fix handling of --no-private-memory and --no-shared-memory
[ppcg.git] / gpu.c
blob272d7459ffad15b0d43d6bc4a7ffbe68a07fd3ae
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012 Ecole Normale Superieure
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
16 #include <isl/polynomial.h>
17 #include <isl/union_set.h>
18 #include <isl/aff.h>
19 #include <isl/ilp.h>
20 #include <isl/flow.h>
21 #include <isl/band.h>
22 #include <isl/schedule.h>
23 #include <isl/options.h>
24 #include <isl/ast_build.h>
26 #include "gpu.h"
27 #include "schedule.h"
28 #include "ppcg_options.h"
30 /* The fields stride, shift and shift_map only contain valid information
31 * if shift != NULL.
32 * If so, they express that current index is such that if you add shift,
33 * then the result is always a multiple of stride.
34 * shift_map contains the mapping
36 * i -> (i + shift)/stride
38 * Let D represent the initial shared_len dimensions of the computed schedule.
39 * The spaces of "lb" and "shift" are of the form
41 * D -> [b]
43 * "shift_map" is of the form
45 * [D -> i] -> [D -> (i + shift(D))/stride]
47 struct gpu_array_bound {
48 isl_int size;
49 isl_aff *lb;
51 isl_int stride;
52 isl_aff *shift;
53 isl_basic_map *shift_map;
56 /* A tile of an array.
58 * n is the dimension of the array.
59 * bound is an array of size "n" representing the lower bound
60 * and size for each index.
62 struct gpu_array_tile {
63 int n;
64 struct gpu_array_bound *bound;
67 struct gpu_array_info;
69 /* A group of array references in a kernel that should be handled together.
70 * If private_tile is not NULL, then it is mapped to registers.
71 * Otherwise, if shared_tile is not NULL, it is mapped to shared memory.
72 * Otherwise, it is accessed from global memory.
74 struct gpu_array_ref_group {
75 /* The references in this group access this array. */
76 struct gpu_array_info *array;
77 /* Position of this group in the list of reference groups of array. */
78 int nr;
80 /* The following fields are use during the construction of the groups.
81 * access is the combined access relation relative to the shared
82 * memory tiling. In particular, the domain of the map corresponds
83 * to the first shared_len dimensions of the computed schedule.
84 * write is set if any access in the group is a write.
86 isl_map *access;
87 int write;
89 /* The shared memory tile, NULL if none. */
90 struct gpu_array_tile *shared_tile;
92 /* The private memory tile, NULL if none. */
93 struct gpu_array_tile *private_tile;
95 /* References in this group; point to elements of a linked list. */
96 int n_ref;
97 struct gpu_stmt_access **refs;
99 /* Last shared memory tile dimension that affects tile of this group. */
100 int last_shared;
103 struct gpu_gen {
104 isl_ctx *ctx;
105 struct ppcg_options *options;
107 struct gpu_prog *prog;
109 /* tile, grid and block sizes for each kernel */
110 isl_union_map *sizes;
112 /* Identifier of current kernel. */
113 int kernel_id;
114 /* Pointer to the current kernel. */
115 struct ppcg_kernel *kernel;
117 /* First tile dimension. */
118 int tile_first;
119 /* Number of tile dimensions. */
120 int tile_len;
121 /* Number of initial parallel loops among tile dimensions. */
122 int n_parallel;
124 /* Number of dimensions determining shared memory. */
125 int shared_len;
127 /* Number of rows in the untiled schedule. */
128 int untiled_len;
129 /* Number of rows in the tiled schedule. */
130 int tiled_len;
131 /* Number of rows in schedule after tiling/wrapping over threads. */
132 int thread_tiled_len;
134 /* Global untiled schedule. */
135 isl_union_map *sched;
136 /* Local (per kernel launch) tiled schedule. */
137 isl_union_map *tiled_sched;
138 /* Local schedule per shared memory tile loop iteration. */
139 isl_union_map *local_sched;
141 /* Local tiled schedule projected onto the shared tile loops and
142 * the loops that will be wrapped over the threads,
143 * with all shared tile loops parametrized.
145 isl_union_map *shared_sched;
146 /* Projects out the loops that will be wrapped over the threads
147 * from shared_sched.
149 isl_union_map *shared_proj;
151 /* A map that takes the range of shared_sched as input,
152 * wraps the appropriate loops over the threads and then projects
153 * out these loops.
155 isl_map *privatization;
157 /* A map from the shared memory tile loops and the thread indices
158 * (as parameters) to the set of accessed memory elements that
159 * will be accessed through private copies.
161 isl_union_map *private_access;
163 /* The schedule for the current private/shared access
164 * (within print_private_access or print_shared_access).
166 isl_map *copy_sched;
167 /* The array reference group corresponding to copy_sched. */
168 struct gpu_array_ref_group *copy_group;
170 /* First loop to unroll (or -1 if none) in the current part of the
171 * schedule.
173 int first_unroll;
175 int n_grid;
176 int n_block;
177 /* Note: in the input file, the sizes of the grid and the blocks
178 * are specified in the order x, y, z, but internally, the sizes
179 * are stored in reverse order, so that the last element always
180 * refers to the x dimension.
182 int grid_dim[2];
183 int block_dim[3];
184 int *tile_size;
187 /* Print the name of the local copy of a given group of array references.
189 static __isl_give isl_printer *print_array_name(__isl_take isl_printer *p,
190 struct gpu_array_ref_group *group)
192 int global = 0;
194 if (group->private_tile)
195 p = isl_printer_print_str(p, "private_");
196 else if (group->shared_tile)
197 p = isl_printer_print_str(p, "shared_");
198 else
199 global = 1;
200 p = isl_printer_print_str(p, group->array->name);
201 if (!global && group->array->n_group > 1) {
202 p = isl_printer_print_str(p, "_");
203 p = isl_printer_print_int(p, group->nr);
206 return p;
209 /* Collect all references to the given array and store pointers to them
210 * in array->refs.
212 static void collect_references(struct gpu_prog *prog,
213 struct gpu_array_info *array)
215 int i;
216 int n;
218 n = 0;
219 for (i = 0; i < prog->n_stmts; ++i) {
220 struct gpu_stmt *stmt = &prog->stmts[i];
221 struct gpu_stmt_access *access;
223 for (access = stmt->accesses; access; access = access->next) {
224 const char *name;
225 name = isl_map_get_tuple_name(access->access,
226 isl_dim_out);
227 if (name && !strcmp(array->name, name))
228 n++;
232 array->n_ref = n;
233 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
234 assert(array->refs);
236 n = 0;
237 for (i = 0; i < prog->n_stmts; ++i) {
238 struct gpu_stmt *stmt = &prog->stmts[i];
239 struct gpu_stmt_access *access;
241 for (access = stmt->accesses; access; access = access->next) {
242 const char *name;
243 name = isl_map_get_tuple_name(access->access,
244 isl_dim_out);
245 if (!name || strcmp(array->name, name))
246 continue;
248 array->refs[n++] = access;
253 /* Create a gpu_array_tile for an array of dimension "n_index".
255 static struct gpu_array_tile *create_tile(isl_ctx *ctx, int n_index)
257 int i;
258 struct gpu_array_tile *tile;
260 tile = isl_calloc_type(ctx, struct gpu_array_tile);
261 assert(tile);
263 tile->n = n_index;
265 tile->bound = isl_alloc_array(ctx, struct gpu_array_bound, n_index);
266 assert(tile->bound);
268 for (i = 0; i < n_index; ++i) {
269 isl_int_init(tile->bound[i].size);
270 tile->bound[i].lb = NULL;
271 isl_int_init(tile->bound[i].stride);
272 tile->bound[i].shift = NULL;
273 tile->bound[i].shift_map = NULL;
276 return tile;
279 static void *free_tile(struct gpu_array_tile *tile)
281 int j;
283 if (!tile)
284 return NULL;
286 for (j = 0; j < tile->n; ++j) {
287 isl_int_clear(tile->bound[j].size);
288 isl_int_clear(tile->bound[j].stride);
289 isl_aff_free(tile->bound[j].lb);
290 isl_aff_free(tile->bound[j].shift);
291 isl_basic_map_free(tile->bound[j].shift_map);
293 free(tile->bound);
294 free(tile);
296 return NULL;
299 static struct pet_array *find_array(struct ppcg_scop *scop,
300 __isl_keep isl_set *accessed)
302 int i;
303 isl_id *id;
305 id = isl_set_get_tuple_id(accessed);
307 for (i = 0; i < scop->n_array; ++i) {
308 isl_id *id_i;
310 id_i = isl_set_get_tuple_id(scop->arrays[i]->extent);
311 isl_id_free(id_i);
312 if (id == id_i)
313 break;
315 isl_id_free(id);
317 return i < scop->n_array ? scop->arrays[i] : NULL;
320 /* Compute bounds on the host arrays based on the accessed elements
321 * and collect all references to the array.
323 * If the array is zero-dimensional, i.e., a scalar, we check
324 * whether it is read-only.
326 static int extract_array_info(__isl_take isl_set *array, void *user)
328 int i;
329 struct gpu_prog *prog = (struct gpu_prog *)user;
330 const char *name;
331 int n_index;
332 isl_pw_aff **bounds;
333 struct pet_array *pa;
335 n_index = isl_set_dim(array, isl_dim_set);
336 name = isl_set_get_tuple_name(array);
337 bounds = isl_alloc_array(isl_set_get_ctx(array),
338 isl_pw_aff *, n_index);
339 assert(bounds);
340 prog->array[prog->n_array].dim = isl_set_get_space(array);
341 prog->array[prog->n_array].name = strdup(name);
342 prog->array[prog->n_array].n_index = n_index;
343 prog->array[prog->n_array].bound = bounds;
345 pa = find_array(prog->scop, array);
346 assert(pa);
348 prog->array[prog->n_array].type = strdup(pa->element_type);
349 prog->array[prog->n_array].size = pa->element_size;
350 prog->array[prog->n_array].local = pa->declared && !pa->exposed;
352 if (n_index == 0) {
353 isl_set *space;
354 isl_union_map *write;
355 int empty;
357 write = isl_union_map_copy(prog->write);
358 space = isl_set_universe(isl_set_get_space(array));
359 write = isl_union_map_intersect_range(write,
360 isl_union_set_from_set(space));
361 empty = isl_union_map_is_empty(write);
362 isl_union_map_free(write);
364 prog->array[prog->n_array].read_only = empty;
367 for (i = 0; i < n_index; ++i) {
368 isl_set *dom;
369 isl_local_space *ls;
370 isl_aff *one;
371 isl_pw_aff *bound;
372 isl_set *size = i == 0 ? array : pa->extent;
374 bound = isl_set_dim_max(isl_set_copy(size), i);
375 assert(bound);
376 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
377 ls = isl_local_space_from_space(isl_set_get_space(dom));
378 one = isl_aff_zero_on_domain(ls);
379 one = isl_aff_add_constant_si(one, 1);
380 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
381 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
383 bounds[i] = bound;
386 collect_references(prog, &prog->array[prog->n_array]);
388 prog->n_array++;
390 isl_set_free(array);
391 return 0;
394 void collect_array_info(struct gpu_prog *prog)
396 isl_union_set *arrays;
398 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
399 arrays = isl_union_set_union(arrays,
400 isl_union_map_range(isl_union_map_copy(prog->write)));
401 arrays = isl_union_set_coalesce(arrays);
403 prog->n_array = isl_union_set_n_set(arrays);
404 prog->array = isl_alloc_array(prog->ctx,
405 struct gpu_array_info, prog->n_array);
406 assert(prog->array);
407 prog->n_array = 0;
408 isl_union_set_foreach_set(arrays, &extract_array_info, prog);
409 isl_union_set_free(arrays);
412 static void free_array_info(struct gpu_prog *prog)
414 int i, j;
416 for (i = 0; i < prog->n_array; ++i) {
417 int n_index = prog->array[i].n_index;
418 free(prog->array[i].type);
419 free(prog->array[i].name);
420 for (j = 0; j < n_index; ++j)
421 isl_pw_aff_free(prog->array[i].bound[j]);
422 isl_space_free(prog->array[i].dim);
423 free(prog->array[i].bound);
424 free(prog->array[i].refs);
426 free(prog->array);
429 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
430 * as an array or through a pointer reference, but as single data element. At
431 * the moment, scalars are represented as zero dimensional arrays.
433 int gpu_array_is_scalar(struct gpu_array_info *array)
435 return (array->n_index == 0);
438 /* Is "array" a read-only scalar?
440 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
442 return gpu_array_is_scalar(array) && array->read_only;
445 /* Internal data structure for extract_size_of_type.
446 * "type" specifies the name of the space that we want to extract.
447 * "res" is used to store the subset of that space.
449 struct ppcg_extract_size_data {
450 const char *type;
451 isl_set *res;
454 /* This function is called for each set in a union_set.
455 * If the name of the set matches data->type, we store the
456 * set in data->res.
458 static int extract_size_of_type(__isl_take isl_set *size, void *user)
460 struct ppcg_extract_size_data *data = user;
461 const char *name;
463 name = isl_set_get_tuple_name(size);
464 if (name && !strcmp(name, data->type)) {
465 data->res = size;
466 return -1;
469 isl_set_free(size);
470 return 0;
473 /* Given a union map { kernel[i] -> *[...] },
474 * return the range in the space called "type" for the kernel with
475 * sequence number "id".
477 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
478 const char *type, int id)
480 isl_space *space;
481 isl_set *dom;
482 isl_union_set *local_sizes;
483 struct ppcg_extract_size_data data = { type, NULL };
485 if (!sizes)
486 return NULL;
488 space = isl_union_map_get_space(sizes);
489 space = isl_space_set_from_params(space);
490 space = isl_space_add_dims(space, isl_dim_set, 1);
491 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
492 dom = isl_set_universe(space);
493 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
495 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
496 isl_union_map_copy(sizes));
497 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
498 isl_union_set_free(local_sizes);
499 return data.res;
502 /* Given a singleton set, extract the first (at most *len) elements
503 * of the single integer tuple into *sizes and update *len if needed.
505 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
507 int i;
508 int dim;
509 isl_int v;
511 if (!set)
512 return;
514 dim = isl_set_dim(set, isl_dim_set);
515 if (dim < *len)
516 *len = dim;
518 isl_int_init(v);
520 for (i = 0; i < *len; ++i) {
521 int ok;
523 ok = isl_set_plain_is_fixed(set, isl_dim_set, i, &v);
524 assert(ok);
526 sizes[i] = isl_int_get_si(v);
529 isl_int_clear(v);
531 isl_set_free(set);
534 /* Extract user specified "tile" sizes from the "sizes" command line option,
535 * defaulting to option->tile_size in each dimension.
537 static void read_tile_sizes(struct gpu_gen *gen)
539 int n;
540 isl_set *size;
542 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
543 assert(gen->tile_size);
544 for (n = 0; n < gen->tile_len; ++n)
545 gen->tile_size[n] = gen->options->tile_size;
547 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
548 read_sizes_from_set(size, gen->tile_size, &gen->tile_len);
550 if (gen->n_parallel > gen->tile_len)
551 gen->n_parallel = gen->tile_len;
554 /* Extract user specified "block" sizes from the "sizes" command line option,
555 * after filling in some potentially useful defaults.
557 static void read_block_sizes(struct gpu_gen *gen)
559 int n;
560 isl_set *size;
562 n = gen->n_parallel;
563 gen->n_block = (n <= 3) ? n : 3;
564 switch (gen->n_block) {
565 case 1:
566 gen->block_dim[0] = 512;
567 break;
568 case 2:
569 gen->block_dim[0] = 32;
570 gen->block_dim[1] = 16;
571 break;
572 default:
573 gen->block_dim[0] = 32;
574 gen->block_dim[1] = 4;
575 gen->block_dim[2] = 4;
576 break;
579 size = extract_sizes(gen->sizes, "block", gen->kernel_id);
580 read_sizes_from_set(size, gen->block_dim, &gen->n_block);
583 /* Extract user specified "grid" sizes from the "sizes" command line option,
584 * after filling in some potentially useful defaults.
586 static void read_grid_sizes(struct gpu_gen *gen)
588 int n = gen->n_parallel;
589 isl_set *size;
591 gen->n_grid = (n <= 2) ? n : 2;
592 switch (gen->n_grid) {
593 case 1:
594 gen->grid_dim[0] = 32768;
595 break;
596 default:
597 gen->grid_dim[0] = 256;
598 gen->grid_dim[1] = 256;
599 break;
602 size = extract_sizes(gen->sizes, "grid", gen->kernel_id);
603 read_sizes_from_set(size, gen->grid_dim, &gen->n_grid);
606 /* Extract user specified sizes from the "sizes" command line option
607 * after filling in some potentially useful defaults.
609 static void read_sizes(struct gpu_gen *gen)
611 read_tile_sizes(gen);
612 read_block_sizes(gen);
613 read_grid_sizes(gen);
616 static void free_stmts(struct gpu_stmt *stmts, int n)
618 int i;
620 for (i = 0; i < n; ++i) {
621 struct gpu_stmt_access *access, *next;
623 for (access = stmts[i].accesses; access; access = next) {
624 next = access->next;
625 isl_map_free(access->access);
626 free(access);
629 isl_id_free(stmts[i].id);
631 free(stmts);
634 void clear_gpu_gen(struct gpu_gen *gen)
636 isl_union_map_free(gen->sizes);
637 isl_union_map_free(gen->sched);
640 /* Construct a map from a domain of dimensionality "len"
641 * to a domain of dimensionality "len" + "tile_len" that tiles
642 * the "tile_len" coordinates starting at "first".
643 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
644 * "dim" prescribes the parameters.
646 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
647 int first, int tile_len, int *tile_size)
649 int i;
650 isl_int v;
651 isl_basic_map *bmap;
652 isl_constraint *c;
653 isl_local_space *ls;
655 isl_int_init(v);
657 dim = isl_space_add_dims(dim, isl_dim_in, len);
658 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
659 bmap = isl_basic_map_universe(isl_space_copy(dim));
660 ls = isl_local_space_from_space(dim);
662 for (i = 0; i < len - tile_len; ++i) {
663 int j = i < first ? i : i + tile_len;
664 int k = i < first ? i : i + 2 * tile_len;
666 c = isl_equality_alloc(isl_local_space_copy(ls));
667 isl_int_set_si(v, -1);
668 c = isl_constraint_set_coefficient(c, isl_dim_in, j, v);
669 isl_int_set_si(v, 1);
670 c = isl_constraint_set_coefficient(c, isl_dim_out, k, v);
671 bmap = isl_basic_map_add_constraint(bmap, c);
674 for (i = 0; i < tile_len; ++i) {
675 c = isl_equality_alloc(isl_local_space_copy(ls));
676 isl_int_set_si(v, -1);
677 c = isl_constraint_set_coefficient(c, isl_dim_in, first + i, v);
678 isl_int_set_si(v, tile_size[i]);
679 c = isl_constraint_set_coefficient(c, isl_dim_out,
680 first + i, v);
681 isl_int_set_si(v, 1);
682 c = isl_constraint_set_coefficient(c, isl_dim_out,
683 first + i + tile_len, v);
684 bmap = isl_basic_map_add_constraint(bmap, c);
686 c = isl_inequality_alloc(isl_local_space_copy(ls));
687 isl_int_set_si(v, 1);
688 c = isl_constraint_set_coefficient(c, isl_dim_out,
689 first + i + tile_len, v);
690 bmap = isl_basic_map_add_constraint(bmap, c);
692 c = isl_inequality_alloc(isl_local_space_copy(ls));
693 isl_int_set_si(v, -1);
694 c = isl_constraint_set_coefficient(c, isl_dim_out,
695 first + i + tile_len, v);
696 isl_int_set_si(v, tile_size[i] - 1);
697 c = isl_constraint_set_constant(c, v);
698 bmap = isl_basic_map_add_constraint(bmap, c);
701 isl_local_space_free(ls);
702 isl_int_clear(v);
704 return isl_map_from_basic_map(bmap);
707 /* Construct a map from a domain of dimensionality "len"
708 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
709 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
710 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
711 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
712 * that are projected out at the end.
