gpu_array_info: replace read_only by read_only_scalar
[ppcg.git] / gpu.c
blobe02c43d3c6f77b755d4452d650f1a3b4321898c0
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
19 #include <isl/aff.h>
20 #include <isl/ilp.h>
21 #include <isl/flow.h>
22 #include <isl/band.h>
23 #include <isl/schedule.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
27 #include "cpu.h"
28 #include "gpu.h"
29 #include "schedule.h"
30 #include "ppcg_options.h"
31 #include "print.h"
33 /* The fields stride, shift and shift_map only contain valid information
34 * if shift != NULL.
35 * If so, they express that current index is such that if you add shift,
36 * then the result is always a multiple of stride.
37 * shift_map contains the mapping
39 * i -> (i + shift)/stride
41 * Let D represent the initial shared_len dimensions of the computed schedule.
42 * The spaces of "lb" and "shift" are of the form
44 * D -> [b]
46 * "shift_map" is of the form
48 * [D -> i] -> [D -> (i + shift(D))/stride]
50 struct gpu_array_bound {
51 isl_val *size;
52 isl_aff *lb;
54 isl_val *stride;
55 isl_aff *shift;
56 isl_basic_map *shift_map;
59 /* A tile of an array.
61 * n is the dimension of the array.
62 * bound is an array of size "n" representing the lower bound
63 * and size for each index.
65 * tiling maps a tile in the global array to the corresponding
66 * shared/private memory tile and is of the form
68 * { [D[i] -> A[a]] -> T[(a + shift(i))/stride - lb(i)] }
70 * where D represents the initial shared_len dimensions
71 * of the computed schedule.
73 struct gpu_array_tile {
74 int n;
75 struct gpu_array_bound *bound;
76 isl_multi_aff *tiling;
79 struct gpu_array_info;
81 /* A group of array references in a kernel that should be handled together.
82 * If private_tile is not NULL, then it is mapped to registers.
83 * Otherwise, if shared_tile is not NULL, it is mapped to shared memory.
84 * Otherwise, it is accessed from global memory.
86 struct gpu_array_ref_group {
87 /* The references in this group access this array. */
88 struct gpu_array_info *array;
89 /* Position of this group in the list of reference groups of array. */
90 int nr;
92 /* The following fields are use during the construction of the groups.
93 * access is the combined access relation relative to the shared
94 * memory tiling. In particular, the domain of the map corresponds
95 * to the first shared_len dimensions of the computed schedule.
96 * write is set if any access in the group is a write.
98 isl_map *access;
99 int write;
101 /* The shared memory tile, NULL if none. */
102 struct gpu_array_tile *shared_tile;
104 /* The private memory tile, NULL if none. */
105 struct gpu_array_tile *private_tile;
107 /* References in this group; point to elements of a linked list. */
108 int n_ref;
109 struct gpu_stmt_access **refs;
111 /* Last shared memory tile dimension that affects tile of this group. */
112 int last_shared;
115 struct gpu_gen {
116 isl_ctx *ctx;
117 struct ppcg_options *options;
119 /* Callback for printing of AST in appropriate format. */
120 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
121 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
122 void *user);
123 void *print_user;
125 struct gpu_prog *prog;
126 /* The generated AST. */
127 isl_ast_node *tree;
129 /* tile, grid and block sizes for each kernel */
130 isl_union_map *sizes;
132 /* Identifier of current kernel. */
133 int kernel_id;
134 /* Pointer to the current kernel. */
135 struct ppcg_kernel *kernel;
136 /* Does the computed schedule exhibit any parallelism? */
137 int any_parallelism;
139 /* First tile dimension. */
140 int tile_first;
141 /* Number of tile dimensions. */
142 int tile_len;
143 /* Number of initial parallel loops among tile dimensions. */
144 int n_parallel;
146 /* Number of dimensions determining shared memory. */
147 int shared_len;
149 /* Number of rows in the untiled schedule. */
150 int untiled_len;
151 /* Number of rows in the tiled schedule. */
152 int tiled_len;
153 /* Number of rows in schedule after tiling/wrapping over threads. */
154 int thread_tiled_len;
156 /* Global untiled schedule. */
157 isl_union_map *sched;
158 /* Local (per kernel launch) tiled schedule. */
159 isl_union_map *tiled_sched;
160 /* Local schedule per shared memory tile loop iteration. */
161 isl_union_map *local_sched;
163 /* Local tiled schedule projected onto the shared tile loops and
164 * the loops that will be wrapped over the threads,
165 * with all shared tile loops parametrized.
167 isl_union_map *shared_sched;
168 /* Projects out the loops that will be wrapped over the threads
169 * from shared_sched.
171 isl_union_map *shared_proj;
173 /* A map that takes the range of shared_sched as input,
174 * wraps the appropriate loops over the threads and then projects
175 * out these loops.
177 isl_map *privatization;
179 /* A map from the shared memory tile loops and the thread indices
180 * (as parameters) to the set of accessed memory elements that
181 * will be accessed through private copies.
183 isl_union_map *private_access;
185 /* The schedule for the current private/shared access
186 * (within print_private_access or print_shared_access).
188 isl_map *copy_sched;
189 /* The array reference group corresponding to copy_sched. */
190 struct gpu_array_ref_group *copy_group;
192 /* First loop to unroll (or -1 if none) in the current part of the
193 * schedule.
195 int first_unroll;
197 int n_grid;
198 int n_block;
199 /* Note: in the input file, the sizes of the grid and the blocks
200 * are specified in the order x, y, z, but internally, the sizes
201 * are stored in reverse order, so that the last element always
202 * refers to the x dimension.
204 int grid_dim[2];
205 int block_dim[3];
206 int *tile_size;
209 /* Print the name of the local copy of a given group of array references.
211 static __isl_give isl_printer *print_array_name(__isl_take isl_printer *p,
212 struct gpu_array_ref_group *group)
214 int global = 0;
216 if (group->private_tile)
217 p = isl_printer_print_str(p, "private_");
218 else if (group->shared_tile)
219 p = isl_printer_print_str(p, "shared_");
220 else
221 global = 1;
222 p = isl_printer_print_str(p, group->array->name);
223 if (!global && group->array->n_group > 1) {
224 p = isl_printer_print_str(p, "_");
225 p = isl_printer_print_int(p, group->nr);
228 return p;
231 /* Collect all references to the given array and store pointers to them
232 * in array->refs.
234 static void collect_references(struct gpu_prog *prog,
235 struct gpu_array_info *array)
237 int i;
238 int n;
240 n = 0;
241 for (i = 0; i < prog->n_stmts; ++i) {
242 struct gpu_stmt *stmt = &prog->stmts[i];
243 struct gpu_stmt_access *access;
245 for (access = stmt->accesses; access; access = access->next) {
246 const char *name;
247 name = isl_map_get_tuple_name(access->access,
248 isl_dim_out);
249 if (name && !strcmp(array->name, name))
250 n++;
254 array->n_ref = n;
255 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
256 assert(array->refs);
258 n = 0;
259 for (i = 0; i < prog->n_stmts; ++i) {
260 struct gpu_stmt *stmt = &prog->stmts[i];
261 struct gpu_stmt_access *access;
263 for (access = stmt->accesses; access; access = access->next) {
264 const char *name;
265 name = isl_map_get_tuple_name(access->access,
266 isl_dim_out);
267 if (!name || strcmp(array->name, name))
268 continue;
270 array->refs[n++] = access;
275 /* Create a gpu_array_tile for an array of dimension "n_index".
277 static struct gpu_array_tile *create_tile(isl_ctx *ctx, int n_index)
279 int i;
280 struct gpu_array_tile *tile;
282 tile = isl_calloc_type(ctx, struct gpu_array_tile);
283 assert(tile);
285 tile->n = n_index;
287 tile->bound = isl_alloc_array(ctx, struct gpu_array_bound, n_index);
288 assert(tile->bound);
290 for (i = 0; i < n_index; ++i) {
291 tile->bound[i].size = NULL;
292 tile->bound[i].lb = NULL;
293 tile->bound[i].stride = NULL;
294 tile->bound[i].shift = NULL;
295 tile->bound[i].shift_map = NULL;
298 return tile;
301 static void *free_tile(struct gpu_array_tile *tile)
303 int j;
305 if (!tile)
306 return NULL;
308 for (j = 0; j < tile->n; ++j) {
309 isl_val_free(tile->bound[j].size);
310 isl_val_free(tile->bound[j].stride);
311 isl_aff_free(tile->bound[j].lb);
312 isl_aff_free(tile->bound[j].shift);
313 isl_basic_map_free(tile->bound[j].shift_map);
315 free(tile->bound);
316 isl_multi_aff_free(tile->tiling);
317 free(tile);
319 return NULL;
322 static struct pet_array *find_array(struct ppcg_scop *scop,
323 __isl_keep isl_set *accessed)
325 int i;
326 isl_id *id;
328 id = isl_set_get_tuple_id(accessed);
330 for (i = 0; i < scop->n_array; ++i) {
331 isl_id *id_i;
333 id_i = isl_set_get_tuple_id(scop->arrays[i]->extent);
334 isl_id_free(id_i);
335 if (id == id_i)
336 break;
338 isl_id_free(id);
340 return i < scop->n_array ? scop->arrays[i] : NULL;
343 /* Compute and return the extent of "array", taking into account the set of
344 * accessed elements.
346 * In particular, the extent in the outer dimension is taken
347 * from "accessed", while then extent in the remaing dimensions
348 * are taken from array->extent.
350 * The extent in the outer dimension cannot be taken from array->extent
351 * because that may be unbounded. Furthermore, even if it is bounded,
352 * it may be larger than the piece of the array that is being accessed.
354 static __isl_give isl_set *compute_extent(struct pet_array *array,
355 __isl_keep isl_set *accessed)
357 int n_index;
358 isl_id *id;
359 isl_set *outer;
360 isl_set *extent;
362 extent = isl_set_copy(array->extent);
364 n_index = isl_set_dim(accessed, isl_dim_set);
365 if (n_index == 0)
366 return extent;
368 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
369 outer = isl_set_copy(accessed);
370 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
371 extent = isl_set_flat_product(outer, extent);
372 id = isl_set_get_tuple_id(accessed);
373 extent = isl_set_set_tuple_id(extent, id);
375 return extent;
378 /* Is the array "array" being extracted a read-only scalar?
380 * That is, is "array" a scalar that is never written to.
382 static int is_read_only_scalar(struct gpu_array_info *array,
383 struct gpu_prog *prog)
385 isl_set *space;
386 isl_union_map *write;
387 int empty;
389 if (array->n_index != 0)
390 return 0;
392 write = isl_union_map_copy(prog->write);
393 space = isl_set_universe(isl_space_copy(array->space));
394 write = isl_union_map_intersect_range(write,
395 isl_union_set_from_set(space));
396 empty = isl_union_map_is_empty(write);
397 isl_union_map_free(write);
399 return empty;
402 /* Compute bounds on the host arrays based on the accessed elements
403 * and collect all references to the array.
405 * If the array is zero-dimensional, i.e., a scalar, we check
406 * whether it is read-only.
408 static int extract_array_info(__isl_take isl_set *array, void *user)
410 int i;
411 struct gpu_prog *prog = (struct gpu_prog *)user;
412 const char *name;
413 int n_index;
414 isl_pw_aff **bounds;
415 struct pet_array *pa;
416 struct gpu_array_info *info;
417 isl_set *extent;
419 info = &prog->array[prog->n_array];
420 prog->n_array++;
422 n_index = isl_set_dim(array, isl_dim_set);
423 name = isl_set_get_tuple_name(array);
424 bounds = isl_alloc_array(isl_set_get_ctx(array),
425 isl_pw_aff *, n_index);
426 if (!bounds)
427 goto error;
429 info->space = isl_set_get_space(array);
430 info->name = strdup(name);
431 info->n_index = n_index;
432 info->bound = bounds;
434 pa = find_array(prog->scop, array);
435 if (!pa)
436 isl_die(isl_set_get_ctx(array), isl_error_internal,
437 "unable to find array in scop", goto error);
439 info->type = strdup(pa->element_type);
440 info->size = pa->element_size;
441 info->local = pa->declared && !pa->exposed;
442 info->read_only_scalar = is_read_only_scalar(info, prog);
444 extent = compute_extent(pa, array);
445 for (i = 0; i < n_index; ++i) {
446 isl_set *dom;
447 isl_local_space *ls;
448 isl_aff *one;
449 isl_pw_aff *bound;
451 bound = isl_set_dim_max(isl_set_copy(extent), i);
452 assert(bound);
453 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
454 ls = isl_local_space_from_space(isl_set_get_space(dom));
455 one = isl_aff_zero_on_domain(ls);
456 one = isl_aff_add_constant_si(one, 1);
457 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
458 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
460 bounds[i] = bound;
462 info->extent = extent;
464 collect_references(prog, info);
466 isl_set_free(array);
467 return 0;
468 error:
469 isl_set_free(array);
470 return -1;
473 /* Construct a gpu_array_info for each array accessed by "prog" and
474 * collect them in prog->array.
476 static int collect_array_info(struct gpu_prog *prog)
478 int r;
479 isl_union_set *arrays;
481 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
482 arrays = isl_union_set_union(arrays,
483 isl_union_map_range(isl_union_map_copy(prog->write)));
484 arrays = isl_union_set_coalesce(arrays);
486 prog->n_array = isl_union_set_n_set(arrays);
487 prog->array = isl_alloc_array(prog->ctx,
488 struct gpu_array_info, prog->n_array);
489 assert(prog->array);
490 prog->n_array = 0;
491 r = isl_union_set_foreach_set(arrays, &extract_array_info, prog);
492 isl_union_set_free(arrays);
494 return r;
497 static void free_array_info(struct gpu_prog *prog)
499 int i, j;
501 for (i = 0; i < prog->n_array; ++i) {
502 int n_index = prog->array[i].n_index;
503 free(prog->array[i].type);
504 free(prog->array[i].name);
505 for (j = 0; j < n_index; ++j)
506 isl_pw_aff_free(prog->array[i].bound[j]);
507 isl_space_free(prog->array[i].space);
508 isl_set_free(prog->array[i].extent);
509 free(prog->array[i].bound);
510 free(prog->array[i].refs);
512 free(prog->array);
515 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
516 * as an array or through a pointer reference, but as single data element. At
517 * the moment, scalars are represented as zero dimensional arrays.
519 int gpu_array_is_scalar(struct gpu_array_info *array)
521 return (array->n_index == 0);
524 /* Is "array" a read-only scalar?
526 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
528 return array->read_only_scalar;
531 /* Internal data structure for extract_size_of_type.
532 * "type" specifies the name of the space that we want to extract.
533 * "res" is used to store the subset of that space.
535 struct ppcg_extract_size_data {
536 const char *type;
537 isl_set *res;
540 /* This function is called for each set in a union_set.
541 * If the name of the set matches data->type, we store the
542 * set in data->res.
544 static int extract_size_of_type(__isl_take isl_set *size, void *user)
546 struct ppcg_extract_size_data *data = user;
547 const char *name;
549 name = isl_set_get_tuple_name(size);
550 if (name && !strcmp(name, data->type)) {
551 data->res = size;
552 return -1;
555 isl_set_free(size);
556 return 0;
559 /* Given a union map { kernel[i] -> *[...] },
560 * return the range in the space called "type" for the kernel with
561 * sequence number "id".
563 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
564 const char *type, int id)
566 isl_space *space;
567 isl_set *dom;
568 isl_union_set *local_sizes;
569 struct ppcg_extract_size_data data = { type, NULL };
571 if (!sizes)
572 return NULL;
574 space = isl_union_map_get_space(sizes);
575 space = isl_space_set_from_params(space);
576 space = isl_space_add_dims(space, isl_dim_set, 1);
577 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
578 dom = isl_set_universe(space);
579 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
581 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
582 isl_union_map_copy(sizes));
583 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
584 isl_union_set_free(local_sizes);
585 return data.res;
588 /* Given a singleton set, extract the first (at most *len) elements
589 * of the single integer tuple into *sizes and update *len if needed.
591 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
593 int i;
594 int dim;
596 if (!set)
597 return;
599 dim = isl_set_dim(set, isl_dim_set);
600 if (dim < *len)
601 *len = dim;
603 for (i = 0; i < *len; ++i) {
604 isl_val *v;
606 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
607 assert(v);
609 sizes[i] = isl_val_get_num_si(v);
610 isl_val_free(v);
613 isl_set_free(set);
616 /* Extract user specified "tile" sizes from the "sizes" command line option,
617 * defaulting to option->tile_size in each dimension.
619 static void read_tile_sizes(struct gpu_gen *gen)
621 int n;
622 isl_set *size;
624 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
625 assert(gen->tile_size);
626 for (n = 0; n < gen->tile_len; ++n)
627 gen->tile_size[n] = gen->options->tile_size;
629 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
630 read_sizes_from_set(size, gen->tile_size, &gen->tile_len);
632 if (gen->n_parallel > gen->tile_len)
633 gen->n_parallel = gen->tile_len;
636 /* Extract user specified "block" sizes from the "sizes" command line option,
637 * after filling in some potentially useful defaults.
639 static void read_block_sizes(struct gpu_gen *gen)
641 int n;
642 isl_set *size;
644 n = gen->n_parallel;
645 gen->n_block = (n <= 3) ? n : 3;
646 switch (gen->n_block) {
647 case 1:
648 gen->block_dim[0] = 512;
649 break;
650 case 2:
651 gen->block_dim[0] = 32;
652 gen->block_dim[1] = 16;
653 break;
654 default:
655 gen->block_dim[0] = 32;
656 gen->block_dim[1] = 4;
657 gen->block_dim[2] = 4;
658 break;
661 size = extract_sizes(gen->sizes, "block", gen->kernel_id);
662 read_sizes_from_set(size, gen->block_dim, &gen->n_block);
665 /* Extract user specified "grid" sizes from the "sizes" command line option,
666 * after filling in some potentially useful defaults.
668 static void read_grid_sizes(struct gpu_gen *gen)
670 int n = gen->n_parallel;
671 isl_set *size;
673 gen->n_grid = (n <= 2) ? n : 2;
674 switch (gen->n_grid) {
675 case 1:
676 gen->grid_dim[0] = 32768;
677 break;
678 default:
679 gen->grid_dim[0] = 256;
680 gen->grid_dim[1] = 256;
681 break;
684 size = extract_sizes(gen->sizes, "grid", gen->kernel_id);
685 read_sizes_from_set(size, gen->grid_dim, &gen->n_grid);
688 /* Extract user specified sizes from the "sizes" command line option
689 * after filling in some potentially useful defaults.
691 static void read_sizes(struct gpu_gen *gen)
693 read_tile_sizes(gen);
694 read_block_sizes(gen);
695 read_grid_sizes(gen);
698 static void *free_stmts(struct gpu_stmt *stmts, int n)
700 int i;
702 if (!stmts)
703 return NULL;
705 for (i = 0; i < n; ++i) {
706 struct gpu_stmt_access *access, *next;
708 for (access = stmts[i].accesses; access; access = next) {
709 next = access->next;
710 isl_id_free(access->ref_id);
711 isl_map_free(access->access);
712 free(access);
715 isl_id_free(stmts[i].id);
717 free(stmts);
719 return NULL;
722 /* Construct a map from a domain of dimensionality "len"
723 * to a domain of dimensionality "len" + "tile_len" that tiles
724 * the "tile_len" coordinates starting at "first".
725 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
726 * "dim" prescribes the parameters.
