2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
22 #include <isl/schedule.h>
23 #include <isl/schedule_node.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
29 #include "gpu_array_tile.h"
30 #include "gpu_group.h"
32 #include "ppcg_options.h"
35 struct gpu_array_info
;
37 /* Collect all references to the given array and store pointers to them
40 * If the array contains structures, then there is no need to collect
41 * the references since we will not be computing any reference groups.
43 static void collect_references(struct gpu_prog
*prog
,
44 struct gpu_array_info
*array
)
49 if (array
->has_compound_element
)
53 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
54 struct gpu_stmt
*stmt
= &prog
->stmts
[i
];
55 struct gpu_stmt_access
*access
;
57 for (access
= stmt
->accesses
; access
; access
= access
->next
) {
59 name
= isl_map_get_tuple_name(access
->access
,
61 if (name
&& !strcmp(array
->name
, name
))
67 array
->refs
= isl_alloc_array(prog
->ctx
, struct gpu_stmt_access
*, n
);
71 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
72 struct gpu_stmt
*stmt
= &prog
->stmts
[i
];
73 struct gpu_stmt_access
*access
;
75 for (access
= stmt
->accesses
; access
; access
= access
->next
) {
77 name
= isl_map_get_tuple_name(access
->access
,
79 if (!name
|| strcmp(array
->name
, name
))
82 array
->refs
[n
++] = access
;
87 /* Compute and return the extent of "array", taking into account the set of
90 * In particular, the extent in the outer dimension is taken
91 * from "accessed", while the extents in the remaining dimensions
92 * are taken from array->extent.
94 * The extent in the outer dimension cannot be taken from array->extent
95 * because that may be unbounded. Furthermore, even if it is bounded,
96 * it may be larger than the piece of the array that is being accessed.
98 static __isl_give isl_set
*compute_extent(struct pet_array
*array
,
99 __isl_keep isl_set
*accessed
)
106 extent
= isl_set_copy(array
->extent
);
108 n_index
= isl_set_dim(accessed
, isl_dim_set
);
112 extent
= isl_set_project_out(extent
, isl_dim_set
, 0, 1);
113 outer
= isl_set_copy(accessed
);
114 outer
= isl_set_project_out(outer
, isl_dim_set
, 1, n_index
- 1);
115 extent
= isl_set_flat_product(outer
, extent
);
116 id
= isl_set_get_tuple_id(accessed
);
117 extent
= isl_set_set_tuple_id(extent
, id
);
122 /* Is the array "array" being extracted a read-only scalar?
124 * That is, is "array" a scalar that is never possibly written to.
125 * An array containing structures is never considered to be a scalar.
127 static int is_read_only_scalar(struct gpu_array_info
*array
,
128 struct gpu_prog
*prog
)
131 isl_union_map
*write
;
134 if (array
->has_compound_element
)
136 if (array
->n_index
!= 0)
139 write
= isl_union_map_copy(prog
->may_write
);
140 space
= isl_set_universe(isl_space_copy(array
->space
));
141 write
= isl_union_map_intersect_range(write
,
142 isl_union_set_from_set(space
));
143 empty
= isl_union_map_is_empty(write
);
144 isl_union_map_free(write
);
149 /* Compute bounds on the host array "pa" based on the corresponding
150 * accessed elements in "arrays"
151 * and collect all references to the array.
152 * Store the results in "info".
154 * If the array is zero-dimensional and does not contain structures,
155 * i.e., if the array is a scalar, we check whether it is read-only.
156 * We also check whether the array is accessed at all.
158 static int extract_array_info(struct gpu_prog
*prog
,
159 struct gpu_array_info
*info
, struct pet_array
*pa
,
160 __isl_keep isl_union_set
*arrays
)
166 isl_set
*accessed
, *extent
;
168 n_index
= isl_set_dim(pa
->extent
, isl_dim_set
);
169 name
= isl_set_get_tuple_name(pa
->extent
);
170 bounds
= isl_alloc_array(prog
->ctx
, isl_pw_aff
*, n_index
);
174 info
->space
= isl_set_get_space(pa
->extent
);
175 info
->name
= strdup(name
);
176 info
->n_index
= n_index
;
177 info
->bound
= bounds
;
178 info
->linearize
= prog
->scop
->options
->linearize_device_arrays
;
180 info
->type
= strdup(pa
->element_type
);
181 info
->size
= pa
->element_size
;
182 info
->local
= pa
->declared
&& !pa
->exposed
;
183 info
->has_compound_element
= pa
->element_is_record
;
184 info
->read_only_scalar
= is_read_only_scalar(info
, prog
);
186 accessed
= isl_union_set_extract_set(arrays
,
187 isl_space_copy(info
->space
));
188 empty
= isl_set_is_empty(accessed
);
189 extent
= compute_extent(pa
, accessed
);
190 isl_set_free(accessed
);
191 info
->extent
= extent
;
194 info
->accessed
= !empty
;
195 for (i
= 0; i
< n_index
; ++i
) {
201 dom
= isl_set_copy(extent
);
202 dom
= isl_set_project_out(dom
, isl_dim_set
, i
+ 1,
204 dom
= isl_set_project_out(dom
, isl_dim_set
, 0, i
);
205 if (!isl_set_dim_has_upper_bound(dom
, isl_dim_set
, 0)) {
206 fprintf(stderr
, "unable to determine extent of '%s' "
207 "in dimension %d\n", info
->name
, i
);
208 dom
= isl_set_free(dom
);
210 bound
= isl_set_dim_max(dom
, 0);
211 dom
= isl_pw_aff_domain(isl_pw_aff_copy(bound
));
212 ls
= isl_local_space_from_space(isl_set_get_space(dom
));
213 one
= isl_aff_zero_on_domain(ls
);
214 one
= isl_aff_add_constant_si(one
, 1);
215 bound
= isl_pw_aff_add(bound
, isl_pw_aff_alloc(dom
, one
));
216 bound
= isl_pw_aff_gist(bound
, isl_set_copy(prog
->context
));
219 if (!isl_pw_aff_is_cst(bound
))
223 collect_references(prog
, info
);
228 /* Remove independence from the order constraints "order" on array "array".
229 * Since the pairs of iterations in the filter relation of an independence
230 * are guaranteed to be completely independent by the user, there is
231 * no need to ensure that live ranges are ordered along thong pairs.
232 * We make an exception for local variables, though, as the independence
233 * guarantee does not apply to those.
235 * The order constraints are used in two places.
236 * Those on scalars are used in check_scalar_live_ranges to check if
237 * we need to force the scalar to be private. Any non-local scalar
238 * should not be forced scalar if it only appears in independent loops.
239 * Those on non-scalars are added to the coincidence constraints
240 * in compute_schedule because we do not support any array expansion.
241 * Accesses to non-local arrays should not prevent a loop from being
242 * considered coincident so we should indeed remove those constraints
243 * from the order constraints.
245 static __isl_give isl_union_map
*remove_independences(struct gpu_prog
*prog
,
246 struct gpu_array_info
*array
, __isl_take isl_union_map
*order
)
250 for (i
= 0; i
< prog
->scop
->pet
->n_independence
; ++i
) {
251 struct pet_independence
*pi
= prog
->scop
->pet
->independences
[i
];
252 if (isl_union_set_contains(pi
->local
, array
->space
))
255 order
= isl_union_map_subtract(order
,
256 isl_union_map_copy(pi
->filter
));
262 /* For each array in "prog", store the (untagged) order dependences
263 * derived from the array in array->dep_order.
264 * In particular, consider all references that access the given array
265 * and take the order dependences that have one of these references
266 * as source. (Since an order dependence relates two references to
267 * the same array, the target of these order dependences will also
268 * be one of these references.)
269 * Additionally, store the union of these array->dep_order relations
270 * for all non-scalar arrays in prog->array_order.
272 void collect_order_dependences(struct gpu_prog
*prog
)
276 isl_union_map
*accesses
;
278 space
= isl_union_map_get_space(prog
->read
);
279 prog
->array_order
= isl_union_map_empty(space
);
281 accesses
= isl_union_map_copy(prog
->scop
->tagged_reads
);
282 accesses
= isl_union_map_union(accesses
,
283 isl_union_map_copy(prog
->scop
->tagged_may_writes
));
284 accesses
= isl_union_map_universe(accesses
);
285 accesses
= isl_union_map_apply_range(accesses
,
286 isl_union_map_copy(prog
->to_outer
));
288 for (i
= 0; i
< prog
->n_array
; ++i
) {
289 struct gpu_array_info
*array
= &prog
->array
[i
];
292 isl_union_map
*order
;
294 set
= isl_set_universe(isl_space_copy(array
->space
));
295 uset
= isl_union_set_from_set(set
);
296 uset
= isl_union_map_domain(
297 isl_union_map_intersect_range(isl_union_map_copy(accesses
),
299 order
= isl_union_map_copy(prog
->scop
->tagged_dep_order
);
300 order
= isl_union_map_intersect_domain(order
, uset
);
301 order
= isl_union_map_zip(order
);
302 order
= isl_union_set_unwrap(isl_union_map_domain(order
));
303 order
= remove_independences(prog
, array
, order
);
304 array
->dep_order
= order
;
306 if (gpu_array_is_scalar(array
) && !array
->has_compound_element
)
309 prog
->array_order
= isl_union_map_union(prog
->array_order
,
310 isl_union_map_copy(array
->dep_order
));
313 isl_union_map_free(accesses
);
316 /* Construct a gpu_array_info for each array referenced by prog->scop and
317 * collect them in prog->array.
319 * The sizes are based on the extents and the set of possibly accessed
320 * elements by "prog".
321 * If there are any member accesses involved, then they are first mapped
322 * to the outer arrays of structs.
324 * If we are allowing live range reordering, then also set
325 * the dep_order field. Otherwise leave it NULL.
327 static int collect_array_info(struct gpu_prog
*prog
)
331 isl_union_set
*arrays
;
333 arrays
= isl_union_map_range(isl_union_map_copy(prog
->read
));
334 arrays
= isl_union_set_union(arrays
,
335 isl_union_map_range(isl_union_map_copy(prog
->may_write
)));
337 arrays
= isl_union_set_apply(arrays
,
338 isl_union_map_copy(prog
->to_outer
));
340 arrays
= isl_union_set_coalesce(arrays
);
342 prog
->n_array
= prog
->scop
->pet
->n_array
;
343 prog
->array
= isl_calloc_array(prog
->ctx
,
344 struct gpu_array_info
, prog
->n_array
);
346 for (i
= 0; i
< prog
->scop
->pet
->n_array
; ++i
)
347 if (extract_array_info(prog
, &prog
->array
[i
],
348 prog
->scop
->pet
->arrays
[i
], arrays
) < 0)
351 isl_union_set_free(arrays
);
353 if (prog
->scop
->options
->live_range_reordering
)
354 collect_order_dependences(prog
);
359 static void free_array_info(struct gpu_prog
*prog
)
363 for (i
= 0; i
< prog
->n_array
; ++i
) {
364 int n_index
= prog
->array
[i
].n_index
;
365 free(prog
->array
[i
].type
);
366 free(prog
->array
[i
].name
);
367 for (j
= 0; j
< n_index
; ++j
)
368 isl_pw_aff_free(prog
->array
[i
].bound
[j
]);
369 isl_space_free(prog
->array
[i
].space
);
370 isl_set_free(prog
->array
[i
].extent
);
371 free(prog
->array
[i
].bound
);
372 free(prog
->array
[i
].refs
);
373 isl_union_map_free(prog
->array
[i
].dep_order
);
378 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
379 * as an array or through a pointer reference, but as a single data element.
380 * At the moment, scalars are represented as zero-dimensional arrays.
381 * Note that the single data element may be an entire structure.
383 int gpu_array_is_scalar(struct gpu_array_info
*array
)
385 return array
->n_index
== 0;
388 /* Is "array" a read-only scalar?
390 int gpu_array_is_read_only_scalar(struct gpu_array_info
*array
)
392 return array
->read_only_scalar
;
395 /* Return the set of parameter values for which the array has a positive
396 * size in all dimensions.
397 * If the sizes are only valid for some parameter values, then those
398 * constraints are also taken into account.
400 __isl_give isl_set
*gpu_array_positive_size_guard(struct gpu_array_info
*array
)
406 space
= isl_space_params(isl_space_copy(array
->space
));
407 guard
= isl_set_universe(space
);
409 for (i
= 0; i
< array
->n_index
; ++i
) {
411 isl_set
*guard_i
, *zero
;
413 bound
= isl_pw_aff_copy(array
->bound
[i
]);
414 guard_i
= isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound
));
415 zero
= isl_pw_aff_zero_set(bound
);
416 guard_i
= isl_set_subtract(guard_i
, zero
);
417 guard
= isl_set_intersect(guard
, guard_i
);
423 /* Internal data structure for extract_size_of_type.
424 * "type" specifies the name of the space that we want to extract.
425 * "res" is used to store the subset of that space.
427 struct ppcg_extract_size_data
{
432 /* This function is called for each set in a union_set.
433 * If the name of the set matches data->type, we store the
436 static int extract_size_of_type(__isl_take isl_set
*size
, void *user
)
438 struct ppcg_extract_size_data
*data
= user
;
441 name
= isl_set_get_tuple_name(size
);
442 if (name
&& !strcmp(name
, data
->type
)) {
451 /* Given a union map { kernel[i] -> *[...] },
452 * return the range in the space called "type" for the kernel with
453 * sequence number "id".
455 static __isl_give isl_set
*extract_sizes(__isl_keep isl_union_map
*sizes
,
456 const char *type
, int id
)
460 isl_union_set
*local_sizes
;
461 struct ppcg_extract_size_data data
= { type
, NULL
};
466 space
= isl_union_map_get_space(sizes
);
467 space
= isl_space_set_from_params(space
);
468 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
469 space
= isl_space_set_tuple_name(space
, isl_dim_set
, "kernel");
470 dom
= isl_set_universe(space
);
471 dom
= isl_set_fix_si(dom
, isl_dim_set
, 0, id
);
473 local_sizes
= isl_union_set_apply(isl_union_set_from_set(dom
),
474 isl_union_map_copy(sizes
));
475 isl_union_set_foreach_set(local_sizes
, &extract_size_of_type
, &data
);
476 isl_union_set_free(local_sizes
);
480 /* Given a singleton set, extract the first (at most *len) elements
481 * of the single integer tuple into *sizes and update *len if needed.
483 static void read_sizes_from_set(__isl_take isl_set
*set
, int *sizes
, int *len
)
491 dim
= isl_set_dim(set
, isl_dim_set
);
495 for (i
= 0; i
< *len
; ++i
) {
498 v
= isl_set_plain_get_val_if_fixed(set
, isl_dim_set
, i
);
501 sizes
[i
] = isl_val_get_num_si(v
);
508 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
509 * if the option debug->dump_sizes is set.
511 static void set_used_sizes(struct gpu_gen
*gen
, const char *type
, int id
,
518 if (!gen
->options
->debug
->dump_sizes
)
521 space
= isl_union_map_get_space(gen
->used_sizes
);
522 space
= isl_space_set_from_params(space
);
523 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
524 space
= isl_space_set_tuple_name(space
, isl_dim_set
, "kernel");
525 space
= isl_space_from_domain(space
);
526 space
= isl_space_add_dims(space
, isl_dim_out
, len
);
527 space
= isl_space_set_tuple_name(space
, isl_dim_out
, type
);
529 map
= isl_map_universe(space
);
530 map
= isl_map_fix_si(map
, isl_dim_in
, 0, id
);
531 for (i
= 0; i
< len
; ++i
)
532 map
= isl_map_fix_si(map
, isl_dim_out
, i
, sizes
[i
]);
534 gen
->used_sizes
= isl_union_map_add_map(gen
->used_sizes
, map
);
537 /* Extract user specified "tile" sizes from the "sizes" command line option,
538 * defaulting to option->tile_size in each dimension.
539 * *tile_len contains the maximum number of tile sizes needed.
540 * Update *tile_len to the number of specified tile sizes, if any, and
541 * return a pointer to the tile sizes (or NULL on error).
542 * Add the effectively used sizes to gen->used_sizes.
544 static int *read_tile_sizes(struct gpu_gen
*gen
, int *tile_len
)
550 tile_size
= isl_alloc_array(gen
->ctx
, int, *tile_len
);
553 for (n
= 0; n
< *tile_len
; ++n
)
554 tile_size
[n
] = gen
->options
->tile_size
;
556 size
= extract_sizes(gen
->sizes
, "tile", gen
->kernel_id
);
557 read_sizes_from_set(size
, tile_size
, tile_len
);
558 set_used_sizes(gen
, "tile", gen
->kernel_id
, tile_size
, *tile_len
);
563 /* Extract user specified "block" sizes from the "sizes" command line option,
564 * after filling in some potentially useful defaults.
566 static void read_block_sizes(struct ppcg_kernel
*kernel
,
567 __isl_keep isl_union_map
*sizes
)
571 if (kernel
->n_block
> 3)
573 switch (kernel
->n_block
) {
575 kernel
->block_dim
[0] = 512;
578 kernel
->block_dim
[0] = 32;
579 kernel
->block_dim
[1] = 16;
582 kernel
->block_dim
[0] = 32;
583 kernel
->block_dim
[1] = 4;
584 kernel
->block_dim
[2] = 4;
588 size
= extract_sizes(sizes
, "block", kernel
->id
);
589 read_sizes_from_set(size
, kernel
->block_dim
, &kernel
->n_block
);
592 /* Extract user specified "grid" sizes from the "sizes" command line option,
593 * after filling in some potentially useful defaults.
595 static void read_grid_sizes(struct ppcg_kernel
*kernel
,
596 __isl_keep isl_union_map
*sizes
)
600 if (kernel
->n_grid
> 2)
602 switch (kernel
->n_grid
) {
604 kernel
->grid_dim
[0] = 32768;
607 kernel
->grid_dim
[0] = 256;
608 kernel
->grid_dim
[1] = 256;
612 size
= extract_sizes(sizes
, "grid", kernel
->id
);
613 read_sizes_from_set(size
, kernel
->grid_dim
, &kernel
->n_grid
);
616 /* Extract user specified grid and block sizes from the "sizes"
617 * command line option after filling in some potentially useful defaults.
618 * Add the effectively used sizes to gen->used_sizes.
620 static void read_grid_and_block_sizes(struct gpu_gen
*gen
)
622 struct ppcg_kernel
*kernel
= gen
->kernel
;
624 read_block_sizes(kernel
, gen
->sizes
);
625 read_grid_sizes(kernel
, gen
->sizes
);
626 set_used_sizes(gen
, "block", kernel
->id
,
627 kernel
->block_dim
, kernel
->n_block
);
628 set_used_sizes(gen
, "grid", kernel
->id
,
629 kernel
->grid_dim
, kernel
->n_grid
);
632 static void *free_stmts(struct gpu_stmt
*stmts
, int n
)
639 for (i
= 0; i
< n
; ++i
) {
640 struct gpu_stmt_access
*access
, *next
;
642 for (access
= stmts
[i
].accesses
; access
; access
= next
) {
644 isl_id_free(access
->ref_id
);
645 isl_map_free(access
->access
);
646 isl_map_free(access
->tagged_access
);
650 isl_id_free(stmts
[i
].id
);
657 /* Construct a map from a domain of dimensionality "len"
658 * to a domain of dimensionality "len" + "tile_len" that tiles
659 * the "tile_len" coordinates starting at "first".
660 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
661 * "dim" prescribes the parameters.
663 static __isl_give isl_map
*tile(__isl_take isl_space
*dim
, int len
,
664 int first
, int tile_len
, int *tile_size
)
671 dim
= isl_space_add_dims(dim
, isl_dim_in
, len
);
672 dim
= isl_space_add_dims(dim
, isl_dim_out
, len
+ tile_len
);
673 bmap
= isl_basic_map_universe(isl_space_copy(dim
));
674 ls
= isl_local_space_from_space(dim
);
676 for (i
= 0; i
< len
- tile_len
; ++i
) {
677 int j
= i
< first
? i
: i
+ tile_len
;
678 int k
= i
< first
? i
: i
+ 2 * tile_len
;
680 c
= isl_equality_alloc(isl_local_space_copy(ls
));
681 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, j
, -1);
682 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, k
, 1);
683 bmap
= isl_basic_map_add_constraint(bmap
, c
);
686 for (i
= 0; i
< tile_len
; ++i
) {
687 c
= isl_equality_alloc(isl_local_space_copy(ls
));
688 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
,
690 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
691 first
+ i
, tile_size
[i
]);
692 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
693 first
+ i
+ tile_len
, 1);
694 bmap
= isl_basic_map_add_constraint(bmap
, c
);
696 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
697 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
698 first
+ i
+ tile_len
, 1);
699 bmap
= isl_basic_map_add_constraint(bmap
, c
);
701 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
702 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
703 first
+ i
+ tile_len
, -1);
704 c
= isl_constraint_set_constant_si(c
, tile_size
[i
] - 1);
705 bmap
= isl_basic_map_add_constraint(bmap
, c
);
708 isl_local_space_free(ls
);
710 return isl_map_from_basic_map(bmap
);
713 /* Construct a map from a domain of dimensionality "len"
714 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
715 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
716 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
717 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
718 * that are projected out at the end.