713 * "dim" prescribes the parameters.
715 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
716 int first, int wrap_len, int *wrap_size)
718 int i;
719 isl_basic_map *bmap;
720 isl_constraint *c;
721 isl_local_space *ls;
723 dim = isl_space_add_dims(dim, isl_dim_in, len);
724 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
725 bmap = isl_basic_map_universe(isl_space_copy(dim));
726 ls = isl_local_space_from_space(dim);
728 for (i = 0; i < len; ++i) {
729 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
731 c = isl_equality_alloc(isl_local_space_copy(ls));
732 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
733 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
734 bmap = isl_basic_map_add_constraint(bmap, c);
737 for (i = 0; i < wrap_len; ++i) {
738 c = isl_equality_alloc(isl_local_space_copy(ls));
739 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
740 first + i, -1);
741 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
742 first + wrap_len + i, 1);
743 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
744 first + 2 * wrap_len + i, wrap_size[i]);
745 bmap = isl_basic_map_add_constraint(bmap, c);
747 c = isl_inequality_alloc(isl_local_space_copy(ls));
748 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
749 first + wrap_len + i, 1);
750 bmap = isl_basic_map_add_constraint(bmap, c);
752 c = isl_inequality_alloc(isl_local_space_copy(ls));
753 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
754 first + wrap_len + i, -1);
755 c = isl_constraint_set_constant_si(c, wrap_size[i] - 1);
756 bmap = isl_basic_map_add_constraint(bmap, c);
759 isl_local_space_free(ls);
761 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
762 first + 2 * wrap_len, wrap_len);
764 return isl_map_from_basic_map(bmap);
767 /* Add "n" parameters named prefix%d.
769 static __isl_give isl_set *add_params( __isl_take isl_set *set,
770 int n, const char *prefix)
772 int i;
773 unsigned nparam;
774 char name[20];
776 nparam = isl_set_dim(set, isl_dim_param);
777 set = isl_set_add_dims(set, isl_dim_param, n);
779 for (i = 0; i < n; ++i) {
780 snprintf(name, sizeof(name), "%s%d", prefix, i);
781 set = isl_set_set_dim_name(set, isl_dim_param,
782 nparam + i, name);
785 return set;
788 /* Equate the "n" dimensions of "set" starting at "first" to
789 * freshly created parameters named prefix%d.
791 static __isl_give isl_set *parametrize(__isl_take isl_set *set,
792 int first, int n, const char *prefix)
794 int i;
795 unsigned nparam;
796 isl_int v;
797 isl_space *dim;
798 isl_basic_set *bset;
799 isl_constraint *c;
800 isl_local_space *ls;
802 nparam = isl_set_dim(set, isl_dim_param);
804 set = add_params(set, n, prefix);
806 dim = isl_set_get_space(set);
807 bset = isl_basic_set_universe(isl_space_copy(dim));
808 ls = isl_local_space_from_space(dim);
810 isl_int_init(v);
812 for (i = 0; i < n; ++i) {
813 c = isl_equality_alloc(isl_local_space_copy(ls));
814 isl_int_set_si(v, -1);
815 c = isl_constraint_set_coefficient(c, isl_dim_param,
816 nparam + i, v);
817 isl_int_set_si(v, 1);
818 c = isl_constraint_set_coefficient(c, isl_dim_set, first + i,
820 bset = isl_basic_set_add_constraint(bset, c);
823 isl_int_clear(v);
824 isl_local_space_free(ls);
826 return isl_set_intersect(set, isl_set_from_basic_set(bset));
829 /* Given a parameter space "space", create a set of dimension "len"
830 * of which the "n" dimensions starting at "first" are equated to
831 * freshly created parameters named prefix%d.
833 static __isl_give isl_set *parametrization(__isl_take isl_space *space,
834 int len, int first, int n, const char *prefix)
836 isl_set *set;
838 space = isl_space_set_from_params(space);
839 space = isl_space_add_dims(space, isl_dim_set, len);
840 set = isl_set_universe(space);
842 return parametrize(set, first, n, prefix);
845 /* Tile the B loops over the tile sizes and then tile/wrap
846 * the T1 loops over the blocks.
848 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
849 __isl_take isl_union_map *sched)
851 isl_space *dim;
852 isl_map *tiling, *block_tiling;
854 dim = isl_union_map_get_space(sched);
855 tiling = tile(isl_space_copy(dim), gen->untiled_len,
856 gen->tile_first, gen->tile_len, gen->tile_size);
858 if (gen->options->wrap)
859 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
860 gen->tile_first, gen->n_grid, gen->grid_dim);
861 else
862 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
863 gen->tile_first, gen->n_grid, gen->grid_dim);
865 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
867 tiling = isl_map_apply_range(tiling, block_tiling);
869 sched = isl_union_map_apply_range(sched,
870 isl_union_map_from_map(tiling));
872 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
874 return sched;
877 /* Equate the "T1P" iterators in the tiled schedule "sched"
878 * to the block dimensions.
880 static __isl_give isl_union_map *parametrize_tiled_schedule(
881 struct gpu_gen *gen, __isl_take isl_union_map *sched)
883 isl_space *dim;
884 isl_set *par;
886 dim = isl_union_map_get_space(sched);
887 par = parametrization(dim, gen->tiled_len,
888 gen->tile_first + gen->n_grid, gen->n_grid, "b");
889 sched = isl_union_map_intersect_range(sched,
890 isl_union_set_from_set(par));
892 return sched;
895 /* Tile/wrap the P1 loops over the threads.
897 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
898 __isl_take isl_union_map *sched)
900 isl_space *dim;
901 isl_map *tiling;
902 isl_set *par;
904 dim = isl_union_map_get_space(sched);
906 if (gen->options->wrap)
907 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
908 gen->shared_len, gen->n_block, gen->block_dim);
909 else
910 tiling = tile(isl_space_copy(dim), gen->tiled_len,
911 gen->shared_len, gen->n_block, gen->block_dim);
912 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
914 sched = isl_union_map_apply_range(sched,
915 isl_union_map_from_map(tiling));
917 par = parametrization(dim, gen->thread_tiled_len,
918 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
919 gen->n_block, "t");
920 sched = isl_union_map_intersect_range(sched,
921 isl_union_set_from_set(par));
923 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
925 return sched;
928 /* If the user asked for it, scale the shared memory tile loops
929 * (T1T and T2) of "sched" by gen->tile_size[i].
930 * If we are not performing "wrapping", then additionally scale the T1P
931 * loops by gen->grid_dim[i].
933 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
934 __isl_take isl_union_map *sched)
936 int i;
937 isl_space *dim;
938 isl_basic_map *scale;
939 isl_constraint *c;
940 isl_local_space *ls;
942 if (!gen->options->scale_tile_loops)
943 return sched;
945 dim = isl_union_map_get_space(sched);
946 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
947 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
948 scale = isl_basic_map_universe(isl_space_copy(dim));
949 ls = isl_local_space_from_space(dim);
951 for (i = 0; i < gen->tiled_len; ++i) {
952 int f = 1;
954 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
955 f = gen->tile_size[i - gen->tile_first];
956 if (!gen->options->wrap)
957 f *= gen->grid_dim[i - gen->tile_first];
958 } else if (i >= gen->tile_first + gen->n_grid &&
959 i < gen->tile_first + gen->n_grid + gen->tile_len) {
960 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
963 c = isl_equality_alloc(isl_local_space_copy(ls));
964 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
965 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
966 scale = isl_basic_map_add_constraint(scale, c);
969 isl_local_space_free(ls);
971 sched = isl_union_map_apply_range(sched,
972 isl_union_map_from_map(isl_map_from_basic_map(scale)));
974 return sched;
977 /* If we are not performing "wrapping" and if the user asked for it,
978 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
980 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
981 __isl_take isl_union_map *sched)
983 int i;
984 isl_space *dim;
985 isl_basic_map *scale;
986 isl_constraint *c;
987 isl_local_space *ls;
989 if (gen->options->wrap)
990 return sched;
991 if (!gen->options->scale_tile_loops)
992 return sched;
994 dim = isl_union_map_get_space(sched);
995 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
996 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
997 scale = isl_basic_map_universe(isl_space_copy(dim));
998 ls = isl_local_space_from_space(dim);
1000 for (i = 0; i < gen->thread_tiled_len; ++i) {
1001 int f = 1;
1003 if (i >= gen->shared_len &&
1004 i < gen->shared_len + gen->n_block)
1005 f = gen->block_dim[i - gen->shared_len];
1007 c = isl_equality_alloc(isl_local_space_copy(ls));
1008 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1009 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1010 scale = isl_basic_map_add_constraint(scale, c);
1013 isl_local_space_free(ls);
1015 sched = isl_union_map_apply_range(sched,
1016 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1018 return sched;
1021 /* If we are not performing "wrapping" and if the user asked for it,
1022 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1024 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
1025 __isl_take isl_union_map *sched, int len, int first, int n_tile)
1027 int i;
1028 isl_space *dim;
1029 isl_basic_map *scale;
1030 isl_constraint *c;
1031 isl_local_space *ls;
1033 if (gen->options->wrap)
1034 return sched;
1035 if (!gen->options->scale_tile_loops)
1036 return sched;
1038 dim = isl_union_map_get_space(sched);
1039 dim = isl_space_add_dims(dim, isl_dim_in, len);
1040 dim = isl_space_add_dims(dim, isl_dim_out, len);
1041 scale = isl_basic_map_universe(isl_space_copy(dim));
1042 ls = isl_local_space_from_space(dim);
1044 for (i = 0; i < len; ++i) {
1045 int f = 1;
1047 if (i >= first && i < first + n_tile)
1048 f = gen->block_dim[i - first];
1050 c = isl_equality_alloc(isl_local_space_copy(ls));
1051 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1052 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1053 scale = isl_basic_map_add_constraint(scale, c);
1056 isl_local_space_free(ls);
1058 sched = isl_union_map_apply_range(sched,
1059 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1061 return sched;
1064 /* Add "len" parameters p[i] called prefix%d,
1065 * with bounds to 0 <= p[i] < size[i].
1067 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1068 int len, int *size, const char *prefix)
1070 int i;
1071 unsigned nparam;
1072 isl_int v;
1073 isl_space *dim;
1074 isl_basic_set *bset;
1075 isl_constraint *c;
1076 isl_local_space *ls;
1077 char name[20];
1079 nparam = isl_set_dim(set, isl_dim_param);
1080 set = isl_set_add_dims(set, isl_dim_param, len);
1082 for (i = 0; i < len; ++i) {
1083 snprintf(name, sizeof(name), "%s%d", prefix, i);
1084 set = isl_set_set_dim_name(set, isl_dim_param,
1085 nparam + i, name);
1088 dim = isl_set_get_space(set);
1089 bset = isl_basic_set_universe(isl_space_copy(dim));
1090 ls = isl_local_space_from_space(dim);
1092 isl_int_init(v);
1094 for (i = 0; i < len; ++i) {
1095 c = isl_inequality_alloc(isl_local_space_copy(ls));
1096 isl_int_set_si(v, 1);
1097 c = isl_constraint_set_coefficient(c, isl_dim_param, nparam + i,
1099 bset = isl_basic_set_add_constraint(bset, c);
1101 c = isl_inequality_alloc(isl_local_space_copy(ls));
1102 isl_int_set_si(v, -1);
1103 c = isl_constraint_set_coefficient(c, isl_dim_param, nparam + i,
1105 isl_int_set_si(v, size[i] - 1);
1106 c = isl_constraint_set_constant(c, v);
1107 bset = isl_basic_set_add_constraint(bset, c);
1110 isl_int_clear(v);
1111 isl_local_space_free(ls);
1113 return isl_set_intersect(set, isl_set_from_basic_set(bset));
1116 /* Add "len" parameters p[i] called prefix%d,
1117 * with bounds to 0 <= p[i] < size[i].
1119 static __isl_give isl_set *add_bounded_parameters_dynamic(
1120 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1121 const char *prefix)
1123 int i, len;
1124 unsigned nparam;
1125 isl_space *space;
1126 isl_local_space *ls;
1127 char name[20];
1129 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1130 nparam = isl_set_dim(set, isl_dim_param);
1131 set = isl_set_add_dims(set, isl_dim_param, len);
1133 for (i = 0; i < len; ++i) {
1134 snprintf(name, sizeof(name), "%s%d", prefix, i);
1135 set = isl_set_set_dim_name(set, isl_dim_param,
1136 nparam + i, name);
1139 space = isl_space_params(isl_set_get_space(set));
1140 ls = isl_local_space_from_space(space);
1141 for (i = 0; i < len; ++i) {
1142 isl_pw_aff *param, *size_i, *zero;
1143 isl_set *bound;
1145 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1146 isl_dim_param, nparam + i);
1148 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1149 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1150 set = isl_set_intersect_params(set, bound);
1152 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1153 bound = isl_pw_aff_ge_set(param, zero);
1154 set = isl_set_intersect_params(set, bound);
1156 isl_local_space_free(ls);
1158 return set;
1161 /* Given a mapping "sched" of the form
1163 * [D -> A] -> [D -> T(A)]
1165 * apply the mapping encoded in tile->bound[i].shift_map
1166 * to the range of "sched".
1167 * The mappings in tile->bound[i].shift_map are of the form
1169 * [D -> a] -> [D -> s(D,a)]
1171 * We first compose them with a mapping
1173 * [D -> v] -> v
1175 * (If tile->bound[i].shift_map is not set, then it is assumed to be
1176 * an identity mapping and then we use this second mapping instead.)
1177 * This results in
1179 * [D -> a] -> s(D,a)
1181 * We precompose them with a projection on the i th dimension to obtain
1183 * [D -> T] -> s(D,T)
1185 * and collect these into
1187 * [D -> T] -> S(D,T)
1189 * Introducing D in the range yields
1191 * [D -> T] -> [D -> S(D,T)]
1193 * and application to "sched" yields
1195 * [D -> A] -> [D -> S(D,T(A))]
1197 static __isl_give isl_map *pre_shift(__isl_take isl_map *sched,
1198 struct gpu_array_tile *tile)
1200 int i;
1201 isl_ctx *ctx = isl_map_get_ctx(sched);
1202 isl_space *space, *space2;
1203 isl_basic_map *def;
1204 isl_map *map, *id, *pre_shift;
1206 space = isl_space_range(isl_map_get_space(sched));
1207 space2 = isl_space_from_domain(isl_space_copy(space));
1208 pre_shift = isl_map_universe(space2);
1209 space = isl_space_domain(isl_space_unwrap(space));
1210 id = isl_map_identity(isl_space_map_from_set(isl_space_copy(space)));
1211 space = isl_space_from_domain(space);
1212 space = isl_space_add_dims(space, isl_dim_out, 1);
1213 def = isl_basic_map_range_map(isl_basic_map_universe(space));
1215 for (i = 0; i < tile->n; ++i) {
1216 isl_basic_map *bmap, *drop;
1217 isl_map *proj;
1219 space = isl_space_alloc(ctx, 0, tile->n, tile->n);
1220 proj = isl_map_identity(space);
1221 proj = isl_map_project_out(proj, isl_dim_out,
1222 i + 1, tile->n - (i + 1));
1223 proj = isl_map_project_out(proj, isl_dim_out, 0, i);
1224 proj = isl_map_product(isl_map_copy(id), proj);
1226 if (!tile->bound[i].shift_map)
1227 bmap = isl_basic_map_copy(def);
1228 else {
1229 bmap = isl_basic_map_copy(tile->bound[i].shift_map);
1230 bmap = isl_basic_map_apply_range(bmap,
1231 isl_basic_map_copy(def));
1234 map = isl_map_from_basic_map(bmap);
1235 map = isl_map_apply_range(proj, map);
1236 pre_shift = isl_map_flat_range_product(pre_shift, map);
1239 isl_map_free(id);
1240 isl_basic_map_free(def);
1242 space = isl_space_domain(isl_map_get_space(pre_shift));
1243 map = isl_map_domain_map(isl_map_universe(isl_space_unwrap(space)));
1244 pre_shift = isl_map_range_product(map, pre_shift);
1246 sched = isl_map_apply_range(sched, pre_shift);
1248 return sched;
1251 /* Given an access relation to a tile of an array, construct a map that
1252 * maps each element in the space of the access relation
1253 * to a copy of the tile shifted to the origin
1254 * (based on the lower bounds in group->private_tile or group->shared_tile).
1255 * If any of the indices is strided, then
1256 * {private,shared}_tile->bound[i].shift_map is applied to the index first.
1257 * The domain space of the resulting map is that of access "access",
1258 * while the range space is anonymous.
1259 * The resulting map only encodes the mapping to the shift tile and
1260 * not the constraints of "access".
1262 * Let the space of the access relation be
1264 * D -> A
1266 * We first construct an identity relation on a wrapped copy of this space,
1267 * except that it strips off the name of array
1269 * [D -> A] -> [D -> T(A)] (1)
1271 * The bounds in tile->bound[i].lb are of the form
1273 * D -> b(D)
1275 * We collect them into
1277 * D -> B(D)
1279 * and then transform them into
1281 * [D -> T] -> T - B(D) (2)
1283 * Combining those two mappings (1) and (2) yields
1285 * [D -> A] -> T(A) - B(D)
1287 * If there are any strides, then (1) is first transformed into (1')
1289 * [D -> A] -> [D -> T'(A)] (1')
1291 * by a call to pre_shift.
1293 static __isl_give isl_map *shift_access(__isl_take isl_map *access,
1294 struct gpu_array_ref_group *group)
1296 int i;
1297 isl_space *space;
1298 isl_map *id1, *id2;
1299 isl_map *map;
1300 isl_map *shift;
1301 isl_map *sched;
1302 struct gpu_array_tile *tile;
1303 int n_index = group->array->n_index;
1305 tile = group->private_tile;
1306 if (!tile)
1307 tile = group->shared_tile;
1309 space = isl_space_domain(isl_map_get_space(access));
1310 space = isl_space_map_from_set(space);
1311 id1 = isl_map_identity(space);
1312 space = isl_space_range(isl_map_get_space(access));
1313 space = isl_space_map_from_set(space);
1314 space = isl_space_set_tuple_name(space, isl_dim_out, NULL);
1315 id2 = isl_map_identity(space);
1316 sched = isl_map_product(id1, id2);
1318 space = isl_space_unwrap(isl_space_range(isl_map_get_space(sched)));
1319 space = isl_space_from_domain(isl_space_domain(space));
1320 shift = isl_map_universe(space);
1321 for (i = 0; i < n_index; ++i) {
1322 map = isl_map_from_aff(isl_aff_copy(tile->bound[i].lb));
1323 shift = isl_map_flat_range_product(shift, map);
1326 space = isl_space_unwrap(isl_space_range(isl_map_get_space(sched)));
1327 map = isl_map_universe(space);
1328 id1 = isl_map_range_map(isl_map_copy(map));
1329 map = isl_map_domain_map(map);
1330 shift = isl_map_neg(shift);
1331 shift = isl_map_apply_range(map, shift);
1332 shift = isl_map_sum(id1, shift);
1334 for (i = 0; i < n_index; ++i)
1335 if (tile->bound[i].shift_map)
1336 break;
1338 if (i < n_index)
1339 sched = pre_shift(sched, tile);
1341 sched = isl_map_apply_range(sched, shift);
1343 isl_map_free(access);
1345 return sched;
1348 /* Given a schedule that iterates over all elements in a piece of an array,
1349 * perform tiling/wrapping over the threads.