728 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
729 int first, int tile_len, int *tile_size)
731 int i;
732 isl_basic_map *bmap;
733 isl_constraint *c;
734 isl_local_space *ls;
736 dim = isl_space_add_dims(dim, isl_dim_in, len);
737 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
738 bmap = isl_basic_map_universe(isl_space_copy(dim));
739 ls = isl_local_space_from_space(dim);
741 for (i = 0; i < len - tile_len; ++i) {
742 int j = i < first ? i : i + tile_len;
743 int k = i < first ? i : i + 2 * tile_len;
745 c = isl_equality_alloc(isl_local_space_copy(ls));
746 c = isl_constraint_set_coefficient_si(c, isl_dim_in, j, -1);
747 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
748 bmap = isl_basic_map_add_constraint(bmap, c);
751 for (i = 0; i < tile_len; ++i) {
752 c = isl_equality_alloc(isl_local_space_copy(ls));
753 c = isl_constraint_set_coefficient_si(c, isl_dim_in,
754 first + i, -1);
755 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
756 first + i, tile_size[i]);
757 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
758 first + i + tile_len, 1);
759 bmap = isl_basic_map_add_constraint(bmap, c);
761 c = isl_inequality_alloc(isl_local_space_copy(ls));
762 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
763 first + i + tile_len, 1);
764 bmap = isl_basic_map_add_constraint(bmap, c);
766 c = isl_inequality_alloc(isl_local_space_copy(ls));
767 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
768 first + i + tile_len, -1);
769 c = isl_constraint_set_constant_si(c, tile_size[i] - 1);
770 bmap = isl_basic_map_add_constraint(bmap, c);
773 isl_local_space_free(ls);
775 return isl_map_from_basic_map(bmap);
778 /* Construct a map from a domain of dimensionality "len"
779 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
780 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
781 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
782 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
783 * that are projected out at the end.
784 * "dim" prescribes the parameters.
786 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
787 int first, int wrap_len, int *wrap_size)
789 int i;
790 isl_basic_map *bmap;
791 isl_constraint *c;
792 isl_local_space *ls;
794 dim = isl_space_add_dims(dim, isl_dim_in, len);
795 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
796 bmap = isl_basic_map_universe(isl_space_copy(dim));
797 ls = isl_local_space_from_space(dim);
799 for (i = 0; i < len; ++i) {
800 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
802 c = isl_equality_alloc(isl_local_space_copy(ls));
803 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
804 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
805 bmap = isl_basic_map_add_constraint(bmap, c);
808 for (i = 0; i < wrap_len; ++i) {
809 c = isl_equality_alloc(isl_local_space_copy(ls));
810 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
811 first + i, -1);
812 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
813 first + wrap_len + i, 1);
814 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
815 first + 2 * wrap_len + i, wrap_size[i]);
816 bmap = isl_basic_map_add_constraint(bmap, c);
818 c = isl_inequality_alloc(isl_local_space_copy(ls));
819 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
820 first + wrap_len + i, 1);
821 bmap = isl_basic_map_add_constraint(bmap, c);
823 c = isl_inequality_alloc(isl_local_space_copy(ls));
824 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
825 first + wrap_len + i, -1);
826 c = isl_constraint_set_constant_si(c, wrap_size[i] - 1);
827 bmap = isl_basic_map_add_constraint(bmap, c);
830 isl_local_space_free(ls);
832 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
833 first + 2 * wrap_len, wrap_len);
835 return isl_map_from_basic_map(bmap);
838 /* Add "n" parameters named prefix%d.
840 static __isl_give isl_set *add_params( __isl_take isl_set *set,
841 int n, const char *prefix)
843 int i;
844 unsigned nparam;
845 char name[20];
847 nparam = isl_set_dim(set, isl_dim_param);
848 set = isl_set_add_dims(set, isl_dim_param, n);
850 for (i = 0; i < n; ++i) {
851 snprintf(name, sizeof(name), "%s%d", prefix, i);
852 set = isl_set_set_dim_name(set, isl_dim_param,
853 nparam + i, name);
856 return set;
859 /* Equate the "n" dimensions of "set" starting at "first" to
860 * freshly created parameters named prefix%d.
862 static __isl_give isl_set *parametrize(__isl_take isl_set *set,
863 int first, int n, const char *prefix)
865 int i;
866 unsigned nparam;
868 nparam = isl_set_dim(set, isl_dim_param);
870 set = add_params(set, n, prefix);
872 for (i = 0; i < n; ++i)
873 set = isl_set_equate(set, isl_dim_param, nparam + i,
874 isl_dim_set, first + i);
876 return set;
879 /* Given a parameter space "space", create a set of dimension "len"
880 * of which the "n" dimensions starting at "first" are equated to
881 * freshly created parameters named prefix%d.
883 static __isl_give isl_set *parametrization(__isl_take isl_space *space,
884 int len, int first, int n, const char *prefix)
886 isl_set *set;
888 space = isl_space_set_from_params(space);
889 space = isl_space_add_dims(space, isl_dim_set, len);
890 set = isl_set_universe(space);
892 return parametrize(set, first, n, prefix);
895 /* Tile the B loops over the tile sizes and then tile/wrap
896 * the T1 loops over the blocks.
898 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
899 __isl_take isl_union_map *sched)
901 isl_space *dim;
902 isl_map *tiling, *block_tiling;
904 dim = isl_union_map_get_space(sched);
905 tiling = tile(isl_space_copy(dim), gen->untiled_len,
906 gen->tile_first, gen->tile_len, gen->tile_size);
908 if (gen->options->wrap)
909 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
910 gen->tile_first, gen->n_grid, gen->grid_dim);
911 else
912 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
913 gen->tile_first, gen->n_grid, gen->grid_dim);
915 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
917 tiling = isl_map_apply_range(tiling, block_tiling);
919 sched = isl_union_map_apply_range(sched,
920 isl_union_map_from_map(tiling));
922 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
924 return sched;
927 /* Equate the "T1P" iterators in the tiled schedule "sched"
928 * to the block dimensions.
930 static __isl_give isl_union_map *parametrize_tiled_schedule(
931 struct gpu_gen *gen, __isl_take isl_union_map *sched)
933 isl_space *dim;
934 isl_set *par;
936 dim = isl_union_map_get_space(sched);
937 par = parametrization(dim, gen->tiled_len,
938 gen->tile_first + gen->n_grid, gen->n_grid, "b");
939 sched = isl_union_map_intersect_range(sched,
940 isl_union_set_from_set(par));
942 return sched;
945 /* Tile/wrap the P1 loops over the threads.
947 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
948 __isl_take isl_union_map *sched)
950 isl_space *dim;
951 isl_map *tiling;
952 isl_set *par;
954 dim = isl_union_map_get_space(sched);
956 if (gen->options->wrap)
957 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
958 gen->shared_len, gen->n_block, gen->block_dim);
959 else
960 tiling = tile(isl_space_copy(dim), gen->tiled_len,
961 gen->shared_len, gen->n_block, gen->block_dim);
962 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
964 sched = isl_union_map_apply_range(sched,
965 isl_union_map_from_map(tiling));
967 par = parametrization(dim, gen->thread_tiled_len,
968 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
969 gen->n_block, "t");
970 sched = isl_union_map_intersect_range(sched,
971 isl_union_set_from_set(par));
973 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
975 return sched;
978 /* If the user asked for it, scale the shared memory tile loops
979 * (T1T and T2) of "sched" by gen->tile_size[i].
980 * If we are not performing "wrapping", then additionally scale the T1P
981 * loops by gen->grid_dim[i].
983 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
984 __isl_take isl_union_map *sched)
986 int i;
987 isl_space *dim;
988 isl_basic_map *scale;
989 isl_constraint *c;
990 isl_local_space *ls;
992 if (!gen->options->scale_tile_loops)
993 return sched;
995 dim = isl_union_map_get_space(sched);
996 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
997 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
998 scale = isl_basic_map_universe(isl_space_copy(dim));
999 ls = isl_local_space_from_space(dim);
1001 for (i = 0; i < gen->tiled_len; ++i) {
1002 int f = 1;
1004 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
1005 f = gen->tile_size[i - gen->tile_first];
1006 if (!gen->options->wrap)
1007 f *= gen->grid_dim[i - gen->tile_first];
1008 } else if (i >= gen->tile_first + gen->n_grid &&
1009 i < gen->tile_first + gen->n_grid + gen->tile_len) {
1010 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
1013 c = isl_equality_alloc(isl_local_space_copy(ls));
1014 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1015 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1016 scale = isl_basic_map_add_constraint(scale, c);
1019 isl_local_space_free(ls);
1021 sched = isl_union_map_apply_range(sched,
1022 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1024 return sched;
1027 /* If we are not performing "wrapping" and if the user asked for it,
1028 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
1030 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
1031 __isl_take isl_union_map *sched)
1033 int i;
1034 isl_space *dim;
1035 isl_basic_map *scale;
1036 isl_constraint *c;
1037 isl_local_space *ls;
1039 if (gen->options->wrap)
1040 return sched;
1041 if (!gen->options->scale_tile_loops)
1042 return sched;
1044 dim = isl_union_map_get_space(sched);
1045 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
1046 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
1047 scale = isl_basic_map_universe(isl_space_copy(dim));
1048 ls = isl_local_space_from_space(dim);
1050 for (i = 0; i < gen->thread_tiled_len; ++i) {
1051 int f = 1;
1053 if (i >= gen->shared_len &&
1054 i < gen->shared_len + gen->n_block)
1055 f = gen->block_dim[i - gen->shared_len];
1057 c = isl_equality_alloc(isl_local_space_copy(ls));
1058 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1059 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1060 scale = isl_basic_map_add_constraint(scale, c);
1063 isl_local_space_free(ls);
1065 sched = isl_union_map_apply_range(sched,
1066 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1068 return sched;
1071 /* If we are not performing "wrapping" and if the user asked for it,
1072 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1074 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
1075 __isl_take isl_union_map *sched, int len, int first, int n_tile)
1077 int i;
1078 isl_space *dim;
1079 isl_basic_map *scale;
1080 isl_constraint *c;
1081 isl_local_space *ls;
1083 if (gen->options->wrap)
1084 return sched;
1085 if (!gen->options->scale_tile_loops)
1086 return sched;
1088 dim = isl_union_map_get_space(sched);
1089 dim = isl_space_add_dims(dim, isl_dim_in, len);
1090 dim = isl_space_add_dims(dim, isl_dim_out, len);
1091 scale = isl_basic_map_universe(isl_space_copy(dim));
1092 ls = isl_local_space_from_space(dim);
1094 for (i = 0; i < len; ++i) {
1095 int f = 1;
1097 if (i >= first && i < first + n_tile)
1098 f = gen->kernel->block_dim[i - first];
1100 c = isl_equality_alloc(isl_local_space_copy(ls));
1101 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1102 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1103 scale = isl_basic_map_add_constraint(scale, c);
1106 isl_local_space_free(ls);
1108 sched = isl_union_map_apply_range(sched,
1109 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1111 return sched;
1114 /* Add "len" parameters p[i] called prefix%d,
1115 * with bounds to 0 <= p[i] < size[i].
1117 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1118 int len, int *size, const char *prefix)
1120 int i;
1121 unsigned nparam;
1122 isl_space *dim;
1123 isl_basic_set *bset;
1124 isl_constraint *c;
1125 isl_local_space *ls;
1126 char name[20];
1128 nparam = isl_set_dim(set, isl_dim_param);
1129 set = isl_set_add_dims(set, isl_dim_param, len);
1131 for (i = 0; i < len; ++i) {
1132 snprintf(name, sizeof(name), "%s%d", prefix, i);
1133 set = isl_set_set_dim_name(set, isl_dim_param,
1134 nparam + i, name);
1137 dim = isl_set_get_space(set);
1138 bset = isl_basic_set_universe(isl_space_copy(dim));
1139 ls = isl_local_space_from_space(dim);
1141 for (i = 0; i < len; ++i) {
1142 c = isl_inequality_alloc(isl_local_space_copy(ls));
1143 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1144 nparam + i, 1);
1145 bset = isl_basic_set_add_constraint(bset, c);
1147 c = isl_inequality_alloc(isl_local_space_copy(ls));
1148 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1149 nparam + i, -1);
1150 c = isl_constraint_set_constant_si(c, size[i] - 1);
1151 bset = isl_basic_set_add_constraint(bset, c);
1154 isl_local_space_free(ls);
1156 return isl_set_intersect(set, isl_set_from_basic_set(bset));
1159 /* Add "len" parameters p[i] called prefix%d,
1160 * with bounds to 0 <= p[i] < size[i].
1162 static __isl_give isl_set *add_bounded_parameters_dynamic(
1163 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1164 const char *prefix)
1166 int i, len;
1167 unsigned nparam;
1168 isl_space *space;
1169 isl_local_space *ls;
1170 char name[20];
1172 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1173 nparam = isl_set_dim(set, isl_dim_param);
1174 set = isl_set_add_dims(set, isl_dim_param, len);
1176 for (i = 0; i < len; ++i) {
1177 snprintf(name, sizeof(name), "%s%d", prefix, i);
1178 set = isl_set_set_dim_name(set, isl_dim_param,
1179 nparam + i, name);
1182 space = isl_space_params(isl_set_get_space(set));
1183 ls = isl_local_space_from_space(space);
1184 for (i = 0; i < len; ++i) {
1185 isl_pw_aff *param, *size_i, *zero;
1186 isl_set *bound;
1188 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1189 isl_dim_param, nparam + i);
1191 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1192 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1193 set = isl_set_intersect_params(set, bound);
1195 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1196 bound = isl_pw_aff_ge_set(param, zero);
1197 set = isl_set_intersect_params(set, bound);
1199 isl_local_space_free(ls);
1201 return set;
1204 /* Construct a map from an access to group->array to the corresponding
1205 * shared/private memory tile.
1206 * The map is of the form
1208 * { [D[i] -> A[a]] -> T[t] }
1210 * where D represents the initial shared_len dimensions
1211 * of the computed schedule.
1213 static __isl_give isl_map *shift_access(struct gpu_array_ref_group *group)
1215 struct gpu_array_tile *tile;
1216 isl_multi_aff *tiling;
1218 tile = group->private_tile;
1219 if (!tile)
1220 tile = group->shared_tile;
1222 tiling = isl_multi_aff_copy(tile->tiling);
1224 return isl_map_from_multi_aff(tiling);
1227 /* Does "map" have an obviously fixed value at variable "pos" of "type"?
1229 static int map_plain_is_fixed(isl_map *map, enum isl_dim_type type,
1230 unsigned pos)
1232 isl_val *v;
1233 int fixed;
1235 v = isl_map_plain_get_val_if_fixed(map, type, pos);
1236 if (!v)
1237 return -1;
1238 fixed = isl_val_is_int(v);
1239 isl_val_free(v);
1241 return fixed;
1244 /* Given a schedule that iterates over all elements in a piece of an array,
1245 * perform tiling/wrapping over the threads.
1247 * In particular, we tile the final iterators so that the final thread
1248 * dimension runs over the final array dimension.
1249 * However, if those final iterators have only a single iteration,
1250 * we try to tile earlier iterators instead.
1252 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1253 __isl_take isl_map *sched)
1255 isl_space *dim;
1256 isl_union_map *usched;
1257 isl_map *tiling;
1258 isl_set *par;
1259 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1260 int n_tile;
1261 int first;
1263 n_tile = gen->kernel->n_block;
1264 if (n_tile > nvar) {
1265 int i;
1266 sched = isl_map_insert_dims(sched,
1267 isl_dim_out, 0, n_tile - nvar);
1268 for (i = 0; i < n_tile - nvar; ++i)
1269 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1270 nvar = n_tile;
1273 first = nvar - n_tile;
1275 for (; first > 0; first --)
1276 if (!map_plain_is_fixed(sched, isl_dim_out, first + n_tile - 1))
1277 break;
1279 dim = isl_map_get_space(sched);
1280 dim = isl_space_params(dim);
1281 if (gen->options->wrap)
1282 tiling = wrap(isl_space_copy(dim), nvar, first,
1283 n_tile, gen->kernel->block_dim);
1284 else
1285 tiling = tile(isl_space_copy(dim), nvar, first,
1286 n_tile, gen->kernel->block_dim);
1287 sched = isl_map_apply_range(sched, tiling);
1289 par = parametrization(dim, nvar + n_tile, first + n_tile, n_tile, "t");
1290 sched = isl_map_intersect_range(sched, par);
1292 usched = isl_union_map_from_map(sched);
1293 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1294 first, n_tile);
1295 sched = isl_map_from_union_map(usched);
1297 return sched;
1300 /* Return the union of all read (read = 1) and/or write (write = 1)
1301 * access relations in the group.
1303 static __isl_give isl_union_map *group_access_relation(
1304 struct gpu_array_ref_group *group, int read, int write)
1306 int i;
1307 isl_union_map *access;
1309 access = isl_union_map_empty(isl_map_get_space(group->access));
1310 for (i = 0; i < group->n_ref; ++i) {
1311 isl_map *map_i;
1313 if (!((read && group->refs[i]->read) ||
1314 (write && group->refs[i]->write)))
1315 continue;
1316 map_i = isl_map_copy(group->refs[i]->access);
1317 access = isl_union_map_union(access,
1318 isl_union_map_from_map(map_i));
1321 return access;
1324 /* Return the extent of "array", recomputed from the bounds.
1325 * The recomputed extent may be simpler than the original extent.
1327 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
1329 int i;
1330 isl_id *id;
1331 isl_space *space;
1332 isl_local_space *ls;
1333 isl_set *extent;
1335 id = isl_set_get_tuple_id(array->extent);
1336 space = isl_set_get_space(array->extent);
1337 extent = isl_set_universe(isl_space_copy(space));
1338 ls = isl_local_space_from_space(space);
1339 for (i = 0; i < array->n_index; ++i) {
1340 isl_pw_aff *bound;
1341 isl_aff *aff;
1342 isl_pw_aff *index;
1343 isl_set *lt;
1345 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
1347 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1348 isl_dim_set, i);
1349 index = isl_pw_aff_from_aff(aff);
1350 bound = isl_pw_aff_copy(array->bound[i]);
1351 bound = isl_pw_aff_from_range(bound);
1352 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
1353 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
1354 isl_id_copy(id));
1355 lt = isl_pw_aff_lt_set(index, bound);
1356 extent = isl_set_intersect(extent, lt);
1358 isl_local_space_free(ls);
1359 isl_id_free(id);
1361 return extent;
1364 /* Return a map from the first shared_len dimensions of the computed
1365 * schedule to the array tile in
1366 * global memory that corresponds to the shared memory copy.
1368 * In particular, return a map
1370 * { D[i] -> A[a] }
1372 * with constraints
1374 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
1376 * and
1378 * 0 <= a <= array_size - 1 (2)
1380 * Note that if some stride has been detected (i.e., when
1381 * group->shared_tile->bound[i].shift is set), then a in (1) refers
1382 * to the shifted and scaled down version.
1384 * Constraints (1) are obtained by mapping the size constraints on the
1385 * shared/private memory tile back to the access relation.
1386 * Constraints (2) are obtained from the (recomputed) extent.
1388 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1390 int i;
1391 int n_index = group->array->n_index;
1392 isl_map *tile;
1393 isl_space *space;
1394 isl_set *local;
1395 isl_set *extent;
1397 space = isl_multi_aff_get_space(group->shared_tile->tiling);
1398 space = isl_space_range(space);
1399 local = isl_set_universe(space);
1400 for (i = 0; i < n_index; ++i) {
1401 isl_val *bound;
1403 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
1404 bound = isl_val_copy(group->shared_tile->bound[i].size);
1405 bound = isl_val_sub_ui(bound, 1);
1406 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
1408 local = isl_set_preimage_multi_aff(local,
1409 isl_multi_aff_copy(group->shared_tile->tiling));
1410 tile = isl_set_unwrap(local);
1411 extent = array_extent(group->array);
1412 tile = isl_map_intersect_range(tile, extent);
1414 return tile;
1417 /* Given a mapping "iterator_map" from the AST schedule to a domain,
1418 * return the corresponding mapping from the AST schedule to
1419 * to the first shared_len dimensions of the schedule computed by PPCG.
1421 static __isl_give isl_pw_multi_aff *compute_sched_to_shared(struct gpu_gen *gen,
1422 __isl_take isl_pw_multi_aff *iterator_map)
1424 isl_union_map *umap;
1425 isl_space *space;
1426 isl_map *map, *sched;;
1428 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
1429 space = isl_space_from_domain(space);
1430 space = isl_space_add_dims(space, isl_dim_out, gen->shared_len);
1432 umap = isl_union_map_copy(gen->shared_sched);
1433 umap = isl_union_map_apply_range(umap,
1434 isl_union_map_copy(gen->shared_proj));
1435 map = isl_union_map_extract_map(umap, space);
1436 isl_union_map_free(umap);
1438 sched = isl_map_preimage_domain_pw_multi_aff(map, iterator_map);
1439 sched = isl_map_detect_equalities(sched);
1441 return isl_pw_multi_aff_from_map(sched);
1444 /* Set unroll[j] if the input dimension j is involved in
1445 * the index expression represented by ma.