719 * "dim" prescribes the parameters.
721 static __isl_give isl_map
*wrap(__isl_take isl_space
*dim
, int len
,
722 int first
, int wrap_len
, int *wrap_size
)
729 dim
= isl_space_add_dims(dim
, isl_dim_in
, len
);
730 dim
= isl_space_add_dims(dim
, isl_dim_out
, len
+ 2 * wrap_len
);
731 bmap
= isl_basic_map_universe(isl_space_copy(dim
));
732 ls
= isl_local_space_from_space(dim
);
734 for (i
= 0; i
< len
; ++i
) {
735 int k
= i
< first
+ wrap_len
? i
: i
+ 2 * wrap_len
;
737 c
= isl_equality_alloc(isl_local_space_copy(ls
));
738 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, -1);
739 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, k
, 1);
740 bmap
= isl_basic_map_add_constraint(bmap
, c
);
743 for (i
= 0; i
< wrap_len
; ++i
) {
744 c
= isl_equality_alloc(isl_local_space_copy(ls
));
745 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
747 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
748 first
+ wrap_len
+ i
, 1);
749 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
750 first
+ 2 * wrap_len
+ i
, wrap_size
[i
]);
751 bmap
= isl_basic_map_add_constraint(bmap
, c
);
753 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
754 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
755 first
+ wrap_len
+ i
, 1);
756 bmap
= isl_basic_map_add_constraint(bmap
, c
);
758 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
759 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
760 first
+ wrap_len
+ i
, -1);
761 c
= isl_constraint_set_constant_si(c
, wrap_size
[i
] - 1);
762 bmap
= isl_basic_map_add_constraint(bmap
, c
);
765 isl_local_space_free(ls
);
767 bmap
= isl_basic_map_project_out(bmap
, isl_dim_out
,
768 first
+ 2 * wrap_len
, wrap_len
);
770 return isl_map_from_basic_map(bmap
);
773 /* Tile the B loops over the tile sizes and then tile/wrap
774 * the T1 loops over the blocks.
776 static __isl_give isl_union_map
*tile_schedule(struct gpu_gen
*gen
,
777 __isl_take isl_union_map
*sched
)
779 struct ppcg_kernel
*kernel
= gen
->kernel
;
781 isl_map
*tiling
, *block_tiling
;
783 dim
= isl_union_map_get_space(sched
);
784 tiling
= tile(isl_space_copy(dim
), gen
->untiled_len
,
785 gen
->tile_first
, kernel
->tile_len
, kernel
->tile_size
);
787 if (gen
->options
->wrap
)
788 block_tiling
= wrap(dim
, gen
->untiled_len
+ kernel
->tile_len
,
789 gen
->tile_first
, kernel
->n_grid
, kernel
->grid_dim
);
791 block_tiling
= tile(dim
, gen
->untiled_len
+ kernel
->tile_len
,
792 gen
->tile_first
, kernel
->n_grid
, kernel
->grid_dim
);
794 gen
->tiled_len
= gen
->untiled_len
+ kernel
->tile_len
+ kernel
->n_grid
;
796 tiling
= isl_map_apply_range(tiling
, block_tiling
);
798 sched
= isl_union_map_apply_range(sched
,
799 isl_union_map_from_map(tiling
));
801 gen
->shared_len
= gen
->tile_first
+ kernel
->tile_len
+ kernel
->n_grid
;
806 /* Equate the "T1P" iterators in the tiled schedule "sched"
807 * to the block dimensions.
809 static __isl_give isl_union_map
*parametrize_tiled_schedule(
810 struct gpu_gen
*gen
, __isl_take isl_union_map
*sched
)
812 struct ppcg_kernel
*kernel
= gen
->kernel
;
816 dim
= isl_union_map_get_space(sched
);
817 par
= parametrization(dim
, gen
->tiled_len
,
818 gen
->tile_first
+ kernel
->n_grid
, kernel
->block_ids
);
819 sched
= isl_union_map_intersect_range(sched
,
820 isl_union_set_from_set(par
));
825 /* Tile/wrap the P1 loops over the threads.
827 static __isl_give isl_union_map
*thread_tile_schedule(struct gpu_gen
*gen
,
828 __isl_take isl_union_map
*sched
)
830 struct ppcg_kernel
*kernel
= gen
->kernel
;
835 dim
= isl_union_map_get_space(sched
);
837 if (gen
->options
->wrap
)
838 tiling
= wrap(isl_space_copy(dim
), gen
->tiled_len
,
839 gen
->shared_len
, kernel
->n_block
, kernel
->block_dim
);
841 tiling
= tile(isl_space_copy(dim
), gen
->tiled_len
,
842 gen
->shared_len
, kernel
->n_block
, kernel
->block_dim
);
843 gen
->thread_tiled_len
= gen
->tiled_len
+ kernel
->n_block
;
845 sched
= isl_union_map_apply_range(sched
,
846 isl_union_map_from_map(tiling
));
848 par
= parametrization(dim
, gen
->thread_tiled_len
,
849 gen
->tile_first
+ kernel
->tile_len
+
850 kernel
->n_grid
+ kernel
->n_block
, kernel
->thread_ids
);
851 sched
= isl_union_map_intersect_range(sched
,
852 isl_union_set_from_set(par
));
854 gen
->shared_len
= gen
->tile_first
+ kernel
->tile_len
+ kernel
->n_grid
;
859 /* If the user asked for it, scale the shared memory tile loops
860 * (T1T and T2) of "sched" by kernel->tile_size[i].
861 * If we are not performing "wrapping", then additionally scale the T1P
862 * loops by kernel->grid_dim[i].
864 static __isl_give isl_union_map
*scale_tile_loops(struct gpu_gen
*gen
,
865 __isl_take isl_union_map
*sched
)
867 struct ppcg_kernel
*kernel
= gen
->kernel
;
870 isl_basic_map
*scale
;
874 if (!gen
->options
->scale_tile_loops
)
877 dim
= isl_union_map_get_space(sched
);
878 dim
= isl_space_add_dims(dim
, isl_dim_in
, gen
->tiled_len
);
879 dim
= isl_space_add_dims(dim
, isl_dim_out
, gen
->tiled_len
);
880 scale
= isl_basic_map_universe(isl_space_copy(dim
));
881 ls
= isl_local_space_from_space(dim
);
883 for (i
= 0; i
< gen
->tiled_len
; ++i
) {
886 if (i
>= gen
->tile_first
&&
887 i
< gen
->tile_first
+ kernel
->n_grid
) {
888 f
= kernel
->tile_size
[i
- gen
->tile_first
];
889 if (!gen
->options
->wrap
)
890 f
*= kernel
->grid_dim
[i
- gen
->tile_first
];
891 } else if (i
>= gen
->tile_first
+ kernel
->n_grid
&&
892 i
< gen
->tile_first
+ kernel
->n_grid
+
894 f
= kernel
->tile_size
[i
-
895 (gen
->tile_first
+ kernel
->n_grid
)];
898 c
= isl_equality_alloc(isl_local_space_copy(ls
));
899 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, f
);
900 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
901 scale
= isl_basic_map_add_constraint(scale
, c
);
904 isl_local_space_free(ls
);
906 sched
= isl_union_map_apply_range(sched
,
907 isl_union_map_from_map(isl_map_from_basic_map(scale
)));
912 /* If we are not performing "wrapping" and if the user asked for it,
913 * scale the thread tile loops (P1T) of "sched" by kernel->block_dim[i].
915 static __isl_give isl_union_map
*scale_thread_tile_loops(struct gpu_gen
*gen
,
916 __isl_take isl_union_map
*sched
)
920 isl_basic_map
*scale
;
924 if (gen
->options
->wrap
)
926 if (!gen
->options
->scale_tile_loops
)
929 dim
= isl_union_map_get_space(sched
);
930 dim
= isl_space_add_dims(dim
, isl_dim_in
, gen
->thread_tiled_len
);
931 dim
= isl_space_add_dims(dim
, isl_dim_out
, gen
->thread_tiled_len
);
932 scale
= isl_basic_map_universe(isl_space_copy(dim
));
933 ls
= isl_local_space_from_space(dim
);
935 for (i
= 0; i
< gen
->thread_tiled_len
; ++i
) {
938 if (i
>= gen
->shared_len
&&
939 i
< gen
->shared_len
+ gen
->kernel
->n_block
)
940 f
= gen
->kernel
->block_dim
[i
- gen
->shared_len
];
942 c
= isl_equality_alloc(isl_local_space_copy(ls
));
943 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, f
);
944 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
945 scale
= isl_basic_map_add_constraint(scale
, c
);
948 isl_local_space_free(ls
);
950 sched
= isl_union_map_apply_range(sched
,
951 isl_union_map_from_map(isl_map_from_basic_map(scale
)));
956 /* If we are not performing "wrapping" and if the user asked for it,
957 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
959 static __isl_give isl_union_map
*scale_access_tile_loops(struct gpu_gen
*gen
,
960 __isl_take isl_union_map
*sched
, int len
, int first
, int n_tile
)
964 isl_basic_map
*scale
;
968 if (gen
->options
->wrap
)
970 if (!gen
->options
->scale_tile_loops
)
973 dim
= isl_union_map_get_space(sched
);
974 dim
= isl_space_add_dims(dim
, isl_dim_in
, len
);
975 dim
= isl_space_add_dims(dim
, isl_dim_out
, len
);
976 scale
= isl_basic_map_universe(isl_space_copy(dim
));
977 ls
= isl_local_space_from_space(dim
);
979 for (i
= 0; i
< len
; ++i
) {
982 if (i
>= first
&& i
< first
+ n_tile
)
983 f
= gen
->kernel
->block_dim
[i
- first
];
985 c
= isl_equality_alloc(isl_local_space_copy(ls
));
986 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, f
);
987 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
988 scale
= isl_basic_map_add_constraint(scale
, c
);
991 isl_local_space_free(ls
);
993 sched
= isl_union_map_apply_range(sched
,
994 isl_union_map_from_map(isl_map_from_basic_map(scale
)));
999 /* Add parameters p[i] with identifiers "ids" to "set",
1000 * with bounds to 0 <= p[i] < size[i].
1002 __isl_give isl_set
*add_bounded_parameters(__isl_take isl_set
*set
,
1003 int *size
, __isl_keep isl_id_list
*ids
)
1008 len
= isl_id_list_n_id(ids
);
1009 nparam
= isl_set_dim(set
, isl_dim_param
);
1010 set
= isl_set_add_dims(set
, isl_dim_param
, len
);
1012 for (i
= 0; i
< len
; ++i
) {
1015 id
= isl_id_list_get_id(ids
, i
);
1016 set
= isl_set_set_dim_id(set
, isl_dim_param
, nparam
+ i
, id
);
1017 set
= isl_set_lower_bound_si(set
, isl_dim_param
, nparam
+ i
, 0);
1018 set
= isl_set_upper_bound_si(set
, isl_dim_param
,
1019 nparam
+ i
, size
[i
] - 1);
1025 /* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
1028 * { : 0 <= p[i] < size[i] }
1030 * or an overapproximation.
1032 static __isl_give isl_set
*add_bounded_parameters_dynamic(
1033 __isl_take isl_set
*set
, __isl_keep isl_multi_pw_aff
*size
,
1034 __isl_keep isl_id_list
*ids
)
1039 isl_local_space
*ls
;
1041 len
= isl_multi_pw_aff_dim(size
, isl_dim_out
);
1042 nparam
= isl_set_dim(set
, isl_dim_param
);
1043 set
= isl_set_add_dims(set
, isl_dim_param
, len
);
1045 for (i
= 0; i
< len
; ++i
) {
1048 id
= isl_id_list_get_id(ids
, i
);
1049 set
= isl_set_set_dim_id(set
, isl_dim_param
, nparam
+ i
, id
);
1052 space
= isl_space_params(isl_set_get_space(set
));
1053 ls
= isl_local_space_from_space(space
);
1054 for (i
= 0; i
< len
; ++i
) {
1055 isl_pw_aff
*param
, *size_i
, *zero
;
1058 param
= isl_pw_aff_var_on_domain(isl_local_space_copy(ls
),
1059 isl_dim_param
, nparam
+ i
);
1061 size_i
= isl_multi_pw_aff_get_pw_aff(size
, i
);
1062 bound
= isl_pw_aff_lt_set(isl_pw_aff_copy(param
), size_i
);
1063 bound
= isl_set_from_basic_set(isl_set_simple_hull(bound
));
1064 set
= isl_set_intersect_params(set
, bound
);
1066 zero
= isl_pw_aff_zero_on_domain(isl_local_space_copy(ls
));
1067 bound
= isl_pw_aff_ge_set(param
, zero
);
1068 set
= isl_set_intersect_params(set
, bound
);
1070 isl_local_space_free(ls
);
1075 /* Construct a map from an access to group->array to the corresponding
1076 * shared/private memory tile.
1077 * The map is of the form
1079 * { [D[i] -> A[a]] -> T[t] }
1081 * where D represents the initial shared_len dimensions
1082 * of the computed schedule.
1084 static __isl_give isl_map
*shift_access(struct gpu_array_ref_group
*group
)
1086 struct gpu_array_tile
*tile
;
1087 isl_multi_aff
*tiling
;
1089 tile
= group
->private_tile
;
1091 tile
= group
->shared_tile
;
1093 tiling
= isl_multi_aff_copy(tile
->tiling
);
1095 return isl_map_from_multi_aff(tiling
);
1098 /* Given a schedule that iterates over all elements in a piece of an array,
1099 * perform tiling/wrapping over the threads.
1101 * In particular, we tile the final iterators so that the final thread
1102 * dimension runs over the final array dimension.
1103 * However, if those final iterators have only a single iteration,
1104 * we try to tile earlier iterators instead.
1106 static __isl_give isl_map
*tile_access_schedule(struct gpu_gen
*gen
,
1107 __isl_take isl_map
*sched
)
1110 isl_union_map
*usched
;
1113 unsigned nvar
= isl_map_dim(sched
, isl_dim_out
);
1117 n_tile
= gen
->kernel
->n_block
;
1118 if (n_tile
> nvar
) {
1120 sched
= isl_map_insert_dims(sched
,
1121 isl_dim_out
, 0, n_tile
- nvar
);
1122 for (i
= 0; i
< n_tile
- nvar
; ++i
)
1123 sched
= isl_map_fix_si(sched
, isl_dim_out
, i
, 0);
1127 first
= nvar
- n_tile
;
1129 for (; first
> 0; first
--)
1130 if (!map_plain_is_fixed(sched
, isl_dim_out
, first
+ n_tile
- 1))
1133 dim
= isl_map_get_space(sched
);
1134 dim
= isl_space_params(dim
);
1135 if (gen
->options
->wrap
)
1136 tiling
= wrap(isl_space_copy(dim
), nvar
, first
,
1137 n_tile
, gen
->kernel
->block_dim
);
1139 tiling
= tile(isl_space_copy(dim
), nvar
, first
,
1140 n_tile
, gen
->kernel
->block_dim
);
1141 sched
= isl_map_apply_range(sched
, tiling
);
1143 par
= parametrization(dim
, nvar
+ n_tile
, first
+ n_tile
,
1144 gen
->kernel
->thread_ids
);
1145 sched
= isl_map_intersect_range(sched
, par
);
1147 usched
= isl_union_map_from_map(sched
);
1148 usched
= scale_access_tile_loops(gen
, usched
, nvar
+ n_tile
,
1150 sched
= isl_map_from_union_map(usched
);
1155 /* Return the union of all tagged access relations in the group.
1157 static __isl_give isl_union_map
*group_tagged_access_relation(
1158 struct gpu_array_ref_group
*group
)
1161 isl_union_map
*access
;
1163 access
= isl_union_map_empty(isl_map_get_space(group
->access
));
1164 for (i
= 0; i
< group
->n_ref
; ++i
) {
1167 map_i
= isl_map_copy(group
->refs
[i
]->tagged_access
);
1168 access
= isl_union_map_union(access
,
1169 isl_union_map_from_map(map_i
));
1175 /* Return the extent of "array", recomputed from the bounds.
1176 * The recomputed extent may be simpler than the original extent.
1178 static __isl_give isl_set
*array_extent(struct gpu_array_info
*array
)
1183 isl_local_space
*ls
;
1186 id
= isl_set_get_tuple_id(array
->extent
);
1187 space
= isl_set_get_space(array
->extent
);
1188 extent
= isl_set_universe(isl_space_copy(space
));
1189 ls
= isl_local_space_from_space(space
);
1190 for (i
= 0; i
< array
->n_index
; ++i
) {
1196 extent
= isl_set_lower_bound_si(extent
, isl_dim_set
, i
, 0);
1198 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
1200 index
= isl_pw_aff_from_aff(aff
);
1201 bound
= isl_pw_aff_copy(array
->bound
[i
]);
1202 bound
= isl_pw_aff_from_range(bound
);
1203 bound
= isl_pw_aff_add_dims(bound
, isl_dim_in
, array
->n_index
);
1204 bound
= isl_pw_aff_set_tuple_id(bound
, isl_dim_in
,
1206 lt
= isl_pw_aff_lt_set(index
, bound
);
1207 extent
= isl_set_intersect(extent
, lt
);
1209 isl_local_space_free(ls
);
1215 /* Return a map from the first shared_len dimensions of the computed
1216 * schedule to the array tile in
1217 * global memory that corresponds to the shared memory copy.
1219 * In particular, return a map
1225 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
1229 * 0 <= a <= array_size - 1 (2)
1231 * Note that if some stride has been detected (i.e., when
1232 * group->shared_tile->bound[i].shift is set), then a in (1) refers
1233 * to the shifted and scaled down version.
1235 * Constraints (1) are obtained by mapping the size constraints on the
1236 * shared/private memory tile back to the access relation.
1237 * Constraints (2) are obtained from the (recomputed) extent.
1239 static __isl_give isl_map
*group_tile(struct gpu_array_ref_group
*group
)
1242 int n_index
= group
->array
->n_index
;
1248 space
= isl_multi_aff_get_space(group
->shared_tile
->tiling
);
1249 space
= isl_space_range(space
);
1250 local
= isl_set_universe(space
);
1251 for (i
= 0; i
< n_index
; ++i
) {
1254 local
= isl_set_lower_bound_si(local
, isl_dim_set
, i
, 0);
1255 bound
= isl_val_copy(group
->shared_tile
->bound
[i
].size
);
1256 bound
= isl_val_sub_ui(bound
, 1);
1257 local
= isl_set_upper_bound_val(local
, isl_dim_set
, i
, bound
);
1259 local
= isl_set_preimage_multi_aff(local
,
1260 isl_multi_aff_copy(group
->shared_tile
->tiling
));
1261 tile
= isl_set_unwrap(local
);
1262 extent
= array_extent(group
->array
);
1263 tile
= isl_map_intersect_range(tile
, extent
);
1268 /* Given a mapping "iterator_map" from the AST schedule to a domain,
1269 * return the corresponding mapping from the AST schedule to
1270 * to the first shared_len dimensions of the schedule computed by PPCG.
1272 static __isl_give isl_pw_multi_aff
*compute_sched_to_shared(struct gpu_gen
*gen
,
1273 __isl_take isl_pw_multi_aff
*iterator_map
)
1275 isl_union_map
*umap
;
1277 isl_map
*map
, *sched
;;
1279 space
= isl_space_range(isl_pw_multi_aff_get_space(iterator_map
));
1280 space
= isl_space_from_domain(space
);
1281 space
= isl_space_add_dims(space
, isl_dim_out
, gen
->shared_len
);
1283 umap
= isl_union_map_copy(gen
->shared_sched
);
1284 umap
= isl_union_map_apply_range(umap
,
1285 isl_union_map_copy(gen
->shared_proj
));
1286 map
= isl_union_map_extract_map(umap
, space
);
1287 isl_union_map_free(umap
);
1289 sched
= isl_map_preimage_domain_pw_multi_aff(map
, iterator_map
);
1290 sched
= isl_map_detect_equalities(sched
);
1292 return isl_pw_multi_aff_from_map(sched
);
1295 /* Set unroll[j] if the input dimension j is involved in
1296 * the index expression represented by ma.