1351 * In particular, we tile the final iterators so that the final thread
1352 * dimension runs over the final array dimension.
1353 * However, if those final iterators have only a single iteration,
1354 * we try to tile earlier iterators instead.
1356 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1357 __isl_take isl_map *sched)
1359 isl_space *dim;
1360 isl_union_map *usched;
1361 isl_map *tiling;
1362 isl_set *par;
1363 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1364 int n_tile;
1365 int first;
1367 n_tile = gen->n_block;
1368 if (n_tile > nvar) {
1369 int i;
1370 sched = isl_map_insert_dims(sched,
1371 isl_dim_out, 0, n_tile - nvar);
1372 for (i = 0; i < n_tile - nvar; ++i)
1373 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1374 nvar = n_tile;
1377 first = nvar - n_tile;
1379 for (; first > 0; first --)
1380 if (!isl_map_plain_is_fixed(sched, isl_dim_out,
1381 first + n_tile - 1, NULL))
1382 break;
1384 dim = isl_map_get_space(sched);
1385 dim = isl_space_params(dim);
1386 if (gen->options->wrap)
1387 tiling = wrap(isl_space_copy(dim), nvar, first,
1388 n_tile, gen->block_dim);
1389 else
1390 tiling = tile(isl_space_copy(dim), nvar, first,
1391 n_tile, gen->block_dim);
1392 sched = isl_map_apply_range(sched, tiling);
1394 par = parametrization(dim, nvar + n_tile, first + n_tile, n_tile, "t");
1395 sched = isl_map_intersect_range(sched, par);
1397 usched = isl_union_map_from_map(sched);
1398 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1399 first, n_tile);
1400 sched = isl_map_from_union_map(usched);
1402 return sched;
1405 /* Given an index expression "pa" into a tile of an array, adjust the expression
1406 * to a shift of the tile to the origin
1407 * (based on the lower bounds in "bound".
1408 * If the index is strided, then we first add
1409 * bound->shift and divide by bound->stride.
1410 * In the end, we compute the gist with respect to "domain".
1412 * All of the input expression "pa", the set "domain" and
1413 * the output are expressed in terms of the AST schedule domain.
1414 * The expressions in "bound" are expressed
1415 * in terms of the first shared_len dimensions of the schedule computed by PPCG.
1416 * The mapping "sched2shared" maps the former domain to the latter domain.
1418 static __isl_give isl_pw_aff *shift_index(__isl_take isl_pw_aff *pa,
1419 struct gpu_array_info *array,
1420 struct gpu_array_bound *bound, __isl_take isl_set *domain,
1421 __isl_take isl_map *sched2shared)
1423 isl_map *map;
1424 isl_pw_aff *tmp;
1425 isl_pw_multi_aff *pma;
1427 if (bound->shift) {
1428 map = isl_map_from_aff(isl_aff_copy(bound->shift));
1429 map = isl_map_apply_range(isl_map_copy(sched2shared), map);
1430 pma = isl_pw_multi_aff_from_map(map);
1431 tmp = isl_pw_multi_aff_get_pw_aff(pma, 0);
1432 isl_pw_multi_aff_free(pma);
1433 pa = isl_pw_aff_add(pa, tmp);
1434 pa = isl_pw_aff_scale_down(pa, bound->stride);
1438 map = isl_map_from_aff(isl_aff_copy(bound->lb));
1439 map = isl_map_apply_range(sched2shared, map);
1440 pma = isl_pw_multi_aff_from_map(map);
1441 tmp = isl_pw_multi_aff_get_pw_aff(pma, 0);
1442 isl_pw_multi_aff_free(pma);
1443 pa = isl_pw_aff_sub(pa, tmp);
1444 pa = isl_pw_aff_coalesce(pa);
1445 pa = isl_pw_aff_gist(pa, domain);
1447 return pa;
1450 /* Return the union of all read (read = 1) and/or write (write = 1)
1451 * access relations in the group.
1453 static __isl_give isl_union_map *group_access_relation(
1454 struct gpu_array_ref_group *group, int read, int write)
1456 int i;
1457 isl_union_map *access;
1459 access = isl_union_map_empty(isl_map_get_space(group->access));
1460 for (i = 0; i < group->n_ref; ++i) {
1461 isl_map *map_i;
1463 if (!((read && group->refs[i]->read) ||
1464 (write && group->refs[i]->write)))
1465 continue;
1466 map_i = isl_map_copy(group->refs[i]->access);
1467 access = isl_union_map_union(access,
1468 isl_union_map_from_map(map_i));
1471 return access;
1474 /* Return a map from the first shared_len dimensions of the computed
1475 * schedule to the values of the given index "i"
1476 * of the elements in the array tile in global memory that corresponds
1477 * to the shared memory copy.
1478 * In particular, if a is the index, then the range of the map
1480 * { D -> [a] }
1482 * is constrained as follows
1484 * tile_offset(D) <= a <= tile_offset(D) + tile_size - 1 (1)
1486 * and
1488 * 0 <= a <= array_size - 1 (2)
1491 * Note that if some stride has been detected (i.e., when
1492 * group->shared_tile->bound[i].shift is set), then offset and size (i.e.,
1493 * constraints (1)) apply to the shifted and scaled down copy of the tile.
1494 * These constraints therefore have to be mapped back to the original
1495 * array space using the inverse of the shift_map.
1497 static __isl_give isl_map *group_tile_dim(struct gpu_array_ref_group *group,
1498 int i)
1500 isl_aff *aff;
1501 isl_space *space;
1502 isl_map *map, *tile, *gt;
1503 isl_set *bound;
1505 map = isl_map_from_aff(isl_aff_copy(group->shared_tile->bound[i].lb));
1506 space = isl_space_range(isl_map_get_space(map));
1507 map = isl_map_apply_range(map, isl_map_lex_le(isl_space_copy(space)));
1508 tile = map;
1510 aff = isl_aff_copy(group->shared_tile->bound[i].lb);
1511 aff = isl_aff_add_constant(aff, group->shared_tile->bound[i].size);
1512 map = isl_map_from_aff(aff);
1513 gt = isl_map_lex_gt(space);
1514 map = isl_map_apply_range(map, isl_map_copy(gt));
1515 tile = isl_map_intersect(tile, map);
1517 if (group->shared_tile->bound[i].shift) {
1518 isl_basic_map *shift;
1519 shift = isl_basic_map_copy(group->shared_tile->bound[i].shift_map);
1520 shift = isl_basic_map_reverse(shift);
1521 tile = isl_set_unwrap(isl_set_apply(isl_map_wrap(tile),
1522 isl_map_from_basic_map(shift)));
1525 tile = isl_map_lower_bound_si(tile, isl_dim_out, 0, 0);
1527 bound = isl_set_from_pw_aff(isl_pw_aff_copy(group->array->bound[i]));
1528 bound = isl_set_apply(bound, gt);
1529 tile = isl_map_intersect_range(tile, bound);
1531 return tile;
1534 /* Return a map from the first shared_len dimensions of the computed
1535 * schedule to the array tile in
1536 * global memory that corresponds to the shared memory copy.
1538 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1540 int i;
1541 int n_index = group->array->n_index;
1542 isl_map *tile;
1544 tile = group_tile_dim(group, 0);
1545 for (i = 1; i < n_index; ++i) {
1546 isl_map *tile_i;
1548 tile_i = group_tile_dim(group, i);
1549 tile = isl_map_flat_range_product(tile, tile_i);
1552 tile = isl_map_set_tuple_name(tile, isl_dim_out, group->array->name);
1554 return tile;
1557 /* Given a mapping "sched" from the AST schedule to a domain,
1558 * return the corresponding mapping from the AST schedule to
1559 * to the first shared_len dimensions of the schedule computed by PPCG.
1561 static __isl_give isl_map *compute_sched_to_shared(struct gpu_gen *gen,
1562 __isl_take isl_map *sched)
1564 isl_union_map *umap;
1565 isl_space *space;
1566 isl_map *map;
1568 space = isl_space_range(isl_map_get_space(sched));
1569 space = isl_space_from_domain(space);
1570 space = isl_space_add_dims(space, isl_dim_out, gen->shared_len);
1572 umap = isl_union_map_copy(gen->shared_sched);
1573 umap = isl_union_map_apply_range(umap,
1574 isl_union_map_copy(gen->shared_proj));
1575 map = isl_union_map_extract_map(umap, space);
1576 isl_union_map_free(umap);
1578 sched = isl_map_apply_range(sched, map);
1579 sched = isl_map_detect_equalities(sched);
1581 return sched;
1584 /* Set unroll[j] if the input dimension j is involved in
1585 * the index expression represented by ma.
1587 static int check_unroll(__isl_take isl_set *set, __isl_take isl_multi_aff *ma,
1588 void *user)
1590 int i, j;
1591 int n_in = isl_multi_aff_dim(ma, isl_dim_in);
1592 int n_out = isl_multi_aff_dim(ma, isl_dim_out);
1593 int *unroll = user;
1595 for (i = 0; i < n_out; ++i) {
1596 isl_aff *aff;
1598 aff = isl_multi_aff_get_aff(ma, i);
1599 for (j = 0; j < n_in; ++j)
1600 if (isl_aff_involves_dims(aff, isl_dim_in, j, 1))
1601 unroll[j] = 1;
1602 isl_aff_free(aff);
1605 isl_set_free(set);
1606 isl_multi_aff_free(ma);
1607 return 0;
1610 /* Given an array pos mapping input dimensions to the corresponding
1611 * output dimension, construct the corresponding map.
1613 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1614 int *pos, int len)
1616 int i;
1617 isl_constraint *c;
1618 isl_basic_map *bmap;
1619 isl_local_space *ls;
1621 dim = isl_space_add_dims(dim, isl_dim_in, len);
1622 dim = isl_space_add_dims(dim, isl_dim_out, len);
1623 bmap = isl_basic_map_universe(isl_space_copy(dim));
1624 ls = isl_local_space_from_space(dim);
1626 for (i = 0; i < len; ++i) {
1627 c = isl_equality_alloc(isl_local_space_copy(ls));
1628 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i,
1629 -1);
1630 c = isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i],
1632 bmap = isl_basic_map_add_constraint(bmap, c);
1634 isl_local_space_free(ls);
1636 return isl_map_from_basic_map(bmap);
1639 /* Find all loops involved in any of the index expressions for any of
1640 * the private accesses, move them innermost and then mark them as
1641 * requiring unrolling by setting gen->first_unroll.
1642 * The loops involved should all be parallel because of the checks
1643 * we performed in check_private_group_access. Moving them innermost
1644 * is therefore a valid transformation.
1646 * Loops up to gen->shared_len are generated before the mapping to
1647 * threads is applied. They should therefore be ignored.
1649 * We compute the hidden equalities of the schedule first
1650 * since we will need them in our calls to isl_pw_multi_aff_from_map
1651 * and because we want to make sure that the same equalities
1652 * are also available to the code generator.
1654 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1655 __isl_take isl_union_map *sched)
1657 int i, j;
1658 int unroll[gen->thread_tiled_len];
1659 int perm[gen->thread_tiled_len];
1660 isl_space *dim;
1661 isl_map *permute;
1662 int len = gen->shared_len + gen->n_parallel + gen->n_block;
1664 gen->first_unroll = -1;
1666 sched = isl_union_map_detect_equalities(sched);
1667 for (i = 0; i < gen->thread_tiled_len; ++i)
1668 unroll[i] = 0;
1669 for (i = 0; i < gen->prog->n_array; ++i) {
1670 struct gpu_array_info *array = &gen->prog->array[i];
1672 for (j = 0; j < array->n_group; ++j) {
1673 isl_union_map *access;
1674 isl_map *acc;
1675 isl_pw_multi_aff *pma;
1677 if (!array->groups[j]->private_tile)
1678 continue;
1680 access = group_access_relation(array->groups[j], 1, 1);
1681 access = isl_union_map_apply_domain(access,
1682 isl_union_map_copy(sched));
1684 acc = isl_map_from_union_map(access);
1685 pma = isl_pw_multi_aff_from_map(acc);
1686 isl_pw_multi_aff_foreach_piece(pma,
1687 &check_unroll, unroll);
1689 isl_pw_multi_aff_free(pma);
1693 for (i = gen->shared_len; i < len; ++i)
1694 if (unroll[i])
1695 break;
1697 if (i >= len)
1698 return sched;
1700 for (i = len; i < gen->thread_tiled_len; ++i)
1701 if (unroll[i])
1702 return sched;
1704 j = 0;
1705 for (i = 0; i < gen->shared_len; ++i)
1706 perm[i] = j++;
1707 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1708 if (!unroll[i])
1709 perm[i] = j++;
1710 gen->first_unroll = j - gen->shared_len;
1711 for (i = gen->shared_len; i < len; ++i)
1712 if (unroll[i])
1713 perm[i] = j++;
1715 dim = isl_union_map_get_space(sched);
1716 permute = permutation(dim, perm, gen->thread_tiled_len);
1717 sched = isl_union_map_apply_range(sched,
1718 isl_union_map_from_map(permute));
1720 return sched;
1723 /* Given a constraint
1725 * a(p,i) + j = g f(e)
1727 * or -a(p,i) - j = g f(e) if sign < 0,
1728 * store a(p,i) in bound->shift and g (stride) in bound->stride.
1729 * a(p,i) is assumed to be an expression in only the parameters
1730 * and the input dimensions.
1732 static void extract_stride(__isl_keep isl_constraint *c,
1733 struct gpu_array_bound *bound, isl_int stride, int sign)
1735 int i;
1736 isl_int v;
1737 isl_space *space;
1738 unsigned nparam;
1739 unsigned nvar;
1740 isl_aff *aff;
1742 isl_int_set(bound->stride, stride);
1744 space = isl_constraint_get_space(c);
1745 space = isl_space_domain(space);
1747 nparam = isl_space_dim(space, isl_dim_param);
1748 nvar = isl_space_dim(space, isl_dim_set);
1750 isl_int_init(v);
1752 isl_constraint_get_constant(c, &v);
1753 if (sign < 0)
1754 isl_int_neg(v, v);
1755 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1756 aff = isl_aff_set_constant(aff, v);
1758 for (i = 0; i < nparam; ++i) {
1759 isl_constraint_get_coefficient(c, isl_dim_param, i, &v);
1760 if (isl_int_is_zero(v))
1761 continue;
1762 if (sign < 0)
1763 isl_int_neg(v, v);
1764 aff = isl_aff_add_coefficient(aff, isl_dim_param, i, v);
1767 for (i = 0; i < nvar; ++i) {
1768 isl_constraint_get_coefficient(c, isl_dim_in, i, &v);
1769 if (isl_int_is_zero(v))
1770 continue;
1771 if (sign < 0)
1772 isl_int_neg(v, v);
1773 aff = isl_aff_add_coefficient(aff, isl_dim_in, i, v);
1776 isl_int_clear(v);
1778 bound->shift = aff;
1781 /* Given an equality constraint of a map with a single output dimension j,
1782 * check if the constraint is of the form
1784 * a(p,i) + j = g f(e)
1786 * with a(p,i) an expression in the parameters and input dimensions
1787 * and f(e) an expression in the existentially quantified variables.
1788 * If so, and if g is larger than any such g from a previously considered
1789 * constraint, then call extract_stride to record the stride information
1790 * in bound.
1792 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
1794 int i;
1795 isl_int v, stride;
1796 unsigned n_div;
1797 struct gpu_array_bound *bound = user;
1799 isl_int_init(v);
1800 isl_int_init(stride);
1802 n_div = isl_constraint_dim(c, isl_dim_div);
1803 isl_constraint_get_coefficient(c, isl_dim_out, 0, &v);
1805 if (n_div && (isl_int_is_one(v) || isl_int_is_negone(v))) {
1806 int s = isl_int_sgn(v);
1807 isl_int_set_si(stride, 0);
1808 for (i = 0; i < n_div; ++i) {
1809 isl_constraint_get_coefficient(c, isl_dim_div, i, &v);
1810 isl_int_gcd(stride, stride, v);
1812 if (!isl_int_is_zero(stride) &&
1813 isl_int_gt(stride, bound->stride))
1814 extract_stride(c, bound, stride, s);
1817 isl_int_clear(stride);
1818 isl_int_clear(v);
1820 isl_constraint_free(c);
1821 return 0;
1824 /* Given contraints on an array index i, check if we can find
1825 * a shift a(p) and a stride g such that
1827 * a(p) + i = 0 mod g
1829 * If so, record the information in bound and apply the mapping
1830 * i -> (i + a(p))/g to the array index in bounds and return
1831 * the new constraints.
1832 * If not, simply return the original constraints.
1834 * If bounds is a subset of the space
1836 * D -> i
1838 * then the bound recorded in bound->shift is of the form
1840 * D -> s(D)
1842 * with s(D) equal to a(p) above.
1843 * The mapping recorded in bound->shift_map is of the form
1845 * [D -> i] -> [D -> (i + S(D))/g]
1847 * This mapping is computed as follows.
1848 * We first introduce "i" in the domain through precomposition
1849 * with [D -> i] -> D obtaining
1851 * [D -> i] -> s(D)
1853 * Adding [D -> i] -> i produces
1855 * [D -> i] -> i + s(D)
1857 * and the domain product with [D -> i] -> D yields
1859 * [D -> i] -> [D -> i + s(D)]
1861 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
1863 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
1864 __isl_take isl_basic_map *bounds)
1866 isl_space *space;
1867 isl_basic_map *hull;
1868 isl_basic_map *shift, *id, *bmap, *scale;
1869 isl_basic_set *bset;
1870 isl_aff *aff;
1872 isl_int_set_si(bound->stride, -1);
1874 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
1876 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
1878 isl_basic_map_free(hull);
1880 if (isl_int_is_neg(bound->stride))
1881 return bounds;
1883 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
1884 space = isl_basic_map_get_space(bounds);
1885 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
1886 shift = isl_basic_map_apply_range(bmap, shift);
1887 space = isl_basic_map_get_space(bounds);
1888 id = isl_basic_map_range_map(isl_basic_map_universe(space));
1889 shift = isl_basic_map_sum(id, shift);
1890 space = isl_basic_map_get_space(bounds);
1891 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
1892 shift = isl_basic_map_range_product(id, shift);
1894 space = isl_space_domain(isl_basic_map_get_space(bounds));
1895 id = isl_basic_map_identity(isl_space_map_from_set(space));
1896 space = isl_space_range(isl_basic_map_get_space(bounds));
1897 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1898 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1899 aff = isl_aff_scale_down(aff, bound->stride);
1900 scale = isl_basic_map_from_aff(aff);
1901 scale = isl_basic_map_product(id, scale);
1903 bound->shift_map = isl_basic_map_apply_range(shift, scale);
1904 bmap = isl_basic_map_copy(bound->shift_map);
1905 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
1906 bounds = isl_basic_set_unwrap(bset);
1908 return bounds;
1911 /* Data used in compute_array_dim_size and compute_size_in_direction.