1447 static int check_unroll(__isl_take isl_set *set, __isl_take isl_multi_aff *ma,
1448 void *user)
1450 int i, j;
1451 int n_in = isl_multi_aff_dim(ma, isl_dim_in);
1452 int n_out = isl_multi_aff_dim(ma, isl_dim_out);
1453 int *unroll = user;
1455 for (i = 0; i < n_out; ++i) {
1456 isl_aff *aff;
1458 aff = isl_multi_aff_get_aff(ma, i);
1459 for (j = 0; j < n_in; ++j)
1460 if (isl_aff_involves_dims(aff, isl_dim_in, j, 1))
1461 unroll[j] = 1;
1462 isl_aff_free(aff);
1465 isl_set_free(set);
1466 isl_multi_aff_free(ma);
1467 return 0;
1470 /* Given an array pos mapping input dimensions to the corresponding
1471 * output dimension, construct the corresponding map.
1473 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1474 int *pos, int len)
1476 int i;
1477 isl_constraint *c;
1478 isl_basic_map *bmap;
1479 isl_local_space *ls;
1481 dim = isl_space_add_dims(dim, isl_dim_in, len);
1482 dim = isl_space_add_dims(dim, isl_dim_out, len);
1483 bmap = isl_basic_map_universe(isl_space_copy(dim));
1484 ls = isl_local_space_from_space(dim);
1486 for (i = 0; i < len; ++i) {
1487 c = isl_equality_alloc(isl_local_space_copy(ls));
1488 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i,
1489 -1);
1490 c = isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i],
1492 bmap = isl_basic_map_add_constraint(bmap, c);
1494 isl_local_space_free(ls);
1496 return isl_map_from_basic_map(bmap);
1499 /* Find all loops involved in any of the index expressions for any of
1500 * the private accesses, move them innermost and then mark them as
1501 * requiring unrolling by setting gen->first_unroll.
1502 * The loops involved should all be parallel because of the checks
1503 * we performed in check_private_group_access. Moving them innermost
1504 * is therefore a valid transformation.
1506 * Loops up to gen->shared_len are generated before the mapping to
1507 * threads is applied. They should therefore be ignored.
1509 * We compute the hidden equalities of the schedule first
1510 * since we will need them in our calls to isl_pw_multi_aff_from_map
1511 * and because we want to make sure that the same equalities
1512 * are also available to the code generator.
1514 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1515 __isl_take isl_union_map *sched)
1517 int i, j;
1518 int unroll[gen->thread_tiled_len];
1519 int perm[gen->thread_tiled_len];
1520 isl_space *dim;
1521 isl_map *permute;
1522 int len = gen->shared_len + gen->n_parallel + gen->n_block;
1524 gen->first_unroll = -1;
1526 sched = isl_union_map_detect_equalities(sched);
1527 for (i = 0; i < gen->thread_tiled_len; ++i)
1528 unroll[i] = 0;
1529 for (i = 0; i < gen->prog->n_array; ++i) {
1530 struct gpu_array_info *array = &gen->prog->array[i];
1532 for (j = 0; j < array->n_group; ++j) {
1533 isl_union_map *access;
1534 isl_map *acc;
1535 isl_pw_multi_aff *pma;
1537 if (!array->groups[j]->private_tile)
1538 continue;
1540 access = group_access_relation(array->groups[j], 1, 1);
1541 access = isl_union_map_apply_domain(access,
1542 isl_union_map_copy(sched));
1544 acc = isl_map_from_union_map(access);
1545 pma = isl_pw_multi_aff_from_map(acc);
1546 isl_pw_multi_aff_foreach_piece(pma,
1547 &check_unroll, unroll);
1549 isl_pw_multi_aff_free(pma);
1553 for (i = gen->shared_len; i < len; ++i)
1554 if (unroll[i])
1555 break;
1557 if (i >= len)
1558 return sched;
1560 for (i = len; i < gen->thread_tiled_len; ++i)
1561 if (unroll[i])
1562 return sched;
1564 j = 0;
1565 for (i = 0; i < gen->shared_len; ++i)
1566 perm[i] = j++;
1567 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1568 if (!unroll[i])
1569 perm[i] = j++;
1570 gen->first_unroll = j - gen->shared_len;
1571 for (i = gen->shared_len; i < len; ++i)
1572 if (unroll[i])
1573 perm[i] = j++;
1575 dim = isl_union_map_get_space(sched);
1576 permute = permutation(dim, perm, gen->thread_tiled_len);
1577 sched = isl_union_map_apply_range(sched,
1578 isl_union_map_from_map(permute));
1580 return sched;
1583 /* Given a constraint
1585 * a(p,i) + j = g f(e)
1587 * or -a(p,i) - j = g f(e) if sign < 0,
1588 * store a(p,i) in bound->shift and g (stride) in bound->stride.
1589 * a(p,i) is assumed to be an expression in only the parameters
1590 * and the input dimensions.
1592 static void extract_stride(__isl_keep isl_constraint *c,
1593 struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
1595 int i;
1596 isl_val *v;
1597 isl_space *space;
1598 unsigned nparam;
1599 unsigned nvar;
1600 isl_aff *aff;
1602 isl_val_free(bound->stride);
1603 bound->stride = isl_val_copy(stride);
1605 space = isl_constraint_get_space(c);
1606 space = isl_space_domain(space);
1608 nparam = isl_space_dim(space, isl_dim_param);
1609 nvar = isl_space_dim(space, isl_dim_set);
1611 v = isl_constraint_get_constant_val(c);
1612 if (sign < 0)
1613 v = isl_val_neg(v);
1614 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1615 aff = isl_aff_set_constant_val(aff, v);
1617 for (i = 0; i < nparam; ++i) {
1618 if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
1619 continue;
1620 v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
1621 if (sign < 0)
1622 v = isl_val_neg(v);
1623 aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
1626 for (i = 0; i < nvar; ++i) {
1627 if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
1628 continue;
1629 v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
1630 if (sign < 0)
1631 v = isl_val_neg(v);
1632 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
1635 bound->shift = aff;
1638 /* Given an equality constraint of a map with a single output dimension j,
1639 * check if the constraint is of the form
1641 * a(p,i) + j = g f(e)
1643 * with a(p,i) an expression in the parameters and input dimensions
1644 * and f(e) an expression in the existentially quantified variables.
1645 * If so, and if g is larger than any such g from a previously considered
1646 * constraint, then call extract_stride to record the stride information
1647 * in bound.
1649 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
1651 int i;
1652 isl_ctx *ctx;
1653 isl_val *v;
1654 unsigned n_div;
1655 struct gpu_array_bound *bound = user;
1657 ctx = isl_constraint_get_ctx(c);
1658 n_div = isl_constraint_dim(c, isl_dim_div);
1659 v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
1661 if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
1662 int s = isl_val_sgn(v);
1663 isl_val *stride = isl_val_zero(ctx);
1665 isl_val_free(v);
1666 for (i = 0; i < n_div; ++i) {
1667 v = isl_constraint_get_coefficient_val(c,
1668 isl_dim_div, i);
1669 stride = isl_val_gcd(stride, v);
1671 if (!isl_val_is_zero(stride) &&
1672 isl_val_gt(stride, bound->stride))
1673 extract_stride(c, bound, stride, s);
1675 isl_val_free(stride);
1676 } else
1677 isl_val_free(v);
1679 isl_constraint_free(c);
1680 return 0;
1683 /* Given contraints on an array index i, check if we can find
1684 * a shift a(p) and a stride g such that
1686 * a(p) + i = 0 mod g
1688 * If so, record the information in bound and apply the mapping
1689 * i -> (i + a(p))/g to the array index in bounds and return
1690 * the new constraints.
1691 * If not, simply return the original constraints.
1693 * If bounds is a subset of the space
1695 * D -> i
1697 * then the bound recorded in bound->shift is of the form
1699 * D -> s(D)
1701 * with s(D) equal to a(p) above.
1702 * The mapping recorded in bound->shift_map is of the form
1704 * [D -> i] -> [D -> (i + S(D))/g]
1706 * This mapping is computed as follows.
1707 * We first introduce "i" in the domain through precomposition
1708 * with [D -> i] -> D obtaining
1710 * [D -> i] -> s(D)
1712 * Adding [D -> i] -> i produces
1714 * [D -> i] -> i + s(D)
1716 * and the domain product with [D -> i] -> D yields
1718 * [D -> i] -> [D -> i + s(D)]
1720 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
1722 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
1723 __isl_take isl_basic_map *bounds)
1725 isl_space *space;
1726 isl_basic_map *hull;
1727 isl_basic_map *shift, *id, *bmap, *scale;
1728 isl_basic_set *bset;
1729 isl_aff *aff;
1731 bound->stride = NULL;
1733 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
1735 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
1737 isl_basic_map_free(hull);
1739 if (!bound->stride)
1740 return bounds;
1742 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
1743 space = isl_basic_map_get_space(bounds);
1744 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
1745 shift = isl_basic_map_apply_range(bmap, shift);
1746 space = isl_basic_map_get_space(bounds);
1747 id = isl_basic_map_range_map(isl_basic_map_universe(space));
1748 shift = isl_basic_map_sum(id, shift);
1749 space = isl_basic_map_get_space(bounds);
1750 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
1751 shift = isl_basic_map_range_product(id, shift);
1753 space = isl_space_domain(isl_basic_map_get_space(bounds));
1754 id = isl_basic_map_identity(isl_space_map_from_set(space));
1755 space = isl_space_range(isl_basic_map_get_space(bounds));
1756 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1757 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1758 aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
1759 scale = isl_basic_map_from_aff(aff);
1760 scale = isl_basic_map_product(id, scale);
1762 bound->shift_map = isl_basic_map_apply_range(shift, scale);
1763 bmap = isl_basic_map_copy(bound->shift_map);
1764 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
1765 bounds = isl_basic_set_unwrap(bset);
1767 return bounds;
1770 /* Data used in compute_array_dim_size and compute_size_in_direction.
1772 * pos is the position of the variable representing the array index,
1773 * i.e., the variable for which want to compute the size. This variable
1774 * is also the last variable in the set.
1776 struct gpu_size_info {
1777 isl_basic_set *bset;
1778 struct gpu_array_bound *bound;
1779 int pos;
1782 /* Given a constraint from the basic set describing the bounds on
1783 * an array index, check if it is a lower bound, say m i >= b(x), and,
1784 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
1785 * upper bound. If so, and if this bound is smaller than any bound
1786 * derived from earlier constraints, set the size to this bound on
1787 * the expression and the lower bound to ceil(b(x)/m).
1789 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
1791 struct gpu_size_info *size = user;
1792 unsigned nparam;
1793 unsigned n_div;
1794 isl_val *v;
1795 isl_aff *aff;
1796 isl_aff *lb;
1798 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
1799 n_div = isl_constraint_dim(c, isl_dim_div);
1801 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
1802 !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
1803 isl_constraint_free(c);
1804 return 0;
1807 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
1808 aff = isl_aff_ceil(aff);
1810 lb = isl_aff_copy(aff);
1812 aff = isl_aff_neg(aff);
1813 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
1815 v = isl_basic_set_max_val(size->bset, aff);
1816 isl_aff_free(aff);
1818 if (isl_val_is_int(v)) {
1819 v = isl_val_add_ui(v, 1);
1820 if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
1821 isl_val_free(size->bound->size);
1822 size->bound->size = isl_val_copy(v);
1823 lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
1824 isl_aff_free(size->bound->lb);
1825 size->bound->lb = isl_aff_copy(lb);
1828 isl_val_free(v);
1829 isl_aff_free(lb);
1831 isl_constraint_free(c);
1833 return 0;
1836 /* Given a basic map "bounds" that maps parameters and input dimensions
1837 * to a single output dimension, look for an expression in the parameters
1838 * and input dimensions such that the range of the output dimension shifted
1839 * by this expression is a constant.
1841 * In particular, we currently only consider lower bounds on the output
1842 * dimension as candidate expressions.
1844 static int compute_array_dim_size(struct gpu_array_bound *bound,
1845 __isl_take isl_basic_map *bounds)
1847 struct gpu_size_info size;
1849 bounds = isl_basic_map_detect_equalities(bounds);
1850 bounds = check_stride(bound, bounds);
1852 bound->size = NULL;
1853 bound->lb = NULL;
1855 size.bound = bound;
1856 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
1857 size.bset = isl_basic_map_wrap(bounds);
1858 size.bset = isl_basic_set_flatten(size.bset);
1859 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
1860 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
1861 &size);
1862 isl_basic_set_free(size.bset);
1864 return bound->size ? 0 : -1;
1867 /* Check if we can find a memory tile for the given array
1868 * based on the given accesses, and if so, put the results in "tile".
1870 * We project the accesses on each index in turn and look for a parametric
1871 * offset such that the size is constant.
1873 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
1875 int i;
1877 for (i = 0; i < tile->n; ++i) {
1878 isl_map *access_i;
1879 isl_basic_map *hull;
1881 access_i = isl_map_copy(access);
1882 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
1883 access_i = isl_map_project_out(access_i, isl_dim_out,
1884 1, tile->n - (i + 1));
1885 access_i = isl_map_compute_divs(access_i);
1886 hull = isl_map_simple_hull(access_i);
1887 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
1888 return 0;
1891 return 1;
1894 /* Construct a map with input the shared tile loops and the loops that
1895 * will be wrapped around the threads that relates these later loops
1896 * to the thread indices and then projects them out.
1898 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
1900 isl_map *priv;
1901 isl_map *tiling;
1902 isl_map *proj;
1903 isl_set *par;
1904 isl_space *dim;
1906 dim = isl_union_map_get_space(gen->shared_sched);
1908 if (gen->options->wrap)
1909 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
1910 gen->shared_len, gen->n_block, gen->block_dim);
1911 else
1912 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
1913 gen->shared_len, gen->n_block, gen->block_dim);
1915 priv = tiling;
1917 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
1918 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
1919 gen->n_block, "t");
1921 priv = isl_map_align_params(priv, isl_set_get_space(par));
1922 priv = isl_map_intersect_range(priv, par);
1924 dim = isl_map_get_space(priv);
1925 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
1926 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
1927 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
1928 gen->shared_len);
1930 priv = isl_map_apply_range(priv, proj);
1932 return priv;
1935 /* Construct a map from domain_dim to domain_dim that increments
1936 * the dimension at position "pos" and leaves all other dimensions
1937 * constant.
1939 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
1941 int i;
1942 int len = isl_space_dim(domain_dim, isl_dim_set);
1943 isl_space *dim;
1944 isl_basic_map *next;
1945 isl_local_space *ls;
1947 dim = isl_space_map_from_set(domain_dim);
1948 next = isl_basic_map_universe(isl_space_copy(dim));
1949 ls = isl_local_space_from_space(dim);
1951 for (i = 0; i < len; ++i) {
1952 isl_constraint *c;
1954 c = isl_equality_alloc(isl_local_space_copy(ls));
1955 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
1956 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1957 if (i == pos)
1958 c = isl_constraint_set_constant_si(c, 1);
1959 next = isl_basic_map_add_constraint(next, c);
1962 isl_local_space_free(ls);
1964 return isl_map_from_basic_map(next);
1967 /* Check if the given access is coalesced.
1968 * That is, check whether incrementing the dimension that will get
1969 * wrapped over the last thread index results in incrementing
1970 * the last array index.
1972 * This function is only called for access relations without reuse.
1974 static int access_is_coalesced(struct gpu_gen *gen,
1975 __isl_keep isl_union_map *access)
1977 isl_space *dim;
1978 isl_map *access_map;
1979 isl_map *next_thread_x;
1980 isl_map *next_element;
1981 isl_map *map;
1982 int coalesced;
1984 access = isl_union_map_copy(access);
1985 access = isl_union_map_apply_domain(access,
1986 isl_union_map_copy(gen->tiled_sched));
1987 access_map = isl_map_from_union_map(access);
1989 dim = isl_map_get_space(access_map);
1990 dim = isl_space_domain(dim);
1991 next_thread_x = next(dim, gen->shared_len + gen->n_block - 1);
1993 dim = isl_map_get_space(access_map);
1994 dim = isl_space_range(dim);
1995 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
1997 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
1998 map = isl_map_apply_range(map, access_map);
2000 coalesced = isl_map_is_subset(map, next_element);
2002 isl_map_free(next_element);
2003 isl_map_free(map);
2005 return coalesced;
2008 /* Given an access relation in terms of the first gen->shared_len + gen->n_block
2009 * dimensions of the computed schedule, check if it is bijective for
2010 * fixed values of the first gen->shared_len dimensions.
2011 * We perform this check by equating these dimensions to parameters.
2013 static int access_is_bijective(struct gpu_gen *gen, __isl_keep isl_map *access)
2015 int res;
2016 isl_set *par;
2017 isl_space *space;
2019 access = isl_map_copy(access);
2020 space = isl_space_params(isl_map_get_space(access));
2021 par = parametrization(space, gen->shared_len + gen->n_block,
2022 0, gen->shared_len, "s");
2023 access = isl_map_intersect_domain(access, par);
2024 res = isl_map_is_bijective(access);
2025 isl_map_free(access);
2027 return res;
2030 /* Look for the last shared tile loop that affects the offset of "tile"
2031 * and return the result.
2032 * If there is no such loop, then return the index of the loop
2033 * before the first shared tile loop, in particular gen->tile_first - 1.
2035 static int compute_tile_last_shared(struct gpu_gen *gen,
2036 struct gpu_array_tile *tile)
2038 int i, j;
2040 for (j = gen->shared_len - 1; j >= gen->tile_first; --j) {
2041 for (i = 0; i < tile->n; ++i) {
2042 isl_aff *lb;
2043 isl_aff *shift;
2045 lb = tile->bound[i].lb;
2046 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
2047 break;
2049 shift = tile->bound[i].shift;
2050 if (!shift)
2051 continue;
2052 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
2053 break;
2055 if (i < tile->n)
2056 break;
2059 return j;
2062 /* Look for the last shared tile loop that affects the offset of the
2063 * shared or private tile and store the result in group->last_shared.
2064 * If there is no such loop, then group->last_shared is set to a value
2065 * before the first shared tile loop, in particular gen->tile_first - 1.
2066 * If there is no tile defined on the array reference group,
2067 * then set group->last_shared to gen->shared_len - 1.
2069 static void set_last_shared(struct gpu_gen *gen,
2070 struct gpu_array_ref_group *group)
2072 struct gpu_array_tile *tile;
2074 group->last_shared = gen->shared_len - 1;
2076 tile = group->private_tile;
2077 if (!tile)
2078 tile = group->shared_tile;
2079 if (!tile)
2080 return;
2082 group->last_shared = compute_tile_last_shared(gen, tile);
2085 /* Compute a privatized copy of all access relations from reference groups that
2086 * are mapped to private memory and store the result in gen->privatization.
2088 static void compute_private_access(struct gpu_gen *gen)
2090 int i, j;
2091 isl_union_map *private;
2093 if (!gen->options->use_private_memory)
2094 return;
2096 private = isl_union_map_empty(isl_union_map_get_space(gen->shared_sched));
2098 for (i = 0; i < gen->prog->n_array; ++i) {
2099 struct gpu_array_info *array = &gen->prog->array[i];
2101 if (gpu_array_is_read_only_scalar(array))
2102 continue;
2104 for (j = 0; j < array->n_group; ++j) {
2105 if (!array->groups[j]->private_tile)
2106 continue;
2108 private = isl_union_map_union(private,
2109 group_access_relation(array->groups[j], 1, 1));
2113 if (isl_union_map_is_empty(private))
2114 isl_union_map_free(private);
2115 else {
2116 isl_union_map *priv;
2118 private = isl_union_map_apply_domain(private,
2119 isl_union_map_copy(gen->shared_sched));
2120 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
2121 private = isl_union_map_apply_domain(private, priv);
2122 gen->private_access = private;
2126 /* Compute the size of the tile specified by "tile"
2127 * in number of elements and return the result.