1298 static int check_unroll(__isl_take isl_set
*set
, __isl_take isl_multi_aff
*ma
,
1302 int n_in
= isl_multi_aff_dim(ma
, isl_dim_in
);
1303 int n_out
= isl_multi_aff_dim(ma
, isl_dim_out
);
1306 for (i
= 0; i
< n_out
; ++i
) {
1309 aff
= isl_multi_aff_get_aff(ma
, i
);
1310 for (j
= 0; j
< n_in
; ++j
)
1311 if (isl_aff_involves_dims(aff
, isl_dim_in
, j
, 1))
1317 isl_multi_aff_free(ma
);
1321 /* Given an array pos mapping input dimensions to the corresponding
1322 * output dimension, construct the corresponding map.
1324 static __isl_give isl_map
*permutation(__isl_take isl_space
*dim
,
1329 isl_basic_map
*bmap
;
1330 isl_local_space
*ls
;
1332 dim
= isl_space_add_dims(dim
, isl_dim_in
, len
);
1333 dim
= isl_space_add_dims(dim
, isl_dim_out
, len
);
1334 bmap
= isl_basic_map_universe(isl_space_copy(dim
));
1335 ls
= isl_local_space_from_space(dim
);
1337 for (i
= 0; i
< len
; ++i
) {
1338 c
= isl_equality_alloc(isl_local_space_copy(ls
));
1339 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
,
1341 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, pos
[i
],
1343 bmap
= isl_basic_map_add_constraint(bmap
, c
);
1345 isl_local_space_free(ls
);
1347 return isl_map_from_basic_map(bmap
);
1350 /* Remove the private tiles from all array reference groups,
1351 * except for the groups of arrays that are marked force_private.
1353 static void remove_private_tiles(struct gpu_gen
*gen
)
1357 for (i
= 0; i
< gen
->kernel
->n_array
; ++i
) {
1358 struct gpu_local_array_info
*local
= &gen
->kernel
->array
[i
];
1360 if (local
->force_private
)
1363 for (j
= 0; j
< local
->n_group
; ++j
) {
1364 struct gpu_array_ref_group
*group
= local
->groups
[j
];
1366 group
->private_tile
=
1367 gpu_array_tile_free(group
->private_tile
);
1372 /* Find all loops involved in any of the index expressions for any of
1373 * the private accesses, move them innermost and then mark them as
1374 * requiring unrolling by setting gen->first_unroll.
1375 * The loops involved should all be parallel because of the checks
1376 * we performed in check_private_group_access. Moving them innermost
1377 * is therefore a valid transformation.
1379 * If any of the arrays are marked force_private, however, then
1380 * those loops may not be parallel with respect to the marked arrays.
1381 * If any of the loops would have to be moved innermost for the
1382 * (non forced) private accesses and if there are any force_private
1383 * arrays, then we revert the decision to map the selected arrays
1384 * to private memory. An alternative solution would be to expand
1385 * the force_private arrays.
1387 * Loops up to gen->shared_len are generated before the mapping to
1388 * threads is applied. They should therefore be ignored.
1390 * We compute the hidden equalities of the schedule first
1391 * since we will need them in our calls to isl_pw_multi_aff_from_map
1392 * and because we want to make sure that the same equalities
1393 * are also available to the code generator.
1395 static __isl_give isl_union_map
*interchange_for_unroll(struct gpu_gen
*gen
,
1396 __isl_take isl_union_map
*sched
)
1398 struct ppcg_kernel
*kernel
= gen
->kernel
;
1400 int unroll
[gen
->thread_tiled_len
];
1401 int perm
[gen
->thread_tiled_len
];
1404 int len
= gen
->shared_len
+ kernel
->n_parallel
+ kernel
->n_block
;
1406 gen
->first_unroll
= -1;
1408 sched
= isl_union_map_detect_equalities(sched
);
1409 for (i
= 0; i
< gen
->thread_tiled_len
; ++i
)
1411 for (i
= 0; i
< kernel
->n_array
; ++i
) {
1412 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
1414 for (j
= 0; j
< array
->n_group
; ++j
) {
1415 isl_union_map
*access
;
1417 isl_pw_multi_aff
*pma
;
1419 if (!array
->groups
[j
]->private_tile
)
1422 access
= gpu_array_ref_group_access_relation(
1423 array
->groups
[j
], 1, 1);
1424 access
= isl_union_map_apply_domain(access
,
1425 isl_union_map_copy(sched
));
1427 acc
= isl_map_from_union_map(access
);
1428 pma
= isl_pw_multi_aff_from_map(acc
);
1429 isl_pw_multi_aff_foreach_piece(pma
,
1430 &check_unroll
, unroll
);
1432 isl_pw_multi_aff_free(pma
);
1436 for (i
= gen
->shared_len
; i
< len
; ++i
)
1443 for (i
= len
; i
< gen
->thread_tiled_len
; ++i
)
1447 if (kernel
->any_force_private
) {
1448 remove_private_tiles(gen
);
1453 for (i
= 0; i
< gen
->shared_len
; ++i
)
1455 for (i
= gen
->shared_len
; i
< gen
->thread_tiled_len
; ++i
)
1458 gen
->first_unroll
= j
- gen
->shared_len
;
1459 for (i
= gen
->shared_len
; i
< len
; ++i
)
1463 dim
= isl_union_map_get_space(sched
);
1464 permute
= permutation(dim
, perm
, gen
->thread_tiled_len
);
1465 sched
= isl_union_map_apply_range(sched
,
1466 isl_union_map_from_map(permute
));
1471 /* Construct a map with input the shared tile loops and the loops that
1472 * will be wrapped around the threads that relates these later loops
1473 * to the thread indices and then projects them out.
1475 static __isl_give isl_map
*compute_privatization(struct gpu_gen
*gen
)
1477 struct ppcg_kernel
*kernel
= gen
->kernel
;
1484 dim
= isl_union_map_get_space(gen
->shared_sched
);
1486 if (gen
->options
->wrap
)
1487 tiling
= wrap(isl_space_copy(dim
),
1488 gen
->shared_len
+ kernel
->n_block
,
1489 gen
->shared_len
, kernel
->n_block
, kernel
->block_dim
);
1491 tiling
= tile(isl_space_copy(dim
),
1492 gen
->shared_len
+ kernel
->n_block
,
1493 gen
->shared_len
, kernel
->n_block
, kernel
->block_dim
);
1497 par
= parametrization(dim
, gen
->shared_len
+ 2 * kernel
->n_block
,
1498 gen
->tile_first
+ kernel
->tile_len
+
1499 kernel
->n_grid
+ kernel
->n_block
, kernel
->thread_ids
);
1501 priv
= isl_map_align_params(priv
, isl_set_get_space(par
));
1502 priv
= isl_map_intersect_range(priv
, par
);
1504 dim
= isl_map_get_space(priv
);
1505 dim
= isl_space_drop_dims(dim
, isl_dim_in
, 0, isl_space_dim(dim
, isl_dim_in
));
1506 dim
= isl_space_drop_dims(dim
, isl_dim_out
, 0, isl_space_dim(dim
, isl_dim_out
));
1507 proj
= projection(dim
, gen
->shared_len
+ 2 * kernel
->n_block
,
1510 priv
= isl_map_apply_range(priv
, proj
);
1515 /* If max_shared_memory is not set to infinity (-1), then make
1516 * sure that the total amount of shared memory required by the
1517 * array reference groups mapped to shared memory is no larger
1518 * than this maximum.
1520 * We apply a greedy approach and discard (keep in global memory)
1521 * those groups that would result in a total memory size that
1522 * is larger than the maximum.
1524 * This function should be called after any function that may
1525 * affect the decision on whether to place a reference group
1526 * in private, shared or global memory.
1528 static void check_shared_memory_bound(struct gpu_gen
*gen
)
1531 isl_val
*left
, *size
;
1533 if (gen
->options
->max_shared_memory
< 0)
1536 left
= isl_val_int_from_si(gen
->ctx
, gen
->options
->max_shared_memory
);
1538 for (i
= 0; i
< gen
->kernel
->n_array
; ++i
) {
1539 struct gpu_local_array_info
*local
= &gen
->kernel
->array
[i
];
1541 for (j
= 0; j
< local
->n_group
; ++j
) {
1542 struct gpu_array_ref_group
*group
;
1544 group
= local
->groups
[j
];
1545 if (group
->private_tile
)
1547 if (!group
->shared_tile
)
1550 size
= gpu_array_tile_size(group
->shared_tile
);
1551 size
= isl_val_mul_ui(size
, local
->array
->size
);
1553 if (isl_val_le(size
, left
)) {
1554 left
= isl_val_sub(left
, size
);
1559 group
->shared_tile
=
1560 gpu_array_tile_free(group
->shared_tile
);
1567 /* Compute a tiling for all the array reference groups.
1569 static void compute_group_tilings(struct gpu_gen
*gen
)
1573 for (i
= 0; i
< gen
->kernel
->n_array
; ++i
) {
1574 struct gpu_local_array_info
*array
= &gen
->kernel
->array
[i
];
1576 for (j
= 0; j
< array
->n_group
; ++j
)
1577 gpu_array_ref_group_compute_tiling(array
->groups
[j
]);
1581 /* Take tiled_sched, project it onto the shared tile loops and
1582 * the loops that will be wrapped over the threads and
1583 * store the result in gen->shared_sched.
1584 * Also compute a projection that projects out the loops that will be
1585 * wrapped over the threads and store this projection in gen->shared_proj.
1587 static void compute_shared_sched(struct gpu_gen
*gen
)
1592 isl_union_map
*sched
;
1594 sched
= isl_union_map_copy(gen
->tiled_sched
);
1596 dim
= isl_union_map_get_space(sched
);
1597 proj
= projection(dim
, gen
->tiled_len
,
1598 gen
->shared_len
+ gen
->kernel
->n_block
);
1599 sched
= isl_union_map_apply_range(sched
, isl_union_map_from_map(proj
));
1601 dim
= isl_union_map_get_space(sched
);
1602 proj
= projection(dim
, gen
->shared_len
+ gen
->kernel
->n_block
,
1605 gen
->shared_sched
= sched
;
1606 gen
->shared_proj
= isl_union_map_from_map(proj
);
1609 /* Compute the size of a bounding box around the origin and "set",
1610 * where "set" is assumed to contain only non-negative elements.
1611 * In particular, compute the maximal value of "set" in each direction
1614 static __isl_give isl_multi_pw_aff
*extract_size(__isl_take isl_set
*set
,
1615 __isl_take isl_set
*context
)
1618 isl_multi_pw_aff
*mpa
;
1620 context
= isl_set_params(context
);
1621 n
= isl_set_dim(set
, isl_dim_set
);
1622 mpa
= isl_multi_pw_aff_zero(isl_set_get_space(set
));
1623 for (i
= 0; i
< n
; ++i
) {
1628 bound
= isl_set_dim_max(isl_set_copy(set
), i
);
1629 bound
= isl_pw_aff_coalesce(bound
);
1630 bound
= isl_pw_aff_gist(bound
, isl_set_copy(context
));
1632 space
= isl_pw_aff_get_domain_space(bound
);
1633 one
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
1634 one
= isl_aff_add_constant_si(one
, 1);
1635 bound
= isl_pw_aff_add(bound
, isl_pw_aff_from_aff(one
));
1636 mpa
= isl_multi_pw_aff_set_pw_aff(mpa
, i
, bound
);
1639 isl_set_free(context
);
1644 /* Compute the effective grid size as a list of the sizes in each dimension.
1646 * The grid size specified by the user or set by default
1647 * in read_grid_sizes() and applied in tile_schedule(),
1648 * may be too large for the given code in the sense that
1649 * it may contain blocks that don't need to execute anything.
1650 * We therefore don't return this grid size, but instead the
1651 * smallest grid size that ensures that all blocks that actually
1652 * execute code are included in the grid.
1654 * We first extract a description of the grid, i.e., the possible values
1655 * of the block ids, from gen->tiled_sched.
1656 * The block ids are parameters in gen->tiled_sched.
1657 * We simply need to change them into set dimensions.
1659 * Then, for each block dimension, we compute the maximal value of the block id
1662 static __isl_give isl_multi_pw_aff
*extract_grid_size(struct gpu_gen
*gen
,
1663 struct ppcg_kernel
*kernel
)
1668 grid
= isl_union_map_params(isl_union_map_copy(gen
->tiled_sched
));
1669 grid
= isl_set_from_params(grid
);
1670 grid
= isl_set_add_dims(grid
, isl_dim_set
, kernel
->n_grid
);
1671 for (i
= 0; i
< kernel
->n_grid
; ++i
) {
1675 id
= isl_id_list_get_id(kernel
->block_ids
, i
);
1676 pos
= isl_set_find_dim_by_id(grid
, isl_dim_param
, id
);
1679 grid
= isl_set_equate(grid
, isl_dim_param
, pos
, isl_dim_set
, i
);
1680 grid
= isl_set_project_out(grid
, isl_dim_param
, pos
, 1);
1683 return extract_size(grid
, isl_set_copy(kernel
->context
));
1686 /* Compute the size of a fixed bounding box around the origin and "set",
1687 * where "set" is assumed to contain only non-negative elements,
1688 * and store the results in "size".
1689 * In particular, compute the maximal value of "set" in each direction
1692 static void extract_fixed_size(__isl_take isl_set
*set
, int *size
)
1695 isl_local_space
*ls
;
1698 n
= isl_set_dim(set
, isl_dim_set
);
1699 ls
= isl_local_space_from_space(isl_set_get_space(set
));
1700 obj
= isl_aff_zero_on_domain(ls
);
1701 for (i
= 0; i
< n
; ++i
) {
1704 obj
= isl_aff_set_coefficient_si(obj
, isl_dim_in
, i
, 1);
1705 max
= isl_set_max_val(set
, obj
);
1706 size
[i
] = isl_val_get_num_si(max
) + 1;
1708 obj
= isl_aff_set_coefficient_si(obj
, isl_dim_in
, i
, 0);
1714 /* Compute the effective block size as a list of the sizes in each dimension
1715 * and store the sizes in kernel->block_dim.
1717 * The block size specified by the user or set by default
1718 * in read_block_sizes() and applied in thread_tile_schedule(),
1719 * may be too large for the given code in the sense that
1720 * it may contain threads that don't need to execute anything.
1721 * We therefore update this block size in kernel->block_dim
1722 * to the smallest block size that ensures that all threads
1723 * that actually execute code are included in the block.
1725 * The current implementation eliminates all parameters, ensuring
1726 * that the size is a fixed constant in each dimension.
1727 * In principle we could also compute parametric sizes.
1728 * We would have to make sure to project out all b%d and t%d parameters,
1731 static void extract_block_size(struct gpu_gen
*gen
, struct ppcg_kernel
*kernel
)
1736 isl_multi_pw_aff
*mpa
;
1738 block
= isl_union_map_params(isl_union_map_copy(gen
->local_sched
));
1739 block
= isl_set_from_params(block
);
1740 block
= isl_set_add_dims(block
, isl_dim_set
, kernel
->n_block
);
1741 for (i
= 0; i
< kernel
->n_block
; ++i
) {
1745 id
= isl_id_list_get_id(kernel
->thread_ids
, i
);
1746 pos
= isl_set_find_dim_by_id(block
, isl_dim_param
, id
);
1749 block
= isl_set_equate(block
, isl_dim_param
, pos
,
1752 nparam
= isl_set_dim(block
, isl_dim_param
);
1753 block
= isl_set_project_out(block
, isl_dim_param
, 0, nparam
);
1755 extract_fixed_size(block
, kernel
->block_dim
);
1758 struct ppcg_kernel
*ppcg_kernel_free(struct ppcg_kernel
*kernel
)
1765 isl_id_list_free(kernel
->block_ids
);
1766 isl_id_list_free(kernel
->thread_ids
);
1767 isl_multi_pw_aff_free(kernel
->grid_size
);
1768 isl_set_free(kernel
->context
);
1769 isl_union_set_free(kernel
->arrays
);
1770 isl_space_free(kernel
->space
);
1771 isl_ast_node_free(kernel
->tree
);
1773 for (i
= 0; i
< kernel
->n_array
; ++i
) {
1774 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
1776 for (j
= 0; j
< array
->n_group
; ++j
)
1777 gpu_array_ref_group_free(array
->groups
[j
]);
1778 free(array
->groups
);
1780 isl_pw_aff_list_free(array
->bound
);
1782 free(kernel
->array
);
1784 for (i
= 0; i
< kernel
->n_var
; ++i
) {
1785 free(kernel
->var
[i
].name
);
1786 isl_vec_free(kernel
->var
[i
].size
);
1789 free(kernel
->tile_size
);
1796 /* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
1798 static void ppcg_kernel_free_wrap(void *user
)
1800 struct ppcg_kernel
*kernel
= user
;
1802 ppcg_kernel_free(kernel
);
1805 static void create_kernel_var(isl_ctx
*ctx
, struct gpu_array_ref_group
*group
,
1806 struct ppcg_kernel_var
*var
)
1809 struct gpu_array_tile
*tile
;
1813 var
->array
= group
->array
;
1815 tile
= group
->private_tile
;
1816 var
->type
= ppcg_access_private
;
1818 tile
= group
->shared_tile
;
1819 var
->type
= ppcg_access_shared
;
1822 p
= isl_printer_to_str(ctx
);
1823 p
= gpu_array_ref_group_print_name(group
, p
);
1824 var
->name
= isl_printer_get_str(p
);
1825 isl_printer_free(p
);
1827 var
->size
= isl_vec_alloc(ctx
, group
->array
->n_index
);
1829 for (j
= 0; j
< group
->array
->n_index
; ++j
)
1830 var
->size
= isl_vec_set_element_val(var
->size
, j
,
1831 isl_val_copy(tile
->bound
[j
].size
));
1834 static void create_kernel_vars(struct gpu_gen
*gen
, struct ppcg_kernel
*kernel
)
1839 for (i
= 0; i
< kernel
->n_array
; ++i
) {
1840 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
1842 for (j
= 0; j
< array
->n_group
; ++j
) {
1843 struct gpu_array_ref_group
*group
= array
->groups
[j
];
1844 if (group
->private_tile
|| group
->shared_tile
)
1850 kernel
->var
= isl_calloc_array(gen
->ctx
, struct ppcg_kernel_var
, n
);
1851 assert(kernel
->var
);
1854 for (i
= 0; i
< kernel
->n_array
; ++i
) {
1855 struct gpu_local_array_info
*array
= &kernel
->array
[i
];
1857 for (j
= 0; j
< array
->n_group
; ++j
) {
1858 struct gpu_array_ref_group
*group
= array
->groups
[j
];
1859 if (!group
->private_tile
&& !group
->shared_tile
)
1861 create_kernel_var(gen
->ctx
, group
, &kernel
->var
[n
]);
1867 /* Replace "pa" by the zero function defined over the universe domain
1868 * in the space of "pa".
1870 static __isl_give isl_pw_aff
*set_universally_zero(__isl_take isl_pw_aff
*pa
)
1875 space
= isl_space_domain(isl_pw_aff_get_space(pa
));
1876 isl_pw_aff_free(pa
);
1877 zero
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
1879 return isl_pw_aff_from_aff(zero
);
1882 /* The sizes of the arrays on the host that have been computed by
1883 * extract_array_info may depend on the parameters. Use the extra
1884 * constraints on the parameters that are valid at "host_domain"
1885 * to simplify these expressions and store the results in kernel->array.
1887 * We only need these localized bounds for arrays that are accessed
1888 * by the current kernel. If we have found at least one reference group
1889 * then the array is accessed by the kernel. If the array has compound
1890 * elements then we skipped the construction of array reference groups.
1892 * The resulting sizes may be functions that are nowhere defined
1893 * in case the access function cannot possibly access anything inside
1894 * the kernel for some reason. If so, they are replaced by the zero
1895 * function. Since the access function cannot actually access anything,
1896 * there is no harm in printing the array sizes as zero.
1898 static void localize_bounds(struct gpu_gen
*gen
, struct ppcg_kernel
*kernel
,
1899 __isl_keep isl_set
*host_domain
)
1904 context
= isl_set_copy(host_domain
);
1905 context
= isl_set_params(context
);
1907 for (i
= 0; i
< kernel
->n_array
; ++i
) {
1908 struct gpu_local_array_info
*local
= &kernel
->array
[i
];
1909 isl_pw_aff_list
*bound
;
1912 if (local
->n_group
== 0 && !local
->array
->has_compound_element
)
1915 n_index
= local
->array
->n_index
;
1916 bound
= isl_pw_aff_list_alloc(gen
->ctx
, n_index
);
1918 for (j
= 0; j
< n_index
; ++j
) {
1922 pwaff
= isl_pw_aff_copy(local
->array
->bound
[j
]);
1923 pwaff
= isl_pw_aff_gist(pwaff
, isl_set_copy(context
));
1924 empty
= isl_pw_aff_is_empty(pwaff
);
1926 pwaff
= isl_pw_aff_free(pwaff
);
1928 pwaff
= set_universally_zero(pwaff
);
1929 bound
= isl_pw_aff_list_add(bound
, pwaff
);
1932 local
->n_index
= n_index
;
1933 local
->bound
= bound
;
1935 isl_set_free(context
);
1938 /* Create the array of gpu_local_array_info structures "array"
1939 * inside "kernel". The number of elements in this array is
1940 * the same as the number of arrays in "prog".