1913 * pos is the position of the variable representing the array index,
1914 * i.e., the variable for which want to compute the size. This variable
1915 * is also the last variable in the set.
1917 struct gpu_size_info {
1918 isl_basic_set *bset;
1919 struct gpu_array_bound *bound;
1920 int pos;
1923 /* Given a constraint from the basic set describing the bounds on
1924 * an array index, check if it is a lower bound, say m i >= b(x), and,
1925 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
1926 * upper bound. If so, and if this bound is smaller than any bound
1927 * derived from earlier constraints, set the size to this bound on
1928 * the expression and the lower bound to ceil(b(x)/m).
1930 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
1932 struct gpu_size_info *size = user;
1933 unsigned nparam;
1934 unsigned n_div;
1935 isl_int v;
1937 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
1938 n_div = isl_constraint_dim(c, isl_dim_div);
1940 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div)) {
1941 isl_constraint_free(c);
1942 return 0;
1945 isl_int_init(v);
1947 isl_constraint_get_coefficient(c, isl_dim_set, size->pos, &v);
1949 if (isl_int_is_pos(v)) {
1950 isl_aff *aff;
1951 isl_aff *lb;
1952 enum isl_lp_result res;
1954 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
1955 aff = isl_aff_ceil(aff);
1957 lb = isl_aff_copy(aff);
1959 aff = isl_aff_neg(aff);
1960 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
1962 res = isl_basic_set_max(size->bset, aff, &v);
1963 isl_aff_free(aff);
1965 if (res == isl_lp_ok) {
1966 isl_int_add_ui(v, v, 1);
1967 if (isl_int_is_neg(size->bound->size) ||
1968 isl_int_lt(v, size->bound->size)) {
1969 isl_int_set(size->bound->size, v);
1970 lb = isl_aff_drop_dims(lb, isl_dim_in,
1971 size->pos, 1);
1972 isl_aff_free(size->bound->lb);
1973 size->bound->lb = isl_aff_copy(lb);
1976 isl_aff_free(lb);
1979 isl_int_clear(v);
1980 isl_constraint_free(c);
1982 return 0;
1985 /* Given a basic map "bounds" that maps parameters and input dimensions
1986 * to a single output dimension, look for an expression in the parameters
1987 * and input dimensions such that the range of the output dimension shifted
1988 * by this expression is a constant.
1990 * In particular, we currently only consider lower bounds on the output
1991 * dimension as candidate expressions.
1993 static int compute_array_dim_size(struct gpu_array_bound *bound,
1994 __isl_take isl_basic_map *bounds)
1996 struct gpu_size_info size;
1998 bounds = isl_basic_map_detect_equalities(bounds);
1999 bounds = check_stride(bound, bounds);
2001 isl_int_set_si(bound->size, -1);
2002 bound->lb = NULL;
2004 size.bound = bound;
2005 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
2006 size.bset = isl_basic_map_wrap(bounds);
2007 size.bset = isl_basic_set_flatten(size.bset);
2008 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
2009 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
2010 &size);
2011 isl_basic_set_free(size.bset);
2013 return isl_int_is_nonneg(bound->size) ? 0 : -1;
2016 /* Check if we can find a memory tile for the given array
2017 * based on the given accesses, and if so, put the results in "tile".
2019 * We project the accesses on each index in turn and look for a parametric
2020 * offset such that the size is constant.
2022 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
2024 int i;
2026 for (i = 0; i < tile->n; ++i) {
2027 isl_map *access_i;
2028 isl_basic_map *hull;
2030 access_i = isl_map_copy(access);
2031 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
2032 access_i = isl_map_project_out(access_i, isl_dim_out,
2033 1, tile->n - (i + 1));
2034 access_i = isl_map_compute_divs(access_i);
2035 hull = isl_map_simple_hull(access_i);
2036 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
2037 return 0;
2040 return 1;
2043 /* Construct a map with input the shared tile loops and the loops that
2044 * will be wrapped around the threads that relates these later loops
2045 * to the thread indices and then projects them out.
2047 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
2049 isl_map *priv;
2050 isl_map *tiling;
2051 isl_map *proj;
2052 isl_set *par;
2053 isl_space *dim;
2055 dim = isl_union_map_get_space(gen->shared_sched);
2057 if (gen->options->wrap)
2058 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
2059 gen->shared_len, gen->n_block, gen->block_dim);
2060 else
2061 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
2062 gen->shared_len, gen->n_block, gen->block_dim);
2064 priv = tiling;
2066 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
2067 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
2068 gen->n_block, "t");
2070 priv = isl_map_align_params(priv, isl_set_get_space(par));
2071 priv = isl_map_intersect_range(priv, par);
2073 dim = isl_map_get_space(priv);
2074 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
2075 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
2076 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
2077 gen->shared_len);
2079 priv = isl_map_apply_range(priv, proj);
2081 return priv;
2084 /* Construct a map from domain_dim to domain_dim that increments
2085 * the dimension at position "pos" and leaves all other dimensions
2086 * constant.
2088 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
2090 int i;
2091 int len = isl_space_dim(domain_dim, isl_dim_set);
2092 isl_space *dim;
2093 isl_basic_map *next;
2094 isl_local_space *ls;
2096 dim = isl_space_map_from_set(domain_dim);
2097 next = isl_basic_map_universe(isl_space_copy(dim));
2098 ls = isl_local_space_from_space(dim);
2100 for (i = 0; i < len; ++i) {
2101 isl_constraint *c;
2103 c = isl_equality_alloc(isl_local_space_copy(ls));
2104 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
2105 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
2106 if (i == pos)
2107 c = isl_constraint_set_constant_si(c, 1);
2108 next = isl_basic_map_add_constraint(next, c);
2111 isl_local_space_free(ls);
2113 return isl_map_from_basic_map(next);
2116 /* Check if the given access is coalesced.
2117 * That is, check whether incrementing the dimension that will get
2118 * wrapped over the last thread index results in incrementing
2119 * the last array index.
2121 * This function is only called for access relations without reuse.
2123 static int access_is_coalesced(struct gpu_gen *gen,
2124 __isl_keep isl_union_map *access)
2126 isl_space *dim;
2127 isl_map *access_map;
2128 isl_map *next_thread_x;
2129 isl_map *next_element;
2130 isl_map *map;
2131 int coalesced;
2133 access = isl_union_map_copy(access);
2134 access = isl_union_map_apply_domain(access,
2135 isl_union_map_copy(gen->tiled_sched));
2136 access_map = isl_map_from_union_map(access);
2138 dim = isl_map_get_space(access_map);
2139 dim = isl_space_domain(dim);
2140 next_thread_x = next(dim, gen->shared_len + gen->n_block - 1);
2142 dim = isl_map_get_space(access_map);
2143 dim = isl_space_range(dim);
2144 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
2146 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
2147 map = isl_map_apply_range(map, access_map);
2149 coalesced = isl_map_is_subset(map, next_element);
2151 isl_map_free(next_element);
2152 isl_map_free(map);
2154 return coalesced;
2157 /* Given an access relation in terms of the first gen->shared_len + gen->n_block
2158 * dimensions of the computed schedule, check if it is bijective for
2159 * fixed values of the first gen->shared_len dimensions.
2160 * We perform this check by equating these dimensions to parameters.
2162 static int access_is_bijective(struct gpu_gen *gen, __isl_keep isl_map *access)
2164 int res;
2165 isl_set *par;
2166 isl_space *space;
2168 access = isl_map_copy(access);
2169 space = isl_space_params(isl_map_get_space(access));
2170 par = parametrization(space, gen->shared_len + gen->n_block,
2171 0, gen->shared_len, "s");
2172 access = isl_map_intersect_domain(access, par);
2173 res = isl_map_is_bijective(access);
2174 isl_map_free(access);
2176 return res;
2179 /* Look for the last shared tile loop that affects the offset of "tile"
2180 * and return the result.
2181 * If there is no such loop, then return the index of the loop
2182 * before the first shared tile loop, in particular gen->tile_first - 1.
2184 static int compute_tile_last_shared(struct gpu_gen *gen,
2185 struct gpu_array_tile *tile)
2187 int i, j;
2189 for (j = gen->shared_len - 1; j >= gen->tile_first; --j) {
2190 for (i = 0; i < tile->n; ++i) {
2191 isl_aff *lb;
2192 isl_aff *shift;
2194 lb = tile->bound[i].lb;
2195 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
2196 break;
2198 shift = tile->bound[i].shift;
2199 if (!shift)
2200 continue;
2201 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
2202 break;
2204 if (i < tile->n)
2205 break;
2208 return j;
2211 /* Look for the last shared tile loop that affects the offset of the
2212 * shared or private tile and store the result in group->last_shared.
2213 * If there is no such loop, then group->last_shared is set to a value
2214 * before the first shared tile loop, in particular gen->tile_first - 1.
2215 * If there is no tile defined on the array reference group,
2216 * then set group->last_shared to gen->shared_len - 1.
2218 static void set_last_shared(struct gpu_gen *gen,
2219 struct gpu_array_ref_group *group)
2221 struct gpu_array_tile *tile;
2223 group->last_shared = gen->shared_len - 1;
2225 tile = group->private_tile;
2226 if (!tile)
2227 tile = group->shared_tile;
2228 if (!tile)
2229 return;
2231 group->last_shared = compute_tile_last_shared(gen, tile);
2234 /* Compute a privatized copy of all access relations from reference groups that
2235 * are mapped to private memory and store the result in gen->privatization.
2237 static void compute_private_access(struct gpu_gen *gen)
2239 int i, j;
2240 isl_union_map *private;
2242 if (!gen->options->use_private_memory)
2243 return;
2245 private = isl_union_map_empty(isl_union_map_get_space(gen->shared_sched));
2247 for (i = 0; i < gen->prog->n_array; ++i) {
2248 struct gpu_array_info *array = &gen->prog->array[i];
2250 if (gpu_array_is_read_only_scalar(array))
2251 continue;
2253 for (j = 0; j < array->n_group; ++j) {
2254 if (!array->groups[j]->private_tile)
2255 continue;
2257 private = isl_union_map_union(private,
2258 group_access_relation(array->groups[j], 1, 1));
2262 if (isl_union_map_is_empty(private))
2263 isl_union_map_free(private);
2264 else {
2265 isl_union_map *priv;
2267 private = isl_union_map_apply_domain(private,
2268 isl_union_map_copy(gen->shared_sched));
2269 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
2270 private = isl_union_map_apply_domain(private, priv);
2271 gen->private_access = private;
2275 /* Compute the size of the tile specified by "tile"
2276 * in number of elements and put the result in *size.
2278 static void tile_size(struct gpu_array_tile *tile, isl_int *size)
2280 int i;
2282 isl_int_set_si(*size, 1);
2284 for (i = 0; i < tile->n; ++i)
2285 isl_int_mul(*size, *size, tile->bound[i].size);
2288 /* If max_shared_memory is not set to infinity (-1), then make
2289 * sure that the total amount of shared memory required by the
2290 * array reference groups mapped to shared memory is no larger
2291 * than this maximum.
2293 * We apply a greedy approach and discard (keep in global memory)
2294 * those groups that would result in a total memory size that
2295 * is larger than the maximum.
2297 static void check_shared_memory_bound(struct gpu_gen *gen)
2299 int i, j;
2300 isl_int left, size;
2302 if (gen->options->max_shared_memory < 0)
2303 return;
2305 isl_int_init(left);
2306 isl_int_init(size);
2307 isl_int_set_si(left, gen->options->max_shared_memory);
2309 for (i = 0; i < gen->prog->n_array; ++i) {
2310 struct gpu_array_info *array = &gen->prog->array[i];
2312 for (j = 0; j < array->n_group; ++j) {
2313 struct gpu_array_ref_group *group;
2315 group = array->groups[j];
2316 if (!group->shared_tile)
2317 continue;
2319 tile_size(group->shared_tile, &size);
2320 isl_int_mul_ui(size, size, array->size);
2322 if (isl_int_le(size, left)) {
2323 isl_int_sub(left, left, size);
2324 continue;
2327 group->shared_tile = free_tile(group->shared_tile);
2331 isl_int_clear(size);
2332 isl_int_clear(left);
2335 /* Fill up the groups array with singleton groups, i.e., one group
2336 * per reference, initializing the array, access, write, n_ref and refs fields.
2337 * In particular the access field is initialized to the scheduled
2338 * access relation of the array reference.
2340 * Return the number of elements initialized, i.e., the number of
2341 * active references in the current kernel.
2343 static int populate_array_references(struct gpu_array_info *array,
2344 __isl_keep isl_union_map *sched, struct gpu_array_ref_group **groups)
2346 int i;
2347 int n;
2348 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2350 n = 0;
2351 for (i = 0; i < array->n_ref; ++i) {
2352 isl_union_map *umap;
2353 isl_map *map;
2354 struct gpu_array_ref_group *group;
2355 struct gpu_stmt_access *access = array->refs[i];
2357 map = isl_map_copy(access->access);
2358 umap = isl_union_map_from_map(map);
2359 umap = isl_union_map_apply_domain(umap,
2360 isl_union_map_copy(sched));
2362 if (isl_union_map_is_empty(umap)) {
2363 isl_union_map_free(umap);
2364 continue;
2367 map = isl_map_from_union_map(umap);
2368 map = isl_map_detect_equalities(map);
2370 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2371 assert(group);
2372 group->array = array;
2373 group->access = map;
2374 group->write = access->write;
2375 group->refs = &array->refs[i];
2376 group->n_ref = 1;
2378 groups[n++] = group;
2381 return n;
2384 /* If group->n_ref == 1, then group->refs was set by
2385 * populate_array_references to point directly into
2386 * group->array->refs and should not be freed.
2387 * If group->n_ref > 1, then group->refs was set by join_groups
2388 * to point to a newly allocated array.
2390 static void free_array_ref_group(struct gpu_array_ref_group *group)
2392 if (!group)
2393 return;
2394 free_tile(group->shared_tile);
2395 free_tile(group->private_tile);
2396 isl_map_free(group->access);
2397 if (group->n_ref > 1)
2398 free(group->refs);
2399 free(group);
2402 /* Given a map where the input dimensions represent the tile loops,
2403 * eliminate the innermost of those that have a fixed value
2404 * until we reach one that does not (obviously) have a fixed value.
2406 static __isl_give isl_map *eliminate_fixed_inner_loops(
2407 __isl_take isl_map *access)
2409 int i, n;
2411 n = isl_map_dim(access, isl_dim_in);
2413 for (i = n - 1; i >= 0; --i) {
2414 if (!isl_map_plain_is_fixed(access, isl_dim_in, i, NULL))
2415 break;
2416 access = isl_map_eliminate(access, isl_dim_in, i, 1);
2418 return access;
2421 /* Check if the access relations of group1 and group2 overlap within
2422 * the innermost loop. In particular, ignore any inner dimension
2423 * with a fixed value.
2424 * The copying to and from shared memory will be performed within
2425 * the innermost actual loop so we are only allowed to consider
2426 * the dimensions up to that innermost loop while checking whether
2427 * two access relations overlap.
2429 static int accesses_overlap(struct gpu_array_ref_group *group1,
2430 struct gpu_array_ref_group *group2)
2432 int empty;
2433 isl_map *access1, *access2;
2435 access1 = isl_map_copy(group1->access);
2436 access1 = eliminate_fixed_inner_loops(access1);
2437 access2 = isl_map_copy(group2->access);
2438 access2 = eliminate_fixed_inner_loops(access2);
2439 access1 = isl_map_intersect(access1, access2);
2440 empty = isl_map_is_empty(access1);
2441 isl_map_free(access1);
2443 return !empty;
2446 /* Combine the given two groups into a single group, containing
2447 * the references of both groups.
2449 static struct gpu_array_ref_group *join_groups(
2450 struct gpu_array_ref_group *group1,
2451 struct gpu_array_ref_group *group2)
2453 int i;
2454 isl_ctx *ctx;
2455 struct gpu_array_ref_group *group;
2457 ctx = isl_map_get_ctx(group1->access);
2458 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2459 assert(group);
2460 group->array = group1->array;
2461 group->access = isl_map_union(isl_map_copy(group1->access),
2462 isl_map_copy(group2->access));
2463 group->write = group1->write || group2->write;
2464 group->n_ref = group1->n_ref + group2->n_ref;
2465 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
2466 group->n_ref);
2467 assert(group->refs);
2468 for (i = 0; i < group1->n_ref; ++i)
2469 group->refs[i] = group1->refs[i];
2470 for (i = 0; i < group2->n_ref; ++i)
2471 group->refs[group1->n_ref + i] = group2->refs[i];
2473 return group;
2476 /* Combine the given two groups into a single group and free
2477 * the original two groups.
2479 static struct gpu_array_ref_group *join_groups_and_free(
2480 struct gpu_array_ref_group *group1,
2481 struct gpu_array_ref_group *group2)
2483 struct gpu_array_ref_group *group;
2485 group = join_groups(group1, group2);
2486 free_array_ref_group(group1);
2487 free_array_ref_group(group2);
2488 return group;
2491 /* Compute the private and/or shared memory tiles for the array
2492 * reference group "group" of array "array".
2494 * If the array is a read-only scalar or if the user requested
2495 * not to use shared or private memory, then we do not need to do anything.
2497 * We only try to compute a shared memory tile if there is any reuse
2498 * or if the access is not coalesced.
2500 * For computing a private memory tile, we also require that there is
2501 * some reuse. Moreover, we require that the access is private
2502 * to the thread. That is, we check that any given array element
2503 * is only accessed by a single thread.
2504 * We compute an access relation that maps the shared tile loop iterators
2505 * and the shared point loop iterators that will be wrapped over the
2506 * threads to the array elements.
2507 * We actually check that those iterators that will be wrapped
2508 * partition the array space. This check is stricter than necessary
2509 * since several iterations may be mapped onto the same thread
2510 * and then they could be allowed to access the same memory elements,
2511 * but our check does not allow this situation.
2513 * We also check that the index expression only depends on parallel
2514 * loops. That way, we can move those loops innermost and unroll them.
2515 * Again, we use a test that is stricter than necessary.
2516 * We actually check whether the index expression only depends
2517 * on the iterators that are wrapped over the threads.
2518 * These are necessarily parallel, but there may be more parallel loops.
2520 * Combining the injectivity of the first test with the single-valuedness
2521 * of the second test, we simply test for bijectivity.
2523 * If it turns out we can use registers, we compute the private memory
2524 * tile size using can_tile, after introducing a dependence
2525 * on the thread indices.
