 isl_band_get_suffix_schedule(band));
4123 isl_union_map_foreach_map(info->prefix,
4124 &set_stmt_tile_len, info);
4125 } else if (isl_band_has_children(band)) {
4126 isl_band_list *children;
4127 children = isl_band_get_children(band);
4128 list_select_outer_band(gen, children, pos + n, info);
4129 } else {
4130 info->gen = gen;
4131 info->tile_first = pos + n;
4132 info->tile_len = 0;
4133 info->prefix = isl_union_map_flat_range_product(
4134 isl_band_get_prefix_schedule(band),
4135 isl_band_get_partial_schedule(band));
4136 info->suffix = isl_band_get_suffix_schedule(band);
4137 isl_union_map_foreach_map(info->prefix,
4138 &set_stmt_tile_len, info);
4141 isl_band_free(band);
4144 /* Comparison function that returns a non-zero value for band_infos
4145 * with different tile_len fields or different n_parallel fields.
4147 static int cmp_band(const void *p1, const void *p2)
4149 const struct band_info *info1 = p1;
4150 const struct band_info *info2 = p2;
4152 if (info1->tile_len != info2->tile_len)
4153 return info1->tile_len - info2->tile_len;
4155 return info1->n_parallel - info2->n_parallel;
4158 /* Extend "umap" with coordinates with fixed value "val"
4159 * to a total length of "dst_len", assuming the original dimension is "src_len".
4161 static __isl_give isl_union_map *extend_range(__isl_take isl_union_map *umap,
4162 int src_len, int dst_len, int val)
4164 isl_space *dim;
4165 isl_map *map;
4166 int i;
4168 dim = isl_union_map_get_space(umap);
4169 map = isl_map_reverse(projection(dim, dst_len, src_len));
4170 for (i = src_len; i < dst_len; ++i)
4171 map = isl_map_fix_si(map, isl_dim_out, i, val);
4173 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
4175 return umap;
4178 /* Group bands with the same values for tile_len and n_parallel.
4179 * The prefix schedule is then extended with a fixed coordinate that
4180 * is different for each such group.
4181 * Note that the actual values for this coordinate are not important.
4182 * The bands have already been effectively separated at a higher level
4183 * or they are independent and may be executed in parallel.
4184 * The list of band_info has been sorted before this functions is called.
4186 static void separate_bands(struct band_info *info, int n)
4188 int i;
4189 int j = 0;
4191 for (i = 0; i < n; ++i) {
4192 int l = info[i].tile_first;
4194 if (i &&
4195 (info[i].tile_len != info[i - 1].tile_len ||
4196 info[i].n_parallel != info[i - 1].n_parallel))
4197 j++;
4199 info[i].prefix = extend_range(info[i].prefix,
4200 l, l + 1, j);
4201 info[i].tile_first = l + 1;
4205 /* Select the outermost bands in the elements of the list, align
4206 * their prefix schedules, separate bands with different values
4207 * for tile_len and/or n_parallel and then combine the resulting
4208 * prefix and suffix schedules into a single pair of prefix and
4209 * suffix schedules for the entire list.
4211 static void list_select_outer_band(struct cuda_gen *gen,
4212 __isl_take isl_band_list *list, int pos, struct band_info *list_info)
4214 isl_band *band;
4215 int i;
4216 int n = isl_band_list_n_band(list);
4217 isl_ctx *ctx = isl_band_list_get_ctx(list);
4218 struct band_info *info;
4219 int max_tile_first;
4220 isl_union_map *prefix;
4221 isl_union_map *suffix;
4223 assert(n >= 1);
4224 info = isl_calloc_array(ctx, struct band_info, n);
4225 assert(info);
4227 max_tile_first = 0;
4228 for (i = 0; i < n; ++i) {
4229 band = isl_band_list_get_band(list, i);
4230 band_select_outer_band(gen, band, pos, &info[i]);
4231 if (info[i].tile_first > max_tile_first)
4232 max_tile_first = info[i].tile_first;
4235 for (i = 0; i < n; ++i) {
4236 if (info[i].tile_first == max_tile_first)
4237 continue;
4238 info[i].prefix = extend_range(info[i].prefix,
4239 info[i].tile_first, max_tile_first, 0);
4240 info[i].tile_first = max_tile_first;
4243 qsort(info, n, sizeof(struct band_info), &cmp_band);
4245 for (i = 0; i < n - 1; ++i)
4246 if (info[i].tile_len != info[i + 1].tile_len ||
4247 info[i].n_parallel != info[i + 1].n_parallel)
4248 break;
4250 if (i < n -1)
4251 separate_bands(info, n);
4253 prefix = info[0].prefix;
4254 suffix = info[0].suffix;
4256 for (i = 1; i < n; ++i) {
4257 prefix = isl_union_map_union(prefix, info[i].prefix);
4258 suffix = isl_union_map_union(suffix, info[i].suffix);
4261 list_info->tile_first = info[0].tile_first;
4262 list_info->tile_len = -1;
4263 list_info->prefix = prefix;
4264 list_info->suffix = suffix;
4266 isl_band_list_free(list);
4267 free(info);
4270 /* Select the outermost tilable band that (by construction)
4271 * has at least one parallel loop.