1941 * Initialize the "array" field of each local array to point
1942 * to the corresponding array in "prog".
1944 static struct ppcg_kernel
*ppcg_kernel_create_local_arrays(
1945 struct ppcg_kernel
*kernel
, struct gpu_prog
*prog
)
1950 ctx
= isl_set_get_ctx(prog
->context
);
1951 kernel
->array
= isl_calloc_array(ctx
,
1952 struct gpu_local_array_info
, prog
->n_array
);
1954 return ppcg_kernel_free(kernel
);
1955 kernel
->n_array
= prog
->n_array
;
1957 for (i
= 0; i
< prog
->n_array
; ++i
)
1958 kernel
->array
[i
].array
= &prog
->array
[i
];
1963 /* Find the element in gen->stmt that has the given "id".
1964 * Return NULL if no such gpu_stmt can be found.
1966 static struct gpu_stmt
*find_stmt(struct gpu_prog
*prog
, __isl_keep isl_id
*id
)
1970 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
1971 if (id
== prog
->stmts
[i
].id
)
1975 return i
< prog
->n_stmts
? &prog
->stmts
[i
] : NULL
;
1978 void ppcg_kernel_stmt_free(void *user
)
1981 struct ppcg_kernel_stmt
*stmt
= user
;
1986 switch (stmt
->type
) {
1987 case ppcg_kernel_copy
:
1988 isl_ast_expr_free(stmt
->u
.c
.index
);
1989 isl_ast_expr_free(stmt
->u
.c
.local_index
);
1991 case ppcg_kernel_domain
:
1992 isl_id_to_ast_expr_free(stmt
->u
.d
.ref2expr
);
1994 case ppcg_kernel_sync
:
2001 /* Set the options of "context" to
2003 * { space -> [x] : x >= first }
2005 static __isl_give isl_ast_build
*set_unroll(
2006 __isl_take isl_ast_build
*build
, __isl_take isl_space
*space
,
2013 ctx
= isl_ast_build_get_ctx(build
);
2015 space
= isl_space_from_domain(space
);
2016 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
2017 space
= isl_space_set_tuple_name(space
, isl_dim_out
, "unroll");
2018 unroll
= isl_map_universe(space
);
2019 unroll
= isl_map_lower_bound_si(unroll
, isl_dim_out
, 0, first
);
2020 opt
= isl_union_map_from_map(unroll
);
2022 build
= isl_ast_build_set_options(build
, opt
);
2027 /* Extend the schedule "schedule" with the part of "extension"
2028 * starting at "first" up to "len".
2030 static __isl_give isl_union_map
*extend_schedule(
2031 __isl_take isl_union_map
*schedule
,
2032 __isl_take isl_union_map
*extension
, int first
, int len
)
2036 isl_union_map
*umap
;
2039 space
= isl_union_map_get_space(schedule
);
2040 space
= isl_space_set_from_params(space
);
2041 space
= isl_space_add_dims(space
, isl_dim_set
, len
);
2042 proj
= isl_set_identity(isl_set_universe(space
));
2043 proj
= isl_map_project_out(proj
, isl_dim_out
, 0, first
);
2044 extension
= isl_union_map_apply_range(extension
,
2045 isl_union_map_from_map(proj
));
2047 schedule
= isl_union_map_range_product(schedule
, extension
);
2052 /* Return the gpu_stmt_access in the list "accesses" that corresponds
2055 static struct gpu_stmt_access
*find_access(struct gpu_stmt_access
*accesses
,
2056 __isl_keep isl_id
*ref_id
)
2058 struct gpu_stmt_access
*access
;
2060 for (access
= accesses
; access
; access
= access
->next
)
2061 if (access
->ref_id
== ref_id
)
2067 /* Return the index of the array called "name" in the list of arrays.
2069 static int find_array_index(struct gpu_gen
*gen
, const char *name
)
2073 for (i
= 0; i
< gen
->prog
->n_array
; ++i
)
2074 if (!strcmp(name
, gen
->prog
->array
[i
].name
))
2080 /* Internal data structure for the index and AST expression transformation
2081 * callbacks for pet_stmt_build_ast_exprs.
2083 * "accesses" is the list of gpu_stmt_access in the statement.
2084 * "iterator_map" expresses the statement iterators in terms of
2085 * the AST loop iterators.
2086 * "sched2shared" expresses the first shared_len dimensions of
2087 * the computed schedule in terms of the AST loop iterators.
2089 * The following fields are set in transform_index and used in transform_expr.
2090 * "array" is the array that is being accessed.
2091 * "global" is set if the global array is accessed (rather than
2092 * shared/private memory).
2093 * "local_array" refers to information on the array specialized
2094 * to the current kernel.
2096 struct ppcg_transform_data
{
2097 struct gpu_gen
*gen
;
2098 struct gpu_stmt_access
*accesses
;
2099 isl_pw_multi_aff
*iterator_map
;
2100 isl_pw_multi_aff
*sched2shared
;
2102 struct gpu_array_info
*array
;
2104 struct gpu_local_array_info
*local_array
;
2107 /* Return the name of the outer array (of structs) accessed by "access".
2109 static const char *get_outer_array_name(__isl_keep isl_map
*access
)
2114 space
= isl_space_range(isl_map_get_space(access
));
2115 while (space
&& isl_space_is_wrapping(space
))
2116 space
= isl_space_domain(isl_space_unwrap(space
));
2117 name
= isl_space_get_tuple_name(space
, isl_dim_set
);
2118 isl_space_free(space
);
2123 /* Return a pointer to the gpu_array_ref_group in "local"
2124 * that contains the reference "access".
2125 * Return NULL if no such group can be found.
2127 static struct gpu_array_ref_group
*find_ref_group(
2128 struct gpu_local_array_info
*local
, struct gpu_stmt_access
*access
)
2132 for (i
= 0; i
< local
->n_group
; ++i
) {
2133 struct gpu_array_ref_group
*group
= local
->groups
[i
];
2135 for (j
= 0; j
< group
->n_ref
; ++j
)
2136 if (group
->refs
[j
] == access
)
2143 /* Index transformation callback for pet_stmt_build_ast_exprs.
2145 * "index" expresses the array indices in terms of statement iterators
2147 * We first reformulate "index" in terms of the AST loop iterators.
2148 * Then we check if we are accessing the global array or
2149 * a shared/private copy. In the former case, we simply return
2150 * the updated index. If "index" is an affine expression rather
2151 * than an array access, then we also return the updated index here.
2153 * If no reference groups have been computed for the array,
2154 * then we can only be accessing the global array.
2156 * Otherwise, we apply the tiling to the index.
2157 * This tiling is of the form
2161 * The index is of the form
2165 * We update the tiling to refer to the AST loop iterators
2169 * and modify index to keep track of those iterators
2173 * Combining these two yields a tiled index expression in terms
2174 * of the AST loop iterators
2178 static __isl_give isl_multi_pw_aff
*transform_index(
2179 __isl_take isl_multi_pw_aff
*index
, __isl_keep isl_id
*ref_id
,
2182 struct ppcg_transform_data
*data
= user
;
2183 struct gpu_stmt_access
*access
;
2184 struct gpu_array_ref_group
*group
;
2185 struct gpu_array_tile
*tile
;
2186 isl_pw_multi_aff
*iterator_map
;
2190 isl_multi_pw_aff
*tiling
;
2191 isl_pw_multi_aff
*pma
;
2192 isl_multi_pw_aff
*mpa
;
2196 iterator_map
= isl_pw_multi_aff_copy(data
->iterator_map
);
2197 index
= isl_multi_pw_aff_pullback_pw_multi_aff(index
, iterator_map
);
2199 access
= find_access(data
->accesses
, ref_id
);
2202 if (!isl_map_has_tuple_name(access
->access
, isl_dim_out
))
2205 name
= get_outer_array_name(access
->access
);
2206 i
= find_array_index(data
->gen
, name
);
2208 isl_die(isl_multi_pw_aff_get_ctx(index
), isl_error_internal
,
2209 "cannot find array",
2210 return isl_multi_pw_aff_free(index
));
2211 data
->array
= &data
->gen
->prog
->array
[i
];
2212 data
->local_array
= &data
->gen
->kernel
->array
[i
];
2214 group
= find_ref_group(data
->local_array
, access
);
2220 tile
= group
->private_tile
;
2222 tile
= group
->shared_tile
;
2223 data
->global
= !tile
;
2227 space
= isl_space_range(isl_multi_pw_aff_get_space(index
));
2228 space
= isl_space_map_from_set(space
);
2229 pma
= isl_pw_multi_aff_identity(space
);
2230 pma
= isl_pw_multi_aff_product(
2231 isl_pw_multi_aff_copy(data
->sched2shared
), pma
);
2232 tiling
= isl_multi_pw_aff_from_multi_aff(
2233 isl_multi_aff_copy(tile
->tiling
));
2234 tiling
= isl_multi_pw_aff_pullback_pw_multi_aff(tiling
, pma
);
2236 space
= isl_space_domain(isl_multi_pw_aff_get_space(index
));
2237 space
= isl_space_map_from_set(space
);
2238 mpa
= isl_multi_pw_aff_identity(space
);
2239 index
= isl_multi_pw_aff_range_product(mpa
, index
);
2240 index
= isl_multi_pw_aff_pullback_multi_pw_aff(tiling
, index
);
2245 /* Dereference "expr" by adding an index [0].
2246 * The original "expr" is assumed not to have any indices.
2248 * If "expr" is a member access, then the dereferencing needs
2249 * to be applied to the structure argument of this member access.
2251 static __isl_give isl_ast_expr
*dereference(__isl_take isl_ast_expr
*expr
)
2254 isl_ast_expr
*arg0
, *res
;
2255 isl_ast_expr_list
*list
;
2257 arg0
= isl_ast_expr_get_op_arg(expr
, 0);
2259 return isl_ast_expr_free(expr
);
2260 if (isl_ast_expr_get_type(arg0
) == isl_ast_expr_op
&&
2261 isl_ast_expr_get_op_type(arg0
) == isl_ast_op_member
) {
2264 arg
= isl_ast_expr_get_op_arg(arg0
, 0);
2265 arg
= dereference(arg
);
2266 arg0
= isl_ast_expr_set_op_arg(arg0
, 0, arg
);
2267 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
2271 isl_ast_expr_free(arg0
);
2273 ctx
= isl_ast_expr_get_ctx(expr
);
2274 res
= isl_ast_expr_from_val(isl_val_zero(ctx
));
2275 list
= isl_ast_expr_list_from_ast_expr(res
);
2276 res
= isl_ast_expr_get_op_arg(expr
, 0);
2277 res
= isl_ast_expr_access(res
, list
);
2278 isl_ast_expr_free(expr
);
2283 /* Linearize the index expression "expr" based on the array bounds
2286 * That is, transform expression
2288 * A[i_0][i_1]...[i_n]
2292 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
2294 * where b_0, b_1, ..., b_n are the bounds on the array.
2296 * If the base of "expr" is a member access, then the linearization needs
2297 * to be applied to the structure argument of this member access.
2299 * In the base case, if "expr" has no arguments (other than the name of
2300 * the array), then we are passing an entire array to a function.
2301 * In this case, there is nothing to linearize.
2302 * Note that at this point an expression with no arguments can
2303 * only be an entire array because the scalar case and
2304 * the case of single struct are handled by the caller.
2306 * If the number of specified index expressions in "expr"
2307 * is smaller than the dimension of the accessed array,
2308 * then the missing i_j also do not appear in the linearized expression.
2309 * Furthermore, since such an expression does not refer to a single
2310 * element while the default linearized expression would refer to
2311 * a single element, we return the expression
2313 * A + (..((i_0 * b_1 + i_1) ... ) * b_n]
2315 * instead. Note that because of the special case handling above,
2316 * we can assume here that here that there is at least one index expression.
2318 __isl_give isl_ast_expr
*gpu_local_array_info_linearize_index(
2319 struct gpu_local_array_info
*array
, __isl_take isl_ast_expr
*expr
)
2326 isl_ast_expr_list
*list
;
2327 isl_ast_build
*build
;
2329 arg0
= isl_ast_expr_get_op_arg(expr
, 0);
2330 if (isl_ast_expr_get_type(arg0
) == isl_ast_expr_op
&&
2331 isl_ast_expr_get_op_type(arg0
) == isl_ast_op_member
) {
2334 arg
= isl_ast_expr_get_op_arg(arg0
, 0);
2335 arg
= gpu_local_array_info_linearize_index(array
, arg
);
2336 arg0
= isl_ast_expr_set_op_arg(arg0
, 0, arg
);
2337 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
2341 isl_ast_expr_free(arg0
);
2343 if (isl_ast_expr_get_op_n_arg(expr
) == 1)
2346 ctx
= isl_ast_expr_get_ctx(expr
);
2347 context
= isl_set_universe(isl_space_params_alloc(ctx
, 0));
2348 build
= isl_ast_build_from_context(context
);
2350 n
= isl_ast_expr_get_op_n_arg(expr
);
2351 res
= isl_ast_expr_get_op_arg(expr
, 1);
2352 for (i
= 1; i
< array
->n_index
; ++i
) {
2353 isl_pw_aff
*bound_i
;
2354 isl_ast_expr
*expr_i
;
2356 bound_i
= isl_pw_aff_list_get_pw_aff(array
->bound
, i
);
2357 expr_i
= isl_ast_build_expr_from_pw_aff(build
, bound_i
);
2358 res
= isl_ast_expr_mul(res
, expr_i
);
2362 expr_i
= isl_ast_expr_get_op_arg(expr
, i
+ 1);
2363 res
= isl_ast_expr_add(res
, expr_i
);
2366 isl_ast_build_free(build
);
2368 if (1 + array
->n_index
> n
) {
2369 res
= isl_ast_expr_add(isl_ast_expr_get_op_arg(expr
, 0), res
);
2371 list
= isl_ast_expr_list_from_ast_expr(res
);
2372 res
= isl_ast_expr_get_op_arg(expr
, 0);
2373 res
= isl_ast_expr_access(res
, list
);
2376 isl_ast_expr_free(expr
);
2381 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
2383 * If the AST expression refers to an array that is not accessed
2384 * at all, then this means the value of the expression is not used,
2385 * so we might as well print zero (NULL pointer) instead.
2387 * If the AST expression refers to a global scalar that is not
2388 * a read-only scalar, then its address was passed to the kernel and
2389 * we need to dereference it.
2391 * If the AST expression refers to an access to a global array,
2392 * then we linearize the access exploiting the bounds in data->local_array.
2394 static __isl_give isl_ast_expr
*transform_expr(__isl_take isl_ast_expr
*expr
,
2395 __isl_keep isl_id
*id
, void *user
)
2397 struct ppcg_transform_data
*data
= user
;
2401 if (!data
->array
->accessed
) {
2404 ctx
= isl_ast_expr_get_ctx(expr
);
2405 isl_ast_expr_free(expr
);
2406 return isl_ast_expr_from_val(isl_val_zero(ctx
));
2408 if (gpu_array_is_read_only_scalar(data
->array
))
2412 if (data
->array
->n_index
== 0)
2413 return dereference(expr
);
2414 if (!data
->array
->linearize
)
2417 return gpu_local_array_info_linearize_index(data
->local_array
, expr
);
2420 /* This function is called for each instance of a user statement
2423 * We attach a struct ppcg_kernel_stmt to the "node", containing
2424 * a computed AST expression for each access.
2425 * These AST expressions are computed from iterator_map,
2426 * which expresses the domain
2427 * elements in terms of the generated loops, and sched2shared,
2428 * which expresses the first shared_len dimensions of the schedule
2429 * computed by PPCG in terms of the generated loops.
2431 static __isl_give isl_ast_node
*at_each_domain(__isl_take isl_ast_node
*node
,
2432 __isl_keep isl_ast_build
*build
, void *user
)
2434 struct ppcg_transform_data data
;
2435 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
2436 struct ppcg_kernel_stmt
*stmt
;
2438 isl_pw_multi_aff
*sched2shared
;
2440 isl_pw_multi_aff
*iterator_map
;
2441 isl_ast_expr
*expr
, *arg
;
2442 isl_union_map
*schedule
;
2444 stmt
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel_stmt
);
2446 return isl_ast_node_free(node
);
2448 expr
= isl_ast_node_user_get_expr(node
);
2449 arg
= isl_ast_expr_get_op_arg(expr
, 0);
2450 id
= isl_ast_expr_get_id(arg
);
2452 schedule
= isl_ast_build_get_schedule(build
);
2453 map
= isl_map_reverse(isl_map_from_union_map(schedule
));
2454 iterator_map
= isl_pw_multi_aff_from_map(map
);
2455 sched2shared
= compute_sched_to_shared(gen
,
2456 isl_pw_multi_aff_copy(iterator_map
));
2458 stmt
->type
= ppcg_kernel_domain
;
2459 stmt
->u
.d
.stmt
= find_stmt(gen
->prog
, id
);
2460 if (!stmt
->u
.d
.stmt
)
2461 isl_die(gen
->ctx
, isl_error_internal
,
2462 "statement not found", goto error
);
2465 data
.accesses
= stmt
->u
.d
.stmt
->accesses
;
2466 data
.iterator_map
= iterator_map
;
2467 data
.sched2shared
= sched2shared
;
2468 stmt
->u
.d
.ref2expr
= pet_stmt_build_ast_exprs(stmt
->u
.d
.stmt
->stmt
,
2469 build
, &transform_index
, &data
,
2470 &transform_expr
, &data
);
2473 isl_pw_multi_aff_free(iterator_map
);
2474 isl_pw_multi_aff_free(sched2shared
);
2475 isl_ast_expr_free(arg
);
2476 isl_ast_expr_free(expr
);
2478 id
= isl_id_alloc(gen
->ctx
, NULL
, stmt
);
2479 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
2480 return isl_ast_node_set_annotation(node
, id
);
2483 isl_pw_multi_aff_free(iterator_map
);
2484 ppcg_kernel_stmt_free(stmt
);
2485 isl_pw_multi_aff_free(sched2shared
);
2486 return isl_ast_node_free(node
);
2489 /* This function is called when code has been generated for the shared
2490 * tile loops. The "schedule" refers only to the original statements.
2492 * We extend the schedule with that part of gen->local_sched that hasn't
2493 * been taken into account yet. This introduces parameters referring
2494 * to thread ids in the schedule, so we add them (with the appropriate
2495 * bounds to the context as well).
2496 * Finally, we set the appropriate unrolling options
2497 * if gen->first_unroll is set.
2499 static __isl_give isl_ast_node
*create_domain_leaf(
2500 __isl_take isl_union_map
*schedule
, __isl_take isl_ast_build
*build
,
2503 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
2505 isl_union_map
*sched
;
2508 isl_id_list
*iterators
;
2511 schedule
= extend_schedule(schedule
,
2512 isl_union_map_copy(gen
->local_sched
),
2513 gen
->shared_len
, gen
->thread_tiled_len
);
2515 space
= isl_ast_build_get_schedule_space(build
);
2516 set
= isl_set_universe(space
);
2517 set
= add_bounded_parameters(set
, gen
->kernel
->block_dim
,
2518 gen
->kernel
->thread_ids
);
2519 build
= isl_ast_build_restrict(build
, set
);
2521 n
= gen
->thread_tiled_len
- gen
->shared_len
;
2523 if (gen
->first_unroll
>= 0) {
2524 space
= isl_space_set_alloc(gen
->ctx
, 0, n
);
2525 build
= set_unroll(build
, space
, gen
->first_unroll
);
2527 iterators
= ppcg_scop_generate_names(gen
->prog
->scop
, n
, "c");
2528 build
= isl_ast_build_set_iterators(build
, iterators
);
2529 build
= isl_ast_build_set_at_each_domain(build
, &at_each_domain
, gen
);
2530 tree
= isl_ast_build_node_from_schedule_map(build
, schedule
);
2531 isl_ast_build_free(build
);
2536 /* This function is called for each statement node in the AST of the code
2537 * for copying to or from shared/private memory.
2538 * Attach a pointer to a ppcg_kernel_stmt representing the copy
2539 * statement to the node.
2540 * The statement name is "read" or "write", depending on whether we are
2541 * reading from global memory or writing to global memory.
2542 * The name of the T space is {shared,private}_<array>.