2129 static __isl_give isl_val *tile_size(isl_ctx *ctx, struct gpu_array_tile *tile)
2131 int i;
2132 isl_val *size;
2134 size = isl_val_one(ctx);
2136 for (i = 0; i < tile->n; ++i)
2137 size = isl_val_mul(size, isl_val_copy(tile->bound[i].size));
2139 return size;
2142 /* If max_shared_memory is not set to infinity (-1), then make
2143 * sure that the total amount of shared memory required by the
2144 * array reference groups mapped to shared memory is no larger
2145 * than this maximum.
2147 * We apply a greedy approach and discard (keep in global memory)
2148 * those groups that would result in a total memory size that
2149 * is larger than the maximum.
2151 static void check_shared_memory_bound(struct gpu_gen *gen)
2153 int i, j;
2154 isl_val *left, *size;
2156 if (gen->options->max_shared_memory < 0)
2157 return;
2159 left = isl_val_int_from_si(gen->ctx, gen->options->max_shared_memory);
2161 for (i = 0; i < gen->prog->n_array; ++i) {
2162 struct gpu_array_info *array = &gen->prog->array[i];
2164 for (j = 0; j < array->n_group; ++j) {
2165 struct gpu_array_ref_group *group;
2167 group = array->groups[j];
2168 if (!group->shared_tile)
2169 continue;
2171 size = tile_size(gen->ctx, group->shared_tile);
2172 size = isl_val_mul_ui(size, array->size);
2174 if (isl_val_le(size, left)) {
2175 left = isl_val_sub(left, size);
2176 continue;
2178 isl_val_free(size);
2180 group->shared_tile = free_tile(group->shared_tile);
2184 isl_val_free(left);
2187 /* Given a description of an array tile "tile" and the "space"
2189 * { D -> A }
2191 * where D represents the first shared_len schedule dimensions
2192 * and A represents the array, construct an isl_multi_aff
2194 * { [D[i] -> A[a]] -> A'[a'] }
2196 * with A' a scaled down copy of A according to the shifts and strides
2197 * in "tile". In particular,
2199 * a' = (a + shift(i))/stride
2201 * "insert_array" represents
2203 * { [D -> A] -> D }
2205 * and is used to insert A into the domain of functions that only
2206 * reference D.
2208 static __isl_give isl_multi_aff *strided_tile(
2209 struct gpu_array_tile *tile, __isl_keep isl_space *space,
2210 __isl_keep isl_multi_aff *insert_array)
2212 int i;
2213 isl_ctx *ctx;
2214 isl_multi_aff *shift;
2215 isl_multi_val *stride;
2216 isl_space *space2;
2217 isl_local_space *ls;
2218 isl_multi_aff *tiling;
2220 ctx = isl_space_get_ctx(space);
2221 space2 = isl_space_domain(isl_space_copy(space));
2222 ls = isl_local_space_from_space(space2);
2223 space2 = isl_space_range(isl_space_copy(space));
2224 stride = isl_multi_val_zero(space2);
2225 shift = isl_multi_aff_zero(isl_space_copy(space));
2227 for (i = 0; i < tile->n; ++i) {
2228 struct gpu_array_bound *bound = &tile->bound[i];
2229 isl_val *stride_i;
2230 isl_aff *shift_i;
2232 if (tile->bound[i].shift) {
2233 stride_i = isl_val_copy(bound->stride);
2234 shift_i = isl_aff_copy(bound->shift);
2235 } else {
2236 stride_i = isl_val_one(ctx);
2237 shift_i = isl_aff_zero_on_domain(
2238 isl_local_space_copy(ls));
2241 stride = isl_multi_val_set_val(stride, i, stride_i);
2242 shift = isl_multi_aff_set_aff(shift, i, shift_i);
2244 isl_local_space_free(ls);
2246 shift = isl_multi_aff_pullback_multi_aff(shift,
2247 isl_multi_aff_copy(insert_array));
2249 tiling = isl_multi_aff_range_map(isl_space_copy(space));
2250 tiling = isl_multi_aff_add(tiling, shift);
2251 tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
2253 return tiling;
2256 /* Compute a tiling for the array reference group "group".
2258 * The tiling is of the form
2260 * { [D[i] -> A[a]] -> T[t] }
2262 * where D represents the first shared_len schedule dimensions,
2263 * A represents the global array and T represents the shared or
2264 * private memory tile. The name of T is the name of the local
2265 * array.
2267 * If there is any stride in the accesses, then the mapping is
2269 * t = (a + shift(i))/stride - lb(i)
2271 * otherwise, it is simply
2273 * t = a - lb(i)
2275 static void compute_group_tiling(struct gpu_array_ref_group *group)
2277 int i;
2278 struct gpu_array_tile *tile;
2279 struct gpu_array_info *array = group->array;
2280 isl_space *space;
2281 isl_multi_aff *tiling, *lb, *insert_array;
2282 isl_printer *p;
2283 char *local_name;
2285 tile = group->private_tile;
2286 if (!tile)
2287 tile = group->shared_tile;
2288 if (!tile)
2289 return;
2291 space = isl_map_get_space(group->access);
2292 insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
2294 for (i = 0; i < tile->n; ++i)
2295 if (tile->bound[i].shift)
2296 break;
2298 if (i < tile->n)
2299 tiling = strided_tile(tile, space, insert_array);
2300 else
2301 tiling = isl_multi_aff_range_map(isl_space_copy(space));
2303 lb = isl_multi_aff_zero(space);
2304 for (i = 0; i < tile->n; ++i) {
2305 isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
2306 lb = isl_multi_aff_set_aff(lb, i, lb_i);
2308 lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
2310 tiling = isl_multi_aff_sub(tiling, lb);
2312 p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
2313 p = print_array_name(p, group);
2314 local_name = isl_printer_get_str(p);
2315 isl_printer_free(p);
2316 tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
2317 free(local_name);
2319 tile->tiling = tiling;
2322 /* Compute a tiling for all the array reference groups.
2324 static void compute_group_tilings(struct gpu_gen *gen)
2326 int i, j;
2328 for (i = 0; i < gen->prog->n_array; ++i) {
2329 struct gpu_array_info *array = &gen->prog->array[i];
2331 for (j = 0; j < array->n_group; ++j)
2332 compute_group_tiling(array->groups[j]);
2336 /* Fill up the groups array with singleton groups, i.e., one group
2337 * per reference, initializing the array, access, write, n_ref and refs fields.
2338 * In particular the access field is initialized to the scheduled
2339 * access relation of the array reference.
2341 * Return the number of elements initialized, i.e., the number of
2342 * active references in the current kernel.
2344 static int populate_array_references(struct gpu_array_info *array,
2345 __isl_keep isl_union_map *sched, struct gpu_array_ref_group **groups)
2347 int i;
2348 int n;
2349 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2351 n = 0;
2352 for (i = 0; i < array->n_ref; ++i) {
2353 isl_union_map *umap;
2354 isl_map *map;
2355 struct gpu_array_ref_group *group;
2356 struct gpu_stmt_access *access = array->refs[i];
2358 map = isl_map_copy(access->access);
2359 umap = isl_union_map_from_map(map);
2360 umap = isl_union_map_apply_domain(umap,
2361 isl_union_map_copy(sched));
2363 if (isl_union_map_is_empty(umap)) {
2364 isl_union_map_free(umap);
2365 continue;
2368 map = isl_map_from_union_map(umap);
2369 map = isl_map_detect_equalities(map);
2371 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2372 assert(group);
2373 group->array = array;
2374 group->access = map;
2375 group->write = access->write;
2376 group->refs = &array->refs[i];
2377 group->n_ref = 1;
2379 groups[n++] = group;
2382 return n;
2385 /* If group->n_ref == 1, then group->refs was set by
2386 * populate_array_references to point directly into
2387 * group->array->refs and should not be freed.
2388 * If group->n_ref > 1, then group->refs was set by join_groups
2389 * to point to a newly allocated array.
2391 static void free_array_ref_group(struct gpu_array_ref_group *group)
2393 if (!group)
2394 return;
2395 free_tile(group->shared_tile);
2396 free_tile(group->private_tile);
2397 isl_map_free(group->access);
2398 if (group->n_ref > 1)
2399 free(group->refs);
2400 free(group);
2403 /* Given a map where the input dimensions represent the tile loops,
2404 * eliminate the innermost of those that have a fixed value
2405 * until we reach one that does not (obviously) have a fixed value.
2407 static __isl_give isl_map *eliminate_fixed_inner_loops(
2408 __isl_take isl_map *access)
2410 int i, n;
2412 n = isl_map_dim(access, isl_dim_in);
2414 for (i = n - 1; i >= 0; --i) {
2415 if (!map_plain_is_fixed(access, isl_dim_in, i))
2416 break;
2417 access = isl_map_eliminate(access, isl_dim_in, i, 1);
2419 return access;
2422 /* Check if the access relations of group1 and group2 overlap within
2423 * the innermost loop. In particular, ignore any inner dimension
2424 * with a fixed value.
2425 * The copying to and from shared memory will be performed within
2426 * the innermost actual loop so we are only allowed to consider
2427 * the dimensions up to that innermost loop while checking whether
2428 * two access relations overlap.
2430 static int accesses_overlap(struct gpu_array_ref_group *group1,
2431 struct gpu_array_ref_group *group2)
2433 int empty;
2434 isl_map *access1, *access2;
2436 access1 = isl_map_copy(group1->access);
2437 access1 = eliminate_fixed_inner_loops(access1);
2438 access2 = isl_map_copy(group2->access);
2439 access2 = eliminate_fixed_inner_loops(access2);
2440 access1 = isl_map_intersect(access1, access2);
2441 empty = isl_map_is_empty(access1);
2442 isl_map_free(access1);
2444 return !empty;
2447 /* Combine the given two groups into a single group, containing
2448 * the references of both groups.
2450 static struct gpu_array_ref_group *join_groups(
2451 struct gpu_array_ref_group *group1,
2452 struct gpu_array_ref_group *group2)
2454 int i;
2455 isl_ctx *ctx;
2456 struct gpu_array_ref_group *group;
2458 ctx = isl_map_get_ctx(group1->access);
2459 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2460 assert(group);
2461 group->array = group1->array;
2462 group->access = isl_map_union(isl_map_copy(group1->access),
2463 isl_map_copy(group2->access));
2464 group->write = group1->write || group2->write;
2465 group->n_ref = group1->n_ref + group2->n_ref;
2466 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
2467 group->n_ref);
2468 assert(group->refs);
2469 for (i = 0; i < group1->n_ref; ++i)
2470 group->refs[i] = group1->refs[i];
2471 for (i = 0; i < group2->n_ref; ++i)
2472 group->refs[group1->n_ref + i] = group2->refs[i];
2474 return group;
2477 /* Combine the given two groups into a single group and free
2478 * the original two groups.
2480 static struct gpu_array_ref_group *join_groups_and_free(
2481 struct gpu_array_ref_group *group1,
2482 struct gpu_array_ref_group *group2)
2484 struct gpu_array_ref_group *group;
2486 group = join_groups(group1, group2);
2487 free_array_ref_group(group1);
2488 free_array_ref_group(group2);
2489 return group;
2492 /* Compute the private and/or shared memory tiles for the array
2493 * reference group "group" of array "array".
2495 * If the array is a read-only scalar or if the user requested
2496 * not to use shared or private memory, then we do not need to do anything.
2498 * We only try to compute a shared memory tile if there is any reuse
2499 * or if the access is not coalesced.
2501 * For computing a private memory tile, we also require that there is
2502 * some reuse. Moreover, we require that the access is private
2503 * to the thread. That is, we check that any given array element
2504 * is only accessed by a single thread.
2505 * We compute an access relation that maps the shared tile loop iterators
2506 * and the shared point loop iterators that will be wrapped over the
2507 * threads to the array elements.
2508 * We actually check that those iterators that will be wrapped
2509 * partition the array space. This check is stricter than necessary
2510 * since several iterations may be mapped onto the same thread
2511 * and then they could be allowed to access the same memory elements,
2512 * but our check does not allow this situation.
2514 * We also check that the index expression only depends on parallel
2515 * loops. That way, we can move those loops innermost and unroll them.
2516 * Again, we use a test that is stricter than necessary.
2517 * We actually check whether the index expression only depends
2518 * on the iterators that are wrapped over the threads.
2519 * These are necessarily parallel, but there may be more parallel loops.
2521 * Combining the injectivity of the first test with the single-valuedness
2522 * of the second test, we simply test for bijectivity.
2524 * If it turns out we can use registers, we compute the private memory
2525 * tile size using can_tile, after introducing a dependence
2526 * on the thread indices.
2528 static void compute_group_bounds_core(struct gpu_gen *gen,
2529 struct gpu_array_ref_group *group)
2531 isl_ctx *ctx = isl_space_get_ctx(group->array->space);
2532 isl_union_map *access;
2533 int n_index = group->array->n_index;
2534 int no_reuse;
2535 isl_map *acc;
2536 int use_shared = gen->options->use_shared_memory;
2537 int use_private = gen->options->use_private_memory;
2539 if (!use_shared && !use_private)
2540 return;
2541 if (gpu_array_is_read_only_scalar(group->array))
2542 return;
2544 access = group_access_relation(group, 1, 1);
2545 no_reuse = isl_union_map_is_injective(access);
2547 if (use_shared && (!no_reuse || !access_is_coalesced(gen, access))) {
2548 group->shared_tile = create_tile(ctx, group->array->n_index);
2549 if (!can_tile(group->access, group->shared_tile))
2550 group->shared_tile = free_tile(group->shared_tile);
2553 if (!use_private || no_reuse) {
2554 isl_union_map_free(access);
2555 return;
2558 access = isl_union_map_apply_domain(access,
2559 isl_union_map_copy(gen->shared_sched));
2561 acc = isl_map_from_union_map(access);
2563 if (!access_is_bijective(gen, acc)) {
2564 isl_map_free(acc);
2565 return;
2568 group->private_tile = create_tile(gen->ctx, n_index);
2569 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
2570 if (!can_tile(acc, group->private_tile))
2571 group->private_tile = free_tile(group->private_tile);
2573 isl_map_free(acc);
2576 /* Compute the private and/or shared memory tiles for the array
2577 * reference group "group" of array "array" and set last_shared.
2579 static void compute_group_bounds(struct gpu_gen *gen,
2580 struct gpu_array_ref_group *group)
2582 compute_group_bounds_core(gen, group);
2583 set_last_shared(gen, group);
2586 /* If two groups have overlapping access relations (as determined by
2587 * the "overlap" function) and if one of them involves a write,
2588 * then merge the two groups into one.
2589 * If "compute_bounds" is set, then call compute_group_bounds
2590 * on the merged groups.
2592 * Return the updated number of groups.
2594 static int group_writes(struct gpu_gen *gen,
2595 int n, struct gpu_array_ref_group **groups,
2596 int (*overlap)(struct gpu_array_ref_group *group1,
2597 struct gpu_array_ref_group *group2), int compute_bounds)
2599 int i, j;
2601 for (i = 0; i < n; ++i) {
2602 for (j = n - 1; j > i; --j) {
2603 if (!groups[i]->write && !groups[j]->write)
2604 continue;
2606 if (!overlap(groups[i], groups[j]))
2607 continue;
2609 groups[i] = join_groups_and_free(groups[i], groups[j]);
2610 if (compute_bounds)
2611 compute_group_bounds(gen, groups[i]);
2612 if (j != n - 1)
2613 groups[j] = groups[n - 1];
2614 n--;
2618 return n;
2621 /* If two groups have overlapping access relations (within the innermost
2622 * loop) and if one of them involves a write, then merge the two groups
2623 * into one.
2625 * Return the updated number of groups.
2627 static int group_overlapping_writes(struct gpu_gen *gen,
2628 int n, struct gpu_array_ref_group **groups)
2630 return group_writes(gen, n, groups, &accesses_overlap, 0);
2633 /* Check if the access relations of group1 and group2 overlap within
2634 * the outermost min(group1->last_shared, group2->last_shared) loops.
2636 static int last_shared_accesses_overlap(struct gpu_array_ref_group *group1,
2637 struct gpu_array_ref_group *group2)
2639 int last_shared;
2640 int dim;
2641 int empty;
2642 isl_map *map_i, *map_j, *map;
2644 last_shared = group1->last_shared;
2645 if (group2->last_shared < last_shared)
2646 last_shared = group2->last_shared;
2647 map_i = isl_map_copy(group1->access);
2648 dim = isl_map_dim(map_i, isl_dim_in);
2649 map_i = isl_map_eliminate(map_i, isl_dim_in,
2650 last_shared + 1, dim - (last_shared + 1));
2651 map_j = isl_map_copy(group2->access);
2652 map_j = isl_map_eliminate(map_j, isl_dim_in,
2653 last_shared + 1, dim - (last_shared + 1));
2654 map = isl_map_intersect(map_i, map_j);
2655 empty = isl_map_is_empty(map);
2656 isl_map_free(map);
2658 return !empty;
2661 /* If two groups have overlapping access relations (within the outer
2662 * last_shared loops) and if one of them involves a write,
2663 * then merge the two groups into one.
2665 * Return the updated number of groups.
2667 static int group_last_shared_overlapping_writes(struct gpu_gen *gen, int n,
2668 struct gpu_array_ref_group **groups)
2670 return group_writes(gen, n, groups, &last_shared_accesses_overlap, 1);
2673 /* Is the size of the tile specified by "tile" smaller than the sum of
2674 * the sizes of the tiles specified by "tile1" and "tile2"?
2676 static int smaller_tile(isl_ctx *ctx, struct gpu_array_tile *tile,
2677 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
2679 int smaller;
2680 isl_val *size, *size1, *size2;
2682 size = tile_size(ctx, tile);
2683 size1 = tile_size(ctx, tile1);
2684 size2 = tile_size(ctx, tile2);
2686 size = isl_val_sub(size, size1);
2687 size = isl_val_sub(size, size2);
2688 smaller = isl_val_is_neg(size);
2690 isl_val_free(size);
2692 return smaller;
2695 /* Given an initial grouping of array references and shared memory tiles
2696 * for each group that allows for a shared memory tile, merge two groups
2697 * if both have a shared memory tile, the merged group also has
2698 * a shared memory tile and the size of the tile for the merge group
2699 * is smaller than the sum of the tile sizes of the individual groups.
2701 * If merging two groups decreases the "last_shared" dimension of
2702 * one or both of the two groups, then we need to check for overlapping
2703 * writes again.
2705 * Return the number of groups after merging.
2707 static int group_common_shared_memory_tile(struct gpu_gen *gen,
2708 struct gpu_array_info *array, int n,
2709 struct gpu_array_ref_group **groups)
2711 int i, j;
2712 int recompute_overlap = 0;
2713 isl_ctx *ctx = isl_space_get_ctx(array->space);
2715 for (i = 0; i < n; ++i) {
2716 if (!groups[i]->shared_tile)
2717 continue;
2718 for (j = n - 1; j > i; --j) {
2719 isl_map *map;
2720 int empty;
2721 struct gpu_array_ref_group *group;
2723 if (!groups[j]->shared_tile)
2724 continue;
2726 map = isl_map_intersect(isl_map_copy(groups[i]->access),
2727 isl_map_copy(groups[j]->access));
2728 empty = isl_map_is_empty(map);
2729 isl_map_free(map);
2731 if (empty)
2732 continue;
2734 group = join_groups(groups[i], groups[j]);
2735 compute_group_bounds(gen, group);
2736 if (!group->shared_tile ||
2737 !smaller_tile(ctx, group->shared_tile,
2738 groups[i]->shared_tile,
2739 groups[j]->shared_tile)) {
2740 free_array_ref_group(group);
2741 continue;
2744 if (group->last_shared < groups[i]->last_shared ||
2745 group->last_shared < groups[j]->last_shared)
2746 recompute_overlap = 1;
2747 free_array_ref_group(groups[i]);
2748 free_array_ref_group(groups[j]);
2749 groups[i] = group;
2750 if (j != n - 1)
2751 groups[j] = groups[n - 1];
2752 n--;
2756 if (recompute_overlap)
2757 n = group_last_shared_overlapping_writes(gen, n, groups);
2758 return n;
2761 /* Set array->n_group and array->groups to n and groups.