4272 * The starting position of the aligned band is stored in the pair
4273 * gen->tile_first.
4274 * The sizes and number of parallel loops may be different in different
4275 * parts of the band forest and are therefore stored in the cuda_stmts.
4277 * Return the complete schedule, with the tilable bands aligned
4278 * at gen->tile_first and padded with zero, if needed.
4280 static __isl_give isl_union_map *select_outer_tilable_band(struct cuda_gen *gen,
4281 __isl_keep isl_schedule *schedule)
4283 isl_band_list *list;
4284 struct band_info info;
4286 gen->n_parallel = 0;
4287 gen->tile_len = -1;
4289 list = isl_schedule_get_band_forest(schedule);
4291 list_select_outer_band(gen, list, 0, &info);
4293 gen->tile_first = info.tile_first;
4294 info.suffix = align_range(info.suffix);
4296 return isl_union_map_flat_range_product(info.prefix, info.suffix);
4299 /* Set gen->untiled_len to the number of scheduling dimensions
4300 * for the schedule of the first domain.
4301 * We assume here that this number is the same for all domains.
4303 static int set_untiled_len(__isl_take isl_map *map, void *user)
4305 unsigned *untiled_len = user;
4307 *untiled_len = isl_map_dim(map, isl_dim_out);
4309 isl_map_free(map);
4310 return -1;
4313 /* Compute an appropriate schedule based on the accesses in
4314 * gen->read and gen->write.
4316 * We first compute dependences and then use those to compute
4317 * a schedule that has a parallel loop in each tilable band.
4318 * Finally, we select the outermost tilable band.
4320 static void compute_schedule(struct cuda_gen *gen,
4321 __isl_take isl_union_map *sched)
4323 isl_union_set *domain;
4324 isl_union_map *empty;
4325 isl_union_map *dep_raw, *dep2, *dep3, *dep;
4326 isl_union_map *uninitialized;
4327 isl_schedule *schedule;
4329 empty = isl_union_map_empty(isl_union_map_get_space(sched));
4331 isl_union_map_compute_flow(isl_union_map_copy(gen->read),
4332 isl_union_map_copy(gen->write), empty,
4333 isl_union_map_copy(sched),
4334 &dep_raw, NULL, &uninitialized, NULL);
4335 isl_union_map_compute_flow(isl_union_map_copy(gen->write),
4336 isl_union_map_copy(gen->write),
4337 isl_union_map_copy(gen->read),
4338 isl_union_map_copy(sched),
4339 &dep2, &dep3, NULL, NULL);
4340 isl_union_map_free(sched);
4342 gen->copy_in = isl_union_map_range(uninitialized);
4344 dep = isl_union_map_union(dep2, dep3);
4345 dep = isl_union_map_union(dep, dep_raw);
4346 dep = isl_union_map_coalesce(dep);
4348 domain = extract_domain(gen);
4349 schedule = isl_union_set_compute_schedule(isl_union_set_copy(domain),
4350 isl_union_map_copy(dep), dep);
4352 sched = select_outer_tilable_band(gen, schedule);
4354 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
4355 sched = isl_union_map_intersect_domain(sched, domain);
4356 gen->sched = sched;
4358 isl_schedule_free(schedule);
4361 static struct cuda_stmt_access **expr_extract_access(struct pet_expr *expr,
4362 struct cuda_stmt_access **next_access)
4364 struct cuda_stmt_access *access;
4365 isl_ctx *ctx = isl_map_get_ctx(expr->acc.access);
4367 access = isl_alloc_type(ctx, struct cuda_stmt_access);
4368 assert(access);
4369 access->next = NULL;
4370 access->read = expr->acc.read;
4371 access->write = expr->acc.write;
4372 access->access = isl_map_copy(expr->acc.access);
4374 *next_access = access;
4375 next_access = &(*next_access)->next;
4376 return next_access;
4379 static struct cuda_stmt_access **expr_extract_accesses(struct pet_expr *expr,
4380 struct cuda_stmt_access **next_access)
4382 int i;
4384 for (i = 0; i < expr->n_arg; ++i)
4385 next_access = expr_extract_accesses(expr->args[i],
4386 next_access);
4388 if (expr->type == pet_expr_access)
4389 next_access = expr_extract_access(expr, next_access);
4391 return next_access;
4394 static void pet_stmt_extract_accesses(struct cuda_stmt *stmt)
4396 struct cuda_stmt_access **next_access = &stmt->accesses;
4398 stmt->accesses = NULL;
4399 expr_extract_accesses(stmt->body, next_access);
4402 /* Return an array of cuda_stmt representing the statements in "scop".
