2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012 Ecole Normale Superieure
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
16 #include <isl/polynomial.h>
17 #include <isl/union_set.h>
22 #include <isl/schedule.h>
23 #include <isl/options.h>
24 #include <isl/ast_build.h>
28 #include "ppcg_options.h"
30 /* The fields stride, shift and shift_map only contain valid information
32 * If so, they express that current index is such that if you add shift,
33 * then the result is always a multiple of stride.
34 * shift_map contains the mapping
36 * i -> (i + shift)/stride
38 * Let D represent the initial shared_len dimensions of the computed schedule.
39 * The spaces of "lb" and "shift" are of the form
43 * "shift_map" is of the form
45 * [D -> i] -> [D -> (i + shift(D))/stride]
47 struct gpu_array_bound
{
53 isl_basic_map
*shift_map
;
56 struct gpu_array_info
;
58 /* A group of array references in a kernel that should be handled together.
59 * If private_bound is not NULL, then it is mapped to registers.
60 * Otherwise, if shared_bound is not NULL, it is mapped to shared memory.
61 * Otherwise, it is accessed from global memory.
63 struct gpu_array_ref_group
{
64 /* The references in this group access this array. */
65 struct gpu_array_info
*array
;
66 /* Position of this group in the list of reference groups of array. */
69 /* The following fields are use during the construction of the groups.
70 * access is the combined access relation relative to the shared
71 * memory tiling. In particular, the domain of the map corresponds
72 * to the first shared_len dimensions of the computed schedule.
73 * write is set if any access in the group is a write.
78 /* For each index, size and offset of piece in shared memory. */
79 struct gpu_array_bound
*shared_bound
;
81 /* For each index, size and offset of piece in private memory. */
82 struct gpu_array_bound
*private_bound
;
84 /* References in this group; point to elements of a linked list. */
86 struct gpu_stmt_access
**refs
;
88 /* Last shared memory tile dimension that affects tile of this group. */
94 struct ppcg_options
*options
;
96 struct gpu_prog
*prog
;
98 /* tile, grid and block sizes for each kernel */
101 /* Identifier of current kernel. */
103 /* Pointer to the current kernel. */
104 struct ppcg_kernel
*kernel
;
106 /* First tile dimension. */
108 /* Number of tile dimensions. */
110 /* Number of initial parallel loops among tile dimensions. */
113 /* Number of dimensions determining shared memory. */
116 /* Number of rows in the untiled schedule. */
118 /* Number of rows in the tiled schedule. */
120 /* Number of rows in schedule after tiling/wrapping over threads. */
121 int thread_tiled_len
;
123 /* Global untiled schedule. */
124 isl_union_map
*sched
;
125 /* Local (per kernel launch) tiled schedule. */
126 isl_union_map
*tiled_sched
;
127 /* Local schedule per shared memory tile loop iteration. */
128 isl_union_map
*local_sched
;
130 /* Local tiled schedule projected onto the shared tile loops and
131 * the loops that will be wrapped over the threads,
132 * with all shared tile loops parametrized.
134 isl_union_map
*shared_sched
;
135 /* Projects out the loops that will be wrapped over the threads
138 isl_union_map
*shared_proj
;
140 /* A map that takes the range of shared_sched as input,
141 * wraps the appropriate loops over the threads and then projects
144 isl_map
*privatization
;
146 /* A map from the shared memory tile loops and the thread indices
147 * (as parameters) to the set of accessed memory elements that
148 * will be accessed through private copies.
150 isl_union_map
*private_access
;
152 /* The schedule for the current private/shared access
153 * (within print_private_access or print_shared_access).
156 /* The array reference group corresponding to copy_sched. */
157 struct gpu_array_ref_group
*copy_group
;
158 /* copy_group->private_bound or copy_group->shared_bound */
159 struct gpu_array_bound
*copy_bound
;
161 /* First loop to unroll (or -1 if none) in the current part of the
168 /* Note: in the input file, the sizes of the grid and the blocks
169 * are specified in the order x, y, z, but internally, the sizes
170 * are stored in reverse order, so that the last element always
171 * refers to the x dimension.
178 /* Print the name of the local copy of a given group of array references.
180 static __isl_give isl_printer
*print_array_name(__isl_take isl_printer
*p
,
181 struct gpu_array_ref_group
*group
)
185 if (group
->private_bound
)
186 p
= isl_printer_print_str(p
, "private_");
187 else if (group
->shared_bound
)
188 p
= isl_printer_print_str(p
, "shared_");
191 p
= isl_printer_print_str(p
, group
->array
->name
);
192 if (!global
&& group
->array
->n_group
> 1) {
193 p
= isl_printer_print_str(p
, "_");
194 p
= isl_printer_print_int(p
, group
->nr
);
200 /* Collect all references to the given array and store pointers to them
203 static void collect_references(struct gpu_prog
*prog
,
204 struct gpu_array_info
*array
)
210 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
211 struct gpu_stmt
*stmt
= &prog
->stmts
[i
];
212 struct gpu_stmt_access
*access
;
214 for (access
= stmt
->accesses
; access
; access
= access
->next
) {
216 name
= isl_map_get_tuple_name(access
->access
,
218 if (name
&& !strcmp(array
->name
, name
))
224 array
->refs
= isl_alloc_array(prog
->ctx
, struct gpu_stmt_access
*, n
);
228 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
229 struct gpu_stmt
*stmt
= &prog
->stmts
[i
];
230 struct gpu_stmt_access
*access
;
232 for (access
= stmt
->accesses
; access
; access
= access
->next
) {
234 name
= isl_map_get_tuple_name(access
->access
,
236 if (!name
|| strcmp(array
->name
, name
))
239 array
->refs
[n
++] = access
;
244 static struct gpu_array_bound
*create_bound_list(isl_ctx
*ctx
, int n_index
)
247 struct gpu_array_bound
*bound
;
249 bound
= isl_alloc_array(ctx
, struct gpu_array_bound
, n_index
);
252 for (i
= 0; i
< n_index
; ++i
) {
253 isl_int_init(bound
[i
].size
);
255 isl_int_init(bound
[i
].stride
);
256 bound
[i
].shift
= NULL
;
257 bound
[i
].shift_map
= NULL
;
263 static void free_bound_list(struct gpu_array_bound
*bound
, int n_index
)
270 for (j
= 0; j
< n_index
; ++j
) {
271 isl_int_clear(bound
[j
].size
);
272 isl_int_clear(bound
[j
].stride
);
273 isl_aff_free(bound
[j
].lb
);
274 isl_aff_free(bound
[j
].shift
);
275 isl_basic_map_free(bound
[j
].shift_map
);
280 static struct pet_array
*find_array(struct ppcg_scop
*scop
,
281 __isl_keep isl_set
*accessed
)
286 id
= isl_set_get_tuple_id(accessed
);
288 for (i
= 0; i
< scop
->n_array
; ++i
) {
291 id_i
= isl_set_get_tuple_id(scop
->arrays
[i
]->extent
);
298 return i
< scop
->n_array
? scop
->arrays
[i
] : NULL
;
301 /* Compute bounds on the host arrays based on the accessed elements
302 * and collect all references to the array.
304 * If the array is zero-dimensional, i.e., a scalar, we check
305 * whether it is read-only.
307 static int extract_array_info(__isl_take isl_set
*array
, void *user
)
310 struct gpu_prog
*prog
= (struct gpu_prog
*)user
;
314 struct pet_array
*pa
;
316 n_index
= isl_set_dim(array
, isl_dim_set
);
317 name
= isl_set_get_tuple_name(array
);
318 bounds
= isl_alloc_array(isl_set_get_ctx(array
),
319 isl_pw_aff
*, n_index
);
321 prog
->array
[prog
->n_array
].dim
= isl_set_get_space(array
);
322 prog
->array
[prog
->n_array
].name
= strdup(name
);
323 prog
->array
[prog
->n_array
].n_index
= n_index
;
324 prog
->array
[prog
->n_array
].bound
= bounds
;
326 pa
= find_array(prog
->scop
, array
);
329 prog
->array
[prog
->n_array
].type
= strdup(pa
->element_type
);
330 prog
->array
[prog
->n_array
].size
= pa
->element_size
;
331 prog
->array
[prog
->n_array
].local
= pa
->declared
&& !pa
->exposed
;
335 isl_union_map
*write
;
338 write
= isl_union_map_copy(prog
->write
);
339 space
= isl_set_universe(isl_set_get_space(array
));
340 write
= isl_union_map_intersect_range(write
,
341 isl_union_set_from_set(space
));
342 empty
= isl_union_map_is_empty(write
);
343 isl_union_map_free(write
);
345 prog
->array
[prog
->n_array
].read_only
= empty
;
348 for (i
= 0; i
< n_index
; ++i
) {
353 isl_set
*size
= i
== 0 ? array
: pa
->extent
;
355 bound
= isl_set_dim_max(isl_set_copy(size
), i
);
357 dom
= isl_pw_aff_domain(isl_pw_aff_copy(bound
));
358 ls
= isl_local_space_from_space(isl_set_get_space(dom
));
359 one
= isl_aff_zero_on_domain(ls
);
360 one
= isl_aff_add_constant_si(one
, 1);
361 bound
= isl_pw_aff_add(bound
, isl_pw_aff_alloc(dom
, one
));
362 bound
= isl_pw_aff_gist(bound
, isl_set_copy(prog
->context
));
367 collect_references(prog
, &prog
->array
[prog
->n_array
]);
375 void collect_array_info(struct gpu_prog
*prog
)
377 isl_union_set
*arrays
;
379 arrays
= isl_union_map_range(isl_union_map_copy(prog
->read
));
380 arrays
= isl_union_set_union(arrays
,
381 isl_union_map_range(isl_union_map_copy(prog
->write
)));
382 arrays
= isl_union_set_coalesce(arrays
);
384 prog
->n_array
= isl_union_set_n_set(arrays
);
385 prog
->array
= isl_alloc_array(prog
->ctx
,
386 struct gpu_array_info
, prog
->n_array
);
389 isl_union_set_foreach_set(arrays
, &extract_array_info
, prog
);
390 isl_union_set_free(arrays
);
393 static void free_array_info(struct gpu_prog
*prog
)
397 for (i
= 0; i
< prog
->n_array
; ++i
) {
398 int n_index
= prog
->array
[i
].n_index
;
399 free(prog
->array
[i
].type
);
400 free(prog
->array
[i
].name
);
401 for (j
= 0; j
< n_index
; ++j
)
402 isl_pw_aff_free(prog
->array
[i
].bound
[j
]);
403 isl_space_free(prog
->array
[i
].dim
);
404 free(prog
->array
[i
].bound
);
405 free(prog
->array
[i
].refs
);
410 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
411 * as an array or through a pointer reference, but as single data element. At
412 * the moment, scalars are represented as zero dimensional arrays.
414 int gpu_array_is_scalar(struct gpu_array_info
*array
)
416 return (array
->n_index
== 0);
419 /* Is "array" a read-only scalar?
421 int gpu_array_is_read_only_scalar(struct gpu_array_info
*array
)
423 return gpu_array_is_scalar(array
) && array
->read_only
;
426 /* Internal data structure for extract_size_of_type.
427 * "type" specifies the name of the space that we want to extract.
428 * "res" is used to store the subset of that space.
430 struct ppcg_extract_size_data
{
435 /* This function is called for each set in a union_set.
436 * If the name of the set matches data->type, we store the
439 static int extract_size_of_type(__isl_take isl_set
*size
, void *user
)
441 struct ppcg_extract_size_data
*data
= user
;
444 name
= isl_set_get_tuple_name(size
);
445 if (name
&& !strcmp(name
, data
->type
)) {
454 /* Given a union map { kernel[i] -> *[...] },
455 * return the range in the space called "type" for the kernel with
456 * sequence number "id".
458 static __isl_give isl_set
*extract_sizes(__isl_keep isl_union_map
*sizes
,
459 const char *type
, int id
)
463 isl_union_set
*local_sizes
;
464 struct ppcg_extract_size_data data
= { type
, NULL
};
469 space
= isl_union_map_get_space(sizes
);
470 space
= isl_space_set_from_params(space
);
471 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
472 space
= isl_space_set_tuple_name(space
, isl_dim_set
, "kernel");
473 dom
= isl_set_universe(space
);
474 dom
= isl_set_fix_si(dom
, isl_dim_set
, 0, id
);
476 local_sizes
= isl_union_set_apply(isl_union_set_from_set(dom
),
477 isl_union_map_copy(sizes
));
478 isl_union_set_foreach_set(local_sizes
, &extract_size_of_type
, &data
);
479 isl_union_set_free(local_sizes
);
483 /* Given a singleton set, extract the first (at most *len) elements
484 * of the single integer tuple into *sizes and update *len if needed.
486 static void read_sizes_from_set(__isl_take isl_set
*set
, int *sizes
, int *len
)
495 dim
= isl_set_dim(set
, isl_dim_set
);
501 for (i
= 0; i
< *len
; ++i
) {
504 ok
= isl_set_plain_is_fixed(set
, isl_dim_set
, i
, &v
);
507 sizes
[i
] = isl_int_get_si(v
);
515 /* Extract user specified "tile" sizes from the "sizes" command line option,
516 * defaulting to option->tile_size in each dimension.
518 static void read_tile_sizes(struct gpu_gen
*gen
)
523 gen
->tile_size
= isl_alloc_array(gen
->ctx
, int, gen
->tile_len
);
524 assert(gen
->tile_size
);
525 for (n
= 0; n
< gen
->tile_len
; ++n
)
526 gen
->tile_size
[n
] = gen
->options
->tile_size
;
528 size
= extract_sizes(gen
->sizes
, "tile", gen
->kernel_id
);
529 read_sizes_from_set(size
, gen
->tile_size
, &gen
->tile_len
);
531 if (gen
->n_parallel
> gen
->tile_len
)
532 gen
->n_parallel
= gen
->tile_len
;
535 /* Extract user specified "block" sizes from the "sizes" command line option,
536 * after filling in some potentially useful defaults.
538 static void read_block_sizes(struct gpu_gen
*gen
)
544 gen
->n_block
= (n
<= 3) ? n
: 3;
545 switch (gen
->n_block
) {
547 gen
->block_dim
[0] = 512;
550 gen
->block_dim
[0] = 32;
551 gen
->block_dim
[1] = 16;
554 gen
->block_dim
[0] = 32;
555 gen
->block_dim
[1] = 4;
556 gen
->block_dim
[2] = 4;
560 size
= extract_sizes(gen
->sizes
, "block", gen
->kernel_id
);
561 read_sizes_from_set(size
, gen
->block_dim
, &gen
->n_block
);
564 /* Extract user specified "grid" sizes from the "sizes" command line option,
565 * after filling in some potentially useful defaults.
567 static void read_grid_sizes(struct gpu_gen
*gen
)
569 int n
= gen
->n_parallel
;
572 gen
->n_grid
= (n
<= 2) ? n
: 2;
573 switch (gen
->n_grid
) {
575 gen
->grid_dim
[0] = 32768;
578 gen
->grid_dim
[0] = 256;
579 gen
->grid_dim
[1] = 256;
583 size
= extract_sizes(gen
->sizes
, "grid", gen
->kernel_id
);
584 read_sizes_from_set(size
, gen
->grid_dim
, &gen
->n_grid
);
587 /* Extract user specified sizes from the "sizes" command line option
588 * after filling in some potentially useful defaults.
590 static void read_sizes(struct gpu_gen
*gen
)
592 read_tile_sizes(gen
);
593 read_block_sizes(gen
);
594 read_grid_sizes(gen
);
597 static void free_stmts(struct gpu_stmt
*stmts
, int n
)
601 for (i
= 0; i
< n
; ++i
) {
602 struct gpu_stmt_access
*access
, *next
;
604 for (access
= stmts
[i
].accesses
; access
; access
= next
) {
606 isl_map_free(access
->access
);
610 isl_id_free(stmts
[i
].id
);
615 void clear_gpu_gen(struct gpu_gen
*gen
)
617 isl_union_map_free(gen
->sizes
);
618 isl_union_map_free(gen
->sched
);
621 /* Construct a map from a domain of dimensionality "len"
622 * to a domain of dimensionality "len" + "tile_len" that tiles
623 * the "tile_len" coordinates starting at "first".
624 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
625 * "dim" prescribes the parameters.
627 static __isl_give isl_map
*tile(__isl_take isl_space
*dim
, int len
,
628 int first
, int tile_len
, int *tile_size
)
638 dim
= isl_space_add_dims(dim
, isl_dim_in
, len
);
639 dim
= isl_space_add_dims(dim
, isl_dim_out
, len
+ tile_len
);
640 bmap
= isl_basic_map_universe(isl_space_copy(dim
));
641 ls
= isl_local_space_from_space(dim
);
643 for (i
= 0; i
< len
- tile_len
; ++i
) {
644 int j
= i
< first
? i
: i
+ tile_len
;
645 int k
= i
< first
? i
: i
+ 2 * tile_len
;
647 c
= isl_equality_alloc(isl_local_space_copy(ls
));
648 isl_int_set_si(v
, -1);
649 isl_constraint_set_coefficient(c
, isl_dim_in
, j
, v
);
650 isl_int_set_si(v
, 1);
651 isl_constraint_set_coefficient(c
, isl_dim_out
, k
, v
);
652 bmap
= isl_basic_map_add_constraint(bmap
, c
);
655 for (i
= 0; i
< tile_len
; ++i
) {
656 c
= isl_equality_alloc(isl_local_space_copy(ls
));
657 isl_int_set_si(v
, -1);
658 isl_constraint_set_coefficient(c
, isl_dim_in
, first
+ i
, v
);
659 isl_int_set_si(v
, tile_size
[i
]);
660 isl_constraint_set_coefficient(c
, isl_dim_out
, first
+ i
, v
);
661 isl_int_set_si(v
, 1);
662 isl_constraint_set_coefficient(c
, isl_dim_out
,
663 first
+ i
+ tile_len
, v
);
664 bmap
= isl_basic_map_add_constraint(bmap
, c
);
666 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
667 isl_int_set_si(v
, 1);
668 isl_constraint_set_coefficient(c
, isl_dim_out
,
669 first
+ i
+ tile_len
, v
);
670 bmap
= isl_basic_map_add_constraint(bmap
, c
);
672 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
673 isl_int_set_si(v
, -1);
674 isl_constraint_set_coefficient(c
, isl_dim_out
,
675 first
+ i
+ tile_len
, v
);
676 isl_int_set_si(v
, tile_size
[i
] - 1);
677 isl_constraint_set_constant(c
, v
);
678 bmap
= isl_basic_map_add_constraint(bmap
, c
);
681 isl_local_space_free(ls
);
684 return isl_map_from_basic_map(bmap
);
687 /* Construct a map from a domain of dimensionality "len"
688 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
689 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
690 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
691 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
692 * that are projected out at the end.
693 * "dim" prescribes the parameters.