2527 static void compute_group_bounds_core(struct gpu_gen *gen,
2528 struct gpu_array_ref_group *group)
2530 isl_ctx *ctx = isl_space_get_ctx(group->array->dim);
2531 isl_union_map *access;
2532 int n_index = group->array->n_index;
2533 int no_reuse;
2534 isl_map *acc;
2535 int use_shared = gen->options->use_shared_memory;
2536 int use_private = gen->options->use_private_memory;
2538 if (!use_shared && !use_private)
2539 return;
2540 if (gpu_array_is_read_only_scalar(group->array))
2541 return;
2543 access = group_access_relation(group, 1, 1);
2544 no_reuse = isl_union_map_is_injective(access);
2546 if (use_shared && (!no_reuse || !access_is_coalesced(gen, access))) {
2547 group->shared_tile = create_tile(ctx, group->array->n_index);
2548 if (!can_tile(group->access, group->shared_tile))
2549 group->shared_tile = free_tile(group->shared_tile);
2552 if (!use_private || no_reuse) {
2553 isl_union_map_free(access);
2554 return;
2557 access = isl_union_map_apply_domain(access,
2558 isl_union_map_copy(gen->shared_sched));
2560 acc = isl_map_from_union_map(access);
2562 if (!access_is_bijective(gen, acc)) {
2563 isl_map_free(acc);
2564 return;
2567 group->private_tile = create_tile(gen->ctx, n_index);
2568 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
2569 if (!can_tile(acc, group->private_tile))
2570 group->private_tile = free_tile(group->private_tile);
2572 isl_map_free(acc);
2575 /* Compute the private and/or shared memory tiles for the array
2576 * reference group "group" of array "array" and set last_shared.
2578 static void compute_group_bounds(struct gpu_gen *gen,
2579 struct gpu_array_ref_group *group)
2581 compute_group_bounds_core(gen, group);
2582 set_last_shared(gen, group);
2585 /* If two groups have overlapping access relations (as determined by
2586 * the "overlap" function) and if one of them involves a write,
2587 * then merge the two groups into one.
2588 * If "compute_bounds" is set, then call compute_group_bounds
2589 * on the merged groups.
2591 * Return the updated number of groups.
2593 static int group_writes(struct gpu_gen *gen,
2594 int n, struct gpu_array_ref_group **groups,
2595 int (*overlap)(struct gpu_array_ref_group *group1,
2596 struct gpu_array_ref_group *group2), int compute_bounds)
2598 int i, j;
2600 for (i = 0; i < n; ++i) {
2601 for (j = n - 1; j > i; --j) {
2602 if (!groups[i]->write && !groups[j]->write)
2603 continue;
2605 if (!overlap(groups[i], groups[j]))
2606 continue;
2608 groups[i] = join_groups_and_free(groups[i], groups[j]);
2609 if (compute_bounds)
2610 compute_group_bounds(gen, groups[i]);
2611 if (j != n - 1)
2612 groups[j] = groups[n - 1];
2613 n--;
2617 return n;
2620 /* If two groups have overlapping access relations (within the innermost
2621 * loop) and if one of them involves a write, then merge the two groups
2622 * into one.
2624 * Return the updated number of groups.
2626 static int group_overlapping_writes(struct gpu_gen *gen,
2627 int n, struct gpu_array_ref_group **groups)
2629 return group_writes(gen, n, groups, &accesses_overlap, 0);
2632 /* Check if the access relations of group1 and group2 overlap within
2633 * the outermost min(group1->last_shared, group2->last_shared) loops.
2635 static int last_shared_accesses_overlap(struct gpu_array_ref_group *group1,
2636 struct gpu_array_ref_group *group2)
2638 int last_shared;
2639 int dim;
2640 int empty;
2641 isl_map *map_i, *map_j, *map;
2643 last_shared = group1->last_shared;
2644 if (group2->last_shared < last_shared)
2645 last_shared = group2->last_shared;
2646 map_i = isl_map_copy(group1->access);
2647 dim = isl_map_dim(map_i, isl_dim_in);
2648 map_i = isl_map_eliminate(map_i, isl_dim_in,
2649 last_shared + 1, dim - (last_shared + 1));
2650 map_j = isl_map_copy(group2->access);
2651 map_j = isl_map_eliminate(map_j, isl_dim_in,
2652 last_shared + 1, dim - (last_shared + 1));
2653 map = isl_map_intersect(map_i, map_j);
2654 empty = isl_map_is_empty(map);
2655 isl_map_free(map);
2657 return !empty;
2660 /* If two groups have overlapping access relations (within the outer
2661 * last_shared loops) and if one of them involves a write,
2662 * then merge the two groups into one.
2664 * Return the updated number of groups.
2666 static int group_last_shared_overlapping_writes(struct gpu_gen *gen, int n,
2667 struct gpu_array_ref_group **groups)
2669 return group_writes(gen, n, groups, &last_shared_accesses_overlap, 1);
2672 /* Is the size of the tile specified by "tile" smaller than the sum of
2673 * the sizes of the tiles specified by "tile1" and "tile2"?
2675 static int smaller_tile(struct gpu_array_tile *tile,
2676 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
2678 int smaller;
2679 isl_int size, size1, size2;
2681 isl_int_init(size);
2682 isl_int_init(size1);
2683 isl_int_init(size2);
2685 tile_size(tile, &size);
2686 tile_size(tile1, &size1);
2687 tile_size(tile2, &size2);
2689 isl_int_sub(size, size, size1);
2690 isl_int_sub(size, size, size2);
2691 smaller = isl_int_is_neg(size);
2693 isl_int_clear(size2);
2694 isl_int_clear(size1);
2695 isl_int_clear(size);
2697 return smaller;
2700 /* Given an initial grouping of array references and shared memory tiles
2701 * for each group that allows for a shared memory tile, merge two groups
2702 * if both have a shared memory tile, the merged group also has
2703 * a shared memory tile and the size of the tile for the merge group
2704 * is smaller than the sum of the tile sizes of the individual groups.
2706 * If merging two groups decreases the "last_shared" dimension of
2707 * one or both of the two groups, then we need to check for overlapping
2708 * writes again.
2710 * Return the number of groups after merging.
2712 static int group_common_shared_memory_tile(struct gpu_gen *gen,
2713 struct gpu_array_info *array, int n,
2714 struct gpu_array_ref_group **groups)
2716 int i, j;
2717 int recompute_overlap = 0;
2718 isl_ctx *ctx = isl_space_get_ctx(array->dim);
2720 for (i = 0; i < n; ++i) {
2721 if (!groups[i]->shared_tile)
2722 continue;
2723 for (j = n - 1; j > i; --j) {
2724 isl_map *map;
2725 int empty;
2726 struct gpu_array_ref_group *group;
2728 if (!groups[j]->shared_tile)
2729 continue;
2731 map = isl_map_intersect(isl_map_copy(groups[i]->access),
2732 isl_map_copy(groups[j]->access));
2733 empty = isl_map_is_empty(map);
2734 isl_map_free(map);
2736 if (empty)
2737 continue;
2739 group = join_groups(groups[i], groups[j]);
2740 compute_group_bounds(gen, group);
2741 if (!group->shared_tile ||
2742 !smaller_tile(group->shared_tile,
2743 groups[i]->shared_tile,
2744 groups[j]->shared_tile)) {
2745 free_array_ref_group(group);
2746 continue;
2749 if (group->last_shared < groups[i]->last_shared ||
2750 group->last_shared < groups[j]->last_shared)
2751 recompute_overlap = 1;
2752 free_array_ref_group(groups[i]);
2753 free_array_ref_group(groups[j]);
2754 groups[i] = group;
2755 if (j != n - 1)
2756 groups[j] = groups[n - 1];
2757 n--;
2761 if (recompute_overlap)
2762 n = group_last_shared_overlapping_writes(gen, n, groups);
2763 return n;
2766 /* Set array->n_group and array->groups to n and groups.
2768 * Additionally, set the "nr" field of each group
2769 * and the "group" field of each reference in each group.
2771 static void set_array_groups(struct gpu_array_info *array,
2772 int n, struct gpu_array_ref_group **groups)
2774 int i, j;
2776 array->n_group = n;
2777 array->groups = groups;
2779 for (i = 0; i < n; ++i) {
2780 groups[i]->nr = i;
2782 for (j = 0; j < groups[i]->n_ref; ++j)
2783 groups[i]->refs[j]->group = i;
2787 /* Group array references that should be considered together when
2788 * deciding whether to access them from private, shared or global memory.
2790 * In particular, if two array references overlap and if one of them
2791 * is a write, then the two references are grouped together.
2792 * We first perform an initial grouping based only on the access relation.
2793 * After computing shared and private memory tiles, we check for
2794 * overlapping writes again, but this time taking into account
2795 * the "last_shared" property.
2797 * Furthermore, if two groups admit a shared memory tile and if the
2798 * combination of the two also admits a shared memory tile, we merge
2799 * the two groups.
2801 static void group_array_references(struct gpu_gen *gen,
2802 struct gpu_array_info *array, __isl_keep isl_union_map *sched)
2804 int i;
2805 int n;
2806 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2807 struct gpu_array_ref_group **groups;
2809 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
2810 array->n_ref);
2811 assert(groups);
2813 n = populate_array_references(array, sched, groups);
2815 n = group_overlapping_writes(gen, n, groups);
2817 for (i = 0; i < n; ++i)
2818 compute_group_bounds(gen, groups[i]);
2820 n = group_last_shared_overlapping_writes(gen, n, groups);
2822 n = group_common_shared_memory_tile(gen, array, n, groups);
2824 set_array_groups(array, n, groups);
2827 /* Take tiled_sched, project it onto the shared tile loops and
2828 * the loops that will be wrapped over the threads and
2829 * store the result in gen->shared_sched.
2830 * Also compute a projection that projects out the loops that will be
2831 * wrapped over the threads and store this projection in gen->shared_proj.
2833 static void compute_shared_sched(struct gpu_gen *gen)
2835 isl_space *dim;
2836 isl_map *proj;
2837 isl_set *par;
2838 isl_union_map *sched;
2840 sched = isl_union_map_copy(gen->tiled_sched);
2842 dim = isl_union_map_get_space(sched);
2843 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
2844 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
2846 dim = isl_union_map_get_space(sched);
2847 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
2849 gen->shared_sched = sched;
2850 gen->shared_proj = isl_union_map_from_map(proj);
2853 /* Group references of all arrays in the program.
2855 static void group_references(struct gpu_gen *gen)
2857 int i;
2858 isl_union_map *sched;
2860 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
2861 isl_union_map_copy(gen->shared_proj));
2863 for (i = 0; i < gen->prog->n_array; ++i)
2864 group_array_references(gen, &gen->prog->array[i], sched);
2866 isl_union_map_free(sched);
2869 /* Free all array information that is local to the current kernel.
2871 static void free_local_array_info(struct gpu_gen *gen)
2873 int i, j;
2875 for (i = 0; i < gen->prog->n_array; ++i) {
2876 struct gpu_array_info *array = &gen->prog->array[i];
2878 for (j = 0; j < array->n_group; ++j)
2879 free_array_ref_group(array->groups[j]);
2880 free(array->groups);
2884 /* Compute the effective grid size as a list of the sizes in each dimension.
2886 * The grid size specified by the user or set by default
2887 * in read_grid_sizes() and applied in tile_schedule(),
2888 * may be too large for the given code in the sense that
2889 * it may contain blocks that don't need to execute anything.
2890 * We therefore don't return this grid size, but instead the
2891 * smallest grid size that ensures that all blocks that actually
2892 * execute code are included in the grid.
2894 * We first extract a description of the grid, i.e., the possible values
2895 * of the block ids, from gen->tiled_sched.
2896 * The block ids are parameters in gen->tiled_sched.
2897 * We simply need to change them into set dimensions.
2899 * Then, for each block dimension, we compute the maximal value of the block id
2900 * and add one.
2902 static __isl_give isl_multi_pw_aff *extract_grid_size(struct gpu_gen *gen,
2903 struct ppcg_kernel *kernel)
2905 int i;
2906 isl_set *grid;
2907 isl_multi_pw_aff *mpa;
2909 grid = isl_union_map_params(isl_union_map_copy(gen->tiled_sched));
2910 grid = isl_set_from_params(grid);
2911 grid = isl_set_add_dims(grid, isl_dim_set, gen->n_grid);
2912 for (i = 0; i < gen->n_grid; ++i) {
2913 int pos;
2914 char name[20];
2916 snprintf(name, sizeof(name), "b%d", i);
2917 pos = isl_set_find_dim_by_name(grid, isl_dim_param, name);
2918 assert(pos >= 0);
2919 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
2920 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
2923 mpa = isl_multi_pw_aff_zero(isl_set_get_space(grid));
2924 for (i = 0; i < gen->n_grid; ++i) {
2925 isl_space *space;
2926 isl_aff *one;
2927 isl_pw_aff *bound;
2929 bound = isl_set_dim_max(isl_set_copy(grid), i);
2930 bound = isl_pw_aff_coalesce(bound);
2931 bound = isl_pw_aff_gist(bound, isl_set_copy(kernel->context));
2933 space = isl_pw_aff_get_domain_space(bound);
2934 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2935 one = isl_aff_add_constant_si(one, 1);
2936 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
2937 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
2939 isl_set_free(grid);
2941 return mpa;
2944 void ppcg_kernel_free(void *user)
2946 struct ppcg_kernel *kernel = user;
2947 int i;
2949 if (!kernel)
2950 return;
2952 isl_multi_pw_aff_free(kernel->grid_size);
2953 isl_set_free(kernel->context);
2954 isl_union_set_free(kernel->arrays);
2955 isl_space_free(kernel->space);
2956 isl_ast_node_free(kernel->tree);
2958 for (i = 0; i < kernel->n_array; ++i)
2959 isl_pw_aff_list_free(kernel->array[i].bound);
2960 free(kernel->array);
2962 for (i = 0; i < kernel->n_var; ++i) {
2963 free(kernel->var[i].name);
2964 isl_vec_free(kernel->var[i].size);
2966 free(kernel->var);
2968 free(kernel);
2971 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
2972 struct ppcg_kernel_var *var)
2974 int j;
2975 struct gpu_array_tile *tile;
2976 isl_printer *p;
2977 char *name;
2979 var->array = group->array;
2981 tile = group->private_tile;
2982 var->type = ppcg_access_private;
2983 if (!tile) {
2984 tile = group->shared_tile;
2985 var->type = ppcg_access_shared;
2988 p = isl_printer_to_str(ctx);
2989 p = print_array_name(p, group);
2990 var->name = isl_printer_get_str(p);
2991 isl_printer_free(p);
2993 var->size = isl_vec_alloc(ctx, group->array->n_index);
2995 for (j = 0; j < group->array->n_index; ++j)
2996 var->size = isl_vec_set_element(var->size, j,
2997 tile->bound[j].size);
3000 static void create_kernel_vars(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3002 int i, j, n;
3004 n = 0;
3005 for (i = 0; i < gen->prog->n_array; ++i) {
3006 struct gpu_array_info *array = &gen->prog->array[i];
3008 for (j = 0; j < array->n_group; ++j) {
3009 struct gpu_array_ref_group *group = array->groups[j];
3010 if (group->private_tile || group->shared_tile)
3011 ++n;
3015 kernel->n_var = n;
3016 kernel->var = isl_calloc_array(gen->ctx, struct ppcg_kernel_var, n);
3017 assert(kernel->var);
3019 n = 0;
3020 for (i = 0; i < gen->prog->n_array; ++i) {
3021 struct gpu_array_info *array = &gen->prog->array[i];
3023 for (j = 0; j < array->n_group; ++j) {
3024 struct gpu_array_ref_group *group = array->groups[j];
3025 if (!group->private_tile && !group->shared_tile)
3026 continue;
3027 create_kernel_var(gen->ctx, group, &kernel->var[n]);
3028 ++n;
3033 /* The sizes of the arrays on the host that have been computed by
3034 * extract_array_info may depend on the parameters. Use the extra
3035 * constraints on the parameters that are valid at "host_domain"
3036 * to simplify these expressions and store the results in kernel->array.
3038 static void localize_bounds(struct gpu_gen *gen, struct ppcg_kernel *kernel,
3039 __isl_keep isl_set *host_domain)
3041 int i, j;
3042 isl_set *context;
3044 kernel->array = isl_calloc_array(gen->ctx,
3045 struct gpu_local_array_info, gen->prog->n_array);
3046 assert(kernel->array);
3047 kernel->n_array = gen->prog->n_array;
3049 context = isl_set_copy(host_domain);
3050 context = isl_set_params(context);
3052 for (i = 0; i < gen->prog->n_array; ++i) {
3053 struct gpu_array_info *array = &gen->prog->array[i];
3054 isl_pw_aff_list *local;
3056 if (array->n_group == 0)
3057 continue;
3059 local = isl_pw_aff_list_alloc(gen->ctx, array->n_index);
3061 for (j = 0; j < array->n_index; ++j) {
3062 isl_pw_aff *pwaff;
3064 pwaff = isl_pw_aff_copy(array->bound[j]);
3065 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
3066 local = isl_pw_aff_list_add(local, pwaff);
3069 kernel->array[i].bound = local;
3071 isl_set_free(context);
3074 /* Find the element in gen->stmt that has the given "id".
3075 * Return NULL if no such gpu_stmt can be found.
3077 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
3079 int i;
3081 for (i = 0; i < prog->n_stmts; ++i) {
3082 if (id == prog->stmts[i].id)
3083 break;
3086 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
3089 /* Set gen->tile_len and gen->n_parallel to those of the statement
3090 * affected by the first map (part of the schedule)
3091 * on which this function is called.
3092 * Because of the way the schedule is constructed, the other statements
3093 * in the list, if any, should have the same values for these properties.
3095 static int extract_tile_len(__isl_take isl_map *map, void *user)
3097 struct gpu_gen *gen = (struct gpu_gen *) user;
3098 isl_id *id;
3099 struct gpu_stmt *stmt;
3101 id = isl_map_get_tuple_id(map, isl_dim_in);
3102 stmt = find_stmt(gen->prog, id);
3103 isl_id_free(id);
3105 isl_map_free(map);
3107 if (!stmt)
3108 isl_die(gen->ctx, isl_error_unknown,
3109 "statement not found", return -1);
3111 gen->tile_len = stmt->tile_len;
3112 gen->n_parallel = stmt->n_parallel;
3114 return -1;
3117 void ppcg_kernel_stmt_free(void *user)
3119 int i;
3120 struct ppcg_kernel_stmt *stmt = user;
3122 if (!stmt)
3123 return;
3125 switch (stmt->type) {
3126 case ppcg_kernel_copy:
3127 isl_ast_expr_free(stmt->u.c.index);
3128 isl_ast_expr_free(stmt->u.c.local_index);
3129 break;
3130 case ppcg_kernel_domain:
3131 for (i = 0; i < stmt->u.d.n_access; ++i) {
3132 isl_ast_expr_list_free(stmt->u.d.access[i].index);
3133 free(stmt->u.d.access[i].local_name);
3135 free(stmt->u.d.access);
3136 break;
3137 case ppcg_kernel_sync:
3138 break;
3141 free(stmt);
3144 /* Set the options of "context" to
3146 * { space -> [x] : x >= first }
3148 static __isl_give isl_ast_build *set_unroll(
3149 __isl_take isl_ast_build *build, __isl_take isl_space *space,
3150 int first)
3152 isl_ctx *ctx;
3153 isl_map *unroll;
3154 isl_union_map *opt;
3156 ctx = isl_ast_build_get_ctx(build);
3158 space = isl_space_from_domain(space);
3159 space = isl_space_add_dims(space, isl_dim_out, 1);
3160 space = isl_space_set_tuple_name(space, isl_dim_out, "unroll");
3161 unroll = isl_map_universe(space);
3162 unroll = isl_map_lower_bound_si(unroll, isl_dim_out, 0, first);
3163 opt = isl_union_map_from_map(unroll);
3165 build = isl_ast_build_set_options(build, opt);
3167 return build;
3170 /* Return a list of isl_ids of the form "prefix%d".
