update pet for pet_scop_compute_outer_to_any
[ppcg.git] / gpu.c
blob3ff6a3e1d0ef9a4e8c0a1becf0542a5b754e256a
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
19 #include <isl/aff.h>
20 #include <isl/ilp.h>
21 #include <isl/flow.h>
22 #include <isl/band.h>
23 #include <isl/schedule.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
27 #include "cpu.h"
28 #include "gpu.h"
29 #include "schedule.h"
30 #include "ppcg_options.h"
31 #include "print.h"
33 /* The fields stride, shift and shift_map only contain valid information
34 * if shift != NULL.
35 * If so, they express that current index is such that if you add shift,
36 * then the result is always a multiple of stride.
37 * shift_map contains the mapping
39 * i -> (i + shift)/stride
41 * Let D represent the initial shared_len dimensions of the computed schedule.
42 * The spaces of "lb" and "shift" are of the form
44 * D -> [b]
46 * "shift_map" is of the form
48 * [D -> i] -> [D -> (i + shift(D))/stride]
50 struct gpu_array_bound {
51 isl_val *size;
52 isl_aff *lb;
54 isl_val *stride;
55 isl_aff *shift;
56 isl_basic_map *shift_map;
59 /* A tile of an array.
61 * n is the dimension of the array.
62 * bound is an array of size "n" representing the lower bound
63 * and size for each index.
65 * tiling maps a tile in the global array to the corresponding
66 * shared/private memory tile and is of the form
68 * { [D[i] -> A[a]] -> T[(a + shift(i))/stride - lb(i)] }
70 * where D represents the initial shared_len dimensions
71 * of the computed schedule.
73 struct gpu_array_tile {
74 int n;
75 struct gpu_array_bound *bound;
76 isl_multi_aff *tiling;
79 struct gpu_array_info;
81 /* A group of array references in a kernel that should be handled together.
82 * If private_tile is not NULL, then it is mapped to registers.
83 * Otherwise, if shared_tile is not NULL, it is mapped to shared memory.
84 * Otherwise, it is accessed from global memory.
86 struct gpu_array_ref_group {
87 /* The references in this group access this array. */
88 struct gpu_array_info *array;
89 /* Position of this group in the list of reference groups of array. */
90 int nr;
92 /* The following fields are use during the construction of the groups.
93 * access is the combined access relation relative to the shared
94 * memory tiling. In particular, the domain of the map corresponds
95 * to the first shared_len dimensions of the computed schedule.
96 * write is set if any access in the group is a write.
97 * exact_write is set if all writes are definite writes.
98 * slice is set if there is at least one access in the group
99 * that refers to more than one element
101 isl_map *access;
102 int write;
103 int exact_write;
104 int slice;
106 /* The shared memory tile, NULL if none. */
107 struct gpu_array_tile *shared_tile;
109 /* The private memory tile, NULL if none. */
110 struct gpu_array_tile *private_tile;
112 /* References in this group; point to elements of a linked list. */
113 int n_ref;
114 struct gpu_stmt_access **refs;
116 /* Last shared memory tile dimension that affects tile of this group. */
117 int last_shared;
120 struct gpu_gen {
121 isl_ctx *ctx;
122 struct ppcg_options *options;
124 /* Callback for printing of AST in appropriate format. */
125 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
126 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
127 struct gpu_types *types, void *user);
128 void *print_user;
130 struct gpu_prog *prog;
131 /* The generated AST. */
132 isl_ast_node *tree;
134 /* The sequence of types for which a definition has been printed. */
135 struct gpu_types types;
137 /* User specified tile, grid and block sizes for each kernel */
138 isl_union_map *sizes;
140 /* Effectively used tile, grid and block sizes for each kernel */
141 isl_union_map *used_sizes;
143 /* Identifier of current kernel. */
144 int kernel_id;
145 /* Pointer to the current kernel. */
146 struct ppcg_kernel *kernel;
147 /* Does the computed schedule exhibit any parallelism? */
148 int any_parallelism;
150 /* First tile dimension. */
151 int tile_first;
152 /* Number of tile dimensions. */
153 int tile_len;
154 /* Number of initial parallel loops among tile dimensions. */
155 int n_parallel;
157 /* Number of dimensions determining shared memory. */
158 int shared_len;
160 /* Number of rows in the untiled schedule. */
161 int untiled_len;
162 /* Number of rows in the tiled schedule. */
163 int tiled_len;
164 /* Number of rows in schedule after tiling/wrapping over threads. */
165 int thread_tiled_len;
167 /* Global untiled schedule. */
168 isl_union_map *sched;
169 /* Local (per kernel launch) tiled schedule. */
170 isl_union_map *tiled_sched;
171 /* Local schedule per shared memory tile loop iteration. */
172 isl_union_map *local_sched;
174 /* Local tiled schedule projected onto the shared tile loops and
175 * the loops that will be wrapped over the threads,
176 * with all shared tile loops parametrized.
178 isl_union_map *shared_sched;
179 /* Projects out the loops that will be wrapped over the threads
180 * from shared_sched.
182 isl_union_map *shared_proj;
184 /* A map that takes the range of shared_sched as input,
185 * wraps the appropriate loops over the threads and then projects
186 * out these loops.
188 isl_map *privatization;
190 /* A map from the shared memory tile loops and the thread indices
191 * (as parameters) to the set of accessed memory elements that
192 * will be accessed through private copies.
194 isl_union_map *private_access;
196 /* The schedule for the current private/shared access
197 * (within print_private_access or print_shared_access).
199 isl_map *copy_sched;
200 /* The array reference group corresponding to copy_sched. */
201 struct gpu_array_ref_group *copy_group;
203 /* Is any array in the current kernel marked force_private? */
204 int any_force_private;
206 /* First loop to unroll (or -1 if none) in the current part of the
207 * schedule.
209 int first_unroll;
211 int n_grid;
212 int n_block;
213 /* Note: in the input file, the sizes of the grid and the blocks
214 * are specified in the order x, y, z, but internally, the sizes
215 * are stored in reverse order, so that the last element always
216 * refers to the x dimension.
218 int grid_dim[2];
219 int block_dim[3];
220 int *tile_size;
223 /* Print the name of the local copy of a given group of array references.
225 static __isl_give isl_printer *print_array_name(__isl_take isl_printer *p,
226 struct gpu_array_ref_group *group)
228 int global = 0;
230 if (group->private_tile)
231 p = isl_printer_print_str(p, "private_");
232 else if (group->shared_tile)
233 p = isl_printer_print_str(p, "shared_");
234 else
235 global = 1;
236 p = isl_printer_print_str(p, group->array->name);
237 if (!global && group->array->n_group > 1) {
238 p = isl_printer_print_str(p, "_");
239 p = isl_printer_print_int(p, group->nr);
242 return p;
245 /* Collect all references to the given array and store pointers to them
246 * in array->refs.
248 * If the array contains structures, then there is no need to collect
249 * the references since we will not be computing any reference groups.
251 static void collect_references(struct gpu_prog *prog,
252 struct gpu_array_info *array)
254 int i;
255 int n;
257 if (array->has_compound_element)
258 return;
260 n = 0;
261 for (i = 0; i < prog->n_stmts; ++i) {
262 struct gpu_stmt *stmt = &prog->stmts[i];
263 struct gpu_stmt_access *access;
265 for (access = stmt->accesses; access; access = access->next) {
266 const char *name;
267 name = isl_map_get_tuple_name(access->access,
268 isl_dim_out);
269 if (name && !strcmp(array->name, name))
270 n++;
274 array->n_ref = n;
275 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
276 assert(array->refs);
278 n = 0;
279 for (i = 0; i < prog->n_stmts; ++i) {
280 struct gpu_stmt *stmt = &prog->stmts[i];
281 struct gpu_stmt_access *access;
283 for (access = stmt->accesses; access; access = access->next) {
284 const char *name;
285 name = isl_map_get_tuple_name(access->access,
286 isl_dim_out);
287 if (!name || strcmp(array->name, name))
288 continue;
290 array->refs[n++] = access;
295 /* Create a gpu_array_tile for an array of dimension "n_index".
297 static struct gpu_array_tile *create_tile(isl_ctx *ctx, int n_index)
299 int i;
300 struct gpu_array_tile *tile;
302 tile = isl_calloc_type(ctx, struct gpu_array_tile);
303 assert(tile);
305 tile->n = n_index;
307 tile->bound = isl_alloc_array(ctx, struct gpu_array_bound, n_index);
308 assert(tile->bound);
310 for (i = 0; i < n_index; ++i) {
311 tile->bound[i].size = NULL;
312 tile->bound[i].lb = NULL;
313 tile->bound[i].stride = NULL;
314 tile->bound[i].shift = NULL;
315 tile->bound[i].shift_map = NULL;
318 return tile;
321 static void *free_tile(struct gpu_array_tile *tile)
323 int j;
325 if (!tile)
326 return NULL;
328 for (j = 0; j < tile->n; ++j) {
329 isl_val_free(tile->bound[j].size);
330 isl_val_free(tile->bound[j].stride);
331 isl_aff_free(tile->bound[j].lb);
332 isl_aff_free(tile->bound[j].shift);
333 isl_basic_map_free(tile->bound[j].shift_map);
335 free(tile->bound);
336 isl_multi_aff_free(tile->tiling);
337 free(tile);
339 return NULL;
342 static struct pet_array *find_array(struct ppcg_scop *scop,
343 __isl_keep isl_set *accessed)
345 int i;
346 isl_id *id;
348 id = isl_set_get_tuple_id(accessed);
350 for (i = 0; i < scop->pet->n_array; ++i) {
351 isl_id *id_i;
353 id_i = isl_set_get_tuple_id(scop->pet->arrays[i]->extent);
354 isl_id_free(id_i);
355 if (id == id_i)
356 break;
358 isl_id_free(id);
360 return i < scop->pet->n_array ? scop->pet->arrays[i] : NULL;
363 /* Compute and return the extent of "array", taking into account the set of
364 * accessed elements.
366 * In particular, the extent in the outer dimension is taken
367 * from "accessed", while then extent in the remaing dimensions
368 * are taken from array->extent.
370 * The extent in the outer dimension cannot be taken from array->extent
371 * because that may be unbounded. Furthermore, even if it is bounded,
372 * it may be larger than the piece of the array that is being accessed.
374 static __isl_give isl_set *compute_extent(struct pet_array *array,
375 __isl_keep isl_set *accessed)
377 int n_index;
378 isl_id *id;
379 isl_set *outer;
380 isl_set *extent;
382 extent = isl_set_copy(array->extent);
384 n_index = isl_set_dim(accessed, isl_dim_set);
385 if (n_index == 0)
386 return extent;
388 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
389 outer = isl_set_copy(accessed);
390 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
391 extent = isl_set_flat_product(outer, extent);
392 id = isl_set_get_tuple_id(accessed);
393 extent = isl_set_set_tuple_id(extent, id);
395 return extent;
398 /* Is the array "array" being extracted a read-only scalar?
400 * That is, is "array" a scalar that is never possibly written to.
401 * An array containing structures is never considered to be a scalar.
403 static int is_read_only_scalar(struct gpu_array_info *array,
404 struct gpu_prog *prog)
406 isl_set *space;
407 isl_union_map *write;
408 int empty;
410 if (array->has_compound_element)
411 return 0;
412 if (array->n_index != 0)
413 return 0;
415 write = isl_union_map_copy(prog->may_write);
416 space = isl_set_universe(isl_space_copy(array->space));
417 write = isl_union_map_intersect_range(write,
418 isl_union_set_from_set(space));
419 empty = isl_union_map_is_empty(write);
420 isl_union_map_free(write);
422 return empty;
425 /* Compute bounds on the host arrays based on the accessed elements
426 * and collect all references to the array.
428 * If the array is zero-dimensional and does not contain structures,
429 * i.e., if the array is a scalar, we check whether it is read-only.
431 static int extract_array_info(__isl_take isl_set *array, void *user)
433 int i;
434 struct gpu_prog *prog = (struct gpu_prog *)user;
435 const char *name;
436 int n_index;
437 isl_pw_aff **bounds;
438 struct pet_array *pa;
439 struct gpu_array_info *info;
440 isl_set *extent;
442 info = &prog->array[prog->n_array];
443 prog->n_array++;
445 n_index = isl_set_dim(array, isl_dim_set);
446 name = isl_set_get_tuple_name(array);
447 bounds = isl_alloc_array(isl_set_get_ctx(array),
448 isl_pw_aff *, n_index);
449 if (!bounds)
450 goto error;
452 info->space = isl_set_get_space(array);
453 info->name = strdup(name);
454 info->n_index = n_index;
455 info->bound = bounds;
456 info->linearize = prog->scop->options->linearize_device_arrays;
458 pa = find_array(prog->scop, array);
459 if (!pa)
460 isl_die(isl_set_get_ctx(array), isl_error_internal,
461 "unable to find array in scop", goto error);
463 info->type = strdup(pa->element_type);
464 info->size = pa->element_size;
465 info->local = pa->declared && !pa->exposed;
466 info->has_compound_element = pa->element_is_record;
467 info->read_only_scalar = is_read_only_scalar(info, prog);
469 extent = compute_extent(pa, array);
470 info->extent = extent;
471 for (i = 0; i < n_index; ++i) {
472 isl_set *dom;
473 isl_local_space *ls;
474 isl_aff *one;
475 isl_pw_aff *bound;
477 dom = isl_set_copy(extent);
478 dom = isl_set_project_out(dom, isl_dim_set, i + 1,
479 n_index - (i + 1));
480 dom = isl_set_project_out(dom, isl_dim_set, 0, i);
481 if (!isl_set_dim_has_upper_bound(dom, isl_dim_set, 0)) {
482 fprintf(stderr, "unable to determine extent of '%s' "
483 "in dimension %d\n", info->name, i);
484 dom = isl_set_free(dom);
486 bound = isl_set_dim_max(dom, 0);
487 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
488 ls = isl_local_space_from_space(isl_set_get_space(dom));
489 one = isl_aff_zero_on_domain(ls);
490 one = isl_aff_add_constant_si(one, 1);
491 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
492 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
494 bounds[i] = bound;
495 if (!isl_pw_aff_is_cst(bound))
496 info->linearize = 1;
499 collect_references(prog, info);
501 isl_set_free(array);
502 return 0;
503 error:
504 isl_set_free(array);
505 return -1;
508 /* Compute a mapping from all outer arrays (of structs) in scop
509 * to their innermost arrays.
511 * In particular, for each array of a primitive type, the result
512 * contains the identity mapping on that array.
513 * For each array involving member accesses, the result
514 * contains a mapping from the elements of the outer array of structs
515 * to all corresponding elements of the innermost nested arrays.
517 static __isl_give isl_union_map *compute_to_inner(struct ppcg_scop *scop)
519 int i;
520 isl_union_map *to_inner;
522 to_inner = isl_union_map_empty(isl_set_get_space(scop->context));
524 for (i = 0; i < scop->pet->n_array; ++i) {
525 struct pet_array *array = scop->pet->arrays[i];
526 isl_set *set;
527 isl_map *map;
529 if (array->element_is_record)
530 continue;
532 set = isl_set_copy(array->extent);
533 map = isl_set_identity(isl_set_copy(set));
535 while (set && isl_set_is_wrapping(set)) {
536 isl_id *id;
537 isl_map *wrapped;
539 id = isl_set_get_tuple_id(set);
540 wrapped = isl_set_unwrap(set);
541 wrapped = isl_map_domain_map(wrapped);
542 wrapped = isl_map_set_tuple_id(wrapped, isl_dim_in, id);
543 map = isl_map_apply_domain(map, wrapped);
544 set = isl_map_domain(isl_map_copy(map));
547 map = isl_map_gist_domain(map, set);
549 to_inner = isl_union_map_add_map(to_inner, map);
552 return to_inner;
555 /* Remove independence from the order constraints "order" on array "array".
556 * Since the pairs of iterations in the filter relation of an independence
557 * are guaranteed to be completely independent by the user, there is
558 * no need to ensure that live ranges are ordered along thong pairs.
559 * We make an exception for local variables, though, as the independence
560 * guarantee does not apply to those.
562 * The order constraints are used in two places.
563 * Those on scalars are used in check_scalar_live_ranges to check if
564 * we need to force the scalar to be private. Any non-local scalar
565 * should not be forced scalar if it only appears in independent loops.
566 * Those on non-scalars are added to the coincidence constraints
567 * in compute_schedule because we do not support any array expansion.
568 * Accesses to non-local arrays should not prevent a loop from being
569 * considered coincident so we should indeed remove those constraints
570 * from the order constraints.
572 static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
573 struct gpu_array_info *array, __isl_take isl_union_map *order)
575 int i;
577 for (i = 0; i < prog->scop->pet->n_independence; ++i) {
578 struct pet_independence *pi = prog->scop->pet->independences[i];
579 if (isl_union_set_contains(pi->local, array->space))
580 continue;
582 order = isl_union_map_subtract(order,
583 isl_union_map_copy(pi->filter));
586 return order;
589 /* For each array in "prog", store the (untagged) order dependences
590 * derived from the array in array->dep_order.
591 * In particular, consider all references that access the given array
592 * and take the order dependences that have one of these references
593 * as source. (Since an order dependence relates two references to
594 * the same array, the target of these order dependences will also
595 * be one of these references.)
596 * Additionally, store the union of these array->dep_order relations
597 * for all non-scalar arrays in prog->array_order.
599 void collect_order_dependences(struct gpu_prog *prog)
601 int i;
602 isl_space *space;
603 isl_union_map *accesses;
605 space = isl_union_map_get_space(prog->read);
606 prog->array_order = isl_union_map_empty(space);
608 accesses = isl_union_map_copy(prog->scop->tagged_reads);
609 accesses = isl_union_map_union(accesses,
610 isl_union_map_copy(prog->scop->tagged_may_writes));
611 accesses = isl_union_map_universe(accesses);
612 accesses = isl_union_map_apply_range(accesses,
613 isl_union_map_copy(prog->to_outer));
615 for (i = 0; i < prog->n_array; ++i) {
616 struct gpu_array_info *array = &prog->array[i];
617 isl_set *set;
618 isl_union_set *uset;
619 isl_union_map *order;
621 set = isl_set_universe(isl_space_copy(array->space));
622 uset = isl_union_set_from_set(set);
623 uset = isl_union_map_domain(
624 isl_union_map_intersect_range(isl_union_map_copy(accesses),
625 uset));
626 order = isl_union_map_copy(prog->scop->tagged_dep_order);
627 order = isl_union_map_intersect_domain(order, uset);
628 order = isl_union_map_zip(order);
629 order = isl_union_set_unwrap(isl_union_map_domain(order));
630 order = remove_independences(prog, array, order);
631 array->dep_order = order;
633 if (gpu_array_is_scalar(array))
634 continue;
636 prog->array_order = isl_union_map_union(prog->array_order,
637 isl_union_map_copy(array->dep_order));
640 isl_union_map_free(accesses);
643 /* Construct a gpu_array_info for each array possibly accessed by "prog" and
644 * collect them in prog->array.
646 * If there are any member accesses involved, then they are first mapped
647 * to the outer arrays of structs.
649 * If we are allowing live range reordering, then also set
650 * the dep_order field. Otherwise leave it NULL.
652 static int collect_array_info(struct gpu_prog *prog)
654 int r;
655 isl_union_set *arrays;
657 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
658 arrays = isl_union_set_union(arrays,
659 isl_union_map_range(isl_union_map_copy(prog->may_write)));
661 arrays = isl_union_set_apply(arrays,
662 isl_union_map_copy(prog->to_outer));
664 arrays = isl_union_set_coalesce(arrays);
666 prog->n_array = isl_union_set_n_set(arrays);
667 prog->array = isl_calloc_array(prog->ctx,
668 struct gpu_array_info, prog->n_array);
669 assert(prog->array);
670 prog->n_array = 0;
671 r = isl_union_set_foreach_set(arrays, &extract_array_info, prog);
672 isl_union_set_free(arrays);
674 if (prog->scop->options->live_range_reordering)
675 collect_order_dependences(prog);
677 return r;
680 static void free_array_info(struct gpu_prog *prog)
682 int i, j;
684 for (i = 0; i < prog->n_array; ++i) {
685 int n_index = prog->array[i].n_index;
686 free(prog->array[i].type);
687 free(prog->array[i].name);
688 for (j = 0; j < n_index; ++j)
689 isl_pw_aff_free(prog->array[i].bound[j]);
690 isl_space_free(prog->array[i].space);
691 isl_set_free(prog->array[i].extent);
692 free(prog->array[i].bound);
693 free(prog->array[i].refs);
694 isl_union_map_free(prog->array[i].dep_order);
696 free(prog->array);
699 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
700 * as an array or through a pointer reference, but as a single data element.
701 * At the moment, scalars are represented as zero-dimensional arrays.
702 * A zero-dimensional array containing structures is not considered
703 * to be a scalar.
705 int gpu_array_is_scalar(struct gpu_array_info *array)
707 return !array->has_compound_element && array->n_index == 0;
710 /* Is "array" a read-only scalar?
712 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
714 return array->read_only_scalar;
717 /* Return the set of parameter values for which the array has a positive
718 * size in all dimensions.
719 * If the sizes are only valid for some parameter values, then those
720 * constraints are also taken into account.
722 __isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
724 int i;
725 isl_space *space;
726 isl_set *guard;
728 space = isl_space_params(isl_space_copy(array->space));
729 guard = isl_set_universe(space);
731 for (i = 0; i < array->n_index; ++i) {
732 isl_pw_aff *bound;
733 isl_set *guard_i, *zero;
735 bound = isl_pw_aff_copy(array->bound[i]);
736 guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
737 zero = isl_pw_aff_zero_set(bound);
738 guard_i = isl_set_subtract(guard_i, zero);
739 guard = isl_set_intersect(guard, guard_i);
742 return guard;
745 /* Internal data structure for extract_size_of_type.
746 * "type" specifies the name of the space that we want to extract.
747 * "res" is used to store the subset of that space.
749 struct ppcg_extract_size_data {
750 const char *type;
751 isl_set *res;
754 /* This function is called for each set in a union_set.
755 * If the name of the set matches data->type, we store the
756 * set in data->res.
758 static int extract_size_of_type(__isl_take isl_set *size, void *user)
760 struct ppcg_extract_size_data *data = user;
761 const char *name;
763 name = isl_set_get_tuple_name(size);
764 if (name && !strcmp(name, data->type)) {
765 data->res = size;
766 return -1;
769 isl_set_free(size);
770 return 0;
773 /* Given a union map { kernel[i] -> *[...] },
774 * return the range in the space called "type" for the kernel with
775 * sequence number "id".
777 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
778 const char *type, int id)
780 isl_space *space;
781 isl_set *dom;
782 isl_union_set *local_sizes;
783 struct ppcg_extract_size_data data = { type, NULL };
785 if (!sizes)
786 return NULL;
788 space = isl_union_map_get_space(sizes);
789 space = isl_space_set_from_params(space);
790 space = isl_space_add_dims(space, isl_dim_set, 1);
791 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
792 dom = isl_set_universe(space);
793 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
795 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
796 isl_union_map_copy(sizes));
797 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
798 isl_union_set_free(local_sizes);
799 return data.res;
802 /* Given a singleton set, extract the first (at most *len) elements
803 * of the single integer tuple into *sizes and update *len if needed.
805 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
807 int i;
808 int dim;
810 if (!set)
811 return;
813 dim = isl_set_dim(set, isl_dim_set);
814 if (dim < *len)
815 *len = dim;
817 for (i = 0; i < *len; ++i) {
818 isl_val *v;
820 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
821 assert(v);
823 sizes[i] = isl_val_get_num_si(v);
824 isl_val_free(v);
827 isl_set_free(set);
830 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
831 * if the option debug->dump_sizes is set.