695 static __isl_give isl_map
*wrap(__isl_take isl_space
*dim
, int len
,
696 int first
, int wrap_len
, int *wrap_size
)
703 dim
= isl_space_add_dims(dim
, isl_dim_in
, len
);
704 dim
= isl_space_add_dims(dim
, isl_dim_out
, len
+ 2 * wrap_len
);
705 bmap
= isl_basic_map_universe(isl_space_copy(dim
));
706 ls
= isl_local_space_from_space(dim
);
708 for (i
= 0; i
< len
; ++i
) {
709 int k
= i
< first
+ wrap_len
? i
: i
+ 2 * wrap_len
;
711 c
= isl_equality_alloc(isl_local_space_copy(ls
));
712 isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, -1);
713 isl_constraint_set_coefficient_si(c
, isl_dim_out
, k
, 1);
714 bmap
= isl_basic_map_add_constraint(bmap
, c
);
717 for (i
= 0; i
< wrap_len
; ++i
) {
718 c
= isl_equality_alloc(isl_local_space_copy(ls
));
719 isl_constraint_set_coefficient_si(c
, isl_dim_out
,
721 isl_constraint_set_coefficient_si(c
, isl_dim_out
,
722 first
+ wrap_len
+ i
, 1);
723 isl_constraint_set_coefficient_si(c
, isl_dim_out
,
724 first
+ 2 * wrap_len
+ i
, wrap_size
[i
]);
725 bmap
= isl_basic_map_add_constraint(bmap
, c
);
727 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
728 isl_constraint_set_coefficient_si(c
, isl_dim_out
,
729 first
+ wrap_len
+ i
, 1);
730 bmap
= isl_basic_map_add_constraint(bmap
, c
);
732 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
733 isl_constraint_set_coefficient_si(c
, isl_dim_out
,
734 first
+ wrap_len
+ i
, -1);
735 isl_constraint_set_constant_si(c
, wrap_size
[i
] - 1);
736 bmap
= isl_basic_map_add_constraint(bmap
, c
);
739 isl_local_space_free(ls
);
741 bmap
= isl_basic_map_project_out(bmap
, isl_dim_out
,
742 first
+ 2 * wrap_len
, wrap_len
);
744 return isl_map_from_basic_map(bmap
);
747 /* Add "n" parameters named prefix%d.
749 static __isl_give isl_set
*add_params( __isl_take isl_set
*set
,
750 int n
, const char *prefix
)
756 nparam
= isl_set_dim(set
, isl_dim_param
);
757 set
= isl_set_add_dims(set
, isl_dim_param
, n
);
759 for (i
= 0; i
< n
; ++i
) {
760 snprintf(name
, sizeof(name
), "%s%d", prefix
, i
);
761 set
= isl_set_set_dim_name(set
, isl_dim_param
,
768 /* Equate the "n" dimensions of "set" starting at "first" to
769 * freshly created parameters named prefix%d.
771 static __isl_give isl_set
*parametrize(__isl_take isl_set
*set
,
772 int first
, int n
, const char *prefix
)
782 nparam
= isl_set_dim(set
, isl_dim_param
);
784 set
= add_params(set
, n
, prefix
);
786 dim
= isl_set_get_space(set
);
787 bset
= isl_basic_set_universe(isl_space_copy(dim
));
788 ls
= isl_local_space_from_space(dim
);
792 for (i
= 0; i
< n
; ++i
) {
793 c
= isl_equality_alloc(isl_local_space_copy(ls
));
794 isl_int_set_si(v
, -1);
795 isl_constraint_set_coefficient(c
, isl_dim_param
, nparam
+ i
, v
);
796 isl_int_set_si(v
, 1);
797 isl_constraint_set_coefficient(c
, isl_dim_set
, first
+ i
, v
);
798 bset
= isl_basic_set_add_constraint(bset
, c
);
802 isl_local_space_free(ls
);
804 return isl_set_intersect(set
, isl_set_from_basic_set(bset
));
807 /* Given a parameter space "space", create a set of dimension "len"
808 * of which the "n" dimensions starting at "first" are equated to
809 * freshly created parameters named prefix%d.
811 static __isl_give isl_set
*parametrization(__isl_take isl_space
*space
,
812 int len
, int first
, int n
, const char *prefix
)
816 space
= isl_space_set_from_params(space
);
817 space
= isl_space_add_dims(space
, isl_dim_set
, len
);
818 set
= isl_set_universe(space
);
820 return parametrize(set
, first
, n
, prefix
);
823 /* Tile the B loops over the tile sizes and then tile/wrap
824 * the T1 loops over the blocks.
826 static __isl_give isl_union_map
*tile_schedule(struct gpu_gen
*gen
,
827 __isl_take isl_union_map
*sched
)
830 isl_map
*tiling
, *block_tiling
;
832 dim
= isl_union_map_get_space(sched
);
833 tiling
= tile(isl_space_copy(dim
), gen
->untiled_len
,
834 gen
->tile_first
, gen
->tile_len
, gen
->tile_size
);
836 if (gen
->options
->wrap
)
837 block_tiling
= wrap(dim
, gen
->untiled_len
+ gen
->tile_len
,
838 gen
->tile_first
, gen
->n_grid
, gen
->grid_dim
);
840 block_tiling
= tile(dim
, gen
->untiled_len
+ gen
->tile_len
,
841 gen
->tile_first
, gen
->n_grid
, gen
->grid_dim
);
843 gen
->tiled_len
= gen
->untiled_len
+ gen
->tile_len
+ gen
->n_grid
;
845 tiling
= isl_map_apply_range(tiling
, block_tiling
);
847 sched
= isl_union_map_apply_range(sched
,
848 isl_union_map_from_map(tiling
));
850 gen
->shared_len
= gen
->tile_first
+ gen
->tile_len
+ gen
->n_grid
;
855 /* Equate the "T1P" iterators in the tiled schedule "sched"
856 * to the block dimensions.
858 static __isl_give isl_union_map
*parametrize_tiled_schedule(
859 struct gpu_gen
*gen
, __isl_take isl_union_map
*sched
)
864 dim
= isl_union_map_get_space(sched
);
865 par
= parametrization(dim
, gen
->tiled_len
,
866 gen
->tile_first
+ gen
->n_grid
, gen
->n_grid
, "b");
867 sched
= isl_union_map_intersect_range(sched
,
868 isl_union_set_from_set(par
));
873 /* Tile/wrap the P1 loops over the threads.
875 static __isl_give isl_union_map
*thread_tile_schedule(struct gpu_gen
*gen
,
876 __isl_take isl_union_map
*sched
)
882 dim
= isl_union_map_get_space(sched
);
884 if (gen
->options
->wrap
)
885 tiling
= wrap(isl_space_copy(dim
), gen
->tiled_len
,
886 gen
->shared_len
, gen
->n_block
, gen
->block_dim
);
888 tiling
= tile(isl_space_copy(dim
), gen
->tiled_len
,
889 gen
->shared_len
, gen
->n_block
, gen
->block_dim
);
890 gen
->thread_tiled_len
= gen
->tiled_len
+ gen
->n_block
;
892 sched
= isl_union_map_apply_range(sched
,
893 isl_union_map_from_map(tiling
));
895 par
= parametrization(dim
, gen
->thread_tiled_len
,
896 gen
->tile_first
+ gen
->tile_len
+ gen
->n_grid
+ gen
->n_block
,
898 sched
= isl_union_map_intersect_range(sched
,
899 isl_union_set_from_set(par
));
901 gen
->shared_len
= gen
->tile_first
+ gen
->tile_len
+ gen
->n_grid
;
906 /* If the user asked for it, scale the shared memory tile loops
907 * (T1T and T2) of "sched" by gen->tile_size[i].
908 * If we are not performing "wrapping", then additionally scale the T1P
909 * loops by gen->grid_dim[i].
911 static __isl_give isl_union_map
*scale_tile_loops(struct gpu_gen
*gen
,
912 __isl_take isl_union_map
*sched
)
916 isl_basic_map
*scale
;
920 if (!gen
->options
->scale_tile_loops
)
923 dim
= isl_union_map_get_space(sched
);
924 dim
= isl_space_add_dims(dim
, isl_dim_in
, gen
->tiled_len
);
925 dim
= isl_space_add_dims(dim
, isl_dim_out
, gen
->tiled_len
);
926 scale
= isl_basic_map_universe(isl_space_copy(dim
));
927 ls
= isl_local_space_from_space(dim
);
929 for (i
= 0; i
< gen
->tiled_len
; ++i
) {
932 if (i
>= gen
->tile_first
&& i
< gen
->tile_first
+ gen
->n_grid
) {
933 f
= gen
->tile_size
[i
- gen
->tile_first
];
934 if (!gen
->options
->wrap
)
935 f
*= gen
->grid_dim
[i
- gen
->tile_first
];
936 } else if (i
>= gen
->tile_first
+ gen
->n_grid
&&
937 i
< gen
->tile_first
+ gen
->n_grid
+ gen
->tile_len
) {
938 f
= gen
->tile_size
[i
- (gen
->tile_first
+ gen
->n_grid
)];
941 c
= isl_equality_alloc(isl_local_space_copy(ls
));
942 isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, f
);
943 isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
944 scale
= isl_basic_map_add_constraint(scale
, c
);
947 isl_local_space_free(ls
);
949 sched
= isl_union_map_apply_range(sched
,
950 isl_union_map_from_map(isl_map_from_basic_map(scale
)));
955 /* If we are not performing "wrapping" and if the user asked for it,
956 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
958 static __isl_give isl_union_map
*scale_thread_tile_loops(struct gpu_gen
*gen
,
959 __isl_take isl_union_map
*sched
)
963 isl_basic_map
*scale
;
967 if (gen
->options
->wrap
)
969 if (!gen
->options
->scale_tile_loops
)
972 dim
= isl_union_map_get_space(sched
);
973 dim
= isl_space_add_dims(dim
, isl_dim_in
, gen
->thread_tiled_len
);
974 dim
= isl_space_add_dims(dim
, isl_dim_out
, gen
->thread_tiled_len
);
975 scale
= isl_basic_map_universe(isl_space_copy(dim
));
976 ls
= isl_local_space_from_space(dim
);
978 for (i
= 0; i
< gen
->thread_tiled_len
; ++i
) {
981 if (i
>= gen
->shared_len
&&
982 i
< gen
->shared_len
+ gen
->n_block
)
983 f
= gen
->block_dim
[i
- gen
->shared_len
];
985 c
= isl_equality_alloc(isl_local_space_copy(ls
));
986 isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, f
);
987 isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
988 scale
= isl_basic_map_add_constraint(scale
, c
);
991 isl_local_space_free(ls
);
993 sched
= isl_union_map_apply_range(sched
,
994 isl_union_map_from_map(isl_map_from_basic_map(scale
)));
999 /* If we are not performing "wrapping" and if the user asked for it,
1000 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1002 static __isl_give isl_union_map
*scale_access_tile_loops(struct gpu_gen
*gen
,
1003 __isl_take isl_union_map
*sched
, int len
, int first
, int n_tile
)
1007 isl_basic_map
*scale
;
1009 isl_local_space
*ls
;
1011 if (gen
->options
->wrap
)
1013 if (!gen
->options
->scale_tile_loops
)
1016 dim
= isl_union_map_get_space(sched
);
1017 dim
= isl_space_add_dims(dim
, isl_dim_in
, len
);
1018 dim
= isl_space_add_dims(dim
, isl_dim_out
, len
);
1019 scale
= isl_basic_map_universe(isl_space_copy(dim
));
1020 ls
= isl_local_space_from_space(dim
);
1022 for (i
= 0; i
< len
; ++i
) {
1025 if (i
>= first
&& i
< first
+ n_tile
)
1026 f
= gen
->block_dim
[i
- first
];
1028 c
= isl_equality_alloc(isl_local_space_copy(ls
));
1029 isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, f
);
1030 isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
1031 scale
= isl_basic_map_add_constraint(scale
, c
);
1034 isl_local_space_free(ls
);
1036 sched
= isl_union_map_apply_range(sched
,
1037 isl_union_map_from_map(isl_map_from_basic_map(scale
)));
1042 /* Add "len" parameters p[i] called prefix%d,
1043 * with bounds to 0 <= p[i] < size[i].
1045 __isl_give isl_set
*add_bounded_parameters(__isl_take isl_set
*set
,
1046 int len
, int *size
, const char *prefix
)
1052 isl_basic_set
*bset
;
1054 isl_local_space
*ls
;
1057 nparam
= isl_set_dim(set
, isl_dim_param
);
1058 set
= isl_set_add_dims(set
, isl_dim_param
, len
);
1060 for (i
= 0; i
< len
; ++i
) {
1061 snprintf(name
, sizeof(name
), "%s%d", prefix
, i
);
1062 set
= isl_set_set_dim_name(set
, isl_dim_param
,
1066 dim
= isl_set_get_space(set
);
1067 bset
= isl_basic_set_universe(isl_space_copy(dim
));
1068 ls
= isl_local_space_from_space(dim
);
1072 for (i
= 0; i
< len
; ++i
) {
1073 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
1074 isl_int_set_si(v
, 1);
1075 isl_constraint_set_coefficient(c
, isl_dim_param
, nparam
+ i
, v
);
1076 bset
= isl_basic_set_add_constraint(bset
, c
);
1078 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
1079 isl_int_set_si(v
, -1);
1080 isl_constraint_set_coefficient(c
, isl_dim_param
, nparam
+ i
, v
);
1081 isl_int_set_si(v
, size
[i
] - 1);
1082 isl_constraint_set_constant(c
, v
);
1083 bset
= isl_basic_set_add_constraint(bset
, c
);
1087 isl_local_space_free(ls
);
1089 return isl_set_intersect(set
, isl_set_from_basic_set(bset
));
1092 /* Add "len" parameters p[i] called prefix%d,
1093 * with bounds to 0 <= p[i] < size[i].
1095 static __isl_give isl_set
*add_bounded_parameters_dynamic(
1096 __isl_take isl_set
*set
, __isl_keep isl_multi_pw_aff
*size
,
1102 isl_local_space
*ls
;
1105 len
= isl_multi_pw_aff_dim(size
, isl_dim_out
);
1106 nparam
= isl_set_dim(set
, isl_dim_param
);
1107 set
= isl_set_add_dims(set
, isl_dim_param
, len
);
1109 for (i
= 0; i
< len
; ++i
) {
1110 snprintf(name
, sizeof(name
), "%s%d", prefix
, i
);
1111 set
= isl_set_set_dim_name(set
, isl_dim_param
,
1115 space
= isl_space_params(isl_set_get_space(set
));
1116 ls
= isl_local_space_from_space(space
);
1117 for (i
= 0; i
< len
; ++i
) {
1118 isl_pw_aff
*param
, *size_i
, *zero
;
1121 param
= isl_pw_aff_var_on_domain(isl_local_space_copy(ls
),
1122 isl_dim_param
, nparam
+ i
);
1124 size_i
= isl_multi_pw_aff_get_pw_aff(size
, i
);
1125 bound
= isl_pw_aff_lt_set(isl_pw_aff_copy(param
), size_i
);
1126 set
= isl_set_intersect_params(set
, bound
);
1128 zero
= isl_pw_aff_zero_on_domain(isl_local_space_copy(ls
));
1129 bound
= isl_pw_aff_ge_set(param
, zero
);
1130 set
= isl_set_intersect_params(set
, bound
);
1132 isl_local_space_free(ls
);
1137 /* Given a mapping "sched" of the form
1139 * [D -> A] -> [D -> T(A)]
1141 * apply the mapping encoded in bounds[i].shift_map to the range of "sched".
1142 * The mappings in bounds[i].shift_map are of the form
1144 * [D -> a] -> [D -> s(D,a)]
1146 * We first compose them with a mapping
1150 * (If bounds[i].shift_map is not set, then it is assumed to be
1151 * an identity mapping and then we use this second mapping instead.)
1154 * [D -> a] -> s(D,a)
1156 * We precompose them with a projection on the i th dimension to obtain
1158 * [D -> T] -> s(D,T)
1160 * and collect these into
1162 * [D -> T] -> S(D,T)
1164 * Introducing D in the range yields
1166 * [D -> T] -> [D -> S(D,T)]
1168 * and application to "sched" yields
1170 * [D -> A] -> [D -> S(D,T(A))]
1172 static __isl_give isl_map
*pre_shift(__isl_take isl_map
*sched
,
1173 int n_index
, struct gpu_array_bound
*bounds
)
1176 isl_ctx
*ctx
= isl_map_get_ctx(sched
);
1177 isl_space
*space
, *space2
;
1179 isl_map
*map
, *id
, *pre_shift
;
1181 space
= isl_space_range(isl_map_get_space(sched
));
1182 space2
= isl_space_from_domain(isl_space_copy(space
));
1183 pre_shift
= isl_map_universe(space2
);
1184 space
= isl_space_domain(isl_space_unwrap(space
));
1185 id
= isl_map_identity(isl_space_map_from_set(isl_space_copy(space
)));
1186 space
= isl_space_from_domain(space
);
1187 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
1188 def
= isl_basic_map_range_map(isl_basic_map_universe(space
));
1190 for (i
= 0; i
< n_index
; ++i
) {
1191 isl_basic_map
*bmap
, *drop
;
1194 space
= isl_space_alloc(ctx
, 0, n_index
, n_index
);
1195 proj
= isl_map_identity(space
);
1196 proj
= isl_map_project_out(proj
, isl_dim_out
,
1197 i
+ 1, n_index
- (i
+ 1));
1198 proj
= isl_map_project_out(proj
, isl_dim_out
, 0, i
);
1199 proj
= isl_map_product(isl_map_copy(id
), proj
);
1201 if (!bounds
[i
].shift_map
)
1202 bmap
= isl_basic_map_copy(def
);
1204 bmap
= isl_basic_map_copy(bounds
[i
].shift_map
);
1205 bmap
= isl_basic_map_apply_range(bmap
,
1206 isl_basic_map_copy(def
));
1209 map
= isl_map_from_basic_map(bmap
);
1210 map
= isl_map_apply_range(proj
, map
);
1211 pre_shift
= isl_map_flat_range_product(pre_shift
, map
);
1215 isl_basic_map_free(def
);
1217 space
= isl_space_domain(isl_map_get_space(pre_shift
));
1218 map
= isl_map_domain_map(isl_map_universe(isl_space_unwrap(space
)));
1219 pre_shift
= isl_map_range_product(map
, pre_shift
);
1221 sched
= isl_map_apply_range(sched
, pre_shift
);
1226 /* Given an access relation to a tile of an array, construct a map that
1227 * maps each element in the space of the access relation
1228 * to a copy of the tile shifted to the origin
1229 * (based on the lower bounds in group->private_bound or group->shared_bound).
1230 * If any of the indices is strided, then {private,shared}_bound[i].shift_map
1231 * is applied to the index first.
1232 * The domain space of the resulting map is that of access "access",
1233 * while the range space is anonymous.
1234 * The resulting map only encodes the mapping to the shift tile and
1235 * not the constraints of "access".
1237 * Let the space of the access relation be
1241 * We first construct an identity relation on a wrapped copy of this space,
1242 * except that it strips off the name of array
1244 * [D -> A] -> [D -> T(A)] (1)
1246 * The bounds in bounds[i].lb are of the form
1250 * We collect them into
1254 * and then transform them into
1256 * [D -> T] -> T - B(D) (2)
1258 * Combining those two mappings (1) and (2) yields
1260 * [D -> A] -> T(A) - B(D)
1262 * If there are any strides, then (1) is first transformed into (1')
1264 * [D -> A] -> [D -> T'(A)] (1')
1266 * by a call to pre_shift.