2763 * Additionally, set the "nr" field of each group
2764 * and the "group" field of each reference in each group.
2766 static void set_array_groups(struct gpu_array_info *array,
2767 int n, struct gpu_array_ref_group **groups)
2769 int i, j;
2771 array->n_group = n;
2772 array->groups = groups;
2774 for (i = 0; i < n; ++i) {
2775 groups[i]->nr = i;
2777 for (j = 0; j < groups[i]->n_ref; ++j)
2778 groups[i]->refs[j]->group = i;
2782 /* Group array references that should be considered together when
2783 * deciding whether to access them from private, shared or global memory.
2785 * In particular, if two array references overlap and if one of them
2786 * is a write, then the two references are grouped together.
2787 * We first perform an initial grouping based only on the access relation.
2788 * After computing shared and private memory tiles, we check for
2789 * overlapping writes again, but this time taking into account
2790 * the "last_shared" property.
2792 * Furthermore, if two groups admit a shared memory tile and if the
2793 * combination of the two also admits a shared memory tile, we merge
2794 * the two groups.
2796 static void group_array_references(struct gpu_gen *gen,
2797 struct gpu_array_info *array, __isl_keep isl_union_map *sched)
2799 int i;
2800 int n;
2801 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2802 struct gpu_array_ref_group **groups;
2804 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
2805 array->n_ref);
2806 assert(groups);
2808 n = populate_array_references(array, sched, groups);
2810 n = group_overlapping_writes(gen, n, groups);
2812 for (i = 0; i < n; ++i)
2813 compute_group_bounds(gen, groups[i]);
2815 n = group_last_shared_overlapping_writes(gen, n, groups);
2817 n = group_common_shared_memory_tile(gen, array, n, groups);
2819 set_array_groups(array, n, groups);
2822 /* Take tiled_sched, project it onto the shared tile loops and
2823 * the loops that will be wrapped over the threads and
2824 * store the result in gen->shared_sched.
2825 * Also compute a projection that projects out the loops that will be
2826 * wrapped over the threads and store this projection in gen->shared_proj.
2828 static void compute_shared_sched(struct gpu_gen *gen)
2830 isl_space *dim;
2831 isl_map *proj;
2832 isl_set *par;
2833 isl_union_map *sched;
2835 sched = isl_union_map_copy(gen->tiled_sched);
2837 dim = isl_union_map_get_space(sched);
2838 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
2839 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
2841 dim = isl_union_map_get_space(sched);
2842 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
2844 gen->shared_sched = sched;
2845 gen->shared_proj = isl_union_map_from_map(proj);
2848 /* Group references of all arrays in the program.
2850 static void group_references(struct gpu_gen *gen)
2852 int i;
2853 isl_union_map *sched;
2855 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
2856 isl_union_map_copy(gen->shared_proj));
2858 for (i = 0; i < gen->prog->n_array; ++i)
2859 group_array_references(gen, &gen->prog->array[i], sched);
2861 isl_union_map_free(sched);
2864 /* Free all array information that is local to the current kernel.
2866 static void free_local_array_info(struct gpu_gen *gen)
2868 int i, j;
2870 for (i = 0; i < gen->prog->n_array; ++i) {
2871 struct gpu_array_info *array = &gen->prog->array[i];
2873 for (j = 0; j < array->n_group; ++j)
2874 free_array_ref_group(array->groups[j]);
2875 free(array->groups);
2879 /* Compute the size of a bounding box around the origin and "set",
2880 * where "set" is assumed to contain only non-negative elements.
2881 * In particular, compute the maximal value of "set" in each direction
2882 * and add one.
2884 static __isl_give isl_multi_pw_aff *extract_size(__isl_take isl_set *set,
2885 __isl_keep isl_set *context)
2887 int i, n;
2888 isl_multi_pw_aff *mpa;
2890 n = isl_set_dim(set, isl_dim_set);
2891 mpa = isl_multi_pw_aff_zero(isl_set_get_space(set));
2892 for (i = 0; i < n; ++i) {
2893 isl_space *space;
2894 isl_aff *one;
2895 isl_pw_aff *bound;
2897 bound = isl_set_dim_max(isl_set_copy(set), i);
2898 bound = isl_pw_aff_coalesce(bound);
2899 bound = isl_pw_aff_gist(bound, isl_set_copy(context));
2901 space = isl_pw_aff_get_domain_space(bound);
2902 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2903 one = isl_aff_add_constant_si(one, 1);
2904 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
2905 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
2907 isl_set_free(set);
2909 return mpa;
2912 /* Compute the effective grid size as a list of the sizes in each dimension.
2914 * The grid size specified by the user or set by default
2915 * in read_grid_sizes() and applied in tile_schedule(),
2916 * may be too large for the given code in the sense that
2917 * it may contain blocks that don't need to execute anything.
2918 * We therefore don't return this grid size, but instead the
2919 * smallest grid size that ensures that all blocks that actually
2920 * execute code are included in the grid.
2922 * We first extract a description of the grid, i.e., the possible values
2923 * of the block ids, from gen->tiled_sched.
2924 * The block ids are parameters in gen->tiled_sched.
2925 * We simply need to change them into set dimensions.
2927 * Then, for each block dimension, we compute the maximal value of the block id
2928 * and add one.
2930 static __isl_give isl_multi_pw_aff *extract_grid_size(struct gpu_gen *gen,
2931 struct ppcg_kernel *kernel)
2933 int i;
2934 isl_set *grid;
2936 grid = isl_union_map_params(isl_union_map_copy(gen->tiled_sched));
2937 grid = isl_set_from_params(grid);
2938 grid = isl_set_add_dims(grid, isl_dim_set, gen->n_grid);
2939 for (i = 0; i < gen->n_grid; ++i) {
2940 int pos;
2941 char name[20];
2943 snprintf(name, sizeof(name), "b%d", i);
2944 pos = isl_set_find_dim_by_name(grid, isl_dim_param, name);
2945 assert(pos >= 0);
2946 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
2947 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
2950 return extract_size(grid, kernel->context);
2953 /* Compute the size of a fixed bounding box around the origin and "set",
2954 * where "set" is assumed to contain only non-negative elements,
2955 * and store the results in "size".
2956 * In particular, compute the maximal value of "set" in each direction
2957 * and add one.
2959 static void extract_fixed_size(__isl_take isl_set *set, int *size)
2961 int i, n;
2962 isl_local_space *ls;
2963 isl_aff *obj;
2965 n = isl_set_dim(set, isl_dim_set);
2966 ls = isl_local_space_from_space(isl_set_get_space(set));
2967 obj = isl_aff_zero_on_domain(ls);
2968 for (i = 0; i < n; ++i) {
2969 isl_val *max;
2971 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
2972 max = isl_set_max_val(set, obj);
2973 size[i] = isl_val_get_num_si(max) + 1;
2974 isl_val_free(max);
2975 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
2977 isl_aff_free(obj);
2978 isl_set_free(set);
2981 /* Compute the effective block size as a list of the sizes in each dimension
2982 * and store the sizes in kernel->block_dim.
2984 * The block size specified by the user or set by default
2985 * in read_block_sizes() and applied in thread_tile_schedule(),
2986 * may be too large for the given code in the sense that
2987 * it may contain threads that don't need to execute anything.
2988 * We therefore don't store this block size in kernel->block_dim,
2989 * but instead the smallest block size that ensures that all threads
2990 * that actually execute code are included in the block.
2992 * The current implementation eliminates all parameters, ensuring
2993 * that the size is a fixed constant in each dimension.
2994 * In principle we could also compute parametric sizes.
2995 * We would have to make sure to project out all b%d and t%d parameters,
2996 * however.
2998 static void extract_block_size(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3000 int i;
3001 int nparam;
3002 isl_set *block;
3003 isl_multi_pw_aff *mpa;
3005 block = isl_union_map_params(isl_union_map_copy(gen->local_sched));
3006 block = isl_set_from_params(block);
3007 block = isl_set_add_dims(block, isl_dim_set, gen->n_block);
3008 kernel->n_block = gen->n_block;
3009 for (i = 0; i < gen->n_block; ++i) {
3010 int pos;
3011 char name[20];
3013 snprintf(name, sizeof(name), "t%d", i);
3014 pos = isl_set_find_dim_by_name(block, isl_dim_param, name);
3015 assert(pos >= 0);
3016 block = isl_set_equate(block, isl_dim_param, pos,
3017 isl_dim_set, i);
3019 nparam = isl_set_dim(block, isl_dim_param);
3020 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
3022 extract_fixed_size(block, kernel->block_dim);
3025 void ppcg_kernel_free(void *user)
3027 struct ppcg_kernel *kernel = user;
3028 int i;
3030 if (!kernel)
3031 return;
3033 isl_multi_pw_aff_free(kernel->grid_size);
3034 isl_set_free(kernel->context);
3035 isl_union_set_free(kernel->arrays);
3036 isl_space_free(kernel->space);
3037 isl_ast_node_free(kernel->tree);
3039 for (i = 0; i < kernel->n_array; ++i)
3040 isl_pw_aff_list_free(kernel->array[i].bound);
3041 free(kernel->array);
3043 for (i = 0; i < kernel->n_var; ++i) {
3044 free(kernel->var[i].name);
3045 isl_vec_free(kernel->var[i].size);
3047 free(kernel->var);
3049 free(kernel);
3052 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
3053 struct ppcg_kernel_var *var)
3055 int j;
3056 struct gpu_array_tile *tile;
3057 isl_printer *p;
3058 char *name;
3060 var->array = group->array;
3062 tile = group->private_tile;
3063 var->type = ppcg_access_private;
3064 if (!tile) {
3065 tile = group->shared_tile;
3066 var->type = ppcg_access_shared;
3069 p = isl_printer_to_str(ctx);
3070 p = print_array_name(p, group);
3071 var->name = isl_printer_get_str(p);
3072 isl_printer_free(p);
3074 var->size = isl_vec_alloc(ctx, group->array->n_index);
3076 for (j = 0; j < group->array->n_index; ++j)
3077 var->size = isl_vec_set_element_val(var->size, j,
3078 isl_val_copy(tile->bound[j].size));
3081 static void create_kernel_vars(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3083 int i, j, n;
3085 n = 0;
3086 for (i = 0; i < gen->prog->n_array; ++i) {
3087 struct gpu_array_info *array = &gen->prog->array[i];
3089 for (j = 0; j < array->n_group; ++j) {
3090 struct gpu_array_ref_group *group = array->groups[j];
3091 if (group->private_tile || group->shared_tile)
3092 ++n;
3096 kernel->n_var = n;
3097 kernel->var = isl_calloc_array(gen->ctx, struct ppcg_kernel_var, n);
3098 assert(kernel->var);
3100 n = 0;
3101 for (i = 0; i < gen->prog->n_array; ++i) {
3102 struct gpu_array_info *array = &gen->prog->array[i];
3104 for (j = 0; j < array->n_group; ++j) {
3105 struct gpu_array_ref_group *group = array->groups[j];
3106 if (!group->private_tile && !group->shared_tile)
3107 continue;
3108 create_kernel_var(gen->ctx, group, &kernel->var[n]);
3109 ++n;
3114 /* The sizes of the arrays on the host that have been computed by
3115 * extract_array_info may depend on the parameters. Use the extra
3116 * constraints on the parameters that are valid at "host_domain"
3117 * to simplify these expressions and store the results in kernel->array.
3119 static void localize_bounds(struct gpu_gen *gen, struct ppcg_kernel *kernel,
3120 __isl_keep isl_set *host_domain)
3122 int i, j;
3123 isl_set *context;
3125 kernel->array = isl_calloc_array(gen->ctx,
3126 struct gpu_local_array_info, gen->prog->n_array);
3127 assert(kernel->array);
3128 kernel->n_array = gen->prog->n_array;
3130 context = isl_set_copy(host_domain);
3131 context = isl_set_params(context);
3133 for (i = 0; i < gen->prog->n_array; ++i) {
3134 struct gpu_array_info *array = &gen->prog->array[i];
3135 isl_pw_aff_list *local;
3137 if (array->n_group == 0)
3138 continue;
3140 local = isl_pw_aff_list_alloc(gen->ctx, array->n_index);
3142 for (j = 0; j < array->n_index; ++j) {
3143 isl_pw_aff *pwaff;
3145 pwaff = isl_pw_aff_copy(array->bound[j]);
3146 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
3147 local = isl_pw_aff_list_add(local, pwaff);
3150 kernel->array[i].bound = local;
3152 isl_set_free(context);
3155 /* Find the element in gen->stmt that has the given "id".
3156 * Return NULL if no such gpu_stmt can be found.
3158 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
3160 int i;
3162 for (i = 0; i < prog->n_stmts; ++i) {
3163 if (id == prog->stmts[i].id)
3164 break;
3167 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
3170 /* Set gen->tile_len and gen->n_parallel to those of the statement
3171 * affected by the first map (part of the schedule)
3172 * on which this function is called.
3173 * Because of the way the schedule is constructed, the other statements
3174 * in the list, if any, should have the same values for these properties.
3176 static int extract_tile_len(__isl_take isl_map *map, void *user)
3178 struct gpu_gen *gen = (struct gpu_gen *) user;
3179 isl_id *id;
3180 struct gpu_stmt *stmt;
3182 id = isl_map_get_tuple_id(map, isl_dim_in);
3183 stmt = find_stmt(gen->prog, id);
3184 isl_id_free(id);
3186 isl_map_free(map);
3188 if (!stmt)
3189 isl_die(gen->ctx, isl_error_unknown,
3190 "statement not found", return -1);
3192 gen->tile_len = stmt->tile_len;
3193 gen->n_parallel = stmt->n_parallel;
3195 return -1;
3198 void ppcg_kernel_stmt_free(void *user)
3200 int i;
3201 struct ppcg_kernel_stmt *stmt = user;
3203 if (!stmt)
3204 return;
3206 switch (stmt->type) {
3207 case ppcg_kernel_copy:
3208 isl_ast_expr_free(stmt->u.c.index);
3209 isl_ast_expr_free(stmt->u.c.local_index);
3210 break;
3211 case ppcg_kernel_domain:
3212 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
3213 break;
3214 case ppcg_kernel_sync:
3215 break;
3218 free(stmt);
3221 /* Set the options of "context" to
3223 * { space -> [x] : x >= first }
3225 static __isl_give isl_ast_build *set_unroll(
3226 __isl_take isl_ast_build *build, __isl_take isl_space *space,
3227 int first)
3229 isl_ctx *ctx;
3230 isl_map *unroll;
3231 isl_union_map *opt;
3233 ctx = isl_ast_build_get_ctx(build);
3235 space = isl_space_from_domain(space);
3236 space = isl_space_add_dims(space, isl_dim_out, 1);
3237 space = isl_space_set_tuple_name(space, isl_dim_out, "unroll");
3238 unroll = isl_map_universe(space);
3239 unroll = isl_map_lower_bound_si(unroll, isl_dim_out, 0, first);
3240 opt = isl_union_map_from_map(unroll);
3242 build = isl_ast_build_set_options(build, opt);
3244 return build;
3247 /* Return a list of isl_ids of the form "prefix%d".
3249 static __isl_give isl_id_list *generate_names(isl_ctx *ctx,
3250 int n, const char *prefix)
3252 int i;
3253 char name[10];
3254 isl_id_list *names;
3256 names = isl_id_list_alloc(ctx, n);
3257 for (i = 0; i < n; ++i) {
3258 isl_id *id;
3260 snprintf(name, sizeof(name), "%s%d", prefix, i);
3261 id = isl_id_alloc(ctx, name, NULL);
3262 names = isl_id_list_add(names, id);
3265 return names;
3268 /* Extend the schedule "schedule" with the part of "extension"
3269 * starting at "first" up to "len".
3271 static __isl_give isl_union_map *extend_schedule(
3272 __isl_take isl_union_map *schedule,
3273 __isl_take isl_union_map *extension, int first, int len)
3275 isl_space *space;
3276 isl_map *proj;
3277 isl_union_map *umap;
3278 isl_set *set;
3280 space = isl_union_map_get_space(schedule);
3281 space = isl_space_set_from_params(space);
3282 space = isl_space_add_dims(space, isl_dim_set, len);
3283 proj = isl_set_identity(isl_set_universe(space));
3284 proj = isl_map_project_out(proj, isl_dim_out, 0, first);
3285 extension = isl_union_map_apply_range(extension,
3286 isl_union_map_from_map(proj));
3288 schedule = isl_union_map_range_product(schedule, extension);
3290 return schedule;
3293 /* Return the gpu_stmt_access in the list "accesses" that corresponds
3294 * to "ref_id".
3296 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
3297 __isl_keep isl_id *ref_id)
3299 struct gpu_stmt_access *access;
3301 for (access = accesses; access; access = access->next)
3302 if (access->ref_id == ref_id)
3303 return access;
3305 return NULL;
3308 /* Return the index of the array called "name" in the list of arrays.
3310 static int find_array_index(struct gpu_gen *gen, const char *name)
3312 int i;
3314 for (i = 0; i < gen->prog->n_array; ++i)
3315 if (!strcmp(name, gen->prog->array[i].name))
3316 return i;
3318 return -1;
3321 /* Internal data structure for the index and AST expression transformation
3322 * callbacks for pet_stmt_build_ast_exprs.
3324 * "accesses" is the list of gpu_stmt_access in the statement.
3325 * "iterator_map" expresses the statement iterators in terms of
3326 * the AST loop iterators.
3327 * "sched2shared" expresses the first shared_len dimensions of
3328 * the computed schedule in terms of the AST loop iterators.
3330 * The following fields are set in transform_index and used in transform_expr.
3331 * "array" is the array that is being accessed.
3332 * "global" is set if the global array is accessed (rather than
3333 * shared/private memory).
3334 * "local_array" refers to information on the array specialized
3335 * to the current kernel.
3337 struct ppcg_transform_data {
3338 struct gpu_gen *gen;
3339 struct gpu_stmt_access *accesses;
3340 isl_pw_multi_aff *iterator_map;
3341 isl_pw_multi_aff *sched2shared;
3343 struct gpu_array_info *array;
3344 int global;
3345 struct gpu_local_array_info *local_array;
3348 /* Index transformation callback for pet_stmt_build_ast_exprs.
3350 * "index" expresses the array indices in terms of statement iterators
3352 * We first reformulate "index" in terms of the AST loop iterators.
3353 * Then we check if we are accessing the global array or
3354 * a shared/private copy. In the former case, we simply return
3355 * the updated index. If "index" is an affine expression rather
3356 * than an array access, then we also return the updated index here.
3358 * Otherwise, we apply the tiling to the index.