3172 static __isl_give isl_id_list *generate_names(isl_ctx *ctx,
3173 int n, const char *prefix)
3175 int i;
3176 char name[10];
3177 isl_id_list *names;
3179 names = isl_id_list_alloc(ctx, n);
3180 for (i = 0; i < n; ++i) {
3181 isl_id *id;
3183 snprintf(name, sizeof(name), "%s%d", prefix, i);
3184 id = isl_id_alloc(ctx, name, NULL);
3185 names = isl_id_list_add(names, id);
3188 return names;
3191 /* Extend the schedule "schedule" with the part of "extension"
3192 * starting at "first" up to "len".
3194 static __isl_give isl_union_map *extend_schedule(
3195 __isl_take isl_union_map *schedule,
3196 __isl_take isl_union_map *extension, int first, int len)
3198 isl_space *space;
3199 isl_map *proj;
3200 isl_union_map *umap;
3201 isl_set *set;
3203 space = isl_union_map_get_space(schedule);
3204 space = isl_space_set_from_params(space);
3205 space = isl_space_add_dims(space, isl_dim_set, len);
3206 proj = isl_set_identity(isl_set_universe(space));
3207 proj = isl_map_project_out(proj, isl_dim_out, 0, first);
3208 extension = isl_union_map_apply_range(extension,
3209 isl_union_map_from_map(proj));
3211 schedule = isl_union_map_range_product(schedule, extension);
3213 return schedule;
3216 /* This function is called for each access to an array in each instance
3217 * in the kernel of some statement in the original code.
3218 * Replace that access by an access to global, shared or private memory
3219 * and store the results in *kernel_access.
3221 * Since the array in shared or private memory is just
3222 * a shifted copy of part of the original array, we simply need
3223 * to subtract the lower bound, which was computed in can_tile.
3224 * If any of the indices is strided, then we first add
3225 * shared_tile->bound[i].shift and divide by shared_tile->bound[i].stride.
3227 * If the given array is accessed directly from global memory,
3228 * we don't need to perform any shifting and simply simplify
3229 * the expression in the context of the domain instead.
3231 * If the array space (range of access) has no name, then we are
3232 * accessing an iterator in the original program.
3234 * The input stmt_access->access relation maps the iteration domain
3235 * of the current statement to an array element.
3236 * The first step is to reformulate
3237 * this access relation in terms of the loop iterators of the generated
3238 * code through precomposition with gen->stmt_it.
3240 * The expressions in "tile" are formulated in terms of the first
3241 * gen->shared_len dimensions of the computed schedule using the mapping
3242 * sched2shared which maps the loop iterators to these dimensions.
3244 static void compute_index_expression(struct gpu_gen *gen,
3245 struct ppcg_kernel_access *kernel_access,
3246 struct gpu_stmt_access *stmt_access, __isl_keep isl_map *stmt_it,
3247 __isl_keep isl_map *sched2shared, __isl_keep isl_ast_build *build)
3249 isl_map *access;
3250 isl_pw_multi_aff *pma;
3251 int i;
3252 unsigned n_index;
3253 struct gpu_array_tile *tile = NULL;
3255 if (isl_map_has_tuple_name(stmt_access->access, isl_dim_out)) {
3256 int i;
3257 const char *name;
3258 struct gpu_array_ref_group *group;
3259 isl_printer *p;
3261 name = isl_map_get_tuple_name(stmt_access->access, isl_dim_out);
3263 for (i = 0; i < gen->prog->n_array; ++i) {
3264 if (strcmp(name, gen->prog->array[i].name))
3265 continue;
3266 kernel_access->array = &gen->prog->array[i];
3267 kernel_access->local_array = &gen->kernel->array[i];
3269 assert(kernel_access->array);
3270 group = kernel_access->array->groups[stmt_access->group];
3271 p = isl_printer_to_str(gen->ctx);
3272 p = print_array_name(p, group);
3273 kernel_access->local_name = isl_printer_get_str(p);
3274 isl_printer_free(p);
3275 tile = group->private_tile;
3276 kernel_access->type = ppcg_access_private;
3277 if (!tile) {
3278 tile = group->shared_tile;
3279 kernel_access->type = ppcg_access_shared;
3282 if (!tile)
3283 kernel_access->type = ppcg_access_global;
3285 n_index = isl_map_dim(stmt_access->access, isl_dim_out);
3286 kernel_access->index = isl_ast_expr_list_alloc(gen->ctx, n_index);
3288 if (n_index == 0)
3289 return;
3291 access = isl_map_copy(stmt_access->access);
3292 access = isl_map_apply_range(isl_map_copy(stmt_it), access);
3293 pma = isl_pw_multi_aff_from_map(access);
3294 pma = isl_pw_multi_aff_coalesce(pma);
3296 for (i = 0; i < n_index; ++i) {
3297 isl_set *domain;
3298 isl_pw_aff *index;
3299 isl_ast_expr *expr;
3301 index = isl_pw_multi_aff_get_pw_aff(pma, i);
3303 if (!kernel_access->array) {
3304 } else if (!tile) {
3305 domain = isl_map_domain(isl_map_copy(stmt_it));
3306 index = isl_pw_aff_coalesce(index);
3307 index = isl_pw_aff_gist(index, domain);
3308 } else {
3309 domain = isl_map_domain(isl_map_copy(stmt_it));
3310 index = shift_index(index, kernel_access->array,
3311 &tile->bound[i], domain,
3312 isl_map_copy(sched2shared));
3315 expr = isl_ast_build_expr_from_pw_aff(build, index);
3317 kernel_access->index = isl_ast_expr_list_add(
3318 kernel_access->index, expr);
3321 isl_pw_multi_aff_free(pma);
3324 /* This function is called for each instance of a user statement
3325 * in the kernel.
3327 * We attach a struct ppcg_kernel_stmt to the "node", containing
3328 * local information about the accesses.
3329 * This information is computed from stmt_it, which expresses the domain
3330 * elements in terms of the generated loops, and sched2shared,
3331 * which expresses the first shared_len dimensions of the schedule
3332 * computed by PPCG in terms of the generated loops.
3334 static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
3335 __isl_keep isl_ast_build *build, void *user)
3337 struct gpu_gen *gen = (struct gpu_gen *) user;
3338 struct ppcg_kernel_stmt *stmt;
3339 isl_id *id;
3340 isl_map *stmt_it, *sched2shared;
3341 isl_ast_expr *expr, *arg;
3342 isl_union_map *schedule;
3343 int i, n;
3344 struct gpu_stmt_access *access;
3346 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3347 if (!stmt)
3348 return isl_ast_node_free(node);
3350 expr = isl_ast_node_user_get_expr(node);
3351 arg = isl_ast_expr_get_op_arg(expr, 0);
3352 id = isl_ast_expr_get_id(arg);
3354 schedule = isl_ast_build_get_schedule(build);
3355 stmt_it = isl_map_reverse(isl_map_from_union_map(schedule));
3356 sched2shared = compute_sched_to_shared(gen, isl_map_copy(stmt_it));
3358 stmt->type = ppcg_kernel_domain;
3359 stmt->u.d.stmt = find_stmt(gen->prog, id);
3360 if (!stmt->u.d.stmt)
3361 goto error;
3363 n = 0;
3364 for (access = stmt->u.d.stmt->accesses; access; access = access->next)
3365 ++n;
3367 stmt->u.d.access = isl_calloc_array(gen->ctx,
3368 struct ppcg_kernel_access, n);
3369 if (!stmt->u.d.access)
3370 goto error;
3372 stmt->u.d.n_access = n;
3374 access = stmt->u.d.stmt->accesses;
3375 for (i = 0; i < n; ++i, access = access->next) {
3376 compute_index_expression(gen, &stmt->u.d.access[i], access,
3377 stmt_it, sched2shared, build);
3380 isl_id_free(id);
3381 isl_map_free(stmt_it);
3382 isl_map_free(sched2shared);
3383 isl_ast_expr_free(arg);
3384 isl_ast_expr_free(expr);
3386 id = isl_id_alloc(gen->ctx, NULL, stmt);
3387 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3388 return isl_ast_node_set_annotation(node, id);
3389 error:
3390 isl_id_free(id);
3391 isl_map_free(stmt_it);
3392 ppcg_kernel_stmt_free(stmt);
3393 isl_map_free(sched2shared);
3394 return isl_ast_node_free(node);
3397 /* This function is called when code has been generated for the shared
3398 * tile loops. The "schedule" refers only to the original statements.
3400 * We extend the schedule with that part of gen->local_sched that hasn't
3401 * been taken into account yet. This introduces parameters referring
3402 * to thread ids in the schedule, so we add them (with the appropriate
3403 * bounds to the context as well).
3404 * Finally, we set the appropriate unrolling options
3405 * if gen->first_unroll is set.
3407 static __isl_give isl_ast_node *create_domain_leaf(
3408 __isl_take isl_union_map *schedule, __isl_take isl_ast_build *build,
3409 void *user)
3411 struct gpu_gen *gen = (struct gpu_gen *) user;
3412 isl_space *space;
3413 isl_union_map *sched;
3414 isl_ast_node *tree;
3415 isl_set *set;
3416 isl_id_list *iterators;
3417 int n;
3419 schedule = extend_schedule(schedule,
3420 isl_union_map_copy(gen->local_sched),
3421 gen->shared_len, gen->thread_tiled_len);
3423 space = isl_ast_build_get_schedule_space(build);
3424 set = isl_set_universe(space);
3425 set = add_bounded_parameters(set, gen->n_block, gen->block_dim, "t");
3426 build = isl_ast_build_restrict(build, set);
3428 n = gen->thread_tiled_len - gen->shared_len;
3430 if (gen->first_unroll >= 0) {
3431 space = isl_space_set_alloc(gen->ctx, 0, n);
3432 build = set_unroll(build, space, gen->first_unroll);
3434 iterators = generate_names(gen->ctx, n, "c");
3435 build = isl_ast_build_set_iterators(build, iterators);
3436 build = isl_ast_build_set_at_each_domain(build, &at_each_domain, gen);
3437 tree = isl_ast_build_ast_from_schedule(build, schedule);
3438 isl_ast_build_free(build);
3440 return tree;
3443 /* This function is called for each statement node in the AST of the code
3444 * for copying to or from shared/private memory.
3445 * Attach a pointer to a ppcg_kernel_stmt representing the copy
3446 * statement to the node.
3447 * The statement name is {read,write}_{shared,private}_<array>.
3449 * The schedule is of the form
3451 * [A -> T] -> L
3453 * where A refers to a piece of an array and T to the corresponding
3454 * shifted tile. We split this schedule into mappings L -> A and L -> T
3455 * and store the corresponding expressions in stmt->index and stmt->local_index,
3456 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
3458 static __isl_give isl_ast_node *attach_copy_stmt(__isl_take isl_ast_node *node,
3459 __isl_keep isl_ast_build *build, void *user)
3461 struct gpu_gen *gen = (struct gpu_gen *) user;
3462 struct ppcg_kernel_stmt *stmt;
3463 isl_id *id;
3464 isl_ast_expr *expr;
3465 isl_space *space;
3466 isl_map *access, *local_access, *map;
3467 isl_pw_multi_aff *pma;
3468 const char *name;
3469 int array_index;
3471 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3472 if (!stmt)
3473 return isl_ast_node_free(node);
3475 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
3476 name = isl_map_get_tuple_name(access, isl_dim_in);
3477 stmt->u.c.read = !strncmp(name, "read", 4);
3478 access = isl_map_reverse(access);
3479 space = isl_space_unwrap(isl_space_range(isl_map_get_space(access)));
3480 local_access = isl_map_copy(access);
3482 map = isl_map_domain_map(isl_map_universe(isl_space_copy(space)));
3483 id = isl_map_get_tuple_id(access, isl_dim_out);
3484 map = isl_map_set_tuple_id(map, isl_dim_in, id);
3485 access = isl_map_apply_range(access, map);
3486 pma = isl_pw_multi_aff_from_map(access);
3487 expr = isl_ast_build_call_from_pw_multi_aff(build, pma);
3488 stmt->u.c.index = expr;
3490 map = isl_map_range_map(isl_map_universe(space));
3491 id = isl_map_get_tuple_id(local_access, isl_dim_out);
3492 map = isl_map_set_tuple_id(map, isl_dim_in, id);
3493 local_access = isl_map_apply_range(local_access, map);
3494 pma = isl_pw_multi_aff_from_map(local_access);
3495 expr = isl_ast_build_call_from_pw_multi_aff(build, pma);
3496 stmt->u.c.local_index = expr;
3498 stmt->u.c.array = gen->copy_group->array;
3499 array_index = stmt->u.c.array - gen->prog->array;
3500 stmt->u.c.local_array = &gen->kernel->array[array_index];
3501 stmt->type = ppcg_kernel_copy;
3503 id = isl_id_alloc(gen->ctx, NULL, stmt);
3504 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3505 return isl_ast_node_set_annotation(node, id);
3508 /* Given a schedule of the form
3510 * [S -> A] -> L
3512 * (with S the first shared_len dimensions of the computed schedule,
3513 * A the array and L the schedule correponding to the generated loops),
3514 * indicating where the copying the array elements that need to be copied,
3515 * construct code for performing the copying.
3517 * "group" is the array reference group that is being copied
3518 * "type" is either "read" or "write"
3519 * private is set if copying needs to be performed to/from registers
3521 * We first construct a mapping to a shifted tile of the array,
3523 * [S -> A] -> T(S,A) (1)
3525 * If private is set, then we also use this mapping as a schedule
3526 * (which is already thread-specific and will be completely unrolled).
3527 * Otherwise, we wrap/tile the range over the threads.
3528 * The result is
3530 * [S -> A] -> T'(S,A)
3532 * Combined with the given schedule, we have
3534 * [S -> A] -> [L -> T'(S,A)] (2)
3536 * From the shifted tile mapping, we construct a mapping
3538 * [S -> A] -> [A -> T(S,A)]
3540 * and apply it to the schedule (2), obtaining
3542 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
3544 * Note that we can project out S because it is uniquely defined by L.
3546 static __isl_give isl_ast_node *copy_access(struct gpu_gen *gen,
3547 __isl_take isl_map *sched,
3548 const char *type, struct gpu_array_ref_group *group,
3549 __isl_take isl_ast_build *build, int private)
3551 const char *array_name;
3552 const char *mem = private ? "private" : "shared";
3553 char *name;
3554 isl_space *space;
3555 isl_ast_node *tree;
3556 isl_map *schedule, *shift, *map;
3557 isl_set *set;
3558 isl_id_list *iterators;
3559 int n;
3561 shift = isl_set_unwrap(isl_map_domain(isl_map_copy(sched)));
3562 array_name = isl_map_get_tuple_name(shift, isl_dim_out);
3563 shift = shift_access(shift, group);
3565 schedule = isl_map_copy(shift);
3566 if (!private)
3567 schedule = tile_access_schedule(gen, schedule);
3569 n = isl_map_dim(schedule, isl_dim_out);
3570 set = isl_set_universe(isl_ast_build_get_schedule_space(build));
3571 set = add_bounded_parameters(set, gen->n_block, gen->block_dim, "t");
3573 schedule = isl_map_range_product(sched, schedule);
3575 assert(array_name);
3576 name = isl_alloc_array(gen->ctx, char,
3577 strlen(type) + sizeof("_private_") + strlen(array_name) + 20);
3578 if (group->array->n_group > 1)
3579 sprintf(name, "%s_%s_%s_%d", type, mem, array_name, group->nr);
3580 else
3581 sprintf(name, "%s_%s_%s", type, mem, array_name);
3582 shift = isl_map_set_tuple_name(shift,
3583 isl_dim_out, name + strlen(type) + 1);
3585 space = isl_space_domain(isl_map_get_space(shift));
3586 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
3587 map = isl_map_range_product(map, shift);
3589 schedule = isl_map_apply_domain(schedule, map);
3591 schedule = isl_map_set_tuple_name(schedule, isl_dim_in, name);
3592 free(name);
3594 build = isl_ast_build_restrict(build, set);
3596 gen->copy_group = group;
3598 if (private) {
3599 space = isl_space_range(isl_map_get_space(schedule));
3600 space = isl_space_range(isl_space_unwrap(space));
3601 build = set_unroll(build, space, 0);
3603 iterators = generate_names(gen->ctx, n, "c");
3604 build = isl_ast_build_set_iterators(build, iterators);
3605 build = isl_ast_build_set_at_each_domain(build, &attach_copy_stmt, gen);
3606 tree = isl_ast_build_ast_from_schedule(build,
3607 isl_union_map_from_map(schedule));
3608 isl_ast_build_free(build);
3610 return tree;
3613 /* Return code for reading into or writing from shared memory
3614 * the given array reference group.
3616 * If we are performing a read from global memory to shared memory and
3617 * if the array involved is not a scalar, then we copy
3618 * the entire tile to shared memory. This may result in some extra
3619 * elements getting copied, but it should lead to simpler code
3620 * (which means that fewer registers may be needed) and less divergence.
3622 * Otherwise, we only copy the elements that will be read or have been written
3623 * in the kernel.
3626 * The input "sched" is of the form.
3628 * type[S -> A] -> L
3630 * with S the first shared_len dimensions of the computed schedule,
3631 * A the array and L the schedule correponding to the generated loops.
3633 * We first drop "type",
3635 * [S -> A] -> L
3637 * If the above conditions are satisfied, we project out A,
3638 * resulting in
3640 * S -> L
3642 * and then introduce the group tile [S -> T], resulting in
3644 * [S -> T] -> L
3646 static __isl_give isl_ast_node *copy_group_shared_accesses(
3647 struct gpu_gen *gen, struct gpu_array_ref_group *group,
3648 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
3650 const char *type;
3651 int read;
3652 isl_union_map *access;
3654 type = isl_map_get_tuple_name(sched, isl_dim_in);
3655 read = !strcmp(type, "read");
3657 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
3659 if (read && group->array->n_index > 0) {
3660 isl_space *space;
3661 isl_map *map;
3663 space = isl_space_domain(isl_map_get_space(sched));
3664 space = isl_space_unwrap(space);
3665 map = isl_map_domain_map(isl_map_universe(space));
3666 sched = isl_map_apply_domain(sched, map);
3668 map = group_tile(group);
3669 map = isl_map_reverse(isl_map_domain_map(map));
3670 sched = isl_map_apply_domain(sched, map);
3673 return copy_access(gen, sched, type, group, build, 0);
3676 /* Return code for reading into or writing from private memory
3677 * the given array reference group.
3679 * Let S be the first shared_len dimensions of the computed schedule,
3680 * D the iteration domains, A the array and L the schedule correponding
3681 * to the generated loops.
3682 * "sched" is of the form
3684 * type[S -> A] -> L
3686 * where type is either "read" or "write".
