update pet for resetting of user pointers on parameters
[ppcg.git] / cuda.c
blobba155e7b33b21b1b56853ae208bc6a66af6787e1
1 /*
2 * Copyright 2010-2011 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <assert.h>
12 #include <stdlib.h>
14 #include <isl/polynomial.h>
15 #include <isl/union_set.h>
16 #include <isl/aff.h>
17 #include <isl/ilp.h>
18 #include <isl/flow.h>
19 #include <isl/band.h>
20 #include <isl/schedule.h>
21 #include <isl/options.h>
22 #include <cloog/isl/cloog.h>
24 #include "cuda.h"
25 #include "cuda_common.h"
26 #include "gpucode.h"
27 #include "schedule.h"
28 #include "ppcg_options.h"
30 /* The fields stride, shift and shift_map only contain valid information
31 * if shift != NULL.
32 * If so, they express that current index is such that if you add shift,
33 * then the result is always a multiple of stride.
34 * shift_map contains the mapping
36 * i -> (i + shift)/stride
38 struct cuda_array_bound {
39 isl_int size;
40 isl_aff *lb;
42 isl_int stride;
43 isl_aff *shift;
44 isl_basic_map *shift_map;
47 struct cuda_array_info;
49 /* A group of array references in a kernel that should be handled together.
50 * If private_bound is not NULL, then it is mapped to registers.
51 * Otherwise, if shared_bound is not NULL, it is mapped to shared memory.
52 * Otherwise, it is accessed from global memory.
54 struct cuda_array_ref_group {
55 /* The references in this group access this array. */
56 struct cuda_array_info *array;
57 /* Position of this group in the list of reference groups of array. */
58 int nr;
60 /* The following fields are use during the construction of the groups.
61 * access is the combined access relation relative to the shared
62 * memory tiling.
63 * write is set if any access in the group is a write.
65 isl_map *access;
66 int write;
68 /* For each index, size and offset of piece in shared memory. */
69 struct cuda_array_bound *shared_bound;
71 /* For each index, size and offset of piece in private memory. */
72 struct cuda_array_bound *private_bound;
74 /* References in this group; point to elements of a linked list. */
75 int n_ref;
76 struct cuda_stmt_access **refs;
79 struct cuda_array_info {
80 isl_space *dim;
81 /* Element type. */
82 char *type;
83 /* Name of the array. */
84 char *name;
85 /* Number of indices. */
86 unsigned n_index;
87 /* For each index, a bound on the array in that direction. */
88 isl_pw_aff **bound;
89 /* For each index, bound[i] specialized to the current kernel. */
90 isl_pw_aff **local_bound;
92 /* All references to this array; point to elements of a linked list. */
93 int n_ref;
94 struct cuda_stmt_access **refs;
96 /* The reference groups associated to this array. */
97 int n_group;
98 struct cuda_array_ref_group **groups;
100 /* Last shared memory tile dimension that affects tile of this array. */
101 int last_shared;
102 /* Dimension at which copying to/from shared memory is printed.
103 * if >= 0, then the value is >= last_shared
104 * if -1, then the copying is done at the leaf level.
106 int print_shared_level;
109 /* Print the name of the local copy of a given group of array references.
111 static void print_array_name(FILE *out, struct cuda_array_ref_group *group)
113 int global = 0;
115 if (group->private_bound)
116 fprintf(out, "private_");
117 else if (group->shared_bound)
118 fprintf(out, "shared_");
119 else
120 global = 1;
121 fprintf(out, "%s", group->array->name);
122 if (!global && group->array->n_group > 1)
123 fprintf(out, "_%d", group->nr);
126 /* Collect all references to the given array and store pointers to them
127 * in array->refs.
129 static void collect_references(struct cuda_gen *gen,
130 struct cuda_array_info *array)
132 int i;
133 int n;
135 n = 0;
136 for (i = 0; i < gen->n_stmts; ++i) {
137 struct cuda_stmt *stmt = &gen->stmts[i];
138 struct cuda_stmt_access *access;
140 for (access = stmt->accesses; access; access = access->next) {
141 const char *name;
142 name = isl_map_get_tuple_name(access->access,
143 isl_dim_out);
144 if (name && !strcmp(array->name, name))
145 n++;
149 array->n_ref = n;
150 array->refs = isl_alloc_array(gen->ctx, struct cuda_stmt_access *, n);
151 assert(array->refs);
153 n = 0;
154 for (i = 0; i < gen->n_stmts; ++i) {
155 struct cuda_stmt *stmt = &gen->stmts[i];
156 struct cuda_stmt_access *access;
158 for (access = stmt->accesses; access; access = access->next) {
159 const char *name;
160 name = isl_map_get_tuple_name(access->access,
161 isl_dim_out);
162 if (!name || strcmp(array->name, name))
163 continue;
165 array->refs[n++] = access;
170 static struct cuda_array_bound *create_bound_list(isl_ctx *ctx, int n_index)
172 int i;
173 struct cuda_array_bound *bound;
175 bound = isl_alloc_array(ctx, struct cuda_array_bound, n_index);
176 assert(bound);
178 for (i = 0; i < n_index; ++i) {
179 isl_int_init(bound[i].size);
180 bound[i].lb = NULL;
181 isl_int_init(bound[i].stride);
182 bound[i].shift = NULL;
183 bound[i].shift_map = NULL;
186 return bound;
189 static void free_bound_list(struct cuda_array_bound *bound, int n_index)
191 int j;
193 if (!bound)
194 return;
196 for (j = 0; j < n_index; ++j) {
197 isl_int_clear(bound[j].size);
198 isl_int_clear(bound[j].stride);
199 isl_aff_free(bound[j].lb);
200 isl_aff_free(bound[j].shift);
201 isl_basic_map_free(bound[j].shift_map);
203 free(bound);
206 static struct pet_array *find_array(struct pet_scop *scop,
207 __isl_keep isl_set *accessed)
209 int i;
210 isl_id *id;
212 id = isl_set_get_tuple_id(accessed);
214 for (i = 0; i < scop->n_array; ++i) {
215 isl_id *id_i;
217 id_i = isl_set_get_tuple_id(scop->arrays[i]->extent);
218 isl_id_free(id_i);
219 if (id == id_i)
220 break;
222 isl_id_free(id);
224 return i < scop->n_array ? scop->arrays[i] : NULL;
227 /* Compute bounds on the host arrays based on the accessed elements
228 * and collect all references to the array.
230 static int extract_array_info(__isl_take isl_set *array, void *user)
232 int i;
233 struct cuda_gen *gen = (struct cuda_gen *)user;
234 const char *name;
235 int n_index;
236 isl_pw_aff **bounds;
237 isl_pw_aff **local_bounds;
238 struct pet_array *pa;
240 n_index = isl_set_dim(array, isl_dim_set);
241 name = isl_set_get_tuple_name(array);
242 bounds = isl_alloc_array(isl_set_get_ctx(array),
243 isl_pw_aff *, n_index);
244 assert(bounds);
245 local_bounds = isl_calloc_array(isl_set_get_ctx(array),
246 isl_pw_aff *, n_index);
247 assert(local_bounds);
248 gen->array[gen->n_array].dim = isl_set_get_space(array);
249 gen->array[gen->n_array].name = strdup(name);
250 gen->array[gen->n_array].n_index = n_index;
251 gen->array[gen->n_array].bound = bounds;
252 gen->array[gen->n_array].local_bound = local_bounds;
254 pa = find_array(gen->scop, array);
255 assert(pa);
257 gen->array[gen->n_array].type = strdup(pa->element_type);
259 for (i = 0; i < n_index; ++i) {
260 isl_set *dom;
261 isl_local_space *ls;
262 isl_aff *one;
263 isl_pw_aff *bound;
264 isl_set *size = i == 0 ? array : pa->extent;
266 bound = isl_set_dim_max(isl_set_copy(size), i);
267 assert(bound);
268 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
269 ls = isl_local_space_from_space(isl_set_get_space(dom));
270 one = isl_aff_zero_on_domain(ls);
271 one = isl_aff_add_constant_si(one, 1);
272 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
273 bound = isl_pw_aff_gist(bound, isl_set_copy(gen->context));
275 bounds[i] = bound;
278 collect_references(gen, &gen->array[gen->n_array]);
280 gen->n_array++;
282 isl_set_free(array);
283 return 0;
286 void collect_array_info(struct cuda_gen *gen)
288 isl_union_set *arrays;
290 arrays = isl_union_map_range(isl_union_map_copy(gen->read));
291 arrays = isl_union_set_union(arrays,
292 isl_union_map_range(isl_union_map_copy(gen->write)));
293 arrays = isl_union_set_coalesce(arrays);
295 gen->n_array = isl_union_set_n_set(arrays);
296 gen->array = isl_alloc_array(gen->ctx,
297 struct cuda_array_info, gen->n_array);
298 assert(gen->array);
299 gen->n_array = 0;
300 isl_union_set_foreach_set(arrays, &extract_array_info, gen);
301 isl_union_set_free(arrays);
304 static void free_array_info(struct cuda_gen *gen)
306 int i, j;
308 for (i = 0; i < gen->n_array; ++i) {
309 int n_index = gen->array[i].n_index;
310 free(gen->array[i].type);
311 free(gen->array[i].name);
312 for (j = 0; j < n_index; ++j) {
313 isl_pw_aff_free(gen->array[i].bound[j]);
314 isl_pw_aff_free(gen->array[i].local_bound[j]);
316 isl_space_free(gen->array[i].dim);
317 free(gen->array[i].bound);
318 free(gen->array[i].local_bound);
319 free(gen->array[i].refs);
321 free(gen->array);
324 static void declare_device_arrays(struct cuda_gen *gen)
326 int i;
328 for (i = 0; i < gen->n_array; ++i)
329 fprintf(gen->cuda.host_c, "%s *dev_%s;\n",
330 gen->array[i].type, gen->array[i].name);
331 fprintf(gen->cuda.host_c, "\n");
334 static void print_array_size(struct cuda_gen *gen, FILE *out,
335 struct cuda_array_info *array)
337 int i;
338 isl_printer *prn;
340 prn = isl_printer_to_file(gen->ctx, out);
341 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
342 for (i = 0; i < array->n_index; ++i) {
343 prn = isl_printer_print_str(prn, "(");
344 prn = isl_printer_print_pw_aff(prn, array->bound[i]);
345 prn = isl_printer_print_str(prn, ") * ");
347 prn = isl_printer_print_str(prn, "sizeof(");
348 prn = isl_printer_print_str(prn, array->type);
349 prn = isl_printer_print_str(prn, ")");
350 isl_printer_free(prn);
353 static void allocate_device_arrays(struct cuda_gen *gen)
355 int i;
357 for (i = 0; i < gen->n_array; ++i) {
358 fprintf(gen->cuda.host_c,
359 "cudaCheckReturn(cudaMalloc((void **) &dev_%s, ",
360 gen->array[i].name);
361 print_array_size(gen, gen->cuda.host_c, &gen->array[i]);
362 fprintf(gen->cuda.host_c, "));\n");
364 fprintf(gen->cuda.host_c, "\n");
367 static void free_device_arrays(struct cuda_gen *gen)
369 int i;
371 for (i = 0; i < gen->n_array; ++i)
372 fprintf(gen->cuda.host_c, "cudaCheckReturn(cudaFree(dev_%s));\n",
373 gen->array[i].name);
376 /* Check if a cuda array is a scalar. A scalar is a value that is not stored
377 * as an array or through a pointer reference, but as single data element. At
378 * the moment, scalars are represented as zero dimensional arrays.
380 static int cuda_array_is_scalar(struct cuda_array_info *array)
382 return (array->n_index == 0);
385 static void copy_arrays_to_device(struct cuda_gen *gen)
387 int i;
389 for (i = 0; i < gen->n_array; ++i) {
390 isl_space *dim;
391 isl_set *read_i;
392 int empty;
394 dim = isl_space_copy(gen->array[i].dim);
395 read_i = isl_union_set_extract_set(gen->copy_in, dim);
396 empty = isl_set_fast_is_empty(read_i);
397 isl_set_free(read_i);
398 if (empty)
399 continue;
401 fprintf(gen->cuda.host_c, "cudaCheckReturn(cudaMemcpy(dev_%s,",
402 gen->array[i].name);
404 if (cuda_array_is_scalar(&(gen->array[i])))
405 fprintf(gen->cuda.host_c, " &%s, ",
406 gen->array[i].name);
407 else
408 fprintf(gen->cuda.host_c, " %s, ", gen->array[i].name);
410 print_array_size(gen, gen->cuda.host_c, &gen->array[i]);
411 fprintf(gen->cuda.host_c, ", cudaMemcpyHostToDevice));\n");
413 fprintf(gen->cuda.host_c, "\n");
416 static void copy_arrays_from_device(struct cuda_gen *gen)
418 int i;
419 isl_union_set *write;
420 write = isl_union_map_range(isl_union_map_copy(gen->write));
422 for (i = 0; i < gen->n_array; ++i) {
423 isl_space *dim;
424 isl_set *write_i;
425 int empty;
427 dim = isl_space_copy(gen->array[i].dim);
428 write_i = isl_union_set_extract_set(write, dim);
429 empty = isl_set_fast_is_empty(write_i);
430 isl_set_free(write_i);
431 if (empty)
432 continue;
434 fprintf(gen->cuda.host_c, "cudaCheckReturn(cudaMemcpy(");
435 if (cuda_array_is_scalar(&gen->array[i]))
436 fprintf(gen->cuda.host_c, "&%s, ", gen->array[i].name);
437 else
438 fprintf(gen->cuda.host_c, "%s, ", gen->array[i].name);
439 fprintf(gen->cuda.host_c, "dev_%s, ", gen->array[i].name);
440 print_array_size(gen, gen->cuda.host_c, &gen->array[i]);
441 fprintf(gen->cuda.host_c, ", cudaMemcpyDeviceToHost));\n");
444 isl_union_set_free(write);
445 fprintf(gen->cuda.host_c, "\n");
448 static void read_sizes_from_file(struct cuda_gen *gen, const char *filename,
449 int *sizes, int len)
451 int i;
452 FILE *file;
454 file = fopen(filename, "r");
455 if (!file)
456 return;
458 for (i = 0; i < len; ++i)
459 if (fscanf(file, "%d", &sizes[i]) < 1)
460 break;
462 fclose(file);
465 static void reverse_list(int *list, int len)
467 int i;
468 int t;
470 for (i = 0; 2 * i < len; ++i) {
471 t = list[i];
472 list[i] = list[len - 1 - i];
473 list[len - 1 - i] = t;
477 /* Read user specified sizes from "tile.sizes", "block.sizes" and "grid.sizes"
478 * after filling in some potentially useful defaults.
480 static void read_sizes(struct cuda_gen *gen)
482 int n;
484 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
485 assert(gen->tile_size);
486 for (n = 0; n < gen->tile_len; ++n)
487 gen->tile_size[n] = gen->options->tile_size;
488 read_sizes_from_file(gen, "tile.sizes", gen->tile_size, gen->tile_len);
490 n = gen->n_parallel;
491 gen->n_block = (n <= 3) ? n : 3;
492 switch (gen->n_block) {
493 case 1:
494 gen->block_dim[0] = 512;
495 break;
496 case 2:
497 gen->block_dim[0] = 32;
498 gen->block_dim[1] = 16;
499 break;
500 default:
501 gen->block_dim[0] = 32;
502 gen->block_dim[1] = 4;
503 gen->block_dim[2] = 4;
504 break;
506 read_sizes_from_file(gen, "block.sizes", gen->block_dim, gen->n_block);
507 reverse_list(gen->block_dim, gen->n_block);
509 gen->n_grid = (n <= 2) ? n : 2;
510 switch (gen->n_grid) {
511 case 1:
512 gen->grid_dim[0] = 32768;
513 break;
514 default:
515 gen->grid_dim[0] = 256;
516 gen->grid_dim[1] = 256;
517 break;
519 read_sizes_from_file(gen, "grid.sizes", gen->grid_dim, gen->n_grid);
520 reverse_list(gen->grid_dim, gen->n_grid);
523 static void free_stmts(struct cuda_stmt *stmts, int n)
525 int i;
527 for (i = 0; i < n; ++i) {
528 struct cuda_stmt_access *access, *next;
530 for (access = stmts[i].accesses; access; access = next) {
531 next = access->next;
532 isl_map_free(access->access);
533 free(access);
536 isl_set_free(stmts[i].domain);
538 free(stmts);
541 void clear_cuda_gen(struct cuda_gen *gen)
543 free_stmts(gen->stmts, gen->n_stmts);
544 free_array_info(gen);
545 isl_set_free(gen->context);
546 isl_union_set_free(gen->copy_in);
547 isl_union_map_free(gen->sched);
548 isl_union_map_free(gen->read);
549 isl_union_map_free(gen->write);
552 static void print_reverse_list(FILE *out, int len, int *list)
554 int i;
556 if (len == 0)
557 return;
559 fprintf(out, "(");
560 for (i = 0; i < len; ++i) {
561 if (i)
562 fprintf(out, ", ");
563 fprintf(out, "%d", list[len - 1 - i]);
565 fprintf(out, ")");
568 static void print_kernel_launch(struct cuda_gen *gen,
569 __isl_keep isl_union_set *arrays)
571 int i;
572 int first = 1;
573 unsigned nparam;
574 isl_space *dim;
576 print_indent(gen->code.dst, gen->code.indent);
577 fprintf(gen->code.dst, "kernel%d <<<k%d_dimGrid, k%d_dimBlock>>> (",
578 gen->kernel_id, gen->kernel_id, gen->kernel_id);
579 fprintf(gen->cuda.kernel_c, "__global__ void kernel%d(",
580 gen->kernel_id);
581 fprintf(gen->cuda.kernel_h, "__global__ void kernel%d(",
582 gen->kernel_id);
584 for (i = 0; i < gen->n_array; ++i) {
585 isl_space *dim;
586 isl_set *arr;
587 int empty;
589 dim = isl_space_copy(gen->array[i].dim);
590 arr = isl_union_set_extract_set(arrays, dim);
591 empty = isl_set_fast_is_empty(arr);
592 isl_set_free(arr);
593 if (empty)
594 continue;
596 if (!first) {
597 fprintf(gen->code.dst, ", ");
598 fprintf(gen->cuda.kernel_c, ", ");
599 fprintf(gen->cuda.kernel_h, ", ");
602 fprintf(gen->code.dst, "dev_%s", gen->array[i].name);
603 fprintf(gen->cuda.kernel_c, "%s *%s",
604 gen->array[i].type, gen->array[i].name);
605 fprintf(gen->cuda.kernel_h, "%s *%s",
606 gen->array[i].type, gen->array[i].name);
608 first = 0;
611 dim = isl_union_set_get_space(arrays);
612 nparam = isl_space_dim(dim, isl_dim_param);
613 for (i = 0; i < nparam; ++i) {
614 const char *name = isl_space_get_dim_name(dim, isl_dim_param, i);
615 if (!first) {
616 fprintf(gen->code.dst, ", ");
617 fprintf(gen->cuda.kernel_c, ", ");
618 fprintf(gen->cuda.kernel_h, ", ");
620 fprintf(gen->code.dst, "%s", name);
621 fprintf(gen->cuda.kernel_c, "int %s", name);
622 fprintf(gen->cuda.kernel_h, "int %s", name);
623 first = 0;
625 isl_space_free(dim);
627 for (i = 0; i < gen->tile_first; ++i) {
628 if (!first) {
629 fprintf(gen->code.dst, ", ");
630 fprintf(gen->cuda.kernel_c, ", ");
631 fprintf(gen->cuda.kernel_h, ", ");
633 fprintf(gen->code.dst, "h%d", i);
634 fprintf(gen->cuda.kernel_c, "int h%d", i);
635 fprintf(gen->cuda.kernel_h, "int h%d", i);
636 first = 0;
639 fprintf(gen->code.dst, ");\n");
640 fprintf(gen->cuda.kernel_c, ")\n");
641 fprintf(gen->cuda.kernel_h, ");\n");
643 fprintf(gen->code.dst, "cudaCheckKernel();\n");
646 /* Construct a map from a domain of dimensionality "len"
647 * to a domain of dimensionality "len" + "tile_len" that tiles
648 * the "tile_len" coordinates starting at "first".