3359 * This tiling is of the form
3361 * [D -> A] -> T
3363 * The index is of the form
3365 * L -> A
3367 * We update the tiling to refer to the AST loop iteratos
3369 * [L -> A] -> T
3371 * and modify index to keep track of those iterators
3373 * L -> [L -> A]
3375 * Combining these two yields a tiled index expression in terms
3376 * of the AST loop iterators
3378 * L -> T
3380 static __isl_give isl_multi_pw_aff *transform_index(
3381 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
3382 void *user)
3384 struct ppcg_transform_data *data = user;
3385 struct gpu_stmt_access *access;
3386 struct gpu_array_ref_group *group;
3387 struct gpu_array_tile *tile;
3388 isl_pw_multi_aff *iterator_map;
3389 int i;
3390 const char *name;
3391 isl_space *space;
3392 isl_multi_pw_aff *tiling;
3393 isl_pw_multi_aff *pma;
3394 isl_multi_pw_aff *mpa;
3396 data->array = NULL;
3398 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
3399 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
3401 access = find_access(data->accesses, ref_id);
3402 if (!access)
3403 return index;
3404 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
3405 return index;
3407 name = isl_map_get_tuple_name(access->access, isl_dim_out);
3408 i = find_array_index(data->gen, name);
3409 if (i < 0)
3410 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
3411 "cannot find array reference group",
3412 return isl_multi_pw_aff_free(index));
3414 data->array = &data->gen->prog->array[i];
3415 data->local_array = &data->gen->kernel->array[i];
3416 group = data->array->groups[access->group];
3417 tile = group->private_tile;
3418 if (!tile)
3419 tile = group->shared_tile;
3420 data->global = !tile;
3421 if (!tile)
3422 return index;
3424 space = isl_space_range(isl_multi_pw_aff_get_space(index));
3425 space = isl_space_map_from_set(space);
3426 pma = isl_pw_multi_aff_identity(space);
3427 pma = isl_pw_multi_aff_product(
3428 isl_pw_multi_aff_copy(data->sched2shared), pma);
3429 tiling = isl_multi_pw_aff_from_multi_aff(
3430 isl_multi_aff_copy(tile->tiling));
3431 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
3433 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
3434 space = isl_space_map_from_set(space);
3435 mpa = isl_multi_pw_aff_identity(space);
3436 index = isl_multi_pw_aff_range_product(mpa, index);
3437 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
3439 return index;
3442 /* Dereference "expr" by adding an index [0].
3443 * The original "expr" is assumed not to have any indices.
3445 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
3447 isl_ctx *ctx;
3448 isl_ast_expr *res;
3449 isl_ast_expr_list *list;
3451 ctx = isl_ast_expr_get_ctx(expr);
3452 res = isl_ast_expr_from_val(isl_val_zero(ctx));
3453 list = isl_ast_expr_list_from_ast_expr(res);
3454 res = isl_ast_expr_get_op_arg(expr, 0);
3455 res = isl_ast_expr_access(res, list);
3456 isl_ast_expr_free(expr);
3458 return res;
3461 /* Linearize the index expression "expr" based on the array bounds
3462 * of "array".
3464 * That is, transform expression
3466 * A[i_0][i_1]...[i_n]
3468 * to
3470 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
3472 * where b_0, b_1, ..., b_n are the bounds on the array.
3474 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
3475 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
3477 int i, n;
3478 isl_ctx *ctx;
3479 isl_set *context;
3480 isl_ast_expr *res;
3481 isl_ast_expr_list *list;
3482 isl_ast_build *build;
3484 ctx = isl_ast_expr_get_ctx(expr);
3485 context = isl_set_universe(isl_space_params_alloc(ctx, 0));
3486 build = isl_ast_build_from_context(context);
3488 n = isl_ast_expr_get_op_n_arg(expr);
3489 res = isl_ast_expr_get_op_arg(expr, 1);
3490 for (i = 2; i < n; ++i) {
3491 isl_pw_aff *bound_i;
3492 isl_ast_expr *expr_i;
3494 bound_i = isl_pw_aff_list_get_pw_aff(array->bound, i - 1);
3495 expr_i = isl_ast_build_expr_from_pw_aff(build, bound_i);
3496 res = isl_ast_expr_mul(res, expr_i);
3497 expr_i = isl_ast_expr_get_op_arg(expr, i);
3498 res = isl_ast_expr_add(res, expr_i);
3501 isl_ast_build_free(build);
3503 list = isl_ast_expr_list_from_ast_expr(res);
3504 res = isl_ast_expr_get_op_arg(expr, 0);
3505 res = isl_ast_expr_access(res, list);
3507 isl_ast_expr_free(expr);
3509 return res;
3512 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
3514 * If the AST expression refers to a global scalar that is not
3515 * a read-only scalar, then its address was passed to the kernel and
3516 * we need to dereference it.
3518 * If the AST expression refers to an access to a global array,
3519 * then we linearize the access exploiting the bounds in data->local_array.
3521 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
3522 __isl_keep isl_id *id, void *user)
3524 struct ppcg_transform_data *data = user;
3526 if (!data->array)
3527 return expr;
3528 if (gpu_array_is_read_only_scalar(data->array))
3529 return expr;
3530 if (!data->global)
3531 return expr;
3532 if (data->array->n_index == 0)
3533 return dereference(expr);
3535 return gpu_local_array_info_linearize_index(data->local_array, expr);
3538 /* This function is called for each instance of a user statement
3539 * in the kernel.
3541 * We attach a struct ppcg_kernel_stmt to the "node", containing
3542 * a computed AST expression for each access.
3543 * These AST expressions are computed from iterator_map,
3544 * which expresses the domain
3545 * elements in terms of the generated loops, and sched2shared,
3546 * which expresses the first shared_len dimensions of the schedule
3547 * computed by PPCG in terms of the generated loops.
3549 static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
3550 __isl_keep isl_ast_build *build, void *user)
3552 struct ppcg_transform_data data;
3553 struct gpu_gen *gen = (struct gpu_gen *) user;
3554 struct ppcg_kernel_stmt *stmt;
3555 isl_id *id;
3556 isl_pw_multi_aff *sched2shared;
3557 isl_map *map;
3558 isl_pw_multi_aff *iterator_map;
3559 isl_ast_expr *expr, *arg;
3560 isl_union_map *schedule;
3561 int i, n;
3562 struct gpu_stmt_access *access;
3564 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3565 if (!stmt)
3566 return isl_ast_node_free(node);
3568 expr = isl_ast_node_user_get_expr(node);
3569 arg = isl_ast_expr_get_op_arg(expr, 0);
3570 id = isl_ast_expr_get_id(arg);
3572 schedule = isl_ast_build_get_schedule(build);
3573 map = isl_map_reverse(isl_map_from_union_map(schedule));
3574 iterator_map = isl_pw_multi_aff_from_map(map);
3575 sched2shared = compute_sched_to_shared(gen,
3576 isl_pw_multi_aff_copy(iterator_map));
3578 stmt->type = ppcg_kernel_domain;
3579 stmt->u.d.stmt = find_stmt(gen->prog, id);
3580 if (!stmt->u.d.stmt)
3581 goto error;
3583 data.gen = gen;
3584 data.accesses = stmt->u.d.stmt->accesses;
3585 data.iterator_map = iterator_map;
3586 data.sched2shared = sched2shared;
3587 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
3588 build, &transform_index, &data,
3589 &transform_expr, &data);
3591 isl_id_free(id);
3592 isl_pw_multi_aff_free(iterator_map);
3593 isl_pw_multi_aff_free(sched2shared);
3594 isl_ast_expr_free(arg);
3595 isl_ast_expr_free(expr);
3597 id = isl_id_alloc(gen->ctx, NULL, stmt);
3598 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3599 return isl_ast_node_set_annotation(node, id);
3600 error:
3601 isl_id_free(id);
3602 isl_pw_multi_aff_free(iterator_map);
3603 ppcg_kernel_stmt_free(stmt);
3604 isl_pw_multi_aff_free(sched2shared);
3605 return isl_ast_node_free(node);
3608 /* This function is called when code has been generated for the shared
3609 * tile loops. The "schedule" refers only to the original statements.
3611 * We extend the schedule with that part of gen->local_sched that hasn't
3612 * been taken into account yet. This introduces parameters referring
3613 * to thread ids in the schedule, so we add them (with the appropriate
3614 * bounds to the context as well).
3615 * Finally, we set the appropriate unrolling options
3616 * if gen->first_unroll is set.
3618 static __isl_give isl_ast_node *create_domain_leaf(
3619 __isl_take isl_union_map *schedule, __isl_take isl_ast_build *build,
3620 void *user)
3622 struct gpu_gen *gen = (struct gpu_gen *) user;
3623 isl_space *space;
3624 isl_union_map *sched;
3625 isl_ast_node *tree;
3626 isl_set *set;
3627 isl_id_list *iterators;
3628 int n;
3630 schedule = extend_schedule(schedule,
3631 isl_union_map_copy(gen->local_sched),
3632 gen->shared_len, gen->thread_tiled_len);
3634 space = isl_ast_build_get_schedule_space(build);
3635 set = isl_set_universe(space);
3636 set = add_bounded_parameters(set, gen->kernel->n_block,
3637 gen->kernel->block_dim, "t");
3638 build = isl_ast_build_restrict(build, set);
3640 n = gen->thread_tiled_len - gen->shared_len;
3642 if (gen->first_unroll >= 0) {
3643 space = isl_space_set_alloc(gen->ctx, 0, n);
3644 build = set_unroll(build, space, gen->first_unroll);
3646 iterators = generate_names(gen->ctx, n, "c");
3647 build = isl_ast_build_set_iterators(build, iterators);
3648 build = isl_ast_build_set_at_each_domain(build, &at_each_domain, gen);
3649 tree = isl_ast_build_ast_from_schedule(build, schedule);
3650 isl_ast_build_free(build);
3652 return tree;
3655 /* This function is called for each statement node in the AST of the code
3656 * for copying to or from shared/private memory.
3657 * Attach a pointer to a ppcg_kernel_stmt representing the copy
3658 * statement to the node.
3659 * The statement name is "read" or "write", depending on whether we are
3660 * reading from global memory or writing to global memory.
3661 * The name of the T space is {shared,private}_<array>.
3663 * The schedule is of the form
3665 * type[A -> T] -> L
3667 * where A refers to a piece of an array and T to the corresponding
3668 * shifted tile. We split this schedule into mappings L -> A and L -> T
3669 * and store the corresponding expressions in stmt->index and stmt->local_index,
3670 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
3672 static __isl_give isl_ast_node *attach_copy_stmt(__isl_take isl_ast_node *node,
3673 __isl_keep isl_ast_build *build, void *user)
3675 struct gpu_gen *gen = (struct gpu_gen *) user;
3676 struct ppcg_kernel_stmt *stmt;
3677 isl_id *id;
3678 isl_ast_expr *expr;
3679 isl_space *space;
3680 isl_map *access, *local_access, *map;
3681 isl_pw_multi_aff *pma;
3682 const char *type;
3683 int array_index;
3685 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3686 if (!stmt)
3687 return isl_ast_node_free(node);
3689 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
3690 type = isl_map_get_tuple_name(access, isl_dim_in);
3691 stmt->u.c.read = !strcmp(type, "read");
3692 access = isl_map_reverse(access);
3693 space = isl_space_unwrap(isl_space_range(isl_map_get_space(access)));
3694 local_access = isl_map_copy(access);
3696 map = isl_map_domain_map(isl_map_universe(isl_space_copy(space)));
3697 id = isl_map_get_tuple_id(access, isl_dim_out);
3698 map = isl_map_set_tuple_id(map, isl_dim_in, id);
3699 access = isl_map_apply_range(access, map);
3700 pma = isl_pw_multi_aff_from_map(access);
3701 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
3702 stmt->u.c.index = expr;
3704 map = isl_map_range_map(isl_map_universe(space));
3705 id = isl_map_get_tuple_id(local_access, isl_dim_out);
3706 map = isl_map_set_tuple_id(map, isl_dim_in, id);
3707 local_access = isl_map_apply_range(local_access, map);
3708 pma = isl_pw_multi_aff_from_map(local_access);
3709 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
3710 stmt->u.c.local_index = expr;
3712 stmt->u.c.array = gen->copy_group->array;
3713 array_index = stmt->u.c.array - gen->prog->array;
3714 stmt->u.c.local_array = &gen->kernel->array[array_index];
3715 stmt->type = ppcg_kernel_copy;
3717 id = isl_id_alloc(gen->ctx, NULL, stmt);
3718 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3719 return isl_ast_node_set_annotation(node, id);
3722 /* Given a schedule of the form
3724 * [S -> A] -> L
3726 * (with S the first shared_len dimensions of the computed schedule,
3727 * A the array and L the schedule correponding to the generated loops),
3728 * indicating where to copy the array elements that need to be copied,
3729 * construct code for performing the copying.
3731 * "group" is the array reference group that is being copied
3732 * "type" is either "read" or "write"
3733 * private is set if copying needs to be performed to/from registers
3735 * We first construct a mapping to a shifted tile of the array,
3737 * [S -> A] -> T(S,A) (1)
3739 * If private is set, then we also use this mapping as a schedule
3740 * (which is already thread-specific and will be completely unrolled).
3741 * Otherwise, we wrap/tile the range over the threads.
3742 * The result is
3744 * [S -> A] -> T'(S,A)
3746 * Combined with the given schedule, we have
3748 * [S -> A] -> [L -> T'(S,A)] (2)
3750 * From the shifted tile mapping, we construct a mapping
3752 * [S -> A] -> [A -> T(S,A)]
3754 * and apply it to the schedule (2), obtaining
3756 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
3758 * Note that we can project out S because it is uniquely defined by L.
3760 static __isl_give isl_ast_node *copy_access(struct gpu_gen *gen,
3761 __isl_take isl_map *sched,
3762 const char *type, struct gpu_array_ref_group *group,
3763 __isl_take isl_ast_build *build, int private)
3765 isl_space *space;
3766 isl_ast_node *tree;
3767 isl_map *schedule, *shift, *map;
3768 isl_set *set;
3769 isl_id_list *iterators;
3770 int n;
3772 shift = shift_access(group);
3774 schedule = isl_map_copy(shift);
3775 schedule = isl_map_reset_tuple_id(schedule, isl_dim_out);
3776 if (!private)
3777 schedule = tile_access_schedule(gen, schedule);
3779 n = isl_map_dim(schedule, isl_dim_out);
3780 set = isl_set_universe(isl_ast_build_get_schedule_space(build));
3781 set = add_bounded_parameters(set, gen->kernel->n_block,
3782 gen->kernel->block_dim, "t");
3784 schedule = isl_map_range_product(sched, schedule);
3786 space = isl_space_domain(isl_map_get_space(shift));
3787 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
3788 map = isl_map_range_product(map, shift);
3790 schedule = isl_map_apply_domain(schedule, map);
3792 schedule = isl_map_set_tuple_name(schedule, isl_dim_in, type);
3794 build = isl_ast_build_restrict(build, set);
3796 gen->copy_group = group;
3798 if (private) {
3799 space = isl_space_range(isl_map_get_space(schedule));
3800 space = isl_space_range(isl_space_unwrap(space));
3801 build = set_unroll(build, space, 0);
3803 iterators = generate_names(gen->ctx, n, "c");
3804 build = isl_ast_build_set_iterators(build, iterators);
3805 build = isl_ast_build_set_at_each_domain(build, &attach_copy_stmt, gen);
3806 tree = isl_ast_build_ast_from_schedule(build,
3807 isl_union_map_from_map(schedule));
3808 isl_ast_build_free(build);
3810 return tree;
3813 /* Return code for reading into or writing from shared memory
3814 * the given array reference group.
3816 * If we are performing a read from global memory to shared memory and
3817 * if the array involved is not a scalar, then we copy
3818 * the entire tile to shared memory. This may result in some extra
3819 * elements getting copied, but it should lead to simpler code
3820 * (which means that fewer registers may be needed) and less divergence.
3822 * Otherwise, we only copy the elements that will be read or have been written
3823 * in the kernel.
3826 * The input "sched" is of the form.
3828 * type[S -> A] -> L
3830 * with S the first shared_len dimensions of the computed schedule,
3831 * A the array and L the schedule correponding to the generated loops.
3833 * We first drop "type",
3835 * [S -> A] -> L
3837 * If the above conditions are satisfied, we project out A,
3838 * resulting in
3840 * S -> L
3842 * and then introduce the group tile [S -> T], resulting in
3844 * [S -> T] -> L
3846 static __isl_give isl_ast_node *copy_group_shared_accesses(
3847 struct gpu_gen *gen, struct gpu_array_ref_group *group,
3848 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
3850 const char *type;
3851 int read;
3852 isl_union_map *access;
3854 type = isl_map_get_tuple_name(sched, isl_dim_in);
3855 read = !strcmp(type, "read");
3857 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
3859 if (read && !gpu_array_is_scalar(group->array)) {
3860 isl_space *space;
3861 isl_map *map;
3863 space = isl_space_domain(isl_map_get_space(sched));
3864 space = isl_space_unwrap(space);
3865 map = isl_map_domain_map(isl_map_universe(space));
3866 sched = isl_map_apply_domain(sched, map);
3868 map = group_tile(group);
3869 map = isl_map_reverse(isl_map_domain_map(map));
3870 sched = isl_map_apply_domain(sched, map);
3873 return copy_access(gen, sched, type, group, build, 0);
3876 /* Return code for reading into or writing from private memory
3877 * the given array reference group.
3879 * Let S be the first shared_len dimensions of the computed schedule,
3880 * D the iteration domains, A the array and L the schedule correponding
3881 * to the generated loops.
3882 * "sched" is of the form
3884 * type[S -> A] -> L
3886 * where type is either "read" or "write".
3887 * We apply the privatization D -> S(t), with t the thread ids,
3888 * to the access relation D -> A to obtain the privatized access relation
3890 * S(t) -> A
3892 * We drop the type from "sched" and intersect with the privatized access
3893 * relation to obtain
3895 * [S(t) -> A] -> L
3897 static __isl_give isl_ast_node *copy_group_private_accesses(
3898 struct gpu_gen *gen, struct gpu_array_ref_group *group,
3899 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
3901 const char *type;
3902 int read;
3903 isl_union_map *priv;
3904 isl_union_map *access;
3905 isl_map *access_map;
3907 type = isl_map_get_tuple_name(sched, isl_dim_in);
3908 read = !strcmp(type, "read");
3910 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
3911 priv = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
3912 priv);
3914 access = group_access_relation(group, read, !read);
3915 access = isl_union_map_apply_domain(access, priv);
3916 access_map = isl_map_from_union_map(access);
3918 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
3919 sched = isl_map_intersect_domain(sched, isl_map_wrap(access_map));
3921 return copy_access(gen, sched, type, group, build, 1);
3924 /* Return code for reading into or writing from shared or private memory.
3926 * "schedule" is of the form
3928 * type[S -> A] -> L
3930 * with S be the first shared_len dimensions of the computed schedule,
3931 * A the array and L the schedule correponding to the generated loops.
3932 * The array reference group is attached to "type".
3934 static __isl_give isl_ast_node *create_access_leaf(
3935 struct gpu_gen *gen, __isl_take isl_map *schedule,
3936 __isl_take isl_ast_build *build)
3938 struct gpu_array_ref_group *group;
3939 isl_id *id;
3941 id = isl_map_get_tuple_id(schedule, isl_dim_in);
3942 group = isl_id_get_user(id);
3943 isl_id_free(id);
3945 if (group->private_tile)
3946 return copy_group_private_accesses(gen, group, schedule,
3947 build);
3948 else
3949 return copy_group_shared_accesses(gen, group, schedule,
3950 build);
3953 /* Create a domain node representing a synchronization.
3955 static __isl_give isl_ast_node *create_sync_leaf(
3956 struct gpu_gen *gen, __isl_take isl_map *schedule,
3957 __isl_take isl_ast_build *build)
3959 struct ppcg_kernel_stmt *stmt;
3960 isl_id *id;
3961 isl_space *space;
3962 isl_ast_node *node;
3963 isl_ast_expr *expr;
3965 isl_map_free(schedule);
3967 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3968 if (!stmt)
3969 return NULL;
3971 stmt->type = ppcg_kernel_sync;
3973 space = isl_ast_build_get_schedule_space(build);
3974 space = isl_space_from_domain(space);
3975 space = isl_space_set_tuple_name(space, isl_dim_out, "sync");
3976 expr = isl_ast_build_call_from_pw_multi_aff(build,
3977 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
3978 node = isl_ast_node_alloc_user(expr);
3979 isl_ast_build_free(build);
3981 id = isl_id_alloc(gen->ctx, NULL, stmt);
3982 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3983 return isl_ast_node_set_annotation(node, id);
3986 /* This function is called during the code generation at the point
3987 * where the schedule domain element is completely determined by
3988 * the generated code. The input schedule contains the original
3989 * statements as well as synchronization and copy "statements".
3990 * The latter are scheduled at different points than any of the original
3991 * statements, so they will only arrive here in isolation.