3687 * We apply the privatization D -> S(t), with t the thread ids,
3688 * to the access relation D -> A to obtain the privatized access relation
3690 * S(t) -> A
3692 * We drop the type from "sched" and intersect with the privatized access
3693 * relation to obtain
3695 * [S(t) -> A] -> L
3697 static __isl_give isl_ast_node *copy_group_private_accesses(
3698 struct gpu_gen *gen, struct gpu_array_ref_group *group,
3699 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
3701 const char *type;
3702 int read;
3703 isl_union_map *priv;
3704 isl_union_map *access;
3705 isl_map *access_map;
3707 type = isl_map_get_tuple_name(sched, isl_dim_in);
3708 read = !strcmp(type, "read");
3710 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
3711 priv = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
3712 priv);
3714 access = group_access_relation(group, read, !read);
3715 access = isl_union_map_apply_domain(access, priv);
3716 access_map = isl_map_from_union_map(access);
3718 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
3719 sched = isl_map_intersect_domain(sched, isl_map_wrap(access_map));
3721 return copy_access(gen, sched, type, group, build, 1);
3724 /* Return code for reading into or writing from shared or private memory.
3726 * "schedule" is of the form
3728 * type[S -> A] -> L
3730 * with S be the first shared_len dimensions of the computed schedule,
3731 * A the array and L the schedule correponding to the generated loops.
3732 * The array reference group is attached to "type".
3734 static __isl_give isl_ast_node *create_access_leaf(
3735 struct gpu_gen *gen, __isl_take isl_map *schedule,
3736 __isl_take isl_ast_build *build)
3738 struct gpu_array_ref_group *group;
3739 isl_id *id;
3741 id = isl_map_get_tuple_id(schedule, isl_dim_in);
3742 group = isl_id_get_user(id);
3743 isl_id_free(id);
3745 if (group->private_tile)
3746 return copy_group_private_accesses(gen, group, schedule,
3747 build);
3748 else
3749 return copy_group_shared_accesses(gen, group, schedule,
3750 build);
3753 /* Create a domain node representing a synchronization.
3755 static __isl_give isl_ast_node *create_sync_leaf(
3756 struct gpu_gen *gen, __isl_take isl_map *schedule,
3757 __isl_take isl_ast_build *build)
3759 struct ppcg_kernel_stmt *stmt;
3760 isl_id *id;
3761 isl_space *space;
3762 isl_ast_node *node;
3763 isl_ast_expr *expr;
3765 isl_map_free(schedule);
3767 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3768 if (!stmt)
3769 return NULL;
3771 stmt->type = ppcg_kernel_sync;
3773 space = isl_ast_build_get_schedule_space(build);
3774 space = isl_space_from_domain(space);
3775 space = isl_space_set_tuple_name(space, isl_dim_out, "sync");
3776 expr = isl_ast_build_call_from_pw_multi_aff(build,
3777 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
3778 node = isl_ast_node_alloc_user(expr);
3779 isl_ast_build_free(build);
3781 id = isl_id_alloc(gen->ctx, NULL, stmt);
3782 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3783 return isl_ast_node_set_annotation(node, id);
3786 /* This function is called during the code generation at the point
3787 * where the schedule domain element is completely determined by
3788 * the generated code. The input schedule contains the original
3789 * statements as well as synchronization and copy "statements".
3790 * The latter are scheduled at different points than any of the original
3791 * statements, so they will only arrive here in isolation.
3793 * If the current schedule only refers to a single statement,
3794 * we check if it is a copy or synchronization statement and
3795 * call the appropriate functions.
3796 * Otherwise, we assume we are dealing with the original statements
3797 * and we call create_domain_leaf.
3799 static __isl_give isl_ast_node *create_kernel_leaf(
3800 __isl_take isl_ast_build *build, void *user)
3802 struct gpu_gen *gen = (struct gpu_gen *) user;
3803 isl_map *map;
3804 isl_union_map *schedule;
3805 const char *name;
3807 schedule = isl_ast_build_get_schedule(build);
3809 if (isl_union_map_n_map(schedule) != 1)
3810 return create_domain_leaf(schedule, build, user);
3812 map = isl_map_from_union_map(schedule);
3813 name = isl_map_get_tuple_name(map, isl_dim_in);
3814 if (!strcmp(name, "read") || !strcmp(name, "write"))
3815 return create_access_leaf(gen, map, build);
3816 if (!strcmp(name, "sync"))
3817 return create_sync_leaf(gen, map, build);
3819 return create_domain_leaf(isl_union_map_from_map(map), build, user);
3822 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
3823 * have value 0) and all even schedule dimensions as "unroll".
3825 * That is, the options look as follows
3827 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
3828 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
3830 * The even positions are used to be able to schedule copying blocks
3831 * and synchronization before or after each level of the shared memory
3832 * tile loops and we want to make sure that code for these is generated
3833 * separately (within each level).
3835 static __isl_give isl_ast_build *set_atomic_and_unroll(
3836 __isl_take isl_ast_build *build,
3837 __isl_take isl_space *space, int sched_len)
3839 isl_ctx *ctx;
3840 isl_map *map;
3841 isl_constraint *c;
3842 isl_union_map *opt;
3843 isl_local_space *ls;
3844 int i, n;
3846 ctx = isl_ast_build_get_ctx(build);
3848 space = isl_space_params(space);
3849 space = isl_space_add_dims(space, isl_dim_set, sched_len);
3850 space = isl_space_from_domain(space);
3851 space = isl_space_add_dims(space, isl_dim_out, 2);
3852 map = isl_map_universe(isl_space_copy(space));
3853 for (i = 0; i < sched_len; i += 2)
3854 map = isl_map_fix_si(map, isl_dim_in, i, 0);
3855 ls = isl_local_space_from_space(isl_map_get_space(map));
3856 c = isl_equality_alloc(ls);
3857 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
3858 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
3859 c = isl_constraint_set_constant_si(c, 1);
3860 map = isl_map_add_constraint(map, c);
3861 map = isl_map_project_out(map, isl_dim_out, 1, 1);
3862 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
3863 opt = isl_union_map_from_map(map);
3865 map = isl_map_universe(space);
3866 ls = isl_local_space_from_space(isl_map_get_space(map));
3867 c = isl_equality_alloc(ls);
3868 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
3869 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
3870 map = isl_map_add_constraint(map, c);
3871 map = isl_map_project_out(map, isl_dim_out, 1, 1);
3872 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
3873 opt = isl_union_map_add_map(opt, map);
3875 build = isl_ast_build_set_options(build, opt);
3877 return build;
3880 /* Return a map that maps a space of dimension gen->shared_len
3881 * to its last dimensions starting at gen->tile_first.
3882 * The range is of dimension
3884 * 2 * (gen->shared_len - gen->tile_first) + 1
3886 * The input dimensions are mapped to the odd dimensions in the output,
3887 * while the even dimensions (except 2*pos) are fixed to 0.
3888 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
3889 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
3890 * are mapped to the output. The remaining input dimensions are projected
3891 * out and the corresponding output dimensions are fixed to 0.
3893 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
3894 __isl_take isl_space *space, int pos, int val)
3896 int i, n;
3897 isl_map *proj;
3899 space = isl_space_set_from_params(space);
3900 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
3901 space = isl_space_map_from_set(space);
3902 proj = isl_map_identity(space);
3903 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
3904 n = gen->shared_len - gen->tile_first;
3905 for (i = 0; i <= n; ++i) {
3906 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
3907 if (i == pos)
3908 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
3909 else
3910 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
3913 if (pos < 0)
3914 return proj;
3916 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
3917 gen->shared_len - (gen->tile_first + pos));
3918 for (i = pos; i < n; ++i)
3919 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
3921 return proj;
3924 /* Given the AST context schedule "schedule" and the mapping from
3925 * domains to the shared tile loops "shared_sched", add a schedule
3926 * for a synchronization operation at position "val" of loop level "pos".
3928 * schedule is of the form
3930 * D -> L
3932 * (with D the iteration domains and L the already generated loops),
3933 * while shared_sched is of the form
3935 * D -> S
3937 * We combine them into
3939 * L -> S
3941 * apply a mapping
3943 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3945 * and use the result as a schedule for "sync".
3947 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
3948 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
3949 __isl_keep isl_union_map *shared_sched, int pos, int val)
3951 isl_space *space;
3952 isl_map *proj, *map;
3954 shared_sched = isl_union_map_copy(shared_sched);
3955 schedule = isl_union_map_copy(schedule);
3957 space = isl_union_map_get_space(shared_sched);
3958 schedule = isl_union_map_apply_domain(shared_sched, schedule);
3959 map = isl_map_from_union_map(schedule);
3961 proj = insert_even(gen, space, pos, val);
3962 map = isl_map_apply_range(map, proj);
3963 map = isl_map_from_range(isl_map_wrap(map));
3964 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
3966 res = isl_union_map_add_map(res, map);
3968 return res;
3971 /* Given the AST context schedule "schedule" and the mapping from
3972 * domains to the shared tile loops "shared_sched", add a schedule
3973 * for copying an array reference group to/from shared/private memory.
3974 * "read" is set if data should be copied from global memory
3975 * to shared/private memory.
3976 * "k" represents the current group
3977 * "s" is the total number of groups
3979 * We schedule an operation before or after the innermost loop
3980 * of "shared_sched" that affects the tile of the array reference group.
3982 * schedule is of the form
3984 * D -> L
3986 * (with D the iteration domains and L the already generated loops),
3987 * while shared_sched is of the form
3989 * D -> S
3991 * We first compute the access relation for the reference group
3993 * D -> A
3995 * and combine it with shared_sched into
3997 * D -> [S -> A]
3999 * If this results in an empty relation, no copying needs to be performed
4000 * at this point.
4001 * Otherwise, we invert the relation and combine it with "schedule" into
4003 * [S -> A] -> L
4005 * The actual additional piece of the schedule is obtained from combining
4007 * [S -> A] -> S
4009 * with a mapping
4011 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4013 * The position of "val" corresponds to the innermost loop that affects
4014 * the tile and the value indicates where the copying is scheduled
4015 * with respect to the actual kernel code (at value 0).
4016 * Reads are schedule before the code, writes to global memory from
4017 * private memory are scheduled at values 1 to s, writes to global
4018 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
4020 * If we are scheduling a read from global memory to shared memory,
4021 * we insert a synchronization before the kernel code (at the innermost
4022 * level).
4023 * If we are scheduling a write to global memory, then we add
4024 * a synchronization after all writes (at value 2 *s + 2).
4025 * However, there is no need for a synchronization after the outermost loop.
4026 * A write to global memory from private memory at the innermost level
4027 * does not require a synchronization, because it is covered by
4028 * the synchronization after the kernel inserted by body_schedule.
4030 static __isl_give isl_union_map *add_group_schedule(struct gpu_gen *gen,
4031 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4032 __isl_keep isl_union_map *shared_sched,
4033 struct gpu_array_ref_group *group, int read, int k, int s)
4035 int n;
4036 int pos, val;
4037 isl_space *space;
4038 isl_union_map *access;
4039 isl_map *map, *proj, *access_map;
4040 isl_id *id;
4042 access = group_access_relation(group, read, !read);
4043 access = isl_union_map_range_product(isl_union_map_copy(shared_sched),
4044 access);
4046 if (isl_union_map_is_empty(access)) {
4047 isl_union_map_free(access);
4048 return res;
4051 access = isl_union_map_reverse(access);
4052 access = isl_union_map_apply_range(access,
4053 isl_union_map_copy(schedule));
4054 access_map = isl_map_from_union_map(access);
4056 space = isl_space_copy(group->array->dim);
4057 space = isl_space_from_range(space);
4058 space = isl_space_add_dims(space, isl_dim_in, gen->shared_len);
4059 map = isl_map_domain_map(isl_map_universe(space));
4061 space = isl_union_map_get_space(schedule);
4062 pos = group->last_shared + 1 - gen->tile_first;
4063 assert(pos >= 0);
4064 if (read)
4065 val = -2 - k;
4066 else if (group->private_tile)
4067 val = 1 + k;
4068 else
4069 val = 1 + s + 1 + k;
4070 proj = insert_even(gen, space, pos, val);
4071 map = isl_map_apply_range(map, proj);
4073 access_map = isl_map_range_product(access_map, map);
4075 id = isl_id_alloc(gen->ctx, read ? "read" : "write", group);
4076 access_map = isl_map_set_tuple_id(access_map, isl_dim_in, id);
4078 res = isl_union_map_add_map(res, access_map);
4080 n = gen->shared_len - gen->tile_first;
4081 if (read) {
4082 if (!group->private_tile)
4083 res = add_sync_schedule(gen, res, schedule,
4084 shared_sched, n, -1);
4085 } else {
4086 if (pos == 0)
4087 return res;
4088 if (pos == n && group->private_tile)
4089 return res;
4090 res = add_sync_schedule(gen, res, schedule, shared_sched,
4091 pos, 2 * s + 2);
4094 return res;
4097 /* Return a schedule for the shared tile loops based on the current
4098 * AST context schedule.
4100 * We create a "shared_sched" that maps the domains to the first
4101 * shared_len dimensions of the computed schedule, project out the
4102 * first tile_first dimensions (as these are already covered by
4103 * the host code) and insert "statement-level" dimensions at even
4104 * positions so that we can schedule copy blocks and synchronization
4105 * before/after each level.
4107 * In particular, copy blocks are inserted inside the innermost
4108 * level that affect the tile. For the copying to global memory,
4109 * those from private memory are scheduled before those from shared
4110 * memory such that synchronization can be inserted between the two
4111 * at the innermost level.
4112 * Synchronization is inserted at the innermost level before the
4113 * actual kernel code if there is any copying from global memory
4114 * to shared memory. It is inserted unconditionally at the innermost
4115 * level after the actual kernel code and the copying to global memory
4116 * from private memory (if any). Finally, it is inserted after
4117 * any copying to global memory, except at the outermost level
4118 * and at the innermost level if there is no copying from shared
4119 * memory. The copying from private memory is covered by the unconditional
4120 * synchronization at the innermost level.
4122 static __isl_give isl_union_map *body_schedule(struct gpu_gen *gen,
4123 __isl_take isl_union_map *schedule)
4125 isl_space *space;
4126 isl_union_map *res;
4127 isl_union_map *shared_sched;
4128 isl_union_map *sched;
4129 isl_map *proj, *map;
4130 int i, j, k, s;
4132 shared_sched = isl_union_map_copy(gen->tiled_sched);
4133 proj = projection(isl_union_map_get_space(shared_sched),
4134 gen->tiled_len, gen->shared_len);
4135 shared_sched = isl_union_map_apply_range(shared_sched,
4136 isl_union_map_from_map(proj));
4137 space = isl_union_map_get_space(shared_sched);
4138 proj = insert_even(gen, space, -1, 0);
4139 sched = isl_union_map_apply_range(isl_union_map_copy(shared_sched),
4140 isl_union_map_from_map(proj));
4142 res = isl_union_map_range_product(isl_union_map_copy(schedule), sched);
4144 s = 0;
4145 for (i = 0; i < gen->prog->n_array; ++i)
4146 s += gen->prog->array[i].n_group;
4148 k = 0;
4149 for (i = 0; i < gen->prog->n_array; ++i) {
4150 struct gpu_array_info *array = &gen->prog->array[i];
4152 for (j = 0; j < array->n_group; ++j) {
4153 struct gpu_array_ref_group *group;
4155 group = array->groups[j];
4156 if (!group->private_tile && !group->shared_tile)
4157 continue;
4158 res = add_group_schedule(gen, res, schedule,
4159 shared_sched, group, 0, k, s);
4160 res = add_group_schedule(gen, res, schedule,
4161 shared_sched, group, 1, k, s);
4162 ++k;
4166 res = add_sync_schedule(gen, res, schedule, shared_sched,
4167 gen->shared_len - gen->tile_first, 1 + s);
4169 isl_union_map_free(shared_sched);
4170 isl_union_map_free(schedule);
4172 return res;
4175 /* Generate code for "kernel" in the given "context".
4177 * We first generate code for the shared tile loops (T1T, T1P and T2)
4178 * in a context that includes the block ids.
4179 * Within each iteration of these loops an additional code generation
4180 * is performed (within create_kernel_leaf) for the rest of the schedule
4181 * in a context that includes the thread ids.
4183 static __isl_give isl_ast_node *generate_kernel(struct gpu_gen *gen,
4184 __isl_keep isl_ast_build *build, __isl_keep isl_set *host_domain,
4185 __isl_keep isl_multi_pw_aff *grid_size)
4187 isl_space *space;
4188 isl_set *set;
4189 isl_id_list *iterators;
4190 isl_union_map *schedule;
4191 isl_ast_node *tree;
4192 int sched_len;
4194 schedule = isl_ast_build_get_schedule(build);
4196 build = isl_ast_build_copy(build);
4197 build = isl_ast_build_restrict(build, isl_set_copy(host_domain));
4198 space = isl_ast_build_get_schedule_space(build);
4199 set = isl_set_universe(isl_space_copy(space));
4200 set = add_bounded_parameters_dynamic(set, grid_size, "b");
4201 build = isl_ast_build_restrict(build, set);
4203 schedule = body_schedule(gen, schedule);
4205 sched_len = 2 * (gen->shared_len - gen->tile_first) + 1;
4207 build = set_atomic_and_unroll(build, space, sched_len);
4208 iterators = generate_names(gen->ctx, sched_len, "g");
4209 build = isl_ast_build_set_iterators(build, iterators);
4210 build = isl_ast_build_set_create_leaf(build, &create_kernel_leaf, gen);
4211 tree = isl_ast_build_ast_from_schedule(build, schedule);
4212 isl_ast_build_free(build);
4214 return tree;
4217 /* Attach "id" to the given node.
4219 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
4220 __isl_keep isl_ast_build *build, void *user)
4222 isl_id *id = user;
4224 node = isl_ast_node_set_annotation(node, id);
4226 return node;
4229 /* Construct an AST node for performing a kernel launch and attach
4230 * the information about the kernel to that node.
4232 * The kernel AST has been constructed in the context of the range
4233 * of "schedule". In particular, the grid size has been computed
4234 * in the context. We therefore still need to make sure that these
4235 * constraints are expressed in the code. We do this by creating a schedule
4237 * kernel[] -> [S -> []]
4239 * where S is the schedule domain, i.e., the range of "schedule".
4240 * The AST generation will then create a single call surrounded by
4241 * all the condition in "S" that have not been expressed yet.
4243 * The kernel information is attached to this node in attach_id.
4245 static __isl_give isl_ast_node *construct_launch(
4246 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
4247 __isl_take struct ppcg_kernel *kernel)
4249 isl_id *id;
4250 isl_ctx *ctx;
4251 isl_union_set *domain;
4252 isl_set *set;
4253 isl_map *map;
4254 isl_ast_node *node;
4256 ctx = isl_ast_build_get_ctx(build);
4258 id = isl_id_alloc(ctx, NULL, kernel);
4259 id = isl_id_set_free_user(id, &ppcg_kernel_free);
4261 domain = isl_union_map_range(schedule);
4262 set = isl_set_from_union_set(domain);
4263 map = isl_map_from_domain(set);
4264 map = isl_map_from_range(isl_map_wrap(map));
4265 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
4266 schedule = isl_union_map_from_map(map);
4268 build = isl_ast_build_set_at_each_domain(build, &attach_id, id);
4269 node = isl_ast_build_ast_from_schedule(build, schedule);
4270 isl_ast_build_free(build);
4272 return node;
4275 /* This function is called for each leaf in the AST of the host code.
4276 * We first specialize the schedule to the site of the leaf, compute
4277 * the size of shared memory and then construct the body of host code
4278 * and the associated kernel.
4280 * The necessary information for printing the kernel launch is
4281 * stored in a struct ppcg_kernel and attached to the leaf node
4282 * created to represent the launch.