833 static void set_used_sizes(struct gpu_gen *gen, const char *type, int id,
834 int *sizes, int len)
836 int i;
837 isl_space *space;
838 isl_map *map;
840 if (!gen->options->debug->dump_sizes)
841 return;
843 space = isl_union_map_get_space(gen->used_sizes);
844 space = isl_space_set_from_params(space);
845 space = isl_space_add_dims(space, isl_dim_set, 1);
846 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
847 space = isl_space_from_domain(space);
848 space = isl_space_add_dims(space, isl_dim_out, len);
849 space = isl_space_set_tuple_name(space, isl_dim_out, type);
851 map = isl_map_universe(space);
852 map = isl_map_fix_si(map, isl_dim_in, 0, id);
853 for (i = 0; i < len; ++i)
854 map = isl_map_fix_si(map, isl_dim_out, i, sizes[i]);
856 gen->used_sizes = isl_union_map_add_map(gen->used_sizes, map);
859 /* Extract user specified "tile" sizes from the "sizes" command line option,
860 * defaulting to option->tile_size in each dimension.
861 * Add the effectively used sizes to gen->used_sizes.
863 static void read_tile_sizes(struct gpu_gen *gen)
865 int n;
866 isl_set *size;
868 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
869 assert(gen->tile_size);
870 for (n = 0; n < gen->tile_len; ++n)
871 gen->tile_size[n] = gen->options->tile_size;
873 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
874 read_sizes_from_set(size, gen->tile_size, &gen->tile_len);
875 set_used_sizes(gen, "tile", gen->kernel_id,
876 gen->tile_size, gen->tile_len);
878 if (gen->n_parallel > gen->tile_len)
879 gen->n_parallel = gen->tile_len;
882 /* Extract user specified "block" sizes from the "sizes" command line option,
883 * after filling in some potentially useful defaults.
884 * Add the effectively used sizes to gen->used_sizes.
886 static void read_block_sizes(struct gpu_gen *gen)
888 int n;
889 isl_set *size;
891 n = gen->n_parallel;
892 gen->n_block = (n <= 3) ? n : 3;
893 switch (gen->n_block) {
894 case 1:
895 gen->block_dim[0] = 512;
896 break;
897 case 2:
898 gen->block_dim[0] = 32;
899 gen->block_dim[1] = 16;
900 break;
901 default:
902 gen->block_dim[0] = 32;
903 gen->block_dim[1] = 4;
904 gen->block_dim[2] = 4;
905 break;
908 size = extract_sizes(gen->sizes, "block", gen->kernel_id);
909 read_sizes_from_set(size, gen->block_dim, &gen->n_block);
910 set_used_sizes(gen, "block", gen->kernel_id,
911 gen->block_dim, gen->n_block);
914 /* Extract user specified "grid" sizes from the "sizes" command line option,
915 * after filling in some potentially useful defaults.
916 * Add the effectively used sizes to gen->used_sizes.
918 static void read_grid_sizes(struct gpu_gen *gen)
920 int n = gen->n_parallel;
921 isl_set *size;
923 gen->n_grid = (n <= 2) ? n : 2;
924 switch (gen->n_grid) {
925 case 1:
926 gen->grid_dim[0] = 32768;
927 break;
928 default:
929 gen->grid_dim[0] = 256;
930 gen->grid_dim[1] = 256;
931 break;
934 size = extract_sizes(gen->sizes, "grid", gen->kernel_id);
935 read_sizes_from_set(size, gen->grid_dim, &gen->n_grid);
936 set_used_sizes(gen, "grid", gen->kernel_id, gen->grid_dim, gen->n_grid);
939 /* Extract user specified sizes from the "sizes" command line option
940 * after filling in some potentially useful defaults.
942 static void read_sizes(struct gpu_gen *gen)
944 read_tile_sizes(gen);
945 read_block_sizes(gen);
946 read_grid_sizes(gen);
949 static void *free_stmts(struct gpu_stmt *stmts, int n)
951 int i;
953 if (!stmts)
954 return NULL;
956 for (i = 0; i < n; ++i) {
957 struct gpu_stmt_access *access, *next;
959 for (access = stmts[i].accesses; access; access = next) {
960 next = access->next;
961 isl_id_free(access->ref_id);
962 isl_map_free(access->access);
963 isl_map_free(access->tagged_access);
964 free(access);
967 isl_id_free(stmts[i].id);
969 free(stmts);
971 return NULL;
974 /* Construct a map from a domain of dimensionality "len"
975 * to a domain of dimensionality "len" + "tile_len" that tiles
976 * the "tile_len" coordinates starting at "first".
977 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
978 * "dim" prescribes the parameters.
980 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
981 int first, int tile_len, int *tile_size)
983 int i;
984 isl_basic_map *bmap;
985 isl_constraint *c;
986 isl_local_space *ls;
988 dim = isl_space_add_dims(dim, isl_dim_in, len);
989 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
990 bmap = isl_basic_map_universe(isl_space_copy(dim));
991 ls = isl_local_space_from_space(dim);
993 for (i = 0; i < len - tile_len; ++i) {
994 int j = i < first ? i : i + tile_len;
995 int k = i < first ? i : i + 2 * tile_len;
997 c = isl_equality_alloc(isl_local_space_copy(ls));
998 c = isl_constraint_set_coefficient_si(c, isl_dim_in, j, -1);
999 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
1000 bmap = isl_basic_map_add_constraint(bmap, c);
1003 for (i = 0; i < tile_len; ++i) {
1004 c = isl_equality_alloc(isl_local_space_copy(ls));
1005 c = isl_constraint_set_coefficient_si(c, isl_dim_in,
1006 first + i, -1);
1007 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
1008 first + i, tile_size[i]);
1009 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
1010 first + i + tile_len, 1);
1011 bmap = isl_basic_map_add_constraint(bmap, c);
1013 c = isl_inequality_alloc(isl_local_space_copy(ls));
1014 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
1015 first + i + tile_len, 1);
1016 bmap = isl_basic_map_add_constraint(bmap, c);
1018 c = isl_inequality_alloc(isl_local_space_copy(ls));
1019 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
1020 first + i + tile_len, -1);
1021 c = isl_constraint_set_constant_si(c, tile_size[i] - 1);
1022 bmap = isl_basic_map_add_constraint(bmap, c);
1025 isl_local_space_free(ls);
1027 return isl_map_from_basic_map(bmap);
1030 /* Construct a map from a domain of dimensionality "len"
1031 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
1032 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
1033 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
1034 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
1035 * that are projected out at the end.
1036 * "dim" prescribes the parameters.
1038 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
1039 int first, int wrap_len, int *wrap_size)
1041 int i;
1042 isl_basic_map *bmap;
1043 isl_constraint *c;
1044 isl_local_space *ls;
1046 dim = isl_space_add_dims(dim, isl_dim_in, len);
1047 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
1048 bmap = isl_basic_map_universe(isl_space_copy(dim));
1049 ls = isl_local_space_from_space(dim);
1051 for (i = 0; i < len; ++i) {
1052 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
1054 c = isl_equality_alloc(isl_local_space_copy(ls));
1055 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
1056 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
1057 bmap = isl_basic_map_add_constraint(bmap, c);
1060 for (i = 0; i < wrap_len; ++i) {
1061 c = isl_equality_alloc(isl_local_space_copy(ls));
1062 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
1063 first + i, -1);
1064 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
1065 first + wrap_len + i, 1);
1066 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
1067 first + 2 * wrap_len + i, wrap_size[i]);
1068 bmap = isl_basic_map_add_constraint(bmap, c);
1070 c = isl_inequality_alloc(isl_local_space_copy(ls));
1071 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
1072 first + wrap_len + i, 1);
1073 bmap = isl_basic_map_add_constraint(bmap, c);
1075 c = isl_inequality_alloc(isl_local_space_copy(ls));
1076 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
1077 first + wrap_len + i, -1);
1078 c = isl_constraint_set_constant_si(c, wrap_size[i] - 1);
1079 bmap = isl_basic_map_add_constraint(bmap, c);
1082 isl_local_space_free(ls);
1084 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
1085 first + 2 * wrap_len, wrap_len);
1087 return isl_map_from_basic_map(bmap);
1090 /* Add "n" parameters named prefix%d.
1092 static __isl_give isl_set *add_params( __isl_take isl_set *set,
1093 int n, const char *prefix)
1095 int i;
1096 unsigned nparam;
1097 char name[20];
1099 nparam = isl_set_dim(set, isl_dim_param);
1100 set = isl_set_add_dims(set, isl_dim_param, n);
1102 for (i = 0; i < n; ++i) {
1103 snprintf(name, sizeof(name), "%s%d", prefix, i);
1104 set = isl_set_set_dim_name(set, isl_dim_param,
1105 nparam + i, name);
1108 return set;
1111 /* Equate the "n" dimensions of "set" starting at "first" to
1112 * freshly created parameters named prefix%d.
1114 static __isl_give isl_set *parametrize(__isl_take isl_set *set,
1115 int first, int n, const char *prefix)
1117 int i;
1118 unsigned nparam;
1120 nparam = isl_set_dim(set, isl_dim_param);
1122 set = add_params(set, n, prefix);
1124 for (i = 0; i < n; ++i)
1125 set = isl_set_equate(set, isl_dim_param, nparam + i,
1126 isl_dim_set, first + i);
1128 return set;
1131 /* Given a parameter space "space", create a set of dimension "len"
1132 * of which the "n" dimensions starting at "first" are equated to
1133 * freshly created parameters named prefix%d.
1135 static __isl_give isl_set *parametrization(__isl_take isl_space *space,
1136 int len, int first, int n, const char *prefix)
1138 isl_set *set;
1140 space = isl_space_set_from_params(space);
1141 space = isl_space_add_dims(space, isl_dim_set, len);
1142 set = isl_set_universe(space);
1144 return parametrize(set, first, n, prefix);
1147 /* Tile the B loops over the tile sizes and then tile/wrap
1148 * the T1 loops over the blocks.
1150 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
1151 __isl_take isl_union_map *sched)
1153 isl_space *dim;
1154 isl_map *tiling, *block_tiling;
1156 dim = isl_union_map_get_space(sched);
1157 tiling = tile(isl_space_copy(dim), gen->untiled_len,
1158 gen->tile_first, gen->tile_len, gen->tile_size);
1160 if (gen->options->wrap)
1161 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
1162 gen->tile_first, gen->n_grid, gen->grid_dim);
1163 else
1164 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
1165 gen->tile_first, gen->n_grid, gen->grid_dim);
1167 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
1169 tiling = isl_map_apply_range(tiling, block_tiling);
1171 sched = isl_union_map_apply_range(sched,
1172 isl_union_map_from_map(tiling));
1174 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
1176 return sched;
1179 /* Equate the "T1P" iterators in the tiled schedule "sched"
1180 * to the block dimensions.
1182 static __isl_give isl_union_map *parametrize_tiled_schedule(
1183 struct gpu_gen *gen, __isl_take isl_union_map *sched)
1185 isl_space *dim;
1186 isl_set *par;
1188 dim = isl_union_map_get_space(sched);
1189 par = parametrization(dim, gen->tiled_len,
1190 gen->tile_first + gen->n_grid, gen->n_grid, "b");
1191 sched = isl_union_map_intersect_range(sched,
1192 isl_union_set_from_set(par));
1194 return sched;
1197 /* Tile/wrap the P1 loops over the threads.
1199 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
1200 __isl_take isl_union_map *sched)
1202 isl_space *dim;
1203 isl_map *tiling;
1204 isl_set *par;
1206 dim = isl_union_map_get_space(sched);
1208 if (gen->options->wrap)
1209 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
1210 gen->shared_len, gen->n_block, gen->block_dim);
1211 else
1212 tiling = tile(isl_space_copy(dim), gen->tiled_len,
1213 gen->shared_len, gen->n_block, gen->block_dim);
1214 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
1216 sched = isl_union_map_apply_range(sched,
1217 isl_union_map_from_map(tiling));
1219 par = parametrization(dim, gen->thread_tiled_len,
1220 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
1221 gen->n_block, "t");
1222 sched = isl_union_map_intersect_range(sched,
1223 isl_union_set_from_set(par));
1225 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
1227 return sched;
1230 /* If the user asked for it, scale the shared memory tile loops
1231 * (T1T and T2) of "sched" by gen->tile_size[i].
1232 * If we are not performing "wrapping", then additionally scale the T1P
1233 * loops by gen->grid_dim[i].
1235 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
1236 __isl_take isl_union_map *sched)
1238 int i;
1239 isl_space *dim;
1240 isl_basic_map *scale;
1241 isl_constraint *c;
1242 isl_local_space *ls;
1244 if (!gen->options->scale_tile_loops)
1245 return sched;
1247 dim = isl_union_map_get_space(sched);
1248 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
1249 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
1250 scale = isl_basic_map_universe(isl_space_copy(dim));
1251 ls = isl_local_space_from_space(dim);
1253 for (i = 0; i < gen->tiled_len; ++i) {
1254 int f = 1;
1256 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
1257 f = gen->tile_size[i - gen->tile_first];
1258 if (!gen->options->wrap)
1259 f *= gen->grid_dim[i - gen->tile_first];
1260 } else if (i >= gen->tile_first + gen->n_grid &&
1261 i < gen->tile_first + gen->n_grid + gen->tile_len) {
1262 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
1265 c = isl_equality_alloc(isl_local_space_copy(ls));
1266 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1267 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1268 scale = isl_basic_map_add_constraint(scale, c);
1271 isl_local_space_free(ls);
1273 sched = isl_union_map_apply_range(sched,
1274 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1276 return sched;
1279 /* If we are not performing "wrapping" and if the user asked for it,
1280 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
1282 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
1283 __isl_take isl_union_map *sched)
1285 int i;
1286 isl_space *dim;
1287 isl_basic_map *scale;
1288 isl_constraint *c;
1289 isl_local_space *ls;
1291 if (gen->options->wrap)
1292 return sched;
1293 if (!gen->options->scale_tile_loops)
1294 return sched;
1296 dim = isl_union_map_get_space(sched);
1297 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
1298 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
1299 scale = isl_basic_map_universe(isl_space_copy(dim));
1300 ls = isl_local_space_from_space(dim);
1302 for (i = 0; i < gen->thread_tiled_len; ++i) {
1303 int f = 1;
1305 if (i >= gen->shared_len &&
1306 i < gen->shared_len + gen->n_block)
1307 f = gen->block_dim[i - gen->shared_len];
1309 c = isl_equality_alloc(isl_local_space_copy(ls));
1310 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1311 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1312 scale = isl_basic_map_add_constraint(scale, c);
1315 isl_local_space_free(ls);
1317 sched = isl_union_map_apply_range(sched,
1318 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1320 return sched;
1323 /* If we are not performing "wrapping" and if the user asked for it,
1324 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1326 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
1327 __isl_take isl_union_map *sched, int len, int first, int n_tile)
1329 int i;
1330 isl_space *dim;
1331 isl_basic_map *scale;
1332 isl_constraint *c;
1333 isl_local_space *ls;
1335 if (gen->options->wrap)
1336 return sched;
1337 if (!gen->options->scale_tile_loops)
1338 return sched;
1340 dim = isl_union_map_get_space(sched);
1341 dim = isl_space_add_dims(dim, isl_dim_in, len);
1342 dim = isl_space_add_dims(dim, isl_dim_out, len);
1343 scale = isl_basic_map_universe(isl_space_copy(dim));
1344 ls = isl_local_space_from_space(dim);
1346 for (i = 0; i < len; ++i) {
1347 int f = 1;
1349 if (i >= first && i < first + n_tile)
1350 f = gen->kernel->block_dim[i - first];
1352 c = isl_equality_alloc(isl_local_space_copy(ls));
1353 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1354 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1355 scale = isl_basic_map_add_constraint(scale, c);
1358 isl_local_space_free(ls);
1360 sched = isl_union_map_apply_range(sched,
1361 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1363 return sched;
1366 /* Add "len" parameters p[i] called prefix%d,
1367 * with bounds to 0 <= p[i] < size[i].
1369 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1370 int len, int *size, const char *prefix)
1372 int i;
1373 unsigned nparam;
1374 isl_space *dim;
1375 isl_basic_set *bset;
1376 isl_constraint *c;
1377 isl_local_space *ls;
1378 char name[20];
1380 nparam = isl_set_dim(set, isl_dim_param);
1381 set = isl_set_add_dims(set, isl_dim_param, len);
1383 for (i = 0; i < len; ++i) {
1384 snprintf(name, sizeof(name), "%s%d", prefix, i);
1385 set = isl_set_set_dim_name(set, isl_dim_param,
1386 nparam + i, name);
1389 dim = isl_set_get_space(set);
1390 bset = isl_basic_set_universe(isl_space_copy(dim));
1391 ls = isl_local_space_from_space(dim);
1393 for (i = 0; i < len; ++i) {
1394 c = isl_inequality_alloc(isl_local_space_copy(ls));
1395 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1396 nparam + i, 1);
1397 bset = isl_basic_set_add_constraint(bset, c);
1399 c = isl_inequality_alloc(isl_local_space_copy(ls));
1400 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1401 nparam + i, -1);
1402 c = isl_constraint_set_constant_si(c, size[i] - 1);
1403 bset = isl_basic_set_add_constraint(bset, c);
1406 isl_local_space_free(ls);
1408 return isl_set_intersect(set, isl_set_from_basic_set(bset));
1411 /* Add "len" parameters p[i] called prefix%d and intersect "set"
1412 * with
1414 * { : 0 <= p[i] < size[i] }
1416 * or an overapproximation.
1418 static __isl_give isl_set *add_bounded_parameters_dynamic(
1419 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1420 const char *prefix)
1422 int i, len;
1423 unsigned nparam;
1424 isl_space *space;
1425 isl_local_space *ls;
1426 char name[20];
1428 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1429 nparam = isl_set_dim(set, isl_dim_param);
1430 set = isl_set_add_dims(set, isl_dim_param, len);
1432 for (i = 0; i < len; ++i) {
1433 snprintf(name, sizeof(name), "%s%d", prefix, i);
1434 set = isl_set_set_dim_name(set, isl_dim_param,
1435 nparam + i, name);
1438 space = isl_space_params(isl_set_get_space(set));
1439 ls = isl_local_space_from_space(space);
1440 for (i = 0; i < len; ++i) {
1441 isl_pw_aff *param, *size_i, *zero;
1442 isl_set *bound;
1444 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1445 isl_dim_param, nparam + i);
1447 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1448 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1449 bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
1450 set = isl_set_intersect_params(set, bound);
1452 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1453 bound = isl_pw_aff_ge_set(param, zero);
1454 set = isl_set_intersect_params(set, bound);
1456 isl_local_space_free(ls);
1458 return set;
1461 /* Construct a map from an access to group->array to the corresponding
1462 * shared/private memory tile.
1463 * The map is of the form
1465 * { [D[i] -> A[a]] -> T[t] }
1467 * where D represents the initial shared_len dimensions
1468 * of the computed schedule.
1470 static __isl_give isl_map *shift_access(struct gpu_array_ref_group *group)
1472 struct gpu_array_tile *tile;
1473 isl_multi_aff *tiling;
1475 tile = group->private_tile;
1476 if (!tile)
1477 tile = group->shared_tile;
1479 tiling = isl_multi_aff_copy(tile->tiling);
1481 return isl_map_from_multi_aff(tiling);
1484 /* Does "map" have an obviously fixed value at variable "pos" of "type"?
1486 static int map_plain_is_fixed(isl_map *map, enum isl_dim_type type,
1487 unsigned pos)
1489 isl_val *v;
1490 int fixed;
1492 v = isl_map_plain_get_val_if_fixed(map, type, pos);
1493 if (!v)
1494 return -1;
1495 fixed = isl_val_is_int(v);
1496 isl_val_free(v);
1498 return fixed;
1501 /* Given a schedule that iterates over all elements in a piece of an array,
1502 * perform tiling/wrapping over the threads.
1504 * In particular, we tile the final iterators so that the final thread
1505 * dimension runs over the final array dimension.
1506 * However, if those final iterators have only a single iteration,
1507 * we try to tile earlier iterators instead.
1509 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1510 __isl_take isl_map *sched)
1512 isl_space *dim;
1513 isl_union_map *usched;
1514 isl_map *tiling;
1515 isl_set *par;
1516 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1517 int n_tile;
1518 int first;
1520 n_tile = gen->kernel->n_block;
1521 if (n_tile > nvar) {
1522 int i;
1523 sched = isl_map_insert_dims(sched,
1524 isl_dim_out, 0, n_tile - nvar);
1525 for (i = 0; i < n_tile - nvar; ++i)
1526 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1527 nvar = n_tile;
1530 first = nvar - n_tile;
1532 for (; first > 0; first --)
1533 if (!map_plain_is_fixed(sched, isl_dim_out, first + n_tile - 1))
1534 break;
1536 dim = isl_map_get_space(sched);
1537 dim = isl_space_params(dim);
1538 if (gen->options->wrap)
1539 tiling = wrap(isl_space_copy(dim), nvar, first,
1540 n_tile, gen->kernel->block_dim);
1541 else
1542 tiling = tile(isl_space_copy(dim), nvar, first,
1543 n_tile, gen->kernel->block_dim);
1544 sched = isl_map_apply_range(sched, tiling);
1546 par = parametrization(dim, nvar + n_tile, first + n_tile, n_tile, "t");
1547 sched = isl_map_intersect_range(sched, par);
1549 usched = isl_union_map_from_map(sched);
1550 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1551 first, n_tile);
1552 sched = isl_map_from_union_map(usched);
1554 return sched;
1557 /* Return the union of all read (read = 1) and/or write (write = 1)
1558 * access relations in the group.
1560 static __isl_give isl_union_map *group_access_relation(
1561 struct gpu_array_ref_group *group, int read, int write)
1563 int i;
1564 isl_union_map *access;
1566 access = isl_union_map_empty(isl_map_get_space(group->access));
1567 for (i = 0; i < group->n_ref; ++i) {
1568 isl_map *map_i;
1570 if (!((read && group->refs[i]->read) ||
1571 (write && group->refs[i]->write)))
1572 continue;
1573 map_i = isl_map_copy(group->refs[i]->access);
1574 access = isl_union_map_union(access,
1575 isl_union_map_from_map(map_i));
1578 return access;
1581 /* Return the union of all tagged access relations in the group.
1583 static __isl_give isl_union_map *group_tagged_access_relation(
1584 struct gpu_array_ref_group *group)
1586 int i;
1587 isl_union_map *access;
1589 access = isl_union_map_empty(isl_map_get_space(group->access));
1590 for (i = 0; i < group->n_ref; ++i) {
1591 isl_map *map_i;
1593 map_i = isl_map_copy(group->refs[i]->tagged_access);
1594 access = isl_union_map_union(access,
1595 isl_union_map_from_map(map_i));
1598 return access;
1601 /* Return the extent of "array", recomputed from the bounds.
1602 * The recomputed extent may be simpler than the original extent.
1604 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
1606 int i;
1607 isl_id *id;
1608 isl_space *space;
1609 isl_local_space *ls;
1610 isl_set *extent;
1612 id = isl_set_get_tuple_id(array->extent);
1613 space = isl_set_get_space(array->extent);
1614 extent = isl_set_universe(isl_space_copy(space));
1615 ls = isl_local_space_from_space(space);
1616 for (i = 0; i < array->n_index; ++i) {
1617 isl_pw_aff *bound;
1618 isl_aff *aff;
1619 isl_pw_aff *index;
1620 isl_set *lt;
1622 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
1624 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1625 isl_dim_set, i);
1626 index = isl_pw_aff_from_aff(aff);
1627 bound = isl_pw_aff_copy(array->bound[i]);
1628 bound = isl_pw_aff_from_range(bound);
1629 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
1630 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
1631 isl_id_copy(id));
1632 lt = isl_pw_aff_lt_set(index, bound);
1633 extent = isl_set_intersect(extent, lt);
1635 isl_local_space_free(ls);
1636 isl_id_free(id);
1638 return extent;
1641 /* Return a map from the first shared_len dimensions of the computed
1642 * schedule to the array tile in
1643 * global memory that corresponds to the shared memory copy.