2544 * The schedule is of the form
2548 * where A refers to a piece of an array and T to the corresponding
2549 * shifted tile. We split this schedule into mappings L -> A and L -> T
2550 * and store the corresponding expressions in stmt->index and stmt->local_index,
2551 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
2553 static __isl_give isl_ast_node
*attach_copy_stmt(__isl_take isl_ast_node
*node
,
2554 __isl_keep isl_ast_build
*build
, void *user
)
2556 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
2557 struct ppcg_kernel_stmt
*stmt
;
2561 isl_map
*access
, *local_access
, *map
;
2562 isl_pw_multi_aff
*pma
;
2566 stmt
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel_stmt
);
2568 return isl_ast_node_free(node
);
2570 access
= isl_map_from_union_map(isl_ast_build_get_schedule(build
));
2571 type
= isl_map_get_tuple_name(access
, isl_dim_in
);
2572 stmt
->u
.c
.read
= !strcmp(type
, "read");
2573 access
= isl_map_reverse(access
);
2574 space
= isl_space_unwrap(isl_space_range(isl_map_get_space(access
)));
2575 local_access
= isl_map_copy(access
);
2577 map
= isl_map_domain_map(isl_map_universe(isl_space_copy(space
)));
2578 id
= isl_map_get_tuple_id(access
, isl_dim_out
);
2579 map
= isl_map_set_tuple_id(map
, isl_dim_in
, id
);
2580 access
= isl_map_apply_range(access
, map
);
2581 pma
= isl_pw_multi_aff_from_map(access
);
2582 expr
= isl_ast_build_access_from_pw_multi_aff(build
, pma
);
2583 stmt
->u
.c
.index
= expr
;
2585 map
= isl_map_range_map(isl_map_universe(space
));
2586 id
= isl_map_get_tuple_id(local_access
, isl_dim_out
);
2587 map
= isl_map_set_tuple_id(map
, isl_dim_in
, id
);
2588 local_access
= isl_map_apply_range(local_access
, map
);
2589 pma
= isl_pw_multi_aff_from_map(local_access
);
2590 expr
= isl_ast_build_access_from_pw_multi_aff(build
, pma
);
2591 stmt
->u
.c
.local_index
= expr
;
2593 stmt
->u
.c
.array
= gen
->copy_group
->array
;
2594 array_index
= stmt
->u
.c
.array
- gen
->prog
->array
;
2595 stmt
->u
.c
.local_array
= &gen
->kernel
->array
[array_index
];
2596 stmt
->type
= ppcg_kernel_copy
;
2598 id
= isl_id_alloc(gen
->ctx
, NULL
, stmt
);
2599 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
2600 return isl_ast_node_set_annotation(node
, id
);
2603 /* Given a schedule of the form
2607 * (with S the first shared_len dimensions of the computed schedule,
2608 * A the array and L the schedule correponding to the generated loops),
2609 * indicating where to copy the array elements that need to be copied,
2610 * construct code for performing the copying.
2612 * "group" is the array reference group that is being copied
2613 * "type" is either "read" or "write"
2614 * private is set if copying needs to be performed to/from registers
2616 * We first construct a mapping to a shifted tile of the array,
2618 * [S -> A] -> T(S,A) (1)
2620 * If private is set, then we also use this mapping as a schedule
2621 * (which is already thread-specific and will be completely unrolled).
2622 * Otherwise, we wrap/tile the range over the threads.
2625 * [S -> A] -> T'(S,A)
2627 * Combined with the given schedule, we have
2629 * [S -> A] -> [L -> T'(S,A)] (2)
2631 * From the shifted tile mapping, we construct a mapping
2633 * [S -> A] -> [A -> T(S,A)]
2635 * and apply it to the schedule (2), obtaining
2637 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
2639 * Note that we can project out S because it is uniquely defined by L.
2641 static __isl_give isl_ast_node
*copy_access(struct gpu_gen
*gen
,
2642 __isl_take isl_map
*sched
,
2643 const char *type
, struct gpu_array_ref_group
*group
,
2644 __isl_take isl_ast_build
*build
, int private)
2648 isl_map
*schedule
, *shift
, *map
;
2650 isl_id_list
*iterators
;
2653 shift
= shift_access(group
);
2655 schedule
= isl_map_copy(shift
);
2656 schedule
= isl_map_reset_tuple_id(schedule
, isl_dim_out
);
2658 schedule
= tile_access_schedule(gen
, schedule
);
2660 n
= isl_map_dim(schedule
, isl_dim_out
);
2661 set
= isl_set_universe(isl_ast_build_get_schedule_space(build
));
2662 set
= add_bounded_parameters(set
, gen
->kernel
->block_dim
,
2663 gen
->kernel
->thread_ids
);
2665 schedule
= isl_map_range_product(sched
, schedule
);
2667 space
= isl_space_domain(isl_map_get_space(shift
));
2668 map
= isl_map_range_map(isl_map_universe(isl_space_unwrap(space
)));
2669 map
= isl_map_range_product(map
, shift
);
2671 schedule
= isl_map_apply_domain(schedule
, map
);
2673 schedule
= isl_map_set_tuple_name(schedule
, isl_dim_in
, type
);
2675 build
= isl_ast_build_restrict(build
, set
);
2677 gen
->copy_group
= group
;
2680 space
= isl_space_range(isl_map_get_space(schedule
));
2681 space
= isl_space_range(isl_space_unwrap(space
));
2682 build
= set_unroll(build
, space
, 0);
2684 iterators
= ppcg_scop_generate_names(gen
->prog
->scop
, n
, "c");
2685 build
= isl_ast_build_set_iterators(build
, iterators
);
2686 build
= isl_ast_build_set_at_each_domain(build
, &attach_copy_stmt
, gen
);
2687 tree
= isl_ast_build_node_from_schedule_map(build
,
2688 isl_union_map_from_map(schedule
));
2689 isl_ast_build_free(build
);
2694 /* Return code for reading into or writing from shared memory
2695 * the given array reference group.
2697 * If we are performing a read from global memory to shared memory and
2698 * if the array involved is not a scalar, then we copy
2699 * the entire tile to shared memory. This may result in some extra
2700 * elements getting copied, but it should lead to simpler code
2701 * (which means that fewer registers may be needed) and less divergence.
2703 * Otherwise, we only copy the elements that will be read or have been written
2707 * The input "sched" is of the form.
2711 * with S the first shared_len dimensions of the computed schedule,
2712 * A the array and L the schedule correponding to the generated loops.
2714 * We first drop "type",
2718 * If the above conditions are satisfied, we project out A,
2723 * and then introduce the group tile [S -> T], resulting in
2727 static __isl_give isl_ast_node
*copy_group_shared_accesses(
2728 struct gpu_gen
*gen
, struct gpu_array_ref_group
*group
,
2729 __isl_take isl_map
*sched
, __isl_take isl_ast_build
*build
)
2733 isl_union_map
*access
;
2735 type
= isl_map_get_tuple_name(sched
, isl_dim_in
);
2736 read
= !strcmp(type
, "read");
2738 sched
= isl_map_reset_tuple_id(sched
, isl_dim_in
);
2740 if (read
&& !gpu_array_is_scalar(group
->array
)) {
2744 space
= isl_space_domain(isl_map_get_space(sched
));
2745 space
= isl_space_unwrap(space
);
2746 map
= isl_map_domain_map(isl_map_universe(space
));
2747 sched
= isl_map_apply_domain(sched
, map
);
2749 map
= group_tile(group
);
2750 map
= isl_map_reverse(isl_map_domain_map(map
));
2751 sched
= isl_map_apply_domain(sched
, map
);
2754 return copy_access(gen
, sched
, type
, group
, build
, 0);
2757 /* Return code for reading into or writing from private memory
2758 * the given array reference group.
2760 * Let S be the first shared_len dimensions of the computed schedule,
2761 * D the iteration domains, A the array and L the schedule correponding
2762 * to the generated loops.
2763 * "sched" is of the form
2767 * where type is either "read" or "write".
2768 * We apply the privatization D -> S(t), with t the thread ids,
2769 * to the access relation D -> A to obtain the privatized access relation
2773 * We drop the type from "sched" and intersect with the privatized access
2774 * relation to obtain
2778 static __isl_give isl_ast_node
*copy_group_private_accesses(
2779 struct gpu_gen
*gen
, struct gpu_array_ref_group
*group
,
2780 __isl_take isl_map
*sched
, __isl_take isl_ast_build
*build
)
2784 isl_union_map
*priv
;
2785 isl_union_map
*access
;
2786 isl_map
*access_map
;
2788 type
= isl_map_get_tuple_name(sched
, isl_dim_in
);
2789 read
= !strcmp(type
, "read");
2791 priv
= isl_union_map_from_map(isl_map_copy(gen
->privatization
));
2792 priv
= isl_union_map_apply_range(isl_union_map_copy(gen
->shared_sched
),
2795 access
= gpu_array_ref_group_access_relation(group
, read
, !read
);
2796 access
= isl_union_map_apply_domain(access
, priv
);
2797 access_map
= isl_map_from_union_map(access
);
2799 sched
= isl_map_reset_tuple_id(sched
, isl_dim_in
);
2800 sched
= isl_map_intersect_domain(sched
, isl_map_wrap(access_map
));
2802 return copy_access(gen
, sched
, type
, group
, build
, 1);
2805 /* Return code for reading into or writing from shared or private memory.
2807 * "schedule" is of the form
2811 * with S be the first shared_len dimensions of the computed schedule,
2812 * A the array and L the schedule correponding to the generated loops.
2813 * The array reference group is attached to "type".
2815 static __isl_give isl_ast_node
*create_access_leaf(
2816 struct gpu_gen
*gen
, __isl_take isl_map
*schedule
,
2817 __isl_take isl_ast_build
*build
)
2819 struct gpu_array_ref_group
*group
;
2822 id
= isl_map_get_tuple_id(schedule
, isl_dim_in
);
2823 group
= isl_id_get_user(id
);
2826 if (group
->private_tile
)
2827 return copy_group_private_accesses(gen
, group
, schedule
,
2830 return copy_group_shared_accesses(gen
, group
, schedule
,
2834 /* Create a domain node representing a synchronization.
2836 static __isl_give isl_ast_node
*create_sync_leaf(
2837 struct gpu_gen
*gen
, __isl_take isl_map
*schedule
,
2838 __isl_take isl_ast_build
*build
)
2840 struct ppcg_kernel_stmt
*stmt
;
2846 isl_map_free(schedule
);
2848 stmt
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel_stmt
);
2852 stmt
->type
= ppcg_kernel_sync
;
2854 space
= isl_ast_build_get_schedule_space(build
);
2855 space
= isl_space_from_domain(space
);
2856 space
= isl_space_set_tuple_name(space
, isl_dim_out
, "sync");
2857 expr
= isl_ast_build_call_from_pw_multi_aff(build
,
2858 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space
)));
2859 node
= isl_ast_node_alloc_user(expr
);
2860 isl_ast_build_free(build
);
2862 id
= isl_id_alloc(gen
->ctx
, NULL
, stmt
);
2863 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
2864 return isl_ast_node_set_annotation(node
, id
);
2867 /* This function is called during the code generation at the point
2868 * where the schedule domain element is completely determined by
2869 * the generated code. The input schedule contains the original
2870 * statements as well as synchronization and copy "statements".
2871 * The latter are scheduled at different points than any of the original
2872 * statements, so they will only arrive here in isolation.
2874 * If the current schedule only refers to a single statement,
2875 * we check if it is a copy or synchronization statement and
2876 * call the appropriate functions.
2877 * Otherwise, we assume we are dealing with the original statements
2878 * and we call create_domain_leaf.
2880 static __isl_give isl_ast_node
*create_kernel_leaf(
2881 __isl_take isl_ast_build
*build
, void *user
)
2883 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
2885 isl_union_map
*schedule
;
2888 schedule
= isl_ast_build_get_schedule(build
);
2890 if (isl_union_map_n_map(schedule
) != 1)
2891 return create_domain_leaf(schedule
, build
, user
);
2893 map
= isl_map_from_union_map(schedule
);
2894 name
= isl_map_get_tuple_name(map
, isl_dim_in
);
2895 if (!strcmp(name
, "read") || !strcmp(name
, "write"))
2896 return create_access_leaf(gen
, map
, build
);
2897 if (!strcmp(name
, "sync"))
2898 return create_sync_leaf(gen
, map
, build
);
2900 return create_domain_leaf(isl_union_map_from_map(map
), build
, user
);
2903 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
2904 * have value 0) and all even schedule dimensions as "unroll".
2906 * That is, the options look as follows
2908 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
2909 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
2911 * The even positions are used to be able to schedule copying blocks
2912 * and synchronization before or after each level of the shared memory
2913 * tile loops and we want to make sure that code for these is generated
2914 * separately (within each level).
2916 static __isl_give isl_ast_build
*set_atomic_and_unroll(
2917 __isl_take isl_ast_build
*build
,
2918 __isl_take isl_space
*space
, int sched_len
)
2924 isl_local_space
*ls
;
2927 ctx
= isl_ast_build_get_ctx(build
);
2929 space
= isl_space_params(space
);
2930 space
= isl_space_add_dims(space
, isl_dim_set
, sched_len
);
2931 space
= isl_space_from_domain(space
);
2932 space
= isl_space_add_dims(space
, isl_dim_out
, 2);
2933 map
= isl_map_universe(isl_space_copy(space
));
2934 for (i
= 0; i
< sched_len
; i
+= 2)
2935 map
= isl_map_fix_si(map
, isl_dim_in
, i
, 0);
2936 ls
= isl_local_space_from_space(isl_map_get_space(map
));
2937 c
= isl_equality_alloc(ls
);
2938 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, 0, 1);
2939 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, 1, 2);
2940 c
= isl_constraint_set_constant_si(c
, 1);
2941 map
= isl_map_add_constraint(map
, c
);
2942 map
= isl_map_project_out(map
, isl_dim_out
, 1, 1);
2943 map
= isl_map_set_tuple_name(map
, isl_dim_out
, "atomic");
2944 opt
= isl_union_map_from_map(map
);
2946 map
= isl_map_universe(space
);
2947 ls
= isl_local_space_from_space(isl_map_get_space(map
));
2948 c
= isl_equality_alloc(ls
);
2949 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, 0, 1);
2950 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, 1, 2);
2951 map
= isl_map_add_constraint(map
, c
);
2952 map
= isl_map_project_out(map
, isl_dim_out
, 1, 1);
2953 map
= isl_map_set_tuple_name(map
, isl_dim_out
, "unroll");
2954 opt
= isl_union_map_add_map(opt
, map
);
2956 build
= isl_ast_build_set_options(build
, opt
);
2961 /* Return a map that maps a space of dimension gen->shared_len
2962 * to its last dimensions starting at gen->tile_first.
2963 * The range is of dimension
2965 * 2 * (gen->shared_len - gen->tile_first) + 1
2967 * The input dimensions are mapped to the odd dimensions in the output,
2968 * while the even dimensions (except 2*pos) are fixed to 0.
2969 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
2970 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
2971 * are mapped to the output. The remaining input dimensions are projected
2972 * out and the corresponding output dimensions are fixed to 0.
2974 static __isl_give isl_map
*insert_even(struct gpu_gen
*gen
,
2975 __isl_take isl_space
*space
, int pos
, int val
)
2980 space
= isl_space_set_from_params(space
);
2981 space
= isl_space_add_dims(space
, isl_dim_set
, gen
->shared_len
);
2982 space
= isl_space_map_from_set(space
);
2983 proj
= isl_map_identity(space
);
2984 proj
= isl_map_project_out(proj
, isl_dim_out
, 0, gen
->tile_first
);
2985 n
= gen
->shared_len
- gen
->tile_first
;
2986 for (i
= 0; i
<= n
; ++i
) {
2987 proj
= isl_map_insert_dims(proj
, isl_dim_out
, 2 * i
, 1);
2989 proj
= isl_map_fix_si(proj
, isl_dim_out
, 2 * i
, val
);
2991 proj
= isl_map_fix_si(proj
, isl_dim_out
, 2 * i
, 0);
2997 proj
= isl_map_eliminate(proj
, isl_dim_in
, gen
->tile_first
+ pos
,
2998 gen
->shared_len
- (gen
->tile_first
+ pos
));
2999 for (i
= pos
; i
< n
; ++i
)
3000 proj
= isl_map_fix_si(proj
, isl_dim_out
, 2 * i
+ 1, 0);
3005 /* Given the AST context schedule "schedule" and the mapping from
3006 * domains to the shared tile loops "shared_sched", add a schedule
3007 * for a synchronization operation at position "val" of loop level "pos".
3009 * schedule is of the form
3013 * (with D the iteration domains and L the already generated loops),
3014 * while shared_sched is of the form
3018 * We combine them into
3024 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3026 * and use the result as a schedule for "sync".
3028 static __isl_give isl_union_map
*add_sync_schedule(struct gpu_gen
*gen
,
3029 __isl_take isl_union_map
*res
, __isl_keep isl_union_map
*schedule
,
3030 __isl_keep isl_union_map
*shared_sched
, int pos
, int val
)
3033 isl_map
*proj
, *map
;
3035 shared_sched
= isl_union_map_copy(shared_sched
);
3036 schedule
= isl_union_map_copy(schedule
);
3038 space
= isl_union_map_get_space(shared_sched
);
3039 schedule
= isl_union_map_apply_domain(shared_sched
, schedule
);
3040 map
= isl_map_from_union_map(schedule
);
3042 proj
= insert_even(gen
, space
, pos
, val
);
3043 map
= isl_map_apply_range(map
, proj
);
3044 map
= isl_map_from_range(isl_map_wrap(map
));
3045 map
= isl_map_set_tuple_name(map
, isl_dim_in
, "sync");
3047 res
= isl_union_map_add_map(res
, map
);
3052 /* Given a set of wrapped references "ref", return the corresponding
3053 * access relations based on the tagged access relations "tagged".
3055 * The elements of "ref" are of the form
3059 * with D an iteration domains and R a reference.
3060 * The elements of "tagged" are of the form
3066 * Extend "tagged" to include the iteration domain in the range, i.e.,
3068 * [D -> R] -> [D -> A]
3070 * apply the result to "ref" and then unwrap the resulting set
3071 * to obtain relations of the form
3075 static __isl_give isl_union_map
*wrapped_reference_to_access(
3076 __isl_take isl_union_set
*ref
, __isl_take isl_union_map
*tagged
)
3078 isl_union_map
*tag2access
;
3080 tag2access
= isl_union_map_copy(tagged
);
3081 tag2access
= isl_union_map_universe(tag2access
);
3082 tag2access
= isl_union_set_unwrap(isl_union_map_domain(tag2access
));
3083 tag2access
= isl_union_map_domain_map(tag2access
);
3084 tag2access
= isl_union_map_range_product(tag2access
, tagged
);
3086 ref
= isl_union_set_coalesce(ref
);
3087 ref
= isl_union_set_apply(ref
, tag2access
);
3089 return isl_union_set_unwrap(ref
);
3092 /* Given an access relation "access" from "group", remove those reads
3093 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
3094 * communicate data within the same iteration of the last_shared dimension
3097 * If the access is a read then it is either an element of
3099 * live_in union (range flow)
3101 * where live_in and flow may be overapproximations, or
3102 * it reads an uninitialized value (that is not live-in because
3103 * there is an intermediate kill) or it reads a value that was
3104 * written within the same (compound) statement instance.
3105 * If the access is a write then it is either an element of
3107 * live_out union (domain flow)
3109 * or it writes a value that is never read (and is not live-out
3110 * because of an intermediate kill) or only
3111 * within the same (compound) statement instance.
3112 * In both cases, the access relation is also a subset of
3113 * the group access relation.
3115 * The cases where an uninitialized value is read or a value is written
3116 * that is never read or where the dataflow occurs within a statement
3117 * instance are also considered local and may also be removed.
3119 * Essentially, we compute the intersection of "access" with either
3121 * live_in union (range non-local-flow)
3125 * live_out union (domain non-local-flow)
3127 * We first construct a relation "local"
3129 * [[D -> R] -> [D' -> R']]
3131 * of pairs of domain iterations accessing the reference group
3132 * and references in the group that are scheduled to the same iteration
3133 * of the last_shared dimension.
3135 * If this relation does not intersect the dataflow dependences,
3136 * then there is nothing we can possibly remove, unless the dataflow
3137 * dependences themselves only relate a subset of the accesses.
3138 * In particular, the accesses may not be involved in any dataflow
3139 * dependences, either because they are uninitialized reads/dead writes
3140 * or because the dataflow occurs inside a statement instance.
3142 * Since the computation below may break up the access relation
3143 * into smaller pieces, we only perform the intersection with
3144 * the non-local dependent accesses if the local pairs
3145 * intersect the dataflow dependences. Otherwise, we intersect
3146 * with the universe of the non-local dependent accesses.
3147 * This should at least remove accesses from statements that
3148 * do not participate in any dependences.