1268 static __isl_give isl_map
*shift_access(__isl_take isl_map
*access
,
1269 struct gpu_array_ref_group
*group
)
1277 struct gpu_array_bound
*bounds
;
1278 int n_index
= group
->array
->n_index
;
1280 bounds
= group
->private_bound
;
1282 bounds
= group
->shared_bound
;
1284 space
= isl_space_domain(isl_map_get_space(access
));
1285 space
= isl_space_map_from_set(space
);
1286 id1
= isl_map_identity(space
);
1287 space
= isl_space_range(isl_map_get_space(access
));
1288 space
= isl_space_map_from_set(space
);
1289 space
= isl_space_set_tuple_name(space
, isl_dim_out
, NULL
);
1290 id2
= isl_map_identity(space
);
1291 sched
= isl_map_product(id1
, id2
);
1293 space
= isl_space_unwrap(isl_space_range(isl_map_get_space(sched
)));
1294 space
= isl_space_from_domain(isl_space_domain(space
));
1295 shift
= isl_map_universe(space
);
1296 for (i
= 0; i
< n_index
; ++i
) {
1297 map
= isl_map_from_aff(isl_aff_copy(bounds
[i
].lb
));
1298 shift
= isl_map_flat_range_product(shift
, map
);
1301 space
= isl_space_unwrap(isl_space_range(isl_map_get_space(sched
)));
1302 map
= isl_map_universe(space
);
1303 id1
= isl_map_range_map(isl_map_copy(map
));
1304 map
= isl_map_domain_map(map
);
1305 shift
= isl_map_neg(shift
);
1306 shift
= isl_map_apply_range(map
, shift
);
1307 shift
= isl_map_sum(id1
, shift
);
1309 for (i
= 0; i
< n_index
; ++i
)
1310 if (bounds
[i
].shift_map
)
1314 sched
= pre_shift(sched
, n_index
, bounds
);
1316 sched
= isl_map_apply_range(sched
, shift
);
1318 isl_map_free(access
);
1323 /* Given a schedule that iterates over all elements in a piece of an array,
1324 * perform tiling/wrapping over the threads.
1326 * In particular, we tile the final iterators so that the final thread
1327 * dimension runs over the final array dimension.
1328 * However, if those final iterators have only a single iteration,
1329 * we try to tile earlier iterators instead.
1331 static __isl_give isl_map
*tile_access_schedule(struct gpu_gen
*gen
,
1332 __isl_take isl_map
*sched
)
1335 isl_union_map
*usched
;
1338 unsigned nvar
= isl_map_dim(sched
, isl_dim_out
);
1342 n_tile
= gen
->n_block
;
1343 if (n_tile
> nvar
) {
1345 sched
= isl_map_insert_dims(sched
,
1346 isl_dim_out
, 0, n_tile
- nvar
);
1347 for (i
= 0; i
< n_tile
- nvar
; ++i
)
1348 sched
= isl_map_fix_si(sched
, isl_dim_out
, i
, 0);
1352 first
= nvar
- n_tile
;
1354 for (; first
> 0; first
--)
1355 if (!isl_map_plain_is_fixed(sched
, isl_dim_out
,
1356 first
+ n_tile
- 1, NULL
))
1359 dim
= isl_map_get_space(sched
);
1360 dim
= isl_space_params(dim
);
1361 if (gen
->options
->wrap
)
1362 tiling
= wrap(isl_space_copy(dim
), nvar
, first
,
1363 n_tile
, gen
->block_dim
);
1365 tiling
= tile(isl_space_copy(dim
), nvar
, first
,
1366 n_tile
, gen
->block_dim
);
1367 sched
= isl_map_apply_range(sched
, tiling
);
1369 par
= parametrization(dim
, nvar
+ n_tile
, first
+ n_tile
, n_tile
, "t");
1370 sched
= isl_map_intersect_range(sched
, par
);
1372 usched
= isl_union_map_from_map(sched
);
1373 usched
= scale_access_tile_loops(gen
, usched
, nvar
+ n_tile
,
1375 sched
= isl_map_from_union_map(usched
);
1380 /* Given an index expression "pa" into a tile of an array, adjust the expression
1381 * to a shift of the tile to the origin
1382 * (based on the lower bounds in "bound".
1383 * If the index is strided, then we first add
1384 * bound->shift and divide by bound->stride.
1385 * In the end, we compute the gist with respect to "domain".
1387 * All of the input expression "pa", the set "domain" and
1388 * the output are expressed in terms of the AST schedule domain.
1389 * The expressions in "bound" are expressed
1390 * in terms of the first shared_len dimensions of the schedule computed by PPCG.
1391 * The mapping "sched2shared" maps the former domain to the latter domain.
1393 static __isl_give isl_pw_aff
*shift_index(__isl_take isl_pw_aff
*pa
,
1394 struct gpu_array_info
*array
,
1395 struct gpu_array_bound
*bound
, __isl_take isl_set
*domain
,
1396 __isl_take isl_map
*sched2shared
)
1400 isl_pw_multi_aff
*pma
;
1403 map
= isl_map_from_aff(isl_aff_copy(bound
->shift
));
1404 map
= isl_map_apply_range(isl_map_copy(sched2shared
), map
);
1405 pma
= isl_pw_multi_aff_from_map(map
);
1406 tmp
= isl_pw_multi_aff_get_pw_aff(pma
, 0);
1407 isl_pw_multi_aff_free(pma
);
1408 pa
= isl_pw_aff_add(pa
, tmp
);
1409 pa
= isl_pw_aff_scale_down(pa
, bound
->stride
);
1413 map
= isl_map_from_aff(isl_aff_copy(bound
->lb
));
1414 map
= isl_map_apply_range(sched2shared
, map
);
1415 pma
= isl_pw_multi_aff_from_map(map
);
1416 tmp
= isl_pw_multi_aff_get_pw_aff(pma
, 0);
1417 isl_pw_multi_aff_free(pma
);
1418 pa
= isl_pw_aff_sub(pa
, tmp
);
1419 pa
= isl_pw_aff_coalesce(pa
);
1420 pa
= isl_pw_aff_gist(pa
, domain
);
1425 /* Return the union of all read (read = 1) and/or write (write = 1)
1426 * access relations in the group.
1428 static __isl_give isl_union_map
*group_access_relation(
1429 struct gpu_array_ref_group
*group
, int read
, int write
)
1432 isl_union_map
*access
;
1434 access
= isl_union_map_empty(isl_map_get_space(group
->access
));
1435 for (i
= 0; i
< group
->n_ref
; ++i
) {
1438 if (!((read
&& group
->refs
[i
]->read
) ||
1439 (write
&& group
->refs
[i
]->write
)))
1441 map_i
= isl_map_copy(group
->refs
[i
]->access
);
1442 access
= isl_union_map_union(access
,
1443 isl_union_map_from_map(map_i
));
1449 /* Return a map from the first shared_len dimensions of the computed
1450 * schedule to the values of the given index "i"
1451 * of the elements in the array tile in global memory that corresponds
1452 * to the shared memory copy.
1453 * In particular, if a is the index, then the range of the map
1457 * is constrained as follows
1459 * tile_offset(D) <= a <= tile_offset(D) + tile_size - 1 (1)
1463 * 0 <= a <= array_size - 1 (2)
1466 * Note that if some stride has been detected (i.e., when
1467 * group->shared_bound[i].shift is set), then offset and size (i.e.,
1468 * constraints (1)) apply to the shifted and scaled down copy of the tile.
1469 * These constraints therefore have to be mapped back to the original
1470 * array space using the inverse of the shift_map.
1472 static __isl_give isl_map
*group_tile_dim(struct gpu_array_ref_group
*group
,
1477 isl_map
*map
, *tile
, *gt
;
1480 map
= isl_map_from_aff(isl_aff_copy(group
->shared_bound
[i
].lb
));
1481 space
= isl_space_range(isl_map_get_space(map
));
1482 map
= isl_map_apply_range(map
, isl_map_lex_le(isl_space_copy(space
)));
1485 aff
= isl_aff_copy(group
->shared_bound
[i
].lb
);
1486 aff
= isl_aff_add_constant(aff
, group
->shared_bound
[i
].size
);
1487 map
= isl_map_from_aff(aff
);
1488 gt
= isl_map_lex_gt(space
);
1489 map
= isl_map_apply_range(map
, isl_map_copy(gt
));
1490 tile
= isl_map_intersect(tile
, map
);
1492 if (group
->shared_bound
[i
].shift
) {
1493 isl_basic_map
*shift
;
1494 shift
= isl_basic_map_copy(group
->shared_bound
[i
].shift_map
);
1495 shift
= isl_basic_map_reverse(shift
);
1496 tile
= isl_set_unwrap(isl_set_apply(isl_map_wrap(tile
),
1497 isl_map_from_basic_map(shift
)));
1500 tile
= isl_map_lower_bound_si(tile
, isl_dim_out
, 0, 0);
1502 bound
= isl_set_from_pw_aff(isl_pw_aff_copy(group
->array
->bound
[i
]));
1503 bound
= isl_set_apply(bound
, gt
);
1504 tile
= isl_map_intersect_range(tile
, bound
);
1509 /* Return a map from the first shared_len dimensions of the computed
1510 * schedule to the array tile in
1511 * global memory that corresponds to the shared memory copy.
1513 static __isl_give isl_map
*group_tile(struct gpu_array_ref_group
*group
)
1516 int n_index
= group
->array
->n_index
;
1519 tile
= group_tile_dim(group
, 0);
1520 for (i
= 1; i
< n_index
; ++i
) {
1523 tile_i
= group_tile_dim(group
, i
);
1524 tile
= isl_map_flat_range_product(tile
, tile_i
);
1527 tile
= isl_map_set_tuple_name(tile
, isl_dim_out
, group
->array
->name
);
1532 /* Given a mapping "sched" from the AST schedule to a domain,
1533 * return the corresponding mapping from the AST schedule to
1534 * to the first shared_len dimensions of the schedule computed by PPCG.
1536 static __isl_give isl_map
*compute_sched_to_shared(struct gpu_gen
*gen
,
1537 __isl_take isl_map
*sched
)
1539 isl_union_map
*umap
;
1543 space
= isl_space_range(isl_map_get_space(sched
));
1544 space
= isl_space_from_domain(space
);
1545 space
= isl_space_add_dims(space
, isl_dim_out
, gen
->shared_len
);
1547 umap
= isl_union_map_copy(gen
->shared_sched
);
1548 umap
= isl_union_map_apply_range(umap
,
1549 isl_union_map_copy(gen
->shared_proj
));
1550 map
= isl_union_map_extract_map(umap
, space
);
1551 isl_union_map_free(umap
);
1553 sched
= isl_map_apply_range(sched
, map
);
1554 sched
= isl_map_detect_equalities(sched
);
1559 /* Set unroll[j] if the input dimension j is involved in
1560 * the index expression represented by ma.
1562 static int check_unroll(__isl_take isl_set
*set
, __isl_take isl_multi_aff
*ma
,
1566 int n_in
= isl_multi_aff_dim(ma
, isl_dim_in
);
1567 int n_out
= isl_multi_aff_dim(ma
, isl_dim_out
);
1570 for (i
= 0; i
< n_out
; ++i
) {
1573 aff
= isl_multi_aff_get_aff(ma
, i
);
1574 for (j
= 0; j
< n_in
; ++j
)
1575 if (isl_aff_involves_dims(aff
, isl_dim_in
, j
, 1))
1581 isl_multi_aff_free(ma
);
1585 /* Given an array pos mapping input dimensions to the corresponding
1586 * output dimension, construct the corresponding map.
1588 static __isl_give isl_map
*permutation(__isl_take isl_space
*dim
,
1593 isl_basic_map
*bmap
;
1594 isl_local_space
*ls
;
1596 dim
= isl_space_add_dims(dim
, isl_dim_in
, len
);
1597 dim
= isl_space_add_dims(dim
, isl_dim_out
, len
);
1598 bmap
= isl_basic_map_universe(isl_space_copy(dim
));
1599 ls
= isl_local_space_from_space(dim
);
1601 for (i
= 0; i
< len
; ++i
) {
1602 c
= isl_equality_alloc(isl_local_space_copy(ls
));
1603 isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, -1);
1604 isl_constraint_set_coefficient_si(c
, isl_dim_out
, pos
[i
], 1);
1605 bmap
= isl_basic_map_add_constraint(bmap
, c
);
1607 isl_local_space_free(ls
);
1609 return isl_map_from_basic_map(bmap
);
1612 /* Find all loops involved in any of the index expressions for any of
1613 * the private accesses, move them innermost and then mark them as
1614 * requiring unrolling by setting gen->first_unroll.
1615 * The loops involved should all be parallel because of the checks
1616 * we performed in check_private_group_access. Moving them innermost
1617 * is therefore a valid transformation.
1619 * Loops up to gen->shared_len are generated before the mapping to
1620 * threads is applied. They should therefore be ignored.
1622 * We compute the hidden equalities of the schedule first
1623 * since we will need them in our calls to isl_pw_multi_aff_from_map
1624 * and because we want to make sure that the same equalities
1625 * are also available to the code generator.
1627 static __isl_give isl_union_map
*interchange_for_unroll(struct gpu_gen
*gen
,
1628 __isl_take isl_union_map
*sched
)
1631 int unroll
[gen
->thread_tiled_len
];
1632 int perm
[gen
->thread_tiled_len
];
1635 int len
= gen
->shared_len
+ gen
->n_parallel
+ gen
->n_block
;
1637 gen
->first_unroll
= -1;
1639 sched
= isl_union_map_detect_equalities(sched
);
1640 for (i
= 0; i
< gen
->thread_tiled_len
; ++i
)
1642 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
1643 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
1645 for (j
= 0; j
< array
->n_group
; ++j
) {
1646 isl_union_map
*access
;
1648 isl_pw_multi_aff
*pma
;
1650 if (!array
->groups
[j
]->private_bound
)
1653 access
= group_access_relation(array
->groups
[j
], 1, 1);
1654 access
= isl_union_map_apply_domain(access
,
1655 isl_union_map_copy(sched
));
1657 acc
= isl_map_from_union_map(access
);
1658 pma
= isl_pw_multi_aff_from_map(acc
);
1659 isl_pw_multi_aff_foreach_piece(pma
,
1660 &check_unroll
, unroll
);
1662 isl_pw_multi_aff_free(pma
);
1666 for (i
= gen
->shared_len
; i
< len
; ++i
)
1673 for (i
= len
; i
< gen
->thread_tiled_len
; ++i
)
1678 for (i
= 0; i
< gen
->shared_len
; ++i
)
1680 for (i
= gen
->shared_len
; i
< gen
->thread_tiled_len
; ++i
)
1683 gen
->first_unroll
= j
- gen
->shared_len
;
1684 for (i
= gen
->shared_len
; i
< len
; ++i
)
1688 dim
= isl_union_map_get_space(sched
);
1689 permute
= permutation(dim
, perm
, gen
->thread_tiled_len
);
1690 sched
= isl_union_map_apply_range(sched
,
1691 isl_union_map_from_map(permute
));
1696 /* Given a constraint
1698 * a(p,i) + j = g f(e)
1700 * or -a(p,i) - j = g f(e) if sign < 0,
1701 * store a(p,i) in bound->shift and g (stride) in bound->stride.
1702 * a(p,i) is assumed to be an expression in only the parameters
1703 * and the input dimensions.
1705 static void extract_stride(__isl_keep isl_constraint
*c
,
1706 struct gpu_array_bound
*bound
, isl_int stride
, int sign
)
1715 isl_int_set(bound
->stride
, stride
);
1717 space
= isl_constraint_get_space(c
);
1718 space
= isl_space_domain(space
);
1720 nparam
= isl_space_dim(space
, isl_dim_param
);
1721 nvar
= isl_space_dim(space
, isl_dim_set
);
1725 isl_constraint_get_constant(c
, &v
);
1728 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
1729 aff
= isl_aff_set_constant(aff
, v
);
1731 for (i
= 0; i
< nparam
; ++i
) {
1732 isl_constraint_get_coefficient(c
, isl_dim_param
, i
, &v
);
1733 if (isl_int_is_zero(v
))
1737 aff
= isl_aff_add_coefficient(aff
, isl_dim_param
, i
, v
);
1740 for (i
= 0; i
< nvar
; ++i
) {
1741 isl_constraint_get_coefficient(c
, isl_dim_in
, i
, &v
);
1742 if (isl_int_is_zero(v
))
1746 aff
= isl_aff_add_coefficient(aff
, isl_dim_in
, i
, v
);
1754 /* Given an equality constraint of a map with a single output dimension j,
1755 * check if the constraint is of the form
1757 * a(p,i) + j = g f(e)
1759 * with a(p,i) an expression in the parameters and input dimensions
1760 * and f(e) an expression in the existentially quantified variables.
1761 * If so, and if g is larger than any such g from a previously considered
1762 * constraint, then call extract_stride to record the stride information
1765 static int check_stride_constraint(__isl_take isl_constraint
*c
, void *user
)
1770 struct gpu_array_bound
*bound
= user
;
1773 isl_int_init(stride
);
1775 n_div
= isl_constraint_dim(c
, isl_dim_div
);
1776 isl_constraint_get_coefficient(c
, isl_dim_out
, 0, &v
);
1778 if (n_div
&& (isl_int_is_one(v
) || isl_int_is_negone(v
))) {
1779 int s
= isl_int_sgn(v
);
1780 isl_int_set_si(stride
, 0);
1781 for (i
= 0; i
< n_div
; ++i
) {
1782 isl_constraint_get_coefficient(c
, isl_dim_div
, i
, &v
);
1783 isl_int_gcd(stride
, stride
, v
);
1785 if (!isl_int_is_zero(stride
) &&
1786 isl_int_gt(stride
, bound
->stride
))
1787 extract_stride(c
, bound
, stride
, s
);
1790 isl_int_clear(stride
);
1793 isl_constraint_free(c
);
1797 /* Given contraints on an array index i, check if we can find
1798 * a shift a(p) and a stride g such that
1800 * a(p) + i = 0 mod g
1802 * If so, record the information in bound and apply the mapping
1803 * i -> (i + a(p))/g to the array index in bounds and return
1804 * the new constraints.
1805 * If not, simply return the original constraints.
1807 * If bounds is a subset of the space
1811 * then the bound recorded in bound->shift is of the form
1815 * with s(D) equal to a(p) above.
1816 * The mapping recorded in bound->shift_map is of the form
1818 * [D -> i] -> [D -> (i + S(D))/g]
1820 * This mapping is computed as follows.
1821 * We first introduce "i" in the domain through precomposition
1822 * with [D -> i] -> D obtaining
1826 * Adding [D -> i] -> i produces
1828 * [D -> i] -> i + s(D)
1830 * and the domain product with [D -> i] -> D yields
1832 * [D -> i] -> [D -> i + s(D)]
1834 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
1836 static __isl_give isl_basic_map
*check_stride(struct gpu_array_bound
*bound
,
1837 __isl_take isl_basic_map
*bounds
)
1840 isl_basic_map
*hull
;
1841 isl_basic_map
*shift
, *id
, *bmap
, *scale
;
1842 isl_basic_set
*bset
;
1845 isl_int_set_si(bound
->stride
, -1);
1847 hull
= isl_basic_map_affine_hull(isl_basic_map_copy(bounds
));
1849 isl_basic_map_foreach_constraint(hull
, &check_stride_constraint
, bound
);
1851 isl_basic_map_free(hull
);
1853 if (isl_int_is_neg(bound
->stride
))
1856 shift
= isl_basic_map_from_aff(isl_aff_copy(bound
->shift
));
1857 space
= isl_basic_map_get_space(bounds
);
1858 bmap
= isl_basic_map_domain_map(isl_basic_map_universe(space
));
1859 shift
= isl_basic_map_apply_range(bmap
, shift
);
1860 space
= isl_basic_map_get_space(bounds
);
1861 id
= isl_basic_map_range_map(isl_basic_map_universe(space
));
1862 shift
= isl_basic_map_sum(id
, shift
);
1863 space
= isl_basic_map_get_space(bounds
);
1864 id
= isl_basic_map_domain_map(isl_basic_map_universe(space
));
1865 shift
= isl_basic_map_range_product(id
, shift
);
1867 space
= isl_space_domain(isl_basic_map_get_space(bounds
));
1868 id
= isl_basic_map_identity(isl_space_map_from_set(space
));
1869 space
= isl_space_range(isl_basic_map_get_space(bounds
));
1870 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
1871 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, 0, 1);
1872 aff
= isl_aff_scale_down(aff
, bound
->stride
);
1873 scale
= isl_basic_map_from_aff(aff
);
1874 scale
= isl_basic_map_product(id
, scale
);
1876 bound
->shift_map
= isl_basic_map_apply_range(shift
, scale
);
1877 bmap
= isl_basic_map_copy(bound
->shift_map
);
1878 bset
= isl_basic_set_apply(isl_basic_map_wrap(bounds
), bmap
);
1879 bounds
= isl_basic_set_unwrap(bset
);
1884 /* Data used in compute_array_dim_size and compute_size_in_direction.