4404 static struct cuda_stmt *extract_stmts(isl_ctx *ctx, struct pet_scop *scop,
4405 __isl_keep isl_set *context)
4407 int i;
4408 struct cuda_stmt *stmts;
4410 stmts = isl_calloc_array(ctx, struct cuda_stmt, scop->n_stmt);
4411 assert(stmts);
4413 for (i = 0; i < scop->n_stmt; ++i) {
4414 struct cuda_stmt *s = &stmts[i];
4416 s->domain = isl_set_copy(scop->stmts[i]->domain);
4417 s->domain = isl_set_intersect_params(s->domain,
4418 isl_set_copy(context));
4419 s->body = scop->stmts[i]->body;
4420 pet_stmt_extract_accesses(s);
4423 return stmts;
4426 /* Replace the scop in the "input" file by equivalent code
4427 * that uses the GPU. "scop" is assumed to correspond to this scop.
4429 * We first compute a schedule that respects the dependences
4430 * of the original program and select the outermost band
4431 * of tilable dimensions that has at least one parallel loop.
4432 * We then have three blocks of dimensions
4434 * H B G
4436 * The tilable band "B" is first tiled according to "tile" sizes, resulting
4437 * in
4439 * H T P G
4441 * For each iteration of the T loop and for each array, we compute
4442 * the array elements accessed by that iteration, construct a rectangular
4443 * box around it and shift it to the origin. The result is used
4444 * as shared memory for the array.
4446 * We then split off at most 2 parallel loops from the T loops and
4447 * at most 3 parallel loops from the P loops
4449 * H T1 T2 P1 P2 G
4451 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
4452 * according to "grid"/"block" sizes.
4454 * H T1T T1P T2 P1T P1P P2 G
4456 * Finally, the T1P and P1P iterators are equated to the block and
4457 * thread dimensions respectively and so are effectively removed.
4458 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
4459 * are run on the GPU.
4461 * Code is generated in three stages. We first generate code for the
4462 * host (the H loops), with iterators h%d. Then, for each leaf node
4463 * of the resulting AST, we generate code for the shared loops (up to
4464 * and including T2), with iterators g%d and after equating the H loops
4465 * to h%d parameters and the T1P loops to the block dimensions.
4466 * Finally, we generate code for the remaining loops in a similar fashion.
4468 int generate_cuda(isl_ctx *ctx, struct pet_scop *scop,
4469 struct ppcg_options *options, const char *input)
4471 isl_union_map *sched;
4472 struct cuda_gen gen;
4474 if (!scop)
4475 return -1;
4477 scop = pet_scop_align_params(scop);
4479 gen.ctx = ctx;
4480 gen.context = isl_set_copy(scop->context);
4481 gen.context = add_context_from_str(gen.context, options->ctx);
4482 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
4483 gen.n_stmts = scop->n_stmt;
4484 gen.stmts = extract_stmts(ctx, scop, gen.context);
4485 gen.read = pet_scop_collect_reads(scop);
4486 gen.write = pet_scop_collect_writes(scop);
4487 gen.options = options;
4488 gen.state = cloog_isl_state_malloc(gen.ctx);
4489 gen.scop = scop;
4491 cuda_open_files(&gen.cuda, input);
4493 collect_array_info(&gen);
4495 sched = pet_scop_collect_schedule(scop);
4497 compute_schedule(&gen, sched);
4499 print_host_code(&gen);
4501 cloog_state_free(gen.state);
4502 clear_cuda_gen(&gen);
4504 cuda_close_files(&gen.cuda);
4506 return 0;