3993 * If the current schedule only refers to a single statement,
3994 * we check if it is a copy or synchronization statement and
3995 * call the appropriate functions.
3996 * Otherwise, we assume we are dealing with the original statements
3997 * and we call create_domain_leaf.
3999 static __isl_give isl_ast_node *create_kernel_leaf(
4000 __isl_take isl_ast_build *build, void *user)
4002 struct gpu_gen *gen = (struct gpu_gen *) user;
4003 isl_map *map;
4004 isl_union_map *schedule;
4005 const char *name;
4007 schedule = isl_ast_build_get_schedule(build);
4009 if (isl_union_map_n_map(schedule) != 1)
4010 return create_domain_leaf(schedule, build, user);
4012 map = isl_map_from_union_map(schedule);
4013 name = isl_map_get_tuple_name(map, isl_dim_in);
4014 if (!strcmp(name, "read") || !strcmp(name, "write"))
4015 return create_access_leaf(gen, map, build);
4016 if (!strcmp(name, "sync"))
4017 return create_sync_leaf(gen, map, build);
4019 return create_domain_leaf(isl_union_map_from_map(map), build, user);
4022 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
4023 * have value 0) and all even schedule dimensions as "unroll".
4025 * That is, the options look as follows
4027 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
4028 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
4030 * The even positions are used to be able to schedule copying blocks
4031 * and synchronization before or after each level of the shared memory
4032 * tile loops and we want to make sure that code for these is generated
4033 * separately (within each level).
4035 static __isl_give isl_ast_build *set_atomic_and_unroll(
4036 __isl_take isl_ast_build *build,
4037 __isl_take isl_space *space, int sched_len)
4039 isl_ctx *ctx;
4040 isl_map *map;
4041 isl_constraint *c;
4042 isl_union_map *opt;
4043 isl_local_space *ls;
4044 int i, n;
4046 ctx = isl_ast_build_get_ctx(build);
4048 space = isl_space_params(space);
4049 space = isl_space_add_dims(space, isl_dim_set, sched_len);
4050 space = isl_space_from_domain(space);
4051 space = isl_space_add_dims(space, isl_dim_out, 2);
4052 map = isl_map_universe(isl_space_copy(space));
4053 for (i = 0; i < sched_len; i += 2)
4054 map = isl_map_fix_si(map, isl_dim_in, i, 0);
4055 ls = isl_local_space_from_space(isl_map_get_space(map));
4056 c = isl_equality_alloc(ls);
4057 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
4058 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
4059 c = isl_constraint_set_constant_si(c, 1);
4060 map = isl_map_add_constraint(map, c);
4061 map = isl_map_project_out(map, isl_dim_out, 1, 1);
4062 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
4063 opt = isl_union_map_from_map(map);
4065 map = isl_map_universe(space);
4066 ls = isl_local_space_from_space(isl_map_get_space(map));
4067 c = isl_equality_alloc(ls);
4068 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
4069 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
4070 map = isl_map_add_constraint(map, c);
4071 map = isl_map_project_out(map, isl_dim_out, 1, 1);
4072 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
4073 opt = isl_union_map_add_map(opt, map);
4075 build = isl_ast_build_set_options(build, opt);
4077 return build;
4080 /* Return a map that maps a space of dimension gen->shared_len
4081 * to its last dimensions starting at gen->tile_first.
4082 * The range is of dimension
4084 * 2 * (gen->shared_len - gen->tile_first) + 1
4086 * The input dimensions are mapped to the odd dimensions in the output,
4087 * while the even dimensions (except 2*pos) are fixed to 0.
4088 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
4089 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
4090 * are mapped to the output. The remaining input dimensions are projected
4091 * out and the corresponding output dimensions are fixed to 0.
4093 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
4094 __isl_take isl_space *space, int pos, int val)
4096 int i, n;
4097 isl_map *proj;
4099 space = isl_space_set_from_params(space);
4100 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
4101 space = isl_space_map_from_set(space);
4102 proj = isl_map_identity(space);
4103 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
4104 n = gen->shared_len - gen->tile_first;
4105 for (i = 0; i <= n; ++i) {
4106 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
4107 if (i == pos)
4108 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
4109 else
4110 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
4113 if (pos < 0)
4114 return proj;
4116 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
4117 gen->shared_len - (gen->tile_first + pos));
4118 for (i = pos; i < n; ++i)
4119 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
4121 return proj;
4124 /* Given the AST context schedule "schedule" and the mapping from
4125 * domains to the shared tile loops "shared_sched", add a schedule
4126 * for a synchronization operation at position "val" of loop level "pos".
4128 * schedule is of the form
4130 * D -> L
4132 * (with D the iteration domains and L the already generated loops),
4133 * while shared_sched is of the form
4135 * D -> S
4137 * We combine them into
4139 * L -> S
4141 * apply a mapping
4143 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4145 * and use the result as a schedule for "sync".
4147 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
4148 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4149 __isl_keep isl_union_map *shared_sched, int pos, int val)
4151 isl_space *space;
4152 isl_map *proj, *map;
4154 shared_sched = isl_union_map_copy(shared_sched);
4155 schedule = isl_union_map_copy(schedule);
4157 space = isl_union_map_get_space(shared_sched);
4158 schedule = isl_union_map_apply_domain(shared_sched, schedule);
4159 map = isl_map_from_union_map(schedule);
4161 proj = insert_even(gen, space, pos, val);
4162 map = isl_map_apply_range(map, proj);
4163 map = isl_map_from_range(isl_map_wrap(map));
4164 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
4166 res = isl_union_map_add_map(res, map);
4168 return res;
4171 /* Given the AST context schedule "schedule" and the mapping from
4172 * domains to the shared tile loops "shared_sched", add a schedule
4173 * for copying an array reference group to/from shared/private memory.
4174 * "read" is set if data should be copied from global memory
4175 * to shared/private memory.
4176 * "k" represents the current group
4177 * "s" is the total number of groups
4179 * We schedule an operation before or after the innermost loop
4180 * of "shared_sched" that affects the tile of the array reference group.
4182 * schedule is of the form
4184 * D -> L
4186 * (with D the iteration domains and L the already generated loops),
4187 * while shared_sched is of the form
4189 * D -> S
4191 * We first compute the access relation for the reference group
4193 * D -> A
4195 * and combine it with shared_sched into
4197 * D -> [S -> A]
4199 * If this results in an empty relation, no copying needs to be performed
4200 * at this point.
4201 * Otherwise, we invert the relation and combine it with "schedule" into
4203 * [S -> A] -> L
4205 * The actual additional piece of the schedule is obtained from combining
4207 * [S -> A] -> S
4209 * with a mapping
4211 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4213 * The position of "val" corresponds to the innermost loop that affects
4214 * the tile and the value indicates where the copying is scheduled
4215 * with respect to the actual kernel code (at value 0).
4216 * Reads are schedule before the code, writes to global memory from
4217 * private memory are scheduled at values 1 to s, writes to global
4218 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
4220 * If we are scheduling a read from global memory to shared memory,
4221 * we insert a synchronization before the kernel code (at the innermost
4222 * level).
4223 * If we are scheduling a write to global memory, then we add
4224 * a synchronization after all writes (at value 2 *s + 2).
4225 * However, there is no need for a synchronization after the outermost loop.
4226 * A write to global memory from private memory at the innermost level
4227 * does not require a synchronization, because it is covered by
4228 * the synchronization after the kernel inserted by body_schedule.
4230 static __isl_give isl_union_map *add_group_schedule(struct gpu_gen *gen,
4231 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4232 __isl_keep isl_union_map *shared_sched,
4233 struct gpu_array_ref_group *group, int read, int k, int s)
4235 int n;
4236 int pos, val;
4237 isl_space *space;
4238 isl_union_map *access;
4239 isl_map *map, *proj, *access_map;
4240 isl_id *id;
4242 access = group_access_relation(group, read, !read);
4243 access = isl_union_map_range_product(isl_union_map_copy(shared_sched),
4244 access);
4246 if (isl_union_map_is_empty(access)) {
4247 isl_union_map_free(access);
4248 return res;
4251 access = isl_union_map_reverse(access);
4252 access = isl_union_map_apply_range(access,
4253 isl_union_map_copy(schedule));
4254 access_map = isl_map_from_union_map(access);
4256 space = isl_space_copy(group->array->space);
4257 space = isl_space_from_range(space);
4258 space = isl_space_add_dims(space, isl_dim_in, gen->shared_len);
4259 map = isl_map_domain_map(isl_map_universe(space));
4261 space = isl_union_map_get_space(schedule);
4262 pos = group->last_shared + 1 - gen->tile_first;
4263 assert(pos >= 0);
4264 if (read)
4265 val = -2 - k;
4266 else if (group->private_tile)
4267 val = 1 + k;
4268 else
4269 val = 1 + s + 1 + k;
4270 proj = insert_even(gen, space, pos, val);
4271 map = isl_map_apply_range(map, proj);
4273 access_map = isl_map_range_product(access_map, map);
4275 id = isl_id_alloc(gen->ctx, read ? "read" : "write", group);
4276 access_map = isl_map_set_tuple_id(access_map, isl_dim_in, id);
4278 res = isl_union_map_add_map(res, access_map);
4280 n = gen->shared_len - gen->tile_first;
4281 if (read) {
4282 if (!group->private_tile)
4283 res = add_sync_schedule(gen, res, schedule,
4284 shared_sched, n, -1);
4285 } else {
4286 if (pos == 0)
4287 return res;
4288 if (pos == n && group->private_tile)
4289 return res;
4290 res = add_sync_schedule(gen, res, schedule, shared_sched,
4291 pos, 2 * s + 2);
4294 return res;
4297 /* Return a schedule for the shared tile loops based on the current
4298 * AST context schedule.
4300 * We create a "shared_sched" that maps the domains to the first
4301 * shared_len dimensions of the computed schedule, project out the
4302 * first tile_first dimensions (as these are already covered by
4303 * the host code) and insert "statement-level" dimensions at even
4304 * positions so that we can schedule copy blocks and synchronization
4305 * before/after each level.
4307 * In particular, copy blocks are inserted inside the innermost
4308 * level that affect the tile. For the copying to global memory,
4309 * those from private memory are scheduled before those from shared
4310 * memory such that synchronization can be inserted between the two
4311 * at the innermost level.
4312 * Synchronization is inserted at the innermost level before the
4313 * actual kernel code if there is any copying from global memory
4314 * to shared memory. It is inserted unconditionally at the innermost
4315 * level after the actual kernel code and the copying to global memory
4316 * from private memory (if any). Finally, it is inserted after
4317 * any copying to global memory, except at the outermost level
4318 * and at the innermost level if there is no copying from shared
4319 * memory. The copying from private memory is covered by the unconditional
4320 * synchronization at the innermost level.
4322 static __isl_give isl_union_map *body_schedule(struct gpu_gen *gen,
4323 __isl_take isl_union_map *schedule)
4325 isl_space *space;
4326 isl_union_map *res;
4327 isl_union_map *shared_sched;
4328 isl_union_map *sched;
4329 isl_map *proj, *map;
4330 int i, j, k, s;
4332 shared_sched = isl_union_map_copy(gen->tiled_sched);
4333 proj = projection(isl_union_map_get_space(shared_sched),
4334 gen->tiled_len, gen->shared_len);
4335 shared_sched = isl_union_map_apply_range(shared_sched,
4336 isl_union_map_from_map(proj));
4337 space = isl_union_map_get_space(shared_sched);
4338 proj = insert_even(gen, space, -1, 0);
4339 sched = isl_union_map_apply_range(isl_union_map_copy(shared_sched),
4340 isl_union_map_from_map(proj));
4342 res = isl_union_map_range_product(isl_union_map_copy(schedule), sched);
4344 s = 0;
4345 for (i = 0; i < gen->prog->n_array; ++i)
4346 s += gen->prog->array[i].n_group;
4348 k = 0;
4349 for (i = 0; i < gen->prog->n_array; ++i) {
4350 struct gpu_array_info *array = &gen->prog->array[i];
4352 for (j = 0; j < array->n_group; ++j) {
4353 struct gpu_array_ref_group *group;
4355 group = array->groups[j];
4356 if (!group->private_tile && !group->shared_tile)
4357 continue;
4358 res = add_group_schedule(gen, res, schedule,
4359 shared_sched, group, 0, k, s);
4360 res = add_group_schedule(gen, res, schedule,
4361 shared_sched, group, 1, k, s);
4362 ++k;
4366 res = add_sync_schedule(gen, res, schedule, shared_sched,
4367 gen->shared_len - gen->tile_first, 1 + s);
4369 isl_union_map_free(shared_sched);
4370 isl_union_map_free(schedule);
4372 return res;
4375 /* Generate code for "kernel" in the given "context".
4377 * We first generate code for the shared tile loops (T1T, T1P and T2)
4378 * in a context that includes the block ids.
4379 * Within each iteration of these loops an additional code generation
4380 * is performed (within create_kernel_leaf) for the rest of the schedule
4381 * in a context that includes the thread ids.
4383 static __isl_give isl_ast_node *generate_kernel(struct gpu_gen *gen,
4384 __isl_keep isl_ast_build *build, __isl_keep isl_set *host_domain,
4385 __isl_keep isl_multi_pw_aff *grid_size)
4387 isl_space *space;
4388 isl_set *set;
4389 isl_id_list *iterators;
4390 isl_union_map *schedule;
4391 isl_ast_node *tree;
4392 int sched_len;
4394 schedule = isl_ast_build_get_schedule(build);
4396 build = isl_ast_build_copy(build);
4397 build = isl_ast_build_restrict(build, isl_set_copy(host_domain));
4398 space = isl_ast_build_get_schedule_space(build);
4399 set = isl_set_universe(isl_space_copy(space));
4400 set = add_bounded_parameters_dynamic(set, grid_size, "b");
4401 build = isl_ast_build_restrict(build, set);
4403 schedule = body_schedule(gen, schedule);
4405 sched_len = 2 * (gen->shared_len - gen->tile_first) + 1;
4407 build = set_atomic_and_unroll(build, space, sched_len);
4408 iterators = generate_names(gen->ctx, sched_len, "g");
4409 build = isl_ast_build_set_iterators(build, iterators);
4410 build = isl_ast_build_set_create_leaf(build, &create_kernel_leaf, gen);
4411 tree = isl_ast_build_ast_from_schedule(build, schedule);
4412 isl_ast_build_free(build);
4414 return tree;
4417 /* Attach "id" to the given node.
4419 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
4420 __isl_keep isl_ast_build *build, void *user)
4422 isl_id *id = user;
4424 node = isl_ast_node_set_annotation(node, id);
4426 return node;
4429 /* Construct an AST node for performing a kernel launch and attach
4430 * the information about the kernel to that node.
4432 * The kernel AST has been constructed in the context of the range
4433 * of "schedule". In particular, the grid size has been computed
4434 * in the context. We therefore still need to make sure that these
4435 * constraints are expressed in the code. We do this by creating a schedule
4437 * kernel[] -> [S -> []]
4439 * where S is the schedule domain, i.e., the range of "schedule".
4440 * The AST generation will then create a single call surrounded by
4441 * all the condition in "S" that have not been expressed yet.
4443 * The kernel information is attached to this node in attach_id.
4445 static __isl_give isl_ast_node *construct_launch(
4446 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
4447 __isl_take struct ppcg_kernel *kernel)
4449 isl_id *id;
4450 isl_ctx *ctx;
4451 isl_union_set *domain;
4452 isl_set *set;
4453 isl_map *map;
4454 isl_ast_node *node;
4456 ctx = isl_ast_build_get_ctx(build);
4458 id = isl_id_alloc(ctx, NULL, kernel);
4459 id = isl_id_set_free_user(id, &ppcg_kernel_free);
4461 domain = isl_union_map_range(schedule);
4462 set = isl_set_from_union_set(domain);
4463 map = isl_map_from_domain(set);
4464 map = isl_map_from_range(isl_map_wrap(map));
4465 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
4466 schedule = isl_union_map_from_map(map);
4468 build = isl_ast_build_set_at_each_domain(build, &attach_id, id);
4469 node = isl_ast_build_ast_from_schedule(build, schedule);
4470 isl_ast_build_free(build);
4472 return node;
4475 /* This function is called for each leaf in the AST of the host code.
4476 * We first specialize the schedule to the site of the leaf, compute
4477 * the size of shared memory and then construct the body of the host code
4478 * and the associated kernel.
4480 * The necessary information for printing the kernel launch is
4481 * stored in a struct ppcg_kernel and attached to the leaf node
4482 * created to represent the launch.
4484 static __isl_give isl_ast_node *create_host_leaf(
4485 __isl_take isl_ast_build *build, void *user)
4487 struct gpu_gen *gen = (struct gpu_gen *) user;
4488 isl_id *id;
4489 isl_ast_node *node;
4490 struct ppcg_kernel *kernel;
4491 isl_set *host_domain;
4492 isl_union_map *schedule;
4493 isl_union_map *local_sched;
4494 isl_union_map *access;
4495 isl_union_set *domain;
4496 int i;
4498 schedule = isl_ast_build_get_schedule(build);
4500 isl_union_map_foreach_map(schedule, &extract_tile_len, gen);
4501 read_sizes(gen);
4503 domain = isl_union_map_domain(isl_union_map_copy(schedule));
4505 local_sched = isl_union_map_copy(gen->sched);
4506 local_sched = isl_union_map_intersect_domain(local_sched, domain);
4507 access = isl_union_map_union(isl_union_map_copy(gen->prog->read),
4508 isl_union_map_copy(gen->prog->write));
4509 access = isl_union_map_apply_domain(access,
4510 isl_union_map_copy(local_sched));
4512 gen->tiled_sched = tile_schedule(gen, local_sched);
4513 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
4514 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
4516 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
4517 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
4518 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
4520 kernel = gen->kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
4521 if (!kernel)
4522 goto error;
4524 kernel->id = gen->kernel_id++;
4525 kernel->context = isl_union_map_params(isl_union_map_copy(schedule));
4526 kernel->grid_size = extract_grid_size(gen, kernel);
4527 extract_block_size(gen, kernel);
4528 kernel->arrays = isl_union_map_range(access);
4529 kernel->space = isl_ast_build_get_schedule_space(build);
4531 gen->private_access = NULL;
4532 compute_shared_sched(gen);
4533 gen->privatization = compute_privatization(gen);
4534 group_references(gen);
4535 compute_private_access(gen);
4536 check_shared_memory_bound(gen);
4537 compute_group_tilings(gen);
4538 host_domain = isl_set_from_union_set(isl_union_map_range(
4539 isl_union_map_copy(schedule)));
4540 localize_bounds(gen, kernel, host_domain);
4542 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
4544 kernel->tree = generate_kernel(gen, build, host_domain,
4545 kernel->grid_size);
4546 create_kernel_vars(gen, kernel);
4548 free_local_array_info(gen);
4549 isl_map_free(gen->privatization);
4550 isl_union_map_free(gen->private_access);
4551 isl_union_map_free(gen->local_sched);
4552 isl_union_map_free(gen->tiled_sched);
4553 isl_union_map_free(gen->shared_sched);
4554 isl_union_map_free(gen->shared_proj);
4555 isl_set_free(host_domain);
4556 free(gen->tile_size);
4558 node = construct_launch(build, schedule, kernel);
4560 return node;
4561 error:
4562 isl_union_map_free(schedule);
4563 return NULL;
4566 /* Use isl to generate code for the outer gen->tile_first loops
4567 * of the global schedule in gen->sched, resulting in the host code.
4568 * Within each iteration of this partial schedule, i.e., for each kernel
4569 * launch, create_host_leaf takes care of generating the kernel code.