1645 * In particular, return a map
1647 * { D[i] -> A[a] }
1649 * with constraints
1651 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
1653 * and
1655 * 0 <= a <= array_size - 1 (2)
1657 * Note that if some stride has been detected (i.e., when
1658 * group->shared_tile->bound[i].shift is set), then a in (1) refers
1659 * to the shifted and scaled down version.
1661 * Constraints (1) are obtained by mapping the size constraints on the
1662 * shared/private memory tile back to the access relation.
1663 * Constraints (2) are obtained from the (recomputed) extent.
1665 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1667 int i;
1668 int n_index = group->array->n_index;
1669 isl_map *tile;
1670 isl_space *space;
1671 isl_set *local;
1672 isl_set *extent;
1674 space = isl_multi_aff_get_space(group->shared_tile->tiling);
1675 space = isl_space_range(space);
1676 local = isl_set_universe(space);
1677 for (i = 0; i < n_index; ++i) {
1678 isl_val *bound;
1680 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
1681 bound = isl_val_copy(group->shared_tile->bound[i].size);
1682 bound = isl_val_sub_ui(bound, 1);
1683 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
1685 local = isl_set_preimage_multi_aff(local,
1686 isl_multi_aff_copy(group->shared_tile->tiling));
1687 tile = isl_set_unwrap(local);
1688 extent = array_extent(group->array);
1689 tile = isl_map_intersect_range(tile, extent);
1691 return tile;
1694 /* Given a mapping "iterator_map" from the AST schedule to a domain,
1695 * return the corresponding mapping from the AST schedule to
1696 * to the first shared_len dimensions of the schedule computed by PPCG.
1698 static __isl_give isl_pw_multi_aff *compute_sched_to_shared(struct gpu_gen *gen,
1699 __isl_take isl_pw_multi_aff *iterator_map)
1701 isl_union_map *umap;
1702 isl_space *space;
1703 isl_map *map, *sched;;
1705 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
1706 space = isl_space_from_domain(space);
1707 space = isl_space_add_dims(space, isl_dim_out, gen->shared_len);
1709 umap = isl_union_map_copy(gen->shared_sched);
1710 umap = isl_union_map_apply_range(umap,
1711 isl_union_map_copy(gen->shared_proj));
1712 map = isl_union_map_extract_map(umap, space);
1713 isl_union_map_free(umap);
1715 sched = isl_map_preimage_domain_pw_multi_aff(map, iterator_map);
1716 sched = isl_map_detect_equalities(sched);
1718 return isl_pw_multi_aff_from_map(sched);
1721 /* Set unroll[j] if the input dimension j is involved in
1722 * the index expression represented by ma.
1724 static int check_unroll(__isl_take isl_set *set, __isl_take isl_multi_aff *ma,
1725 void *user)
1727 int i, j;
1728 int n_in = isl_multi_aff_dim(ma, isl_dim_in);
1729 int n_out = isl_multi_aff_dim(ma, isl_dim_out);
1730 int *unroll = user;
1732 for (i = 0; i < n_out; ++i) {
1733 isl_aff *aff;
1735 aff = isl_multi_aff_get_aff(ma, i);
1736 for (j = 0; j < n_in; ++j)
1737 if (isl_aff_involves_dims(aff, isl_dim_in, j, 1))
1738 unroll[j] = 1;
1739 isl_aff_free(aff);
1742 isl_set_free(set);
1743 isl_multi_aff_free(ma);
1744 return 0;
1747 /* Given an array pos mapping input dimensions to the corresponding
1748 * output dimension, construct the corresponding map.
1750 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1751 int *pos, int len)
1753 int i;
1754 isl_constraint *c;
1755 isl_basic_map *bmap;
1756 isl_local_space *ls;
1758 dim = isl_space_add_dims(dim, isl_dim_in, len);
1759 dim = isl_space_add_dims(dim, isl_dim_out, len);
1760 bmap = isl_basic_map_universe(isl_space_copy(dim));
1761 ls = isl_local_space_from_space(dim);
1763 for (i = 0; i < len; ++i) {
1764 c = isl_equality_alloc(isl_local_space_copy(ls));
1765 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i,
1766 -1);
1767 c = isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i],
1769 bmap = isl_basic_map_add_constraint(bmap, c);
1771 isl_local_space_free(ls);
1773 return isl_map_from_basic_map(bmap);
1776 /* Remove the private tiles from all array reference groups,
1777 * except for the groups of arrays that are marked force_private.
1779 static void remove_private_tiles(struct gpu_gen *gen)
1781 int i, j;
1783 for (i = 0; i < gen->prog->n_array; ++i) {
1784 struct gpu_array_info *array = &gen->prog->array[i];
1786 if (array->force_private)
1787 continue;
1789 for (j = 0; j < array->n_group; ++j) {
1790 struct gpu_array_ref_group *group = array->groups[j];
1792 group->private_tile = free_tile(group->private_tile);
1797 /* Find all loops involved in any of the index expressions for any of
1798 * the private accesses, move them innermost and then mark them as
1799 * requiring unrolling by setting gen->first_unroll.
1800 * The loops involved should all be parallel because of the checks
1801 * we performed in check_private_group_access. Moving them innermost
1802 * is therefore a valid transformation.
1804 * If any of the arrays are marked force_private, however, then
1805 * those loops may not be parallel with respect to the marked arrays.
1806 * If any of the loops would have to be moved innermost for the
1807 * (non forced) private accesses and if there are any force_private
1808 * arrays, then we revert the decision to map the selected arrays
1809 * to private memory. An alternative solution would be to expand
1810 * the force_private arrays.
1812 * Loops up to gen->shared_len are generated before the mapping to
1813 * threads is applied. They should therefore be ignored.
1815 * We compute the hidden equalities of the schedule first
1816 * since we will need them in our calls to isl_pw_multi_aff_from_map
1817 * and because we want to make sure that the same equalities
1818 * are also available to the code generator.
1820 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1821 __isl_take isl_union_map *sched)
1823 int i, j;
1824 int unroll[gen->thread_tiled_len];
1825 int perm[gen->thread_tiled_len];
1826 isl_space *dim;
1827 isl_map *permute;
1828 int len = gen->shared_len + gen->n_parallel + gen->n_block;
1830 gen->first_unroll = -1;
1832 sched = isl_union_map_detect_equalities(sched);
1833 for (i = 0; i < gen->thread_tiled_len; ++i)
1834 unroll[i] = 0;
1835 for (i = 0; i < gen->prog->n_array; ++i) {
1836 struct gpu_array_info *array = &gen->prog->array[i];
1838 for (j = 0; j < array->n_group; ++j) {
1839 isl_union_map *access;
1840 isl_map *acc;
1841 isl_pw_multi_aff *pma;
1843 if (!array->groups[j]->private_tile)
1844 continue;
1846 access = group_access_relation(array->groups[j], 1, 1);
1847 access = isl_union_map_apply_domain(access,
1848 isl_union_map_copy(sched));
1850 acc = isl_map_from_union_map(access);
1851 pma = isl_pw_multi_aff_from_map(acc);
1852 isl_pw_multi_aff_foreach_piece(pma,
1853 &check_unroll, unroll);
1855 isl_pw_multi_aff_free(pma);
1859 for (i = gen->shared_len; i < len; ++i)
1860 if (unroll[i])
1861 break;
1863 if (i >= len)
1864 return sched;
1866 for (i = len; i < gen->thread_tiled_len; ++i)
1867 if (unroll[i])
1868 return sched;
1870 if (gen->any_force_private) {
1871 remove_private_tiles(gen);
1872 return sched;
1875 j = 0;
1876 for (i = 0; i < gen->shared_len; ++i)
1877 perm[i] = j++;
1878 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1879 if (!unroll[i])
1880 perm[i] = j++;
1881 gen->first_unroll = j - gen->shared_len;
1882 for (i = gen->shared_len; i < len; ++i)
1883 if (unroll[i])
1884 perm[i] = j++;
1886 dim = isl_union_map_get_space(sched);
1887 permute = permutation(dim, perm, gen->thread_tiled_len);
1888 sched = isl_union_map_apply_range(sched,
1889 isl_union_map_from_map(permute));
1891 return sched;
1894 /* Given a constraint
1896 * a(p,i) + j = g f(e)
1898 * or -a(p,i) - j = g f(e) if sign < 0,
1899 * store a(p,i) in bound->shift and g (stride) in bound->stride.
1900 * a(p,i) is assumed to be an expression in only the parameters
1901 * and the input dimensions.
1903 static void extract_stride(__isl_keep isl_constraint *c,
1904 struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
1906 int i;
1907 isl_val *v;
1908 isl_space *space;
1909 unsigned nparam;
1910 unsigned nvar;
1911 isl_aff *aff;
1913 isl_val_free(bound->stride);
1914 bound->stride = isl_val_copy(stride);
1916 space = isl_constraint_get_space(c);
1917 space = isl_space_domain(space);
1919 nparam = isl_space_dim(space, isl_dim_param);
1920 nvar = isl_space_dim(space, isl_dim_set);
1922 v = isl_constraint_get_constant_val(c);
1923 if (sign < 0)
1924 v = isl_val_neg(v);
1925 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1926 aff = isl_aff_set_constant_val(aff, v);
1928 for (i = 0; i < nparam; ++i) {
1929 if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
1930 continue;
1931 v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
1932 if (sign < 0)
1933 v = isl_val_neg(v);
1934 aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
1937 for (i = 0; i < nvar; ++i) {
1938 if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
1939 continue;
1940 v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
1941 if (sign < 0)
1942 v = isl_val_neg(v);
1943 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
1946 bound->shift = aff;
1949 /* Given an equality constraint of a map with a single output dimension j,
1950 * check if the constraint is of the form
1952 * a(p,i) + j = g f(e)
1954 * with a(p,i) an expression in the parameters and input dimensions
1955 * and f(e) an expression in the existentially quantified variables.
1956 * If so, and if g is larger than any such g from a previously considered
1957 * constraint, then call extract_stride to record the stride information
1958 * in bound.
1960 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
1962 int i;
1963 isl_ctx *ctx;
1964 isl_val *v;
1965 unsigned n_div;
1966 struct gpu_array_bound *bound = user;
1968 ctx = isl_constraint_get_ctx(c);
1969 n_div = isl_constraint_dim(c, isl_dim_div);
1970 v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
1972 if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
1973 int s = isl_val_sgn(v);
1974 isl_val *stride = isl_val_zero(ctx);
1976 isl_val_free(v);
1977 for (i = 0; i < n_div; ++i) {
1978 v = isl_constraint_get_coefficient_val(c,
1979 isl_dim_div, i);
1980 stride = isl_val_gcd(stride, v);
1982 if (!isl_val_is_zero(stride) &&
1983 isl_val_gt(stride, bound->stride))
1984 extract_stride(c, bound, stride, s);
1986 isl_val_free(stride);
1987 } else
1988 isl_val_free(v);
1990 isl_constraint_free(c);
1991 return 0;
1994 /* Given contraints on an array index i, check if we can find
1995 * a shift a(p) and a stride g such that
1997 * a(p) + i = 0 mod g
1999 * If so, record the information in bound and apply the mapping
2000 * i -> (i + a(p))/g to the array index in bounds and return
2001 * the new constraints.
2002 * If not, simply return the original constraints.
2004 * If bounds is a subset of the space
2006 * D -> i
2008 * then the bound recorded in bound->shift is of the form
2010 * D -> s(D)
2012 * with s(D) equal to a(p) above.
2013 * The mapping recorded in bound->shift_map is of the form
2015 * [D -> i] -> [D -> (i + S(D))/g]
2017 * This mapping is computed as follows.
2018 * We first introduce "i" in the domain through precomposition
2019 * with [D -> i] -> D obtaining
2021 * [D -> i] -> s(D)
2023 * Adding [D -> i] -> i produces
2025 * [D -> i] -> i + s(D)
2027 * and the domain product with [D -> i] -> D yields
2029 * [D -> i] -> [D -> i + s(D)]
2031 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
2033 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
2034 __isl_take isl_basic_map *bounds)
2036 isl_space *space;
2037 isl_basic_map *hull;
2038 isl_basic_map *shift, *id, *bmap, *scale;
2039 isl_basic_set *bset;
2040 isl_aff *aff;
2042 bound->stride = NULL;
2044 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
2046 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
2048 isl_basic_map_free(hull);
2050 if (!bound->stride)
2051 return bounds;
2053 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
2054 space = isl_basic_map_get_space(bounds);
2055 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
2056 shift = isl_basic_map_apply_range(bmap, shift);
2057 space = isl_basic_map_get_space(bounds);
2058 id = isl_basic_map_range_map(isl_basic_map_universe(space));
2059 shift = isl_basic_map_sum(id, shift);
2060 space = isl_basic_map_get_space(bounds);
2061 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
2062 shift = isl_basic_map_range_product(id, shift);
2064 space = isl_space_domain(isl_basic_map_get_space(bounds));
2065 id = isl_basic_map_identity(isl_space_map_from_set(space));
2066 space = isl_space_range(isl_basic_map_get_space(bounds));
2067 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2068 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
2069 aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
2070 scale = isl_basic_map_from_aff(aff);
2071 scale = isl_basic_map_product(id, scale);
2073 bound->shift_map = isl_basic_map_apply_range(shift, scale);
2074 bmap = isl_basic_map_copy(bound->shift_map);
2075 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
2076 bounds = isl_basic_set_unwrap(bset);
2078 return bounds;
2081 /* Data used in compute_array_dim_size and compute_size_in_direction.
2083 * pos is the position of the variable representing the array index,
2084 * i.e., the variable for which want to compute the size. This variable
2085 * is also the last variable in the set.
2087 struct gpu_size_info {
2088 isl_basic_set *bset;
2089 struct gpu_array_bound *bound;
2090 int pos;
2093 /* Given a constraint from the basic set describing the bounds on
2094 * an array index, check if it is a lower bound, say m i >= b(x), and,
2095 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
2096 * upper bound. If so, and if this bound is smaller than any bound
2097 * derived from earlier constraints, set the size to this bound on
2098 * the expression and the lower bound to ceil(b(x)/m).
2100 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
2102 struct gpu_size_info *size = user;
2103 unsigned nparam;
2104 unsigned n_div;
2105 isl_val *v;
2106 isl_aff *aff;
2107 isl_aff *lb;
2109 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
2110 n_div = isl_constraint_dim(c, isl_dim_div);
2112 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
2113 !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
2114 isl_constraint_free(c);
2115 return 0;
2118 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
2119 aff = isl_aff_ceil(aff);
2121 lb = isl_aff_copy(aff);
2123 aff = isl_aff_neg(aff);
2124 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
2126 v = isl_basic_set_max_val(size->bset, aff);
2127 isl_aff_free(aff);
2129 if (isl_val_is_int(v)) {
2130 v = isl_val_add_ui(v, 1);
2131 if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
2132 isl_val_free(size->bound->size);
2133 size->bound->size = isl_val_copy(v);
2134 lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
2135 isl_aff_free(size->bound->lb);
2136 size->bound->lb = isl_aff_copy(lb);
2139 isl_val_free(v);
2140 isl_aff_free(lb);
2142 isl_constraint_free(c);
2144 return 0;
2147 /* Given a basic map "bounds" that maps parameters and input dimensions
2148 * to a single output dimension, look for an expression in the parameters
2149 * and input dimensions such that the range of the output dimension shifted
2150 * by this expression is a constant.
2152 * In particular, we currently only consider lower bounds on the output
2153 * dimension as candidate expressions.
2155 static int compute_array_dim_size(struct gpu_array_bound *bound,
2156 __isl_take isl_basic_map *bounds)
2158 struct gpu_size_info size;
2160 bounds = isl_basic_map_detect_equalities(bounds);
2161 bounds = check_stride(bound, bounds);
2163 bound->size = NULL;
2164 bound->lb = NULL;
2166 size.bound = bound;
2167 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
2168 size.bset = isl_basic_map_wrap(bounds);
2169 size.bset = isl_basic_set_flatten(size.bset);
2170 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
2171 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
2172 &size);
2173 isl_basic_set_free(size.bset);
2175 return bound->size ? 0 : -1;
2178 /* Check if we can find a memory tile for the given array
2179 * based on the given accesses, and if so, put the results in "tile".
2181 * We project the accesses on each index in turn and look for a parametric
2182 * offset such that the size is constant.
2184 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
2186 int i;
2188 for (i = 0; i < tile->n; ++i) {
2189 isl_map *access_i;
2190 isl_basic_map *hull;
2192 access_i = isl_map_copy(access);
2193 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
2194 access_i = isl_map_project_out(access_i, isl_dim_out,
2195 1, tile->n - (i + 1));
2196 access_i = isl_map_compute_divs(access_i);
2197 hull = isl_map_simple_hull(access_i);
2198 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
2199 return 0;
2202 return 1;
2205 /* Construct a map with input the shared tile loops and the loops that
2206 * will be wrapped around the threads that relates these later loops
2207 * to the thread indices and then projects them out.
2209 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
2211 isl_map *priv;
2212 isl_map *tiling;
2213 isl_map *proj;
2214 isl_set *par;
2215 isl_space *dim;
2217 dim = isl_union_map_get_space(gen->shared_sched);
2219 if (gen->options->wrap)
2220 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
2221 gen->shared_len, gen->n_block, gen->block_dim);
2222 else
2223 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
2224 gen->shared_len, gen->n_block, gen->block_dim);
2226 priv = tiling;
2228 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
2229 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
2230 gen->n_block, "t");
2232 priv = isl_map_align_params(priv, isl_set_get_space(par));
2233 priv = isl_map_intersect_range(priv, par);
2235 dim = isl_map_get_space(priv);
2236 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
2237 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
2238 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
2239 gen->shared_len);
2241 priv = isl_map_apply_range(priv, proj);
2243 return priv;
2246 /* Construct a map from domain_dim to domain_dim that increments
2247 * the dimension at position "pos" and leaves all other dimensions
2248 * constant.
2250 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
2252 int i;
2253 int len = isl_space_dim(domain_dim, isl_dim_set);
2254 isl_space *dim;
2255 isl_basic_map *next;
2256 isl_local_space *ls;
2258 dim = isl_space_map_from_set(domain_dim);
2259 next = isl_basic_map_universe(isl_space_copy(dim));
2260 ls = isl_local_space_from_space(dim);
2262 for (i = 0; i < len; ++i) {
2263 isl_constraint *c;
2265 c = isl_equality_alloc(isl_local_space_copy(ls));
2266 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
2267 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
2268 if (i == pos)
2269 c = isl_constraint_set_constant_si(c, 1);
2270 next = isl_basic_map_add_constraint(next, c);
2273 isl_local_space_free(ls);
2275 return isl_map_from_basic_map(next);
2278 /* Check if the given access is coalesced.
2279 * That is, check whether incrementing the dimension that will get
2280 * wrapped over the last thread index results in incrementing
2281 * the last array index.
2283 * This function is only called for access relations without reuse.
2285 static int access_is_coalesced(struct gpu_gen *gen,
2286 __isl_keep isl_union_map *access)
2288 isl_space *dim;
2289 isl_map *access_map;
2290 isl_map *next_thread_x;
2291 isl_map *next_element;
2292 isl_map *map;
2293 int coalesced;
2295 access = isl_union_map_copy(access);
2296 access = isl_union_map_apply_domain(access,
2297 isl_union_map_copy(gen->tiled_sched));
2298 access_map = isl_map_from_union_map(access);
2300 dim = isl_map_get_space(access_map);
2301 dim = isl_space_domain(dim);
2302 next_thread_x = next(dim, gen->shared_len + gen->n_block - 1);
2304 dim = isl_map_get_space(access_map);
2305 dim = isl_space_range(dim);
2306 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
2308 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
2309 map = isl_map_apply_range(map, access_map);
2311 coalesced = isl_map_is_subset(map, next_element);
2313 isl_map_free(next_element);
2314 isl_map_free(map);
2316 return coalesced;
2319 /* Given an access relation in terms of the first gen->shared_len + gen->n_block
2320 * dimensions of the computed schedule, check if it is bijective for
2321 * fixed values of the first gen->shared_len dimensions.
2322 * We perform this check by equating these dimensions to parameters.
2324 static int access_is_bijective(struct gpu_gen *gen, __isl_keep isl_map *access)
2326 int res;
2327 isl_set *par;
2328 isl_space *space;
2330 access = isl_map_copy(access);
2331 space = isl_space_params(isl_map_get_space(access));
2332 par = parametrization(space, gen->shared_len + gen->n_block,
2333 0, gen->shared_len, "s");
2334 access = isl_map_intersect_domain(access, par);
2335 res = isl_map_is_bijective(access);
2336 isl_map_free(access);
2338 return res;
2341 /* Look for the last shared tile loop that affects the offset of "tile"
2342 * and return the result.
2343 * If there is no such loop, then return the index of the loop
2344 * before the first shared tile loop, in particular gen->tile_first - 1.
2346 static int compute_tile_last_shared(struct gpu_gen *gen,
2347 struct gpu_array_tile *tile)
2349 int i, j;
2351 for (j = gen->shared_len - 1; j >= gen->tile_first; --j) {
2352 for (i = 0; i < tile->n; ++i) {
2353 isl_aff *lb;
2354 isl_aff *shift;
2356 lb = tile->bound[i].lb;
2357 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
2358 break;
2360 shift = tile->bound[i].shift;
2361 if (!shift)
2362 continue;
2363 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
2364 break;
2366 if (i < tile->n)
2367 break;
2370 return j;
2373 /* Look for the last shared tile loop that affects the offset of the
2374 * shared or private tile and store the result in group->last_shared.
2375 * If there is no such loop, then group->last_shared is set to a value
2376 * before the first shared tile loop, in particular gen->tile_first - 1.
2377 * If there is no tile defined on the array reference group,
2378 * then set group->last_shared to gen->shared_len - 1.
2380 static void set_last_shared(struct gpu_gen *gen,
2381 struct gpu_array_ref_group *group)
2383 struct gpu_array_tile *tile;
2385 group->last_shared = gen->shared_len - 1;
2387 tile = group->private_tile;
2388 if (!tile)
2389 tile = group->shared_tile;
2390 if (!tile)
2391 return;
2393 group->last_shared = compute_tile_last_shared(gen, tile);
2396 /* Compute a privatized copy of all access relations from reference groups that
2397 * are mapped to private memory and store the result in gen->privatization.
2399 * Read-only scalars and arrays containing structures are not mapped
2400 * to private memory.
2402 static void compute_private_access(struct gpu_gen *gen)
2404 int i, j;
2405 isl_union_map *private;
2407 if (!gen->options->use_private_memory)
2408 return;
2410 private = isl_union_map_empty(isl_union_map_get_space(gen->shared_sched));
2412 for (i = 0; i < gen->prog->n_array; ++i) {
2413 struct gpu_array_info *array = &gen->prog->array[i];
2415 if (gpu_array_is_read_only_scalar(array))
2416 continue;
2417 if (array->has_compound_element)
2418 continue;
2420 for (j = 0; j < array->n_group; ++j) {
2421 if (!array->groups[j]->private_tile)
2422 continue;
2424 private = isl_union_map_union(private,
2425 group_access_relation(array->groups[j], 1, 1));
2429 if (isl_union_map_is_empty(private))
2430 isl_union_map_free(private);
2431 else {
2432 isl_union_map *priv;
2434 private = isl_union_map_apply_domain(private,
2435 isl_union_map_copy(gen->shared_sched));
2436 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
2437 private = isl_union_map_apply_domain(private, priv);
2438 gen->private_access = private;
2442 /* Compute the size of the tile specified by "tile"
2443 * in number of elements and return the result.