649 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
650 * "dim" prescribes the parameters.
652 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
653 int first, int tile_len, int *tile_size)
655 int i;
656 isl_int v;
657 isl_basic_map *bmap;
658 isl_constraint *c;
659 isl_local_space *ls;
661 isl_int_init(v);
663 dim = isl_space_add_dims(dim, isl_dim_in, len);
664 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
665 bmap = isl_basic_map_universe(isl_space_copy(dim));
666 ls = isl_local_space_from_space(dim);
668 for (i = 0; i < len - tile_len; ++i) {
669 int j = i < first ? i : i + tile_len;
670 int k = i < first ? i : i + 2 * tile_len;
672 c = isl_equality_alloc(isl_local_space_copy(ls));
673 isl_int_set_si(v, -1);
674 isl_constraint_set_coefficient(c, isl_dim_in, j, v);
675 isl_int_set_si(v, 1);
676 isl_constraint_set_coefficient(c, isl_dim_out, k, v);
677 bmap = isl_basic_map_add_constraint(bmap, c);
680 for (i = 0; i < tile_len; ++i) {
681 c = isl_equality_alloc(isl_local_space_copy(ls));
682 isl_int_set_si(v, -1);
683 isl_constraint_set_coefficient(c, isl_dim_in, first + i, v);
684 isl_int_set_si(v, tile_size[i]);
685 isl_constraint_set_coefficient(c, isl_dim_out, first + i, v);
686 isl_int_set_si(v, 1);
687 isl_constraint_set_coefficient(c, isl_dim_out,
688 first + i + tile_len, v);
689 bmap = isl_basic_map_add_constraint(bmap, c);
691 c = isl_inequality_alloc(isl_local_space_copy(ls));
692 isl_int_set_si(v, 1);
693 isl_constraint_set_coefficient(c, isl_dim_out,
694 first + i + tile_len, v);
695 bmap = isl_basic_map_add_constraint(bmap, c);
697 c = isl_inequality_alloc(isl_local_space_copy(ls));
698 isl_int_set_si(v, -1);
699 isl_constraint_set_coefficient(c, isl_dim_out,
700 first + i + tile_len, v);
701 isl_int_set_si(v, tile_size[i] - 1);
702 isl_constraint_set_constant(c, v);
703 bmap = isl_basic_map_add_constraint(bmap, c);
706 isl_local_space_free(ls);
707 isl_int_clear(v);
709 return isl_map_from_basic_map(bmap);
712 /* Construct a map from a domain of dimensionality "len"
713 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
714 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
715 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
716 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
717 * that are projected out at the end.
718 * "dim" prescribes the parameters.
720 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
721 int first, int wrap_len, int *wrap_size)
723 int i;
724 isl_basic_map *bmap;
725 isl_constraint *c;
726 isl_local_space *ls;
728 dim = isl_space_add_dims(dim, isl_dim_in, len);
729 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
730 bmap = isl_basic_map_universe(isl_space_copy(dim));
731 ls = isl_local_space_from_space(dim);
733 for (i = 0; i < len; ++i) {
734 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
736 c = isl_equality_alloc(isl_local_space_copy(ls));
737 isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
738 isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
739 bmap = isl_basic_map_add_constraint(bmap, c);
742 for (i = 0; i < wrap_len; ++i) {
743 c = isl_equality_alloc(isl_local_space_copy(ls));
744 isl_constraint_set_coefficient_si(c, isl_dim_out,
745 first + i, -1);
746 isl_constraint_set_coefficient_si(c, isl_dim_out,
747 first + wrap_len + i, 1);
748 isl_constraint_set_coefficient_si(c, isl_dim_out,
749 first + 2 * wrap_len + i, wrap_size[i]);
750 bmap = isl_basic_map_add_constraint(bmap, c);
752 c = isl_inequality_alloc(isl_local_space_copy(ls));
753 isl_constraint_set_coefficient_si(c, isl_dim_out,
754 first + wrap_len + i, 1);
755 bmap = isl_basic_map_add_constraint(bmap, c);
757 c = isl_inequality_alloc(isl_local_space_copy(ls));
758 isl_constraint_set_coefficient_si(c, isl_dim_out,
759 first + wrap_len + i, -1);
760 isl_constraint_set_constant_si(c, wrap_size[i] - 1);
761 bmap = isl_basic_map_add_constraint(bmap, c);
764 isl_local_space_free(ls);
766 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
767 first + 2 * wrap_len, wrap_len);
769 return isl_map_from_basic_map(bmap);
772 /* Add "n" parameters named prefix%d.
774 static __isl_give isl_set *add_params( __isl_take isl_set *set,
775 int n, const char *prefix)
777 int i;
778 unsigned nparam;
779 char name[20];
781 nparam = isl_set_dim(set, isl_dim_param);
782 set = isl_set_add_dims(set, isl_dim_param, n);
784 for (i = 0; i < n; ++i) {
785 snprintf(name, sizeof(name), "%s%d", prefix, i);
786 set = isl_set_set_dim_name(set, isl_dim_param,
787 nparam + i, name);
790 return set;
793 /* Equate the "n" dimensions of "set" starting at "first" to
794 * freshly created parameters named prefix%d.
796 static __isl_give isl_set *parametrize(__isl_take isl_set *set,
797 int first, int n, const char *prefix)
799 int i;
800 unsigned nparam;
801 isl_int v;
802 isl_space *dim;
803 isl_basic_set *bset;
804 isl_constraint *c;
805 isl_local_space *ls;
807 nparam = isl_set_dim(set, isl_dim_param);
809 set = add_params(set, n, prefix);
811 dim = isl_set_get_space(set);
812 bset = isl_basic_set_universe(isl_space_copy(dim));
813 ls = isl_local_space_from_space(dim);
815 isl_int_init(v);
817 for (i = 0; i < n; ++i) {
818 c = isl_equality_alloc(isl_local_space_copy(ls));
819 isl_int_set_si(v, -1);
820 isl_constraint_set_coefficient(c, isl_dim_param, nparam + i, v);
821 isl_int_set_si(v, 1);
822 isl_constraint_set_coefficient(c, isl_dim_set, first + i, v);
823 bset = isl_basic_set_add_constraint(bset, c);
826 isl_int_clear(v);
827 isl_local_space_free(ls);
829 return isl_set_intersect(set, isl_set_from_basic_set(bset));
832 static __isl_give isl_set *parametrization(__isl_take isl_space *dim,
833 int len, int first, int n, const char *prefix)
835 isl_set *set;
837 dim = isl_space_add_dims(dim, isl_dim_set, len);
838 set = isl_set_universe(dim);
840 return parametrize(set, first, n, prefix);
843 /* Tile the B loops over the tile sizes and then tile/wrap
844 * the T1 loops over the blocks.
846 static __isl_give isl_union_map *tile_schedule(struct cuda_gen *gen,
847 __isl_take isl_union_map *sched)
849 isl_space *dim;
850 isl_map *tiling, *block_tiling;
852 dim = isl_union_map_get_space(sched);
853 tiling = tile(isl_space_copy(dim), gen->untiled_len,
854 gen->tile_first, gen->tile_len, gen->tile_size);
856 if (gen->options->wrap)
857 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
858 gen->tile_first, gen->n_grid, gen->grid_dim);
859 else
860 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
861 gen->tile_first, gen->n_grid, gen->grid_dim);
863 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
865 tiling = isl_map_apply_range(tiling, block_tiling);
867 sched = isl_union_map_apply_range(sched,
868 isl_union_map_from_map(tiling));
870 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
872 return sched;
875 static __isl_give isl_union_map *parametrize_tiled_schedule(
876 struct cuda_gen *gen, __isl_take isl_union_map *sched)
878 isl_space *dim;
879 isl_set *par;
881 dim = isl_union_map_get_space(sched);
882 par = parametrization(dim, gen->tiled_len, 0, gen->tile_first, "h");
883 sched = isl_union_map_intersect_range(sched,
884 isl_union_set_from_set(par));
886 dim = isl_union_map_get_space(sched);
887 par = parametrization(dim, gen->tiled_len,
888 gen->tile_first + gen->n_grid, gen->n_grid, "b");
889 sched = isl_union_map_intersect_range(sched,
890 isl_union_set_from_set(par));
892 return sched;
895 /* Tile/wrap the P1 loops over the threads.
897 static __isl_give isl_union_map *thread_tile_schedule(struct cuda_gen *gen,
898 __isl_take isl_union_map *sched)
900 isl_space *dim;
901 isl_map *tiling;
902 isl_set *par;
904 dim = isl_union_map_get_space(sched);
906 if (gen->options->wrap)
907 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
908 gen->shared_len, gen->n_block, gen->block_dim);
909 else
910 tiling = tile(isl_space_copy(dim), gen->tiled_len,
911 gen->shared_len, gen->n_block, gen->block_dim);
912 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
914 sched = isl_union_map_apply_range(sched,
915 isl_union_map_from_map(tiling));
917 par = parametrization(dim, gen->thread_tiled_len,
918 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
919 gen->n_block, "t");
920 sched = isl_union_map_intersect_range(sched,
921 isl_union_set_from_set(par));
923 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
925 return sched;
928 /* If the user asked for it, scale the shared memory tile loops
929 * (T1P and T2) of "sched" by gen->tile_size[i].
930 * If we are not performing "wrapping", then additionally scale the T1P
931 * loops by gen->grid_dim[i].
933 static __isl_give isl_union_map *scale_tile_loops(struct cuda_gen *gen,
934 __isl_take isl_union_map *sched)
936 int i;
937 isl_space *dim;
938 isl_basic_map *scale;
939 isl_constraint *c;
940 isl_local_space *ls;
942 if (!gen->options->scale_tile_loops)
943 return sched;
945 dim = isl_union_map_get_space(sched);
946 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
947 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
948 scale = isl_basic_map_universe(isl_space_copy(dim));
949 ls = isl_local_space_from_space(dim);
951 for (i = 0; i < gen->tiled_len; ++i) {
952 int f = 1;
954 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
955 f = gen->tile_size[i - gen->tile_first];
956 if (!gen->options->wrap)
957 f *= gen->grid_dim[i - gen->tile_first];
958 } else if (i >= gen->tile_first + gen->n_grid &&
959 i < gen->tile_first + gen->n_grid + gen->tile_len) {
960 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
963 c = isl_equality_alloc(isl_local_space_copy(ls));
964 isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
965 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
966 scale = isl_basic_map_add_constraint(scale, c);
969 isl_local_space_free(ls);
971 sched = isl_union_map_apply_range(sched,
972 isl_union_map_from_map(isl_map_from_basic_map(scale)));
974 return sched;
977 /* If we are not performing "wrapping" and if the user asked for it,
978 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
980 static __isl_give isl_union_map *scale_thread_tile_loops(struct cuda_gen *gen,
981 __isl_take isl_union_map *sched)
983 int i;
984 isl_space *dim;
985 isl_basic_map *scale;
986 isl_constraint *c;
987 isl_local_space *ls;
989 if (gen->options->wrap)
990 return sched;
991 if (!gen->options->scale_tile_loops)
992 return sched;
994 dim = isl_union_map_get_space(sched);
995 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
996 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
997 scale = isl_basic_map_universe(isl_space_copy(dim));
998 ls = isl_local_space_from_space(dim);
1000 for (i = 0; i < gen->thread_tiled_len; ++i) {
1001 int f = 1;
1003 if (i >= gen->shared_len &&
1004 i < gen->shared_len + gen->n_block)
1005 f = gen->block_dim[i - gen->shared_len];
1007 c = isl_equality_alloc(isl_local_space_copy(ls));
1008 isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1009 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1010 scale = isl_basic_map_add_constraint(scale, c);
1013 isl_local_space_free(ls);
1015 sched = isl_union_map_apply_range(sched,
1016 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1018 return sched;
1021 /* If we are not performing "wrapping" and if the user asked for it,
1022 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1024 static __isl_give isl_union_map *scale_access_tile_loops(struct cuda_gen *gen,
1025 __isl_take isl_union_map *sched, int len, int first, int n_tile)
1027 int i;
1028 isl_space *dim;
1029 isl_basic_map *scale;
1030 isl_constraint *c;
1031 isl_local_space *ls;
1033 if (gen->options->wrap)
1034 return sched;
1035 if (!gen->options->scale_tile_loops)
1036 return sched;
1038 dim = isl_union_map_get_space(sched);
1039 dim = isl_space_add_dims(dim, isl_dim_in, len);
1040 dim = isl_space_add_dims(dim, isl_dim_out, len);
1041 scale = isl_basic_map_universe(isl_space_copy(dim));
1042 ls = isl_local_space_from_space(dim);
1044 for (i = 0; i < len; ++i) {
1045 int f = 1;
1047 if (i >= first && i < first + n_tile)
1048 f = gen->block_dim[i - first];
1050 c = isl_equality_alloc(isl_local_space_copy(ls));
1051 isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1052 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1053 scale = isl_basic_map_add_constraint(scale, c);
1056 isl_local_space_free(ls);
1058 sched = isl_union_map_apply_range(sched,
1059 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1061 return sched;
1064 /* If print_user_stmt is set, we want to print the statements ourselves,
1065 * instead of relying on the C preprocessor. If so, we need to use
1066 * the stop option so that the domains will be saved on the statement
1067 * nodes.
1069 static void print_cloog_shared_body(struct cuda_gen *gen,
1070 __isl_keep isl_set *context, __isl_keep isl_union_map *sched, int len,
1071 void (*print_user_stmt)(struct gpucode_info *info,
1072 struct clast_user_stmt *s),
1073 int first_unroll)
1075 int i;
1076 CloogOptions *options;
1077 CloogDomain *cloog_context;
1078 CloogUnionDomain *ud;
1079 CloogInput *input;
1080 struct clast_stmt *stmt;
1081 char name[20];
1083 sched = isl_union_map_copy(sched);
1084 sched = isl_union_map_align_params(sched, isl_set_get_space(context));
1086 options = cloog_options_malloc(gen->state);
1087 options->language = CLOOG_LANGUAGE_C;
1088 options->strides = 1;
1089 options->sh = 1;
1090 options->f = len;
1091 options->l = -1;
1092 options->override = 1;
1093 options->save_domains = 1;
1094 options->noscalars = 1;
1095 options->first_unroll = first_unroll;
1097 ud = cloog_union_domain_from_isl_union_map(sched);
1098 for (i = 0; i < len; ++i) {
1099 snprintf(name, sizeof(name), "c%d", i);
1100 ud = cloog_union_domain_set_name(ud, CLOOG_SCAT, i, name);
1102 cloog_context = cloog_domain_from_isl_set(isl_set_copy(context));
1103 input = cloog_input_alloc(cloog_context, ud);
1105 stmt = cloog_clast_create_from_input(input, options);
1107 gen->stmt_code.indent = gen->kernel_code.indent;
1108 gen->stmt_code.dst = gen->cuda.kernel_c;
1109 gen->stmt_code.print_user_stmt = print_user_stmt;
1110 gen->stmt_code.print_user_stmt_list = NULL;
1111 gen->stmt_code.print_for_head = NULL;
1112 gen->stmt_code.print_for_foot = NULL;
1113 gen->stmt_code.user = gen;
1114 gpu_print_host_stmt(&gen->stmt_code, stmt);
1116 cloog_clast_free(stmt);
1117 cloog_options_free(options);
1120 /* Add "len" parameters p[i] called prefix%d,
1121 * with bounds to 0 <= p[i] < size[i].