3150 * In particular, we remove the "local" dataflow dependences from
3151 * the set of all dataflow dependences.
3152 * Note that if the potential dataflow dependences are an overapproximation
3153 * of the actual dataflow dependences, then the result remains an
3154 * overapproximation of the non-local dataflow dependences.
3155 * Copying to/from global memory is only needed for the references
3156 * in the domain/range of the result or for accesses that are live out/in
3157 * for the entire scop.
3159 * We therefore map the domain/range of the "external" relation
3160 * to the corresponding access relation and take the union with
3161 * the live out/in relation.
3163 static __isl_give isl_union_map
*remove_local_accesses(struct gpu_gen
*gen
,
3164 struct gpu_array_ref_group
*group
, __isl_take isl_union_map
*access
,
3168 isl_union_pw_multi_aff
*tagger
;
3169 isl_union_set
*domain
;
3171 isl_union_map
*sched
, *local
, *tagged
, *external
;
3172 isl_union_set
*tag_set
;
3175 if (isl_union_map_is_empty(access
))
3178 tagged
= group_tagged_access_relation(group
);
3180 sched
= isl_union_map_copy(gen
->sched
);
3182 space
= isl_union_map_get_space(sched
);
3183 proj
= projection(space
, gen
->untiled_len
, group
->last_shared
+ 1);
3184 sched
= isl_union_map_apply_range(sched
, isl_union_map_from_map(proj
));
3186 tagger
= isl_union_pw_multi_aff_copy(gen
->prog
->scop
->tagger
);
3187 domain
= isl_union_map_domain(isl_union_map_copy(tagged
));
3188 tagger
= isl_union_pw_multi_aff_intersect_domain(tagger
, domain
);
3189 sched
= isl_union_map_preimage_domain_union_pw_multi_aff(sched
, tagger
);
3191 local
= isl_union_map_apply_range(sched
,
3192 isl_union_map_reverse(isl_union_map_copy(sched
)));
3193 local
= isl_union_map_intersect(local
,
3194 isl_union_map_copy(gen
->prog
->scop
->tagged_dep_flow
));
3196 empty
= isl_union_map_is_empty(local
);
3198 external
= isl_union_map_copy(gen
->prog
->scop
->tagged_dep_flow
);
3199 external
= isl_union_map_intersect_params(external
,
3200 isl_set_copy(gen
->prog
->scop
->context
));
3201 external
= isl_union_map_subtract(external
, local
);
3204 tag_set
= isl_union_map_range(external
);
3205 external
= wrapped_reference_to_access(tag_set
, tagged
);
3206 external
= isl_union_map_union(external
,
3207 isl_union_map_copy(gen
->prog
->scop
->live_in
));
3209 tag_set
= isl_union_map_domain(external
);
3210 external
= wrapped_reference_to_access(tag_set
, tagged
);
3211 external
= isl_union_map_union(external
,
3212 isl_union_map_copy(gen
->prog
->scop
->live_out
));
3216 external
= isl_union_map_free(external
);
3218 external
= isl_union_map_universe(external
);
3220 access
= isl_union_map_intersect(access
, external
);
3225 /* Given the AST context schedule "schedule" and the mapping from
3226 * domains to the shared tile loops "shared_sched", add a schedule
3227 * for copying an array reference group to/from shared/private memory.
3228 * "read" is set if data should be copied from global memory
3229 * to shared/private memory.
3230 * "k" represents the current group
3231 * "s" is the total number of groups
3233 * We schedule an operation before or after the innermost loop
3234 * of "shared_sched" that affects the tile of the array reference group.
3236 * schedule is of the form
3240 * (with D the iteration domains and L the already generated loops),
3241 * while shared_sched is of the form
3245 * We first compute the access relation for the reference group
3249 * and remove from this access relation those reads or writes
3250 * that only needed to communicate data within the same iteration
3251 * of the last_shared dimension of the group.
3252 * We then combine what is left with shared_sched into
3256 * If this results in an empty relation, no copying needs to be performed
3258 * Otherwise, we invert the relation and combine it with "schedule" into
3262 * The actual additional piece of the schedule is obtained from combining
3268 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3270 * The position of "val" corresponds to the innermost loop that affects
3271 * the tile and the value indicates where the copying is scheduled
3272 * with respect to the actual kernel code (at value 0).
3273 * Reads are schedule before the code, writes to global memory from
3274 * private memory are scheduled at values 1 to s, writes to global
3275 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
3277 * If we are scheduling a read from global memory to shared memory,
3278 * we insert a synchronization before the kernel code (at the innermost
3280 * If we are scheduling a write to global memory, then we add
3281 * a synchronization after all writes (at value 2 *s + 2).
3282 * However, there is no need for a synchronization after the outermost loop.
3283 * A write to global memory from private memory at the innermost level
3284 * does not require a synchronization, because it is covered by
3285 * the synchronization after the kernel inserted by body_schedule.
3287 static __isl_give isl_union_map
*add_group_schedule(struct gpu_gen
*gen
,
3288 __isl_take isl_union_map
*res
, __isl_keep isl_union_map
*schedule
,
3289 __isl_keep isl_union_map
*shared_sched
,
3290 struct gpu_array_ref_group
*group
, int read
, int k
, int s
)
3295 isl_union_map
*access
;
3296 isl_map
*map
, *proj
, *access_map
;
3299 access
= gpu_array_ref_group_access_relation(group
, read
, !read
);
3300 access
= remove_local_accesses(gen
, group
, access
, read
);
3301 access
= isl_union_map_range_product(isl_union_map_copy(shared_sched
),
3304 if (isl_union_map_is_empty(access
)) {
3305 isl_union_map_free(access
);
3309 access
= isl_union_map_reverse(access
);
3310 access
= isl_union_map_apply_range(access
,
3311 isl_union_map_copy(schedule
));
3312 access_map
= isl_map_from_union_map(access
);
3314 space
= isl_space_copy(group
->array
->space
);
3315 space
= isl_space_from_range(space
);
3316 space
= isl_space_add_dims(space
, isl_dim_in
, gen
->shared_len
);
3317 map
= isl_map_domain_map(isl_map_universe(space
));
3319 space
= isl_union_map_get_space(schedule
);
3320 pos
= group
->last_shared
+ 1 - gen
->tile_first
;
3324 else if (group
->private_tile
)
3327 val
= 1 + s
+ 1 + k
;
3328 proj
= insert_even(gen
, space
, pos
, val
);
3329 map
= isl_map_apply_range(map
, proj
);
3331 access_map
= isl_map_range_product(access_map
, map
);
3333 id
= isl_id_alloc(gen
->ctx
, read
? "read" : "write", group
);
3334 access_map
= isl_map_set_tuple_id(access_map
, isl_dim_in
, id
);
3336 res
= isl_union_map_add_map(res
, access_map
);
3338 n
= gen
->shared_len
- gen
->tile_first
;
3340 if (!group
->private_tile
)
3341 res
= add_sync_schedule(gen
, res
, schedule
,
3342 shared_sched
, n
, -1);
3346 if (pos
== n
&& group
->private_tile
)
3348 res
= add_sync_schedule(gen
, res
, schedule
, shared_sched
,
3355 /* Return a schedule for the shared tile loops based on the current
3356 * AST context schedule.
3358 * We create a "shared_sched" that maps the domains to the first
3359 * shared_len dimensions of the computed schedule, project out the
3360 * first tile_first dimensions (as these are already covered by
3361 * the host code) and insert "statement-level" dimensions at even
3362 * positions so that we can schedule copy blocks and synchronization
3363 * before/after each level.
3365 * In particular, copy blocks are inserted inside the innermost
3366 * level that affect the tile. For the copying to global memory,
3367 * those from private memory are scheduled before those from shared
3368 * memory such that synchronization can be inserted between the two
3369 * at the innermost level.
3370 * Synchronization is inserted at the innermost level before the
3371 * actual kernel code if there is any copying from global memory
3372 * to shared memory. It is inserted unconditionally at the innermost
3373 * level after the actual kernel code and the copying to global memory
3374 * from private memory (if any). Finally, it is inserted after
3375 * any copying to global memory, except at the outermost level
3376 * and at the innermost level if there is no copying from shared
3377 * memory. The copying from private memory is covered by the unconditional
3378 * synchronization at the innermost level.
3380 static __isl_give isl_union_map
*body_schedule(struct gpu_gen
*gen
,
3381 __isl_take isl_union_map
*schedule
)
3385 isl_union_map
*shared_sched
;
3386 isl_union_map
*sched
;
3387 isl_map
*proj
, *map
;
3390 shared_sched
= isl_union_map_copy(gen
->tiled_sched
);
3391 proj
= projection(isl_union_map_get_space(shared_sched
),
3392 gen
->tiled_len
, gen
->shared_len
);
3393 shared_sched
= isl_union_map_apply_range(shared_sched
,
3394 isl_union_map_from_map(proj
));
3395 space
= isl_union_map_get_space(shared_sched
);
3396 proj
= insert_even(gen
, space
, -1, 0);
3397 sched
= isl_union_map_apply_range(isl_union_map_copy(shared_sched
),
3398 isl_union_map_from_map(proj
));
3400 res
= isl_union_map_range_product(isl_union_map_copy(schedule
), sched
);
3403 for (i
= 0; i
< gen
->kernel
->n_array
; ++i
)
3404 s
+= gen
->kernel
->array
[i
].n_group
;
3407 for (i
= 0; i
< gen
->kernel
->n_array
; ++i
) {
3408 struct gpu_local_array_info
*array
= &gen
->kernel
->array
[i
];
3410 for (j
= 0; j
< array
->n_group
; ++j
) {
3411 struct gpu_array_ref_group
*group
;
3413 group
= array
->groups
[j
];
3414 if (!group
->private_tile
&& !group
->shared_tile
)
3416 res
= add_group_schedule(gen
, res
, schedule
,
3417 shared_sched
, group
, 0, k
, s
);
3418 res
= add_group_schedule(gen
, res
, schedule
,
3419 shared_sched
, group
, 1, k
, s
);
3424 res
= add_sync_schedule(gen
, res
, schedule
, shared_sched
,
3425 gen
->shared_len
- gen
->tile_first
, 1 + s
);
3427 isl_union_map_free(shared_sched
);
3428 isl_union_map_free(schedule
);
3433 /* Generate code for "kernel" in the given "context".
3435 * We first generate code for the shared tile loops (T1T, T1P and T2)
3436 * in a context that includes the block ids.
3437 * Within each iteration of these loops an additional code generation
3438 * is performed (within create_kernel_leaf) for the rest of the schedule
3439 * in a context that includes the thread ids.
3441 static __isl_give isl_ast_node
*generate_kernel(struct gpu_gen
*gen
,
3442 __isl_keep isl_ast_build
*build
, __isl_keep isl_set
*host_domain
,
3443 __isl_keep isl_multi_pw_aff
*grid_size
)
3447 isl_id_list
*iterators
;
3448 isl_union_map
*schedule
;
3452 schedule
= isl_ast_build_get_schedule(build
);
3454 build
= isl_ast_build_copy(build
);
3455 build
= isl_ast_build_restrict(build
, isl_set_copy(host_domain
));
3456 space
= isl_ast_build_get_schedule_space(build
);
3457 set
= isl_set_universe(isl_space_copy(space
));
3458 set
= add_bounded_parameters_dynamic(set
, grid_size
,
3459 gen
->kernel
->block_ids
);
3460 build
= isl_ast_build_restrict(build
, set
);
3462 schedule
= body_schedule(gen
, schedule
);
3464 sched_len
= 2 * (gen
->shared_len
- gen
->tile_first
) + 1;
3466 build
= set_atomic_and_unroll(build
, space
, sched_len
);
3467 iterators
= ppcg_scop_generate_names(gen
->prog
->scop
, sched_len
, "g");
3468 build
= isl_ast_build_set_iterators(build
, iterators
);
3469 build
= isl_ast_build_set_create_leaf(build
, &create_kernel_leaf
, gen
);
3470 tree
= isl_ast_build_node_from_schedule_map(build
, schedule
);
3471 isl_ast_build_free(build
);
3476 /* Attach "id" to the given node.
3478 static __isl_give isl_ast_node
*attach_id(__isl_take isl_ast_node
*node
,
3479 __isl_keep isl_ast_build
*build
, void *user
)
3483 node
= isl_ast_node_set_annotation(node
, id
);
3488 /* Construct an AST node for performing a kernel launch and attach
3489 * the information about the kernel to that node.
3490 * "kernel_id" has name "kernel" and contains a pointer
3491 * to the ppcg_kernel structure.
3493 * The kernel AST has been constructed in the context of the range
3494 * of "schedule". In particular, the grid size has been computed
3495 * in the context. We therefore still need to make sure that these
3496 * constraints are expressed in the code. We do this by creating a schedule
3498 * kernel[] -> [S -> []]
3500 * where S is the schedule domain, i.e., the range of "schedule".
3501 * The AST generation will then create a single call surrounded by
3502 * all the condition in "S" that have not been expressed yet.
3504 * The kernel information is attached to this node in attach_id.
3506 static __isl_give isl_ast_node
*construct_launch(
3507 __isl_take isl_ast_build
*build
, __isl_take isl_union_map
*schedule
,
3508 __isl_take isl_id
*kernel_id
)
3511 isl_union_set
*domain
;
3516 ctx
= isl_ast_build_get_ctx(build
);
3518 domain
= isl_union_map_range(schedule
);
3519 set
= isl_set_from_union_set(domain
);
3520 map
= isl_map_from_domain(set
);
3521 map
= isl_map_from_range(isl_map_wrap(map
));
3522 map
= isl_map_set_tuple_name(map
, isl_dim_in
, "kernel");
3523 schedule
= isl_union_map_from_map(map
);
3525 build
= isl_ast_build_set_at_each_domain(build
, &attach_id
, kernel_id
);
3526 node
= isl_ast_build_node_from_schedule_map(build
, schedule
);
3527 isl_ast_build_free(build
);
3532 /* This function is called for each leaf in the AST of the host code.
3533 * We first specialize the schedule to the site of the leaf, compute
3534 * the size of shared memory and then construct the body of the host code
3535 * and the associated kernel.
3537 * The necessary information for printing the kernel launch is
3538 * stored in the struct ppcg_kernel that was created in create_kernel and
3539 * attached to an outer mark node in the schedule tree.
3540 * Note that this assumes that a kernel is only launched once.
3541 * The kernel pointer itself is stored in gen->kernel by before_mark,
3542 * while the isl_id containing this pointer is stored in gen->kernel_mark.
3543 * The latter is attached to the leaf AST node created to represent the launch.
3545 static __isl_give isl_ast_node
*create_host_leaf(
3546 __isl_take isl_ast_build
*build
, void *user
)
3548 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
3551 struct ppcg_kernel
*kernel
;
3552 isl_set
*host_domain
;
3553 isl_union_map
*schedule
;
3554 isl_union_map
*local_sched
;
3555 isl_union_set
*domain
;
3558 schedule
= isl_ast_build_get_schedule(build
);
3560 kernel
= gen
->kernel
;
3564 read_grid_and_block_sizes(gen
);
3566 domain
= isl_union_map_domain(isl_union_map_copy(schedule
));
3568 local_sched
= isl_union_map_copy(gen
->sched
);
3569 local_sched
= isl_union_map_intersect_domain(local_sched
, domain
);
3571 kernel
->block_ids
= ppcg_scop_generate_names(gen
->prog
->scop
,
3572 kernel
->n_grid
, "b");
3573 kernel
->thread_ids
= ppcg_scop_generate_names(gen
->prog
->scop
,
3574 kernel
->n_block
, "t");
3576 gen
->tiled_sched
= tile_schedule(gen
, local_sched
);
3577 gen
->tiled_sched
= parametrize_tiled_schedule(gen
, gen
->tiled_sched
);
3578 gen
->tiled_sched
= scale_tile_loops(gen
, gen
->tiled_sched
);
3580 gen
->local_sched
= isl_union_map_copy(gen
->tiled_sched
);
3581 gen
->local_sched
= thread_tile_schedule(gen
, gen
->local_sched
);
3582 gen
->local_sched
= scale_thread_tile_loops(gen
, gen
->local_sched
);
3584 kernel
->grid_size
= extract_grid_size(gen
, kernel
);
3585 extract_block_size(gen
, kernel
);
3586 kernel
->space
= isl_ast_build_get_schedule_space(build
);
3588 compute_shared_sched(gen
);
3589 gen
->privatization
= compute_privatization(gen
);
3590 if (gpu_group_references(gen
) < 0)
3591 schedule
= isl_union_map_free(schedule
);
3592 host_domain
= isl_set_from_union_set(isl_union_map_range(
3593 isl_union_map_copy(schedule
)));
3594 localize_bounds(gen
, kernel
, host_domain
);
3596 gen
->local_sched
= interchange_for_unroll(gen
, gen
->local_sched
);
3597 check_shared_memory_bound(gen
);
3598 compute_group_tilings(gen
);
3600 kernel
->tree
= generate_kernel(gen
, build
, host_domain
,
3602 create_kernel_vars(gen
, kernel
);
3604 isl_map_free(gen
->privatization
);
3605 isl_union_map_free(gen
->local_sched
);
3606 isl_union_map_free(gen
->tiled_sched
);
3607 isl_union_map_free(gen
->shared_sched
);
3608 isl_union_map_free(gen
->shared_proj
);
3609 isl_set_free(host_domain
);
3611 node
= construct_launch(build
, schedule
, isl_id_copy(gen
->kernel_mark
));
3615 isl_union_map_free(schedule
);
3619 /* This function is called before the AST generator starts traversing
3620 * the schedule subtree of a node with mark "mark".
3622 * If the mark is called "kernel", store the mark itself in gen->kernel_mark
3623 * and the kernel pointer in gen->kernel for use in create_host_leaf.
3625 static int before_mark(__isl_keep isl_id
*mark
,
3626 __isl_keep isl_ast_build
*build
, void *user
)
3628 struct gpu_gen
*gen
= user
;
3632 if (!strcmp(isl_id_get_name(mark
), "kernel")) {
3633 gen
->kernel_mark
= isl_id_copy(mark
);
3634 gen
->kernel
= isl_id_get_user(mark
);
3639 /* This function is called after the AST generator has finished traversing
3640 * the schedule subtree of a mark node. "node" points to the corresponding
3643 * If the mark is called "kernel", then clear kernel and gen->kernel_mark.
3645 static __isl_give isl_ast_node
*after_mark(__isl_take isl_ast_node
*node
,
3646 __isl_keep isl_ast_build
*build
, void *user
)
3648 struct gpu_gen
*gen
= user
;
3651 id
= isl_ast_node_mark_get_id(node
);
3653 return isl_ast_node_free(node
);
3654 if (!strcmp(isl_id_get_name(id
), "kernel") && gen
->kernel
) {
3655 gen
->kernel_mark
= isl_id_free(gen
->kernel_mark
);
3663 /* Use isl to generate host code from gen->host_schedule, which corresponds to
3664 * the outer gen->tile_first loops of the global schedule in gen->sched.
3665 * Within each iteration of this partial schedule, i.e., for each kernel
3666 * launch, create_host_leaf takes care of generating the kernel code.
3667 * The ppcg_kernel objects are stored in mark nodes in the schedule
3668 * tree and are extracted in before_mark.
3670 static __isl_give isl_ast_node
*generate_host_code(struct gpu_gen
*gen
)
3672 isl_ast_build
*build
;
3674 isl_schedule
*schedule
;
3675 isl_id_list
*iterators
;
3677 isl_options_set_ast_build_group_coscheduled(gen
->ctx
, 1);
3678 build
= isl_ast_build_from_context(isl_set_copy(gen
->prog
->context
));
3679 iterators
= ppcg_scop_generate_names(gen
->prog
->scop
,
3680 gen
->tile_first
, "h");
3681 build
= isl_ast_build_set_iterators(build
, iterators
);
3682 build
= isl_ast_build_set_create_leaf(build
, &create_host_leaf
, gen
);
3683 build
= isl_ast_build_set_before_each_mark(build
, &before_mark
, gen
);
3684 build
= isl_ast_build_set_after_each_mark(build
, &after_mark
, gen
);
3685 schedule
= isl_schedule_copy(gen
->host_schedule
);
3686 tree
= isl_ast_build_node_from_schedule(build
, schedule
);
3687 isl_ast_build_free(build
);
3692 __isl_give isl_union_map
*extract_sizes_from_str(isl_ctx
*ctx
, const char *str
)
3696 return isl_union_map_read_from_str(ctx
, str
);
3699 /* Information about the outermost tilable bands in the forest of bands.
3701 * prefix is the (padded) schedule leading up to the outermost tilable bands.
3703 * tile_first is the number of schedule dimensions in prefix.
3705 * suffix is the schedule of the outermost tilable bands and their descendants.