2445 static __isl_give isl_val *tile_size(isl_ctx *ctx, struct gpu_array_tile *tile)
2447 int i;
2448 isl_val *size;
2450 size = isl_val_one(ctx);
2452 for (i = 0; i < tile->n; ++i)
2453 size = isl_val_mul(size, isl_val_copy(tile->bound[i].size));
2455 return size;
2458 /* If max_shared_memory is not set to infinity (-1), then make
2459 * sure that the total amount of shared memory required by the
2460 * array reference groups mapped to shared memory is no larger
2461 * than this maximum.
2463 * We apply a greedy approach and discard (keep in global memory)
2464 * those groups that would result in a total memory size that
2465 * is larger than the maximum.
2467 * This function should be called after any function that may
2468 * affect the decision on whether to place a reference group
2469 * in private, shared or global memory.
2471 static void check_shared_memory_bound(struct gpu_gen *gen)
2473 int i, j;
2474 isl_val *left, *size;
2476 if (gen->options->max_shared_memory < 0)
2477 return;
2479 left = isl_val_int_from_si(gen->ctx, gen->options->max_shared_memory);
2481 for (i = 0; i < gen->prog->n_array; ++i) {
2482 struct gpu_array_info *array = &gen->prog->array[i];
2484 for (j = 0; j < array->n_group; ++j) {
2485 struct gpu_array_ref_group *group;
2487 group = array->groups[j];
2488 if (group->private_tile)
2489 continue;
2490 if (!group->shared_tile)
2491 continue;
2493 size = tile_size(gen->ctx, group->shared_tile);
2494 size = isl_val_mul_ui(size, array->size);
2496 if (isl_val_le(size, left)) {
2497 left = isl_val_sub(left, size);
2498 continue;
2500 isl_val_free(size);
2502 group->shared_tile = free_tile(group->shared_tile);
2506 isl_val_free(left);
2509 /* Given a description of an array tile "tile" and the "space"
2511 * { D -> A }
2513 * where D represents the first shared_len schedule dimensions
2514 * and A represents the array, construct an isl_multi_aff
2516 * { [D[i] -> A[a]] -> A'[a'] }
2518 * with A' a scaled down copy of A according to the shifts and strides
2519 * in "tile". In particular,
2521 * a' = (a + shift(i))/stride
2523 * "insert_array" represents
2525 * { [D -> A] -> D }
2527 * and is used to insert A into the domain of functions that only
2528 * reference D.
2530 static __isl_give isl_multi_aff *strided_tile(
2531 struct gpu_array_tile *tile, __isl_keep isl_space *space,
2532 __isl_keep isl_multi_aff *insert_array)
2534 int i;
2535 isl_ctx *ctx;
2536 isl_multi_aff *shift;
2537 isl_multi_val *stride;
2538 isl_space *space2;
2539 isl_local_space *ls;
2540 isl_multi_aff *tiling;
2542 ctx = isl_space_get_ctx(space);
2543 space2 = isl_space_domain(isl_space_copy(space));
2544 ls = isl_local_space_from_space(space2);
2545 space2 = isl_space_range(isl_space_copy(space));
2546 stride = isl_multi_val_zero(space2);
2547 shift = isl_multi_aff_zero(isl_space_copy(space));
2549 for (i = 0; i < tile->n; ++i) {
2550 struct gpu_array_bound *bound = &tile->bound[i];
2551 isl_val *stride_i;
2552 isl_aff *shift_i;
2554 if (tile->bound[i].shift) {
2555 stride_i = isl_val_copy(bound->stride);
2556 shift_i = isl_aff_copy(bound->shift);
2557 } else {
2558 stride_i = isl_val_one(ctx);
2559 shift_i = isl_aff_zero_on_domain(
2560 isl_local_space_copy(ls));
2563 stride = isl_multi_val_set_val(stride, i, stride_i);
2564 shift = isl_multi_aff_set_aff(shift, i, shift_i);
2566 isl_local_space_free(ls);
2568 shift = isl_multi_aff_pullback_multi_aff(shift,
2569 isl_multi_aff_copy(insert_array));
2571 tiling = isl_multi_aff_range_map(isl_space_copy(space));
2572 tiling = isl_multi_aff_add(tiling, shift);
2573 tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
2575 return tiling;
2578 /* Compute a tiling for the array reference group "group".
2580 * The tiling is of the form
2582 * { [D[i] -> A[a]] -> T[t] }
2584 * where D represents the first shared_len schedule dimensions,
2585 * A represents the global array and T represents the shared or
2586 * private memory tile. The name of T is the name of the local
2587 * array.
2589 * If there is any stride in the accesses, then the mapping is
2591 * t = (a + shift(i))/stride - lb(i)
2593 * otherwise, it is simply
2595 * t = a - lb(i)
2597 static void compute_group_tiling(struct gpu_array_ref_group *group)
2599 int i;
2600 struct gpu_array_tile *tile;
2601 struct gpu_array_info *array = group->array;
2602 isl_space *space;
2603 isl_multi_aff *tiling, *lb, *insert_array;
2604 isl_printer *p;
2605 char *local_name;
2607 tile = group->private_tile;
2608 if (!tile)
2609 tile = group->shared_tile;
2610 if (!tile)
2611 return;
2613 space = isl_map_get_space(group->access);
2614 insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
2616 for (i = 0; i < tile->n; ++i)
2617 if (tile->bound[i].shift)
2618 break;
2620 if (i < tile->n)
2621 tiling = strided_tile(tile, space, insert_array);
2622 else
2623 tiling = isl_multi_aff_range_map(isl_space_copy(space));
2625 lb = isl_multi_aff_zero(space);
2626 for (i = 0; i < tile->n; ++i) {
2627 isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
2628 lb = isl_multi_aff_set_aff(lb, i, lb_i);
2630 lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
2632 tiling = isl_multi_aff_sub(tiling, lb);
2634 p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
2635 p = print_array_name(p, group);
2636 local_name = isl_printer_get_str(p);
2637 isl_printer_free(p);
2638 tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
2639 free(local_name);
2641 tile->tiling = tiling;
2644 /* Compute a tiling for all the array reference groups.
2646 static void compute_group_tilings(struct gpu_gen *gen)
2648 int i, j;
2650 for (i = 0; i < gen->prog->n_array; ++i) {
2651 struct gpu_array_info *array = &gen->prog->array[i];
2653 for (j = 0; j < array->n_group; ++j)
2654 compute_group_tiling(array->groups[j]);
2658 /* Fill up the groups array with singleton groups, i.e., one group
2659 * per reference, initializing the array, access, write, n_ref and refs fields.
2660 * In particular the access field is initialized to the scheduled
2661 * access relation of the array reference.
2663 * Return the number of elements initialized, i.e., the number of
2664 * active references in the current kernel.
2666 static int populate_array_references(struct gpu_array_info *array,
2667 __isl_keep isl_union_map *sched, struct gpu_array_ref_group **groups)
2669 int i;
2670 int n;
2671 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2673 n = 0;
2674 for (i = 0; i < array->n_ref; ++i) {
2675 isl_union_map *umap;
2676 isl_map *map;
2677 struct gpu_array_ref_group *group;
2678 struct gpu_stmt_access *access = array->refs[i];
2680 map = isl_map_copy(access->access);
2681 umap = isl_union_map_from_map(map);
2682 umap = isl_union_map_apply_domain(umap,
2683 isl_union_map_copy(sched));
2685 if (isl_union_map_is_empty(umap)) {
2686 isl_union_map_free(umap);
2687 continue;
2690 map = isl_map_from_union_map(umap);
2691 map = isl_map_detect_equalities(map);
2693 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2694 assert(group);
2695 group->array = array;
2696 group->access = map;
2697 group->write = access->write;
2698 group->exact_write = access->exact_write;
2699 group->slice = access->n_index < array->n_index;
2700 group->refs = &array->refs[i];
2701 group->n_ref = 1;
2703 groups[n++] = group;
2706 return n;
2709 /* If group->n_ref == 1, then group->refs was set by
2710 * populate_array_references to point directly into
2711 * group->array->refs and should not be freed.
2712 * If group->n_ref > 1, then group->refs was set by join_groups
2713 * to point to a newly allocated array.
2715 static void free_array_ref_group(struct gpu_array_ref_group *group)
2717 if (!group)
2718 return;
2719 free_tile(group->shared_tile);
2720 free_tile(group->private_tile);
2721 isl_map_free(group->access);
2722 if (group->n_ref > 1)
2723 free(group->refs);
2724 free(group);
2727 /* Given a map where the input dimensions represent the tile loops,
2728 * eliminate the innermost of those that have a fixed value
2729 * until we reach one that does not (obviously) have a fixed value.
2731 static __isl_give isl_map *eliminate_fixed_inner_loops(
2732 __isl_take isl_map *access)
2734 int i, n;
2736 n = isl_map_dim(access, isl_dim_in);
2738 for (i = n - 1; i >= 0; --i) {
2739 if (!map_plain_is_fixed(access, isl_dim_in, i))
2740 break;
2741 access = isl_map_eliminate(access, isl_dim_in, i, 1);
2743 return access;
2746 /* Check if the access relations of group1 and group2 overlap within
2747 * the innermost loop. In particular, ignore any inner dimension
2748 * with a fixed value.
2749 * The copying to and from shared memory will be performed within
2750 * the innermost actual loop so we are only allowed to consider
2751 * the dimensions up to that innermost loop while checking whether
2752 * two access relations overlap.
2754 static int accesses_overlap(struct gpu_array_ref_group *group1,
2755 struct gpu_array_ref_group *group2)
2757 int empty;
2758 isl_map *access1, *access2;
2760 access1 = isl_map_copy(group1->access);
2761 access1 = eliminate_fixed_inner_loops(access1);
2762 access2 = isl_map_copy(group2->access);
2763 access2 = eliminate_fixed_inner_loops(access2);
2764 access1 = isl_map_intersect(access1, access2);
2765 empty = isl_map_is_empty(access1);
2766 isl_map_free(access1);
2768 return !empty;
2771 /* Combine the given two groups into a single group, containing
2772 * the references of both groups.
2774 static struct gpu_array_ref_group *join_groups(
2775 struct gpu_array_ref_group *group1,
2776 struct gpu_array_ref_group *group2)
2778 int i;
2779 isl_ctx *ctx;
2780 struct gpu_array_ref_group *group;
2782 ctx = isl_map_get_ctx(group1->access);
2783 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2784 assert(group);
2785 group->array = group1->array;
2786 group->access = isl_map_union(isl_map_copy(group1->access),
2787 isl_map_copy(group2->access));
2788 group->write = group1->write || group2->write;
2789 group->exact_write = group1->exact_write && group2->exact_write;
2790 group->slice = group1->slice || group2->slice;
2791 group->n_ref = group1->n_ref + group2->n_ref;
2792 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
2793 group->n_ref);
2794 assert(group->refs);
2795 for (i = 0; i < group1->n_ref; ++i)
2796 group->refs[i] = group1->refs[i];
2797 for (i = 0; i < group2->n_ref; ++i)
2798 group->refs[group1->n_ref + i] = group2->refs[i];
2800 return group;
2803 /* Combine the given two groups into a single group and free
2804 * the original two groups.
2806 static struct gpu_array_ref_group *join_groups_and_free(
2807 struct gpu_array_ref_group *group1,
2808 struct gpu_array_ref_group *group2)
2810 struct gpu_array_ref_group *group;
2812 group = join_groups(group1, group2);
2813 free_array_ref_group(group1);
2814 free_array_ref_group(group2);
2815 return group;
2818 /* Compute the private and/or shared memory tiles for the array
2819 * reference group "group" of array "array".
2820 * Return 0 on success and -1 on error.
2822 * If the array is a read-only scalar or if the user requested
2823 * not to use shared or private memory, then we do not need to do anything.
2825 * If any reference in the reference group accesses more than one element,
2826 * then we would have to make sure that the layout in shared memory
2827 * is the same as that in global memory. Since we do not handle this yet
2828 * (and it may not even be possible), we refuse to map to private or
2829 * shared memory in such cases.
2831 * If the array group involves any may writes (that are not must writes),
2832 * then we would have to make sure that we load the data into shared/private
2833 * memory first in case the data is not written by the kernel
2834 * (but still written back out to global memory).
2835 * Since we don't have any such mechanism at the moment, we don't
2836 * compute shared/private tiles for groups involving may writes.
2838 * We only try to compute a shared memory tile if there is any reuse
2839 * or if the access is not coalesced.
2841 * For computing a private memory tile, we also require that there is
2842 * some reuse. Moreover, we require that the access is private
2843 * to the thread. That is, we check that any given array element
2844 * is only accessed by a single thread.
2845 * We compute an access relation that maps the shared tile loop iterators
2846 * and the shared point loop iterators that will be wrapped over the
2847 * threads to the array elements.
2848 * We actually check that those iterators that will be wrapped
2849 * partition the array space. This check is stricter than necessary
2850 * since several iterations may be mapped onto the same thread
2851 * and then they could be allowed to access the same memory elements,
2852 * but our check does not allow this situation.
2854 * We also check that the index expression only depends on parallel
2855 * loops. That way, we can move those loops innermost and unroll them.
2856 * Again, we use a test that is stricter than necessary.
2857 * We actually check whether the index expression only depends
2858 * on the iterators that are wrapped over the threads.
2859 * These are necessarily parallel, but there may be more parallel loops.
2861 * Combining the injectivity of the first test with the single-valuedness
2862 * of the second test, we simply test for bijectivity.
2864 * If the array is marked force_private, then we bypass all checks
2865 * and assume we can (and should) use registers.
2867 * If it turns out we can (or have to) use registers, we compute
2868 * the private memory tile size using can_tile, after introducing a dependence
2869 * on the thread indices.
2871 static int compute_group_bounds_core(struct gpu_gen *gen,
2872 struct gpu_array_ref_group *group)
2874 isl_ctx *ctx = isl_space_get_ctx(group->array->space);
2875 isl_union_map *access;
2876 int n_index = group->array->n_index;
2877 int no_reuse;
2878 isl_map *acc;
2879 int force_private = group->array->force_private;
2880 int use_shared = gen->options->use_shared_memory;
2881 int use_private = force_private || gen->options->use_private_memory;
2883 if (!use_shared && !use_private)
2884 return 0;
2885 if (gpu_array_is_read_only_scalar(group->array))
2886 return 0;
2887 if (!force_private && !group->exact_write)
2888 return 0;
2889 if (group->slice)
2890 return 0;
2892 access = group_access_relation(group, 1, 1);
2893 no_reuse = isl_union_map_is_injective(access);
2895 if (use_shared && (!no_reuse || !access_is_coalesced(gen, access))) {
2896 group->shared_tile = create_tile(ctx, group->array->n_index);
2897 if (!can_tile(group->access, group->shared_tile))
2898 group->shared_tile = free_tile(group->shared_tile);
2901 if (!force_private && (!use_private || no_reuse)) {
2902 isl_union_map_free(access);
2903 return 0;
2906 access = isl_union_map_apply_domain(access,
2907 isl_union_map_copy(gen->shared_sched));
2909 acc = isl_map_from_union_map(access);
2911 if (!force_private && !access_is_bijective(gen, acc)) {
2912 isl_map_free(acc);
2913 return 0;
2916 group->private_tile = create_tile(gen->ctx, n_index);
2917 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
2918 if (!can_tile(acc, group->private_tile))
2919 group->private_tile = free_tile(group->private_tile);
2921 isl_map_free(acc);
2923 if (force_private && !group->private_tile)
2924 isl_die(ctx, isl_error_internal,
2925 "unable to map array reference group to registers",
2926 return -1);
2928 return 0;
2931 /* Compute the private and/or shared memory tiles for the array
2932 * reference group "group" of array "array" and set last_shared.
2933 * Return 0 on success and -1 on error.
2935 static int compute_group_bounds(struct gpu_gen *gen,
2936 struct gpu_array_ref_group *group)
2938 if (compute_group_bounds_core(gen, group) < 0)
2939 return -1;
2940 set_last_shared(gen, group);
2942 return 0;
2945 /* If two groups have overlapping access relations (as determined by
2946 * the "overlap" function) and if one of them involves a write,
2947 * then merge the two groups into one.
2948 * If "compute_bounds" is set, then call compute_group_bounds
2949 * on the merged groups.
2951 * Return the updated number of groups.
2952 * Return -1 on error.
2954 static int group_writes(struct gpu_gen *gen,
2955 int n, struct gpu_array_ref_group **groups,
2956 int (*overlap)(struct gpu_array_ref_group *group1,
2957 struct gpu_array_ref_group *group2), int compute_bounds)
2959 int i, j;
2961 for (i = 0; i < n; ++i) {
2962 for (j = n - 1; j > i; --j) {
2963 if (!groups[i]->write && !groups[j]->write)
2964 continue;
2966 if (!overlap(groups[i], groups[j]))
2967 continue;
2969 groups[i] = join_groups_and_free(groups[i], groups[j]);
2970 if (compute_bounds &&
2971 compute_group_bounds(gen, groups[i]) < 0)
2972 return -1;
2973 if (j != n - 1)
2974 groups[j] = groups[n - 1];
2975 groups[n - 1] = NULL;
2976 n--;
2980 return n;
2983 /* If two groups have overlapping access relations (within the innermost
2984 * loop) and if one of them involves a write, then merge the two groups
2985 * into one.
2987 * Return the updated number of groups.
2989 static int group_overlapping_writes(struct gpu_gen *gen,
2990 int n, struct gpu_array_ref_group **groups)
2992 return group_writes(gen, n, groups, &accesses_overlap, 0);
2995 /* Check if the access relations of group1 and group2 overlap within
2996 * the outermost min(group1->last_shared, group2->last_shared) loops.
2998 static int last_shared_accesses_overlap(struct gpu_array_ref_group *group1,
2999 struct gpu_array_ref_group *group2)
3001 int last_shared;
3002 int dim;
3003 int empty;
3004 isl_map *map_i, *map_j, *map;
3006 last_shared = group1->last_shared;
3007 if (group2->last_shared < last_shared)
3008 last_shared = group2->last_shared;
3009 map_i = isl_map_copy(group1->access);
3010 dim = isl_map_dim(map_i, isl_dim_in);
3011 map_i = isl_map_eliminate(map_i, isl_dim_in,
3012 last_shared + 1, dim - (last_shared + 1));
3013 map_j = isl_map_copy(group2->access);
3014 map_j = isl_map_eliminate(map_j, isl_dim_in,
3015 last_shared + 1, dim - (last_shared + 1));
3016 map = isl_map_intersect(map_i, map_j);
3017 empty = isl_map_is_empty(map);
3018 isl_map_free(map);
3020 return !empty;
3023 /* If two groups have overlapping access relations (within the outer
3024 * last_shared loops) and if one of them involves a write,
3025 * then merge the two groups into one.
3027 * Return the updated number of groups.
3029 static int group_last_shared_overlapping_writes(struct gpu_gen *gen, int n,
3030 struct gpu_array_ref_group **groups)
3032 return group_writes(gen, n, groups, &last_shared_accesses_overlap, 1);
3035 /* Is the size of the tile specified by "tile" smaller than the sum of
3036 * the sizes of the tiles specified by "tile1" and "tile2"?
3038 static int smaller_tile(isl_ctx *ctx, struct gpu_array_tile *tile,
3039 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
3041 int smaller;
3042 isl_val *size, *size1, *size2;
3044 size = tile_size(ctx, tile);
3045 size1 = tile_size(ctx, tile1);
3046 size2 = tile_size(ctx, tile2);
3048 size = isl_val_sub(size, size1);
3049 size = isl_val_sub(size, size2);
3050 smaller = isl_val_is_neg(size);
3052 isl_val_free(size);
3054 return smaller;
3057 /* Given an initial grouping of array references and shared memory tiles
3058 * for each group that allows for a shared memory tile, merge two groups
3059 * if both have a shared memory tile, the merged group also has
3060 * a shared memory tile and the size of the tile for the merge group
3061 * is smaller than the sum of the tile sizes of the individual groups.
3063 * If merging two groups decreases the "last_shared" dimension of
3064 * one or both of the two groups, then we need to check for overlapping
3065 * writes again.
3067 * Return the number of groups after merging.
3068 * Return -1 on error.
3070 static int group_common_shared_memory_tile(struct gpu_gen *gen,
3071 struct gpu_array_info *array, int n,
3072 struct gpu_array_ref_group **groups)
3074 int i, j;
3075 int recompute_overlap = 0;
3076 isl_ctx *ctx = isl_space_get_ctx(array->space);
3078 for (i = 0; i < n; ++i) {
3079 if (!groups[i]->shared_tile)
3080 continue;
3081 for (j = n - 1; j > i; --j) {
3082 isl_map *map;
3083 int empty;
3084 struct gpu_array_ref_group *group;
3086 if (!groups[j]->shared_tile)
3087 continue;
3089 map = isl_map_intersect(isl_map_copy(groups[i]->access),
3090 isl_map_copy(groups[j]->access));
3091 empty = isl_map_is_empty(map);
3092 isl_map_free(map);
3094 if (empty)
3095 continue;
3097 group = join_groups(groups[i], groups[j]);
3098 if (compute_group_bounds(gen, group) < 0) {
3099 free_array_ref_group(group);
3100 return -1;
3102 if (!group->shared_tile ||
3103 !smaller_tile(ctx, group->shared_tile,
3104 groups[i]->shared_tile,
3105 groups[j]->shared_tile)) {
3106 free_array_ref_group(group);
3107 continue;
3110 if (group->last_shared < groups[i]->last_shared ||
3111 group->last_shared < groups[j]->last_shared)
3112 recompute_overlap = 1;
3113 free_array_ref_group(groups[i]);
3114 free_array_ref_group(groups[j]);
3115 groups[i] = group;
3116 if (j != n - 1)
3117 groups[j] = groups[n - 1];
3118 n--;
3122 if (recompute_overlap)
3123 n = group_last_shared_overlapping_writes(gen, n, groups);
3124 return n;
3127 /* Set array->n_group and array->groups to n and groups.
3129 * Additionally, set the "nr" field of each group
3130 * and the "group" field of each reference in each group.
3132 static void set_array_groups(struct gpu_array_info *array,
3133 int n, struct gpu_array_ref_group **groups)
3135 int i, j;
3137 array->n_group = n;
3138 array->groups = groups;
3140 for (i = 0; i < n; ++i) {
3141 groups[i]->nr = i;
3143 for (j = 0; j < groups[i]->n_ref; ++j)
3144 groups[i]->refs[j]->group = i;
3148 /* Group array references that should be considered together when
3149 * deciding whether to access them from private, shared or global memory.
3150 * Return -1 on error.
3152 * In particular, if two array references overlap and if one of them
3153 * is a write, then the two references are grouped together.
3154 * We first perform an initial grouping based only on the access relation.
3155 * After computing shared and private memory tiles, we check for
3156 * overlapping writes again, but this time taking into account
3157 * the "last_shared" property.
3159 * Furthermore, if two groups admit a shared memory tile and if the
3160 * combination of the two also admits a shared memory tile, we merge
3161 * the two groups.
3163 * If the array contains structures, then there is no need to compute
3164 * reference groups since we do not map such arrays to private or shared
3165 * memory.
3167 static int group_array_references(struct gpu_gen *gen,
3168 struct gpu_array_info *array, __isl_keep isl_union_map *sched)
3170 int i;
3171 int n;
3172 isl_ctx *ctx = isl_union_map_get_ctx(sched);
3173 struct gpu_array_ref_group **groups;
3175 if (array->has_compound_element)
3176 return 0;
3178 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
3179 array->n_ref);
3180 if (!groups)
3181 return -1;
3183 n = populate_array_references(array, sched, groups);
3185 n = group_overlapping_writes(gen, n, groups);
3187 for (i = 0; i < n; ++i)
3188 if (compute_group_bounds(gen, groups[i]) < 0)
3189 n = -1;
3191 n = group_last_shared_overlapping_writes(gen, n, groups);
3193 n = group_common_shared_memory_tile(gen, array, n, groups);
3195 set_array_groups(array, n, groups);
3197 if (n >= 0)
3198 return 0;
3200 for (i = 0; i < array->n_ref; ++i)
3201 free_array_ref_group(groups[i]);
3202 return -1;
3205 /* Take tiled_sched, project it onto the shared tile loops and
3206 * the loops that will be wrapped over the threads and
3207 * store the result in gen->shared_sched.