1886 * pos is the position of the variable representing the array index,
1887 * i.e., the variable for which want to compute the size. This variable
1888 * is also the last variable in the set.
1890 struct gpu_size_info
{
1891 isl_basic_set
*bset
;
1892 struct gpu_array_bound
*bound
;
1896 /* Given a constraint from the basic set describing the bounds on
1897 * an array index, check if it is a lower bound, say m i >= b(x), and,
1898 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
1899 * upper bound. If so, and if this bound is smaller than any bound
1900 * derived from earlier constraints, set the size to this bound on
1901 * the expression and the lower bound to ceil(b(x)/m).
1903 static int compute_size_in_direction(__isl_take isl_constraint
*c
, void *user
)
1905 struct gpu_size_info
*size
= user
;
1910 nparam
= isl_basic_set_dim(size
->bset
, isl_dim_param
);
1911 n_div
= isl_constraint_dim(c
, isl_dim_div
);
1913 if (isl_constraint_involves_dims(c
, isl_dim_div
, 0, n_div
)) {
1914 isl_constraint_free(c
);
1920 isl_constraint_get_coefficient(c
, isl_dim_set
, size
->pos
, &v
);
1922 if (isl_int_is_pos(v
)) {
1925 enum isl_lp_result res
;
1927 aff
= isl_constraint_get_bound(c
, isl_dim_set
, size
->pos
);
1928 aff
= isl_aff_ceil(aff
);
1930 lb
= isl_aff_copy(aff
);
1932 aff
= isl_aff_neg(aff
);
1933 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, size
->pos
, 1);
1935 res
= isl_basic_set_max(size
->bset
, aff
, &v
);
1938 if (res
== isl_lp_ok
) {
1939 isl_int_add_ui(v
, v
, 1);
1940 if (isl_int_is_neg(size
->bound
->size
) ||
1941 isl_int_lt(v
, size
->bound
->size
)) {
1942 isl_int_set(size
->bound
->size
, v
);
1943 lb
= isl_aff_drop_dims(lb
, isl_dim_in
,
1945 isl_aff_free(size
->bound
->lb
);
1946 size
->bound
->lb
= isl_aff_copy(lb
);
1953 isl_constraint_free(c
);
1958 /* Given a basic map "bounds" that maps parameters and input dimensions
1959 * to a single output dimension, look for an expression in the parameters
1960 * and input dimensions such that the range of the output dimension shifted
1961 * by this expression is a constant.
1963 * In particular, we currently only consider lower bounds on the output
1964 * dimension as candidate expressions.
1966 static int compute_array_dim_size(struct gpu_array_bound
*bound
,
1967 __isl_take isl_basic_map
*bounds
)
1969 struct gpu_size_info size
;
1971 bounds
= isl_basic_map_detect_equalities(bounds
);
1972 bounds
= check_stride(bound
, bounds
);
1974 isl_int_set_si(bound
->size
, -1);
1978 size
.pos
= isl_basic_map_dim(bounds
, isl_dim_in
);
1979 size
.bset
= isl_basic_map_wrap(bounds
);
1980 size
.bset
= isl_basic_set_flatten(size
.bset
);
1981 size
.bset
= isl_set_simple_hull(isl_basic_set_compute_divs(size
.bset
));
1982 isl_basic_set_foreach_constraint(size
.bset
, &compute_size_in_direction
,
1984 isl_basic_set_free(size
.bset
);
1986 return isl_int_is_nonneg(bound
->size
) ? 0 : -1;
1989 /* Check if we can find a shared memory tile for the given array
1990 * based on the given accesses, and if so, put the results
1991 * in array->shared_bound.
1993 * We project the accesses on each index in turn and look for a parametric
1994 * offset such that the size is constant.
1996 static int can_tile_for_shared_memory(struct gpu_array_info
*array
,
1997 __isl_keep isl_map
*access
, struct gpu_array_bound
*bounds
)
2001 for (i
= 0; i
< array
->n_index
; ++i
) {
2003 isl_basic_map
*hull
;
2005 access_i
= isl_map_copy(access
);
2006 access_i
= isl_map_project_out(access_i
, isl_dim_out
, 0, i
);
2007 access_i
= isl_map_project_out(access_i
, isl_dim_out
,
2008 1, array
->n_index
- (i
+ 1));
2009 access_i
= isl_map_compute_divs(access_i
);
2010 hull
= isl_map_simple_hull(access_i
);
2011 if (compute_array_dim_size(&bounds
[i
], hull
) < 0)
2018 /* Construct a map with input the shared tile loops and the loops that
2019 * will be wrapped around the threads that relates these later loops
2020 * to the thread indices and then projects them out.
2022 static __isl_give isl_map
*compute_privatization(struct gpu_gen
*gen
)
2030 dim
= isl_union_map_get_space(gen
->shared_sched
);
2032 if (gen
->options
->wrap
)
2033 tiling
= wrap(isl_space_copy(dim
), gen
->shared_len
+ gen
->n_block
,
2034 gen
->shared_len
, gen
->n_block
, gen
->block_dim
);
2036 tiling
= tile(isl_space_copy(dim
), gen
->shared_len
+ gen
->n_block
,
2037 gen
->shared_len
, gen
->n_block
, gen
->block_dim
);
2041 par
= parametrization(dim
, gen
->shared_len
+ 2 * gen
->n_block
,
2042 gen
->tile_first
+ gen
->tile_len
+ gen
->n_grid
+ gen
->n_block
,
2045 priv
= isl_map_align_params(priv
, isl_set_get_space(par
));
2046 priv
= isl_map_intersect_range(priv
, par
);
2048 dim
= isl_map_get_space(priv
);
2049 dim
= isl_space_drop_dims(dim
, isl_dim_in
, 0, isl_space_dim(dim
, isl_dim_in
));
2050 dim
= isl_space_drop_dims(dim
, isl_dim_out
, 0, isl_space_dim(dim
, isl_dim_out
));
2051 proj
= projection(dim
, gen
->shared_len
+ 2 * gen
->n_block
,
2054 priv
= isl_map_apply_range(priv
, proj
);
2059 /* Construct a map from domain_dim to domain_dim that increments
2060 * the dimension at position "pos" and leaves all other dimensions
2063 static __isl_give isl_map
*next(__isl_take isl_space
*domain_dim
, int pos
)
2066 int len
= isl_space_dim(domain_dim
, isl_dim_set
);
2068 isl_basic_map
*next
;
2069 isl_local_space
*ls
;
2071 dim
= isl_space_map_from_set(domain_dim
);
2072 next
= isl_basic_map_universe(isl_space_copy(dim
));
2073 ls
= isl_local_space_from_space(dim
);
2075 for (i
= 0; i
< len
; ++i
) {
2078 c
= isl_equality_alloc(isl_local_space_copy(ls
));
2079 isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, 1);
2080 isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
2082 isl_constraint_set_constant_si(c
, 1);
2083 next
= isl_basic_map_add_constraint(next
, c
);
2086 isl_local_space_free(ls
);
2088 return isl_map_from_basic_map(next
);
2091 /* Check if the given access is coalesced.
2092 * That is, check whether incrementing the dimension that will get
2093 * wrapped over the last thread index results in incrementing
2094 * the last array index.
2096 * This function is only called for access relations without reuse.
2098 static int access_is_coalesced(struct gpu_gen
*gen
,
2099 __isl_keep isl_union_map
*access
)
2102 isl_map
*access_map
;
2103 isl_map
*next_thread_x
;
2104 isl_map
*next_element
;
2108 access
= isl_union_map_copy(access
);
2109 access
= isl_union_map_apply_domain(access
,
2110 isl_union_map_copy(gen
->tiled_sched
));
2111 access_map
= isl_map_from_union_map(access
);
2113 dim
= isl_map_get_space(access_map
);
2114 dim
= isl_space_domain(dim
);
2115 next_thread_x
= next(dim
, gen
->shared_len
+ gen
->n_block
- 1);
2117 dim
= isl_map_get_space(access_map
);
2118 dim
= isl_space_range(dim
);
2119 next_element
= next(dim
, isl_space_dim(dim
, isl_dim_set
) - 1);
2121 map
= isl_map_apply_domain(next_thread_x
, isl_map_copy(access_map
));
2122 map
= isl_map_apply_range(map
, access_map
);
2124 coalesced
= isl_map_is_subset(map
, next_element
);
2126 isl_map_free(next_element
);
2132 /* Given an access relation in terms of the first gen->shared_len + gen->n_block
2133 * dimensions of the computed schedule, check if it is bijective for
2134 * fixed values of the first gen->shared_len dimensions.
2135 * We perform this check by equating these dimensions to parameters.
2137 static int access_is_bijective(struct gpu_gen
*gen
, __isl_keep isl_map
*access
)
2143 access
= isl_map_copy(access
);
2144 space
= isl_space_params(isl_map_get_space(access
));
2145 par
= parametrization(space
, gen
->shared_len
+ gen
->n_block
,
2146 0, gen
->shared_len
, "s");
2147 access
= isl_map_intersect_domain(access
, par
);
2148 res
= isl_map_is_bijective(access
);
2149 isl_map_free(access
);
2154 /* For the given array reference group, check whether the access is private
2155 * to the thread. That is, check that any given array element
2156 * is only accessed by a single thread.
2157 * We compute an access relation that maps the shared tile loop iterators
2158 * and the shared point loop iterators that will be wrapped over the
2159 * threads to the array elements.
2160 * We actually check that those iterators that will be wrapped
2161 * partition the array space. This check is stricter than necessary
2162 * since several iterations may be mapped onto the same thread
2163 * and then they could be allowed to access the same memory elements,
2164 * but our check does not allow this situation.
2166 * We also check that the index expression only depends on parallel
2167 * loops. That way, we can move those loops innermost and unroll them.
2168 * Again, we use a test that is stricter than necessary.
2169 * We actually check whether the index expression only depends
2170 * on the iterators that are wrapped over the threads.
2171 * These are necessarily parallel, but there may be more parallel loops.
2173 * Combining the injectivity of the first test with the single-valuedness
2174 * of the second test, we simply test for bijectivity.
2176 * If it turns out we can use registers, we compute the private memory
2177 * tile size using can_tile_for_shared_memory, after introducing a dependence
2178 * on the thread indices.
2180 * Before performing any of the above computations, we first check
2181 * if there is any reuse on the reference group. If not, we simply
2182 * return. If, moreover, the access is coalesced then we also remove
2183 * the shared memory tiling since we should just use global memory instead.
2185 static void check_private_group_access(struct gpu_gen
*gen
,
2186 struct gpu_array_ref_group
*group
)
2189 isl_union_map
*access
;
2190 int n_index
= group
->array
->n_index
;
2192 access
= group_access_relation(group
, 1, 1);
2193 if (isl_union_map_is_injective(access
)) {
2194 if (group
->shared_bound
&& access_is_coalesced(gen
, access
)) {
2195 free_bound_list(group
->shared_bound
, n_index
);
2196 group
->shared_bound
= NULL
;
2198 isl_union_map_free(access
);
2201 access
= isl_union_map_apply_domain(access
,
2202 isl_union_map_copy(gen
->shared_sched
));
2204 acc
= isl_map_from_union_map(access
);
2206 if (!access_is_bijective(gen
, acc
)) {
2211 group
->private_bound
= create_bound_list(gen
->ctx
, n_index
);
2212 acc
= isl_map_apply_domain(acc
, isl_map_copy(gen
->privatization
));
2213 if (!can_tile_for_shared_memory(group
->array
, acc
,
2214 group
->private_bound
)) {
2215 free_bound_list(group
->private_bound
, n_index
);
2216 group
->private_bound
= NULL
;
2222 /* Look for the last shared tile loop that affects the offset of the
2223 * shared or private tile and store the result in array->last_shared.
2224 * If there is no such loop, then array->last_shared is set to a value
2225 * before the first shared tile loop, in particular gen->tile_first - 1.
2227 static void set_last_shared(struct gpu_gen
*gen
,
2228 struct gpu_array_ref_group
*group
)
2231 struct gpu_array_bound
*bounds
;
2232 int n_index
= group
->array
->n_index
;
2234 bounds
= group
->private_bound
;
2236 bounds
= group
->shared_bound
;
2240 for (j
= gen
->shared_len
- 1; j
>= gen
->tile_first
; --j
) {
2241 for (i
= 0; i
< n_index
; ++i
) {
2246 if (isl_aff_involves_dims(lb
, isl_dim_in
, j
, 1))
2249 shift
= bounds
[i
].shift
;
2252 if (isl_aff_involves_dims(shift
, isl_dim_in
, j
, 1))
2258 group
->last_shared
= j
;
2261 /* Compute the sizes of all private arrays for the current kernel,
2262 * as well as the offsets of the private pieces in the original arrays.
2263 * If we cannot or don't want to privatize a given array group,
2264 * we use the shared memory tile sizes computed in
2265 * compute_group_shared_bound instead.
2267 * If we have been able to find a private or shared tile,
2268 * we also look for the last shared tile loop that affects the offset
2269 * (and therefore the group tile) and store the result in group->last_shared.
2271 * A privatized copy of all access relations from reference groups that
2272 * are mapped to private memory is stored in gen->privatization.
2274 static void compute_private_size(struct gpu_gen
*gen
)
2277 isl_union_map
*private;
2279 if (!gen
->options
->use_private_memory
)
2282 private = isl_union_map_empty(isl_union_map_get_space(gen
->shared_sched
));
2284 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
2285 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
2287 if (gpu_array_is_read_only_scalar(array
))
2290 for (j
= 0; j
< array
->n_group
; ++j
) {
2291 check_private_group_access(gen
, array
->groups
[j
]);
2293 if (!array
->groups
[j
]->private_bound
)
2296 private = isl_union_map_union(private,
2297 group_access_relation(array
->groups
[j
], 1, 1));
2300 for (j
= 0; j
< array
->n_group
; ++j
) {
2301 array
->groups
[j
]->last_shared
= gen
->shared_len
- 1;
2302 set_last_shared(gen
, array
->groups
[j
]);
2306 if (isl_union_map_is_empty(private))
2307 isl_union_map_free(private);
2309 isl_union_map
*priv
;
2311 private = isl_union_map_apply_domain(private,
2312 isl_union_map_copy(gen
->shared_sched
));
2313 priv
= isl_union_map_from_map(isl_map_copy(gen
->privatization
));
2314 private = isl_union_map_apply_domain(private, priv
);
2315 gen
->private_access
= private;
2319 /* Compute the size of the tile specified by the list "bound" of n_index
2320 * gpu_array_bounds in number of elements and put the result in *size.
2322 static void tile_size(unsigned n_index
, struct gpu_array_bound
*bound
,
2327 isl_int_set_si(*size
, 1);
2329 for (i
= 0; i
< n_index
; ++i
)
2330 isl_int_mul(*size
, *size
, bound
[i
].size
);
2333 /* If max_shared_memory is not set to infinity (-1), then make
2334 * sure that the total amount of shared memory required by the
2335 * array reference groups mapped to shared memory is no larger
2336 * than this maximum.
2338 * We apply a greedy approach and discard (keep in global memory)
2339 * those groups that would result in a total memory size that
2340 * is larger than the maximum.
2342 static void check_shared_memory_bound(struct gpu_gen
*gen
)
2347 if (gen
->options
->max_shared_memory
< 0)
2352 isl_int_set_si(left
, gen
->options
->max_shared_memory
);
2354 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
2355 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
2357 for (j
= 0; j
< array
->n_group
; ++j
) {
2358 struct gpu_array_ref_group
*group
;
2360 group
= array
->groups
[j
];
2361 if (!group
->shared_bound
)
2364 tile_size(array
->n_index
, group
->shared_bound
, &size
);
2365 isl_int_mul_ui(size
, size
, array
->size
);
2367 if (isl_int_le(size
, left
)) {
2368 isl_int_sub(left
, left
, size
);
2372 free_bound_list(group
->shared_bound
, array
->n_index
);
2373 group
->shared_bound
= NULL
;
2377 isl_int_clear(size
);
2378 isl_int_clear(left
);
2381 /* Fill up the groups array with singleton groups, i.e., one group
2382 * per reference, initializing the array, access, write and refs fields.
2383 * In particular the access field is initialized to the scheduled
2384 * access relation of the array reference.
2386 * Return the number of elements initialized, i.e., the number of
2387 * active references in the current kernel.
2389 static int populate_array_references(struct gpu_array_info
*array
,
2390 __isl_keep isl_union_map
*sched
, struct gpu_array_ref_group
**groups
)
2394 isl_ctx
*ctx
= isl_union_map_get_ctx(sched
);
2397 for (i
= 0; i
< array
->n_ref
; ++i
) {
2398 isl_union_map
*umap
;
2400 struct gpu_array_ref_group
*group
;
2401 struct gpu_stmt_access
*access
= array
->refs
[i
];
2403 map
= isl_map_copy(access
->access
);
2404 umap
= isl_union_map_from_map(map
);
2405 umap
= isl_union_map_apply_domain(umap
,
2406 isl_union_map_copy(sched
));
2408 if (isl_union_map_is_empty(umap
)) {
2409 isl_union_map_free(umap
);
2413 map
= isl_map_from_union_map(umap
);
2414 map
= isl_map_detect_equalities(map
);
2416 group
= isl_calloc_type(ctx
, struct gpu_array_ref_group
);
2418 group
->array
= array
;
2419 group
->access
= map
;
2420 group
->write
= access
->write
;
2421 group
->refs
= &array
->refs
[i
];
2423 groups
[n
++] = group
;
2429 static void free_array_ref_group(struct gpu_array_ref_group
*group
,
2434 free_bound_list(group
->shared_bound
, n_index
);
2435 free_bound_list(group
->private_bound
, n_index
);
2436 isl_map_free(group
->access
);
2441 /* Given a map where the input dimensions represent the tile loops,
2442 * eliminate the innermost of those that have a fixed value
2443 * until we reach one that does not (obviously) have a fixed value.
2445 static __isl_give isl_map
*eliminate_fixed_inner_loops(
2446 __isl_take isl_map
*access
)
2450 n
= isl_map_dim(access
, isl_dim_in
);
2452 for (i
= n
- 1; i
>= 0; --i
) {
2453 if (!isl_map_plain_is_fixed(access
, isl_dim_in
, i
, NULL
))
2455 access
= isl_map_eliminate(access
, isl_dim_in
, i
, 1);
2460 /* Check if the access relations of group1 and group2 overlap within
2461 * the innermost loop. In particular, ignore any inner dimension
2462 * with a fixed value.
2463 * The copying to and from shared memory will be performed within
2464 * the innermost actual loop so we are only allowed to consider
2465 * the dimensions up to that innermost loop while checking whether
2466 * two access relations overlap.