4284 static __isl_give isl_ast_node *create_host_leaf(
4285 __isl_take isl_ast_build *build, void *user)
4287 struct gpu_gen *gen = (struct gpu_gen *) user;
4288 isl_id *id;
4289 isl_ast_node *node;
4290 struct ppcg_kernel *kernel;
4291 isl_set *host_domain;
4292 isl_union_map *schedule;
4293 isl_union_map *local_sched;
4294 isl_union_map *access;
4295 isl_union_set *domain;
4296 int i;
4298 schedule = isl_ast_build_get_schedule(build);
4300 isl_union_map_foreach_map(schedule, &extract_tile_len, gen);
4301 read_sizes(gen);
4303 domain = isl_union_map_domain(isl_union_map_copy(schedule));
4305 local_sched = isl_union_map_copy(gen->sched);
4306 local_sched = isl_union_map_intersect_domain(local_sched, domain);
4307 access = isl_union_map_union(isl_union_map_copy(gen->prog->read),
4308 isl_union_map_copy(gen->prog->write));
4309 access = isl_union_map_apply_domain(access,
4310 isl_union_map_copy(local_sched));
4312 gen->tiled_sched = tile_schedule(gen, local_sched);
4313 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
4314 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
4316 kernel = gen->kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
4317 if (!kernel)
4318 goto error;
4320 kernel->id = gen->kernel_id++;
4321 kernel->n_block = gen->n_block;
4322 for (i = 0; i < gen->n_block; ++i)
4323 kernel->block_dim[i] = gen->block_dim[i];
4324 kernel->n_grid = gen->n_grid;
4325 for (i = 0; i < gen->n_grid; ++i)
4326 kernel->grid_dim[i] = gen->grid_dim[i];
4327 kernel->context = isl_union_map_params(isl_union_map_copy(schedule));
4328 kernel->grid_size = extract_grid_size(gen, kernel);
4329 kernel->arrays = isl_union_map_range(access);
4330 kernel->space = isl_ast_build_get_schedule_space(build);
4332 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
4334 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
4335 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
4337 gen->private_access = NULL;
4338 compute_shared_sched(gen);
4339 gen->privatization = compute_privatization(gen);
4340 group_references(gen);
4341 compute_private_access(gen);
4342 check_shared_memory_bound(gen);
4343 host_domain = isl_set_from_union_set(isl_union_map_range(
4344 isl_union_map_copy(schedule)));
4345 localize_bounds(gen, kernel, host_domain);
4347 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
4349 kernel->tree = generate_kernel(gen, build, host_domain,
4350 kernel->grid_size);
4351 create_kernel_vars(gen, kernel);
4353 free_local_array_info(gen);
4354 isl_map_free(gen->privatization);
4355 isl_union_map_free(gen->private_access);
4356 isl_union_map_free(gen->local_sched);
4357 isl_union_map_free(gen->tiled_sched);
4358 isl_union_map_free(gen->shared_sched);
4359 isl_union_map_free(gen->shared_proj);
4360 isl_set_free(host_domain);
4361 free(gen->tile_size);
4363 node = construct_launch(build, schedule, kernel);
4365 return node;
4366 error:
4367 isl_union_map_free(schedule);
4368 return NULL;
4371 /* Use isl to generate code for the outer gen->tile_first loops
4372 * of the global schedule in gen->sched, resulting in the host code.
4373 * Within each iteration of this partial schedule, i.e., for each kernel
4374 * launch, create_host_leaf takes care of generating the kernel code.
4376 static __isl_give isl_ast_node *generate_host_code(struct gpu_gen *gen)
4378 isl_ast_build *build;
4379 isl_ast_node *tree;
4380 isl_union_map *sched;
4381 isl_map *proj;
4382 isl_id_list *iterators;
4384 sched = isl_union_map_copy(gen->sched);
4385 proj = projection(isl_union_map_get_space(sched),
4386 gen->untiled_len, gen->tile_first);
4387 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
4389 isl_options_set_ast_build_group_coscheduled(gen->ctx, 1);
4390 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
4391 iterators = generate_names(gen->ctx, gen->tile_first, "h");
4392 build = isl_ast_build_set_iterators(build, iterators);
4393 build = isl_ast_build_set_create_leaf(build, &create_host_leaf, gen);
4394 tree = isl_ast_build_ast_from_schedule(build, sched);
4395 isl_ast_build_free(build);
4397 return tree;
4400 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
4402 if (!str)
4403 return NULL;
4404 return isl_union_map_read_from_str(ctx, str);
4407 /* Information about the outermost tilable bands in the forest of bands.
4409 * tile_len and n_parallel are only sets on band_info structures
4410 * that correspond to outermost bands. For other bands (in particular,
4411 * ancestors of the outermost bands), n_parallal is set to 0.
4413 * prefix is the (padded) schedule leading up to the outermost tilable bands.
4415 * tile_first is the number of schedule dimensions in prefix.
4417 * suffix is the schedule of the outermost tilable bands and their descendants.
4419 struct band_info {
4420 struct gpu_gen *gen;
4421 int tile_first;
4422 int tile_len;
4423 int n_parallel;
4424 isl_union_map *prefix;
4425 isl_union_map *suffix;
4428 /* Set tile_len and n_parallel of the statement to that of
4429 * their outermost band, recorded in the band_info.
4431 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
4433 struct band_info *info = user;
4434 struct gpu_stmt *stmt;
4435 isl_id *id;
4437 id = isl_map_get_tuple_id(map, isl_dim_in);
4438 stmt = find_stmt(info->gen->prog, id);
4439 isl_id_free(id);
4441 stmt->tile_len = info->tile_len;
4442 stmt->n_parallel = info->n_parallel;
4444 isl_map_free(map);
4446 return 0;
4449 static void list_select_outer_band(struct gpu_gen *gen,
4450 __isl_take isl_band_list *list, int pos, struct band_info *list_info);
4452 /* Check if this band has any parallel loops. If so, take it as
4453 * the outermost tilable band. If not, continue looking for the
4454 * outermost tilable band in the children of the current band.
4456 static void band_select_outer_band(struct gpu_gen *gen,
4457 __isl_take isl_band *band, int pos, struct band_info *info)
4459 int n = isl_band_n_member(band);
4460 int n_parallel;
4462 for (n_parallel = 0; n_parallel < n; ++n_parallel)
4463 if (!isl_band_member_is_zero_distance(band, n_parallel))
4464 break;
4466 info->n_parallel = n_parallel;
4467 if (n_parallel) {
4468 info->gen = gen;
4469 info->tile_first = pos;
4470 info->tile_len = n;
4471 info->prefix = isl_band_get_prefix_schedule(band);
4472 info->suffix = isl_union_map_flat_range_product(
4473 isl_band_get_partial_schedule(band),
4474 isl_band_get_suffix_schedule(band));
4475 isl_union_map_foreach_map(info->prefix,
4476 &set_stmt_tile_len, info);
4477 } else if (isl_band_has_children(band)) {
4478 isl_band_list *children;
4479 children = isl_band_get_children(band);
4480 list_select_outer_band(gen, children, pos + n, info);
4481 } else {
4482 info->gen = gen;
4483 info->tile_first = pos + n;
4484 info->tile_len = 0;
4485 info->prefix = isl_union_map_flat_range_product(
4486 isl_band_get_prefix_schedule(band),
4487 isl_band_get_partial_schedule(band));
4488 info->suffix = isl_band_get_suffix_schedule(band);
4489 isl_union_map_foreach_map(info->prefix,
4490 &set_stmt_tile_len, info);
4493 isl_band_free(band);
4496 /* Comparison function that returns a non-zero value for band_infos
4497 * with different tile_len fields or different n_parallel fields.
4499 static int cmp_band(const void *p1, const void *p2)
4501 const struct band_info *info1 = p1;
4502 const struct band_info *info2 = p2;
4504 if (info1->tile_len != info2->tile_len)
4505 return info1->tile_len - info2->tile_len;
4507 return info1->n_parallel - info2->n_parallel;
4510 /* Extend "umap" with coordinates with fixed value "val"
4511 * to a total length of "dst_len", assuming the original dimension is "src_len".
4513 static __isl_give isl_union_map *extend_range(
4514 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
4516 isl_space *dim;
4517 isl_map *map;
4518 int i;
4520 dim = isl_union_map_get_space(umap);
4521 map = isl_map_reverse(projection(dim, dst_len, src_len));
4522 for (i = src_len; i < dst_len; ++i)
4523 map = isl_map_fix_si(map, isl_dim_out, i, val);
4525 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
4527 return umap;
4530 /* Group bands with the same values for tile_len and n_parallel.
4531 * The prefix schedule is then extended with a fixed coordinate that
4532 * is different for each such group.
4533 * Note that the actual values for this coordinate are not important.
4534 * The bands have already been effectively separated at a higher level
4535 * or they are independent and may be executed in parallel.
4536 * The list of band_info has been sorted before this functions is called.
4538 static void separate_bands(struct band_info *info, int n)
4540 int i;
4541 int j = 0;
4543 for (i = 0; i < n; ++i) {
4544 int l = info[i].tile_first;
4546 if (i &&
4547 (info[i].tile_len != info[i - 1].tile_len ||
4548 info[i].n_parallel != info[i - 1].n_parallel))
4549 j++;
4551 info[i].prefix = extend_range(info[i].prefix,
4552 l, l + 1, j);
4553 info[i].tile_first = l + 1;
4557 /* Select the outermost bands in the elements of the list, align
4558 * their prefix schedules, separate bands with different values
4559 * for tile_len and/or n_parallel and then combine the resulting
4560 * prefix and suffix schedules into a single pair of prefix and
4561 * suffix schedules for the entire list.
4563 static void list_select_outer_band(struct gpu_gen *gen,
4564 __isl_take isl_band_list *list, int pos, struct band_info *list_info)
4566 isl_band *band;
4567 int i;
4568 int n = isl_band_list_n_band(list);
4569 isl_ctx *ctx = isl_band_list_get_ctx(list);
4570 struct band_info *info;
4571 int max_tile_first;
4572 isl_union_map *prefix;
4573 isl_union_map *suffix;
4575 assert(n >= 1);
4576 info = isl_calloc_array(ctx, struct band_info, n);
4577 assert(info);
4579 max_tile_first = 0;
4580 for (i = 0; i < n; ++i) {
4581 band = isl_band_list_get_band(list, i);
4582 band_select_outer_band(gen, band, pos, &info[i]);
4583 if (info[i].tile_first > max_tile_first)
4584 max_tile_first = info[i].tile_first;
4587 for (i = 0; i < n; ++i) {
4588 if (info[i].tile_first == max_tile_first)
4589 continue;
4590 info[i].prefix = extend_range(info[i].prefix,
4591 info[i].tile_first, max_tile_first, 0);
4592 info[i].tile_first = max_tile_first;
4595 qsort(info, n, sizeof(struct band_info), &cmp_band);
4597 for (i = 0; i < n - 1; ++i)
4598 if (info[i].tile_len != info[i + 1].tile_len ||
4599 info[i].n_parallel != info[i + 1].n_parallel)
4600 break;
4602 if (i < n -1)
4603 separate_bands(info, n);
4605 prefix = info[0].prefix;
4606 suffix = info[0].suffix;
4608 for (i = 1; i < n; ++i) {
4609 prefix = isl_union_map_union(prefix, info[i].prefix);
4610 suffix = isl_union_map_union(suffix, info[i].suffix);
4613 list_info->tile_first = info[0].tile_first;
4614 list_info->tile_len = -1;
4615 list_info->prefix = prefix;
4616 list_info->suffix = suffix;
4618 isl_band_list_free(list);
4619 free(info);
4622 /* Select the outermost tilable band that (by construction)
4623 * has at least one parallel loop.
4624 * The starting position of the aligned band is stored in the pair
4625 * gen->tile_first.
4626 * The sizes and number of parallel loops may be different in different
4627 * parts of the band forest and are therefore stored in the gpu_stmts.
4629 * Return the complete schedule, with the tilable bands aligned
4630 * at gen->tile_first and padded with zero, if needed.
4632 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
4633 __isl_keep isl_schedule *schedule)
4635 isl_band_list *list;
4636 struct band_info info;
4638 gen->n_parallel = 0;
4639 gen->tile_len = -1;
4641 list = isl_schedule_get_band_forest(schedule);
4643 list_select_outer_band(gen, list, 0, &info);
4645 gen->tile_first = info.tile_first;
4646 info.suffix = align_range(info.suffix);
4648 return isl_union_map_flat_range_product(info.prefix, info.suffix);
4651 /* Set gen->untiled_len to the number of scheduling dimensions
4652 * for the schedule of the first domain.
4653 * We assume here that this number is the same for all domains.
4655 static int set_untiled_len(__isl_take isl_map *map, void *user)
4657 unsigned *untiled_len = user;
4659 *untiled_len = isl_map_dim(map, isl_dim_out);
4661 isl_map_free(map);
4662 return -1;
4665 /* Compute an appropriate schedule based on the accesses in
4666 * gen->read and gen->write.
4668 * We use the dependences in gen->prog->scop to compute
4669 * a schedule that has a parallel loop in each tilable band.
4670 * Finally, we select the outermost tilable band.
4672 static void compute_schedule(struct gpu_gen *gen)
4674 isl_union_set *domain;
4675 isl_union_map *dep_raw, *dep;
4676 isl_union_map *uninitialized;
4677 isl_union_map *sched;
4678 isl_schedule *schedule;
4680 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
4681 uninitialized = isl_union_map_copy(gen->prog->scop->live_in);
4683 gen->prog->copy_in = isl_union_map_range(uninitialized);
4685 dep = isl_union_map_copy(gen->prog->scop->dep_false);
4686 dep = isl_union_map_union(dep, dep_raw);
4687 dep = isl_union_map_coalesce(dep);
4689 domain = isl_union_set_copy(gen->prog->scop->domain);
4690 domain = isl_union_set_intersect_params(domain,
4691 isl_set_copy(gen->prog->scop->context));
4692 schedule = isl_union_set_compute_schedule(isl_union_set_copy(domain),
4693 isl_union_map_copy(dep), dep);
4694 if (gen->options->debug->dump_schedule)
4695 isl_schedule_dump(schedule);
4697 sched = select_outer_tilable_band(gen, schedule);
4699 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
4700 sched = isl_union_map_intersect_domain(sched, domain);
4701 gen->sched = sched;
4703 isl_schedule_free(schedule);
4706 static struct gpu_stmt_access **expr_extract_access(struct pet_expr *expr,
4707 struct gpu_stmt_access **next_access)
4709 struct gpu_stmt_access *access;
4710 isl_ctx *ctx = isl_map_get_ctx(expr->acc.access);
4712 access = isl_alloc_type(ctx, struct gpu_stmt_access);
4713 assert(access);
4714 access->next = NULL;
4715 access->read = expr->acc.read;
4716 access->write = expr->acc.write;
4717 access->access = isl_map_copy(expr->acc.access);
4719 *next_access = access;
4720 next_access = &(*next_access)->next;
4721 return next_access;
4724 static struct gpu_stmt_access **expr_extract_accesses(struct pet_expr *expr,
4725 struct gpu_stmt_access **next_access)
4727 int i;
4729 for (i = 0; i < expr->n_arg; ++i)
4730 next_access = expr_extract_accesses(expr->args[i],
4731 next_access);
4733 if (expr->type == pet_expr_access)
4734 next_access = expr_extract_access(expr, next_access);
4736 return next_access;
4739 static void pet_stmt_extract_accesses(struct gpu_stmt *stmt)
4741 struct gpu_stmt_access **next_access = &stmt->accesses;
4743 stmt->accesses = NULL;
4744 expr_extract_accesses(stmt->body, next_access);
4747 /* Return an array of gpu_stmt representing the statements in "scop".
4749 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
4750 __isl_keep isl_set *context)
4752 int i;
4753 struct gpu_stmt *stmts;
4755 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->n_stmt);
4756 assert(stmts);
4758 for (i = 0; i < scop->n_stmt; ++i) {
4759 struct gpu_stmt *s = &stmts[i];
4761 s->id = isl_set_get_tuple_id(scop->stmts[i]->domain);
4762 s->body = scop->stmts[i]->body;
4763 pet_stmt_extract_accesses(s);
4766 return stmts;
4769 /* Replace the scop in the "input" file by equivalent code
4770 * that uses the GPU. "scop" is assumed to correspond to this scop.
4772 * We first compute a schedule that respects the dependences
4773 * of the original program and select the outermost band
4774 * of tilable dimensions that has at least one parallel loop.
4775 * We then have three blocks of dimensions
4777 * H B G
4779 * The tilable band "B" is first tiled according to "tile" sizes, resulting
4780 * in
4782 * H T P G
4784 * For each iteration of the T loop and for each array, we compute
4785 * the array elements accessed by that iteration, construct a rectangular
4786 * box around it and shift it to the origin. The result is used
4787 * as shared memory for the array.
4789 * We then split off at most 2 parallel loops from the T loops and
4790 * at most 3 parallel loops from the P loops
4792 * H T1 T2 P1 P2 G
4794 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
4795 * according to "grid"/"block" sizes.
4797 * H T1T T1P T2 P1T P1P P2 G
4799 * Finally, the T1P and P1P iterators are equated to the block and
4800 * thread dimensions respectively and so are effectively removed.
4801 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
4802 * are run on the GPU.
4804 * Code is generated in three stages. We first generate code for the
4805 * host (the H loops), with iterators h%d. Then, for each leaf node
4806 * of the resulting AST, we generate code for the shared loops (up to
4807 * and including T2), with iterators g%d and after equating the H loops
4808 * to h%d parameters and the T1P loops to the block dimensions.
4809 * Finally, we generate code for the remaining loops in a similar fashion.
4811 __isl_give isl_ast_node *generate_gpu(isl_ctx *ctx, struct gpu_prog *prog,
4812 struct ppcg_options *options)
4814 isl_union_map *sched;
4815 struct gpu_gen gen;
4816 isl_ast_node *tree;
4818 if (!prog)
4819 return NULL;
4821 gen.ctx = ctx;
4822 gen.prog = prog;
4823 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
4824 gen.options = options;
4826 compute_schedule(&gen);
4828 gen.kernel_id = 0;
4829 tree = generate_host_code(&gen);
4831 clear_gpu_gen(&gen);
4833 return tree;
4836 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
4838 struct gpu_prog *prog;
4840 if (!scop)
4841 return NULL;
4843 prog = isl_calloc_type(ctx, struct gpu_prog);
4844 assert(prog);
4846 prog->ctx = ctx;
4847 prog->scop = scop;
4848 prog->context = isl_set_copy(scop->context);
4849 prog->n_stmts = scop->n_stmt;
4850 prog->stmts = extract_stmts(ctx, scop, prog->context);
4851 prog->read = isl_union_map_copy(scop->reads);
4852 prog->write = isl_union_map_copy(scop->writes);
4854 collect_array_info(prog);
4856 return prog;
4859 void gpu_prog_free(struct gpu_prog *prog)
4861 if (!prog)
4862 return;
4863 free_array_info(prog);
4864 free_stmts(prog->stmts, prog->n_stmts);
4865 isl_union_set_free(prog->copy_in);
4866 isl_union_map_free(prog->read);
4867 isl_union_map_free(prog->write);
4868 isl_set_free(prog->context);
4869 free(prog);