3208 * Also compute a projection that projects out the loops that will be
3209 * wrapped over the threads and store this projection in gen->shared_proj.
3211 static void compute_shared_sched(struct gpu_gen *gen)
3213 isl_space *dim;
3214 isl_map *proj;
3215 isl_set *par;
3216 isl_union_map *sched;
3218 sched = isl_union_map_copy(gen->tiled_sched);
3220 dim = isl_union_map_get_space(sched);
3221 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
3222 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3224 dim = isl_union_map_get_space(sched);
3225 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
3227 gen->shared_sched = sched;
3228 gen->shared_proj = isl_union_map_from_map(proj);
3231 /* For each scalar in the input program, check if there are any
3232 * order dependences active inside the current kernel, within
3233 * the same iteration of the host schedule.
3234 * If so, mark the scalar as force_private so that it will be
3235 * mapped to a register.
3237 static void check_scalar_live_ranges(struct gpu_gen *gen)
3239 int i;
3240 isl_map *proj;
3241 isl_union_map *sched;
3242 isl_union_set *domain;
3243 isl_union_map *same_host_iteration;
3245 gen->any_force_private = 0;
3247 if (!gen->options->live_range_reordering)
3248 return;
3250 sched = gen->shared_sched;
3251 sched = isl_union_map_universe(isl_union_map_copy(sched));
3252 domain = isl_union_map_domain(sched);
3254 sched = isl_union_map_copy(gen->sched);
3255 proj = projection(isl_union_map_get_space(sched),
3256 gen->untiled_len, gen->tile_first);
3257 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3258 same_host_iteration = isl_union_map_apply_range(sched,
3259 isl_union_map_reverse(isl_union_map_copy(sched)));
3261 for (i = 0; i < gen->prog->n_array; ++i) {
3262 struct gpu_array_info *array = &gen->prog->array[i];
3263 isl_union_map *order;
3265 array->force_private = 0;
3266 if (array->n_index != 0)
3267 continue;
3268 order = isl_union_map_copy(array->dep_order);
3269 order = isl_union_map_intersect_domain(order,
3270 isl_union_set_copy(domain));
3271 order = isl_union_map_intersect_range(order,
3272 isl_union_set_copy(domain));
3273 order = isl_union_map_intersect(order,
3274 isl_union_map_copy(same_host_iteration));
3275 if (!isl_union_map_is_empty(order)) {
3276 array->force_private = 1;
3277 gen->any_force_private = 1;
3279 isl_union_map_free(order);
3282 isl_union_map_free(same_host_iteration);
3283 isl_union_set_free(domain);
3286 /* Group references of all arrays in the program.
3288 static int group_references(struct gpu_gen *gen)
3290 int i;
3291 int r = 0;
3292 isl_union_map *sched;
3294 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
3295 isl_union_map_copy(gen->shared_proj));
3297 for (i = 0; i < gen->prog->n_array; ++i) {
3298 r = group_array_references(gen, &gen->prog->array[i], sched);
3299 if (r < 0)
3300 break;
3303 isl_union_map_free(sched);
3305 return r;
3308 /* Free all array information that is local to the current kernel.
3310 static void free_local_array_info(struct gpu_gen *gen)
3312 int i, j;
3314 for (i = 0; i < gen->prog->n_array; ++i) {
3315 struct gpu_array_info *array = &gen->prog->array[i];
3317 for (j = 0; j < array->n_group; ++j)
3318 free_array_ref_group(array->groups[j]);
3319 free(array->groups);
3323 /* Compute the size of a bounding box around the origin and "set",
3324 * where "set" is assumed to contain only non-negative elements.
3325 * In particular, compute the maximal value of "set" in each direction
3326 * and add one.
3328 static __isl_give isl_multi_pw_aff *extract_size(__isl_take isl_set *set,
3329 __isl_keep isl_set *context)
3331 int i, n;
3332 isl_multi_pw_aff *mpa;
3334 n = isl_set_dim(set, isl_dim_set);
3335 mpa = isl_multi_pw_aff_zero(isl_set_get_space(set));
3336 for (i = 0; i < n; ++i) {
3337 isl_space *space;
3338 isl_aff *one;
3339 isl_pw_aff *bound;
3341 bound = isl_set_dim_max(isl_set_copy(set), i);
3342 bound = isl_pw_aff_coalesce(bound);
3343 bound = isl_pw_aff_gist(bound, isl_set_copy(context));
3345 space = isl_pw_aff_get_domain_space(bound);
3346 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
3347 one = isl_aff_add_constant_si(one, 1);
3348 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
3349 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
3351 isl_set_free(set);
3353 return mpa;
3356 /* Compute the effective grid size as a list of the sizes in each dimension.
3358 * The grid size specified by the user or set by default
3359 * in read_grid_sizes() and applied in tile_schedule(),
3360 * may be too large for the given code in the sense that
3361 * it may contain blocks that don't need to execute anything.
3362 * We therefore don't return this grid size, but instead the
3363 * smallest grid size that ensures that all blocks that actually
3364 * execute code are included in the grid.
3366 * We first extract a description of the grid, i.e., the possible values
3367 * of the block ids, from gen->tiled_sched.
3368 * The block ids are parameters in gen->tiled_sched.
3369 * We simply need to change them into set dimensions.
3371 * Then, for each block dimension, we compute the maximal value of the block id
3372 * and add one.
3374 static __isl_give isl_multi_pw_aff *extract_grid_size(struct gpu_gen *gen,
3375 struct ppcg_kernel *kernel)
3377 int i;
3378 isl_set *grid;
3380 grid = isl_union_map_params(isl_union_map_copy(gen->tiled_sched));
3381 grid = isl_set_from_params(grid);
3382 grid = isl_set_add_dims(grid, isl_dim_set, gen->n_grid);
3383 for (i = 0; i < gen->n_grid; ++i) {
3384 int pos;
3385 char name[20];
3387 snprintf(name, sizeof(name), "b%d", i);
3388 pos = isl_set_find_dim_by_name(grid, isl_dim_param, name);
3389 assert(pos >= 0);
3390 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
3391 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
3394 return extract_size(grid, kernel->context);
3397 /* Compute the size of a fixed bounding box around the origin and "set",
3398 * where "set" is assumed to contain only non-negative elements,
3399 * and store the results in "size".
3400 * In particular, compute the maximal value of "set" in each direction
3401 * and add one.
3403 static void extract_fixed_size(__isl_take isl_set *set, int *size)
3405 int i, n;
3406 isl_local_space *ls;
3407 isl_aff *obj;
3409 n = isl_set_dim(set, isl_dim_set);
3410 ls = isl_local_space_from_space(isl_set_get_space(set));
3411 obj = isl_aff_zero_on_domain(ls);
3412 for (i = 0; i < n; ++i) {
3413 isl_val *max;
3415 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
3416 max = isl_set_max_val(set, obj);
3417 size[i] = isl_val_get_num_si(max) + 1;
3418 isl_val_free(max);
3419 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
3421 isl_aff_free(obj);
3422 isl_set_free(set);
3425 /* Compute the effective block size as a list of the sizes in each dimension
3426 * and store the sizes in kernel->block_dim.
3428 * The block size specified by the user or set by default
3429 * in read_block_sizes() and applied in thread_tile_schedule(),
3430 * may be too large for the given code in the sense that
3431 * it may contain threads that don't need to execute anything.
3432 * We therefore don't store this block size in kernel->block_dim,
3433 * but instead the smallest block size that ensures that all threads
3434 * that actually execute code are included in the block.
3436 * The current implementation eliminates all parameters, ensuring
3437 * that the size is a fixed constant in each dimension.
3438 * In principle we could also compute parametric sizes.
3439 * We would have to make sure to project out all b%d and t%d parameters,
3440 * however.
3442 static void extract_block_size(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3444 int i;
3445 int nparam;
3446 isl_set *block;
3447 isl_multi_pw_aff *mpa;
3449 block = isl_union_map_params(isl_union_map_copy(gen->local_sched));
3450 block = isl_set_from_params(block);
3451 block = isl_set_add_dims(block, isl_dim_set, gen->n_block);
3452 kernel->n_block = gen->n_block;
3453 for (i = 0; i < gen->n_block; ++i) {
3454 int pos;
3455 char name[20];
3457 snprintf(name, sizeof(name), "t%d", i);
3458 pos = isl_set_find_dim_by_name(block, isl_dim_param, name);
3459 assert(pos >= 0);
3460 block = isl_set_equate(block, isl_dim_param, pos,
3461 isl_dim_set, i);
3463 nparam = isl_set_dim(block, isl_dim_param);
3464 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
3466 extract_fixed_size(block, kernel->block_dim);
3469 void ppcg_kernel_free(void *user)
3471 struct ppcg_kernel *kernel = user;
3472 int i;
3474 if (!kernel)
3475 return;
3477 isl_multi_pw_aff_free(kernel->grid_size);
3478 isl_set_free(kernel->context);
3479 isl_union_set_free(kernel->arrays);
3480 isl_space_free(kernel->space);
3481 isl_ast_node_free(kernel->tree);
3483 for (i = 0; i < kernel->n_array; ++i)
3484 isl_pw_aff_list_free(kernel->array[i].bound);
3485 free(kernel->array);
3487 for (i = 0; i < kernel->n_var; ++i) {
3488 free(kernel->var[i].name);
3489 isl_vec_free(kernel->var[i].size);
3491 free(kernel->var);
3493 free(kernel);
3496 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
3497 struct ppcg_kernel_var *var)
3499 int j;
3500 struct gpu_array_tile *tile;
3501 isl_printer *p;
3502 char *name;
3504 var->array = group->array;
3506 tile = group->private_tile;
3507 var->type = ppcg_access_private;
3508 if (!tile) {
3509 tile = group->shared_tile;
3510 var->type = ppcg_access_shared;
3513 p = isl_printer_to_str(ctx);
3514 p = print_array_name(p, group);
3515 var->name = isl_printer_get_str(p);
3516 isl_printer_free(p);
3518 var->size = isl_vec_alloc(ctx, group->array->n_index);
3520 for (j = 0; j < group->array->n_index; ++j)
3521 var->size = isl_vec_set_element_val(var->size, j,
3522 isl_val_copy(tile->bound[j].size));
3525 static void create_kernel_vars(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3527 int i, j, n;
3529 n = 0;
3530 for (i = 0; i < gen->prog->n_array; ++i) {
3531 struct gpu_array_info *array = &gen->prog->array[i];
3533 for (j = 0; j < array->n_group; ++j) {
3534 struct gpu_array_ref_group *group = array->groups[j];
3535 if (group->private_tile || group->shared_tile)
3536 ++n;
3540 kernel->n_var = n;
3541 kernel->var = isl_calloc_array(gen->ctx, struct ppcg_kernel_var, n);
3542 assert(kernel->var);
3544 n = 0;
3545 for (i = 0; i < gen->prog->n_array; ++i) {
3546 struct gpu_array_info *array = &gen->prog->array[i];
3548 for (j = 0; j < array->n_group; ++j) {
3549 struct gpu_array_ref_group *group = array->groups[j];
3550 if (!group->private_tile && !group->shared_tile)
3551 continue;
3552 create_kernel_var(gen->ctx, group, &kernel->var[n]);
3553 ++n;
3558 /* The sizes of the arrays on the host that have been computed by
3559 * extract_array_info may depend on the parameters. Use the extra
3560 * constraints on the parameters that are valid at "host_domain"
3561 * to simplify these expressions and store the results in kernel->array.
3563 * We only need these localized bounds for arrays that are accessed
3564 * by the current kernel. If we have found at least one reference group
3565 * then the array is accessed by the kernel. If the array has compound
3566 * elements then we skipped the construction of array reference groups.
3568 static void localize_bounds(struct gpu_gen *gen, struct ppcg_kernel *kernel,
3569 __isl_keep isl_set *host_domain)
3571 int i, j;
3572 isl_set *context;
3574 kernel->array = isl_calloc_array(gen->ctx,
3575 struct gpu_local_array_info, gen->prog->n_array);
3576 assert(kernel->array);
3577 kernel->n_array = gen->prog->n_array;
3579 context = isl_set_copy(host_domain);
3580 context = isl_set_params(context);
3582 for (i = 0; i < gen->prog->n_array; ++i) {
3583 struct gpu_array_info *array = &gen->prog->array[i];
3584 isl_pw_aff_list *local;
3586 if (array->n_group == 0 && !array->has_compound_element)
3587 continue;
3589 local = isl_pw_aff_list_alloc(gen->ctx, array->n_index);
3591 for (j = 0; j < array->n_index; ++j) {
3592 isl_pw_aff *pwaff;
3594 pwaff = isl_pw_aff_copy(array->bound[j]);
3595 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
3596 local = isl_pw_aff_list_add(local, pwaff);
3599 kernel->array[i].n_index = array->n_index;
3600 kernel->array[i].bound = local;
3602 isl_set_free(context);
3605 /* Find the element in gen->stmt that has the given "id".
3606 * Return NULL if no such gpu_stmt can be found.
3608 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
3610 int i;
3612 for (i = 0; i < prog->n_stmts; ++i) {
3613 if (id == prog->stmts[i].id)
3614 break;
3617 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
3620 /* Set gen->tile_len and gen->n_parallel to those of the statement
3621 * affected by the first map (part of the schedule)
3622 * on which this function is called.
3623 * Because of the way the schedule is constructed, the other statements
3624 * in the list, if any, should have the same values for these properties.
3626 static int extract_tile_len(__isl_take isl_map *map, void *user)
3628 struct gpu_gen *gen = (struct gpu_gen *) user;
3629 isl_id *id;
3630 struct gpu_stmt *stmt;
3632 id = isl_map_get_tuple_id(map, isl_dim_in);
3633 stmt = find_stmt(gen->prog, id);
3634 isl_id_free(id);
3636 isl_map_free(map);
3638 if (!stmt)
3639 isl_die(gen->ctx, isl_error_unknown,
3640 "statement not found", return -1);
3642 gen->tile_len = stmt->tile_len;
3643 gen->n_parallel = stmt->n_parallel;
3645 return -1;
3648 void ppcg_kernel_stmt_free(void *user)
3650 int i;
3651 struct ppcg_kernel_stmt *stmt = user;
3653 if (!stmt)
3654 return;
3656 switch (stmt->type) {
3657 case ppcg_kernel_copy:
3658 isl_ast_expr_free(stmt->u.c.index);
3659 isl_ast_expr_free(stmt->u.c.local_index);
3660 break;
3661 case ppcg_kernel_domain:
3662 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
3663 break;
3664 case ppcg_kernel_sync:
3665 break;
3668 free(stmt);
3671 /* Set the options of "context" to
3673 * { space -> [x] : x >= first }
3675 static __isl_give isl_ast_build *set_unroll(
3676 __isl_take isl_ast_build *build, __isl_take isl_space *space,
3677 int first)
3679 isl_ctx *ctx;
3680 isl_map *unroll;
3681 isl_union_map *opt;
3683 ctx = isl_ast_build_get_ctx(build);
3685 space = isl_space_from_domain(space);
3686 space = isl_space_add_dims(space, isl_dim_out, 1);
3687 space = isl_space_set_tuple_name(space, isl_dim_out, "unroll");
3688 unroll = isl_map_universe(space);
3689 unroll = isl_map_lower_bound_si(unroll, isl_dim_out, 0, first);
3690 opt = isl_union_map_from_map(unroll);
3692 build = isl_ast_build_set_options(build, opt);
3694 return build;
3697 /* Return a list of isl_ids of the form "prefix%d".
3699 static __isl_give isl_id_list *generate_names(isl_ctx *ctx,
3700 int n, const char *prefix)
3702 int i;
3703 char name[10];
3704 isl_id_list *names;
3706 names = isl_id_list_alloc(ctx, n);
3707 for (i = 0; i < n; ++i) {
3708 isl_id *id;
3710 snprintf(name, sizeof(name), "%s%d", prefix, i);
3711 id = isl_id_alloc(ctx, name, NULL);
3712 names = isl_id_list_add(names, id);
3715 return names;
3718 /* Extend the schedule "schedule" with the part of "extension"
3719 * starting at "first" up to "len".
3721 static __isl_give isl_union_map *extend_schedule(
3722 __isl_take isl_union_map *schedule,
3723 __isl_take isl_union_map *extension, int first, int len)
3725 isl_space *space;
3726 isl_map *proj;
3727 isl_union_map *umap;
3728 isl_set *set;
3730 space = isl_union_map_get_space(schedule);
3731 space = isl_space_set_from_params(space);
3732 space = isl_space_add_dims(space, isl_dim_set, len);
3733 proj = isl_set_identity(isl_set_universe(space));
3734 proj = isl_map_project_out(proj, isl_dim_out, 0, first);
3735 extension = isl_union_map_apply_range(extension,
3736 isl_union_map_from_map(proj));
3738 schedule = isl_union_map_range_product(schedule, extension);
3740 return schedule;
3743 /* Return the gpu_stmt_access in the list "accesses" that corresponds
3744 * to "ref_id".
3746 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
3747 __isl_keep isl_id *ref_id)
3749 struct gpu_stmt_access *access;
3751 for (access = accesses; access; access = access->next)
3752 if (access->ref_id == ref_id)
3753 return access;
3755 return NULL;
3758 /* Return the index of the array called "name" in the list of arrays.
3760 static int find_array_index(struct gpu_gen *gen, const char *name)
3762 int i;
3764 for (i = 0; i < gen->prog->n_array; ++i)
3765 if (!strcmp(name, gen->prog->array[i].name))
3766 return i;
3768 return -1;
3771 /* Internal data structure for the index and AST expression transformation
3772 * callbacks for pet_stmt_build_ast_exprs.
3774 * "accesses" is the list of gpu_stmt_access in the statement.
3775 * "iterator_map" expresses the statement iterators in terms of
3776 * the AST loop iterators.
3777 * "sched2shared" expresses the first shared_len dimensions of
3778 * the computed schedule in terms of the AST loop iterators.
3780 * The following fields are set in transform_index and used in transform_expr.
3781 * "array" is the array that is being accessed.
3782 * "global" is set if the global array is accessed (rather than
3783 * shared/private memory).
3784 * "local_array" refers to information on the array specialized
3785 * to the current kernel.
3787 struct ppcg_transform_data {
3788 struct gpu_gen *gen;
3789 struct gpu_stmt_access *accesses;
3790 isl_pw_multi_aff *iterator_map;
3791 isl_pw_multi_aff *sched2shared;
3793 struct gpu_array_info *array;
3794 int global;
3795 struct gpu_local_array_info *local_array;
3798 /* Return the name of the outer array (of structs) accessed by "access".
3800 static const char *get_outer_array_name(__isl_keep isl_map *access)
3802 isl_space *space;
3803 const char *name;
3805 space = isl_space_range(isl_map_get_space(access));
3806 while (space && isl_space_is_wrapping(space))
3807 space = isl_space_domain(isl_space_unwrap(space));
3808 name = isl_space_get_tuple_name(space, isl_dim_set);
3809 isl_space_free(space);
3811 return name;
3814 /* Index transformation callback for pet_stmt_build_ast_exprs.
3816 * "index" expresses the array indices in terms of statement iterators
3818 * We first reformulate "index" in terms of the AST loop iterators.
3819 * Then we check if we are accessing the global array or
3820 * a shared/private copy. In the former case, we simply return
3821 * the updated index. If "index" is an affine expression rather
3822 * than an array access, then we also return the updated index here.
3824 * If no reference groups have been computed for the array,
3825 * then we can only be accessing the global array.
3827 * Otherwise, we apply the tiling to the index.
3828 * This tiling is of the form
3830 * [D -> A] -> T
3832 * The index is of the form
3834 * L -> A
3836 * We update the tiling to refer to the AST loop iteratos
3838 * [L -> A] -> T
3840 * and modify index to keep track of those iterators
3842 * L -> [L -> A]
3844 * Combining these two yields a tiled index expression in terms
3845 * of the AST loop iterators
3847 * L -> T
3849 static __isl_give isl_multi_pw_aff *transform_index(
3850 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
3851 void *user)
3853 struct ppcg_transform_data *data = user;
3854 struct gpu_stmt_access *access;
3855 struct gpu_array_ref_group *group;
3856 struct gpu_array_tile *tile;
3857 isl_pw_multi_aff *iterator_map;
3858 int i;
3859 const char *name;
3860 isl_space *space;
3861 isl_multi_pw_aff *tiling;
3862 isl_pw_multi_aff *pma;
3863 isl_multi_pw_aff *mpa;
3865 data->array = NULL;
3867 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
3868 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
3870 access = find_access(data->accesses, ref_id);
3871 if (!access)
3872 return index;
3873 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
3874 return index;
3876 name = get_outer_array_name(access->access);
3877 i = find_array_index(data->gen, name);
3878 if (i < 0)
3879 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
3880 "cannot find array",
3881 return isl_multi_pw_aff_free(index));
3882 data->array = &data->gen->prog->array[i];
3883 data->local_array = &data->gen->kernel->array[i];
3885 if (access->group < 0) {
3886 data->global = 1;
3887 return index;
3890 group = data->array->groups[access->group];
3891 tile = group->private_tile;
3892 if (!tile)
3893 tile = group->shared_tile;
3894 data->global = !tile;
3895 if (!tile)
3896 return index;
3898 space = isl_space_range(isl_multi_pw_aff_get_space(index));
3899 space = isl_space_map_from_set(space);
3900 pma = isl_pw_multi_aff_identity(space);
3901 pma = isl_pw_multi_aff_product(
3902 isl_pw_multi_aff_copy(data->sched2shared), pma);
3903 tiling = isl_multi_pw_aff_from_multi_aff(
3904 isl_multi_aff_copy(tile->tiling));
3905 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
3907 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
3908 space = isl_space_map_from_set(space);
3909 mpa = isl_multi_pw_aff_identity(space);
3910 index = isl_multi_pw_aff_range_product(mpa, index);
3911 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
3913 return index;
3916 /* Dereference "expr" by adding an index [0].
3917 * The original "expr" is assumed not to have any indices.
3919 * If "expr" is a member access, then the dereferencing needs
3920 * to be applied to the structure argument of this member access.
3922 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
3924 isl_ctx *ctx;
3925 isl_ast_expr *res;
3926 isl_ast_expr_list *list;
3928 if (isl_ast_expr_get_op_type(expr) == isl_ast_op_member) {
3929 isl_ast_expr *arg;
3931 arg = isl_ast_expr_get_op_arg(expr, 0);
3932 arg = dereference(arg);
3933 expr = isl_ast_expr_set_op_arg(expr, 0, arg);
3935 return expr;
3938 ctx = isl_ast_expr_get_ctx(expr);
3939 res = isl_ast_expr_from_val(isl_val_zero(ctx));
3940 list = isl_ast_expr_list_from_ast_expr(res);
3941 res = isl_ast_expr_get_op_arg(expr, 0);
3942 res = isl_ast_expr_access(res, list);
3943 isl_ast_expr_free(expr);
3945 return res;
3948 /* Linearize the index expression "expr" based on the array bounds
3949 * of "array".
3951 * That is, transform expression
3953 * A[i_0][i_1]...[i_n]
3955 * to
3957 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
3959 * where b_0, b_1, ..., b_n are the bounds on the array.
3961 * If the base of "expr" is a member access, then the linearization needs
3962 * to be applied to the structure argument of this member access.
3964 * In the base case, if "expr" has no arguments (other than the name of
3965 * the array), then we are passing an entire array to a function.
3966 * In this case, there is nothing to linearize.