2468 static int accesses_overlap(struct gpu_array_ref_group
*group1
,
2469 struct gpu_array_ref_group
*group2
)
2472 isl_map
*access1
, *access2
;
2474 access1
= isl_map_copy(group1
->access
);
2475 access1
= eliminate_fixed_inner_loops(access1
);
2476 access2
= isl_map_copy(group2
->access
);
2477 access2
= eliminate_fixed_inner_loops(access2
);
2478 access1
= isl_map_intersect(access1
, access2
);
2479 empty
= isl_map_is_empty(access1
);
2480 isl_map_free(access1
);
2485 /* If two groups have overlapping access relations (within the innermost
2486 * loop) and if one of them involves a write, then merge the two groups
2489 * We keep track of the grouping in "leader". leader[j] points to
2490 * an earlier group array element that belongs to the same group,
2491 * or the array element j itself if this element is the first in the group.
2493 * Return the number of group leaders.
2495 static int group_overlapping_writes(int n
,
2496 struct gpu_array_ref_group
**groups
, int *leader
)
2501 for (i
= 0; i
< n
; ++i
) {
2503 groups
[l
]->n_ref
= 1;
2504 for (j
= i
- 1; j
>= 0; --j
) {
2507 if (!groups
[l
]->write
&& !groups
[j
]->write
)
2510 if (!accesses_overlap(groups
[l
], groups
[j
]))
2513 groups
[j
]->access
= isl_map_union(groups
[j
]->access
,
2515 groups
[j
]->write
= 1;
2516 groups
[l
]->access
= NULL
;
2517 groups
[j
]->n_ref
+= groups
[l
]->n_ref
;
2527 /* Compute the size of the shared array corresponding to the given
2528 * array reference group, based on the accesses from the current kernel,
2529 * as well as the offset of the shared piece in the original array.
2531 static void compute_group_shared_bound(struct gpu_gen
*gen
,
2532 struct gpu_array_info
*array
, struct gpu_array_ref_group
*group
)
2534 isl_ctx
*ctx
= isl_space_get_ctx(array
->dim
);
2536 if (!gen
->options
->use_shared_memory
)
2538 if (gpu_array_is_read_only_scalar(array
))
2541 group
->shared_bound
= create_bound_list(ctx
, array
->n_index
);
2542 if (!can_tile_for_shared_memory(array
, group
->access
,
2543 group
->shared_bound
)) {
2544 free_bound_list(group
->shared_bound
, array
->n_index
);
2545 group
->shared_bound
= NULL
;
2549 /* Is the size of the tile specified by "bound" smaller than the sum of
2550 * the sizes of the tiles specified by "bound1" and "bound2"?
2552 static int smaller_tile(unsigned n_index
, struct gpu_array_bound
*bound
,
2553 struct gpu_array_bound
*bound1
, struct gpu_array_bound
*bound2
)
2556 isl_int size
, size1
, size2
;
2559 isl_int_init(size1
);
2560 isl_int_init(size2
);
2562 tile_size(n_index
, bound
, &size
);
2563 tile_size(n_index
, bound1
, &size1
);
2564 tile_size(n_index
, bound2
, &size2
);
2566 isl_int_sub(size
, size
, size1
);
2567 isl_int_sub(size
, size
, size2
);
2568 smaller
= isl_int_is_neg(size
);
2570 isl_int_clear(size2
);
2571 isl_int_clear(size1
);
2572 isl_int_clear(size
);
2577 /* Given an initial grouping of array references and shared memory tiles
2578 * for each group that allows for a shared memory tile, merge two groups
2579 * if both have a shared memory tile, the merged group also has
2580 * a shared memory tile and the size of the tile for the merge group
2581 * is smaller than the sum of the tile sizes of the individual groups.
2583 * Return the number of group leaders after merging.
2585 static int group_common_shared_memory_tile(struct gpu_array_info
*array
, int n
,
2586 struct gpu_array_ref_group
**groups
, int *leader
, int n_group
)
2589 isl_ctx
*ctx
= isl_space_get_ctx(array
->dim
);
2591 for (i
= 0; n_group
> 1 && i
< n
; ++i
) {
2595 if (!groups
[i
]->shared_bound
)
2597 for (j
= i
- 1; j
>= 0; --j
) {
2600 struct gpu_array_bound
*shared_bound
;
2604 if (!groups
[j
]->shared_bound
)
2607 map
= isl_map_intersect(isl_map_copy(groups
[l
]->access
),
2608 isl_map_copy(groups
[j
]->access
));
2609 empty
= isl_map_is_empty(map
);
2615 map
= isl_map_union(isl_map_copy(groups
[l
]->access
),
2616 isl_map_copy(groups
[j
]->access
));
2617 shared_bound
= create_bound_list(ctx
, array
->n_index
);
2618 if (!can_tile_for_shared_memory(array
, map
,
2620 !smaller_tile(array
->n_index
, shared_bound
,
2621 groups
[l
]->shared_bound
,
2622 groups
[j
]->shared_bound
)) {
2624 free_bound_list(shared_bound
, array
->n_index
);
2628 free_bound_list(groups
[j
]->shared_bound
,
2630 groups
[j
]->shared_bound
= shared_bound
;
2631 isl_map_free(groups
[j
]->access
);
2632 groups
[j
]->access
= map
;
2633 groups
[j
]->n_ref
+= groups
[l
]->n_ref
;
2642 /* Extract an array of array reference groups from the array of references
2643 * and the grouping information in "leader".
2645 * Store the results in array->n_group and array->groups.
2647 static void extract_array_groups(isl_ctx
*ctx
, struct gpu_array_info
*array
,
2648 int n
, struct gpu_array_ref_group
**groups
, int *leader
, int n_group
)
2652 for (i
= 2; i
< n
; ++i
)
2653 leader
[i
] = leader
[leader
[i
]];
2655 array
->n_group
= n_group
;
2656 array
->groups
= isl_alloc_array(ctx
, struct gpu_array_ref_group
*,
2658 assert(array
->groups
);
2661 for (i
= 0; i
< n
; ++i
) {
2663 struct gpu_stmt_access
**refs
;
2665 if (leader
[i
] != i
) {
2666 groups
[i
]->refs
= NULL
;
2667 free_array_ref_group(groups
[i
], array
->n_index
);
2671 refs
= isl_alloc_array(ctx
, struct gpu_stmt_access
*,
2675 for (k
= i
; k
< n
; ++k
)
2676 if (leader
[k
] == i
) {
2677 refs
[l
++] = *groups
[k
]->refs
;
2678 (*groups
[k
]->refs
)->group
= j
;
2681 groups
[i
]->refs
= refs
;
2683 array
->groups
[j
++] = groups
[i
];
2687 /* Group array references that should be considered together when
2688 * deciding whether to access them from private, shared or global memory.
2690 * In particular, if two array references overlap and if one of them
2691 * is a write, then the two references are grouped together.
2692 * Furthermore, if two groups admit a shared memory tile and if the
2693 * combination of the two also admits a shared memory tile, we merge
2696 * During the construction the group->refs field points to a single
2697 * array reference inside the array of array references, while
2698 * group->n_ref contains the number of element in leader that
2699 * (directly or indirectly) point to this group, provided the group
2702 static void group_array_references(struct gpu_gen
*gen
,
2703 struct gpu_array_info
*array
, __isl_keep isl_union_map
*sched
)
2707 isl_ctx
*ctx
= isl_union_map_get_ctx(sched
);
2708 struct gpu_array_ref_group
**groups
;
2711 groups
= isl_calloc_array(ctx
, struct gpu_array_ref_group
*,
2715 n
= populate_array_references(array
, sched
, groups
);
2717 leader
= isl_alloc_array(ctx
, int, n
);
2720 n_group
= group_overlapping_writes(n
, groups
, leader
);
2722 for (i
= 0; i
< n
; ++i
)
2724 compute_group_shared_bound(gen
, array
, groups
[i
]);
2726 n_group
= group_common_shared_memory_tile(array
, n
, groups
,
2729 extract_array_groups(ctx
, array
, n
, groups
, leader
, n_group
);
2735 /* Take tiled_sched, project it onto the shared tile loops and
2736 * the loops that will be wrapped over the threads and
2737 * store the result in gen->shared_sched.
2738 * Also compute a projection that projects out the loops that will be
2739 * wrapped over the threads and store this projection in gen->shared_proj.
2741 static void compute_shared_sched(struct gpu_gen
*gen
)
2746 isl_union_map
*sched
;
2748 sched
= isl_union_map_copy(gen
->tiled_sched
);
2750 dim
= isl_union_map_get_space(sched
);
2751 proj
= projection(dim
, gen
->tiled_len
, gen
->shared_len
+ gen
->n_block
);
2752 sched
= isl_union_map_apply_range(sched
, isl_union_map_from_map(proj
));
2754 dim
= isl_union_map_get_space(sched
);
2755 proj
= projection(dim
, gen
->shared_len
+ gen
->n_block
, gen
->shared_len
);
2757 gen
->shared_sched
= sched
;
2758 gen
->shared_proj
= isl_union_map_from_map(proj
);
2761 /* Group references of all arrays in the program.
2763 static void group_references(struct gpu_gen
*gen
)
2766 isl_union_map
*sched
;
2768 sched
= isl_union_map_apply_range(isl_union_map_copy(gen
->shared_sched
),
2769 isl_union_map_copy(gen
->shared_proj
));
2771 for (i
= 0; i
< gen
->prog
->n_array
; ++i
)
2772 group_array_references(gen
, &gen
->prog
->array
[i
], sched
);
2774 isl_union_map_free(sched
);
2777 /* Free all array information that is local to the current kernel.
2779 static void free_local_array_info(struct gpu_gen
*gen
)
2783 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
2784 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
2786 for (j
= 0; j
< array
->n_group
; ++j
)
2787 free_array_ref_group(array
->groups
[j
], array
->n_index
);
2788 free(array
->groups
);
2792 /* Compute the effective grid size as a list of the sizes in each dimension.
2794 * The grid size specified by the user or set by default
2795 * in read_grid_sizes() and applied in tile_schedule(),
2796 * may be too large for the given code in the sense that
2797 * it may contain blocks that don't need to execute anything.
2798 * We therefore don't return this grid size, but instead the
2799 * smallest grid size that ensures that all blocks that actually
2800 * execute code are included in the grid.
2802 * We first extract a description of the grid, i.e., the possible values
2803 * of the block ids, from gen->tiled_sched.
2804 * The block ids are parameters in gen->tiled_sched.
2805 * We simply need to change them into set dimensions.
2807 * Then, for each block dimension, we compute the maximal value of the block id
2810 static __isl_give isl_multi_pw_aff
*extract_grid_size(struct gpu_gen
*gen
,
2811 struct ppcg_kernel
*kernel
)
2815 isl_multi_pw_aff
*mpa
;
2817 grid
= isl_union_map_params(isl_union_map_copy(gen
->tiled_sched
));
2818 grid
= isl_set_from_params(grid
);
2819 grid
= isl_set_add_dims(grid
, isl_dim_set
, gen
->n_grid
);
2820 for (i
= 0; i
< gen
->n_grid
; ++i
) {
2824 snprintf(name
, sizeof(name
), "b%d", i
);
2825 pos
= isl_set_find_dim_by_name(grid
, isl_dim_param
, name
);
2827 grid
= isl_set_equate(grid
, isl_dim_param
, pos
, isl_dim_set
, i
);
2828 grid
= isl_set_project_out(grid
, isl_dim_param
, pos
, 1);
2831 mpa
= isl_multi_pw_aff_zero(isl_set_get_space(grid
));
2832 for (i
= 0; i
< gen
->n_grid
; ++i
) {
2837 bound
= isl_set_dim_max(isl_set_copy(grid
), i
);
2838 bound
= isl_pw_aff_coalesce(bound
);
2839 bound
= isl_pw_aff_gist(bound
, isl_set_copy(kernel
->context
));
2841 space
= isl_pw_aff_get_domain_space(bound
);
2842 one
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
2843 one
= isl_aff_add_constant_si(one
, 1);
2844 bound
= isl_pw_aff_add(bound
, isl_pw_aff_from_aff(one
));
2845 mpa
= isl_multi_pw_aff_set_pw_aff(mpa
, i
, bound
);
2852 void ppcg_kernel_free(void *user
)
2854 struct ppcg_kernel
*kernel
= user
;
2860 isl_multi_pw_aff_free(kernel
->grid_size
);
2861 isl_set_free(kernel
->context
);
2862 isl_union_set_free(kernel
->arrays
);
2863 isl_space_free(kernel
->space
);
2864 isl_ast_node_free(kernel
->tree
);
2866 for (i
= 0; i
< kernel
->n_array
; ++i
)
2867 isl_pw_aff_list_free(kernel
->array
[i
].bound
);
2868 free(kernel
->array
);
2870 for (i
= 0; i
< kernel
->n_var
; ++i
) {
2871 free(kernel
->var
[i
].name
);
2872 isl_vec_free(kernel
->var
[i
].size
);
2879 static void create_kernel_var(isl_ctx
*ctx
, struct gpu_array_ref_group
*group
,
2880 struct ppcg_kernel_var
*var
)
2883 struct gpu_array_bound
*bounds
;
2887 var
->array
= group
->array
;
2889 bounds
= group
->private_bound
;
2890 var
->type
= ppcg_access_private
;
2892 bounds
= group
->shared_bound
;
2893 var
->type
= ppcg_access_shared
;
2896 p
= isl_printer_to_str(ctx
);
2897 p
= print_array_name(p
, group
);
2898 var
->name
= isl_printer_get_str(p
);
2899 isl_printer_free(p
);
2901 var
->size
= isl_vec_alloc(ctx
, group
->array
->n_index
);
2903 for (j
= 0; j
< group
->array
->n_index
; ++j
)
2904 var
->size
= isl_vec_set_element(var
->size
, j
, bounds
[j
].size
);
2907 static void create_kernel_vars(struct gpu_gen
*gen
, struct ppcg_kernel
*kernel
)
2912 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
2913 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
2915 for (j
= 0; j
< array
->n_group
; ++j
) {
2916 struct gpu_array_ref_group
*group
= array
->groups
[j
];
2917 if (group
->private_bound
|| group
->shared_bound
)
2923 kernel
->var
= isl_calloc_array(gen
->ctx
, struct ppcg_kernel_var
, n
);
2924 assert(kernel
->var
);
2927 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
2928 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
2930 for (j
= 0; j
< array
->n_group
; ++j
) {
2931 struct gpu_array_ref_group
*group
= array
->groups
[j
];
2932 if (!group
->private_bound
&& !group
->shared_bound
)
2934 create_kernel_var(gen
->ctx
, group
, &kernel
->var
[n
]);
2940 /* The sizes of the arrays on the host that have been computed by
2941 * extract_array_info may depend on the parameters. Use the extra
2942 * constraints on the parameters that are valid at "host_domain"
2943 * to simplify these expressions and store the results in kernel->array.
2945 static void localize_bounds(struct gpu_gen
*gen
, struct ppcg_kernel
*kernel
,
2946 __isl_keep isl_set
*host_domain
)
2951 kernel
->array
= isl_calloc_array(gen
->ctx
,
2952 struct gpu_local_array_info
, gen
->prog
->n_array
);
2953 assert(kernel
->array
);
2954 kernel
->n_array
= gen
->prog
->n_array
;
2956 context
= isl_set_copy(host_domain
);
2957 context
= isl_set_params(context
);
2959 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
2960 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
2961 isl_pw_aff_list
*local
;
2963 if (array
->n_group
== 0)
2966 local
= isl_pw_aff_list_alloc(gen
->ctx
, array
->n_index
);
2968 for (j
= 0; j
< array
->n_index
; ++j
) {
2971 pwaff
= isl_pw_aff_copy(array
->bound
[j
]);
2972 pwaff
= isl_pw_aff_gist(pwaff
, isl_set_copy(context
));
2973 local
= isl_pw_aff_list_add(local
, pwaff
);
2976 kernel
->array
[i
].bound
= local
;
2978 isl_set_free(context
);
2981 /* Find the element in gen->stmt that has the given "id".
2982 * Return NULL if no such gpu_stmt can be found.
2984 static struct gpu_stmt
*find_stmt(struct gpu_prog
*prog
, __isl_keep isl_id
*id
)
2988 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
2989 if (id
== prog
->stmts
[i
].id
)
2993 return i
< prog
->n_stmts
? &prog
->stmts
[i
] : NULL
;
2996 /* Set gen->tile_len and gen->n_parallel to those of the statement
2997 * affected by the first map (part of the schedule)
2998 * on which this function is called.
2999 * Because of the way the schedule is constructed, the other statements
3000 * in the list, if any, should have the same values for these properties.
3002 static int extract_tile_len(__isl_take isl_map
*map
, void *user
)
3004 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
3006 struct gpu_stmt
*stmt
;
3008 id
= isl_map_get_tuple_id(map
, isl_dim_in
);
3009 stmt
= find_stmt(gen
->prog
, id
);
3015 isl_die(gen
->ctx
, isl_error_unknown
,
3016 "statement not found", return -1);
3018 gen
->tile_len
= stmt
->tile_len
;
3019 gen
->n_parallel
= stmt
->n_parallel
;
3024 void ppcg_kernel_stmt_free(void *user
)
3027 struct ppcg_kernel_stmt
*stmt
= user
;
3032 switch (stmt
->type
) {
3033 case ppcg_kernel_copy
:
3034 isl_ast_expr_free(stmt
->u
.c
.index
);
3035 isl_ast_expr_free(stmt
->u
.c
.local_index
);
3037 case ppcg_kernel_domain
:
3038 for (i
= 0; i
< stmt
->u
.d
.n_access
; ++i
) {
3039 isl_ast_expr_list_free(stmt
->u
.d
.access
[i
].index
);
3040 free(stmt
->u
.d
.access
[i
].local_name
);
3042 free(stmt
->u
.d
.access
);
3044 case ppcg_kernel_sync
:
3051 /* Set the options of "context" to
3053 * { space -> [x] : x >= first }
3055 static __isl_give isl_ast_build
*set_unroll(
3056 __isl_take isl_ast_build
*build
, __isl_take isl_space
*space
,
3063 ctx
= isl_ast_build_get_ctx(build
);
3065 space
= isl_space_from_domain(space
);
3066 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
3067 space
= isl_space_set_tuple_name(space
, isl_dim_out
, "unroll");
3068 unroll
= isl_map_universe(space
);
3069 unroll
= isl_map_lower_bound_si(unroll
, isl_dim_out
, 0, first
);
3070 opt
= isl_union_map_from_map(unroll
);
3072 build
= isl_ast_build_set_options(build
, opt
);
3077 /* Return a list of isl_ids of the form "prefix%d".
3079 static __isl_give isl_id_list
*generate_names(isl_ctx
*ctx
,
3080 int n
, const char *prefix
)
3086 names
= isl_id_list_alloc(ctx
, n
);
3087 for (i
= 0; i
< n
; ++i
) {
3090 snprintf(name
, sizeof(name
), "%s%d", prefix
, i
);
3091 id
= isl_id_alloc(ctx
, name
, NULL
);
3092 names
= isl_id_list_add(names
, id
);
3098 /* Extend the schedule "schedule" with the part of "extension"
3099 * starting at "first" up to "len".
3101 static __isl_give isl_union_map
*extend_schedule(
3102 __isl_take isl_union_map
*schedule
,
3103 __isl_take isl_union_map
*extension
, int first
, int len
)
3107 isl_union_map
*umap
;
3110 space
= isl_union_map_get_space(schedule
);
3111 space
= isl_space_set_from_params(space
);
3112 space
= isl_space_add_dims(space
, isl_dim_set
, len
);
3113 proj
= isl_set_identity(isl_set_universe(space
));
3114 proj
= isl_map_project_out(proj
, isl_dim_out
, 0, first
);
3115 extension
= isl_union_map_apply_range(extension
,
3116 isl_union_map_from_map(proj
));
3118 schedule
= isl_union_map_range_product(schedule
, extension
);
3123 /* This function is called for each access to an array in each instance
3124 * in the kernel of some statement in the original code.