1123 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1124 int len, int *size, const char *prefix)
1126 int i;
1127 unsigned nparam;
1128 isl_int v;
1129 isl_space *dim;
1130 isl_basic_set *bset;
1131 isl_constraint *c;
1132 isl_local_space *ls;
1133 char name[20];
1135 nparam = isl_set_dim(set, isl_dim_param);
1136 set = isl_set_add_dims(set, isl_dim_param, len);
1138 for (i = 0; i < len; ++i) {
1139 snprintf(name, sizeof(name), "%s%d", prefix, i);
1140 set = isl_set_set_dim_name(set, isl_dim_param,
1141 nparam + i, name);
1144 dim = isl_set_get_space(set);
1145 bset = isl_basic_set_universe(isl_space_copy(dim));
1146 ls = isl_local_space_from_space(dim);
1148 isl_int_init(v);
1150 for (i = 0; i < len; ++i) {
1151 c = isl_inequality_alloc(isl_local_space_copy(ls));
1152 isl_int_set_si(v, 1);
1153 isl_constraint_set_coefficient(c, isl_dim_param, nparam + i, v);
1154 bset = isl_basic_set_add_constraint(bset, c);
1156 c = isl_inequality_alloc(isl_local_space_copy(ls));
1157 isl_int_set_si(v, -1);
1158 isl_constraint_set_coefficient(c, isl_dim_param, nparam + i, v);
1159 isl_int_set_si(v, size[i] - 1);
1160 isl_constraint_set_constant(c, v);
1161 bset = isl_basic_set_add_constraint(bset, c);
1164 isl_int_clear(v);
1165 isl_local_space_free(ls);
1167 return isl_set_intersect(set, isl_set_from_basic_set(bset));
1170 static void print_shared_body(struct cuda_gen *gen,
1171 __isl_keep isl_set *shared_domain, __isl_keep isl_union_map *sched,
1172 int len, void (*print_user_stmt)(struct gpucode_info *info,
1173 struct clast_user_stmt *s),
1174 int first_unroll)
1176 isl_set *context;
1178 context = isl_set_copy(shared_domain);
1179 context = parametrize(context, 0, gen->shared_len, "g");
1180 context = isl_set_project_out(context, isl_dim_set, 0, gen->shared_len);
1181 context = add_bounded_parameters(context,
1182 gen->n_block, gen->block_dim, "t");
1184 print_cloog_shared_body(gen, context, sched, len, print_user_stmt,
1185 first_unroll);
1187 isl_set_free(context);
1190 /* Given a tile of an array, construct a map that maps each element
1191 * of the tile to a copy of the tile shifted to the origin
1192 * (based on the lower bounds in group->private_bound or group->shared_bound).
1193 * If any of the indices is strided, then {private,shared}_bound[i].shift_map
1194 * is applied to the index first.
1195 * The domain of the resulting map is "access",
1196 * while the range space is anonymous.
1198 static __isl_give isl_map *shift_access(__isl_take isl_set *access,
1199 struct cuda_array_ref_group *group)
1201 int i;
1202 isl_space *dim;
1203 isl_basic_set *bset;
1204 isl_basic_map *bmap;
1205 isl_aff *lb;
1206 isl_basic_set *offset;
1207 isl_basic_map *shift;
1208 isl_basic_map *pre_shift;
1209 isl_map *sched;
1210 const char *name;
1211 struct cuda_array_bound *bounds;
1212 int n_index = group->array->n_index;
1214 bounds = group->private_bound;
1215 if (!bounds)
1216 bounds = group->shared_bound;
1218 dim = isl_set_get_space(access);
1219 dim = isl_space_drop_dims(dim, isl_dim_set, 0, n_index);
1220 offset = isl_basic_set_universe(dim);
1221 for (i = 0; i < n_index; ++i) {
1222 lb = isl_aff_copy(bounds[i].lb);
1223 bmap = isl_basic_map_from_aff(lb);
1224 bset = isl_basic_map_range(bmap);
1225 offset = isl_basic_set_flat_product(offset, bset);
1227 offset = isl_basic_set_neg(offset);
1229 dim = isl_space_map_from_set(isl_set_get_space(access));
1230 shift = isl_basic_map_identity(dim);
1231 shift = isl_basic_map_set_tuple_name(shift, isl_dim_out, NULL);
1233 bset = isl_basic_set_universe(isl_set_get_space(access));
1234 bmap = isl_basic_map_from_domain_and_range(bset, offset);
1236 shift = isl_basic_map_sum(shift, bmap);
1238 dim = isl_set_get_space(access);
1239 dim = isl_space_drop_dims(dim, isl_dim_set, 0, n_index);
1240 dim = isl_space_map_from_set(dim);
1241 pre_shift = isl_basic_map_universe(isl_space_copy(dim));
1242 dim = isl_space_add_dims(dim, isl_dim_in, 1);
1243 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1244 for (i = 0; i < n_index; ++i) {
1245 if (!bounds[i].shift_map)
1246 bmap = isl_basic_map_identity(isl_space_copy(dim));
1247 else
1248 bmap = isl_basic_map_copy(bounds[i].shift_map);
1249 pre_shift = isl_basic_map_flat_product(pre_shift, bmap);
1251 isl_space_free(dim);
1252 name = isl_basic_map_get_tuple_name(shift, isl_dim_in);
1253 pre_shift = isl_basic_map_set_tuple_name(pre_shift, isl_dim_in, name);
1254 pre_shift = isl_basic_map_set_tuple_name(pre_shift, isl_dim_out, name);
1255 shift = isl_basic_map_apply_range(pre_shift, shift);
1257 sched = isl_map_from_basic_map(shift);
1258 sched = isl_map_intersect_domain(sched, access);
1260 return sched;
1263 /* Construct a schedule for iterating over all elements in the given
1264 * piece of an array. The schedule iterates over a copy of the piece
1265 * that is shifted to the origin.
1266 * We subsequently also perform the tiling/wrapping over the threads.
1268 * In particular, we tile the final iterators so that the final thread
1269 * dimension runs over the final array dimension.
1270 * However, if those final iterators have only a single iteration,
1271 * we try to tile earlier iterators instead.
1273 static __isl_give isl_union_map *access_schedule(struct cuda_gen *gen,
1274 __isl_take isl_set *access, struct cuda_array_ref_group *group)
1276 isl_space *dim;
1277 isl_map *sched;
1278 isl_union_map *usched;
1279 isl_map *tiling;
1280 isl_set *par;
1281 unsigned nvar = isl_set_dim(access, isl_dim_set);
1282 int n_tile;
1283 int first;
1285 sched = shift_access(access, group);
1287 n_tile = gen->n_block;
1288 if (n_tile > nvar) {
1289 int i;
1290 sched = isl_map_insert_dims(sched,
1291 isl_dim_out, 0, n_tile - nvar);
1292 for (i = 0; i < n_tile - nvar; ++i)
1293 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1294 nvar = n_tile;
1297 first = nvar - n_tile;
1299 for (; first > 0; first --)
1300 if (!isl_map_plain_is_fixed(sched, isl_dim_out,
1301 first + n_tile - 1, NULL))
1302 break;
1304 dim = isl_map_get_space(sched);
1305 dim = isl_space_params(dim);
1306 if (gen->options->wrap)
1307 tiling = wrap(isl_space_copy(dim), nvar, first,
1308 n_tile, gen->block_dim);
1309 else
1310 tiling = tile(isl_space_copy(dim), nvar, first,
1311 n_tile, gen->block_dim);
1312 sched = isl_map_apply_range(sched, tiling);
1314 par = parametrization(dim, nvar + n_tile, first + n_tile, n_tile, "t");
1315 usched = isl_union_map_from_map(sched);
1316 usched = isl_union_map_intersect_range(usched,
1317 isl_union_set_from_set(par));
1319 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1320 first, n_tile);
1322 return usched;
1325 /* Print an access to the element in the global memory copy of the
1326 * given array that corresponds to the element described by "pma".
1327 * of the original array.
1328 * The copy in global memory has been linearized, so we need to take
1329 * the array size into account.
1331 static void print_global_index(FILE *out,
1332 struct cuda_array_info *array, __isl_keep isl_pw_multi_aff *pma)
1334 int i;
1335 isl_ctx *ctx = isl_pw_multi_aff_get_ctx(pma);
1336 isl_printer *prn;
1338 if (cuda_array_is_scalar(array)) {
1339 fprintf(out, "*%s", array->name);
1340 return;
1343 fprintf(out, "%s[", array->name);
1344 prn = isl_printer_to_file(ctx, out);
1345 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
1346 for (i = 0; i + 1 < array->n_index; ++i)
1347 prn = isl_printer_print_str(prn, "(");
1348 for (i = 0; i < array->n_index; ++i) {
1349 isl_pw_aff *pa = isl_pw_multi_aff_get_pw_aff(pma, i);
1350 pa = isl_pw_aff_coalesce(pa);
1351 if (i) {
1352 prn = isl_printer_print_str(prn, ") * (");
1353 prn = isl_printer_print_pw_aff(prn,
1354 array->local_bound[i]);
1355 prn = isl_printer_print_str(prn, ") + ");
1357 prn = isl_printer_print_pw_aff(prn, pa);
1358 isl_pw_aff_free(pa);
1360 isl_printer_free(prn);
1361 fprintf(out, "]");
1364 /* Given an index expression into a tile of an array, adjust the expression
1365 * to a shift of the tile to the origin
1366 * (based on the lower bounds in array->shared_bound).
1367 * If the index is strided, then we first add
1368 * bound->shift and divide by bound->stride.
1370 static __isl_give isl_pw_aff *shift_index(__isl_take isl_pw_aff *pa,
1371 struct cuda_array_info *array,
1372 struct cuda_array_bound *bound, __isl_take isl_set *domain)
1374 isl_aff *lb;
1375 isl_pw_aff *tmp;
1377 if (bound->shift) {
1378 isl_aff *shift;
1379 shift = bound->shift;
1380 shift = isl_aff_copy(shift);
1381 shift = isl_aff_project_domain_on_params(shift);
1382 shift = isl_aff_align_params(shift, isl_pw_aff_get_space(pa));
1383 tmp = isl_pw_aff_alloc(isl_set_copy(domain), shift);
1384 pa = isl_pw_aff_add(pa, tmp);
1385 pa = isl_pw_aff_scale_down(pa, bound->stride);
1388 lb = isl_aff_copy(bound->lb);
1389 lb = isl_aff_project_domain_on_params(lb);
1391 lb = isl_aff_align_params(lb, isl_pw_aff_get_space(pa));
1393 tmp = isl_pw_aff_alloc(isl_set_copy(domain), lb);
1394 pa = isl_pw_aff_sub(pa, tmp);
1395 pa = isl_pw_aff_coalesce(pa);
1396 pa = isl_pw_aff_gist(pa, domain);
1398 return pa;
1401 /* Print an access to the element in the private/shared memory copy of the
1402 * given array reference group that corresponds to the element described
1403 * by "pma" of the original array.
1404 * Since the array in private/shared memory is just a shifted copy of part
1405 * of the original array, we simply need to subtract the lower bound,
1406 * which was computed in can_tile_for_shared_memory.
1407 * If any of the indices is strided, then we first add
1408 * bounds[i].shift and divide by bounds[i].stride.
1410 static void print_local_index(FILE *out,
1411 struct cuda_array_ref_group *group, struct cuda_array_bound *bounds,
1412 __isl_keep isl_pw_multi_aff *pma, __isl_keep isl_set *domain)
1414 int i;
1415 isl_ctx *ctx = isl_pw_multi_aff_get_ctx(pma);
1416 isl_printer *prn;
1417 struct cuda_array_info *array = group->array;
1419 print_array_name(out, group);
1420 for (i = 0; i < array->n_index; ++i) {
1421 isl_pw_aff *pa = isl_pw_multi_aff_get_pw_aff(pma, i);
1423 pa = shift_index(pa, array, &bounds[i], isl_set_copy(domain));
1425 fprintf(out, "[");
1426 prn = isl_printer_to_file(ctx, out);
1427 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
1428 prn = isl_printer_print_pw_aff(prn, pa);
1429 isl_printer_free(prn);
1430 fprintf(out, "]");
1431 isl_pw_aff_free(pa);
1435 /* This function is called for each leaf in the clast of the code
1436 * for copying to or from shared/private memory.
1437 * The statement name is {read,write}_{shared,private}_<array>.
1439 * The schedule iterates over the array elements, so we can use
1440 * the domain of copy_sched at the current scheduling position
1441 * as the index of the array.
1443 static void print_copy_statement(struct gpucode_info *code,
1444 struct clast_user_stmt *u)
1446 struct cuda_gen *gen = code->user;
1447 isl_set *domain;
1448 isl_map *sched;
1449 struct cuda_array_ref_group *group = gen->copy_group;
1450 struct cuda_array_bound *bounds = gen->copy_bound;
1451 int i;
1452 unsigned n_in;
1453 unsigned n_out;
1454 isl_space *dim;
1455 isl_set *param;
1456 isl_set *index;
1457 isl_pw_multi_aff *pma;
1458 int read;
1460 read = !strncmp(u->statement->name, "read", 4);
1462 domain = extract_host_domain(u);
1463 assert(domain);
1465 sched = isl_map_copy(gen->copy_sched);
1466 sched = isl_map_reverse(sched);
1467 sched = isl_map_intersect_domain(sched, domain);
1468 n_in = isl_map_dim(sched, isl_dim_in);
1469 n_out = isl_map_dim(sched, isl_dim_out);
1470 dim = isl_map_get_space(sched);
1471 dim = isl_space_drop_dims(dim, isl_dim_in, 0, n_in);
1472 dim = isl_space_drop_dims(dim, isl_dim_out, 0, n_out);
1473 param = parametrization(dim, n_in, 0, n_in, "c");
1474 sched = isl_map_align_params(sched, isl_set_get_space(param));
1475 sched = isl_map_intersect_domain(sched, param);
1476 index = isl_map_range(sched);
1477 domain = isl_set_copy(index);
1478 pma = isl_pw_multi_aff_from_set(index);
1479 pma = isl_pw_multi_aff_coalesce(pma);
1480 domain = isl_set_params(domain);
1482 print_indent(code->dst, code->indent);
1483 if (read) {
1484 print_local_index(code->dst, group, bounds, pma, domain);
1485 fprintf(code->dst, " = ");
1486 print_global_index(code->dst, group->array, pma);
1487 } else {
1488 print_global_index(code->dst, group->array, pma);
1489 fprintf(code->dst, " = ");
1490 print_local_index(code->dst, group, bounds, pma, domain);
1492 fprintf(code->dst, ";\n");
1494 isl_pw_multi_aff_free(pma);
1495 isl_set_free(domain);
1498 static void print_shared_access(struct cuda_gen *gen,
1499 __isl_keep isl_set *shared_domain, __isl_take isl_set *access,
1500 const char *type, struct cuda_array_ref_group *group)
1502 const char *array_name;
1503 char *name;
1504 isl_ctx *ctx;
1505 isl_union_map *sched;
1506 unsigned nvar = isl_set_dim(access, isl_dim_set);
1507 int n_tile;
1509 ctx = isl_set_get_ctx(access);
1510 array_name = isl_set_get_tuple_name(access);
1511 name = isl_alloc_array(ctx, char,
1512 strlen(type) + sizeof("_shared_") + strlen(array_name) + 20);
1513 if (group->array->n_group > 1)
1514 sprintf(name, "%s_shared_%s_%d", type, array_name, group->nr);
1515 else
1516 sprintf(name, "%s_shared_%s", type, array_name);
1517 access = isl_set_set_tuple_name(access, name);
1518 free(name);
1520 sched = access_schedule(gen, access, group);
1522 n_tile = gen->n_block;
1523 if (n_tile > nvar)
1524 n_tile = nvar;
1526 gen->copy_sched = isl_map_from_union_map(isl_union_map_copy(sched));
1527 gen->copy_group = group;
1528 gen->copy_bound = group->shared_bound;
1530 print_shared_body(gen, shared_domain, sched, nvar + n_tile,
1531 &print_copy_statement, -1);
1533 isl_union_map_free(sched);
1534 isl_map_free(gen->copy_sched);
1537 /* Return the union of all read (read = 1) and/or write (write = 1)
1538 * access relations in the group.
1540 static __isl_give isl_union_map *group_access_relation(
1541 struct cuda_array_ref_group *group, int read, int write)
1543 int i;
1544 isl_union_map *access;
1546 access = isl_union_map_empty(isl_map_get_space(group->access));
1547 for (i = 0; i < group->n_ref; ++i) {
1548 isl_map *map_i;
1550 if (!((read && group->refs[i]->read) ||
1551 (write && group->refs[i]->write)))
1552 continue;
1553 map_i = isl_map_copy(group->refs[i]->access);
1554 access = isl_union_map_union(access,
1555 isl_union_map_from_map(map_i));
1558 return access;
1561 /* Check that none of the shared memory tiles involve any strides.