3967 * Note that at this point an expression with no arguments can
3968 * only be an entire array because the scalar case and
3969 * the case of single struct are handled by the caller.
3971 * If the number of specified index expressions in "expr"
3972 * is smaller than the dimension of the accessed array,
3973 * then the missing i_j also do not appear in the linearized expression.
3974 * Furthermore, since such an expression does not refer to a single
3975 * element while the default linearized expression would refer to
3976 * a single element, we return the expression
3978 * A + (..((i_0 * b_1 + i_1) ... ) * b_n]
3980 * instead. Note that because of the special case handling above,
3981 * we can assume here that here that there is at least one index expression.
3983 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
3984 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
3986 int i, n;
3987 isl_ctx *ctx;
3988 isl_set *context;
3989 isl_ast_expr *arg0;
3990 isl_ast_expr *res;
3991 isl_ast_expr_list *list;
3992 isl_ast_build *build;
3994 arg0 = isl_ast_expr_get_op_arg(expr, 0);
3995 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
3996 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
3997 isl_ast_expr *arg;
3999 arg = isl_ast_expr_get_op_arg(arg0, 0);
4000 arg = gpu_local_array_info_linearize_index(array, arg);
4001 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
4002 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
4004 return expr;
4006 isl_ast_expr_free(arg0);
4008 if (isl_ast_expr_get_op_n_arg(expr) == 1)
4009 return expr;
4011 ctx = isl_ast_expr_get_ctx(expr);
4012 context = isl_set_universe(isl_space_params_alloc(ctx, 0));
4013 build = isl_ast_build_from_context(context);
4015 n = isl_ast_expr_get_op_n_arg(expr);
4016 res = isl_ast_expr_get_op_arg(expr, 1);
4017 for (i = 1; i < array->n_index; ++i) {
4018 isl_pw_aff *bound_i;
4019 isl_ast_expr *expr_i;
4021 bound_i = isl_pw_aff_list_get_pw_aff(array->bound, i);
4022 expr_i = isl_ast_build_expr_from_pw_aff(build, bound_i);
4023 res = isl_ast_expr_mul(res, expr_i);
4025 if (i + 1 >= n)
4026 continue;
4027 expr_i = isl_ast_expr_get_op_arg(expr, i + 1);
4028 res = isl_ast_expr_add(res, expr_i);
4031 isl_ast_build_free(build);
4033 if (1 + array->n_index > n) {
4034 res = isl_ast_expr_add(isl_ast_expr_get_op_arg(expr, 0), res);
4035 } else {
4036 list = isl_ast_expr_list_from_ast_expr(res);
4037 res = isl_ast_expr_get_op_arg(expr, 0);
4038 res = isl_ast_expr_access(res, list);
4041 isl_ast_expr_free(expr);
4043 return res;
4046 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
4048 * If the AST expression refers to a global scalar that is not
4049 * a read-only scalar, then its address was passed to the kernel and
4050 * we need to dereference it.
4052 * If the AST expression refers to an access to a global array,
4053 * then we linearize the access exploiting the bounds in data->local_array.
4055 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
4056 __isl_keep isl_id *id, void *user)
4058 struct ppcg_transform_data *data = user;
4060 if (!data->array)
4061 return expr;
4062 if (gpu_array_is_read_only_scalar(data->array))
4063 return expr;
4064 if (!data->global)
4065 return expr;
4066 if (data->array->n_index == 0)
4067 return dereference(expr);
4068 if (!data->array->linearize)
4069 return expr;
4071 return gpu_local_array_info_linearize_index(data->local_array, expr);
4074 /* This function is called for each instance of a user statement
4075 * in the kernel.
4077 * We attach a struct ppcg_kernel_stmt to the "node", containing
4078 * a computed AST expression for each access.
4079 * These AST expressions are computed from iterator_map,
4080 * which expresses the domain
4081 * elements in terms of the generated loops, and sched2shared,
4082 * which expresses the first shared_len dimensions of the schedule
4083 * computed by PPCG in terms of the generated loops.
4085 static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
4086 __isl_keep isl_ast_build *build, void *user)
4088 struct ppcg_transform_data data;
4089 struct gpu_gen *gen = (struct gpu_gen *) user;
4090 struct ppcg_kernel_stmt *stmt;
4091 isl_id *id;
4092 isl_pw_multi_aff *sched2shared;
4093 isl_map *map;
4094 isl_pw_multi_aff *iterator_map;
4095 isl_ast_expr *expr, *arg;
4096 isl_union_map *schedule;
4097 int i, n;
4099 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
4100 if (!stmt)
4101 return isl_ast_node_free(node);
4103 expr = isl_ast_node_user_get_expr(node);
4104 arg = isl_ast_expr_get_op_arg(expr, 0);
4105 id = isl_ast_expr_get_id(arg);
4107 schedule = isl_ast_build_get_schedule(build);
4108 map = isl_map_reverse(isl_map_from_union_map(schedule));
4109 iterator_map = isl_pw_multi_aff_from_map(map);
4110 sched2shared = compute_sched_to_shared(gen,
4111 isl_pw_multi_aff_copy(iterator_map));
4113 stmt->type = ppcg_kernel_domain;
4114 stmt->u.d.stmt = find_stmt(gen->prog, id);
4115 if (!stmt->u.d.stmt)
4116 goto error;
4118 data.gen = gen;
4119 data.accesses = stmt->u.d.stmt->accesses;
4120 data.iterator_map = iterator_map;
4121 data.sched2shared = sched2shared;
4122 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
4123 build, &transform_index, &data,
4124 &transform_expr, &data);
4126 isl_id_free(id);
4127 isl_pw_multi_aff_free(iterator_map);
4128 isl_pw_multi_aff_free(sched2shared);
4129 isl_ast_expr_free(arg);
4130 isl_ast_expr_free(expr);
4132 id = isl_id_alloc(gen->ctx, NULL, stmt);
4133 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
4134 return isl_ast_node_set_annotation(node, id);
4135 error:
4136 isl_id_free(id);
4137 isl_pw_multi_aff_free(iterator_map);
4138 ppcg_kernel_stmt_free(stmt);
4139 isl_pw_multi_aff_free(sched2shared);
4140 return isl_ast_node_free(node);
4143 /* This function is called when code has been generated for the shared
4144 * tile loops. The "schedule" refers only to the original statements.
4146 * We extend the schedule with that part of gen->local_sched that hasn't
4147 * been taken into account yet. This introduces parameters referring
4148 * to thread ids in the schedule, so we add them (with the appropriate
4149 * bounds to the context as well).
4150 * Finally, we set the appropriate unrolling options
4151 * if gen->first_unroll is set.
4153 static __isl_give isl_ast_node *create_domain_leaf(
4154 __isl_take isl_union_map *schedule, __isl_take isl_ast_build *build,
4155 void *user)
4157 struct gpu_gen *gen = (struct gpu_gen *) user;
4158 isl_space *space;
4159 isl_union_map *sched;
4160 isl_ast_node *tree;
4161 isl_set *set;
4162 isl_id_list *iterators;
4163 int n;
4165 schedule = extend_schedule(schedule,
4166 isl_union_map_copy(gen->local_sched),
4167 gen->shared_len, gen->thread_tiled_len);
4169 space = isl_ast_build_get_schedule_space(build);
4170 set = isl_set_universe(space);
4171 set = add_bounded_parameters(set, gen->kernel->n_block,
4172 gen->kernel->block_dim, "t");
4173 build = isl_ast_build_restrict(build, set);
4175 n = gen->thread_tiled_len - gen->shared_len;
4177 if (gen->first_unroll >= 0) {
4178 space = isl_space_set_alloc(gen->ctx, 0, n);
4179 build = set_unroll(build, space, gen->first_unroll);
4181 iterators = generate_names(gen->ctx, n, "c");
4182 build = isl_ast_build_set_iterators(build, iterators);
4183 build = isl_ast_build_set_at_each_domain(build, &at_each_domain, gen);
4184 tree = isl_ast_build_ast_from_schedule(build, schedule);
4185 isl_ast_build_free(build);
4187 return tree;
4190 /* This function is called for each statement node in the AST of the code
4191 * for copying to or from shared/private memory.
4192 * Attach a pointer to a ppcg_kernel_stmt representing the copy
4193 * statement to the node.
4194 * The statement name is "read" or "write", depending on whether we are
4195 * reading from global memory or writing to global memory.
4196 * The name of the T space is {shared,private}_<array>.
4198 * The schedule is of the form
4200 * type[A -> T] -> L
4202 * where A refers to a piece of an array and T to the corresponding
4203 * shifted tile. We split this schedule into mappings L -> A and L -> T
4204 * and store the corresponding expressions in stmt->index and stmt->local_index,
4205 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
4207 static __isl_give isl_ast_node *attach_copy_stmt(__isl_take isl_ast_node *node,
4208 __isl_keep isl_ast_build *build, void *user)
4210 struct gpu_gen *gen = (struct gpu_gen *) user;
4211 struct ppcg_kernel_stmt *stmt;
4212 isl_id *id;
4213 isl_ast_expr *expr;
4214 isl_space *space;
4215 isl_map *access, *local_access, *map;
4216 isl_pw_multi_aff *pma;
4217 const char *type;
4218 int array_index;
4220 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
4221 if (!stmt)
4222 return isl_ast_node_free(node);
4224 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
4225 type = isl_map_get_tuple_name(access, isl_dim_in);
4226 stmt->u.c.read = !strcmp(type, "read");
4227 access = isl_map_reverse(access);
4228 space = isl_space_unwrap(isl_space_range(isl_map_get_space(access)));
4229 local_access = isl_map_copy(access);
4231 map = isl_map_domain_map(isl_map_universe(isl_space_copy(space)));
4232 id = isl_map_get_tuple_id(access, isl_dim_out);
4233 map = isl_map_set_tuple_id(map, isl_dim_in, id);
4234 access = isl_map_apply_range(access, map);
4235 pma = isl_pw_multi_aff_from_map(access);
4236 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
4237 stmt->u.c.index = expr;
4239 map = isl_map_range_map(isl_map_universe(space));
4240 id = isl_map_get_tuple_id(local_access, isl_dim_out);
4241 map = isl_map_set_tuple_id(map, isl_dim_in, id);
4242 local_access = isl_map_apply_range(local_access, map);
4243 pma = isl_pw_multi_aff_from_map(local_access);
4244 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
4245 stmt->u.c.local_index = expr;
4247 stmt->u.c.array = gen->copy_group->array;
4248 array_index = stmt->u.c.array - gen->prog->array;
4249 stmt->u.c.local_array = &gen->kernel->array[array_index];
4250 stmt->type = ppcg_kernel_copy;
4252 id = isl_id_alloc(gen->ctx, NULL, stmt);
4253 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
4254 return isl_ast_node_set_annotation(node, id);
4257 /* Given a schedule of the form
4259 * [S -> A] -> L
4261 * (with S the first shared_len dimensions of the computed schedule,
4262 * A the array and L the schedule correponding to the generated loops),
4263 * indicating where to copy the array elements that need to be copied,
4264 * construct code for performing the copying.
4266 * "group" is the array reference group that is being copied
4267 * "type" is either "read" or "write"
4268 * private is set if copying needs to be performed to/from registers
4270 * We first construct a mapping to a shifted tile of the array,
4272 * [S -> A] -> T(S,A) (1)
4274 * If private is set, then we also use this mapping as a schedule
4275 * (which is already thread-specific and will be completely unrolled).
4276 * Otherwise, we wrap/tile the range over the threads.
4277 * The result is
4279 * [S -> A] -> T'(S,A)
4281 * Combined with the given schedule, we have
4283 * [S -> A] -> [L -> T'(S,A)] (2)
4285 * From the shifted tile mapping, we construct a mapping
4287 * [S -> A] -> [A -> T(S,A)]
4289 * and apply it to the schedule (2), obtaining
4291 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
4293 * Note that we can project out S because it is uniquely defined by L.
4295 static __isl_give isl_ast_node *copy_access(struct gpu_gen *gen,
4296 __isl_take isl_map *sched,
4297 const char *type, struct gpu_array_ref_group *group,
4298 __isl_take isl_ast_build *build, int private)
4300 isl_space *space;
4301 isl_ast_node *tree;
4302 isl_map *schedule, *shift, *map;
4303 isl_set *set;
4304 isl_id_list *iterators;
4305 int n;
4307 shift = shift_access(group);
4309 schedule = isl_map_copy(shift);
4310 schedule = isl_map_reset_tuple_id(schedule, isl_dim_out);
4311 if (!private)
4312 schedule = tile_access_schedule(gen, schedule);
4314 n = isl_map_dim(schedule, isl_dim_out);
4315 set = isl_set_universe(isl_ast_build_get_schedule_space(build));
4316 set = add_bounded_parameters(set, gen->kernel->n_block,
4317 gen->kernel->block_dim, "t");
4319 schedule = isl_map_range_product(sched, schedule);
4321 space = isl_space_domain(isl_map_get_space(shift));
4322 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
4323 map = isl_map_range_product(map, shift);
4325 schedule = isl_map_apply_domain(schedule, map);
4327 schedule = isl_map_set_tuple_name(schedule, isl_dim_in, type);
4329 build = isl_ast_build_restrict(build, set);
4331 gen->copy_group = group;
4333 if (private) {
4334 space = isl_space_range(isl_map_get_space(schedule));
4335 space = isl_space_range(isl_space_unwrap(space));
4336 build = set_unroll(build, space, 0);
4338 iterators = generate_names(gen->ctx, n, "c");
4339 build = isl_ast_build_set_iterators(build, iterators);
4340 build = isl_ast_build_set_at_each_domain(build, &attach_copy_stmt, gen);
4341 tree = isl_ast_build_ast_from_schedule(build,
4342 isl_union_map_from_map(schedule));
4343 isl_ast_build_free(build);
4345 return tree;
4348 /* Return code for reading into or writing from shared memory
4349 * the given array reference group.
4351 * If we are performing a read from global memory to shared memory and
4352 * if the array involved is not a scalar, then we copy
4353 * the entire tile to shared memory. This may result in some extra
4354 * elements getting copied, but it should lead to simpler code
4355 * (which means that fewer registers may be needed) and less divergence.
4357 * Otherwise, we only copy the elements that will be read or have been written
4358 * in the kernel.
4361 * The input "sched" is of the form.
4363 * type[S -> A] -> L
4365 * with S the first shared_len dimensions of the computed schedule,
4366 * A the array and L the schedule correponding to the generated loops.
4368 * We first drop "type",
4370 * [S -> A] -> L
4372 * If the above conditions are satisfied, we project out A,
4373 * resulting in
4375 * S -> L
4377 * and then introduce the group tile [S -> T], resulting in
4379 * [S -> T] -> L
4381 static __isl_give isl_ast_node *copy_group_shared_accesses(
4382 struct gpu_gen *gen, struct gpu_array_ref_group *group,
4383 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
4385 const char *type;
4386 int read;
4387 isl_union_map *access;
4389 type = isl_map_get_tuple_name(sched, isl_dim_in);
4390 read = !strcmp(type, "read");
4392 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
4394 if (read && !gpu_array_is_scalar(group->array)) {
4395 isl_space *space;
4396 isl_map *map;
4398 space = isl_space_domain(isl_map_get_space(sched));
4399 space = isl_space_unwrap(space);
4400 map = isl_map_domain_map(isl_map_universe(space));
4401 sched = isl_map_apply_domain(sched, map);
4403 map = group_tile(group);
4404 map = isl_map_reverse(isl_map_domain_map(map));
4405 sched = isl_map_apply_domain(sched, map);
4408 return copy_access(gen, sched, type, group, build, 0);
4411 /* Return code for reading into or writing from private memory
4412 * the given array reference group.
4414 * Let S be the first shared_len dimensions of the computed schedule,
4415 * D the iteration domains, A the array and L the schedule correponding
4416 * to the generated loops.
4417 * "sched" is of the form
4419 * type[S -> A] -> L
4421 * where type is either "read" or "write".
4422 * We apply the privatization D -> S(t), with t the thread ids,
4423 * to the access relation D -> A to obtain the privatized access relation
4425 * S(t) -> A
4427 * We drop the type from "sched" and intersect with the privatized access
4428 * relation to obtain
4430 * [S(t) -> A] -> L
4432 static __isl_give isl_ast_node *copy_group_private_accesses(
4433 struct gpu_gen *gen, struct gpu_array_ref_group *group,
4434 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
4436 const char *type;
4437 int read;
4438 isl_union_map *priv;
4439 isl_union_map *access;
4440 isl_map *access_map;
4442 type = isl_map_get_tuple_name(sched, isl_dim_in);
4443 read = !strcmp(type, "read");
4445 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
4446 priv = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
4447 priv);
4449 access = group_access_relation(group, read, !read);
4450 access = isl_union_map_apply_domain(access, priv);
4451 access_map = isl_map_from_union_map(access);
4453 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
4454 sched = isl_map_intersect_domain(sched, isl_map_wrap(access_map));
4456 return copy_access(gen, sched, type, group, build, 1);
4459 /* Return code for reading into or writing from shared or private memory.
4461 * "schedule" is of the form
4463 * type[S -> A] -> L
4465 * with S be the first shared_len dimensions of the computed schedule,
4466 * A the array and L the schedule correponding to the generated loops.
4467 * The array reference group is attached to "type".
4469 static __isl_give isl_ast_node *create_access_leaf(
4470 struct gpu_gen *gen, __isl_take isl_map *schedule,
4471 __isl_take isl_ast_build *build)
4473 struct gpu_array_ref_group *group;
4474 isl_id *id;
4476 id = isl_map_get_tuple_id(schedule, isl_dim_in);
4477 group = isl_id_get_user(id);
4478 isl_id_free(id);
4480 if (group->private_tile)
4481 return copy_group_private_accesses(gen, group, schedule,
4482 build);
4483 else
4484 return copy_group_shared_accesses(gen, group, schedule,
4485 build);
4488 /* Create a domain node representing a synchronization.
4490 static __isl_give isl_ast_node *create_sync_leaf(
4491 struct gpu_gen *gen, __isl_take isl_map *schedule,
4492 __isl_take isl_ast_build *build)
4494 struct ppcg_kernel_stmt *stmt;
4495 isl_id *id;
4496 isl_space *space;
4497 isl_ast_node *node;
4498 isl_ast_expr *expr;
4500 isl_map_free(schedule);
4502 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
4503 if (!stmt)
4504 return NULL;
4506 stmt->type = ppcg_kernel_sync;
4508 space = isl_ast_build_get_schedule_space(build);
4509 space = isl_space_from_domain(space);
4510 space = isl_space_set_tuple_name(space, isl_dim_out, "sync");
4511 expr = isl_ast_build_call_from_pw_multi_aff(build,
4512 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
4513 node = isl_ast_node_alloc_user(expr);
4514 isl_ast_build_free(build);
4516 id = isl_id_alloc(gen->ctx, NULL, stmt);
4517 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
4518 return isl_ast_node_set_annotation(node, id);
4521 /* This function is called during the code generation at the point
4522 * where the schedule domain element is completely determined by
4523 * the generated code. The input schedule contains the original
4524 * statements as well as synchronization and copy "statements".
4525 * The latter are scheduled at different points than any of the original
4526 * statements, so they will only arrive here in isolation.
4528 * If the current schedule only refers to a single statement,
4529 * we check if it is a copy or synchronization statement and
4530 * call the appropriate functions.
4531 * Otherwise, we assume we are dealing with the original statements
4532 * and we call create_domain_leaf.
4534 static __isl_give isl_ast_node *create_kernel_leaf(
4535 __isl_take isl_ast_build *build, void *user)
4537 struct gpu_gen *gen = (struct gpu_gen *) user;
4538 isl_map *map;
4539 isl_union_map *schedule;
4540 const char *name;
4542 schedule = isl_ast_build_get_schedule(build);
4544 if (isl_union_map_n_map(schedule) != 1)
4545 return create_domain_leaf(schedule, build, user);
4547 map = isl_map_from_union_map(schedule);
4548 name = isl_map_get_tuple_name(map, isl_dim_in);
4549 if (!strcmp(name, "read") || !strcmp(name, "write"))
4550 return create_access_leaf(gen, map, build);
4551 if (!strcmp(name, "sync"))
4552 return create_sync_leaf(gen, map, build);
4554 return create_domain_leaf(isl_union_map_from_map(map), build, user);
4557 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
4558 * have value 0) and all even schedule dimensions as "unroll".
4560 * That is, the options look as follows
4562 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
4563 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
4565 * The even positions are used to be able to schedule copying blocks
4566 * and synchronization before or after each level of the shared memory
4567 * tile loops and we want to make sure that code for these is generated
4568 * separately (within each level).
4570 static __isl_give isl_ast_build *set_atomic_and_unroll(
4571 __isl_take isl_ast_build *build,
4572 __isl_take isl_space *space, int sched_len)
4574 isl_ctx *ctx;
4575 isl_map *map;
4576 isl_constraint *c;
4577 isl_union_map *opt;
4578 isl_local_space *ls;
4579 int i, n;
4581 ctx = isl_ast_build_get_ctx(build);
4583 space = isl_space_params(space);
4584 space = isl_space_add_dims(space, isl_dim_set, sched_len);
4585 space = isl_space_from_domain(space);
4586 space = isl_space_add_dims(space, isl_dim_out, 2);
4587 map = isl_map_universe(isl_space_copy(space));
4588 for (i = 0; i < sched_len; i += 2)
4589 map = isl_map_fix_si(map, isl_dim_in, i, 0);
4590 ls = isl_local_space_from_space(isl_map_get_space(map));
4591 c = isl_equality_alloc(ls);
4592 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
4593 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
4594 c = isl_constraint_set_constant_si(c, 1);
4595 map = isl_map_add_constraint(map, c);
4596 map = isl_map_project_out(map, isl_dim_out, 1, 1);
4597 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
4598 opt = isl_union_map_from_map(map);
4600 map = isl_map_universe(space);
4601 ls = isl_local_space_from_space(isl_map_get_space(map));
4602 c = isl_equality_alloc(ls);
4603 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
4604 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
4605 map = isl_map_add_constraint(map, c);
4606 map = isl_map_project_out(map, isl_dim_out, 1, 1);
4607 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
4608 opt = isl_union_map_add_map(opt, map);
4610 build = isl_ast_build_set_options(build, opt);
4612 return build;
4615 /* Return a map that maps a space of dimension gen->shared_len
4616 * to its last dimensions starting at gen->tile_first.
4617 * The range is of dimension
4619 * 2 * (gen->shared_len - gen->tile_first) + 1
4621 * The input dimensions are mapped to the odd dimensions in the output,
4622 * while the even dimensions (except 2*pos) are fixed to 0.
4623 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
4624 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
4625 * are mapped to the output. The remaining input dimensions are projected
4626 * out and the corresponding output dimensions are fixed to 0.
4628 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
4629 __isl_take isl_space *space, int pos, int val)
4631 int i, n;
4632 isl_map *proj;
4634 space = isl_space_set_from_params(space);
4635 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
4636 space = isl_space_map_from_set(space);
4637 proj = isl_map_identity(space);
4638 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
4639 n = gen->shared_len - gen->tile_first;
4640 for (i = 0; i <= n; ++i) {
4641 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
4642 if (i == pos)
4643 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
4644 else
4645 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
4648 if (pos < 0)
4649 return proj;
4651 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
4652 gen->shared_len - (gen->tile_first + pos));
4653 for (i = pos; i < n; ++i)
4654 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
4656 return proj;
4659 /* Given the AST context schedule "schedule" and the mapping from
4660 * domains to the shared tile loops "shared_sched", add a schedule
4661 * for a synchronization operation at position "val" of loop level "pos".
4663 * schedule is of the form
4665 * D -> L
4667 * (with D the iteration domains and L the already generated loops),
4668 * while shared_sched is of the form
4670 * D -> S
4672 * We combine them into
4674 * L -> S
4676 * apply a mapping
4678 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4680 * and use the result as a schedule for "sync".