4571 static __isl_give isl_ast_node *generate_host_code(struct gpu_gen *gen)
4573 isl_ast_build *build;
4574 isl_ast_node *tree;
4575 isl_union_map *sched;
4576 isl_map *proj;
4577 isl_id_list *iterators;
4579 sched = isl_union_map_copy(gen->sched);
4580 proj = projection(isl_union_map_get_space(sched),
4581 gen->untiled_len, gen->tile_first);
4582 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
4584 isl_options_set_ast_build_group_coscheduled(gen->ctx, 1);
4585 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
4586 iterators = generate_names(gen->ctx, gen->tile_first, "h");
4587 build = isl_ast_build_set_iterators(build, iterators);
4588 build = isl_ast_build_set_create_leaf(build, &create_host_leaf, gen);
4589 tree = isl_ast_build_ast_from_schedule(build, sched);
4590 isl_ast_build_free(build);
4592 return tree;
4595 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
4597 if (!str)
4598 return NULL;
4599 return isl_union_map_read_from_str(ctx, str);
4602 /* Information about the outermost tilable bands in the forest of bands.
4604 * tile_len and n_parallel are only sets on band_info structures
4605 * that correspond to outermost bands. For other bands (in particular,
4606 * ancestors of the outermost bands), n_parallal is set to 0.
4608 * prefix is the (padded) schedule leading up to the outermost tilable bands.
4610 * tile_first is the number of schedule dimensions in prefix.
4612 * suffix is the schedule of the outermost tilable bands and their descendants.
4614 struct band_info {
4615 struct gpu_gen *gen;
4616 int tile_first;
4617 int tile_len;
4618 int n_parallel;
4619 isl_union_map *prefix;
4620 isl_union_map *suffix;
4623 /* Set tile_len and n_parallel of the statement to that of
4624 * their outermost band, recorded in the band_info.
4626 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
4628 struct band_info *info = user;
4629 struct gpu_stmt *stmt;
4630 isl_id *id;
4632 id = isl_map_get_tuple_id(map, isl_dim_in);
4633 stmt = find_stmt(info->gen->prog, id);
4634 isl_id_free(id);
4636 stmt->tile_len = info->tile_len;
4637 stmt->n_parallel = info->n_parallel;
4639 isl_map_free(map);
4641 return 0;
4644 static void list_select_outer_band(struct gpu_gen *gen,
4645 __isl_take isl_band_list *list, int pos, struct band_info *list_info);
4647 /* Check if this band has any parallel loops. If so, take it as
4648 * the outermost tilable band. If not, continue looking for the
4649 * outermost tilable band in the children of the current band.
4651 static void band_select_outer_band(struct gpu_gen *gen,
4652 __isl_take isl_band *band, int pos, struct band_info *info)
4654 int n = isl_band_n_member(band);
4655 int n_parallel;
4657 for (n_parallel = 0; n_parallel < n; ++n_parallel)
4658 if (!isl_band_member_is_zero_distance(band, n_parallel))
4659 break;
4661 info->n_parallel = n_parallel;
4662 if (n_parallel) {
4663 gen->any_parallelism = 1;
4664 info->gen = gen;
4665 info->tile_first = pos;
4666 info->tile_len = n;
4667 info->prefix = isl_band_get_prefix_schedule(band);
4668 info->suffix = isl_union_map_flat_range_product(
4669 isl_band_get_partial_schedule(band),
4670 isl_band_get_suffix_schedule(band));
4671 isl_union_map_foreach_map(info->prefix,
4672 &set_stmt_tile_len, info);
4673 } else if (isl_band_has_children(band)) {
4674 isl_band_list *children;
4675 children = isl_band_get_children(band);
4676 list_select_outer_band(gen, children, pos + n, info);
4677 } else {
4678 info->gen = gen;
4679 info->tile_first = pos + n;
4680 info->tile_len = 0;
4681 info->prefix = isl_union_map_flat_range_product(
4682 isl_band_get_prefix_schedule(band),
4683 isl_band_get_partial_schedule(band));
4684 info->suffix = isl_band_get_suffix_schedule(band);
4685 isl_union_map_foreach_map(info->prefix,
4686 &set_stmt_tile_len, info);
4689 isl_band_free(band);
4692 /* Comparison function that returns a non-zero value for band_infos
4693 * with different tile_len fields or different n_parallel fields.
4695 static int cmp_band(const void *p1, const void *p2)
4697 const struct band_info *info1 = p1;
4698 const struct band_info *info2 = p2;
4700 if (info1->tile_len != info2->tile_len)
4701 return info1->tile_len - info2->tile_len;
4703 return info1->n_parallel - info2->n_parallel;
4706 /* Extend "umap" with coordinates with fixed value "val"
4707 * to a total length of "dst_len", assuming the original dimension is "src_len".
4709 static __isl_give isl_union_map *extend_range(
4710 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
4712 isl_space *dim;
4713 isl_map *map;
4714 int i;
4716 dim = isl_union_map_get_space(umap);
4717 map = isl_map_reverse(projection(dim, dst_len, src_len));
4718 for (i = src_len; i < dst_len; ++i)
4719 map = isl_map_fix_si(map, isl_dim_out, i, val);
4721 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
4723 return umap;
4726 /* Group bands with the same values for tile_len and n_parallel.
4727 * The prefix schedule is then extended with a fixed coordinate that
4728 * is different for each such group.
4729 * Note that the actual values for this coordinate are not important.
4730 * The bands have already been effectively separated at a higher level
4731 * or they are independent and may be executed in parallel.
4732 * The list of band_info has been sorted before this functions is called.
4734 static void separate_bands(struct band_info *info, int n)
4736 int i;
4737 int j = 0;
4739 for (i = 0; i < n; ++i) {
4740 int l = info[i].tile_first;
4742 if (i &&
4743 (info[i].tile_len != info[i - 1].tile_len ||
4744 info[i].n_parallel != info[i - 1].n_parallel))
4745 j++;
4747 info[i].prefix = extend_range(info[i].prefix,
4748 l, l + 1, j);
4749 info[i].tile_first = l + 1;
4753 /* Select the outermost bands in the elements of the list, align
4754 * their prefix schedules, separate bands with different values
4755 * for tile_len and/or n_parallel and then combine the resulting
4756 * prefix and suffix schedules into a single pair of prefix and
4757 * suffix schedules for the entire list.
4759 static void list_select_outer_band(struct gpu_gen *gen,
4760 __isl_take isl_band_list *list, int pos, struct band_info *list_info)
4762 isl_band *band;
4763 int i;
4764 int n = isl_band_list_n_band(list);
4765 isl_ctx *ctx = isl_band_list_get_ctx(list);
4766 struct band_info *info;
4767 int max_tile_first;
4768 isl_union_map *prefix;
4769 isl_union_map *suffix;
4771 assert(n >= 1);
4772 info = isl_calloc_array(ctx, struct band_info, n);
4773 assert(info);
4775 max_tile_first = 0;
4776 for (i = 0; i < n; ++i) {
4777 band = isl_band_list_get_band(list, i);
4778 band_select_outer_band(gen, band, pos, &info[i]);
4779 if (info[i].tile_first > max_tile_first)
4780 max_tile_first = info[i].tile_first;
4783 for (i = 0; i < n; ++i) {
4784 if (info[i].tile_first == max_tile_first)
4785 continue;
4786 info[i].prefix = extend_range(info[i].prefix,
4787 info[i].tile_first, max_tile_first, 0);
4788 info[i].tile_first = max_tile_first;
4791 qsort(info, n, sizeof(struct band_info), &cmp_band);
4793 for (i = 0; i < n - 1; ++i)
4794 if (info[i].tile_len != info[i + 1].tile_len ||
4795 info[i].n_parallel != info[i + 1].n_parallel)
4796 break;
4798 if (i < n -1)
4799 separate_bands(info, n);
4801 prefix = info[0].prefix;
4802 suffix = info[0].suffix;
4804 for (i = 1; i < n; ++i) {
4805 prefix = isl_union_map_union(prefix, info[i].prefix);
4806 suffix = isl_union_map_union(suffix, info[i].suffix);
4809 list_info->tile_first = info[0].tile_first;
4810 list_info->tile_len = -1;
4811 list_info->prefix = prefix;
4812 list_info->suffix = suffix;
4814 isl_band_list_free(list);
4815 free(info);
4818 /* Select the outermost tilable band that (by construction)
4819 * has at least one parallel loop.
4820 * The starting position of the aligned band is stored in the pair
4821 * gen->tile_first.
4822 * The sizes and number of parallel loops may be different in different
4823 * parts of the band forest and are therefore stored in the gpu_stmts.
4825 * Return the complete schedule, with the tilable bands aligned
4826 * at gen->tile_first and padded with zero, if needed.
4828 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
4829 __isl_keep isl_schedule *schedule)
4831 isl_band_list *list;
4832 struct band_info info;
4834 gen->n_parallel = 0;
4835 gen->tile_len = -1;
4837 list = isl_schedule_get_band_forest(schedule);
4839 if (isl_band_list_n_band(list) == 0) {
4840 isl_band_list_free(list);
4841 return isl_schedule_get_map(schedule);
4844 list_select_outer_band(gen, list, 0, &info);
4846 gen->tile_first = info.tile_first;
4847 info.suffix = align_range(info.suffix);
4849 return isl_union_map_flat_range_product(info.prefix, info.suffix);
4852 /* Set gen->untiled_len to the number of scheduling dimensions
4853 * for the schedule of the first domain.
4854 * We assume here that this number is the same for all domains.
4856 static int set_untiled_len(__isl_take isl_map *map, void *user)
4858 unsigned *untiled_len = user;
4860 *untiled_len = isl_map_dim(map, isl_dim_out);
4862 isl_map_free(map);
4863 return -1;
4866 /* Compute an appropriate schedule based on the accesses in
4867 * gen->read and gen->write.
4869 * We use the dependences in gen->prog->scop to compute
4870 * a schedule that has a parallel loop in each tilable band.
4871 * Finally, we select the outermost tilable band.
4873 static void compute_schedule(struct gpu_gen *gen)
4875 isl_union_set *domain;
4876 isl_union_map *dep_raw, *dep;
4877 isl_union_map *sched;
4878 isl_schedule *schedule;
4880 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
4882 dep = isl_union_map_copy(gen->prog->scop->dep_false);
4883 dep = isl_union_map_union(dep, dep_raw);
4884 dep = isl_union_map_coalesce(dep);
4886 domain = isl_union_set_copy(gen->prog->scop->domain);
4887 domain = isl_union_set_intersect_params(domain,
4888 isl_set_copy(gen->prog->scop->context));
4889 schedule = isl_union_set_compute_schedule(isl_union_set_copy(domain),
4890 isl_union_map_copy(dep), dep);
4891 if (gen->options->debug->dump_schedule)
4892 isl_schedule_dump(schedule);
4894 sched = select_outer_tilable_band(gen, schedule);
4896 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
4897 sched = isl_union_map_intersect_domain(sched, domain);
4898 gen->sched = sched;
4900 isl_schedule_free(schedule);
4903 /* Compute the sets of array elements that need to be copied in and out.
4905 * In particular, for each array that is written anywhere in gen->prog and
4906 * that is visible outside the corresponding scop, we copy out its entire
4907 * extent.
4909 * Any array elements that is read without first being written needs
4910 * to be copied in. Furthermore, if there are any array elements that
4911 * are copied out, but that are not written inside gen->prog, then
4912 * they also need to be copied in to ensure that the value after execution
4913 * is the same as the value before execution.
4914 * While computing the set of array elements that
4915 * are copied out but not written, we intersect both sets with the context.
4916 * This helps in those cases where the arrays are declared with a fixed size,
4917 * while the accesses are parametric and the context assigns a fixed value
4918 * to the parameters.
4920 static void compute_copy_in_and_out(struct gpu_gen *gen)
4922 int i;
4923 isl_union_set *write;
4924 isl_union_set *copy_in, *copy_out;
4925 isl_union_set *not_written;
4926 isl_union_map *uninitialized;
4928 write = isl_union_map_range(isl_union_map_copy(gen->prog->write));
4929 write = isl_union_set_intersect_params(write,
4930 isl_set_copy(gen->prog->context));
4931 copy_out = isl_union_set_empty(isl_union_set_get_space(write));
4933 for (i = 0; i < gen->prog->n_array; ++i) {
4934 isl_space *space;
4935 isl_set *write_i;
4936 int empty;
4938 if (gen->prog->array[i].local)
4939 continue;
4941 space = isl_space_copy(gen->prog->array[i].space);
4942 write_i = isl_union_set_extract_set(write, space);
4943 empty = isl_set_fast_is_empty(write_i);
4944 isl_set_free(write_i);
4945 if (empty)
4946 continue;
4948 write_i = isl_set_copy(gen->prog->array[i].extent);
4949 copy_out = isl_union_set_add_set(copy_out, write_i);
4952 copy_out = isl_union_set_intersect_params(copy_out,
4953 isl_set_copy(gen->prog->context));
4955 gen->prog->copy_out = isl_union_set_copy(copy_out);
4957 uninitialized = isl_union_map_copy(gen->prog->scop->live_in);
4958 copy_in = isl_union_map_range(uninitialized);
4960 not_written = isl_union_set_subtract(copy_out, write);
4961 copy_in = isl_union_set_union(copy_in, not_written);
4962 gen->prog->copy_in = copy_in;
4965 static struct gpu_stmt_access **expr_extract_access(struct pet_expr *expr,
4966 struct gpu_stmt_access **next_access)
4968 struct gpu_stmt_access *access;
4969 isl_ctx *ctx = isl_map_get_ctx(expr->acc.access);
4971 access = isl_alloc_type(ctx, struct gpu_stmt_access);
4972 assert(access);
4973 access->next = NULL;
4974 access->read = expr->acc.read;
4975 access->write = expr->acc.write;
4976 access->access = isl_map_copy(expr->acc.access);
4977 access->ref_id = isl_id_copy(expr->acc.ref_id);
4979 *next_access = access;
4980 next_access = &(*next_access)->next;
4981 return next_access;
4984 static struct gpu_stmt_access **expr_extract_accesses(struct pet_expr *expr,
4985 struct gpu_stmt_access **next_access)
4987 int i;
4989 for (i = 0; i < expr->n_arg; ++i)
4990 next_access = expr_extract_accesses(expr->args[i],
4991 next_access);
4993 if (expr->type == pet_expr_access)
4994 next_access = expr_extract_access(expr, next_access);
4996 return next_access;
4999 static void pet_stmt_extract_accesses(struct gpu_stmt *stmt)
5001 struct gpu_stmt_access **next_access = &stmt->accesses;
5003 stmt->accesses = NULL;
5004 expr_extract_accesses(stmt->stmt->body, next_access);
5007 /* Return an array of gpu_stmt representing the statements in "scop".
5009 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
5010 __isl_keep isl_set *context)
5012 int i;
5013 struct gpu_stmt *stmts;
5015 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->n_stmt);
5016 if (!stmts)
5017 return NULL;
5019 for (i = 0; i < scop->n_stmt; ++i) {
5020 struct gpu_stmt *s = &stmts[i];
5022 s->id = isl_set_get_tuple_id(scop->stmts[i]->domain);
5023 s->stmt = scop->stmts[i];
5024 pet_stmt_extract_accesses(s);
5027 return stmts;
5030 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
5032 static __isl_give isl_printer *print_gpu(__isl_take isl_printer *p, void *user)
5034 struct gpu_gen *gen = user;
5036 return gen->print(p, gen->prog, gen->tree, gen->print_user);
5039 /* Generate CUDA code for "scop" and print it to "p".
5040 * After generating an AST for the transformed scop as explained below,
5041 * we call "gen->print" to print the AST in the desired output format
5042 * to "p".
5044 * If it turns out that it does not make sense to generate GPU code,
5045 * then we generate CPU code instead.
5047 * The GPU code is generated in a context where at least one
5048 * statement instance is executed. The corresponding guard (if any) is printed
5049 * around the entire generated GPU code, except for the declaration
5050 * of the arrays that are visible outside of the scop and that therefore
5051 * cannot be declared inside the body of any possible guard.
5053 * We first compute a schedule that respects the dependences
5054 * of the original program and select the outermost band
5055 * of tilable dimensions that has at least one parallel loop.
5056 * We then have three blocks of dimensions
5058 * H B G
5060 * The tilable band "B" is first tiled according to "tile" sizes, resulting
5061 * in
5063 * H T P G
5065 * For each iteration of the T loop and for each array, we compute
5066 * the array elements accessed by that iteration, construct a rectangular
5067 * box around it and shift it to the origin. The result is used
5068 * as shared memory for the array.
5070 * We then split off at most 2 parallel loops from the T loops and
5071 * at most 3 parallel loops from the P loops
5073 * H T1 T2 P1 P2 G
5075 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
5076 * according to "grid"/"block" sizes.
5078 * H T1T T1P T2 P1T P1P P2 G
5080 * Finally, the T1P and P1P iterators are equated to the block and
5081 * thread dimensions respectively and so are effectively removed.
5082 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
5083 * are run on the GPU.
5085 * Code is generated in three stages. We first generate code for the
5086 * host (the H loops), with iterators h%d. Then, for each leaf node
5087 * of the resulting AST, we generate code for the shared loops (up to
5088 * and including T2), with iterators g%d and after equating the H loops
5089 * to h%d parameters and the T1P loops to the block dimensions.
5090 * Finally, we generate code for the remaining loops in a similar fashion.
5092 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
5093 struct gpu_gen *gen, struct ppcg_scop *scop,
5094 struct ppcg_options *options)
5096 struct gpu_prog *prog;
5097 isl_ctx *ctx;
5098 isl_set *context, *guard;
5100 if (!scop)
5101 return isl_printer_free(p);
5103 ctx = isl_printer_get_ctx(p);
5104 prog = gpu_prog_alloc(ctx, scop);
5105 if (!prog)
5106 return isl_printer_free(p);
5108 context = isl_set_copy(prog->context);
5109 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
5110 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
5112 gen->prog = prog;
5113 gen->any_parallelism = 0;
5114 compute_schedule(gen);
5116 if (!gen->any_parallelism) {
5117 isl_set_free(context);
5118 isl_set_free(guard);
5119 p = print_cpu(p, scop, options);
5120 } else {
5121 compute_copy_in_and_out(gen);
5122 gen->tree = generate_host_code(gen);
5123 p = ppcg_print_exposed_declarations(p, prog->scop);
5124 p = ppcg_print_guarded(p, guard, context, &print_gpu, gen);
5125 isl_ast_node_free(gen->tree);
5128 isl_union_map_free(gen->sched);
5130 gpu_prog_free(prog);
5132 return p;
5135 /* Wrapper around generate for use as a ppcg_transform callback.
5137 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
5138 struct ppcg_scop *scop, void *user)
5140 struct gpu_gen *gen = user;
5142 return generate(p, gen, scop, gen->options);
5145 /* Transform the code in the file called "input" by replacing
5146 * all scops by corresponding GPU code and write the results to "out".
5148 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
5149 struct ppcg_options *options,
5150 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
5151 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
5152 void *user), void *user)
5154 struct gpu_gen gen;
5155 int r;
5157 gen.ctx = ctx;
5158 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
5159 gen.options = options;
5160 gen.kernel_id = 0;
5161 gen.print = print;
5162 gen.print_user = user;
5164 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
5166 isl_union_map_free(gen.sizes);
5168 return r;
5171 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
5173 struct gpu_prog *prog;
5175 if (!scop)
5176 return NULL;
5178 prog = isl_calloc_type(ctx, struct gpu_prog);
5179 assert(prog);
5181 prog->ctx = ctx;
5182 prog->scop = scop;
5183 prog->context = isl_set_copy(scop->context);
5184 prog->n_stmts = scop->n_stmt;
5185 prog->stmts = extract_stmts(ctx, scop, prog->context);
5186 prog->read = isl_union_map_copy(scop->reads);
5187 prog->write = isl_union_map_copy(scop->writes);
5189 if (!prog->stmts)
5190 return gpu_prog_free(prog);
5192 if (collect_array_info(prog) < 0)
5193 return gpu_prog_free(prog);
5195 return prog;
5198 void *gpu_prog_free(struct gpu_prog *prog)
5200 if (!prog)
5201 return NULL;
5202 free_array_info(prog);
5203 free_stmts(prog->stmts, prog->n_stmts);
5204 isl_union_set_free(prog->copy_in);
5205 isl_union_set_free(prog->copy_out);
5206 isl_union_map_free(prog->read);
5207 isl_union_map_free(prog->write);
5208 isl_set_free(prog->context);
5209 free(prog);
5210 return NULL;