3708 struct gpu_gen
*gen
;
3710 isl_union_map
*prefix
;
3711 isl_union_map
*suffix
;
3714 /* Extract the set of parameter values and outer schedule dimensions
3715 * for which any statement instance
3716 * in the kernel inserted at "node" needs to be executed.
3717 * Intersect the set of parameter values derived from the host schedule
3718 * relation with the context of "prog".
3720 static __isl_give isl_set
*extract_context(__isl_keep isl_schedule_node
*node
,
3721 struct gpu_prog
*prog
)
3723 isl_union_map
*schedule
;
3724 isl_union_set
*schedule_domain
;
3728 schedule
= isl_schedule_node_get_prefix_schedule_relation(node
);
3729 schedule_domain
= isl_union_map_range(schedule
);
3730 empty
= isl_union_set_is_empty(schedule_domain
);
3732 isl_union_set_free(schedule_domain
);
3739 space
= isl_union_set_get_space(schedule_domain
);
3740 isl_union_set_free(schedule_domain
);
3741 space
= isl_space_set_from_params(space
);
3742 depth
= isl_schedule_node_get_schedule_depth(node
);
3743 space
= isl_space_add_dims(space
, isl_dim_set
, depth
);
3744 context
= isl_set_empty(space
);
3746 context
= isl_set_from_union_set(schedule_domain
);
3748 context
= isl_set_intersect_params(context
,
3749 isl_set_copy(prog
->context
));
3754 /* Return the set of outer array elements accessed by
3755 * by the statement instance in "domain" in "prog".
3757 static __isl_give isl_union_set
*accessed_by_domain(
3758 __isl_take isl_union_set
*domain
, struct gpu_prog
*prog
)
3760 isl_union_map
*access
;
3761 isl_union_set
*arrays
;
3763 access
= isl_union_map_union(isl_union_map_copy(prog
->read
),
3764 isl_union_map_copy(prog
->may_write
));
3765 access
= isl_union_map_intersect_domain(access
, domain
);
3766 arrays
= isl_union_map_range(access
);
3767 arrays
= isl_union_set_apply(arrays
,
3768 isl_union_map_copy(prog
->to_outer
));
3773 /* Return the number of outer band members of the band node "node"
3774 * that are marked coincident.
3776 static int n_outer_coincidence(__isl_keep isl_schedule_node
*node
)
3780 n
= isl_schedule_node_band_n_member(node
);
3782 for (i
= 0; i
< n
; ++i
)
3783 if (!isl_schedule_node_band_member_get_coincident(node
, i
))
3789 /* Mark all dimensions in the current band node atomic.
3791 static __isl_give isl_schedule_node
*atomic(__isl_take isl_schedule_node
*node
)
3795 n
= isl_schedule_node_band_n_member(node
);
3796 for (i
= 0; i
< n
; ++i
)
3797 node
= isl_schedule_node_band_member_set_ast_loop_type(node
, i
,
3798 isl_ast_loop_atomic
);
3803 /* Mark "node" atomic, if it is a band node.
3804 * Do the same for all ancestors.
3805 * Return a pointer to "node" (in the updated schedule tree).
3807 static __isl_give isl_schedule_node
*atomic_ancestors(
3808 __isl_take isl_schedule_node
*node
)
3814 if (!isl_schedule_node_has_parent(node
))
3817 pos
= isl_schedule_node_get_child_position(node
);
3818 node
= isl_schedule_node_parent(node
);
3819 if (isl_schedule_node_get_type(node
) == isl_schedule_node_band
)
3820 node
= atomic(node
);
3821 node
= atomic_ancestors(node
);
3822 node
= isl_schedule_node_child(node
, pos
);
3827 /* Group the domain elements into a single space, named kernelX,
3828 * with X the kernel sequence number "kernel_id".
3830 static __isl_give isl_schedule_node
*group_statements(
3831 __isl_take isl_schedule_node
*node
, int kernel_id
)
3839 snprintf(buffer
, sizeof(buffer
), "kernel%d", kernel_id
);
3840 id
= isl_id_alloc(isl_schedule_node_get_ctx(node
), buffer
, NULL
);
3841 return isl_schedule_node_group(node
, id
);
3844 /* Create a ppcg_kernel representing the domain instances that reach "node"
3845 * and replace the subtree at "node" by a mark node pointing
3846 * to the ppcg_kernel.
3847 * Mark all outer band nodes as atomic to ensure each kernel is only
3849 * If the domain elements that reach "node" live in more than one space,
3850 * then group the domain elements into a single space, named kernelX,
3851 * with X the kernel sequence number.
3853 * Store a pointer to the created ppcg_kernel in gen->kernel.
3855 * We keep a copy of the isl_id that points to the kernel to ensure
3856 * that the kernel does not get destroyed if the schedule node
3857 * is freed due to some error condition.
3859 static __isl_give isl_schedule_node
*create_kernel(struct gpu_gen
*gen
,
3860 __isl_take isl_schedule_node
*node
)
3862 struct ppcg_kernel
*kernel
;
3864 isl_union_set
*domain
;
3865 int single_statement
;
3867 kernel
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel
);
3868 kernel
= ppcg_kernel_create_local_arrays(kernel
, gen
->prog
);
3870 return isl_schedule_node_free(node
);
3872 domain
= isl_schedule_node_get_domain(node
);
3873 single_statement
= isl_union_set_n_set(domain
) == 1;
3875 kernel
->ctx
= gen
->ctx
;
3876 kernel
->options
= gen
->options
;
3877 kernel
->context
= extract_context(node
, gen
->prog
);
3878 kernel
->arrays
= accessed_by_domain(domain
, gen
->prog
);
3879 kernel
->tile_len
= isl_schedule_node_band_n_member(node
);
3880 kernel
->n_parallel
= n_outer_coincidence(node
);
3881 kernel
->n_grid
= kernel
->n_parallel
;
3882 kernel
->n_block
= kernel
->n_parallel
;
3883 kernel
->id
= gen
->kernel_id
++;
3885 gen
->kernel
= kernel
;
3887 node
= atomic_ancestors(node
);
3889 id
= isl_id_alloc(gen
->ctx
, "kernel", kernel
);
3890 id
= isl_id_set_free_user(id
, &ppcg_kernel_free_wrap
);
3891 node
= isl_schedule_node_insert_mark(node
, isl_id_copy(id
));
3893 if (!single_statement
)
3894 node
= group_statements(node
, kernel
->id
);
3896 node
= isl_schedule_node_child(node
, 0);
3897 node
= isl_schedule_node_cut(node
);
3898 node
= isl_schedule_node_parent(node
);
3900 if (!single_statement
)
3901 node
= isl_schedule_node_parent(node
);
3907 /* Insert a zero-dimensional permutable band at "node".
3909 static __isl_give isl_schedule_node
*insert_empty_permutable_band(
3910 __isl_take isl_schedule_node
*node
)
3913 isl_schedule
*schedule
;
3914 isl_union_set
*domain
;
3915 isl_multi_union_pw_aff
*mupa
;
3917 schedule
= isl_schedule_node_get_schedule(node
);
3918 domain
= isl_schedule_get_domain(schedule
);
3919 space
= isl_union_set_get_space(domain
);
3920 isl_union_set_free(domain
);
3921 isl_schedule_free(schedule
);
3923 space
= isl_space_set_from_params(space
);
3924 mupa
= isl_multi_union_pw_aff_zero(space
);
3925 node
= isl_schedule_node_insert_partial_schedule(node
, mupa
);
3926 node
= isl_schedule_node_band_set_permutable(node
, 1);
3931 /* Mark "node" as outer permutable.
3933 * If "node" originally points to a leaf, then insert a zero-dimensional
3934 * permutable band such that we can assume that "node" always
3935 * points to a band node.
3937 * Create a kernel representing the domain instances that reach "node" and
3938 * replace the band node with a mark node pointing to the kernel.
3940 static __isl_give isl_schedule_node
*mark_outer_permutable(
3941 struct gpu_gen
*gen
, __isl_take isl_schedule_node
*node
)
3943 struct ppcg_kernel
*kernel
;
3947 if (isl_schedule_node_get_type(node
) == isl_schedule_node_leaf
)
3948 node
= insert_empty_permutable_band(node
);
3950 tile_len
= isl_schedule_node_band_n_member(node
);
3951 tile_size
= read_tile_sizes(gen
, &tile_len
);
3953 return isl_schedule_node_free(node
);
3954 node
= create_kernel(gen
, node
);
3957 kernel
= gen
->kernel
;
3958 kernel
->tile_len
= tile_len
;
3959 kernel
->tile_size
= tile_size
;
3960 if (kernel
->n_parallel
> kernel
->tile_len
)
3961 kernel
->n_parallel
= kernel
->tile_len
;
3966 static __isl_give isl_schedule_node
*select_outer_band(struct gpu_gen
*gen
,
3967 __isl_take isl_schedule_node
*node
, int pos
, struct band_info
*info
);
3969 /* Check if this band node is tilable and has any parallel loops. If so,
3970 * take it as the outermost tilable band. If not, continue looking for the
3971 * outermost tilable band in the children of the current band.
3972 * Return a pointer to the same node in a tree where all outermost tilable
3973 * bands in the current subtree have been replaced by mark nodes
3974 * containing a pointer to a ppcg_kernel object.
3976 static __isl_give isl_schedule_node
*band_select_outer_band(struct gpu_gen
*gen
,
3977 __isl_take isl_schedule_node
*node
, int pos
, struct band_info
*info
)
3979 int n
= isl_schedule_node_band_n_member(node
);
3982 n_parallel
= n_outer_coincidence(node
);
3984 if (!isl_schedule_node_band_get_permutable(node
) || n_parallel
== 0) {
3985 node
= isl_schedule_node_child(node
, 0);
3986 node
= select_outer_band(gen
, node
, pos
+ n
, info
);
3987 return isl_schedule_node_parent(node
);
3990 gen
->any_parallelism
= 1;
3992 info
->tile_first
= pos
;
3993 info
->prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
3994 info
->suffix
= isl_schedule_node_get_subtree_schedule_union_map(node
);
3996 node
= mark_outer_permutable(gen
, node
);
4001 /* Extend "umap" with coordinates with fixed value "val"
4002 * to a total length of "dst_len", assuming the original dimension is "src_len".
4004 static __isl_give isl_union_map
*extend_range(
4005 __isl_take isl_union_map
*umap
, int src_len
, int dst_len
, int val
)
4011 dim
= isl_union_map_get_space(umap
);
4012 map
= isl_map_reverse(projection(dim
, dst_len
, src_len
));
4013 for (i
= src_len
; i
< dst_len
; ++i
)
4014 map
= isl_map_fix_si(map
, isl_dim_out
, i
, val
);
4016 umap
= isl_union_map_apply_range(umap
, isl_union_map_from_map(map
));
4021 /* Select the outermost bands in the elements of the sequence or set
4022 * node "node", align their prefix schedules and combine the resulting
4023 * prefix and suffix schedules into a single pair of prefix and
4024 * suffix schedules for the entire list.
4025 * Return a pointer to the same node in a tree where all outermost tilable
4026 * bands in the current subtree have been replaced by mark nodes
4027 * containing a pointer to a ppcg_kernel object.
4029 static __isl_give isl_schedule_node
*list_select_outer_band(
4030 struct gpu_gen
*gen
, __isl_take isl_schedule_node
*node
, int pos
,
4031 struct band_info
*list_info
)
4034 int n
= isl_schedule_node_n_children(node
);
4035 isl_ctx
*ctx
= isl_schedule_node_get_ctx(node
);
4036 struct band_info
*info
;
4038 isl_union_map
*prefix
;
4039 isl_union_map
*suffix
;
4042 info
= isl_calloc_array(ctx
, struct band_info
, n
);
4046 for (i
= 0; i
< n
; ++i
) {
4047 node
= isl_schedule_node_child(node
, i
);
4048 node
= select_outer_band(gen
, node
, pos
, &info
[i
]);
4049 if (info
[i
].tile_first
> max_tile_first
)
4050 max_tile_first
= info
[i
].tile_first
;
4051 node
= isl_schedule_node_parent(node
);
4054 for (i
= 0; i
< n
; ++i
) {
4055 if (info
[i
].tile_first
== max_tile_first
)
4057 info
[i
].prefix
= extend_range(info
[i
].prefix
,
4058 info
[i
].tile_first
, max_tile_first
, 0);
4059 info
[i
].tile_first
= max_tile_first
;
4062 prefix
= info
[0].prefix
;
4063 suffix
= info
[0].suffix
;
4065 for (i
= 1; i
< n
; ++i
) {
4066 prefix
= isl_union_map_union(prefix
, info
[i
].prefix
);
4067 suffix
= isl_union_map_union(suffix
, info
[i
].suffix
);
4070 list_info
->tile_first
= info
[0].tile_first
;
4071 list_info
->prefix
= prefix
;
4072 list_info
->suffix
= suffix
;
4078 /* If we reach a leaf node, then we have not found any outer tilable
4079 * band with parallel loops, so consider the leaf node as the outermost
4081 * Return a pointer to a mark node containing a pointer
4082 * to a ppcg_kernel object inserted at the original leaf node.
4084 static __isl_give isl_schedule_node
*leaf_select_outer_band(struct gpu_gen
*gen
,
4085 __isl_take isl_schedule_node
*node
, int pos
, struct band_info
*info
)
4088 info
->tile_first
= pos
;
4089 info
->prefix
= isl_schedule_node_get_prefix_schedule_union_map(node
);
4090 info
->suffix
= isl_schedule_node_get_subtree_schedule_union_map(node
);
4092 node
= mark_outer_permutable(gen
, node
);
4097 /* Select the outermost tilable band in the subtree that "node" points to and
4098 * return a pointer to the same node in a tree where all outermost tilable
4099 * bands in the current subtree have been replaced by mark nodes
4100 * containing a pointer to a ppcg_kernel object.
4102 static __isl_give isl_schedule_node
*select_outer_band(struct gpu_gen
*gen
,
4103 __isl_take isl_schedule_node
*node
, int pos
, struct band_info
*info
)
4105 enum isl_schedule_node_type type
;
4107 type
= isl_schedule_node_get_type(node
);
4109 case isl_schedule_node_domain
:
4110 case isl_schedule_node_filter
:
4111 node
= isl_schedule_node_child(node
, 0);
4112 node
= select_outer_band(gen
, node
, pos
, info
);
4113 return isl_schedule_node_parent(node
);
4114 case isl_schedule_node_leaf
:
4115 return leaf_select_outer_band(gen
, node
, pos
, info
);
4116 case isl_schedule_node_band
:
4117 return band_select_outer_band(gen
, node
, pos
, info
);
4118 case isl_schedule_node_set
:
4119 case isl_schedule_node_sequence
:
4120 return list_select_outer_band(gen
, node
, pos
, info
);
4122 isl_die(isl_schedule_node_get_ctx(node
),
4123 isl_error_unsupported
, "unhandled schedule node type",
4125 case isl_schedule_node_error
:
4126 info
->prefix
= NULL
;
4127 info
->suffix
= NULL
;
4131 return isl_schedule_node_free(node
);
4134 /* Select the outermost tilable band that (by construction)
4135 * has at least one parallel loop.
4136 * The starting position of the aligned band is stored in the pair
4138 * The sizes and number of parallel loops may be different in different
4139 * parts of the band forest and are therefore stored in the gpu_stmts.
4141 * Return the complete schedule, with the tilable bands aligned
4142 * at gen->tile_first and padded with zero, if needed.
4143 * Store a schedule tree corresponding to the outer gen->tile_first
4144 * dimensions, with mark nodes containing pointers to ppcg_kernel objects,
4145 * in gen->host_schedule.
4147 static __isl_give isl_union_map
*select_outer_tilable_band(struct gpu_gen
*gen
,
4148 __isl_keep isl_schedule
*schedule
)
4150 isl_schedule_node
*node
;
4151 struct band_info info
;
4153 node
= isl_schedule_get_root(schedule
);
4154 node
= select_outer_band(gen
, node
, 0, &info
);
4155 gen
->host_schedule
= isl_schedule_node_get_schedule(node
);
4156 isl_schedule_node_free(node
);
4158 gen
->tile_first
= info
.tile_first
;
4159 info
.suffix
= align_range(info
.suffix
);
4161 return isl_union_map_flat_range_product(info
.prefix
, info
.suffix
);
4164 /* Set gen->untiled_len to the number of scheduling dimensions
4165 * for the schedule of the first domain.
4166 * We assume here that this number is the same for all domains.
4168 static int set_untiled_len(__isl_take isl_map
*map
, void *user
)
4170 unsigned *untiled_len
= user
;
4172 *untiled_len
= isl_map_dim(map
, isl_dim_out
);
4178 /* Compute an appropriate schedule based on the accesses in
4179 * gen->read and gen->write.
4181 * We use the dependences in gen->prog->scop to compute
4182 * a schedule that has a parallel loop in each tilable band.
4183 * Finally, we select the outermost tilable band.
4185 * If live range reordering is allowed, then we need to make sure
4186 * that live ranges on arrays are not run in parallel since doing
4187 * so would require array expansion. We therefore add the array
4188 * order dependences to the coincidence dependences. Non-zero array
4189 * order dependences will then prevent a schedule dimension from being
4190 * considered parallel.
4191 * Live ranges derived from scalars are allowed to be run in parallel
4192 * since we force the scalars to be mapped to private memory in
4193 * check_scalar_live_ranges.
4194 * If live range reordering is allowed, then the false dependences
4195 * are not added to the validity constraints as that would prevent
4196 * reordering. Instead, the external false dependences that enforce that reads
4197 * from potentially live-in data precede any later write and
4198 * that writes of potentially live-out data follow any other earlier write
4199 * are added to the validity and the coincidence constraints.
4200 * The false dependences are still added to the proximity constraints
4201 * for consistency with the case where live range reordering is not allowed.
4202 * The coincidence constraints then consist of flow dependences,
4203 * external false dependences and array order dependences.
4204 * The independences can be filtered out from the first two sets.
4205 * They have already been filtered out from the array order dependences
4206 * on a per array basis in collect_order_dependences.
4207 * There is no need for a per array handling of the other two sets
4208 * as there should be no flow or external false dependence on local
4209 * variables that can be filtered out.
4211 static void compute_schedule(struct gpu_gen
*gen
)
4213 isl_union_set
*domain
;
4214 isl_union_map
*dep_raw
, *dep
;
4215 isl_union_map
*validity
, *proximity
, *coincidence
;
4216 isl_union_map
*sched
;
4217 isl_schedule_constraints
*sc
;
4218 isl_schedule
*schedule
;
4220 domain
= isl_union_set_copy(gen
->prog
->scop
->domain
);
4221 sc
= isl_schedule_constraints_on_domain(isl_union_set_copy(domain
));
4222 sc
= isl_schedule_constraints_set_context(sc
,
4223 isl_set_copy(gen
->prog
->scop
->context
));
4224 if (gen
->options
->live_range_reordering
) {
4225 sc
= isl_schedule_constraints_set_conditional_validity(sc
,
4226 isl_union_map_copy(gen
->prog
->scop
->tagged_dep_flow
),
4227 isl_union_map_copy(gen
->prog
->scop
->tagged_dep_order
));
4228 proximity
= isl_union_map_copy(gen
->prog
->scop
->dep_flow
);
4229 validity
= isl_union_map_copy(proximity
);
4230 validity
= isl_union_map_union(validity
,
4231 isl_union_map_copy(gen
->prog
->scop
->dep_forced
));
4232 proximity
= isl_union_map_union(proximity
,
4233 isl_union_map_copy(gen
->prog
->scop
->dep_false
));
4234 coincidence
= isl_union_map_copy(validity
);
4235 coincidence
= isl_union_map_subtract(coincidence
,
4236 isl_union_map_copy(gen
->prog
->scop
->independence
));
4237 coincidence
= isl_union_map_union(coincidence
,
4238 isl_union_map_copy(gen
->prog
->array_order
));
4240 dep_raw
= isl_union_map_copy(gen
->prog
->scop
->dep_flow
);
4241 dep
= isl_union_map_copy(gen
->prog
->scop
->dep_false
);
4242 dep
= isl_union_map_union(dep
, dep_raw
);
4243 dep
= isl_union_map_coalesce(dep
);
4244 proximity
= isl_union_map_copy(dep
);
4245 coincidence
= isl_union_map_copy(dep
);
4248 sc
= isl_schedule_constraints_set_validity(sc
, validity
);
4249 sc
= isl_schedule_constraints_set_coincidence(sc
, coincidence
);
4250 sc
= isl_schedule_constraints_set_proximity(sc
, proximity
);
4252 if (gen
->options
->debug
->dump_schedule_constraints
)
4253 isl_schedule_constraints_dump(sc
);
4254 schedule
= isl_schedule_constraints_compute_schedule(sc
);
4255 if (gen
->options
->debug
->dump_schedule
)
4256 isl_schedule_dump(schedule
);
4258 sched
= select_outer_tilable_band(gen
, schedule
);
4260 isl_union_map_foreach_map(sched
, &set_untiled_len
, &gen
->untiled_len
);
4261 sched
= isl_union_map_intersect_domain(sched
, domain
);
4264 isl_schedule_free(schedule
);
4267 /* Compute the sets of outer array elements that need to be copied in and out.