4682 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
4683 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4684 __isl_keep isl_union_map *shared_sched, int pos, int val)
4686 isl_space *space;
4687 isl_map *proj, *map;
4689 shared_sched = isl_union_map_copy(shared_sched);
4690 schedule = isl_union_map_copy(schedule);
4692 space = isl_union_map_get_space(shared_sched);
4693 schedule = isl_union_map_apply_domain(shared_sched, schedule);
4694 map = isl_map_from_union_map(schedule);
4696 proj = insert_even(gen, space, pos, val);
4697 map = isl_map_apply_range(map, proj);
4698 map = isl_map_from_range(isl_map_wrap(map));
4699 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
4701 res = isl_union_map_add_map(res, map);
4703 return res;
4706 /* Given a set of wrapped references "ref", return the corresponding
4707 * access relations based on the tagged access relations "tagged".
4709 * The elements of "ref" are of the form
4711 * [D -> R]
4713 * with D an iteration domains and R a reference.
4714 * The elements of "tagged" are of the form
4716 * [D -> R] -> A
4718 * with A an array.
4720 * Extend "tagged" to include the iteration domain in the range, i.e.,
4722 * [D -> R] -> [D -> A]
4724 * apply the result to "ref" and then unwrap the resulting set
4725 * to obtain relations of the form
4727 * D -> A
4729 static __isl_give isl_union_map *wrapped_reference_to_access(
4730 __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
4732 isl_union_map *tag2access;
4734 tag2access = isl_union_map_copy(tagged);
4735 tag2access = isl_union_map_universe(tag2access);
4736 tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
4737 tag2access = isl_union_map_domain_map(tag2access);
4738 tag2access = isl_union_map_range_product(tag2access, tagged);
4740 ref = isl_union_set_coalesce(ref);
4741 ref = isl_union_set_apply(ref, tag2access);
4743 return isl_union_set_unwrap(ref);
4746 /* Given an access relation "access" from "group", remove those reads
4747 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
4748 * communicate data within the same iteration of the last_shared dimension
4749 * of the group.
4751 * If the access is a read then it is necessarily an element of
4753 * live_in union (range flow)
4755 * where live_in and flow may be overapproximations.
4756 * If the access is a write then it is necessarily an element of
4758 * live_out union (domain flow)
4760 * In both cases, the access relation is also a subset of
4761 * the group access relation.
4763 * Essentially, we compute the intersection of "access" with either
4765 * live_in union (range non-local-flow)
4767 * or
4769 * live_out union (domain non-local-flow)
4771 * We first construct a relation "local"
4773 * [[D -> R] -> [D' -> R']]
4775 * of pairs of domain iterations accessing the reference group
4776 * and references in the group that are scheduled to the same iteration
4777 * of the last_shared dimension.
4779 * If this relation does not intersect the dataflow dependences,
4780 * then there is nothing we can possibly remove and we simply
4781 * return the input.
4783 * Otherwise, we remove the "local" dataflow dependences from
4784 * the set of all dataflow dependences.
4785 * Note that if the potential dataflow dependences are an overapproximation
4786 * of the actual dataflow dependences, then the result remains an
4787 * overapproximation of the non-local dataflow dependences.
4788 * Copying to/from global memory is only needed for the references
4789 * in the domain/range of the result or for accesses that are live out/in
4790 * for the entire scop.
4792 * We therefore map the domain/range of the "external" relation
4793 * to the corresponding access relation and take the union with
4794 * the live out/in relation.
4796 static __isl_give isl_union_map *remove_local_accesses(struct gpu_gen *gen,
4797 struct gpu_array_ref_group *group, __isl_take isl_union_map *access,
4798 int read)
4800 int empty;
4801 isl_union_map *tagger;
4802 isl_union_set *domain;
4803 isl_space *space;
4804 isl_union_map *sched, *local, *tagged, *external;
4805 isl_union_set *tag_set;
4806 isl_map *proj;
4808 if (isl_union_map_is_empty(access))
4809 return access;
4811 tagged = group_tagged_access_relation(group);
4813 sched = isl_union_map_copy(gen->sched);
4815 space = isl_union_map_get_space(sched);
4816 proj = projection(space, gen->untiled_len, group->last_shared + 1);
4817 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
4819 tagger = isl_union_map_copy(gen->prog->scop->tagger);
4820 domain = isl_union_map_domain(isl_union_map_copy(tagged));
4821 tagger = isl_union_map_intersect_range(tagger, domain);
4822 sched = isl_union_map_apply_domain(sched, tagger);
4824 local = isl_union_map_apply_range(sched,
4825 isl_union_map_reverse(isl_union_map_copy(sched)));
4826 local = isl_union_map_intersect(local,
4827 isl_union_map_copy(gen->prog->scop->tagged_dep_flow));
4829 empty = isl_union_map_is_empty(local);
4830 if (empty < 0 || empty) {
4831 isl_union_map_free(tagged);
4832 isl_union_map_free(local);
4833 if (empty < 0)
4834 return isl_union_map_free(access);
4835 return access;
4838 external = isl_union_map_copy(gen->prog->scop->tagged_dep_flow);
4839 external = isl_union_map_intersect_params(external,
4840 isl_set_copy(gen->prog->scop->context));
4841 external = isl_union_map_subtract(external, local);
4843 if (read) {
4844 tag_set = isl_union_map_range(external);
4845 external = wrapped_reference_to_access(tag_set, tagged);
4846 external = isl_union_map_union(external,
4847 isl_union_map_copy(gen->prog->scop->live_in));
4848 } else {
4849 tag_set = isl_union_map_domain(external);
4850 external = wrapped_reference_to_access(tag_set, tagged);
4851 external = isl_union_map_union(external,
4852 isl_union_map_copy(gen->prog->scop->live_out));
4855 access = isl_union_map_intersect(access, external);
4857 return access;
4860 /* Given the AST context schedule "schedule" and the mapping from
4861 * domains to the shared tile loops "shared_sched", add a schedule
4862 * for copying an array reference group to/from shared/private memory.
4863 * "read" is set if data should be copied from global memory
4864 * to shared/private memory.
4865 * "k" represents the current group
4866 * "s" is the total number of groups
4868 * We schedule an operation before or after the innermost loop
4869 * of "shared_sched" that affects the tile of the array reference group.
4871 * schedule is of the form
4873 * D -> L
4875 * (with D the iteration domains and L the already generated loops),
4876 * while shared_sched is of the form
4878 * D -> S
4880 * We first compute the access relation for the reference group
4882 * D -> A
4884 * and remove from this access relation those reads or writes
4885 * that only needed to communicate data within the same iteration
4886 * of the last_shared dimension of the group.
4887 * We then combine what is left with shared_sched into
4889 * D -> [S -> A]
4891 * If this results in an empty relation, no copying needs to be performed
4892 * at this point.
4893 * Otherwise, we invert the relation and combine it with "schedule" into
4895 * [S -> A] -> L
4897 * The actual additional piece of the schedule is obtained from combining
4899 * [S -> A] -> S
4901 * with a mapping
4903 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4905 * The position of "val" corresponds to the innermost loop that affects
4906 * the tile and the value indicates where the copying is scheduled
4907 * with respect to the actual kernel code (at value 0).
4908 * Reads are schedule before the code, writes to global memory from
4909 * private memory are scheduled at values 1 to s, writes to global
4910 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
4912 * If we are scheduling a read from global memory to shared memory,
4913 * we insert a synchronization before the kernel code (at the innermost
4914 * level).
4915 * If we are scheduling a write to global memory, then we add
4916 * a synchronization after all writes (at value 2 *s + 2).
4917 * However, there is no need for a synchronization after the outermost loop.
4918 * A write to global memory from private memory at the innermost level
4919 * does not require a synchronization, because it is covered by
4920 * the synchronization after the kernel inserted by body_schedule.
4922 static __isl_give isl_union_map *add_group_schedule(struct gpu_gen *gen,
4923 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4924 __isl_keep isl_union_map *shared_sched,
4925 struct gpu_array_ref_group *group, int read, int k, int s)
4927 int n;
4928 int pos, val;
4929 isl_space *space;
4930 isl_union_map *access;
4931 isl_map *map, *proj, *access_map;
4932 isl_id *id;
4934 access = group_access_relation(group, read, !read);
4935 access = remove_local_accesses(gen, group, access, read);
4936 access = isl_union_map_range_product(isl_union_map_copy(shared_sched),
4937 access);
4939 if (isl_union_map_is_empty(access)) {
4940 isl_union_map_free(access);
4941 return res;
4944 access = isl_union_map_reverse(access);
4945 access = isl_union_map_apply_range(access,
4946 isl_union_map_copy(schedule));
4947 access_map = isl_map_from_union_map(access);
4949 space = isl_space_copy(group->array->space);
4950 space = isl_space_from_range(space);
4951 space = isl_space_add_dims(space, isl_dim_in, gen->shared_len);
4952 map = isl_map_domain_map(isl_map_universe(space));
4954 space = isl_union_map_get_space(schedule);
4955 pos = group->last_shared + 1 - gen->tile_first;
4956 assert(pos >= 0);
4957 if (read)
4958 val = -2 - k;
4959 else if (group->private_tile)
4960 val = 1 + k;
4961 else
4962 val = 1 + s + 1 + k;
4963 proj = insert_even(gen, space, pos, val);
4964 map = isl_map_apply_range(map, proj);
4966 access_map = isl_map_range_product(access_map, map);
4968 id = isl_id_alloc(gen->ctx, read ? "read" : "write", group);
4969 access_map = isl_map_set_tuple_id(access_map, isl_dim_in, id);
4971 res = isl_union_map_add_map(res, access_map);
4973 n = gen->shared_len - gen->tile_first;
4974 if (read) {
4975 if (!group->private_tile)
4976 res = add_sync_schedule(gen, res, schedule,
4977 shared_sched, n, -1);
4978 } else {
4979 if (pos == 0)
4980 return res;
4981 if (pos == n && group->private_tile)
4982 return res;
4983 res = add_sync_schedule(gen, res, schedule, shared_sched,
4984 pos, 2 * s + 2);
4987 return res;
4990 /* Return a schedule for the shared tile loops based on the current
4991 * AST context schedule.
4993 * We create a "shared_sched" that maps the domains to the first
4994 * shared_len dimensions of the computed schedule, project out the
4995 * first tile_first dimensions (as these are already covered by
4996 * the host code) and insert "statement-level" dimensions at even
4997 * positions so that we can schedule copy blocks and synchronization
4998 * before/after each level.
5000 * In particular, copy blocks are inserted inside the innermost
5001 * level that affect the tile. For the copying to global memory,
5002 * those from private memory are scheduled before those from shared
5003 * memory such that synchronization can be inserted between the two
5004 * at the innermost level.
5005 * Synchronization is inserted at the innermost level before the
5006 * actual kernel code if there is any copying from global memory
5007 * to shared memory. It is inserted unconditionally at the innermost
5008 * level after the actual kernel code and the copying to global memory
5009 * from private memory (if any). Finally, it is inserted after
5010 * any copying to global memory, except at the outermost level
5011 * and at the innermost level if there is no copying from shared
5012 * memory. The copying from private memory is covered by the unconditional
5013 * synchronization at the innermost level.
5015 static __isl_give isl_union_map *body_schedule(struct gpu_gen *gen,
5016 __isl_take isl_union_map *schedule)
5018 isl_space *space;
5019 isl_union_map *res;
5020 isl_union_map *shared_sched;
5021 isl_union_map *sched;
5022 isl_map *proj, *map;
5023 int i, j, k, s;
5025 shared_sched = isl_union_map_copy(gen->tiled_sched);
5026 proj = projection(isl_union_map_get_space(shared_sched),
5027 gen->tiled_len, gen->shared_len);
5028 shared_sched = isl_union_map_apply_range(shared_sched,
5029 isl_union_map_from_map(proj));
5030 space = isl_union_map_get_space(shared_sched);
5031 proj = insert_even(gen, space, -1, 0);
5032 sched = isl_union_map_apply_range(isl_union_map_copy(shared_sched),
5033 isl_union_map_from_map(proj));
5035 res = isl_union_map_range_product(isl_union_map_copy(schedule), sched);
5037 s = 0;
5038 for (i = 0; i < gen->prog->n_array; ++i)
5039 s += gen->prog->array[i].n_group;
5041 k = 0;
5042 for (i = 0; i < gen->prog->n_array; ++i) {
5043 struct gpu_array_info *array = &gen->prog->array[i];
5045 for (j = 0; j < array->n_group; ++j) {
5046 struct gpu_array_ref_group *group;
5048 group = array->groups[j];
5049 if (!group->private_tile && !group->shared_tile)
5050 continue;
5051 res = add_group_schedule(gen, res, schedule,
5052 shared_sched, group, 0, k, s);
5053 res = add_group_schedule(gen, res, schedule,
5054 shared_sched, group, 1, k, s);
5055 ++k;
5059 res = add_sync_schedule(gen, res, schedule, shared_sched,
5060 gen->shared_len - gen->tile_first, 1 + s);
5062 isl_union_map_free(shared_sched);
5063 isl_union_map_free(schedule);
5065 return res;
5068 /* Generate code for "kernel" in the given "context".
5070 * We first generate code for the shared tile loops (T1T, T1P and T2)
5071 * in a context that includes the block ids.
5072 * Within each iteration of these loops an additional code generation
5073 * is performed (within create_kernel_leaf) for the rest of the schedule
5074 * in a context that includes the thread ids.
5076 static __isl_give isl_ast_node *generate_kernel(struct gpu_gen *gen,
5077 __isl_keep isl_ast_build *build, __isl_keep isl_set *host_domain,
5078 __isl_keep isl_multi_pw_aff *grid_size)
5080 isl_space *space;
5081 isl_set *set;
5082 isl_id_list *iterators;
5083 isl_union_map *schedule;
5084 isl_ast_node *tree;
5085 int sched_len;
5087 schedule = isl_ast_build_get_schedule(build);
5089 build = isl_ast_build_copy(build);
5090 build = isl_ast_build_restrict(build, isl_set_copy(host_domain));
5091 space = isl_ast_build_get_schedule_space(build);
5092 set = isl_set_universe(isl_space_copy(space));
5093 set = add_bounded_parameters_dynamic(set, grid_size, "b");
5094 build = isl_ast_build_restrict(build, set);
5096 schedule = body_schedule(gen, schedule);
5098 sched_len = 2 * (gen->shared_len - gen->tile_first) + 1;
5100 build = set_atomic_and_unroll(build, space, sched_len);
5101 iterators = generate_names(gen->ctx, sched_len, "g");
5102 build = isl_ast_build_set_iterators(build, iterators);
5103 build = isl_ast_build_set_create_leaf(build, &create_kernel_leaf, gen);
5104 tree = isl_ast_build_ast_from_schedule(build, schedule);
5105 isl_ast_build_free(build);
5107 return tree;
5110 /* Attach "id" to the given node.
5112 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
5113 __isl_keep isl_ast_build *build, void *user)
5115 isl_id *id = user;
5117 node = isl_ast_node_set_annotation(node, id);
5119 return node;
5122 /* Construct an AST node for performing a kernel launch and attach
5123 * the information about the kernel to that node.
5125 * The kernel AST has been constructed in the context of the range
5126 * of "schedule". In particular, the grid size has been computed
5127 * in the context. We therefore still need to make sure that these
5128 * constraints are expressed in the code. We do this by creating a schedule
5130 * kernel[] -> [S -> []]
5132 * where S is the schedule domain, i.e., the range of "schedule".
5133 * The AST generation will then create a single call surrounded by
5134 * all the condition in "S" that have not been expressed yet.
5136 * The kernel information is attached to this node in attach_id.
5138 static __isl_give isl_ast_node *construct_launch(
5139 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
5140 __isl_take struct ppcg_kernel *kernel)
5142 isl_id *id;
5143 isl_ctx *ctx;
5144 isl_union_set *domain;
5145 isl_set *set;
5146 isl_map *map;
5147 isl_ast_node *node;
5149 ctx = isl_ast_build_get_ctx(build);
5151 id = isl_id_alloc(ctx, NULL, kernel);
5152 id = isl_id_set_free_user(id, &ppcg_kernel_free);
5154 domain = isl_union_map_range(schedule);
5155 set = isl_set_from_union_set(domain);
5156 map = isl_map_from_domain(set);
5157 map = isl_map_from_range(isl_map_wrap(map));
5158 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
5159 schedule = isl_union_map_from_map(map);
5161 build = isl_ast_build_set_at_each_domain(build, &attach_id, id);
5162 node = isl_ast_build_ast_from_schedule(build, schedule);
5163 isl_ast_build_free(build);
5165 return node;
5168 /* This function is called for each leaf in the AST of the host code.
5169 * We first specialize the schedule to the site of the leaf, compute
5170 * the size of shared memory and then construct the body of the host code
5171 * and the associated kernel.
5173 * The necessary information for printing the kernel launch is
5174 * stored in a struct ppcg_kernel and attached to the leaf node
5175 * created to represent the launch.
5177 static __isl_give isl_ast_node *create_host_leaf(
5178 __isl_take isl_ast_build *build, void *user)
5180 struct gpu_gen *gen = (struct gpu_gen *) user;
5181 isl_id *id;
5182 isl_ast_node *node;
5183 struct ppcg_kernel *kernel;
5184 isl_set *host_domain;
5185 isl_union_map *schedule;
5186 isl_union_map *local_sched;
5187 isl_union_map *access;
5188 isl_union_set *domain;
5189 int i;
5191 schedule = isl_ast_build_get_schedule(build);
5193 isl_union_map_foreach_map(schedule, &extract_tile_len, gen);
5194 read_sizes(gen);
5196 domain = isl_union_map_domain(isl_union_map_copy(schedule));
5198 local_sched = isl_union_map_copy(gen->sched);
5199 local_sched = isl_union_map_intersect_domain(local_sched, domain);
5200 access = isl_union_map_union(isl_union_map_copy(gen->prog->read),
5201 isl_union_map_copy(gen->prog->may_write));
5202 access = isl_union_map_apply_domain(access,
5203 isl_union_map_copy(local_sched));
5205 gen->tiled_sched = tile_schedule(gen, local_sched);
5206 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
5207 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
5209 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
5210 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
5211 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
5213 kernel = gen->kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
5214 if (!kernel)
5215 goto error;
5217 kernel->id = gen->kernel_id++;
5218 kernel->context = isl_union_map_params(isl_union_map_copy(schedule));
5219 kernel->grid_size = extract_grid_size(gen, kernel);
5220 extract_block_size(gen, kernel);
5221 kernel->arrays = isl_union_map_range(access);
5222 kernel->arrays = isl_union_set_apply(kernel->arrays,
5223 isl_union_map_copy(gen->prog->to_outer));
5224 kernel->space = isl_ast_build_get_schedule_space(build);
5226 gen->private_access = NULL;
5227 compute_shared_sched(gen);
5228 gen->privatization = compute_privatization(gen);
5229 check_scalar_live_ranges(gen);
5230 if (group_references(gen) < 0)
5231 schedule = isl_union_map_free(schedule);
5232 compute_private_access(gen);
5233 host_domain = isl_set_from_union_set(isl_union_map_range(
5234 isl_union_map_copy(schedule)));
5235 localize_bounds(gen, kernel, host_domain);
5237 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
5238 check_shared_memory_bound(gen);
5239 compute_group_tilings(gen);
5241 kernel->tree = generate_kernel(gen, build, host_domain,
5242 kernel->grid_size);
5243 create_kernel_vars(gen, kernel);
5245 free_local_array_info(gen);
5246 isl_map_free(gen->privatization);
5247 isl_union_map_free(gen->private_access);
5248 isl_union_map_free(gen->local_sched);
5249 isl_union_map_free(gen->tiled_sched);
5250 isl_union_map_free(gen->shared_sched);
5251 isl_union_map_free(gen->shared_proj);
5252 isl_set_free(host_domain);
5253 free(gen->tile_size);
5255 node = construct_launch(build, schedule, kernel);
5257 return node;
5258 error:
5259 isl_union_map_free(schedule);
5260 return NULL;
5263 /* Use isl to generate code for the outer gen->tile_first loops
5264 * of the global schedule in gen->sched, resulting in the host code.
5265 * Within each iteration of this partial schedule, i.e., for each kernel
5266 * launch, create_host_leaf takes care of generating the kernel code.
5268 static __isl_give isl_ast_node *generate_host_code(struct gpu_gen *gen)
5270 isl_ast_build *build;
5271 isl_ast_node *tree;
5272 isl_union_map *sched;
5273 isl_map *proj;
5274 isl_id_list *iterators;
5276 sched = isl_union_map_copy(gen->sched);
5277 proj = projection(isl_union_map_get_space(sched),
5278 gen->untiled_len, gen->tile_first);
5279 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
5281 isl_options_set_ast_build_group_coscheduled(gen->ctx, 1);
5282 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
5283 iterators = generate_names(gen->ctx, gen->tile_first, "h");
5284 build = isl_ast_build_set_iterators(build, iterators);
5285 build = isl_ast_build_set_create_leaf(build, &create_host_leaf, gen);
5286 tree = isl_ast_build_ast_from_schedule(build, sched);
5287 isl_ast_build_free(build);
5289 return tree;
5292 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
5294 if (!str)
5295 return NULL;
5296 return isl_union_map_read_from_str(ctx, str);
5299 /* Information about the outermost tilable bands in the forest of bands.
5301 * tile_len and n_parallel are only sets on band_info structures
5302 * that correspond to outermost bands. For other bands (in particular,
5303 * ancestors of the outermost bands), n_parallal is set to 0.
5305 * prefix is the (padded) schedule leading up to the outermost tilable bands.
5307 * tile_first is the number of schedule dimensions in prefix.
5309 * suffix is the schedule of the outermost tilable bands and their descendants.
5311 struct band_info {
5312 struct gpu_gen *gen;
5313 int tile_first;
5314 int tile_len;
5315 int n_parallel;
5316 isl_union_map *prefix;
5317 isl_union_map *suffix;
5320 /* Set tile_len and n_parallel of the statement to that of
5321 * their outermost band, recorded in the band_info.
5323 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
5325 struct band_info *info = user;
5326 struct gpu_stmt *stmt;
5327 isl_id *id;
5329 id = isl_map_get_tuple_id(map, isl_dim_in);
5330 stmt = find_stmt(info->gen->prog, id);
5331 isl_id_free(id);
5333 stmt->tile_len = info->tile_len;
5334 stmt->n_parallel = info->n_parallel;
5336 isl_map_free(map);
5338 return 0;
5341 static void list_select_outer_band(struct gpu_gen *gen,
5342 __isl_take isl_band_list *list, int pos, struct band_info *list_info);
5344 /* Check if this band has any parallel loops. If so, take it as
5345 * the outermost tilable band. If not, continue looking for the
5346 * outermost tilable band in the children of the current band.
5348 static void band_select_outer_band(struct gpu_gen *gen,
5349 __isl_take isl_band *band, int pos, struct band_info *info)
5351 int n = isl_band_n_member(band);
5352 int n_parallel;
5354 for (n_parallel = 0; n_parallel < n; ++n_parallel)
5355 if (!isl_band_member_is_coincident(band, n_parallel))
5356 break;
5358 info->n_parallel = n_parallel;
5359 if (n_parallel) {
5360 gen->any_parallelism = 1;
5361 info->gen = gen;
5362 info->tile_first = pos;
5363 info->tile_len = n;
5364 info->prefix = isl_band_get_prefix_schedule(band);
5365 info->suffix = isl_union_map_flat_range_product(
5366 isl_band_get_partial_schedule(band),
5367 isl_band_get_suffix_schedule(band));
5368 isl_union_map_foreach_map(info->prefix,
5369 &set_stmt_tile_len, info);
5370 } else if (isl_band_has_children(band)) {
5371 isl_band_list *children;
5372 children = isl_band_get_children(band);
5373 list_select_outer_band(gen, children, pos + n, info);
5374 } else {
5375 info->gen = gen;
5376 info->tile_first = pos + n;
5377 info->tile_len = 0;
5378 info->prefix = isl_union_map_flat_range_product(
5379 isl_band_get_prefix_schedule(band),
5380 isl_band_get_partial_schedule(band));
5381 info->suffix = isl_band_get_suffix_schedule(band);
5382 isl_union_map_foreach_map(info->prefix,
5383 &set_stmt_tile_len, info);
5386 isl_band_free(band);
5389 /* Comparison function that returns a non-zero value for band_infos
5390 * with different tile_len fields or different n_parallel fields.