1563 static int no_strides(struct cuda_array_ref_group *group)
1565 int i;
1566 int n_index = group->array->n_index;
1568 for (i = 0; i < n_index; ++i)
1569 if (group->shared_bound[i].shift)
1570 return 0;
1572 return 1;
1575 /* Return a set containing the values of the given index i
1576 * of the elements in the array tile in global memory that corresponds
1577 * to the shared memory copy.
1578 * In particular, if a is the index, we return a set with constraints
1580 * tile_offset <= a <= tile_offset + tile_size - 1
1582 * and
1584 * 0 <= a <= array_size - 1
1587 static __isl_give isl_set *group_tile_dim(struct cuda_array_ref_group *group,
1588 int i)
1590 isl_basic_set *tile;
1591 isl_aff *aff;
1592 isl_constraint *c;
1593 isl_local_space *ls;
1594 isl_pw_aff *bound;
1595 isl_set *dom;
1596 isl_set *tile_set;
1598 aff = isl_aff_copy(group->shared_bound[i].lb);
1599 aff = isl_aff_add_dims(aff, isl_dim_in, 1);
1600 ls = isl_aff_get_domain_local_space(aff);
1601 aff = isl_aff_neg(aff);
1602 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1603 c = isl_inequality_from_aff(isl_aff_copy(aff));
1604 tile = isl_basic_set_from_constraint(c);
1606 aff = isl_aff_neg(aff);
1607 aff = isl_aff_add_constant(aff, group->shared_bound[i].size);
1608 aff = isl_aff_add_constant_si(aff, -1);
1609 c = isl_inequality_from_aff(aff);
1610 tile = isl_basic_set_add_constraint(tile, c);
1612 aff = isl_aff_zero_on_domain(ls);
1613 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1614 c = isl_inequality_from_aff(aff);
1615 tile = isl_basic_set_add_constraint(tile, c);
1617 bound = isl_pw_aff_copy(group->array->bound[i]);
1618 bound = isl_pw_aff_add_dims(bound, isl_dim_in, 1);
1619 ls = isl_local_space_from_space(isl_pw_aff_get_domain_space(bound));
1620 aff = isl_aff_zero_on_domain(ls);
1621 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1622 aff = isl_aff_add_constant_si(aff, 1);
1623 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
1625 tile_set = isl_pw_aff_ge_set(bound, isl_pw_aff_alloc(dom, aff));
1626 tile_set = isl_set_align_params(tile_set, isl_basic_set_get_space(tile));
1627 tile_set = isl_set_intersect(tile_set, isl_set_from_basic_set(tile));
1629 return tile_set;
1632 /* Return a set containing the elements in the array tile in
1633 * global memory that corresponds to the shared memory copy.
1635 static __isl_give isl_set *group_tile(struct cuda_array_ref_group *group)
1637 int i;
1638 int n_index = group->array->n_index;
1639 isl_set *tile;
1641 tile = group_tile_dim(group, 0);
1642 for (i = 1; i < n_index; ++i) {
1643 isl_set *tile_i;
1645 tile_i = group_tile_dim(group, i);
1646 tile = isl_set_flat_product(tile, tile_i);
1649 tile = isl_set_set_tuple_name(tile, group->array->name);
1651 return tile;
1654 /* Print code for reading into or writing from shared memory
1655 * the given array reference group.
1657 * sched maps the original iteration domains to the shared memory tile loops.
1659 * If we are performing a read from global memory to shared memory,
1660 * if the array involved is not a scalar and if the definition of the
1661 * shared memory tiles does not involve any strides, then we copy
1662 * the entire tile to shared memory. This may result in some extra
1663 * elements getting copied, but it should lead to simpler code
1664 * (which means that fewer registers may be needed) and less divergence.
1666 * Otherwise, we only copy the elements that will be read or have been written
1667 * in the kernel.
1669 * Note that the absence of stride requirement can easily be lifted.
1670 * We would just need to add constraints of the form
1672 * shift + a = stride * alpha
1674 static int print_group_shared_accesses(struct cuda_gen *gen,
1675 struct cuda_array_ref_group *group, const char *type,
1676 __isl_keep isl_set *shared_domain, __isl_keep isl_union_map *sched)
1678 int read;
1679 isl_union_map *access;
1680 isl_union_set *uset;
1681 isl_set *access_set;
1683 if (group->private_bound)
1684 return 0;
1685 if (!group->shared_bound)
1686 return 0;
1688 read = !strcmp(type, "read");
1690 access = group_access_relation(group, read, !read);
1691 access = isl_union_map_apply_domain(access, isl_union_map_copy(sched));
1692 uset = isl_union_map_range(access);
1694 if (isl_union_set_is_empty(uset)) {
1695 isl_union_set_free(uset);
1696 return 0;
1699 if (read && group->array->n_index > 0 && no_strides(group)) {
1700 isl_union_set_free(uset);
1701 access_set = group_tile(group);
1702 print_shared_access(gen, shared_domain, access_set,
1703 type, group);
1704 return 1;
1707 access_set = isl_set_from_union_set(uset);
1708 access_set = isl_set_coalesce(access_set);
1710 print_shared_access(gen, shared_domain, access_set, type, group);
1712 return 1;
1715 /* Print code for reading into or writing from shared memory at
1716 * the given level (-1 for innermost).
1718 * If we are not printing at the innermost level, then the dimensionality
1719 * of shared_domain may be smaller than gen->shared_len.
1720 * As the rest of the code assumes that the domain of access has
1721 * gen->shared_len dimensions, we therefore may need to embed this domain
1722 * in a higher dimensional space after intersection with shared_domain.
1724 static void print_shared_accesses(struct cuda_gen *gen,
1725 __isl_keep isl_set *shared_domain, __isl_keep isl_union_map *access,
1726 const char *type, int level)
1728 int i, j;
1729 isl_space *dim;
1730 isl_map *proj;
1731 isl_set *par;
1732 int shared_len = isl_set_dim(shared_domain, isl_dim_set);
1733 int sync = 0;
1734 isl_union_map *sched;
1736 shared_domain = isl_set_copy(shared_domain);
1737 sched = isl_union_map_copy(gen->tiled_sched);
1738 dim = isl_union_map_get_space(sched);
1739 proj = projection(dim, gen->tiled_len, shared_len);
1740 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
1741 sched = isl_union_map_intersect_range(sched,
1742 isl_union_set_from_set(isl_set_copy(shared_domain)));
1743 if (shared_len != gen->shared_len) {
1744 dim = isl_union_map_get_space(sched);
1745 proj = projection(dim, gen->shared_len, shared_len);
1746 proj = isl_map_reverse(proj);
1747 shared_domain = isl_set_apply(shared_domain,
1748 isl_map_copy(proj));
1749 sched = isl_union_map_apply_range(sched,
1750 isl_union_map_from_map(proj));
1753 dim = isl_union_map_get_space(sched);
1754 par = parametrization(dim, gen->shared_len, 0, gen->shared_len, "g");
1755 sched = isl_union_map_intersect_range(sched,
1756 isl_union_set_from_set(par));
1758 for (i = 0; i < gen->n_array; ++i) {
1759 struct cuda_array_info *array = &gen->array[i];
1761 if (gen->array[i].print_shared_level != level)
1762 continue;
1764 for (j = 0; j < array->n_group; ++j) {
1765 if (print_group_shared_accesses(gen, array->groups[j],
1766 type, shared_domain, sched))
1767 sync = 1;
1771 isl_union_map_free(sched);
1772 isl_set_free(shared_domain);
1774 if (sync) {
1775 print_indent(gen->cuda.kernel_c, gen->kernel_code.indent);
1776 fprintf(gen->cuda.kernel_c, "__syncthreads();\n");
1780 /* This function is called for each access to an array in some statement
1781 * in the original code.
1782 * Replace that access by an access to shared or (linearized) global memory.
1783 * Since the array in shared memory is just
1784 * a shifted copy of part of the original array, we simply need
1785 * to subtract the lower bound, which was computed
1786 * in can_tile_for_shared_memory.
1787 * If any of the indices is strided, then we first add
1788 * shared_bound[i].shift and divide by shared_bound[i].stride.
1790 * If the given array is accessed directly from global memory,
1791 * we don't need to perform any shifting and simply simplify
1792 * expression in the context of the domain instead.
1794 * If the array space (range of access) has no name, then we are
1795 * accessing an iterator in the original program.
1797 static void print_access(struct cuda_gen *gen, __isl_take isl_map *access,
1798 int group_nr)
1800 int i;
1801 const char *name;
1802 unsigned n_index;
1803 struct cuda_array_info *array = NULL;
1804 isl_printer *prn;
1805 isl_pw_multi_aff *pma;
1806 isl_set *data_set;
1807 isl_set *domain;
1808 struct cuda_array_bound *bounds = NULL;
1810 access = isl_map_align_params(access,
1811 isl_set_get_space(gen->stmt_domain));
1813 data_set = isl_set_apply(isl_set_copy(gen->stmt_domain), access);
1815 name = isl_set_get_tuple_name(data_set);
1817 if (!name)
1818 fprintf(gen->cuda.kernel_c, "(");
1819 else {
1820 struct cuda_array_ref_group *group;
1822 for (i = 0; i < gen->n_array; ++i) {
1823 if (strcmp(name, gen->array[i].name))
1824 continue;
1825 array = &gen->array[i];
1827 assert(array);
1828 group = array->groups[group_nr];
1829 bounds = group->private_bound;
1830 if (!bounds)
1831 bounds = group->shared_bound;
1833 if (!bounds && cuda_array_is_scalar(array))
1834 fprintf(gen->cuda.kernel_c, "*");
1835 print_array_name(gen->cuda.kernel_c, group);
1837 if (cuda_array_is_scalar(array)) {
1838 isl_set_free(data_set);
1839 return;
1842 fprintf(gen->cuda.kernel_c, "[");
1846 n_index = isl_set_dim(data_set, isl_dim_set);
1847 pma = isl_pw_multi_aff_from_set(data_set);
1848 pma = isl_pw_multi_aff_coalesce(pma);
1850 prn = isl_printer_to_file(gen->ctx, gen->cuda.kernel_c);
1851 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
1853 if (!bounds)
1854 for (i = 0; i + 1 < n_index; ++i)
1855 prn = isl_printer_print_str(prn, "(");
1857 for (i = 0; i < n_index; ++i) {
1858 isl_pw_aff *index;
1860 index = isl_pw_multi_aff_get_pw_aff(pma, i);
1862 if (!array) {
1863 prn = isl_printer_print_pw_aff(prn, index);
1864 isl_pw_aff_free(index);
1865 continue;
1868 domain = isl_set_copy(gen->stmt_domain);
1869 domain = isl_set_params(domain);
1870 if (!bounds) {
1871 index = isl_pw_aff_coalesce(index);
1872 index = isl_pw_aff_gist(index, domain);
1873 } else
1874 index = shift_index(index, array, &bounds[i], domain);
1876 if (i) {
1877 if (!bounds) {
1878 prn = isl_printer_print_str(prn, ") * (");
1879 prn = isl_printer_print_pw_aff(prn,
1880 array->local_bound[i]);
1881 prn = isl_printer_print_str(prn, ") + ");
1882 } else
1883 prn = isl_printer_print_str(prn, "][");
1885 prn = isl_printer_print_pw_aff(prn, index);
1886 isl_pw_aff_free(index);
1888 if (!name)
1889 prn = isl_printer_print_str(prn, ")");
1890 else
1891 prn = isl_printer_print_str(prn, "]");
1892 isl_printer_free(prn);
1894 isl_pw_multi_aff_free(pma);
1897 static struct cuda_stmt_access *print_expr(struct cuda_gen *gen, FILE *out,
1898 struct pet_expr *expr, struct cuda_stmt_access *access, int outer)
1900 int i;
1902 switch (expr->type) {
1903 case pet_expr_double:
1904 fprintf(out, "%g", expr->d);
1905 break;
1906 case pet_expr_access:
1907 print_access(gen, isl_map_copy(access->access), access->group);
1908 access = access->next;
1909 break;
1910 case pet_expr_unary:
1911 if (!outer)
1912 fprintf(out, "(");
1913 fprintf(out, " %s ", pet_op_str(expr->op));
1914 access = print_expr(gen, out, expr->args[pet_un_arg],
1915 access, 0);
1916 if (!outer)
1917 fprintf(out, ")");
1918 break;
1919 case pet_expr_binary:
1920 if (!outer)
1921 fprintf(out, "(");
1922 access = print_expr(gen, out, expr->args[pet_bin_lhs],
1923 access, 0);
1924 fprintf(out, " %s ", pet_op_str(expr->op));
1925 access = print_expr(gen, out, expr->args[pet_bin_rhs],
1926 access, 0);
1927 if (!outer)
1928 fprintf(out, ")");
1929 break;
1930 case pet_expr_ternary:
1931 if (!outer)
1932 fprintf(out, "(");
1933 access = print_expr(gen, out, expr->args[pet_ter_cond],
1934 access, 0);
1935 fprintf(out, " ? ");
1936 access = print_expr(gen, out, expr->args[pet_ter_true],
1937 access, 0);
1938 fprintf(out, " : ");
1939 access = print_expr(gen, out, expr->args[pet_ter_false],
1940 access, 0);
1941 if (!outer)
1942 fprintf(out, ")");
1943 break;
1944 case pet_expr_call:
1945 fprintf(out, "%s(", expr->name);
1946 for (i = 0; i < expr->n_arg; ++i) {
1947 if (i)
1948 fprintf(out, ", ");
1949 access = print_expr(gen, out, expr->args[i],
1950 access, 1);
1952 fprintf(out, ")");
1954 return access;
1957 static void print_stmt_body(struct cuda_gen *gen,
1958 FILE *out, struct cuda_stmt *stmt)
1960 print_expr(gen, out, stmt->body, stmt->accesses, 1);
1961 fprintf(out, ";\n");
1964 /* This function is called for each leaf in the innermost clast,
1965 * i.e., for each statement.
1966 * We print the statement body, simplifying the accesses based
1967 * on the schedule.
1969 static void print_statement(struct gpucode_info *code,
1970 struct clast_user_stmt *u)
1972 struct cuda_gen *gen = code->user;
1973 isl_space *dim;
1974 isl_set *par;
1975 isl_set *stmt_domain;
1976 isl_union_map *stmt_sched;
1977 isl_union_set *uset;
1978 int nr;
1979 struct cuda_stmt *stmt;
1981 nr = atoi(u->statement->name + 2);
1982 stmt = &gen->stmts[nr];
1984 stmt_domain = extract_host_domain(u);
1986 stmt_sched = isl_union_map_intersect_range(
1987 isl_union_map_copy(gen->local_sched),
1988 isl_union_set_from_set(extend(stmt_domain,
1989 gen->thread_tiled_len)));
1990 dim = isl_union_map_get_space(stmt_sched);
1991 par = parametrization(dim, gen->thread_tiled_len, 0,
1992 gen->thread_tiled_len, "c");
1993 stmt_sched = isl_union_map_intersect_range(stmt_sched,
1994 isl_union_set_from_set(par));
1996 uset = isl_union_map_domain(stmt_sched);
1997 dim = isl_union_set_get_space(uset);
1998 dim = isl_space_add_dims(dim, isl_dim_set,
1999 isl_set_dim(stmt->domain, isl_dim_set));
2000 dim = isl_space_set_tuple_name(dim, isl_dim_set, u->statement->name);
2001 gen->stmt_domain = isl_union_set_extract_set(uset, dim);
2002 isl_union_set_free(uset);
2004 print_indent(code->dst, code->indent);
2005 print_stmt_body(gen, code->dst, stmt);
2007 isl_set_free(gen->stmt_domain);
2010 static void print_private_access(struct cuda_gen *gen,
2011 __isl_keep isl_set *shared_domain, __isl_take isl_set *access,
2012 const char *type, struct cuda_array_ref_group *group)
2014 const char *array_name;
2015 char *name;
2016 isl_ctx *ctx;
2017 unsigned nvar = isl_set_dim(access, isl_dim_set);
2018 isl_union_map *usched;
2020 if (isl_set_fast_is_empty(access)) {
2021 isl_set_free(access);
2022 return;
2025 ctx = isl_set_get_ctx(access);
2026 array_name = isl_set_get_tuple_name(access);
2027 name = isl_alloc_array(ctx, char,
2028 strlen(type) + sizeof("_private_") + strlen(array_name) + 20);
2029 if (group->array->n_group > 1)
2030 sprintf(name, "%s_private_%s_%d", type, array_name, group->nr);
2031 else
2032 sprintf(name, "%s_private_%s", type, array_name);
2033 access = isl_set_set_tuple_name(access, name);
2034 free(name);
2036 gen->copy_sched = shift_access(access, group);
2037 gen->copy_group = group;
2038 gen->copy_bound = group->private_bound;
2040 usched = isl_union_map_from_map(isl_map_copy(gen->copy_sched));
2041 print_shared_body(gen, shared_domain, usched, nvar,
2042 &print_copy_statement, 1);
2043 isl_union_map_free(usched);
2045 isl_map_free(gen->copy_sched);
2048 /* Print code for reading into or writing from private memory
2049 * the given array reference group.
2051 * sched maps the original iteration domains to the shared memory tile loops.