3125 * Replace that access by an access to global, shared or private memory
3126 * and store the results in *kernel_access.
3128 * Since the array in shared or private memory is just
3129 * a shifted copy of part of the original array, we simply need
3130 * to subtract the lower bound, which was computed
3131 * in can_tile_for_shared_memory.
3132 * If any of the indices is strided, then we first add
3133 * shared_bound[i].shift and divide by shared_bound[i].stride.
3135 * If the given array is accessed directly from global memory,
3136 * we don't need to perform any shifting and simply simplify
3137 * the expression in the context of the domain instead.
3139 * If the array space (range of access) has no name, then we are
3140 * accessing an iterator in the original program.
3142 * The input stmt_access->access relation maps the iteration domain
3143 * of the current statement to an array element.
3144 * The first step is to reformulate
3145 * this access relation in terms of the loop iterators of the generated
3146 * code through precomposition with gen->stmt_it.
3148 * The expressions in "bounds" are formulated in terms of the first
3149 * gen->shared_len dimensions of the computed schedule using the mapping
3150 * sched2shared which maps the loop iterators to these dimensions.
3152 static void compute_index_expression(struct gpu_gen
*gen
,
3153 struct ppcg_kernel_access
*kernel_access
,
3154 struct gpu_stmt_access
*stmt_access
, __isl_keep isl_map
*stmt_it
,
3155 __isl_keep isl_map
*sched2shared
, __isl_keep isl_ast_build
*build
)
3158 isl_pw_multi_aff
*pma
;
3161 struct gpu_array_bound
*bounds
= NULL
;
3163 if (isl_map_has_tuple_name(stmt_access
->access
, isl_dim_out
)) {
3166 struct gpu_array_ref_group
*group
;
3169 name
= isl_map_get_tuple_name(stmt_access
->access
, isl_dim_out
);
3171 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
3172 if (strcmp(name
, gen
->prog
->array
[i
].name
))
3174 kernel_access
->array
= &gen
->prog
->array
[i
];
3175 kernel_access
->local_array
= &gen
->kernel
->array
[i
];
3177 assert(kernel_access
->array
);
3178 group
= kernel_access
->array
->groups
[stmt_access
->group
];
3179 p
= isl_printer_to_str(gen
->ctx
);
3180 p
= print_array_name(p
, group
);
3181 kernel_access
->local_name
= isl_printer_get_str(p
);
3182 isl_printer_free(p
);
3183 bounds
= group
->private_bound
;
3184 kernel_access
->type
= ppcg_access_private
;
3186 bounds
= group
->shared_bound
;
3187 kernel_access
->type
= ppcg_access_shared
;
3191 kernel_access
->type
= ppcg_access_global
;
3193 n_index
= isl_map_dim(stmt_access
->access
, isl_dim_out
);
3194 kernel_access
->index
= isl_ast_expr_list_alloc(gen
->ctx
, n_index
);
3199 access
= isl_map_copy(stmt_access
->access
);
3200 access
= isl_map_apply_range(isl_map_copy(stmt_it
), access
);
3201 pma
= isl_pw_multi_aff_from_map(access
);
3202 pma
= isl_pw_multi_aff_coalesce(pma
);
3204 for (i
= 0; i
< n_index
; ++i
) {
3209 index
= isl_pw_multi_aff_get_pw_aff(pma
, i
);
3211 if (!kernel_access
->array
) {
3212 } else if (!bounds
) {
3213 domain
= isl_map_domain(isl_map_copy(stmt_it
));
3214 index
= isl_pw_aff_coalesce(index
);
3215 index
= isl_pw_aff_gist(index
, domain
);
3217 domain
= isl_map_domain(isl_map_copy(stmt_it
));
3218 index
= shift_index(index
, kernel_access
->array
,
3219 &bounds
[i
], domain
, isl_map_copy(sched2shared
));
3222 expr
= isl_ast_build_expr_from_pw_aff(build
, index
);
3224 kernel_access
->index
= isl_ast_expr_list_add(
3225 kernel_access
->index
, expr
);
3228 isl_pw_multi_aff_free(pma
);
3231 /* This function is called for each instance of a user statement
3234 * We attach a struct ppcg_kernel_stmt to the "node", containing
3235 * local information about the accesses.
3236 * This information is computed from stmt_it, which expresses the domain
3237 * elements in terms of the generated loops, and sched2shared,
3238 * which expresses the first shared_len dimensions of the schedule
3239 * computed by PPCG in terms of the generated loops.
3241 static __isl_give isl_ast_node
*at_each_domain(__isl_take isl_ast_node
*node
,
3242 __isl_keep isl_ast_build
*build
, void *user
)
3244 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
3245 struct ppcg_kernel_stmt
*stmt
;
3247 isl_map
*stmt_it
, *sched2shared
;
3248 isl_ast_expr
*expr
, *arg
;
3249 isl_union_map
*schedule
;
3251 struct gpu_stmt_access
*access
;
3253 stmt
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel_stmt
);
3255 return isl_ast_node_free(node
);
3257 expr
= isl_ast_node_user_get_expr(node
);
3258 arg
= isl_ast_expr_get_op_arg(expr
, 0);
3259 id
= isl_ast_expr_get_id(arg
);
3261 schedule
= isl_ast_build_get_schedule(build
);
3262 stmt_it
= isl_map_reverse(isl_map_from_union_map(schedule
));
3263 sched2shared
= compute_sched_to_shared(gen
, isl_map_copy(stmt_it
));
3265 stmt
->type
= ppcg_kernel_domain
;
3266 stmt
->u
.d
.stmt
= find_stmt(gen
->prog
, id
);
3267 if (!stmt
->u
.d
.stmt
)
3271 for (access
= stmt
->u
.d
.stmt
->accesses
; access
; access
= access
->next
)
3274 stmt
->u
.d
.access
= isl_calloc_array(gen
->ctx
,
3275 struct ppcg_kernel_access
, n
);
3276 if (!stmt
->u
.d
.access
)
3279 stmt
->u
.d
.n_access
= n
;
3281 access
= stmt
->u
.d
.stmt
->accesses
;
3282 for (i
= 0; i
< n
; ++i
, access
= access
->next
) {
3283 compute_index_expression(gen
, &stmt
->u
.d
.access
[i
], access
,
3284 stmt_it
, sched2shared
, build
);
3288 isl_map_free(stmt_it
);
3289 isl_map_free(sched2shared
);
3290 isl_ast_expr_free(arg
);
3291 isl_ast_expr_free(expr
);
3293 id
= isl_id_alloc(gen
->ctx
, NULL
, stmt
);
3294 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
3295 return isl_ast_node_set_annotation(node
, id
);
3298 isl_map_free(stmt_it
);
3299 ppcg_kernel_stmt_free(stmt
);
3300 isl_map_free(sched2shared
);
3301 return isl_ast_node_free(node
);
3304 /* This function is called when code has been generated for the shared
3305 * tile loops. The "schedule" refers only to the original statements.
3307 * We extend the schedule with that part of gen->local_sched that hasn't
3308 * been taken into account yet. This introduces parameters referring
3309 * to thread ids in the schedule, so we add them (with the appropriate
3310 * bounds to the context as well).
3311 * Finally, we set the appropriate unrolling options
3312 * if gen->first_unroll is set.
3314 static __isl_give isl_ast_node
*create_domain_leaf(
3315 __isl_take isl_union_map
*schedule
, __isl_take isl_ast_build
*build
,
3318 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
3320 isl_union_map
*sched
;
3323 isl_id_list
*iterators
;
3326 schedule
= extend_schedule(schedule
,
3327 isl_union_map_copy(gen
->local_sched
),
3328 gen
->shared_len
, gen
->thread_tiled_len
);
3330 space
= isl_ast_build_get_schedule_space(build
);
3331 set
= isl_set_universe(space
);
3332 set
= add_bounded_parameters(set
, gen
->n_block
, gen
->block_dim
, "t");
3333 build
= isl_ast_build_restrict(build
, set
);
3335 n
= gen
->thread_tiled_len
- gen
->shared_len
;
3337 if (gen
->first_unroll
>= 0) {
3338 space
= isl_space_set_alloc(gen
->ctx
, 0, n
);
3339 build
= set_unroll(build
, space
, gen
->first_unroll
);
3341 iterators
= generate_names(gen
->ctx
, n
, "c");
3342 build
= isl_ast_build_set_iterators(build
, iterators
);
3343 build
= isl_ast_build_set_at_each_domain(build
, &at_each_domain
, gen
);
3344 tree
= isl_ast_build_ast_from_schedule(build
, schedule
);
3345 isl_ast_build_free(build
);
3350 /* This function is called for each leaf in the AST of the code
3351 * for copying to or from shared/private memory.
3352 * The statement name is {read,write}_{shared,private}_<array>.
3354 * The schedule is of the form
3358 * where A refers to a piece of an array and T to the corresponding
3359 * shifted tile. We split this schedule into mappings L -> A and L -> T
3360 * and store the corresponding expressions in stmt->index and stmt->local_index,
3361 * where stmt represents the copy statement.
3363 static __isl_give isl_ast_node
*create_copy_leaf(
3364 __isl_take isl_ast_build
*build
, void *user
)
3366 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
3367 struct ppcg_kernel_stmt
*stmt
;
3372 isl_map
*access
, *local_access
, *map
;
3373 isl_pw_multi_aff
*pma
;
3377 stmt
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel_stmt
);
3379 return isl_ast_build_free(build
);
3381 access
= isl_map_from_union_map(isl_ast_build_get_schedule(build
));
3382 name
= isl_map_get_tuple_name(access
, isl_dim_in
);
3383 stmt
->u
.c
.read
= !strncmp(name
, "read", 4);
3384 access
= isl_map_reverse(access
);
3385 space
= isl_space_unwrap(isl_space_range(isl_map_get_space(access
)));
3386 local_access
= isl_map_copy(access
);
3388 map
= isl_map_domain_map(isl_map_universe(isl_space_copy(space
)));
3389 id
= isl_map_get_tuple_id(access
, isl_dim_out
);
3390 map
= isl_map_set_tuple_id(map
, isl_dim_in
, id
);
3391 access
= isl_map_apply_range(access
, map
);
3392 pma
= isl_pw_multi_aff_from_map(access
);
3393 expr
= isl_ast_build_call_from_pw_multi_aff(build
, pma
);
3394 stmt
->u
.c
.index
= expr
;
3396 map
= isl_map_range_map(isl_map_universe(space
));
3397 id
= isl_map_get_tuple_id(local_access
, isl_dim_out
);
3398 map
= isl_map_set_tuple_id(map
, isl_dim_in
, id
);
3399 local_access
= isl_map_apply_range(local_access
, map
);
3400 pma
= isl_pw_multi_aff_from_map(local_access
);
3401 expr
= isl_ast_build_call_from_pw_multi_aff(build
, pma
);
3402 stmt
->u
.c
.local_index
= expr
;
3404 stmt
->u
.c
.array
= gen
->copy_group
->array
;
3405 array_index
= stmt
->u
.c
.array
- gen
->prog
->array
;
3406 stmt
->u
.c
.local_array
= &gen
->kernel
->array
[array_index
];
3407 stmt
->type
= ppcg_kernel_copy
;
3409 space
= isl_ast_build_get_schedule_space(build
);
3410 space
= isl_space_from_domain(space
);
3411 space
= isl_space_set_tuple_name(space
, isl_dim_out
, name
);
3412 expr
= isl_ast_build_call_from_pw_multi_aff(build
,
3413 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space
)));
3414 node
= isl_ast_node_alloc_user(expr
);
3415 isl_ast_build_free(build
);
3417 id
= isl_id_alloc(gen
->ctx
, NULL
, stmt
);
3418 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
3419 return isl_ast_node_set_annotation(node
, id
);
3422 /* Given a schedule of the form
3426 * (with S the first shared_len dimensions of the computed schedule,
3427 * A the array and L the schedule correponding to the generated loops),
3428 * indicating where the copying the array elements that need to be copied,
3429 * construct code for performing the copying.
3431 * "group" is the array reference group that is being copied
3432 * "type" is either "read" or "write"
3433 * private is set if copying needs to be performed to/from registers
3435 * We first construct a mapping to a shifted tile of the array,
3437 * [S -> A] -> T(S,A) (1)
3439 * If private is set, then we also use this mapping as a schedule
3440 * (which is already thread-specific and will be completely unrolled).
3441 * Otherwise, we wrap/tile the range over the threads.
3444 * [S -> A] -> T'(S,A)
3446 * Combined with the given schedule, we have
3448 * [S -> A] -> [L -> T'(S,A)] (2)
3450 * From the shifted tile mapping, we construct a mapping
3452 * [S -> A] -> [A -> T(S,A)]
3454 * and apply it to the schedule (2), obtaining
3456 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
3458 * Note that we can project out S because it is uniquely defined by L.
3460 static __isl_give isl_ast_node
*copy_access(struct gpu_gen
*gen
,
3461 __isl_take isl_map
*sched
,
3462 const char *type
, struct gpu_array_ref_group
*group
,
3463 __isl_take isl_ast_build
*build
, int private)
3465 const char *array_name
;
3466 const char *mem
= private ? "private" : "shared";
3470 isl_map
*schedule
, *shift
, *map
;
3472 isl_id_list
*iterators
;
3475 shift
= isl_set_unwrap(isl_map_domain(isl_map_copy(sched
)));
3476 array_name
= isl_map_get_tuple_name(shift
, isl_dim_out
);
3477 shift
= shift_access(shift
, group
);
3479 schedule
= isl_map_copy(shift
);
3481 schedule
= tile_access_schedule(gen
, schedule
);
3483 n
= isl_map_dim(schedule
, isl_dim_out
);
3484 set
= isl_set_universe(isl_ast_build_get_schedule_space(build
));
3485 set
= add_bounded_parameters(set
, gen
->n_block
, gen
->block_dim
, "t");
3487 schedule
= isl_map_range_product(sched
, schedule
);
3490 name
= isl_alloc_array(gen
->ctx
, char,
3491 strlen(type
) + sizeof("_private_") + strlen(array_name
) + 20);
3492 if (group
->array
->n_group
> 1)
3493 sprintf(name
, "%s_%s_%s_%d", type
, mem
, array_name
, group
->nr
);
3495 sprintf(name
, "%s_%s_%s", type
, mem
, array_name
);
3496 shift
= isl_map_set_tuple_name(shift
,
3497 isl_dim_out
, name
+ strlen(type
) + 1);
3499 space
= isl_space_domain(isl_map_get_space(shift
));
3500 map
= isl_map_range_map(isl_map_universe(isl_space_unwrap(space
)));
3501 map
= isl_map_range_product(map
, shift
);
3503 schedule
= isl_map_apply_domain(schedule
, map
);
3505 schedule
= isl_map_set_tuple_name(schedule
, isl_dim_in
, name
);
3508 build
= isl_ast_build_restrict(build
, set
);
3510 gen
->copy_group
= group
;
3511 gen
->copy_bound
= group
->shared_bound
;
3514 space
= isl_space_range(isl_map_get_space(schedule
));
3515 space
= isl_space_range(isl_space_unwrap(space
));
3516 build
= set_unroll(build
, space
, 0);
3518 iterators
= generate_names(gen
->ctx
, n
, "c");
3519 build
= isl_ast_build_set_iterators(build
, iterators
);
3520 build
= isl_ast_build_set_create_leaf(build
, &create_copy_leaf
, gen
);
3521 tree
= isl_ast_build_ast_from_schedule(build
,
3522 isl_union_map_from_map(schedule
));
3523 isl_ast_build_free(build
);
3528 /* Return code for reading into or writing from shared memory
3529 * the given array reference group.
3531 * If we are performing a read from global memory to shared memory and
3532 * if the array involved is not a scalar, then we copy
3533 * the entire tile to shared memory. This may result in some extra
3534 * elements getting copied, but it should lead to simpler code
3535 * (which means that fewer registers may be needed) and less divergence.
3537 * Otherwise, we only copy the elements that will be read or have been written
3541 * The input "sched" is of the form.
3545 * with S the first shared_len dimensions of the computed schedule,
3546 * A the array and L the schedule correponding to the generated loops.
3548 * We first drop "type",
3552 * If the above conditions are satisfied, we project out A,
3557 * and then introduce the group tile [S -> T], resulting in
3561 static __isl_give isl_ast_node
*copy_group_shared_accesses(
3562 struct gpu_gen
*gen
, struct gpu_array_ref_group
*group
,
3563 __isl_take isl_map
*sched
, __isl_take isl_ast_build
*build
)
3567 isl_union_map
*access
;
3569 type
= isl_map_get_tuple_name(sched
, isl_dim_in
);
3570 read
= !strcmp(type
, "read");
3572 sched
= isl_map_reset_tuple_id(sched
, isl_dim_in
);
3574 if (read
&& group
->array
->n_index
> 0) {
3578 space
= isl_space_domain(isl_map_get_space(sched
));
3579 space
= isl_space_unwrap(space
);
3580 map
= isl_map_domain_map(isl_map_universe(space
));
3581 sched
= isl_map_apply_domain(sched
, map
);
3583 map
= group_tile(group
);
3584 map
= isl_map_reverse(isl_map_domain_map(map
));
3585 sched
= isl_map_apply_domain(sched
, map
);
3588 return copy_access(gen
, sched
, type
, group
, build
, 0);
3591 /* Return code for reading into or writing from private memory
3592 * the given array reference group.
3594 * Let S be the first shared_len dimensions of the computed schedule,
3595 * D the iteration domains, A the array and L the schedule correponding
3596 * to the generated loops.
3597 * "sched" is of the form
3601 * where type is either "read" or "write".
3602 * We apply the privatization D -> S(t), with t the thread ids,
3603 * to the access relation D -> A to obtain the privatized access relation
3607 * We drop the type from "sched" and intersect with the privatized access
3608 * relation to obtain
3612 static __isl_give isl_ast_node
*copy_group_private_accesses(
3613 struct gpu_gen
*gen
, struct gpu_array_ref_group
*group
,
3614 __isl_take isl_map
*sched
, __isl_take isl_ast_build
*build
)
3618 isl_union_map
*priv
;
3619 isl_union_map
*access
;
3620 isl_map
*access_map
;
3622 type
= isl_map_get_tuple_name(sched
, isl_dim_in
);
3623 read
= !strcmp(type
, "read");
3625 priv
= isl_union_map_from_map(isl_map_copy(gen
->privatization
));
3626 priv
= isl_union_map_apply_range(isl_union_map_copy(gen
->shared_sched
),
3629 access
= group_access_relation(group
, read
, !read
);
3630 access
= isl_union_map_apply_domain(access
, priv
);
3631 access_map
= isl_map_from_union_map(access
);
3633 sched
= isl_map_reset_tuple_id(sched
, isl_dim_in
);
3634 sched
= isl_map_intersect_domain(sched
, isl_map_wrap(access_map
));
3636 return copy_access(gen
, sched
, type
, group
, build
, 1);
3639 /* Return code for reading into or writing from shared or private memory.
3641 * "schedule" is of the form
3645 * with S be the first shared_len dimensions of the computed schedule,
3646 * A the array and L the schedule correponding to the generated loops.
3647 * The array reference group is attached to "type".
3649 static __isl_give isl_ast_node
*create_access_leaf(
3650 struct gpu_gen
*gen
, __isl_take isl_map
*schedule
,
3651 __isl_take isl_ast_build
*build
)
3653 struct gpu_array_ref_group
*group
;
3656 id
= isl_map_get_tuple_id(schedule
, isl_dim_in
);
3657 group
= isl_id_get_user(id
);
3660 if (group
->private_bound
)
3661 return copy_group_private_accesses(gen
, group
, schedule
,
3664 return copy_group_shared_accesses(gen
, group
, schedule
,
3668 /* Create a domain node representing a synchronization.