5392 static int cmp_band(const void *p1, const void *p2)
5394 const struct band_info *info1 = p1;
5395 const struct band_info *info2 = p2;
5397 if (info1->tile_len != info2->tile_len)
5398 return info1->tile_len - info2->tile_len;
5400 return info1->n_parallel - info2->n_parallel;
5403 /* Extend "umap" with coordinates with fixed value "val"
5404 * to a total length of "dst_len", assuming the original dimension is "src_len".
5406 static __isl_give isl_union_map *extend_range(
5407 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
5409 isl_space *dim;
5410 isl_map *map;
5411 int i;
5413 dim = isl_union_map_get_space(umap);
5414 map = isl_map_reverse(projection(dim, dst_len, src_len));
5415 for (i = src_len; i < dst_len; ++i)
5416 map = isl_map_fix_si(map, isl_dim_out, i, val);
5418 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
5420 return umap;
5423 /* Group bands with the same values for tile_len and n_parallel.
5424 * The prefix schedule is then extended with a fixed coordinate that
5425 * is different for each such group.
5426 * Note that the actual values for this coordinate are not important.
5427 * The bands have already been effectively separated at a higher level
5428 * or they are independent and may be executed in parallel.
5429 * The list of band_info has been sorted before this functions is called.
5431 static void separate_bands(struct band_info *info, int n)
5433 int i;
5434 int j = 0;
5436 for (i = 0; i < n; ++i) {
5437 int l = info[i].tile_first;
5439 if (i &&
5440 (info[i].tile_len != info[i - 1].tile_len ||
5441 info[i].n_parallel != info[i - 1].n_parallel))
5442 j++;
5444 info[i].prefix = extend_range(info[i].prefix,
5445 l, l + 1, j);
5446 info[i].tile_first = l + 1;
5450 /* Select the outermost bands in the elements of the list, align
5451 * their prefix schedules, separate bands with different values
5452 * for tile_len and/or n_parallel and then combine the resulting
5453 * prefix and suffix schedules into a single pair of prefix and
5454 * suffix schedules for the entire list.
5456 static void list_select_outer_band(struct gpu_gen *gen,
5457 __isl_take isl_band_list *list, int pos, struct band_info *list_info)
5459 isl_band *band;
5460 int i;
5461 int n = isl_band_list_n_band(list);
5462 isl_ctx *ctx = isl_band_list_get_ctx(list);
5463 struct band_info *info;
5464 int max_tile_first;
5465 isl_union_map *prefix;
5466 isl_union_map *suffix;
5468 assert(n >= 1);
5469 info = isl_calloc_array(ctx, struct band_info, n);
5470 assert(info);
5472 max_tile_first = 0;
5473 for (i = 0; i < n; ++i) {
5474 band = isl_band_list_get_band(list, i);
5475 band_select_outer_band(gen, band, pos, &info[i]);
5476 if (info[i].tile_first > max_tile_first)
5477 max_tile_first = info[i].tile_first;
5480 for (i = 0; i < n; ++i) {
5481 if (info[i].tile_first == max_tile_first)
5482 continue;
5483 info[i].prefix = extend_range(info[i].prefix,
5484 info[i].tile_first, max_tile_first, 0);
5485 info[i].tile_first = max_tile_first;
5488 qsort(info, n, sizeof(struct band_info), &cmp_band);
5490 for (i = 0; i < n - 1; ++i)
5491 if (info[i].tile_len != info[i + 1].tile_len ||
5492 info[i].n_parallel != info[i + 1].n_parallel)
5493 break;
5495 if (i < n -1)
5496 separate_bands(info, n);
5498 prefix = info[0].prefix;
5499 suffix = info[0].suffix;
5501 for (i = 1; i < n; ++i) {
5502 prefix = isl_union_map_union(prefix, info[i].prefix);
5503 suffix = isl_union_map_union(suffix, info[i].suffix);
5506 list_info->tile_first = info[0].tile_first;
5507 list_info->tile_len = -1;
5508 list_info->prefix = prefix;
5509 list_info->suffix = suffix;
5511 isl_band_list_free(list);
5512 free(info);
5515 /* Select the outermost tilable band that (by construction)
5516 * has at least one parallel loop.
5517 * The starting position of the aligned band is stored in the pair
5518 * gen->tile_first.
5519 * The sizes and number of parallel loops may be different in different
5520 * parts of the band forest and are therefore stored in the gpu_stmts.
5522 * Return the complete schedule, with the tilable bands aligned
5523 * at gen->tile_first and padded with zero, if needed.
5525 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
5526 __isl_keep isl_schedule *schedule)
5528 isl_band_list *list;
5529 struct band_info info;
5531 gen->n_parallel = 0;
5532 gen->tile_len = -1;
5534 list = isl_schedule_get_band_forest(schedule);
5536 if (isl_band_list_n_band(list) == 0) {
5537 isl_band_list_free(list);
5538 return isl_schedule_get_map(schedule);
5541 list_select_outer_band(gen, list, 0, &info);
5543 gen->tile_first = info.tile_first;
5544 info.suffix = align_range(info.suffix);
5546 return isl_union_map_flat_range_product(info.prefix, info.suffix);
5549 /* Set gen->untiled_len to the number of scheduling dimensions
5550 * for the schedule of the first domain.
5551 * We assume here that this number is the same for all domains.
5553 static int set_untiled_len(__isl_take isl_map *map, void *user)
5555 unsigned *untiled_len = user;
5557 *untiled_len = isl_map_dim(map, isl_dim_out);
5559 isl_map_free(map);
5560 return -1;
5563 /* Compute an appropriate schedule based on the accesses in
5564 * gen->read and gen->write.
5566 * We use the dependences in gen->prog->scop to compute
5567 * a schedule that has a parallel loop in each tilable band.
5568 * Finally, we select the outermost tilable band.
5570 * If live range reordering is allowed, then we need to make sure
5571 * that live ranges on arrays are not run in parallel since doing
5572 * so would require array expansion. We therefore add the array
5573 * order dependences to the coincidence dependences. Non-zero array
5574 * order dependences will then prevent a schedule dimension from being
5575 * considered parallel.
5576 * Live ranges derived from scalars are allowed to be run in parallel
5577 * since we force the scalars to be mapped to private memory in
5578 * check_scalar_live_ranges.
5579 * If live range reordering is allowed, then the false dependences
5580 * are not added to the validity constraints as that would prevent
5581 * reordering. Instead, the external false dependences that enforce that reads
5582 * from potentially live-in data precede any later write and
5583 * that writes of potentially live-out data follow any other earlier write
5584 * are added to the validity and the coincidence constraints.
5585 * The false dependences are still added to the proximity constraints
5586 * for consistency with the case where live range reordering is not allowed.
5587 * The coincidence constraints then consist of flow dependences,
5588 * exernal false dependences and array order dependences.
5589 * The independences can be filtered out from the first two sets.
5590 * They have already been filtered out from the array order dependences
5591 * on a per array basis in collect_order_dependences.
5592 * There is no need for a per array handling of the other two sets
5593 * as there should be no flow or external false dependence on local
5594 * variables that can be filtered out.
5596 static void compute_schedule(struct gpu_gen *gen)
5598 isl_union_set *domain;
5599 isl_union_map *dep_raw, *dep;
5600 isl_union_map *validity, *proximity, *coincidence;
5601 isl_union_map *sched;
5602 isl_schedule_constraints *sc;
5603 isl_schedule *schedule;
5605 domain = isl_union_set_copy(gen->prog->scop->domain);
5606 domain = isl_union_set_intersect_params(domain,
5607 isl_set_copy(gen->prog->scop->context));
5608 sc = isl_schedule_constraints_on_domain(isl_union_set_copy(domain));
5609 if (gen->options->live_range_reordering) {
5610 sc = isl_schedule_constraints_set_conditional_validity(sc,
5611 isl_union_map_copy(gen->prog->scop->tagged_dep_flow),
5612 isl_union_map_copy(gen->prog->scop->tagged_dep_order));
5613 proximity = isl_union_map_copy(gen->prog->scop->dep_flow);
5614 validity = isl_union_map_copy(proximity);
5615 validity = isl_union_map_union(validity,
5616 isl_union_map_copy(gen->prog->scop->dep_external));
5617 proximity = isl_union_map_union(proximity,
5618 isl_union_map_copy(gen->prog->scop->dep_false));
5619 coincidence = isl_union_map_copy(validity);
5620 coincidence = isl_union_map_subtract(coincidence,
5621 isl_union_map_copy(gen->prog->scop->independence));
5622 coincidence = isl_union_map_union(coincidence,
5623 isl_union_map_copy(gen->prog->array_order));
5624 } else {
5625 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
5626 dep = isl_union_map_copy(gen->prog->scop->dep_false);
5627 dep = isl_union_map_union(dep, dep_raw);
5628 dep = isl_union_map_coalesce(dep);
5629 proximity = isl_union_map_copy(dep);
5630 coincidence = isl_union_map_copy(dep);
5631 validity = dep;
5633 sc = isl_schedule_constraints_set_validity(sc, validity);
5634 sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
5635 sc = isl_schedule_constraints_set_proximity(sc, proximity);
5637 if (gen->options->debug->dump_schedule_constraints)
5638 isl_schedule_constraints_dump(sc);
5639 schedule = isl_schedule_constraints_compute_schedule(sc);
5640 if (gen->options->debug->dump_schedule)
5641 isl_schedule_dump(schedule);
5643 sched = select_outer_tilable_band(gen, schedule);
5645 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
5646 sched = isl_union_map_intersect_domain(sched, domain);
5647 gen->sched = sched;
5649 isl_schedule_free(schedule);
5652 /* Compute the sets of outer array elements that need to be copied in and out.
5654 * In particular, for each array that is possibly written anywhere in
5655 * gen->prog and that is visible outside the corresponding scop,
5656 * we copy out its entire extent.
5658 * Any array elements that is read without first being written needs
5659 * to be copied in. Furthermore, if there are any array elements that
5660 * are copied out, but that may not be written inside gen->prog, then
5661 * they also need to be copied in to ensure that the value after execution
5662 * is the same as the value before execution.
5663 * In case the array elements are structures, we need to take into
5664 * account that all members of the structures need to be written
5665 * by gen->prog before we can avoid copying the data structure in.
5667 * While computing the set of array elements that are copied out but
5668 * not necessarily written, we intersect both sets with the context.
5669 * This helps in those cases where the arrays are declared with a fixed size,
5670 * while the accesses are parametric and the context assigns a fixed value
5671 * to the parameters.
5673 * If an element from a local array is read without first being written,
5674 * then there is no point in copying it in since it cannot have been
5675 * written prior to the scop. Warn about the uninitialized read instead.
5677 static void compute_copy_in_and_out(struct gpu_gen *gen)
5679 int i;
5680 isl_union_set *local;
5681 isl_union_set *may_write, *must_write;
5682 isl_union_set *copy_in, *copy_out;
5683 isl_union_set *not_written;
5684 isl_union_map *uninitialized;
5685 isl_union_map *local_uninitialized;
5687 must_write = isl_union_map_range(
5688 isl_union_map_copy(gen->prog->must_write));
5689 must_write = isl_union_set_intersect_params(must_write,
5690 isl_set_copy(gen->prog->context));
5691 may_write = isl_union_map_range(
5692 isl_union_map_copy(gen->prog->may_write));
5693 may_write = isl_union_set_intersect_params(may_write,
5694 isl_set_copy(gen->prog->context));
5695 may_write = isl_union_set_universe(may_write);
5696 may_write = isl_union_set_apply(may_write,
5697 isl_union_map_copy(gen->prog->to_outer));
5698 copy_out = isl_union_set_empty(isl_union_set_get_space(may_write));
5699 local = isl_union_set_copy(copy_out);
5701 for (i = 0; i < gen->prog->n_array; ++i) {
5702 isl_space *space;
5703 isl_set *write_i;
5704 int empty;
5706 space = isl_space_copy(gen->prog->array[i].space);
5708 if (gen->prog->array[i].local) {
5709 isl_set *set;
5711 set = isl_set_universe(space);
5712 local = isl_union_set_add_set(local, set);
5713 continue;
5716 write_i = isl_union_set_extract_set(may_write, space);
5717 empty = isl_set_plain_is_empty(write_i);
5718 isl_set_free(write_i);
5719 if (empty)
5720 continue;
5722 write_i = isl_set_copy(gen->prog->array[i].extent);
5723 copy_out = isl_union_set_add_set(copy_out, write_i);
5725 isl_union_set_free(may_write);
5727 copy_out = isl_union_set_intersect_params(copy_out,
5728 isl_set_copy(gen->prog->context));
5730 gen->prog->copy_out = isl_union_set_copy(copy_out);
5732 copy_out = isl_union_set_apply(copy_out,
5733 isl_union_map_copy(gen->prog->to_inner));
5734 not_written = isl_union_set_subtract(copy_out, must_write);
5736 uninitialized = isl_union_map_copy(gen->prog->scop->live_in);
5737 local_uninitialized = isl_union_map_copy(uninitialized);
5739 local = isl_union_set_apply(local,
5740 isl_union_map_copy(gen->prog->to_inner));
5741 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
5742 local);
5743 if (!isl_union_map_is_empty(local_uninitialized)) {
5744 fprintf(stderr,
5745 "possibly uninitialized reads (not copied in):\n");
5746 isl_union_map_dump(local_uninitialized);
5748 uninitialized = isl_union_map_subtract(uninitialized,
5749 local_uninitialized);
5750 copy_in = isl_union_map_range(uninitialized);
5751 copy_in = isl_union_set_union(copy_in, not_written);
5752 copy_in = isl_union_set_apply(copy_in,
5753 isl_union_map_copy(gen->prog->to_outer));
5755 gen->prog->copy_in = copy_in;
5758 /* Internal data structure for extract_access.
5759 * "next_access" points to the end of a linked list that is extended
5760 * by extract_access.
5761 * "single_expression" is set if the access expressions belong to
5762 * an expression statement (i.e., a statement without internal control).
5764 struct ppcg_extract_access_data {
5765 struct gpu_stmt_access **next_access;
5766 int single_expression;
5769 /* Extract a gpu_stmt_access from "expr", append it to the list
5770 * that ends in *data->next_access and update the end of the list.
5771 * If the access expression performs a write, then it is considered
5772 * exact only if it appears in a single expression statement and
5773 * if its may access relation is equal to its must access relation.
5775 static int extract_access(__isl_keep pet_expr *expr, void *user)
5777 struct ppcg_extract_access_data *data = user;
5778 isl_map *may;
5779 struct gpu_stmt_access *access;
5780 isl_ctx *ctx;
5781 isl_multi_pw_aff *index;
5783 may = pet_expr_access_get_may_access(expr);
5784 ctx = isl_map_get_ctx(may);
5785 access = isl_alloc_type(ctx, struct gpu_stmt_access);
5786 assert(access);
5787 access->next = NULL;
5788 access->read = pet_expr_access_is_read(expr);
5789 access->write = pet_expr_access_is_write(expr);
5790 access->access = may;
5791 access->tagged_access = pet_expr_access_get_tagged_may_access(expr);
5792 if (!access->write) {
5793 access->exact_write = 1;
5794 } else if (!data->single_expression) {
5795 access->exact_write = 0;
5796 } else {
5797 isl_map *must;
5798 must = pet_expr_access_get_must_access(expr);
5799 access->exact_write = isl_map_is_equal(must, access->access);
5800 isl_map_free(must);
5802 index = pet_expr_access_get_index(expr);
5803 access->n_index = isl_multi_pw_aff_dim(index, isl_dim_out);
5804 isl_multi_pw_aff_free(index);
5805 access->ref_id = pet_expr_access_get_ref_id(expr);
5806 access->group = -1;
5808 *data->next_access = access;
5809 data->next_access = &(*data->next_access)->next;
5811 return 0;
5814 /* Construct a linked list of gpu_stmt_access objects,
5815 * one for each access expression in the statement body.
5817 static void pet_stmt_extract_accesses(struct gpu_stmt *stmt)
5819 struct ppcg_extract_access_data data;
5821 stmt->accesses = NULL;
5822 data.next_access = &stmt->accesses;
5823 data.single_expression =
5824 pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
5825 pet_tree_foreach_access_expr(stmt->stmt->body, &extract_access, &data);
5828 /* Return an array of gpu_stmt representing the statements in "scop".
5830 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
5831 __isl_keep isl_set *context)
5833 int i;
5834 struct gpu_stmt *stmts;
5836 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->pet->n_stmt);
5837 if (!stmts)
5838 return NULL;
5840 for (i = 0; i < scop->pet->n_stmt; ++i) {
5841 struct gpu_stmt *s = &stmts[i];
5843 s->id = isl_set_get_tuple_id(scop->pet->stmts[i]->domain);
5844 s->stmt = scop->pet->stmts[i];
5845 pet_stmt_extract_accesses(s);
5848 return stmts;
5851 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
5853 static __isl_give isl_printer *print_gpu(__isl_take isl_printer *p, void *user)
5855 struct gpu_gen *gen = user;
5857 return gen->print(p, gen->prog, gen->tree, &gen->types,
5858 gen->print_user);
5861 /* Generate CUDA code for "scop" and print it to "p".
5862 * After generating an AST for the transformed scop as explained below,
5863 * we call "gen->print" to print the AST in the desired output format
5864 * to "p".
5866 * If it turns out that it does not make sense to generate GPU code,
5867 * then we generate CPU code instead.
5869 * The GPU code is generated in a context where at least one
5870 * statement instance is executed. The corresponding guard (if any) is printed
5871 * around the entire generated GPU code, except for the declaration
5872 * of the arrays that are visible outside of the scop and that therefore
5873 * cannot be declared inside the body of any possible guard.
5875 * We first compute a schedule that respects the dependences
5876 * of the original program and select the outermost band
5877 * of tilable dimensions that has at least one parallel loop.
5878 * We then have three blocks of dimensions
5880 * H B G
5882 * The tilable band "B" is first tiled according to "tile" sizes, resulting
5883 * in
5885 * H T P G
5887 * For each iteration of the T loop and for each array, we compute
5888 * the array elements accessed by that iteration, construct a rectangular
5889 * box around it and shift it to the origin. The result is used
5890 * as shared memory for the array.
5892 * We then split off at most 2 parallel loops from the T loops and
5893 * at most 3 parallel loops from the P loops
5895 * H T1 T2 P1 P2 G
5897 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
5898 * according to "grid"/"block" sizes.
5900 * H T1T T1P T2 P1T P1P P2 G
5902 * Finally, the T1P and P1P iterators are equated to the block and
5903 * thread dimensions respectively and so are effectively removed.
5904 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
5905 * are run on the GPU.
5907 * Code is generated in three stages. We first generate code for the
5908 * host (the H loops), with iterators h%d. Then, for each leaf node
5909 * of the resulting AST, we generate code for the shared loops (up to
5910 * and including T2), with iterators g%d and after equating the H loops
5911 * to h%d parameters and the T1P loops to the block dimensions.
5912 * Finally, we generate code for the remaining loops in a similar fashion.
5914 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
5915 struct gpu_gen *gen, struct ppcg_scop *scop,
5916 struct ppcg_options *options)
5918 struct gpu_prog *prog;
5919 isl_ctx *ctx;
5920 isl_set *context, *guard;
5922 if (!scop)
5923 return isl_printer_free(p);
5925 ctx = isl_printer_get_ctx(p);
5926 prog = gpu_prog_alloc(ctx, scop);
5927 if (!prog)
5928 return isl_printer_free(p);
5930 context = isl_set_copy(prog->context);
5931 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
5932 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
5934 gen->prog = prog;
5935 gen->any_parallelism = 0;
5936 compute_schedule(gen);
5938 if (!gen->any_parallelism) {
5939 isl_set_free(context);
5940 isl_set_free(guard);
5941 p = print_cpu(p, scop, options);
5942 } else {
5943 compute_copy_in_and_out(gen);
5944 gen->tree = generate_host_code(gen);
5945 p = ppcg_print_exposed_declarations(p, prog->scop);
5946 p = ppcg_print_guarded(p, guard, context, &print_gpu, gen);
5947 isl_ast_node_free(gen->tree);
5950 isl_union_map_free(gen->sched);
5952 gpu_prog_free(prog);
5954 return p;
5957 /* Wrapper around generate for use as a ppcg_transform callback.
5959 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
5960 struct ppcg_scop *scop, void *user)
5962 struct gpu_gen *gen = user;
5964 return generate(p, gen, scop, gen->options);
5967 /* Transform the code in the file called "input" by replacing
5968 * all scops by corresponding GPU code and write the results to "out".
5970 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
5971 struct ppcg_options *options,
5972 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
5973 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
5974 struct gpu_types *types, void *user), void *user)
5976 struct gpu_gen gen;
5977 int r;
5978 int i;
5980 gen.ctx = ctx;
5981 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
5982 gen.options = options;
5983 gen.kernel_id = 0;
5984 gen.print = print;
5985 gen.print_user = user;
5986 gen.types.n = 0;
5987 gen.types.name = NULL;
5989 if (options->debug->dump_sizes) {
5990 isl_space *space = isl_space_params_alloc(ctx, 0);
5991 gen.used_sizes = isl_union_map_empty(space);
5994 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
5996 if (options->debug->dump_sizes) {
5997 isl_union_map_dump(gen.used_sizes);
5998 isl_union_map_free(gen.used_sizes);
6001 isl_union_map_free(gen.sizes);
6002 for (i = 0; i < gen.types.n; ++i)
6003 free(gen.types.name[i]);
6004 free(gen.types.name);
6006 return r;
6009 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
6011 struct gpu_prog *prog;
6013 if (!scop)
6014 return NULL;
6016 prog = isl_calloc_type(ctx, struct gpu_prog);
6017 assert(prog);
6019 prog->ctx = ctx;
6020 prog->scop = scop;
6021 prog->context = isl_set_copy(scop->context);
6022 prog->n_stmts = scop->pet->n_stmt;
6023 prog->stmts = extract_stmts(ctx, scop, prog->context);
6024 prog->read = isl_union_map_copy(scop->reads);
6025 prog->may_write = isl_union_map_copy(scop->may_writes);
6026 prog->must_write = isl_union_map_copy(scop->must_writes);
6027 prog->to_inner = compute_to_inner(scop);
6028 prog->to_outer = isl_union_map_copy(prog->to_inner);
6029 prog->to_outer = isl_union_map_reverse(prog->to_outer);
6031 if (!prog->stmts)
6032 return gpu_prog_free(prog);
6034 if (collect_array_info(prog) < 0)
6035 return gpu_prog_free(prog);
6037 return prog;
6040 void *gpu_prog_free(struct gpu_prog *prog)
6042 if (!prog)
6043 return NULL;
6044 free_array_info(prog);
6045 free_stmts(prog->stmts, prog->n_stmts);
6046 isl_union_map_free(prog->to_outer);
6047 isl_union_map_free(prog->to_inner);
6048 isl_union_set_free(prog->copy_in);
6049 isl_union_set_free(prog->copy_out);
6050 isl_union_map_free(prog->read);
6051 isl_union_map_free(prog->may_write);
6052 isl_union_map_free(prog->must_write);
6053 isl_union_map_free(prog->array_order);
6054 isl_set_free(prog->context);
6055 free(prog);
6056 return NULL;