2053 static void print_group_private_accesses(struct cuda_gen *gen,
2054 struct cuda_array_ref_group *group,
2055 const char *type, __isl_keep isl_set *shared_domain,
2056 unsigned first_shared, int shared_len, __isl_keep isl_union_map *sched)
2058 int read;
2059 isl_union_map *access;
2060 isl_union_set *uset;
2061 isl_set *access_set;
2063 if (!group->private_bound)
2064 return;
2066 read = !strcmp(type, "read");
2068 access = group_access_relation(group, read, !read);
2069 access = isl_union_map_apply_domain(access, isl_union_map_copy(sched));
2070 access = isl_union_map_intersect(access,
2071 isl_union_map_copy(gen->private_access));
2072 uset = isl_union_map_range(access);
2074 if (isl_union_set_is_empty(uset)) {
2075 isl_union_set_free(uset);
2076 return;
2079 access_set = isl_set_from_union_set(uset);
2080 access_set = isl_set_coalesce(access_set);
2081 access_set = isl_set_eliminate(access_set, isl_dim_param,
2082 first_shared + shared_len,
2083 gen->shared_len - shared_len);
2085 print_private_access(gen, shared_domain, access_set, type, group);
2088 /* Print code for reading into or writing from private memory at
2089 * the given level (-1 for innermost).
2091 * If we are not printing at the innermost level, then the dimensionality
2092 * of shared_domain may be smaller than gen->shared_len.
2093 * As the rest of the code assumes that the domain of access has
2094 * gen->shared_len dimensions, we therefore may need to embed this domain
2095 * in a higher dimensional space after intersection with shared_domain.
2097 * This code is very similar to print_shared_accesses.
2098 * The main difference is that we to take into account gen->private_access.
2100 static void print_private_accesses(struct cuda_gen *gen,
2101 __isl_keep isl_set *shared_domain, __isl_keep isl_union_map *access,
2102 const char *type, int level)
2104 int i, j;
2105 isl_space *dim;
2106 isl_map *proj;
2107 int shared_len = isl_set_dim(shared_domain, isl_dim_set);
2108 unsigned first_shared;
2109 isl_union_map *sched;
2111 shared_domain = isl_set_copy(shared_domain);
2112 sched = isl_union_map_copy(gen->tiled_sched);
2113 dim = isl_union_map_get_space(sched);
2114 first_shared = isl_space_dim(dim, isl_dim_param);
2115 proj = projection(dim, gen->tiled_len, shared_len);
2116 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
2117 sched = isl_union_map_intersect_range(sched,
2118 isl_union_set_from_set(isl_set_copy(shared_domain)));
2119 if (shared_len != gen->shared_len) {
2120 dim = isl_union_map_get_space(sched);
2121 proj = projection(dim, gen->shared_len, shared_len);
2122 proj = isl_map_reverse(proj);
2123 shared_domain = isl_set_apply(shared_domain,
2124 isl_map_copy(proj));
2125 sched = isl_union_map_apply_range(sched,
2126 isl_union_map_from_map(proj));
2129 for (i = 0; i < gen->n_array; ++i) {
2130 struct cuda_array_info *array = &gen->array[i];
2132 if (gen->array[i].print_shared_level != level)
2133 continue;
2135 for (j = 0; j < array->n_group; ++j)
2136 print_group_private_accesses(gen, array->groups[j],
2137 type, shared_domain,
2138 first_shared, shared_len, sched);
2141 isl_union_map_free(sched);
2142 isl_set_free(shared_domain);
2145 /* Set unroll[j] if the input dimension j is involved in
2146 * the index expression represented by bmap.
2148 static int check_unroll(__isl_take isl_basic_map *bmap, void *user)
2150 int i, j;
2151 int n_in = isl_basic_map_dim(bmap, isl_dim_in);
2152 int n_out = isl_basic_map_dim(bmap, isl_dim_out);
2153 int *unroll = user;
2155 for (i = 0; i < n_out; ++i) {
2156 isl_constraint *c;
2157 int ok;
2159 ok = isl_basic_map_has_defining_equality(bmap,
2160 isl_dim_out, i, &c);
2161 assert(ok);
2162 for (j = 0; j < n_in; ++j)
2163 if (isl_constraint_involves_dims(c, isl_dim_in, j, 1))
2164 unroll[j] = 1;
2165 isl_constraint_free(c);
2168 isl_basic_map_free(bmap);
2169 return 0;
2172 /* Given an array pos mapping input dimensions to the corresponding
2173 * output dimension, construct the corresponding map.
2175 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
2176 int *pos, int len)
2178 int i;
2179 isl_constraint *c;
2180 isl_basic_map *bmap;
2181 isl_local_space *ls;
2183 dim = isl_space_add_dims(dim, isl_dim_in, len);
2184 dim = isl_space_add_dims(dim, isl_dim_out, len);
2185 bmap = isl_basic_map_universe(isl_space_copy(dim));
2186 ls = isl_local_space_from_space(dim);
2188 for (i = 0; i < len; ++i) {
2189 c = isl_equality_alloc(isl_local_space_copy(ls));
2190 isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
2191 isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i], 1);
2192 bmap = isl_basic_map_add_constraint(bmap, c);
2194 isl_local_space_free(ls);
2196 return isl_map_from_basic_map(bmap);
2199 /* Find all loops involved in any of the index expressions for any of
2200 * the private accesses, move them innermost and then mark them as
2201 * requiring unrolling by setting gen->first_unroll.
2202 * The loops involved should all be parallel because of the checks
2203 * we performed in check_private_group_access. Moving them innermost
2204 * is therefore a valid transformation.
2206 static __isl_give isl_union_map *interchange_for_unroll(struct cuda_gen *gen,
2207 __isl_take isl_union_map *sched)
2209 int i, j;
2210 int unroll[gen->thread_tiled_len];
2211 int perm[gen->thread_tiled_len];
2212 isl_space *dim;
2213 isl_map *permute;
2214 int len = gen->shared_len + gen->n_parallel + gen->n_block;
2216 gen->first_unroll = -1;
2218 for (i = 0; i < gen->thread_tiled_len; ++i)
2219 unroll[i] = 0;
2220 for (i = 0; i < gen->n_array; ++i) {
2221 struct cuda_array_info *array = &gen->array[i];
2223 for (j = 0; j < array->n_group; ++j) {
2224 isl_union_map *access;
2225 isl_map *acc;
2227 if (!array->groups[j]->private_bound)
2228 continue;
2230 access = group_access_relation(array->groups[j], 1, 1);
2231 access = isl_union_map_apply_domain(access,
2232 isl_union_map_copy(sched));
2234 acc = isl_map_from_union_map(access);
2235 isl_map_foreach_basic_map(acc, &check_unroll, unroll);
2237 isl_map_free(acc);
2241 for (i = 0; i < gen->shared_len; ++i)
2242 if (unroll[i])
2243 return sched;
2245 for (i = gen->shared_len; i < len; ++i)
2246 if (unroll[i])
2247 break;
2249 if (i >= len)
2250 return sched;
2252 for (i = len; i < gen->thread_tiled_len; ++i)
2253 if (unroll[i])
2254 return sched;
2256 j = 0;
2257 for (i = 0; i < gen->thread_tiled_len; ++i)
2258 if (!unroll[i])
2259 perm[i] = j++;
2260 gen->first_unroll = 1 + j;
2261 for (i = 0; i < len; ++i)
2262 if (unroll[i])
2263 perm[i] = j++;
2265 dim = isl_union_map_get_space(sched);
2266 permute = permutation(dim, perm, gen->thread_tiled_len);
2267 sched = isl_union_map_apply_range(sched,
2268 isl_union_map_from_map(permute));
2270 return sched;
2273 /* This function is called for each leaf in the clast of the kernel code.
2274 * We first specialize the schedule to the site of the leaf and
2275 * print code for reading into shared memory, performing the actual
2276 * computations and writing from shared memory, with the required
2277 * synchronizations.
2279 static void print_kernel_user(struct gpucode_info *code,
2280 struct clast_user_stmt *u)
2282 struct cuda_gen *gen = code->user;
2283 isl_set *shared_domain;
2285 shared_domain = extract_entire_host_domain(u);
2287 print_shared_accesses(gen, shared_domain, gen->read, "read", -1);
2289 print_private_accesses(gen, shared_domain, gen->read, "read", -1);
2291 print_shared_body(gen, shared_domain, gen->local_sched,
2292 gen->thread_tiled_len, &print_statement,
2293 gen->first_unroll);
2295 print_private_accesses(gen, shared_domain, gen->write, "write", -1);
2297 print_indent(gen->cuda.kernel_c, gen->kernel_code.indent);
2298 fprintf(gen->cuda.kernel_c, "__syncthreads();\n");
2300 print_shared_accesses(gen, shared_domain, gen->write, "write", -1);
2302 isl_set_free(shared_domain);
2305 /* Check if we need to perform any copying to shared memory at this level
2306 * and if so, print the copying instructions.
2307 * Any array for which we are allowed to print copying instructions at
2308 * this level, but haven't done so already, is printed.
2310 static void print_kernel_for_head(struct gpucode_info *code,
2311 struct clast_for *f)
2313 int i;
2314 struct cuda_gen *gen = code->user;
2315 isl_set *domain;
2316 int level;
2317 int print = 0;
2319 domain = isl_set_from_cloog_domain(cloog_domain_copy(f->domain));
2320 level = isl_set_dim(domain, isl_dim_set) - 1;
2322 for (i = 0; i < gen->n_array; ++i) {
2323 if (gen->array[i].print_shared_level >= 0)
2324 continue;
2325 if (gen->array[i].last_shared > level)
2326 continue;
2327 gen->array[i].print_shared_level = level;
2328 print = 1;
2331 if (print) {
2332 print_shared_accesses(gen, domain, gen->read, "read", level);
2333 print_private_accesses(gen, domain, gen->read, "read", level);
2336 isl_set_free(domain);
2339 /* Print instructions for copying from shared memory for each array
2340 * for which print_kernel_for_head has added copying instructions
2341 * to shared memory.
2343 static void print_kernel_for_foot(struct gpucode_info *code,
2344 struct clast_for *f)
2346 int i;
2347 struct cuda_gen *gen = code->user;
2348 isl_set *domain;
2349 int level;
2350 int print = 0;
2352 domain = isl_set_from_cloog_domain(cloog_domain_copy(f->domain));
2353 level = isl_set_dim(domain, isl_dim_set) - 1;
2355 for (i = 0; i < gen->n_array; ++i) {
2356 if (gen->array[i].print_shared_level != level)
2357 continue;
2358 print = 1;
2359 break;
2362 if (print) {
2363 print_private_accesses(gen, domain, gen->write, "write", level);
2364 print_shared_accesses(gen, domain, gen->write, "write", level);
2367 isl_set_free(domain);
2370 /* Use CLooG to generate code for the outer gen->shared_first loops
2371 * of the local schedule "sched".
2372 * The pretty printing of this code is handled by gpu_print_host_stmt,
2373 * which calls print_kernel_user for each iteration of the shared tile loops.
2375 static void print_cloog_kernel_body(struct cuda_gen *gen,
2376 __isl_keep isl_set *context, __isl_keep isl_union_map *sched)
2378 int i;
2379 CloogOptions *options;
2380 CloogDomain *cloog_context;
2381 CloogUnionDomain *ud;
2382 CloogInput *input;
2383 struct clast_stmt *stmt;
2384 char name[20];
2386 sched = isl_union_map_copy(sched);
2387 sched = isl_union_map_align_params(sched, isl_set_get_space(context));
2389 options = cloog_options_malloc(gen->state);
2390 options->language = CLOOG_LANGUAGE_C;
2391 options->strides = 1;
2392 options->sh = 1;
2393 options->stop = gen->shared_len;
2394 options->f = gen->tiled_len;
2395 options->l = gen->tiled_len;
2396 options->save_domains = 1;
2397 options->noscalars = 1;
2399 ud = cloog_union_domain_from_isl_union_map(sched);
2400 for (i = 0; i < gen->shared_len; ++i) {
2401 snprintf(name, sizeof(name), "g%d", i);
2402 ud = cloog_union_domain_set_name(ud, CLOOG_SCAT, i, name);
2404 cloog_context = cloog_domain_from_isl_set(isl_set_copy(context));
2405 input = cloog_input_alloc(cloog_context, ud);
2407 stmt = cloog_clast_create_from_input(input, options);
2409 gen->kernel_code.indent = 4;
2410 gen->kernel_code.dst = gen->cuda.kernel_c;
2411 gen->kernel_code.print_user_stmt = NULL;
2412 gen->kernel_code.print_user_stmt_list = &print_kernel_user;
2413 gen->kernel_code.print_for_head = &print_kernel_for_head;
2414 gen->kernel_code.print_for_foot = &print_kernel_for_foot;
2415 gen->kernel_code.user = gen;
2416 gpu_print_host_stmt(&gen->kernel_code, stmt);
2418 cloog_clast_free(stmt);
2419 cloog_options_free(options);
2422 static void print_kernel_iterators(struct cuda_gen *gen)
2424 int i;
2425 const char *block_dims[] = { "blockIdx.x", "blockIdx.y" };
2426 const char *thread_dims[] = { "threadIdx.x", "threadIdx.y",
2427 "threadIdx.z" };
2429 if (gen->n_grid > 0) {
2430 print_indent(gen->cuda.kernel_c, 4);
2431 fprintf(gen->cuda.kernel_c, "int ");
2432 for (i = 0; i < gen->n_grid; ++i) {
2433 if (i)
2434 fprintf(gen->cuda.kernel_c, ", ");
2435 fprintf(gen->cuda.kernel_c, "b%d = %s",
2436 i, block_dims[gen->n_grid - 1 - i]);
2438 fprintf(gen->cuda.kernel_c, ";\n");
2441 if (gen->n_block > 0) {
2442 print_indent(gen->cuda.kernel_c, 4);
2443 fprintf(gen->cuda.kernel_c, "int ");
2444 for (i = 0; i < gen->n_block; ++i) {
2445 if (i)
2446 fprintf(gen->cuda.kernel_c, ", ");
2447 fprintf(gen->cuda.kernel_c, "t%d = %s",
2448 i, thread_dims[gen->n_block - 1 - i]);
2450 fprintf(gen->cuda.kernel_c, ";\n");
2454 static void print_group_shared_array(struct cuda_gen *gen,
2455 struct cuda_array_ref_group *group)
2457 int j;
2458 struct cuda_array_bound *bounds;
2460 bounds = group->private_bound;
2461 if (!bounds)
2462 bounds = group->shared_bound;
2463 if (!bounds)
2464 return;
2466 print_indent(gen->cuda.kernel_c, 4);
2467 fprintf(gen->cuda.kernel_c, "%s%s ",
2468 group->private_bound ? "" : "__shared__ ", group->array->type);
2469 print_array_name(gen->cuda.kernel_c, group);
2470 for (j = 0; j < group->array->n_index; ++j) {
2471 fprintf(gen->cuda.kernel_c, "[");
2472 isl_int_print(gen->cuda.kernel_c, bounds[j].size, 0);
2473 fprintf(gen->cuda.kernel_c, "]");
2475 fprintf(gen->cuda.kernel_c, ";\n");
2478 static void print_shared_arrays(struct cuda_gen *gen)
2480 int i, j;
2482 for (i = 0; i < gen->n_array; ++i) {
2483 struct cuda_array_info *array = &gen->array[i];
2485 for (j = 0; j < array->n_group; ++j)
2486 print_group_shared_array(gen, array->groups[j]);
2490 static void print_kernel_body(struct cuda_gen *gen,
2491 __isl_keep isl_set *host_domain, __isl_keep isl_union_map *sched)
2493 isl_set *context;
2495 context = isl_set_copy(host_domain);
2496 context = parametrize(context, 0, gen->tile_first, "h");
2497 context = isl_set_project_out(context, isl_dim_set, 0, gen->tile_first);
2498 context = add_bounded_parameters(context,
2499 gen->n_grid, gen->grid_dim, "b");
2501 print_kernel_iterators(gen);
2502 print_shared_arrays(gen);
2504 fprintf(gen->cuda.kernel_c, "\n");
2506 print_cloog_kernel_body(gen, context, sched);
2508 isl_set_free(context);
2511 /* Given a constraint
2513 * a(p,i) + j = g f(e)
2515 * or -a(p,i) - j = g f(e) if sign < 0,
2516 * store a(p,i) in bound->shift and g (stride) in bound->stride.
2517 * a(p,i) is assumed to be an expression in only the parameters.
2519 static void extract_stride(__isl_keep isl_constraint *c,
2520 struct cuda_array_bound *bound, isl_int stride, int sign)
2522 int i;
2523 isl_int v;
2524 isl_space *dim;
2525 unsigned nparam;
2526 isl_aff *aff;
2528 isl_int_set(bound->stride, stride);
2530 dim = isl_constraint_get_space(c);
2531 dim = isl_space_params(dim);
2533 nparam = isl_space_dim(dim, isl_dim_param);
2535 isl_int_init(v);
2537 isl_constraint_get_constant(c, &v);
2538 if (sign < 0)
2539 isl_int_neg(v, v);
2540 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2541 aff = isl_aff_set_constant(aff, v);
2543 for (i = 0; i < nparam; ++i) {
2544 isl_constraint_get_coefficient(c, isl_dim_param, i, &v);
2545 if (isl_int_is_zero(v))
2546 continue;
2547 if (sign < 0)
2548 isl_int_neg(v, v);
2549 aff = isl_aff_add_coefficient(aff, isl_dim_param, i, v);
2552 isl_int_clear(v);
2554 bound->shift = aff;
2557 /* Given an equality constraint of a map with a single output dimension j,
2558 * check if the constraint is of the form
2560 * a(p,i) + j = g f(e)
2562 * with a(p,i) an expression in the parameters and input dimensions
2563 * and f(e) an expression in the existentially quantified variables.