4269 * In particular, for each array that is possibly written anywhere in
4270 * gen->prog and that is visible outside the corresponding scop,
4271 * we copy out its entire extent.
4273 * Any array elements that is read without first being written needs
4274 * to be copied in. Furthermore, if there are any array elements that
4275 * are copied out, but that may not be written inside gen->prog, then
4276 * they also need to be copied in to ensure that the value after execution
4277 * is the same as the value before execution, at least for those array
4278 * elements that may have their values preserved by the scop.
4279 * In case the array elements are structures, we need to take into
4280 * account that all members of the structures need to be written
4281 * by gen->prog before we can avoid copying the data structure in.
4283 * While computing the set of array elements that are copied out but
4284 * not necessarily written, we intersect both sets with the context.
4285 * This helps in those cases where the arrays are declared with a fixed size,
4286 * while the accesses are parametric and the context assigns a fixed value
4287 * to the parameters.
4289 * If an element from a local array is read without first being written,
4290 * then there is no point in copying it in since it cannot have been
4291 * written prior to the scop. Warn about the uninitialized read instead.
4293 static void compute_copy_in_and_out(struct gpu_gen
*gen
)
4296 isl_union_set
*local
;
4297 isl_union_set
*may_write
, *must_write
;
4298 isl_union_set
*copy_in
, *copy_out
;
4299 isl_union_set
*not_written
;
4300 isl_union_map
*uninitialized
;
4301 isl_union_map
*local_uninitialized
;
4303 must_write
= isl_union_map_range(
4304 isl_union_map_copy(gen
->prog
->must_write
));
4305 must_write
= isl_union_set_intersect_params(must_write
,
4306 isl_set_copy(gen
->prog
->context
));
4307 may_write
= isl_union_map_range(
4308 isl_union_map_copy(gen
->prog
->may_write
));
4309 may_write
= isl_union_set_intersect_params(may_write
,
4310 isl_set_copy(gen
->prog
->context
));
4311 may_write
= isl_union_set_universe(may_write
);
4312 may_write
= isl_union_set_apply(may_write
,
4313 isl_union_map_copy(gen
->prog
->to_outer
));
4314 copy_out
= isl_union_set_empty(isl_union_set_get_space(may_write
));
4315 local
= isl_union_set_copy(copy_out
);
4317 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
4322 space
= isl_space_copy(gen
->prog
->array
[i
].space
);
4324 if (gen
->prog
->array
[i
].local
) {
4327 set
= isl_set_universe(space
);
4328 local
= isl_union_set_add_set(local
, set
);
4332 write_i
= isl_union_set_extract_set(may_write
, space
);
4333 empty
= isl_set_plain_is_empty(write_i
);
4334 isl_set_free(write_i
);
4338 write_i
= isl_set_copy(gen
->prog
->array
[i
].extent
);
4339 copy_out
= isl_union_set_add_set(copy_out
, write_i
);
4341 isl_union_set_free(may_write
);
4343 copy_out
= isl_union_set_intersect_params(copy_out
,
4344 isl_set_copy(gen
->prog
->context
));
4346 gen
->prog
->copy_out
= isl_union_set_copy(copy_out
);
4348 copy_out
= isl_union_set_apply(copy_out
,
4349 isl_union_map_copy(gen
->prog
->to_inner
));
4350 copy_out
= isl_union_set_intersect(copy_out
,
4351 isl_union_set_copy(gen
->prog
->may_persist
));
4352 not_written
= isl_union_set_subtract(copy_out
, must_write
);
4354 uninitialized
= isl_union_map_copy(gen
->prog
->scop
->live_in
);
4355 local_uninitialized
= isl_union_map_copy(uninitialized
);
4357 local
= isl_union_set_apply(local
,
4358 isl_union_map_copy(gen
->prog
->to_inner
));
4359 local_uninitialized
= isl_union_map_intersect_range(local_uninitialized
,
4361 if (!isl_union_map_is_empty(local_uninitialized
)) {
4363 "possibly uninitialized reads (not copied in):\n");
4364 isl_union_map_dump(local_uninitialized
);
4366 uninitialized
= isl_union_map_subtract(uninitialized
,
4367 local_uninitialized
);
4368 copy_in
= isl_union_map_range(uninitialized
);
4369 copy_in
= isl_union_set_union(copy_in
, not_written
);
4370 copy_in
= isl_union_set_apply(copy_in
,
4371 isl_union_map_copy(gen
->prog
->to_outer
));
4373 gen
->prog
->copy_in
= copy_in
;
4376 /* Internal data structure for extract_access.
4377 * "next_access" points to the end of a linked list that is extended
4378 * by extract_access.
4379 * "single_expression" is set if the access expressions belong to
4380 * an expression statement (i.e., a statement without internal control).
4381 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4383 struct ppcg_extract_access_data
{
4384 struct gpu_stmt_access
**next_access
;
4385 int single_expression
;
4386 isl_union_map
*any_to_outer
;
4389 /* Given a tagged access relation to a single array "tagged", extract it
4390 * as a map, taking into account that the input may be empty.
4391 * If the access relation is empty, then it does not contain
4392 * any space information, so we try to recover it from the index
4394 * The space of the index expression is of the form I -> A,
4395 * with I the statement instances and A the array, or [I -> F] -> A,
4396 * with F the filters corresponding to arguments.
4397 * We first drop F, if present, obtaining I -> A.
4398 * Then we construct I -> R, with R the reference tag,
4399 * combine the two into I -> [R -> A] and uncurry to obtain
4400 * the final result [I -> R] -> A.
4401 * Note that the index expression may have a lower dimension
4402 * than that of the array, but this dimension is not used
4403 * if the access relation is empty.
4405 static __isl_give isl_map
*extract_single_tagged_access(
4406 __isl_take isl_union_map
*tagged
, __isl_keep pet_expr
*expr
)
4410 isl_space
*space
, *space2
;
4411 isl_multi_pw_aff
*index
;
4413 empty
= isl_union_map_is_empty(tagged
);
4417 return isl_map_from_union_map(tagged
);
4418 isl_union_map_free(tagged
);
4420 index
= pet_expr_access_get_index(expr
);
4421 space
= isl_multi_pw_aff_get_space(index
);
4422 isl_multi_pw_aff_free(index
);
4423 if (isl_space_domain_is_wrapping(space
))
4424 space
= isl_space_domain_factor_domain(space
);
4425 space2
= isl_space_copy(space
);
4426 space2
= isl_space_from_domain(isl_space_domain(space
));
4427 id
= pet_expr_access_get_ref_id(expr
);
4428 space2
= isl_space_set_tuple_id(space2
, isl_dim_out
, id
);
4429 space
= isl_space_range_product(space2
, space
);
4430 space
= isl_space_uncurry(space
);
4432 return isl_map_empty(space
);
4434 isl_union_map_free(tagged
);
4438 /* Extract a gpu_stmt_access from "expr", append it to the list
4439 * that ends in *data->next_access and update the end of the list.
4440 * If the access expression performs a write, then it is considered
4441 * exact only if it appears in a single expression statement and
4442 * if its may access relation is equal to its must access relation.
4444 * The combined set of may accesses may be union if member accesses
4445 * are involved, but the entire set is derived from a single reference and
4446 * therefore from a single index expression. These accesses therefore
4447 * all map to the same outer array.
4449 static int extract_access(__isl_keep pet_expr
*expr
, void *user
)
4451 struct ppcg_extract_access_data
*data
= user
;
4452 isl_union_map
*tagged
;
4453 struct gpu_stmt_access
*access
;
4454 isl_ctx
*ctx
= pet_expr_get_ctx(expr
);
4455 isl_multi_pw_aff
*index
;
4457 access
= isl_alloc_type(ctx
, struct gpu_stmt_access
);
4459 access
->next
= NULL
;
4460 access
->read
= pet_expr_access_is_read(expr
);
4461 access
->write
= pet_expr_access_is_write(expr
);
4462 tagged
= pet_expr_access_get_tagged_may_read(expr
);
4463 tagged
= isl_union_map_union(tagged
,
4464 pet_expr_access_get_tagged_may_write(expr
));
4465 tagged
= isl_union_map_apply_range(tagged
,
4466 isl_union_map_copy(data
->any_to_outer
));
4467 if (!access
->write
) {
4468 access
->exact_write
= 1;
4469 } else if (!data
->single_expression
) {
4470 access
->exact_write
= 0;
4472 isl_union_map
*must
, *may
;
4473 may
= isl_union_map_copy(tagged
);
4474 may
= isl_union_map_domain_factor_domain(may
);
4475 must
= pet_expr_access_get_must_write(expr
);
4476 access
->exact_write
= isl_union_map_is_equal(must
, may
);
4477 isl_union_map_free(must
);
4478 isl_union_map_free(may
);
4480 index
= pet_expr_access_get_index(expr
);
4481 access
->n_index
= isl_multi_pw_aff_dim(index
, isl_dim_out
);
4482 isl_multi_pw_aff_free(index
);
4483 access
->ref_id
= pet_expr_access_get_ref_id(expr
);
4484 access
->tagged_access
= extract_single_tagged_access(tagged
, expr
);
4485 access
->access
= isl_map_copy(access
->tagged_access
);
4486 access
->access
= isl_map_domain_factor_domain(access
->access
);
4488 *data
->next_access
= access
;
4489 data
->next_access
= &(*data
->next_access
)->next
;
4491 if (!access
->access
)
4497 /* Construct a linked list of gpu_stmt_access objects,
4498 * one for each access expression in the statement body.
4499 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4501 static int pet_stmt_extract_accesses(struct gpu_stmt
*stmt
,
4502 __isl_keep isl_union_map
*any_to_outer
)
4504 struct ppcg_extract_access_data data
;
4506 stmt
->accesses
= NULL
;
4507 data
.next_access
= &stmt
->accesses
;
4508 data
.single_expression
=
4509 pet_tree_get_type(stmt
->stmt
->body
) == pet_tree_expr
;
4510 data
.any_to_outer
= any_to_outer
;
4511 return pet_tree_foreach_access_expr(stmt
->stmt
->body
,
4512 &extract_access
, &data
);
4515 /* Return an array of gpu_stmt representing the statements in "scop".
4517 static struct gpu_stmt
*extract_stmts(isl_ctx
*ctx
, struct ppcg_scop
*scop
,
4518 __isl_keep isl_set
*context
, __isl_keep isl_union_map
*any_to_outer
)
4521 struct gpu_stmt
*stmts
;
4523 stmts
= isl_calloc_array(ctx
, struct gpu_stmt
, scop
->pet
->n_stmt
);
4527 for (i
= 0; i
< scop
->pet
->n_stmt
; ++i
) {
4528 struct gpu_stmt
*s
= &stmts
[i
];
4530 s
->id
= isl_set_get_tuple_id(scop
->pet
->stmts
[i
]->domain
);
4531 s
->stmt
= scop
->pet
->stmts
[i
];
4532 if (pet_stmt_extract_accesses(s
, any_to_outer
) < 0)
4533 return free_stmts(stmts
, i
+ 1);
4539 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
4541 static __isl_give isl_printer
*print_gpu(__isl_take isl_printer
*p
, void *user
)
4543 struct gpu_gen
*gen
= user
;
4545 return gen
->print(p
, gen
->prog
, gen
->tree
, &gen
->types
,
4549 /* Generate CUDA code for "scop" and print it to "p".
4550 * After generating an AST for the transformed scop as explained below,
4551 * we call "gen->print" to print the AST in the desired output format
4554 * If it turns out that it does not make sense to generate GPU code,
4555 * then we generate CPU code instead.
4557 * The GPU code is generated in a context where at least one
4558 * statement instance is executed. The corresponding guard (if any) is printed
4559 * around the entire generated GPU code, except for the declaration
4560 * of the arrays that are visible outside of the scop and that therefore
4561 * cannot be declared inside the body of any possible guard.
4563 * We first compute a schedule that respects the dependences
4564 * of the original program and select the outermost band
4565 * of tilable dimensions that has at least one parallel loop.
4566 * We then have three blocks of dimensions
4570 * The tilable band "B" is first tiled according to "tile" sizes, resulting
4575 * For each iteration of the T loop and for each array, we compute
4576 * the array elements accessed by that iteration, construct a rectangular
4577 * box around it and shift it to the origin. The result is used
4578 * as shared memory for the array.
4580 * We then split off at most 2 parallel loops from the T loops and
4581 * at most 3 parallel loops from the P loops
4585 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
4586 * according to "grid"/"block" sizes.
4588 * H T1T T1P T2 P1T P1P P2 G
4590 * Finally, the T1P and P1P iterators are equated to the block and
4591 * thread dimensions respectively and so are effectively removed.
4592 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
4593 * are run on the GPU.
4595 * Code is generated in three stages. We first generate code for the
4596 * host (the H loops), with iterators h%d. Then, for each leaf node
4597 * of the resulting AST, we generate code for the shared loops (up to
4598 * and including T2), with iterators g%d and after equating the H loops
4599 * to h%d parameters and the T1P loops to the block dimensions.
4600 * Finally, we generate code for the remaining loops in a similar fashion.
4602 static __isl_give isl_printer
*generate(__isl_take isl_printer
*p
,
4603 struct gpu_gen
*gen
, struct ppcg_scop
*scop
,
4604 struct ppcg_options
*options
)
4606 struct gpu_prog
*prog
;
4608 isl_set
*context
, *guard
;
4611 return isl_printer_free(p
);
4613 ctx
= isl_printer_get_ctx(p
);
4614 prog
= gpu_prog_alloc(ctx
, scop
);
4616 return isl_printer_free(p
);
4618 context
= isl_set_copy(prog
->context
);
4619 guard
= isl_union_set_params(isl_union_set_copy(prog
->scop
->domain
));
4620 prog
->context
= isl_set_intersect(prog
->context
, isl_set_copy(guard
));
4623 gen
->any_parallelism
= 0;
4624 compute_schedule(gen
);
4626 if (!gen
->any_parallelism
) {
4627 isl_set_free(context
);
4628 isl_set_free(guard
);
4629 p
= print_cpu(p
, scop
, options
);
4631 compute_copy_in_and_out(gen
);
4632 gen
->tree
= generate_host_code(gen
);
4633 p
= ppcg_print_exposed_declarations(p
, prog
->scop
);
4634 p
= ppcg_print_guarded(p
, guard
, context
, &print_gpu
, gen
);
4635 isl_ast_node_free(gen
->tree
);
4638 isl_union_map_free(gen
->sched
);
4639 isl_schedule_free(gen
->host_schedule
);
4641 gpu_prog_free(prog
);
4646 /* Wrapper around generate for use as a ppcg_transform callback.
4648 static __isl_give isl_printer
*generate_wrap(__isl_take isl_printer
*p
,
4649 struct ppcg_scop
*scop
, void *user
)
4651 struct gpu_gen
*gen
= user
;
4653 return generate(p
, gen
, scop
, gen
->options
);
4656 /* Transform the code in the file called "input" by replacing
4657 * all scops by corresponding GPU code and write the results to "out".
4659 int generate_gpu(isl_ctx
*ctx
, const char *input
, FILE *out
,
4660 struct ppcg_options
*options
,
4661 __isl_give isl_printer
*(*print
)(__isl_take isl_printer
*p
,
4662 struct gpu_prog
*prog
, __isl_keep isl_ast_node
*tree
,
4663 struct gpu_types
*types
, void *user
), void *user
)
4670 gen
.sizes
= extract_sizes_from_str(ctx
, options
->sizes
);
4671 gen
.options
= options
;
4674 gen
.print_user
= user
;
4676 gen
.types
.name
= NULL
;
4678 if (options
->debug
->dump_sizes
) {
4679 isl_space
*space
= isl_space_params_alloc(ctx
, 0);
4680 gen
.used_sizes
= isl_union_map_empty(space
);
4683 r
= ppcg_transform(ctx
, input
, out
, options
, &generate_wrap
, &gen
);
4685 if (options
->debug
->dump_sizes
) {
4686 isl_union_map_dump(gen
.used_sizes
);
4687 isl_union_map_free(gen
.used_sizes
);
4690 isl_union_map_free(gen
.sizes
);
4691 for (i
= 0; i
< gen
.types
.n
; ++i
)
4692 free(gen
.types
.name
[i
]);
4693 free(gen
.types
.name
);
4698 /* Compute the set of inner array elements that may have their values
4699 * preserved by "prog". In particular, collect the array elements of
4700 * arrays that are not local to "prog" and remove those elements that
4701 * are definitely killed or definitely written by "prog".
4703 static __isl_give isl_union_set
*compute_may_persist(struct gpu_prog
*prog
)
4706 isl_union_set
*may_persist
, *killed
;
4707 isl_union_map
*must_kill
;
4709 may_persist
= isl_union_set_empty(isl_set_get_space(prog
->context
));
4710 for (i
= 0; i
< prog
->n_array
; ++i
) {
4713 if (prog
->array
[i
].local
)
4716 extent
= isl_set_copy(prog
->array
[i
].extent
);
4717 may_persist
= isl_union_set_add_set(may_persist
, extent
);
4720 may_persist
= isl_union_set_intersect_params(may_persist
,
4721 isl_set_copy(prog
->context
));
4722 may_persist
= isl_union_set_apply(may_persist
,
4723 isl_union_map_copy(prog
->to_inner
));
4724 must_kill
= isl_union_map_copy(prog
->tagged_must_kill
);
4725 killed
= isl_union_map_range(must_kill
);
4726 must_kill
= isl_union_map_copy(prog
->must_write
);
4727 killed
= isl_union_set_union(killed
, isl_union_map_range(must_kill
));
4729 may_persist
= isl_union_set_subtract(may_persist
, killed
);
4733 struct gpu_prog
*gpu_prog_alloc(isl_ctx
*ctx
, struct ppcg_scop
*scop
)
4735 struct gpu_prog
*prog
;
4742 prog
= isl_calloc_type(ctx
, struct gpu_prog
);
4747 prog
->context
= isl_set_copy(scop
->context
);
4748 prog
->n_stmts
= scop
->pet
->n_stmt
;
4749 prog
->any_to_outer
= pet_scop_compute_outer_to_any(scop
->pet
);
4750 prog
->any_to_outer
= isl_union_map_reverse(prog
->any_to_outer
);
4751 space
= isl_union_map_get_space(prog
->any_to_outer
);
4752 space
= isl_space_set_from_params(space
);
4753 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
4754 space
= isl_space_map_from_set(space
);
4755 id
= isl_map_identity(space
);
4756 prog
->any_to_outer
= isl_union_map_add_map(prog
->any_to_outer
, id
);
4757 prog
->stmts
= extract_stmts(ctx
, scop
,
4758 prog
->context
, prog
->any_to_outer
);
4759 prog
->read
= isl_union_map_copy(scop
->reads
);
4760 prog
->may_write
= isl_union_map_copy(scop
->may_writes
);
4761 prog
->must_write
= isl_union_map_copy(scop
->must_writes
);
4762 prog
->tagged_must_kill
= isl_union_map_copy(scop
->tagged_must_kills
);
4763 prog
->to_inner
= pet_scop_compute_outer_to_inner(scop
->pet
);
4764 prog
->to_outer
= isl_union_map_copy(prog
->to_inner
);
4765 prog
->to_outer
= isl_union_map_reverse(prog
->to_outer
);
4768 return gpu_prog_free(prog
);
4770 if (collect_array_info(prog
) < 0)
4771 return gpu_prog_free(prog
);
4772 prog
->may_persist
= compute_may_persist(prog
);
4777 void *gpu_prog_free(struct gpu_prog
*prog
)
4781 free_array_info(prog
);
4782 free_stmts(prog
->stmts
, prog
->n_stmts
);
4783 isl_union_map_free(prog
->any_to_outer
);
4784 isl_union_map_free(prog
->to_outer
);
4785 isl_union_map_free(prog
->to_inner
);
4786 isl_union_set_free(prog
->copy_in
);
4787 isl_union_set_free(prog
->copy_out
);
4788 isl_union_map_free(prog
->read
);
4789 isl_union_map_free(prog
->may_write
);
4790 isl_union_map_free(prog
->must_write
);
4791 isl_union_map_free(prog
->tagged_must_kill
);
4792 isl_union_map_free(prog
->array_order
);
4793 isl_union_set_free(prog
->may_persist
);
4794 isl_set_free(prog
->context
);