3670 static __isl_give isl_ast_node
*create_sync_leaf(
3671 struct gpu_gen
*gen
, __isl_take isl_map
*schedule
,
3672 __isl_take isl_ast_build
*build
)
3674 struct ppcg_kernel_stmt
*stmt
;
3680 isl_map_free(schedule
);
3682 stmt
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel_stmt
);
3686 stmt
->type
= ppcg_kernel_sync
;
3688 space
= isl_ast_build_get_schedule_space(build
);
3689 space
= isl_space_from_domain(space
);
3690 space
= isl_space_set_tuple_name(space
, isl_dim_out
, "sync");
3691 expr
= isl_ast_build_call_from_pw_multi_aff(build
,
3692 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space
)));
3693 node
= isl_ast_node_alloc_user(expr
);
3694 isl_ast_build_free(build
);
3696 id
= isl_id_alloc(gen
->ctx
, NULL
, stmt
);
3697 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
3698 return isl_ast_node_set_annotation(node
, id
);
3701 /* This function is called during the code generation at the point
3702 * where the schedule domain element is completely determined by
3703 * the generated code. The input schedule contains the original
3704 * statements as well as synchronization and copy "statements".
3705 * The latter are scheduled at different points than any of the original
3706 * statements, so they will only arrive here in isolation.
3708 * If the current schedule only refers to a single statement,
3709 * we check if it is a copy or synchronization statement and
3710 * call the appropriate functions.
3711 * Otherwise, we assume we are dealing with the original statements
3712 * and we call create_domain_leaf.
3714 static __isl_give isl_ast_node
*create_kernel_leaf(
3715 __isl_take isl_ast_build
*build
, void *user
)
3717 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
3719 isl_union_map
*schedule
;
3722 schedule
= isl_ast_build_get_schedule(build
);
3724 if (isl_union_map_n_map(schedule
) != 1)
3725 return create_domain_leaf(schedule
, build
, user
);
3727 map
= isl_map_from_union_map(schedule
);
3728 name
= isl_map_get_tuple_name(map
, isl_dim_in
);
3729 if (!strcmp(name
, "read") || !strcmp(name
, "write"))
3730 return create_access_leaf(gen
, map
, build
);
3731 if (!strcmp(name
, "sync"))
3732 return create_sync_leaf(gen
, map
, build
);
3734 return create_domain_leaf(isl_union_map_from_map(map
), build
, user
);
3737 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
3738 * have value 0) and all even schedule dimensions as "unroll".
3740 * That is, the options look as follows
3742 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
3743 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
3745 * The even positions are used to be able to schedule copying blocks
3746 * and synchronization before or after each level of the shared memory
3747 * tile loops and we want to make sure that code for these is generated
3748 * separately (within each level).
3750 static __isl_give isl_ast_build
*set_atomic_and_unroll(
3751 __isl_take isl_ast_build
*build
,
3752 __isl_take isl_space
*space
, int sched_len
)
3758 isl_local_space
*ls
;
3761 ctx
= isl_ast_build_get_ctx(build
);
3763 space
= isl_space_params(space
);
3764 space
= isl_space_add_dims(space
, isl_dim_set
, sched_len
);
3765 space
= isl_space_from_domain(space
);
3766 space
= isl_space_add_dims(space
, isl_dim_out
, 2);
3767 map
= isl_map_universe(isl_space_copy(space
));
3768 for (i
= 0; i
< sched_len
; i
+= 2)
3769 map
= isl_map_fix_si(map
, isl_dim_in
, i
, 0);
3770 ls
= isl_local_space_from_space(isl_map_get_space(map
));
3771 c
= isl_equality_alloc(ls
);
3772 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, 0, 1);
3773 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, 1, 2);
3774 c
= isl_constraint_set_constant_si(c
, 1);
3775 map
= isl_map_add_constraint(map
, c
);
3776 map
= isl_map_project_out(map
, isl_dim_out
, 1, 1);
3777 map
= isl_map_set_tuple_name(map
, isl_dim_out
, "atomic");
3778 opt
= isl_union_map_from_map(map
);
3780 map
= isl_map_universe(space
);
3781 ls
= isl_local_space_from_space(isl_map_get_space(map
));
3782 c
= isl_equality_alloc(ls
);
3783 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, 0, 1);
3784 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, 1, 2);
3785 map
= isl_map_add_constraint(map
, c
);
3786 map
= isl_map_project_out(map
, isl_dim_out
, 1, 1);
3787 map
= isl_map_set_tuple_name(map
, isl_dim_out
, "unroll");
3788 opt
= isl_union_map_add_map(opt
, map
);
3790 build
= isl_ast_build_set_options(build
, opt
);
3795 /* Return a map that maps a space of dimension gen->shared_len
3796 * to its last dimensions starting at gen->tile_first.
3797 * The range is of dimension
3799 * 2 * (gen->shared_len - gen->tile_first) + 1
3801 * The input dimensions are mapped to the odd dimensions in the output,
3802 * while the even dimensions (except 2*pos) are fixed to 0.
3803 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
3804 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
3805 * are mapped to the output. The remaining input dimensions are projected
3806 * out and the corresponding output dimensions are fixed to 0.
3808 static __isl_give isl_map
*insert_even(struct gpu_gen
*gen
,
3809 __isl_take isl_space
*space
, int pos
, int val
)
3814 space
= isl_space_set_from_params(space
);
3815 space
= isl_space_add_dims(space
, isl_dim_set
, gen
->shared_len
);
3816 space
= isl_space_map_from_set(space
);
3817 proj
= isl_map_identity(space
);
3818 proj
= isl_map_project_out(proj
, isl_dim_out
, 0, gen
->tile_first
);
3819 n
= gen
->shared_len
- gen
->tile_first
;
3820 for (i
= 0; i
<= n
; ++i
) {
3821 proj
= isl_map_insert_dims(proj
, isl_dim_out
, 2 * i
, 1);
3823 proj
= isl_map_fix_si(proj
, isl_dim_out
, 2 * i
, val
);
3825 proj
= isl_map_fix_si(proj
, isl_dim_out
, 2 * i
, 0);
3831 proj
= isl_map_eliminate(proj
, isl_dim_in
, gen
->tile_first
+ pos
,
3832 gen
->shared_len
- (gen
->tile_first
+ pos
));
3833 for (i
= pos
; i
< n
; ++i
)
3834 proj
= isl_map_fix_si(proj
, isl_dim_out
, 2 * i
+ 1, 0);
3839 /* Given the AST context schedule "schedule" and the mapping from
3840 * domains to the shared tile loops "shared_sched", add a schedule
3841 * for a synchronization operation at position "val" of loop level "pos".
3843 * schedule is of the form
3847 * (with D the iteration domains and L the already generated loops),
3848 * while shared_sched is of the form
3852 * We combine them into
3858 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3860 * and use the result as a schedule for "sync".
3862 static __isl_give isl_union_map
*add_sync_schedule(struct gpu_gen
*gen
,
3863 __isl_take isl_union_map
*res
, __isl_keep isl_union_map
*schedule
,
3864 __isl_keep isl_union_map
*shared_sched
, int pos
, int val
)
3867 isl_map
*proj
, *map
;
3869 shared_sched
= isl_union_map_copy(shared_sched
);
3870 schedule
= isl_union_map_copy(schedule
);
3872 space
= isl_union_map_get_space(shared_sched
);
3873 schedule
= isl_union_map_apply_domain(shared_sched
, schedule
);
3874 map
= isl_map_from_union_map(schedule
);
3876 proj
= insert_even(gen
, space
, pos
, val
);
3877 map
= isl_map_apply_range(map
, proj
);
3878 map
= isl_map_from_range(isl_map_wrap(map
));
3879 map
= isl_map_set_tuple_name(map
, isl_dim_in
, "sync");
3881 res
= isl_union_map_add_map(res
, map
);
3886 /* Given the AST context schedule "schedule" and the mapping from
3887 * domains to the shared tile loops "shared_sched", add a schedule
3888 * for copying an array reference group to/from shared/private memory.
3889 * "read" is set if data should be copied from global memory
3890 * to shared/private memory.
3891 * "k" represents the current group
3892 * "s" is the total number of groups
3894 * We schedule an operation before or after the innermost loop
3895 * of "shared_sched" that affects the tile of the array reference group.
3897 * schedule is of the form
3901 * (with D the iteration domains and L the already generated loops),
3902 * while shared_sched is of the form
3906 * We first compute the access relation for the reference group
3910 * and combine it with shared_sched into
3914 * If this results in an empty relation, no copying needs to be performed
3916 * Otherwise, we invert the relation and combine it with "schedule" into
3920 * The actual additional piece of the schedule is obtained from combining
3926 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3928 * The position of "val" corresponds to the innermost loop that affects
3929 * the tile and the value indicates where the copying is scheduled
3930 * with respect to the actual kernel code (at value 0).
3931 * Reads are schedule before the code, writes to global memory from
3932 * private memory are scheduled at values 1 to s, writes to global
3933 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
3935 * If we are scheduling a read from global memory to shared memory,
3936 * we insert a synchronization before the kernel code (at the innermost
3938 * If we are scheduling a write to global memory, then we add
3939 * a synchronization after all writes (at value 2 *s + 2).
3940 * However, there is no need for a synchronization after the outermost loop.
3941 * A write to global memory from private memory at the innermost level
3942 * does not require a synchronization, because it is covered by
3943 * the synchronization after the kernel inserted by body_schedule.
3945 static __isl_give isl_union_map
*add_group_schedule(struct gpu_gen
*gen
,
3946 __isl_take isl_union_map
*res
, __isl_keep isl_union_map
*schedule
,
3947 __isl_keep isl_union_map
*shared_sched
,
3948 struct gpu_array_ref_group
*group
, int read
, int k
, int s
)
3953 isl_union_map
*access
;
3954 isl_map
*map
, *proj
, *access_map
;
3957 access
= group_access_relation(group
, read
, !read
);
3958 access
= isl_union_map_range_product(isl_union_map_copy(shared_sched
),
3961 if (isl_union_map_is_empty(access
)) {
3962 isl_union_map_free(access
);
3966 access
= isl_union_map_reverse(access
);
3967 access
= isl_union_map_apply_range(access
,
3968 isl_union_map_copy(schedule
));
3969 access_map
= isl_map_from_union_map(access
);
3971 space
= isl_space_copy(group
->array
->dim
);
3972 space
= isl_space_from_range(space
);
3973 space
= isl_space_add_dims(space
, isl_dim_in
, gen
->shared_len
);
3974 map
= isl_map_domain_map(isl_map_universe(space
));
3976 space
= isl_union_map_get_space(schedule
);
3977 pos
= group
->last_shared
+ 1 - gen
->tile_first
;
3980 else if (group
->private_bound
)
3983 val
= 1 + s
+ 1 + k
;
3984 proj
= insert_even(gen
, space
, pos
, val
);
3985 map
= isl_map_apply_range(map
, proj
);
3987 access_map
= isl_map_range_product(access_map
, map
);
3989 id
= isl_id_alloc(gen
->ctx
, read
? "read" : "write", group
);
3990 access_map
= isl_map_set_tuple_id(access_map
, isl_dim_in
, id
);
3992 res
= isl_union_map_add_map(res
, access_map
);
3994 n
= gen
->shared_len
- gen
->tile_first
;
3996 if (!group
->private_bound
)
3997 res
= add_sync_schedule(gen
, res
, schedule
,
3998 shared_sched
, n
, -1);
4002 if (pos
== n
&& group
->private_bound
)
4004 res
= add_sync_schedule(gen
, res
, schedule
, shared_sched
,
4011 /* Return a schedule for the shared tile loops based on the current
4012 * AST context schedule.
4014 * We create a "shared_sched" that maps the domains to the first
4015 * shared_len dimensions of the computed schedule, project out the
4016 * first tile_first dimensions (as these are already covered by
4017 * the host code) and insert "statement-level" dimensions at even
4018 * positions so that we can schedule copy blocks and synchronization
4019 * before/after each level.
4021 * In particular, copy blocks are inserted inside the innermost
4022 * level that affect the tile. For the copying to global memory,
4023 * those from private memory are scheduled before those from shared
4024 * memory such that synchronization can be inserted between the two
4025 * at the innermost level.
4026 * Synchronization is inserted at the innermost level before the
4027 * actual kernel code if there is any copying from global memory
4028 * to shared memory. It is inserted unconditionally at the innermost
4029 * level after the actual kernel code and the copying to global memory
4030 * from private memory (if any). Finally, it is inserted after
4031 * any copying to global memory, except at the outermost level
4032 * and at the innermost level if there is no copying from shared
4033 * memory. The copying from private memory is covered by the unconditional
4034 * synchronization at the innermost level.
4036 static __isl_give isl_union_map
*body_schedule(struct gpu_gen
*gen
,
4037 __isl_take isl_union_map
*schedule
)
4041 isl_union_map
*shared_sched
;
4042 isl_union_map
*sched
;
4043 isl_map
*proj
, *map
;
4046 shared_sched
= isl_union_map_copy(gen
->tiled_sched
);
4047 proj
= projection(isl_union_map_get_space(shared_sched
),
4048 gen
->tiled_len
, gen
->shared_len
);
4049 shared_sched
= isl_union_map_apply_range(shared_sched
,
4050 isl_union_map_from_map(proj
));
4051 space
= isl_union_map_get_space(shared_sched
);
4052 proj
= insert_even(gen
, space
, -1, 0);
4053 sched
= isl_union_map_apply_range(isl_union_map_copy(shared_sched
),
4054 isl_union_map_from_map(proj
));
4056 res
= isl_union_map_range_product(isl_union_map_copy(schedule
), sched
);
4059 for (i
= 0; i
< gen
->prog
->n_array
; ++i
)
4060 s
+= gen
->prog
->array
[i
].n_group
;
4063 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
4064 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
4066 for (j
= 0; j
< array
->n_group
; ++j
) {
4067 struct gpu_array_ref_group
*group
;
4069 group
= array
->groups
[j
];
4070 if (!group
->private_bound
&& !group
->shared_bound
)
4072 res
= add_group_schedule(gen
, res
, schedule
,
4073 shared_sched
, group
, 0, k
, s
);
4074 res
= add_group_schedule(gen
, res
, schedule
,
4075 shared_sched
, group
, 1, k
, s
);
4080 res
= add_sync_schedule(gen
, res
, schedule
, shared_sched
,
4081 gen
->shared_len
- gen
->tile_first
, 1 + s
);
4083 isl_union_map_free(shared_sched
);
4084 isl_union_map_free(schedule
);
4089 /* Generate code for "kernel" in the given "context".
4091 * We first generate code for the shared tile loops (T1T, T1P and T2)
4092 * in a context that includes the block ids.
4093 * Within each iteration of these loops an additional code generation
4094 * is performed (within create_kernel_leaf) for the rest of the schedule
4095 * in a context that includes the thread ids.
4097 static __isl_give isl_ast_node
*generate_kernel(struct gpu_gen
*gen
,
4098 __isl_keep isl_ast_build
*build
, __isl_keep isl_set
*host_domain
,
4099 __isl_keep isl_multi_pw_aff
*grid_size
)
4103 isl_id_list
*iterators
;
4104 isl_union_map
*schedule
;
4108 schedule
= isl_ast_build_get_schedule(build
);
4110 build
= isl_ast_build_copy(build
);
4111 build
= isl_ast_build_restrict(build
, isl_set_copy(host_domain
));
4112 space
= isl_ast_build_get_schedule_space(build
);
4113 set
= isl_set_universe(isl_space_copy(space
));
4114 set
= add_bounded_parameters_dynamic(set
, grid_size
, "b");
4115 build
= isl_ast_build_restrict(build
, set
);
4117 schedule
= body_schedule(gen
, schedule
);
4119 sched_len
= 2 * (gen
->shared_len
- gen
->tile_first
) + 1;
4121 build
= set_atomic_and_unroll(build
, space
, sched_len
);
4122 iterators
= generate_names(gen
->ctx
, sched_len
, "g");
4123 build
= isl_ast_build_set_iterators(build
, iterators
);
4124 build
= isl_ast_build_set_create_leaf(build
, &create_kernel_leaf
, gen
);
4125 tree
= isl_ast_build_ast_from_schedule(build
, schedule
);
4126 isl_ast_build_free(build
);
4131 /* Attach "id" to the given node.
4133 static __isl_give isl_ast_node
*attach_id(__isl_take isl_ast_node
*node
,
4134 __isl_keep isl_ast_build
*build
, void *user
)
4138 node
= isl_ast_node_set_annotation(node
, id
);
4143 /* Construct an AST node for performing a kernel launch and attach
4144 * the information about the kernel to that node.
4146 * The kernel AST has been constructed in the context of the range
4147 * of "schedule". In particular, the grid size has been computed
4148 * in the context. We therefore still need to make sure that these
4149 * constraints are expressed in the code. We do this by creating a schedule
4151 * kernel[] -> [S -> []]
4153 * where S is the schedule domain, i.e., the range of "schedule".
4154 * The AST generation will then create a single call surrounded by
4155 * all the condition in "S" that have not been expressed yet.
4157 * The kernel information is attached to this node in attach_id.
4159 static __isl_give isl_ast_node
*construct_launch(
4160 __isl_take isl_ast_build
*build
, __isl_take isl_union_map
*schedule
,
4161 __isl_take
struct ppcg_kernel
*kernel
)
4165 isl_union_set
*domain
;
4170 ctx
= isl_ast_build_get_ctx(build
);
4172 id
= isl_id_alloc(ctx
, NULL
, kernel
);
4173 id
= isl_id_set_free_user(id
, &ppcg_kernel_free
);
4175 domain
= isl_union_map_range(schedule
);
4176 set
= isl_set_from_union_set(domain
);
4177 map
= isl_map_from_domain(set
);
4178 map
= isl_map_from_range(isl_map_wrap(map
));
4179 map
= isl_map_set_tuple_name(map
, isl_dim_in
, "kernel");
4180 schedule
= isl_union_map_from_map(map
);
4182 build
= isl_ast_build_set_at_each_domain(build
, &attach_id
, id
);
4183 node
= isl_ast_build_ast_from_schedule(build
, schedule
);
4184 isl_ast_build_free(build
);
4189 /* This function is called for each leaf in the AST of the host code.
4190 * We first specialize the schedule to the site of the leaf, compute
4191 * the size of shared memory and then construct the body of host code
4192 * and the associated kernel.
4194 * The necessary information for printing the kernel launch is
4195 * stored in a struct ppcg_kernel and attached to the leaf node
4196 * created to represent the launch.