2564 * If so, and if g is larger than any such g from a previously considered
2565 * constraint, then call extract_stride. to record the stride information
2566 * in bound.
2568 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
2570 int i;
2571 isl_int v, stride;
2572 unsigned n_div;
2573 struct cuda_array_bound *bound = user;
2575 isl_int_init(v);
2576 isl_int_init(stride);
2578 n_div = isl_constraint_dim(c, isl_dim_div);
2579 isl_constraint_get_coefficient(c, isl_dim_out, 0, &v);
2581 if (n_div && (isl_int_is_one(v) || isl_int_is_negone(v))) {
2582 int s = isl_int_sgn(v);
2583 isl_int_set_si(stride, 0);
2584 for (i = 0; i < n_div; ++i) {
2585 isl_constraint_get_coefficient(c, isl_dim_div, i, &v);
2586 isl_int_gcd(stride, stride, v);
2588 if (!isl_int_is_zero(stride) &&
2589 isl_int_gt(stride, bound->stride))
2590 extract_stride(c, bound, stride, s);
2593 isl_int_clear(stride);
2594 isl_int_clear(v);
2596 isl_constraint_free(c);
2597 return 0;
2600 /* Given contraints on an array index i, check if we can find
2601 * a shift a(p) and a stride g such that
2603 * a(p) + i = 0 mod g
2605 * If so, record the information in bound and apply the mapping
2606 * i -> (i + a(p))/g to the array index in bounds and return
2607 * the new constraints.
2608 * If not, simply return the original constraints.
2610 static __isl_give isl_basic_map *check_stride(struct cuda_gen *gen,
2611 struct cuda_array_bound *bound, __isl_take isl_basic_map *bounds)
2613 isl_basic_map *aff;
2614 isl_basic_map *shift;
2615 isl_aff *aff_shift;
2617 isl_int_set_si(bound->stride, -1);
2619 aff = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
2621 isl_basic_map_foreach_constraint(aff, &check_stride_constraint, bound);
2623 isl_basic_map_free(aff);
2625 if (isl_int_is_neg(bound->stride))
2626 return bounds;
2628 aff_shift = isl_aff_copy(bound->shift);
2629 aff_shift = isl_aff_add_dims(aff_shift, isl_dim_in, 1);
2630 aff_shift = isl_aff_add_coefficient_si(aff_shift, isl_dim_in, 0, 1);
2631 aff_shift = isl_aff_scale_down(aff_shift, bound->stride);
2632 shift = isl_basic_map_from_aff(aff_shift);
2634 bound->shift_map = isl_basic_map_copy(shift);
2635 bounds = isl_basic_map_apply_range(bounds, shift);
2637 return bounds;
2640 struct cuda_size_info {
2641 isl_basic_set *bset;
2642 struct cuda_array_bound *bound;
2643 int pos;
2646 /* Given a constraint from the basic set describing the bounds on
2647 * an array index, check if it is a lower bound, say m i >= b(x), and,
2648 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
2649 * upper bound. If so, and if this bound is smaller than any bound
2650 * derived from earlier constraints, set the size to this bound on
2651 * the expression and the lower bound to ceil(b(x)/m).
2653 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
2655 struct cuda_size_info *size = user;
2656 unsigned nparam;
2657 unsigned n_div;
2658 isl_int v;
2660 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
2661 n_div = isl_constraint_dim(c, isl_dim_div);
2663 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div)) {
2664 isl_constraint_free(c);
2665 return 0;
2668 isl_int_init(v);
2670 isl_constraint_get_coefficient(c, isl_dim_set, size->pos, &v);
2672 if (isl_int_is_pos(v)) {
2673 isl_aff *aff;
2674 isl_aff *lb;
2675 enum isl_lp_result res;
2677 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
2678 aff = isl_aff_ceil(aff);
2680 lb = isl_aff_copy(aff);
2682 aff = isl_aff_neg(aff);
2683 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
2685 res = isl_basic_set_max(size->bset, aff, &v);
2686 isl_aff_free(aff);
2688 if (res == isl_lp_ok) {
2689 isl_int_add_ui(v, v, 1);
2690 if (isl_int_is_neg(size->bound->size) ||
2691 isl_int_lt(v, size->bound->size)) {
2692 isl_int_set(size->bound->size, v);
2693 lb = isl_aff_drop_dims(lb, isl_dim_in,
2694 0, size->pos + 1);
2695 isl_aff_free(size->bound->lb);
2696 size->bound->lb = isl_aff_copy(lb);
2699 isl_aff_free(lb);
2702 isl_int_clear(v);
2703 isl_constraint_free(c);
2705 return 0;
2708 /* Given a basic map "bounds" that maps parameters and input dimensions
2709 * to a single output dimension, look for an expression in the parameters
2710 * and input dimensions such that the range of the output dimension shifted
2711 * by this expression is a constant.
2713 * In particular, we currently only consider lower bounds on the output
2714 * dimension as candidate expressions.
2716 static int compute_array_dim_size(struct cuda_gen *gen,
2717 struct cuda_array_bound *bound, __isl_take isl_basic_map *bounds)
2719 struct cuda_size_info size;
2721 bounds = isl_basic_map_detect_equalities(bounds);
2722 bounds = check_stride(gen, bound, bounds);
2724 isl_int_set_si(bound->size, -1);
2725 bound->lb = NULL;
2727 size.bound = bound;
2728 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
2729 size.bset = isl_basic_map_wrap(bounds);
2730 size.bset = isl_basic_set_flatten(size.bset);
2731 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
2732 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
2733 &size);
2734 isl_basic_set_free(size.bset);
2736 return isl_int_is_nonneg(bound->size) ? 0 : -1;
2739 /* Check if we can find a shared memory tile for the given array
2740 * based on the given accesses, and if so, put the results
2741 * in array->shared_bound.
2743 * We project the accesses on each index in turn and look for a parametric
2744 * offset such that the size is constant.
2746 static int can_tile_for_shared_memory(struct cuda_gen *gen,
2747 struct cuda_array_info *array, __isl_keep isl_map *access,
2748 struct cuda_array_bound *bounds)
2750 int i;
2752 for (i = 0; i < array->n_index; ++i) {
2753 isl_map *access_i;
2754 isl_basic_map *hull;
2756 access_i = isl_map_copy(access);
2757 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
2758 access_i = isl_map_project_out(access_i, isl_dim_out,
2759 1, array->n_index - (i + 1));
2760 access_i = isl_map_compute_divs(access_i);
2761 hull = isl_map_simple_hull(access_i);
2762 if (compute_array_dim_size(gen, &bounds[i], hull) < 0)
2763 return 0;
2766 return 1;
2769 /* Construct a map with input the shared tile loops and the loops that
2770 * will be wrapped around the threads that relates these later loops
2771 * to the thread indices and the projects them out.
2773 static __isl_give isl_map *compute_privatization(struct cuda_gen *gen)
2775 isl_map *priv;
2776 isl_map *tiling;
2777 isl_map *proj;
2778 isl_set *par;
2779 isl_space *dim;
2781 dim = isl_union_map_get_space(gen->shared_sched);
2783 if (gen->options->wrap)
2784 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
2785 gen->shared_len, gen->n_block, gen->block_dim);
2786 else
2787 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
2788 gen->shared_len, gen->n_block, gen->block_dim);
2790 priv = tiling;
2792 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
2793 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
2794 gen->n_block, "t");
2796 priv = isl_map_align_params(priv, isl_set_get_space(par));
2797 priv = isl_map_intersect_range(priv, par);
2799 dim = isl_map_get_space(priv);
2800 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
2801 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
2802 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
2803 gen->shared_len);
2805 priv = isl_map_apply_range(priv, proj);
2807 return priv;
2810 /* Construct a map from domain_dim to domain_dim that increments
2811 * the dimension at position "pos" and leaves all other dimensions
2812 * constant.
2814 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
2816 int i;
2817 int len = isl_space_dim(domain_dim, isl_dim_set);
2818 isl_space *dim;
2819 isl_basic_map *next;
2820 isl_local_space *ls;
2822 dim = isl_space_map_from_set(domain_dim);
2823 next = isl_basic_map_universe(isl_space_copy(dim));
2824 ls = isl_local_space_from_space(dim);
2826 for (i = 0; i < len; ++i) {
2827 isl_constraint *c;
2829 c = isl_equality_alloc(isl_local_space_copy(ls));
2830 isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
2831 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
2832 if (i == pos)
2833 isl_constraint_set_constant_si(c, 1);
2834 next = isl_basic_map_add_constraint(next, c);
2837 isl_local_space_free(ls);
2839 return isl_map_from_basic_map(next);
2842 /* Check if the given access is coalesced.
2843 * That is, check whether incrementing the dimension that will get
2844 * wrapped over the last thread index results in incrementing
2845 * the last array index.
2847 * This function is only called for access relations without reuse.
2849 static int access_is_coalesced(struct cuda_gen *gen,
2850 __isl_keep isl_union_map *access)
2852 isl_space *dim;
2853 isl_map *access_map;
2854 isl_map *next_thread_x;
2855 isl_map *next_element;
2856 isl_map *map;
2857 int coalesced;
2859 access = isl_union_map_copy(access);
2860 access = isl_union_map_apply_domain(access,
2861 isl_union_map_copy(gen->tiled_sched));
2862 access_map = isl_map_from_union_map(access);
2864 dim = isl_map_get_space(access_map);
2865 dim = isl_space_domain(dim);
2866 next_thread_x = next(dim, gen->shared_len + gen->n_block - 1);
2868 dim = isl_map_get_space(access_map);
2869 dim = isl_space_range(dim);
2870 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
2872 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
2873 map = isl_map_apply_range(map, access_map);
2875 coalesced = isl_map_is_subset(map, next_element);
2877 isl_map_free(next_element);
2878 isl_map_free(map);
2880 return coalesced;
2883 /* For the given array reference group, check whether the access is private
2884 * to the thread. That is, check that any given array element
2885 * is only accessed by a single thread.
2886 * We compute an access relation that maps the shared tile loop iterators
2887 * and the shared point loop iterators that will be wrapped over the
2888 * threads to the array elements.
2889 * We actually check that those iterators that will be wrapped
2890 * partition the array space. This check is stricter than necessary
2891 * since several iterations may be mapped onto the same thread
2892 * and then they could be allowed to access the same memory elements,
2893 * but our check does not allow this situation.
2895 * We also check that the index expression only depends on parallel
2896 * loops. That way, we can move those loops innermost and unroll them.
2897 * Again, we use a test that is stricter than necessary.
2898 * We actually check whether the index expression only depends
2899 * on the iterators that are wrapped over the threads.
2900 * These are necessarily parallel, but there may be more parallel loops.
2902 * Combining the injectivity of the first test with the single-valuedness
2903 * of the second test, we simply test for bijectivity.
2905 * If it turns out we can use registers, we compute the private memory
2906 * tile size using can_tile_for_shared_memory, after introducing a dependence
2907 * on the thread indices.
2909 * Before performing any of the above computations, we first check
2910 * if there is any reuse on the reference group. If not, we simply
2911 * return. If, moreover, the access is coalesced then we also remove
2912 * the shared memory tiling since we should just use global memory instead.
2914 static void check_private_group_access(struct cuda_gen *gen,
2915 struct cuda_array_ref_group *group)
2917 isl_map *acc;
2918 isl_union_map *access;
2919 int n_index = group->array->n_index;
2921 access = group_access_relation(group, 1, 1);
2922 if (isl_union_map_is_injective(access)) {
2923 if (group->shared_bound && access_is_coalesced(gen, access)) {
2924 free_bound_list(group->shared_bound, n_index);
2925 group->shared_bound = NULL;
2927 isl_union_map_free(access);
2928 return;
2930 access = isl_union_map_apply_domain(access,
2931 isl_union_map_copy(gen->shared_sched));
2933 acc = isl_map_from_union_map(access);
2935 if (!isl_map_is_bijective(acc)) {
2936 isl_map_free(acc);
2937 return;
2940 group->private_bound = create_bound_list(gen->ctx, n_index);
2941 acc = isl_map_align_params(acc, isl_map_get_space(gen->privatization));
2942 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
2943 if (!can_tile_for_shared_memory(gen, group->array, acc,
2944 group->private_bound)) {
2945 free_bound_list(group->private_bound, n_index);
2946 group->private_bound = NULL;
2949 isl_map_free(acc);
2952 /* Look for the last shared tile loop that affects the offset of the
2953 * shared or private tile and store the result in array->last_shared.
2955 static void set_last_shared(struct cuda_gen *gen,
2956 struct cuda_array_ref_group *group)
2958 int i, j;
2959 struct cuda_array_bound *bounds;
2960 unsigned first_shared = gen->first_shared;
2961 int n_index = group->array->n_index;
2963 bounds = group->private_bound;
2964 if (!bounds)
2965 bounds = group->shared_bound;
2966 if (!bounds)
2967 return;
2969 for (j = gen->shared_len - 1; j >= 0; --j) {
2970 for (i = 0; i < n_index; ++i) {
2971 isl_aff *lb;
2972 isl_aff *shift;
2974 lb = bounds[i].lb;
2975 if (isl_aff_involves_dims(lb, isl_dim_param,
2976 first_shared + j, 1))
2977 break;
2979 shift = bounds[i].shift;
2980 if (!shift)
2981 continue;
2982 if (isl_aff_involves_dims(shift, isl_dim_param,
2983 first_shared + j, 1))
2984 break;
2986 if (i < n_index)
2987 break;
2989 group->array->last_shared = j;
2992 /* Compute the sizes of all private arrays for the current kernel,
2993 * as well as the offsets of the private pieces in the original arrays.
2994 * If we cannot or don't want to privatize a given array group,
2995 * we use the shared memory tile sizes computed in
2996 * compute_group_shared_bound instead.
2998 * If a given Array only has a single reference group and if we have
2999 * been able to find a privated or shared tile,
3000 * we also look for the last shared tile loop that affects the offset
3001 * (and therefore the array tile) and store the result in array->last_shared.
3003 * A privatized copy of all access relations from reference groups that
3004 * are mapped to private memory is stored in gen->privatization.
3006 static void compute_private_size(struct cuda_gen *gen)
3008 int i, j;
3009 isl_union_map *private;
3011 if (!gen->options->use_private_memory)
3012 return;
3014 private = isl_union_map_empty(isl_union_map_get_space(gen->shared_sched));
3016 for (i = 0; i < gen->n_array; ++i) {
3017 struct cuda_array_info *array = &gen->array[i];
3019 for (j = 0; j < array->n_group; ++j) {
3020 check_private_group_access(gen, array->groups[j]);
3022 if (!array->groups[j]->private_bound)
3023 continue;
3025 private = isl_union_map_union(private,
3026 group_access_relation(array->groups[j], 1, 1));
3029 array->last_shared = gen->shared_len - 1;
3030 array->print_shared_level = -1;
3032 if (array->n_group != 1)
3033 continue;
3034 set_last_shared(gen, array->groups[0]);
3037 if (isl_union_map_is_empty(private))
3038 isl_union_map_free(private);
3039 else {
3040 isl_union_map *priv;
3042 private = isl_union_map_apply_domain(private,
3043 isl_union_map_copy(gen->shared_sched));
3044 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
3045 private = isl_union_map_apply_domain(private, priv);
3046 gen->private_access = private;
3050 /* Fill up the groups array with singleton groups, i.e., one group
3051 * per reference, initializing the array, access, write and refs fields.
3052 * In particular the access field is initialized to the scheduled
3053 * access relation of the array reference.
3055 * Return the number of elements initialized, i.e., the number of
3056 * active references in the current kernel.
3058 static int populate_array_references(struct cuda_gen *gen,
3059 struct cuda_array_info *array, __isl_keep isl_union_map *sched,
3060 struct cuda_array_ref_group **groups)
3062 int i;
3063 int n;
3064 isl_ctx *ctx = isl_union_map_get_ctx(sched);
3066 n = 0;
3067 for (i = 0; i < array->n_ref; ++i) {
3068 isl_union_map *umap;
3069 isl_map *map;
3070 struct cuda_array_ref_group *group;
3071 struct cuda_stmt_access *access = array->refs[i];
3073 map = isl_map_copy(access->access);
3074 umap = isl_union_map_from_map(map);
3075 umap = isl_union_map_apply_domain(umap,
3076 isl_union_map_copy(sched));
3078 if (isl_union_map_is_empty(umap)) {
3079 isl_union_map_free(umap);
3080 continue;
3083 map = isl_map_from_union_map(umap);
3085 group = isl_calloc_type(ctx, struct cuda_array_ref_group);
3086 assert(group);
3087 group->array = array;
3088 group->access = map;
3089 group->write = access->write;
3090 group->refs = &array->refs[i];
3092 groups[n++] = group;
3095 return n;
3098 static void free_array_ref_group(struct cuda_array_ref_group *group,
3099 int n_index)
3101 if (!group)
3102 return;
3103 free_bound_list(group->shared_bound, n_index);
3104 free_bound_list(group->private_bound, n_index);
3105 isl_map_free(group->access);
3106 free(group->refs);
3107 free(group);
3110 /* If two groups have overlapping access relations and if one of them
3111 * involves a write, then merge the two groups into one.
3113 * We keep track of the grouping in "leader". leader[j] points to
3114 * an earlier group array element that belongs to the same group,
3115 * or the array element j itself if this element is the first in the group.
3117 * Return the number of group leaders.
3119 static int group_overlapping_writes(int n,
3120 struct cuda_array_ref_group **groups, int *leader)
3122 int i, j;
3123 int n_group = n;
3125 for (i = 0; i < n; ++i) {
3126 int l = i;
3127 groups[l]->n_ref = 1;
3128 for (j = i - 1; j >= 0; --j) {
3129 isl_map *map;
3130 int empty;
3132 if (leader[j] != j)
3133 continue;
3134 if (!groups[l]->write && !groups[j]->write)
3135 continue;
3137 map = isl_map_intersect(isl_map_copy(groups[l]->access),
3138 isl_map_copy(groups[j]->access));
3139 empty = isl_map_is_empty(map);
3140 isl_map_free(map);
3142 if (empty)
3143 continue;
3145 groups[j]->access = isl_map_union(groups[j]->access,
3146 groups[l]->access);
3147 groups[j]->write = 1;
3148 groups[l]->access = NULL;
3149 groups[j]->n_ref += groups[l]->n_ref;
3150 l = leader[l] = j;
3151 n_group--;
3153 leader[i] = l;
3156 return n_group;
3159 /* Compute the size of the shared array corresponding to the given array
3160 * array refrence group, based on the accesses from the current kernel,
3161 * as well as the offset of the shared piece in the original array.
3163 static void compute_group_shared_bound(struct cuda_gen *gen,
3164 struct cuda_array_info *array, struct cuda_array_ref_group *group)
3166 isl_ctx *ctx = isl_space_get_ctx(array->dim);
3168 if (!gen->options->use_shared_memory)
3169 return;
3171 group->shared_bound = create_bound_list(ctx, array->n_index);
3172 if (!can_tile_for_shared_memory(gen, array, group->access,
3173 group->shared_bound)) {
3174 free_bound_list(group->shared_bound, array->n_index);
3175 group->shared_bound = NULL;
3179 /* Given an initial grouping of array references and shared memory tiles
3180 * for each group that allows for a shared memory tile, merge two groups
3181 * if both have a shared memory tile and if the merged group also has
3182 * a shared memory tile.
3184 * Return the number of group leaders after merging.
3186 static int group_common_shared_memory_tile(struct cuda_gen *gen,
3187 struct cuda_array_info *array, int n,
3188 struct cuda_array_ref_group **groups, int *leader, int n_group)
3190 int i, j;
3191 isl_ctx *ctx = isl_space_get_ctx(array->dim);
3193 for (i = 0; n_group > 1 && i < n; ++i) {
3194 int l = i;
3195 if (leader[i] != i)
3196 continue;
3197 if (!groups[i]->shared_bound)
3198 continue;
3199 for (j = i - 1; j >= 0; --j) {
3200 isl_map *map;
3201 int empty;
3202 struct cuda_array_bound *shared_bound;
3204 if (leader[j] != j)
3205 continue;
3206 if (!groups[j]->shared_bound)
3207 continue;
3209 map = isl_map_intersect(isl_map_copy(groups[l]->access),
3210 isl_map_copy(groups[j]->access));
3211 empty = isl_map_is_empty(map);
3212 isl_map_free(map);
3214 if (empty)
3215 continue;
3217 map = isl_map_union(isl_map_copy(groups[l]->access),
3218 isl_map_copy(groups[j]->access));
3219 shared_bound = create_bound_list(ctx, array->n_index);
3220 if (!can_tile_for_shared_memory(gen, array, map,
3221 shared_bound)) {
3222 isl_map_free(map);
3223 free_bound_list(shared_bound, array->n_index);
3224 continue;
3227 free_bound_list(groups[j]->shared_bound,
3228 array->n_index);
3229 groups[j]->shared_bound = shared_bound;
3230 isl_map_free(groups[j]->access);
3231 groups[j]->access = map;
3232 groups[j]->n_ref += groups[l]->n_ref;
3233 l = leader[l] = j;
3234 n_group--;
3238 return n_group;
3241 /* Extract an array of array reference groups from the array of references
3242 * and the grouping information in "leader".
3244 * Store the results in array->n_group and array->groups.
3246 static void extract_array_groups(isl_ctx *ctx, struct cuda_array_info *array,
3247 int n, struct cuda_array_ref_group **groups, int *leader, int n_group)
3249 int i, j;
3251 for (i = 2; i < n; ++i)
3252 leader[i] = leader[leader[i]];
3254 array->n_group = n_group;
3255 array->groups = isl_alloc_array(ctx, struct cuda_array_ref_group *,
3256 n_group);
3257 assert(array->groups);
3259 j = 0;
3260 for (i = 0; i < n; ++i) {
3261 int k, l;
3262 struct cuda_stmt_access **refs;
3264 if (leader[i] != i) {
3265 groups[i]->refs = NULL;
3266 free_array_ref_group(groups[i], array->n_index);
3267 continue;
3270 refs = isl_alloc_array(ctx, struct cuda_stmt_access *,
3271 groups[i]->n_ref);
3272 assert(refs);
3273 l = 0;
3274 for (k = i; k < n; ++k)
3275 if (leader[k] == i) {
3276 refs[l++] = *groups[k]->refs;
3277 (*groups[k]->refs)->group = j;
3280 groups[i]->refs = refs;
3281 groups[i]->nr = j;
3282 array->groups[j++] = groups[i];
3286 /* Group array references that should be considered together when
3287 * deciding whether to access them from private, shared or global memory.
3289 * In particular, if two array references overlap and if one of them
3290 * is a write, then the two references are grouped together.
3291 * Furthermore, if two groups admit a shared memory tile and if the
3292 * combination of the two also admits a shared memory tile, we merge
3293 * the two groups.
3295 * During the construction the group->refs field points to a single
3296 * array reference inside the array of array references, while
3297 * group->n_ref contains the number of element in leader that
3298 * (directly or indirectly) point to this group, provided the group
3299 * is a leader.
3301 static void group_array_references(struct cuda_gen *gen,
3302 struct cuda_array_info *array, __isl_keep isl_union_map *sched)
3304 int i;
3305 int n, n_group;
3306 isl_ctx *ctx = isl_union_map_get_ctx(sched);
3307 struct cuda_array_ref_group **groups;
3308 int *leader;
3310 groups = isl_calloc_array(ctx, struct cuda_array_ref_group *,
3311 array->n_ref);
3312 assert(groups);
3314 n = populate_array_references(gen, array, sched, groups);
3316 leader = isl_alloc_array(ctx, int, n);
3317 assert(leader);
3319 n_group = group_overlapping_writes(n, groups, leader);
3321 for (i = 0; i < n; ++i)
3322 if (leader[i] == i)
3323 compute_group_shared_bound(gen, array, groups[i]);
3325 n_group = group_common_shared_memory_tile(gen, array, n, groups,
3326 leader, n_group);
3328 extract_array_groups(ctx, array, n, groups, leader, n_group);
3330 free(leader);
3331 free(groups);
3334 /* Take tiled_sched, project it onto the shared tile loops and
3335 * the loops that will be wrapped over the threads,
3336 * parametrize the shared tile loops and store the result in gen->shared_sched.
3337 * The position of the first of these parameters is stored in gen->first_shared.
3338 * Also compute a projection that projects out the loops that will be
3339 * wrapped over the threads and store this projection in gen->shared_proj.
3341 static void compute_shared_sched(struct cuda_gen *gen)
3343 isl_space *dim;
3344 isl_map *proj;
3345 isl_set *par;
3346 isl_union_map *sched;
3348 sched = isl_union_map_copy(gen->tiled_sched);
3350 dim = isl_union_map_get_space(sched);
3351 gen->first_shared = isl_space_dim(dim, isl_dim_param);
3352 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
3353 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3355 dim = isl_union_map_get_space(sched);
3356 par = parametrization(dim, gen->shared_len + gen->n_block,
3357 0, gen->shared_len, "g");
3358 sched = isl_union_map_intersect_range(sched,
3359 isl_union_set_from_set(par));
3361 dim = isl_union_map_get_space(sched);
3362 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
3364 gen->shared_sched = sched;
3365 gen->shared_proj = isl_union_map_from_map(proj);
3368 /* Group references of all arrays in the program.
3370 static void group_references(struct cuda_gen *gen)
3372 int i;
3373 isl_union_map *sched;
3375 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
3376 isl_union_map_copy(gen->shared_proj));
3378 for (i = 0; i < gen->n_array; ++i)
3379 group_array_references(gen, &gen->array[i], sched);
3381 isl_union_map_free(sched);
3384 /* Free all array information that is local to the current kernel.
3386 static void free_local_array_info(struct cuda_gen *gen)
3388 int i, j;
3390 for (i = 0; i < gen->n_array; ++i) {
3391 struct cuda_array_info *array = &gen->array[i];
3393 for (j = 0; j < array->n_group; ++j)
3394 free_array_ref_group(array->groups[j], array->n_index);
3395 free(array->groups);
3397 if (array->n_group == 0)
3398 continue;
3399 for (j = 0; j < gen->array[i].n_index; ++j) {
3400 isl_pw_aff_free(gen->array[i].local_bound[j]);
3401 gen->array[i].local_bound[j] = NULL;
3406 static void print_iterator_list(FILE *out, int len, const char *prefix,
3407 int parens)
3409 int i;
3411 fprintf(out, "(");
3412 for (i = 0; i < len; ++i) {
3413 if (i)
3414 fprintf(out, ", ");
3415 if (parens)
3416 fprintf(out, "(%s%d)", prefix, i);
3417 else
3418 fprintf(out, "%s%d", prefix, i);
3420 fprintf(out, ")");
3423 /* The sizes of the arrays on the host that have been computed by
3424 * extract_array_info may depend on the parameters. Use the extra
3425 * constraints on the parameters that are valid at "host_domain"
3426 * to simplify these expressions.
3428 static void localize_bounds(struct cuda_gen *gen,
3429 __isl_keep isl_set *host_domain)
3431 int i, j;
3432 isl_set *context;
3434 context = isl_set_copy(host_domain);
3435 context = isl_set_params(host_domain);
3437 for (i = 0; i < gen->n_array; ++i) {
3438 struct cuda_array_info *array = &gen->array[i];
3440 if (array->n_group == 0)
3441 continue;
3443 for (j = 0; j < array->n_index; ++j) {
3444 isl_pw_aff *pwaff;
3446 pwaff = isl_pw_aff_copy(array->bound[j]);
3447 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
3448 array->local_bound[j] = pwaff;
3451 isl_set_free(context);
3454 /* Set gen->tile_len and gen->n_parallel to those of the first statement
3455 * in the statement list u.
3456 * Because of the way the schedule is constructed, the other statements
3457 * in the list, if any, should have the same values for these properties.
3459 static void set_tile_len(struct cuda_gen *gen, struct clast_user_stmt *u)
3461 int nr;
3462 struct cuda_stmt *stmt;
3464 nr = atoi(u->statement->name + 2);
3465 stmt = &gen->stmts[nr];
3467 gen->tile_len = stmt->tile_len;
3468 gen->n_parallel = stmt->n_parallel;
3471 /* This function is called for each leaf in the clast of the host code.
3472 * We first specialize the schedule to the site of the leaf, compute
3473 * the size of shared memory and then print the body of host code
3474 * and the associated kernel (through a call to print_kernel_body).
3476 static void print_host_user(struct gpucode_info *code,
3477 struct clast_user_stmt *u)
3479 struct cuda_gen *gen = code->user;
3480 isl_space *dim;
3481 isl_set *par;
3482 isl_set *host_domain;
3483 isl_union_map *access;
3484 isl_union_map *local_sched;
3485 isl_union_set *arrays;
3487 set_tile_len(gen, u);
3488 read_sizes(gen);
3490 host_domain = extract_entire_host_domain(u);
3492 local_sched = isl_union_map_intersect_range(
3493 isl_union_map_copy(gen->sched),
3494 isl_union_set_from_set(extend(isl_set_copy(host_domain),
3495 gen->untiled_len)));
3496 access = isl_union_map_union(isl_union_map_copy(gen->read),
3497 isl_union_map_copy(gen->write));
3498 access = isl_union_map_apply_domain(access,
3499 isl_union_map_copy(local_sched));
3500 arrays = isl_union_map_range(access);
3502 print_indent(code->dst, code->indent);
3503 fprintf(code->dst, "dim3 k%d_dimBlock", gen->kernel_id);
3504 print_reverse_list(code->dst, gen->n_block, gen->block_dim);
3505 fprintf(code->dst, ";\n");
3507 print_indent(code->dst, code->indent);
3508 fprintf(code->dst, "dim3 k%d_dimGrid", gen->kernel_id);
3509 print_reverse_list(code->dst, gen->n_grid, gen->grid_dim);
3510 fprintf(code->dst, ";\n");
3512 gen->tiled_sched = tile_schedule(gen, local_sched);
3513 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
3514 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
3516 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
3518 dim = isl_union_map_get_space(gen->local_sched);
3519 par = parametrization(dim, gen->tiled_len, 0, gen->shared_len, "g");
3520 gen->local_sched = isl_union_map_intersect_range(gen->local_sched,
3521 isl_union_set_from_set(par));
3523 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
3524 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
3526 gen->private_access = NULL;
3527 compute_shared_sched(gen);
3528 gen->privatization = compute_privatization(gen);
3529 group_references(gen);
3530 compute_private_size(gen);
3531 localize_bounds(gen, host_domain);
3533 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
3535 print_kernel_launch(gen, arrays);
3537 fprintf(gen->cuda.kernel_c, "{\n");
3539 print_kernel_body(gen, host_domain, gen->tiled_sched);
3541 fprintf(gen->cuda.kernel_c, "}\n");
3543 free_local_array_info(gen);
3544 isl_map_free(gen->privatization);
3545 isl_union_map_free(gen->private_access);
3546 isl_union_map_free(gen->local_sched);
3547 isl_union_map_free(gen->tiled_sched);
3548 isl_union_map_free(gen->shared_sched);
3549 isl_union_map_free(gen->shared_proj);
3550 isl_union_set_free(arrays);
3551 isl_set_free(host_domain);
3553 free(gen->tile_size);
3554 gen->kernel_id++;
3557 /* Use CLooG to generate code for the outer gen->tile_first loops
3558 * of the global schedule in gen->sched.
3559 * The pretty printing of this code is handled by gpu_print_host_stmt,
3560 * which calls print_host_user for each kernel invocation location.
3562 static void print_cloog_host_code(struct cuda_gen *gen)
3564 int i;
3565 isl_set *context;
3566 isl_union_map *sched;
3567 CloogOptions *options;
3568 CloogDomain *cloog_context;
3569 CloogUnionDomain *ud;
3570 CloogInput *input;
3571 struct clast_stmt *stmt;
3572 char name[20];
3574 options = cloog_options_malloc(gen->state);
3575 options->language = CLOOG_LANGUAGE_C;
3576 options->otl = 0;
3577 options->strides = 1;
3578 options->stop = gen->tile_first;
3579 options->f = gen->untiled_len;
3580 options->l = gen->untiled_len;
3581 options->save_domains = 1;
3582 options->noscalars = 1;
3584 sched = isl_union_map_copy(gen->sched);
3585 ud = cloog_union_domain_from_isl_union_map(sched);
3586 for (i = 0; i < options->stop; ++i) {
3587 snprintf(name, sizeof(name), "h%d", i);
3588 ud = cloog_union_domain_set_name(ud, CLOOG_SCAT, i, name);
3590 context = isl_set_copy(gen->context);
3591 cloog_context = cloog_domain_from_isl_set(context);
3592 input = cloog_input_alloc(cloog_context, ud);
3594 stmt = cloog_clast_create_from_input(input, options);
3596 gen->code.indent = 0;
3597 gen->code.dst = gen->cuda.host_c;
3598 gen->code.print_user_stmt = NULL;
3599 gen->code.print_user_stmt_list = &print_host_user;
3600 gen->code.print_for_head = NULL;
3601 gen->code.print_for_foot = NULL;
3602 gen->code.user = gen;
3603 gpu_print_host_stmt(&gen->code, stmt);
3605 cloog_clast_free(stmt);
3606 cloog_options_free(options);
3607 fprintf(gen->cuda.host_c, "\n");
3610 void print_cuda_macros(struct cuda_gen *gen)
3612 const char *macros =
3613 "#define cudaCheckReturn(ret) assert((ret) == cudaSuccess)\n"
3614 "#define cudaCheckKernel()"
3615 " assert(cudaGetLastError() == cudaSuccess)\n\n";
3616 fputs(macros, gen->cuda.host_c);
3619 void print_host_code(struct cuda_gen *gen)
3621 fprintf(gen->cuda.host_c, "{\n");
3622 print_cloog_macros(gen->cuda.host_c);
3623 print_cloog_macros(gen->cuda.kernel_c);
3625 print_cuda_macros(gen);
3627 declare_device_arrays(gen);
3629 allocate_device_arrays(gen);
3630 copy_arrays_to_device(gen);
3632 gen->kernel_id = 0;
3633 print_cloog_host_code(gen);
3635 copy_arrays_from_device(gen);
3636 free_device_arrays(gen);
3638 fprintf(gen->cuda.host_c, "}\n");
3641 __isl_give isl_set *add_context_from_str(__isl_take isl_set *set,
3642 const char *str)
3644 isl_ctx *ctx;
3645 isl_set *context;
3647 if (!str)
3648 return set;
3650 ctx = isl_set_get_ctx(set);
3651 context = isl_set_read_from_str(ctx, str);
3652 context = isl_set_align_params(context, isl_set_get_space(set));
3653 set = isl_set_intersect(set, context);
3655 return set;
3658 /* Return the union of all iteration domains of the gen->stmts[i].