4198 static __isl_give isl_ast_node
*create_host_leaf(
4199 __isl_take isl_ast_build
*build
, void *user
)
4201 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
4204 struct ppcg_kernel
*kernel
;
4205 isl_set
*host_domain
;
4206 isl_union_map
*schedule
;
4207 isl_union_map
*local_sched
;
4208 isl_union_map
*access
;
4209 isl_union_set
*domain
;
4212 schedule
= isl_ast_build_get_schedule(build
);
4214 isl_union_map_foreach_map(schedule
, &extract_tile_len
, gen
);
4217 domain
= isl_union_map_domain(isl_union_map_copy(schedule
));
4219 local_sched
= isl_union_map_copy(gen
->sched
);
4220 local_sched
= isl_union_map_intersect_domain(local_sched
, domain
);
4221 access
= isl_union_map_union(isl_union_map_copy(gen
->prog
->read
),
4222 isl_union_map_copy(gen
->prog
->write
));
4223 access
= isl_union_map_apply_domain(access
,
4224 isl_union_map_copy(local_sched
));
4226 gen
->tiled_sched
= tile_schedule(gen
, local_sched
);
4227 gen
->tiled_sched
= parametrize_tiled_schedule(gen
, gen
->tiled_sched
);
4228 gen
->tiled_sched
= scale_tile_loops(gen
, gen
->tiled_sched
);
4230 kernel
= gen
->kernel
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel
);
4234 kernel
->id
= gen
->kernel_id
++;
4235 kernel
->n_block
= gen
->n_block
;
4236 for (i
= 0; i
< gen
->n_block
; ++i
)
4237 kernel
->block_dim
[i
] = gen
->block_dim
[i
];
4238 kernel
->n_grid
= gen
->n_grid
;
4239 for (i
= 0; i
< gen
->n_grid
; ++i
)
4240 kernel
->grid_dim
[i
] = gen
->grid_dim
[i
];
4241 kernel
->context
= isl_union_map_params(isl_union_map_copy(schedule
));
4242 kernel
->grid_size
= extract_grid_size(gen
, kernel
);
4243 kernel
->arrays
= isl_union_map_range(access
);
4244 kernel
->space
= isl_ast_build_get_schedule_space(build
);
4246 gen
->local_sched
= isl_union_map_copy(gen
->tiled_sched
);
4248 gen
->local_sched
= thread_tile_schedule(gen
, gen
->local_sched
);
4249 gen
->local_sched
= scale_thread_tile_loops(gen
, gen
->local_sched
);
4251 gen
->private_access
= NULL
;
4252 compute_shared_sched(gen
);
4253 gen
->privatization
= compute_privatization(gen
);
4254 group_references(gen
);
4255 compute_private_size(gen
);
4256 check_shared_memory_bound(gen
);
4257 host_domain
= isl_set_from_union_set(isl_union_map_range(
4258 isl_union_map_copy(schedule
)));
4259 localize_bounds(gen
, kernel
, host_domain
);
4261 gen
->local_sched
= interchange_for_unroll(gen
, gen
->local_sched
);
4263 kernel
->tree
= generate_kernel(gen
, build
, host_domain
,
4265 create_kernel_vars(gen
, kernel
);
4267 free_local_array_info(gen
);
4268 isl_map_free(gen
->privatization
);
4269 isl_union_map_free(gen
->private_access
);
4270 isl_union_map_free(gen
->local_sched
);
4271 isl_union_map_free(gen
->tiled_sched
);
4272 isl_union_map_free(gen
->shared_sched
);
4273 isl_union_map_free(gen
->shared_proj
);
4274 isl_set_free(host_domain
);
4275 free(gen
->tile_size
);
4277 node
= construct_launch(build
, schedule
, kernel
);
4281 isl_union_map_free(schedule
);
4285 /* Use isl to generate code for the outer gen->tile_first loops
4286 * of the global schedule in gen->sched, resulting in the host code.
4287 * Within each iteration of this partial schedule, i.e., for each kernel
4288 * launch, create_host_leaf takes care of generating the kernel code.
4290 static __isl_give isl_ast_node
*generate_host_code(struct gpu_gen
*gen
)
4292 isl_ast_build
*build
;
4294 isl_union_map
*sched
;
4296 isl_id_list
*iterators
;
4298 sched
= isl_union_map_copy(gen
->sched
);
4299 proj
= projection(isl_union_map_get_space(sched
),
4300 gen
->untiled_len
, gen
->tile_first
);
4301 sched
= isl_union_map_apply_range(sched
, isl_union_map_from_map(proj
));
4303 isl_options_set_ast_build_group_coscheduled(gen
->ctx
, 1);
4304 build
= isl_ast_build_from_context(isl_set_copy(gen
->prog
->context
));
4305 iterators
= generate_names(gen
->ctx
, gen
->tile_first
, "h");
4306 build
= isl_ast_build_set_iterators(build
, iterators
);
4307 build
= isl_ast_build_set_create_leaf(build
, &create_host_leaf
, gen
);
4308 tree
= isl_ast_build_ast_from_schedule(build
, sched
);
4309 isl_ast_build_free(build
);
4314 __isl_give isl_set
*add_context_from_str(__isl_take isl_set
*set
,
4323 ctx
= isl_set_get_ctx(set
);
4324 context
= isl_set_read_from_str(ctx
, str
);
4325 context
= isl_set_align_params(context
, isl_set_get_space(set
));
4326 set
= isl_set_intersect(set
, context
);
4331 __isl_give isl_union_map
*extract_sizes_from_str(isl_ctx
*ctx
, const char *str
)
4335 return isl_union_map_read_from_str(ctx
, str
);
4338 /* Information about the outermost tilable bands in the forest of bands.
4340 * tile_len and n_parallel are only sets on band_info structures
4341 * that correspond to outermost bands. For other bands (in particular,
4342 * ancestors of the outermost bands), n_parallal is set to 0.
4344 * prefix is the (padded) schedule leading up to the outermost tilable bands.
4346 * tile_first is the number of schedule dimensions in prefix.
4348 * suffix is the schedule of the outermost tilable bands and their descendants.
4351 struct gpu_gen
*gen
;
4355 isl_union_map
*prefix
;
4356 isl_union_map
*suffix
;
4359 /* Set tile_len and n_parallel of the statement to that of
4360 * their outermost band, recorded in the band_info.
4362 static int set_stmt_tile_len(__isl_take isl_map
*map
, void *user
)
4364 struct band_info
*info
= user
;
4365 struct gpu_stmt
*stmt
;
4368 id
= isl_map_get_tuple_id(map
, isl_dim_in
);
4369 stmt
= find_stmt(info
->gen
->prog
, id
);
4372 stmt
->tile_len
= info
->tile_len
;
4373 stmt
->n_parallel
= info
->n_parallel
;
4380 static void list_select_outer_band(struct gpu_gen
*gen
,
4381 __isl_take isl_band_list
*list
, int pos
, struct band_info
*list_info
);
4383 /* Check if this band has any parallel loops. If so, take it as
4384 * the outermost tilable band. If not, continue looking for the
4385 * outermost tilable band in the children of the current band.
4387 static void band_select_outer_band(struct gpu_gen
*gen
,
4388 __isl_take isl_band
*band
, int pos
, struct band_info
*info
)
4390 int n
= isl_band_n_member(band
);
4393 for (n_parallel
= 0; n_parallel
< n
; ++n_parallel
)
4394 if (!isl_band_member_is_zero_distance(band
, n_parallel
))
4397 info
->n_parallel
= n_parallel
;
4400 info
->tile_first
= pos
;
4402 info
->prefix
= isl_band_get_prefix_schedule(band
);
4403 info
->suffix
= isl_union_map_flat_range_product(
4404 isl_band_get_partial_schedule(band
),
4405 isl_band_get_suffix_schedule(band
));
4406 isl_union_map_foreach_map(info
->prefix
,
4407 &set_stmt_tile_len
, info
);
4408 } else if (isl_band_has_children(band
)) {
4409 isl_band_list
*children
;
4410 children
= isl_band_get_children(band
);
4411 list_select_outer_band(gen
, children
, pos
+ n
, info
);
4414 info
->tile_first
= pos
+ n
;
4416 info
->prefix
= isl_union_map_flat_range_product(
4417 isl_band_get_prefix_schedule(band
),
4418 isl_band_get_partial_schedule(band
));
4419 info
->suffix
= isl_band_get_suffix_schedule(band
);
4420 isl_union_map_foreach_map(info
->prefix
,
4421 &set_stmt_tile_len
, info
);
4424 isl_band_free(band
);
4427 /* Comparison function that returns a non-zero value for band_infos
4428 * with different tile_len fields or different n_parallel fields.
4430 static int cmp_band(const void *p1
, const void *p2
)
4432 const struct band_info
*info1
= p1
;
4433 const struct band_info
*info2
= p2
;
4435 if (info1
->tile_len
!= info2
->tile_len
)
4436 return info1
->tile_len
- info2
->tile_len
;
4438 return info1
->n_parallel
- info2
->n_parallel
;
4441 /* Extend "umap" with coordinates with fixed value "val"
4442 * to a total length of "dst_len", assuming the original dimension is "src_len".
4444 static __isl_give isl_union_map
*extend_range(
4445 __isl_take isl_union_map
*umap
, int src_len
, int dst_len
, int val
)
4451 dim
= isl_union_map_get_space(umap
);
4452 map
= isl_map_reverse(projection(dim
, dst_len
, src_len
));
4453 for (i
= src_len
; i
< dst_len
; ++i
)
4454 map
= isl_map_fix_si(map
, isl_dim_out
, i
, val
);
4456 umap
= isl_union_map_apply_range(umap
, isl_union_map_from_map(map
));
4461 /* Group bands with the same values for tile_len and n_parallel.
4462 * The prefix schedule is then extended with a fixed coordinate that
4463 * is different for each such group.
4464 * Note that the actual values for this coordinate are not important.
4465 * The bands have already been effectively separated at a higher level
4466 * or they are independent and may be executed in parallel.
4467 * The list of band_info has been sorted before this functions is called.
4469 static void separate_bands(struct band_info
*info
, int n
)
4474 for (i
= 0; i
< n
; ++i
) {
4475 int l
= info
[i
].tile_first
;
4478 (info
[i
].tile_len
!= info
[i
- 1].tile_len
||
4479 info
[i
].n_parallel
!= info
[i
- 1].n_parallel
))
4482 info
[i
].prefix
= extend_range(info
[i
].prefix
,
4484 info
[i
].tile_first
= l
+ 1;
4488 /* Select the outermost bands in the elements of the list, align
4489 * their prefix schedules, separate bands with different values
4490 * for tile_len and/or n_parallel and then combine the resulting
4491 * prefix and suffix schedules into a single pair of prefix and
4492 * suffix schedules for the entire list.
4494 static void list_select_outer_band(struct gpu_gen
*gen
,
4495 __isl_take isl_band_list
*list
, int pos
, struct band_info
*list_info
)
4499 int n
= isl_band_list_n_band(list
);
4500 isl_ctx
*ctx
= isl_band_list_get_ctx(list
);
4501 struct band_info
*info
;
4503 isl_union_map
*prefix
;
4504 isl_union_map
*suffix
;
4507 info
= isl_calloc_array(ctx
, struct band_info
, n
);
4511 for (i
= 0; i
< n
; ++i
) {
4512 band
= isl_band_list_get_band(list
, i
);
4513 band_select_outer_band(gen
, band
, pos
, &info
[i
]);
4514 if (info
[i
].tile_first
> max_tile_first
)
4515 max_tile_first
= info
[i
].tile_first
;
4518 for (i
= 0; i
< n
; ++i
) {
4519 if (info
[i
].tile_first
== max_tile_first
)
4521 info
[i
].prefix
= extend_range(info
[i
].prefix
,
4522 info
[i
].tile_first
, max_tile_first
, 0);
4523 info
[i
].tile_first
= max_tile_first
;
4526 qsort(info
, n
, sizeof(struct band_info
), &cmp_band
);
4528 for (i
= 0; i
< n
- 1; ++i
)
4529 if (info
[i
].tile_len
!= info
[i
+ 1].tile_len
||
4530 info
[i
].n_parallel
!= info
[i
+ 1].n_parallel
)
4534 separate_bands(info
, n
);
4536 prefix
= info
[0].prefix
;
4537 suffix
= info
[0].suffix
;
4539 for (i
= 1; i
< n
; ++i
) {
4540 prefix
= isl_union_map_union(prefix
, info
[i
].prefix
);
4541 suffix
= isl_union_map_union(suffix
, info
[i
].suffix
);
4544 list_info
->tile_first
= info
[0].tile_first
;
4545 list_info
->tile_len
= -1;
4546 list_info
->prefix
= prefix
;
4547 list_info
->suffix
= suffix
;
4549 isl_band_list_free(list
);
4553 /* Select the outermost tilable band that (by construction)
4554 * has at least one parallel loop.
4555 * The starting position of the aligned band is stored in the pair
4557 * The sizes and number of parallel loops may be different in different
4558 * parts of the band forest and are therefore stored in the gpu_stmts.
4560 * Return the complete schedule, with the tilable bands aligned
4561 * at gen->tile_first and padded with zero, if needed.
4563 static __isl_give isl_union_map
*select_outer_tilable_band(struct gpu_gen
*gen
,
4564 __isl_keep isl_schedule
*schedule
)
4566 isl_band_list
*list
;
4567 struct band_info info
;
4569 gen
->n_parallel
= 0;
4572 list
= isl_schedule_get_band_forest(schedule
);
4574 list_select_outer_band(gen
, list
, 0, &info
);
4576 gen
->tile_first
= info
.tile_first
;
4577 info
.suffix
= align_range(info
.suffix
);
4579 return isl_union_map_flat_range_product(info
.prefix
, info
.suffix
);
4582 /* Set gen->untiled_len to the number of scheduling dimensions
4583 * for the schedule of the first domain.
4584 * We assume here that this number is the same for all domains.
4586 static int set_untiled_len(__isl_take isl_map
*map
, void *user
)
4588 unsigned *untiled_len
= user
;
4590 *untiled_len
= isl_map_dim(map
, isl_dim_out
);
4596 /* Compute an appropriate schedule based on the accesses in
4597 * gen->read and gen->write.
4599 * We use the dependences in gen->prog->scop to compute
4600 * a schedule that has a parallel loop in each tilable band.
4601 * Finally, we select the outermost tilable band.
4603 static void compute_schedule(struct gpu_gen
*gen
)
4605 isl_union_set
*domain
;
4606 isl_union_map
*dep_raw
, *dep
;
4607 isl_union_map
*uninitialized
;
4608 isl_union_map
*sched
;
4609 isl_schedule
*schedule
;
4611 dep_raw
= isl_union_map_copy(gen
->prog
->scop
->dep_flow
);
4612 uninitialized
= isl_union_map_copy(gen
->prog
->scop
->live_in
);
4614 gen
->prog
->copy_in
= isl_union_map_range(uninitialized
);
4616 dep
= isl_union_map_copy(gen
->prog
->scop
->dep_false
);
4617 dep
= isl_union_map_union(dep
, dep_raw
);
4618 dep
= isl_union_map_coalesce(dep
);
4620 domain
= isl_union_set_copy(gen
->prog
->scop
->domain
);
4621 domain
= isl_union_set_intersect_params(domain
,
4622 isl_set_copy(gen
->prog
->scop
->context
));
4623 schedule
= isl_union_set_compute_schedule(isl_union_set_copy(domain
),
4624 isl_union_map_copy(dep
), dep
);
4626 sched
= select_outer_tilable_band(gen
, schedule
);
4628 isl_union_map_foreach_map(sched
, &set_untiled_len
, &gen
->untiled_len
);
4629 sched
= isl_union_map_intersect_domain(sched
, domain
);
4632 isl_schedule_free(schedule
);
4635 static struct gpu_stmt_access
**expr_extract_access(struct pet_expr
*expr
,
4636 struct gpu_stmt_access
**next_access
)
4638 struct gpu_stmt_access
*access
;
4639 isl_ctx
*ctx
= isl_map_get_ctx(expr
->acc
.access
);
4641 access
= isl_alloc_type(ctx
, struct gpu_stmt_access
);
4643 access
->next
= NULL
;
4644 access
->read
= expr
->acc
.read
;
4645 access
->write
= expr
->acc
.write
;
4646 access
->access
= isl_map_copy(expr
->acc
.access
);
4648 *next_access
= access
;
4649 next_access
= &(*next_access
)->next
;
4653 static struct gpu_stmt_access
**expr_extract_accesses(struct pet_expr
*expr
,
4654 struct gpu_stmt_access
**next_access
)
4658 for (i
= 0; i
< expr
->n_arg
; ++i
)
4659 next_access
= expr_extract_accesses(expr
->args
[i
],
4662 if (expr
->type
== pet_expr_access
)
4663 next_access
= expr_extract_access(expr
, next_access
);
4668 static void pet_stmt_extract_accesses(struct gpu_stmt
*stmt
)
4670 struct gpu_stmt_access
**next_access
= &stmt
->accesses
;
4672 stmt
->accesses
= NULL
;
4673 expr_extract_accesses(stmt
->body
, next_access
);
4676 /* Return an array of gpu_stmt representing the statements in "scop".
4678 static struct gpu_stmt
*extract_stmts(isl_ctx
*ctx
, struct ppcg_scop
*scop
,
4679 __isl_keep isl_set
*context
)
4682 struct gpu_stmt
*stmts
;
4684 stmts
= isl_calloc_array(ctx
, struct gpu_stmt
, scop
->n_stmt
);
4687 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
4688 struct gpu_stmt
*s
= &stmts
[i
];
4690 s
->id
= isl_set_get_tuple_id(scop
->stmts
[i
]->domain
);
4691 s
->body
= scop
->stmts
[i
]->body
;
4692 pet_stmt_extract_accesses(s
);
4698 /* Replace the scop in the "input" file by equivalent code
4699 * that uses the GPU. "scop" is assumed to correspond to this scop.
4701 * We first compute a schedule that respects the dependences
4702 * of the original program and select the outermost band
4703 * of tilable dimensions that has at least one parallel loop.
4704 * We then have three blocks of dimensions
4708 * The tilable band "B" is first tiled according to "tile" sizes, resulting
4713 * For each iteration of the T loop and for each array, we compute
4714 * the array elements accessed by that iteration, construct a rectangular
4715 * box around it and shift it to the origin. The result is used
4716 * as shared memory for the array.
4718 * We then split off at most 2 parallel loops from the T loops and
4719 * at most 3 parallel loops from the P loops
4723 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
4724 * according to "grid"/"block" sizes.
4726 * H T1T T1P T2 P1T P1P P2 G
4728 * Finally, the T1P and P1P iterators are equated to the block and
4729 * thread dimensions respectively and so are effectively removed.
4730 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
4731 * are run on the GPU.
4733 * Code is generated in three stages. We first generate code for the
4734 * host (the H loops), with iterators h%d. Then, for each leaf node
4735 * of the resulting AST, we generate code for the shared loops (up to
4736 * and including T2), with iterators g%d and after equating the H loops
4737 * to h%d parameters and the T1P loops to the block dimensions.
4738 * Finally, we generate code for the remaining loops in a similar fashion.
4740 __isl_give isl_ast_node
*generate_gpu(isl_ctx
*ctx
, struct gpu_prog
*prog
,
4741 struct ppcg_options
*options
)
4743 isl_union_map
*sched
;
4752 gen
.sizes
= extract_sizes_from_str(ctx
, options
->sizes
);
4753 gen
.options
= options
;
4755 compute_schedule(&gen
);
4758 tree
= generate_host_code(&gen
);
4760 clear_gpu_gen(&gen
);
4765 struct gpu_prog
*gpu_prog_alloc(isl_ctx
*ctx
, struct ppcg_scop
*scop
)
4767 struct gpu_prog
*prog
;
4772 prog
= isl_calloc_type(ctx
, struct gpu_prog
);
4777 prog
->context
= isl_set_copy(scop
->context
);
4778 prog
->n_stmts
= scop
->n_stmt
;
4779 prog
->stmts
= extract_stmts(ctx
, scop
, prog
->context
);
4780 prog
->read
= isl_union_map_copy(scop
->reads
);
4781 prog
->write
= isl_union_map_copy(scop
->writes
);
4783 collect_array_info(prog
);
4788 void gpu_prog_free(struct gpu_prog
*prog
)
4792 free_array_info(prog
);
4793 free_stmts(prog
->stmts
, prog
->n_stmts
);
4794 isl_union_set_free(prog
->copy_in
);
4795 isl_union_map_free(prog
->read
);
4796 isl_union_map_free(prog
->write
);
4797 isl_set_free(prog
->context
);