3660 static __isl_give isl_union_set *extract_domain(struct cuda_gen *gen)
3662 int i;
3663 isl_union_set *domain;
3665 domain = isl_union_set_empty(isl_set_get_space(gen->context));
3666 for (i = 0; i < gen->n_stmts; ++i) {
3667 isl_set *domain_i;
3669 domain_i = isl_set_copy(gen->stmts[i].domain);
3670 domain = isl_union_set_union(domain,
3671 isl_union_set_from_set(domain_i));
3674 return domain;
3677 /* Information about the outermost tilable bands in the forest of bands.
3679 * tile_len and n_parallel are only sets on band_info structures
3680 * that correspond to outermost bands. For other bands (in particular,
3681 * ancestors of the outermost bands), n_parallal is set to 0.
3683 * prefix is the (padded) schedule leading up to the outermost tilable bands.
3685 * tile_first is the number of schedule dimensions in prefix.
3687 * suffix is the schedule of the outermost tilable bands and their descendants.
3689 struct band_info {
3690 struct cuda_gen *gen;
3691 int tile_first;
3692 int tile_len;
3693 int n_parallel;
3694 isl_union_map *prefix;
3695 isl_union_map *suffix;
3698 /* Set tile_len and n_parallel of the statement to that of
3699 * their outermost band, recorded in the band_info.
3701 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
3703 struct band_info *info = user;
3704 int nr;
3705 struct cuda_stmt *stmt;
3707 nr = atoi(isl_map_get_tuple_name(map, isl_dim_in) + 2);
3708 stmt = &info->gen->stmts[nr];
3710 stmt->tile_len = info->tile_len;
3711 stmt->n_parallel = info->n_parallel;
3713 isl_map_free(map);
3715 return 0;
3718 static void list_select_outer_band(struct cuda_gen *gen,
3719 __isl_take isl_band_list *list, int pos, struct band_info *list_info);
3721 /* Check if this band has any parallel loops. If so, take it as
3722 * the outermost tilable band. If not, continue looking for the
3723 * outermost tilable band in the children of the current band.
3725 static void band_select_outer_band(struct cuda_gen *gen,
3726 __isl_take isl_band *band, int pos, struct band_info *info)
3728 int n = isl_band_n_member(band);
3729 int n_parallel;
3731 for (n_parallel = 0; n_parallel < n; ++n_parallel)
3732 if (!isl_band_member_is_zero_distance(band, n_parallel))
3733 break;
3735 info->n_parallel = n_parallel;
3736 if (n_parallel) {
3737 info->gen = gen;
3738 info->tile_first = pos;
3739 info->tile_len = n;
3740 info->prefix = isl_band_get_prefix_schedule(band);
3741 info->suffix = isl_union_map_flat_range_product(
3742 isl_band_get_partial_schedule(band),
3743 isl_band_get_suffix_schedule(band));
3744 isl_union_map_foreach_map(info->prefix,
3745 &set_stmt_tile_len, info);
3746 } else if (isl_band_has_children(band)) {
3747 isl_band_list *children;
3748 children = isl_band_get_children(band);
3749 list_select_outer_band(gen, children, pos + n, info);
3750 } else {
3751 info->gen = gen;
3752 info->tile_first = pos + n;
3753 info->tile_len = 0;
3754 info->prefix = isl_union_map_flat_range_product(
3755 isl_band_get_prefix_schedule(band),
3756 isl_band_get_partial_schedule(band));
3757 info->suffix = isl_band_get_suffix_schedule(band);
3758 isl_union_map_foreach_map(info->prefix,
3759 &set_stmt_tile_len, info);
3762 isl_band_free(band);
3765 /* Comparison function that returns a non-zero value for band_infos
3766 * with different tile_len fields or different n_parallel fields.
3768 static int cmp_band(const void *p1, const void *p2)
3770 const struct band_info *info1 = p1;
3771 const struct band_info *info2 = p2;
3773 if (info1->tile_len != info2->tile_len)
3774 return info1->tile_len - info2->tile_len;
3776 return info1->n_parallel - info2->n_parallel;
3779 /* Extend "umap" with coordinates with fixed value "val"
3780 * to a total length of "dst_len", assuming the original dimension is "src_len".
3782 static __isl_give isl_union_map *extend_range(__isl_take isl_union_map *umap,
3783 int src_len, int dst_len, int val)
3785 isl_space *dim;
3786 isl_map *map;
3787 int i;
3789 dim = isl_union_map_get_space(umap);
3790 map = isl_map_reverse(projection(dim, dst_len, src_len));
3791 for (i = src_len; i < dst_len; ++i)
3792 map = isl_map_fix_si(map, isl_dim_out, i, val);
3794 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
3796 return umap;
3799 /* Group bands with the same values for tile_len and n_parallel.
3800 * The prefix schedule is then extended with a fixed coordinate that
3801 * is different for each such group.
3802 * Note that the actual values for this coordinate are not important.
3803 * The bands have already been effectively separated at a higher level
3804 * or they are independent and may be executed in parallel.
3805 * The list of band_info has been sorted before this functions is called.
3807 static void separate_bands(struct band_info *info, int n)
3809 int i;
3810 int j = 0;
3812 for (i = 0; i < n; ++i) {
3813 int l = info[i].tile_first;
3815 if (i &&
3816 (info[i].tile_len != info[i - 1].tile_len ||
3817 info[i].n_parallel != info[i - 1].n_parallel))
3818 j++;
3820 info[i].prefix = extend_range(info[i].prefix,
3821 l, l + 1, j);
3822 info[i].tile_first = l + 1;
3826 /* Select the outermost bands in the elements of the list, align
3827 * their prefix schedules, separate bands with different values
3828 * for tile_len and/or n_parallel and then combine the resulting
3829 * prefix and suffix schedules into a single pair of prefix and
3830 * suffix schedules for the entire list.
3832 static void list_select_outer_band(struct cuda_gen *gen,
3833 __isl_take isl_band_list *list, int pos, struct band_info *list_info)
3835 isl_band *band;
3836 int i;
3837 int n = isl_band_list_n_band(list);
3838 isl_ctx *ctx = isl_band_list_get_ctx(list);
3839 struct band_info *info;
3840 int max_tile_first;
3841 isl_union_map *prefix;
3842 isl_union_map *suffix;
3844 assert(n >= 1);
3845 info = isl_calloc_array(ctx, struct band_info, n);
3846 assert(info);
3848 max_tile_first = 0;
3849 for (i = 0; i < n; ++i) {
3850 band = isl_band_list_get_band(list, i);
3851 band_select_outer_band(gen, band, pos, &info[i]);
3852 if (info[i].tile_first > max_tile_first)
3853 max_tile_first = info[i].tile_first;
3856 for (i = 0; i < n; ++i) {
3857 if (info[i].tile_first == max_tile_first)
3858 continue;
3859 info[i].prefix = extend_range(info[i].prefix,
3860 info[i].tile_first, max_tile_first, 0);
3861 info[i].tile_first = max_tile_first;
3864 qsort(info, n, sizeof(struct band_info), &cmp_band);
3866 for (i = 0; i < n - 1; ++i)
3867 if (info[i].tile_len != info[i + 1].tile_len ||
3868 info[i].n_parallel != info[i + 1].n_parallel)
3869 break;
3871 if (i < n -1)
3872 separate_bands(info, n);
3874 prefix = info[0].prefix;
3875 suffix = info[0].suffix;
3877 for (i = 1; i < n; ++i) {
3878 prefix = isl_union_map_union(prefix, info[i].prefix);
3879 suffix = isl_union_map_union(suffix, info[i].suffix);
3882 list_info->tile_first = info[0].tile_first;
3883 list_info->tile_len = -1;
3884 list_info->prefix = prefix;
3885 list_info->suffix = suffix;
3887 isl_band_list_free(list);
3888 free(info);
3891 /* Set max_out to the maximal number of output dimensions over
3892 * all maps.
3894 static int update_max_out(__isl_take isl_map *map, void *user)
3896 int *max_out = user;
3897 int n_out = isl_map_dim(map, isl_dim_out);
3899 if (n_out > *max_out)
3900 *max_out = n_out;
3902 isl_map_free(map);
3903 return 0;
3906 struct align_range_data {
3907 int max_out;
3908 isl_union_map *res;
3911 /* Extend the dimension of the range of the given map to data->max_out and
3912 * then add the result to data->res.
3914 static int map_align_range(__isl_take isl_map *map, void *user)
3916 struct align_range_data *data = user;
3917 int i;
3918 isl_space *dim;
3919 isl_map *proj;
3920 int n_out = isl_map_dim(map, isl_dim_out);
3922 dim = isl_union_map_get_space(data->res);
3923 proj = isl_map_reverse(projection(dim, data->max_out, n_out));
3924 for (i = n_out; i < data->max_out; ++i)
3925 proj = isl_map_fix_si(proj, isl_dim_out, i, 0);
3927 map = isl_map_apply_range(map, proj);
3929 data->res = isl_union_map_add_map(data->res, map);
3931 return 0;
3934 /* Extend the ranges of the maps in the union map such they all have
3935 * the same dimension.
3937 static __isl_give isl_union_map *align_range(__isl_take isl_union_map *umap)
3939 struct align_range_data data;
3941 data.max_out = 0;
3942 isl_union_map_foreach_map(umap, &update_max_out, &data.max_out);
3944 data.res = isl_union_map_empty(isl_union_map_get_space(umap));
3945 isl_union_map_foreach_map(umap, &map_align_range, &data);
3947 isl_union_map_free(umap);
3948 return data.res;
3951 /* Select the outermost tilable band that (by construction)
3952 * has at least one parallel loop.
3953 * The starting position of the aligned band is stored in the pair
3954 * gen->tile_first.
3955 * The sizes and number of parallel loops may be different in different
3956 * parts of the band forest and are therefore stored in the cuda_stmts.
3958 * Return the complete schedule, with the tilable bands aligned
3959 * at gen->tile_first and padded with zero, if needed.
3961 static __isl_give isl_union_map *select_outer_tilable_band(struct cuda_gen *gen,
3962 __isl_keep isl_schedule *schedule)
3964 isl_band_list *list;
3965 struct band_info info;
3967 gen->n_parallel = 0;
3968 gen->tile_len = -1;
3970 list = isl_schedule_get_band_forest(schedule);
3972 list_select_outer_band(gen, list, 0, &info);
3974 gen->tile_first = info.tile_first;
3975 info.suffix = align_range(info.suffix);
3977 return isl_union_map_flat_range_product(info.prefix, info.suffix);
3980 /* Set gen->untiled_len to the number of scheduling dimensions
3981 * for the schedule of the first domain.
3982 * We assume here that this number is the same for all domains.
3984 static int set_untiled_len(__isl_take isl_map *map, void *user)
3986 unsigned *untiled_len = user;
3988 *untiled_len = isl_map_dim(map, isl_dim_out);
3990 isl_map_free(map);
3991 return -1;
3994 /* Compute an appropriate schedule based on the accesses in
3995 * gen->read and gen->write.
3997 * We first compute dependences and then use those to compute
3998 * a schedule that has a parallel loop in each tilable band.
3999 * Finally, we select the outermost tilable band.
4001 static void compute_schedule(struct cuda_gen *gen,
4002 __isl_take isl_union_map *sched)
4004 isl_ctx *ctx = isl_union_map_get_ctx(sched);
4005 isl_union_set *domain;
4006 isl_union_map *empty;
4007 isl_union_map *dep_raw, *dep2, *dep3, *dep;
4008 isl_union_map *uninitialized;
4009 isl_schedule *schedule;
4011 empty = isl_union_map_empty(isl_union_map_get_space(sched));
4013 isl_union_map_compute_flow(isl_union_map_copy(gen->read),
4014 isl_union_map_copy(gen->write), empty,
4015 isl_union_map_copy(sched),
4016 &dep_raw, NULL, &uninitialized, NULL);
4017 isl_union_map_compute_flow(isl_union_map_copy(gen->write),
4018 isl_union_map_copy(gen->write),
4019 isl_union_map_copy(gen->read),
4020 isl_union_map_copy(sched),
4021 &dep2, &dep3, NULL, NULL);
4022 isl_union_map_free(sched);
4024 gen->copy_in = isl_union_map_range(uninitialized);
4026 dep = isl_union_map_union(dep2, dep3);
4027 dep = isl_union_map_union(dep, dep_raw);
4028 dep = isl_union_map_coalesce(dep);
4030 domain = extract_domain(gen);
4031 schedule = isl_union_set_compute_schedule(isl_union_set_copy(domain),
4032 isl_union_map_copy(dep), dep);
4034 sched = select_outer_tilable_band(gen, schedule);
4036 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
4037 sched = isl_union_map_intersect_domain(sched, domain);
4038 gen->sched = sched;
4040 isl_schedule_free(schedule);
4043 static struct cuda_stmt_access **expr_extract_access(struct pet_expr *expr,
4044 struct cuda_stmt_access **next_access)
4046 struct cuda_stmt_access *access;
4047 isl_ctx *ctx = isl_map_get_ctx(expr->acc.access);
4049 access = isl_alloc_type(ctx, struct cuda_stmt_access);
4050 assert(access);
4051 access->next = NULL;
4052 access->read = expr->acc.read;
4053 access->write = expr->acc.write;
4054 access->access = isl_map_copy(expr->acc.access);
4056 *next_access = access;
4057 next_access = &(*next_access)->next;
4058 return next_access;
4061 static struct cuda_stmt_access **expr_extract_accesses(struct pet_expr *expr,
4062 struct cuda_stmt_access **next_access)
4064 int i;
4066 for (i = 0; i < expr->n_arg; ++i)
4067 next_access = expr_extract_accesses(expr->args[i],
4068 next_access);
4070 if (expr->type == pet_expr_access)
4071 next_access = expr_extract_access(expr, next_access);
4073 return next_access;
4076 static void pet_stmt_extract_accesses(struct cuda_stmt *stmt)
4078 struct cuda_stmt_access **next_access = &stmt->accesses;
4080 stmt->accesses = NULL;
4081 expr_extract_accesses(stmt->body, next_access);
4084 /* Return an array of cuda_stmt representing the statements in "scop".
4086 static struct cuda_stmt *extract_stmts(isl_ctx *ctx, struct pet_scop *scop,
4087 __isl_keep isl_set *context)
4089 int i;
4090 struct cuda_stmt *stmts;
4092 stmts = isl_calloc_array(ctx, struct cuda_stmt, scop->n_stmt);
4093 assert(stmts);
4095 for (i = 0; i < scop->n_stmt; ++i) {
4096 struct cuda_stmt *s = &stmts[i];
4098 s->domain = isl_set_copy(scop->stmts[i]->domain);
4099 s->domain = isl_set_intersect_params(s->domain,
4100 isl_set_copy(context));
4101 s->body = scop->stmts[i]->body;
4102 pet_stmt_extract_accesses(s);
4105 return stmts;
4108 /* Replace the scop in the "input" file by equivalent code
4109 * that uses the GPU. "scop" is assumed to correspond to this scop.
4111 * We first compute a schedule that respects the dependences
4112 * of the original program and select the outermost band
4113 * of tilable dimensions that has at least one parallel loop.
4114 * We then have three blocks of dimensions
4116 * H B G
4118 * The tilable band "B" is first tiled according to "tile.sizes", resulting
4119 * in
4121 * H T P G
4123 * For each iteration of the T loop and for each array, we compute
4124 * the array elements accessed by that iteration, construct a rectangular
4125 * box around it and shift it to the origin. The result is used
4126 * as shared memory for the array.
4128 * We then split off at most 2 parallel loops from the T loops and
4129 * at most 3 parallel loops from the P loops
4131 * H T1 T2 P1 P2 G
4133 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
4134 * according to "grid.sizes"/"block.sizes".
4136 * H T1T T1P T2 P1T P1P P2 G
4138 * Finally, the T1P and P1P iterators are equated to the block and
4139 * thread dimensions respectively and so are effectively removed.
4140 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
4141 * are run on the GPU.
4143 * Code is generated in three stages. We first generate code for the
4144 * host (the H loops), with iterators h%d. Then, for each leaf node
4145 * of the resulting AST, we generate code for the shared loops (up to
4146 * and including T2), with iterators g%d and after equating the H loops
4147 * to h%d parameters and the T1P loops to the block dimensions.
4148 * Finally, we generate code for the remaining loops in a similar fashion.
4150 int cuda_pet(isl_ctx *ctx, struct pet_scop *scop, struct ppcg_options *options,
4151 const char *input)
4153 isl_union_map *sched;
4154 struct cuda_gen gen;
4156 if (!scop)
4157 return -1;
4159 scop = pet_scop_align_params(scop);
4161 gen.ctx = ctx;
4162 gen.context = isl_set_copy(scop->context);
4163 gen.context = add_context_from_str(gen.context, options->ctx);
4164 gen.n_stmts = scop->n_stmt;
4165 gen.stmts = extract_stmts(ctx, scop, gen.context);
4166 gen.read = pet_scop_collect_reads(scop);
4167 gen.write = pet_scop_collect_writes(scop);
4168 gen.options = options;
4169 gen.state = cloog_isl_state_malloc(gen.ctx);
4170 gen.scop = scop;
4172 cuda_open_files(&gen.cuda, input);
4174 collect_array_info(&gen);
4176 sched = pet_scop_collect_schedule(scop);
4178 compute_schedule(&gen, sched);
4180 print_host_code(&gen);
4182 cloog_state_free(gen.state);
4183 clear_cuda_gen(&gen);
4185 cuda_close_files(&gen.cuda);
4187 return 0;