Remove unused variable forgotten to remove
[ppcg.git] / gpu.c
blobd56c607e620ef82a6d90aef0ee2951ade9e93b70
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
19 #include <isl/aff.h>
20 #include <isl/ilp.h>
21 #include <isl/flow.h>
22 #include <isl/schedule.h>
23 #include <isl/schedule_node.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
27 #include "cpu.h"
28 #include "gpu.h"
29 #include "gpu_array_tile.h"
30 #include "gpu_group.h"
31 #include "gpu_tree.h"
32 #include "schedule.h"
33 #include "ppcg_options.h"
34 #include "print.h"
35 #include "util.h"
37 struct gpu_array_info;
39 /* Return the name of the outer array (of structs) accessed by "access".
41 static const char *get_outer_array_name(__isl_keep isl_map *access)
43 isl_space *space;
44 const char *name;
46 space = isl_space_range(isl_map_get_space(access));
47 while (space && isl_space_is_wrapping(space))
48 space = isl_space_domain(isl_space_unwrap(space));
49 name = isl_space_get_tuple_name(space, isl_dim_set);
50 isl_space_free(space);
52 return name;
55 /* Collect all references to the given array and store pointers to them
56 * in array->refs.
58 static void collect_references(struct gpu_prog *prog,
59 struct gpu_array_info *array)
61 int i;
62 int n;
64 n = 0;
65 for (i = 0; i < prog->n_stmts; ++i) {
66 struct gpu_stmt *stmt = &prog->stmts[i];
67 struct gpu_stmt_access *access;
69 for (access = stmt->accesses; access; access = access->next) {
70 const char *name;
71 name = get_outer_array_name(access->access);
72 if (name && !strcmp(array->name, name))
73 n++;
77 array->n_ref = n;
78 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
79 assert(array->refs);
81 n = 0;
82 for (i = 0; i < prog->n_stmts; ++i) {
83 struct gpu_stmt *stmt = &prog->stmts[i];
84 struct gpu_stmt_access *access;
86 for (access = stmt->accesses; access; access = access->next) {
87 const char *name;
88 name = get_outer_array_name(access->access);
89 if (!name || strcmp(array->name, name))
90 continue;
92 array->refs[n++] = access;
97 /* Compute and return the extent of "array", taking into account the set of
98 * accessed elements.
100 * In particular, the extent in the outer dimension is taken
101 * from "accessed", while the extents in the remaining dimensions
102 * are taken from array->extent.
104 * The extent in the outer dimension cannot be taken from array->extent
105 * because that may be unbounded. Furthermore, even if it is bounded,
106 * it may be larger than the piece of the array that is being accessed.
108 static __isl_give isl_set *compute_extent(struct pet_array *array,
109 __isl_keep isl_set *accessed)
111 int n_index;
112 isl_id *id;
113 isl_set *outer;
114 isl_set *extent;
116 extent = isl_set_copy(array->extent);
118 n_index = isl_set_dim(accessed, isl_dim_set);
119 if (n_index == 0)
120 return extent;
122 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
123 outer = isl_set_copy(accessed);
124 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
125 extent = isl_set_flat_product(outer, extent);
126 id = isl_set_get_tuple_id(accessed);
127 extent = isl_set_set_tuple_id(extent, id);
129 return extent;
132 /* Is the array "array" being extracted a read-only scalar?
134 * That is, is "array" a scalar that is never possibly written to.
135 * An array containing structures is never considered to be a scalar.
137 static int is_read_only_scalar(struct gpu_array_info *array,
138 struct gpu_prog *prog)
140 isl_set *space;
141 isl_union_map *write;
142 int empty;
144 if (array->has_compound_element)
145 return 0;
146 if (array->n_index != 0)
147 return 0;
149 write = isl_union_map_copy(prog->may_write);
150 space = isl_set_universe(isl_space_copy(array->space));
151 write = isl_union_map_intersect_range(write,
152 isl_union_set_from_set(space));
153 empty = isl_union_map_is_empty(write);
154 isl_union_map_free(write);
156 return empty;
159 /* Compute bounds on the host array "pa" based on the corresponding
160 * accessed elements in "arrays"
161 * and collect all references to the array.
162 * Store the results in "info".
164 * If the array is zero-dimensional and does not contain structures,
165 * i.e., if the array is a scalar, we check whether it is read-only.
166 * We also check whether the array is accessed at all.
168 static int extract_array_info(struct gpu_prog *prog,
169 struct gpu_array_info *info, struct pet_array *pa,
170 __isl_keep isl_union_set *arrays)
172 int empty;
173 const char *name;
174 int n_index;
175 isl_multi_pw_aff *bounds;
176 isl_set *accessed, *extent;
178 n_index = isl_set_dim(pa->extent, isl_dim_set);
179 name = isl_set_get_tuple_name(pa->extent);
181 info->space = isl_set_get_space(pa->extent);
182 info->name = strdup(name);
183 info->n_index = n_index;
184 info->linearize = prog->scop->options->linearize_device_arrays;
186 info->type = strdup(pa->element_type);
187 info->size = pa->element_size;
188 info->local = pa->declared && !pa->exposed;
189 info->has_compound_element = pa->element_is_record;
190 info->read_only_scalar = is_read_only_scalar(info, prog);
192 accessed = isl_union_set_extract_set(arrays,
193 isl_space_copy(info->space));
194 empty = isl_set_is_empty(accessed);
195 extent = compute_extent(pa, accessed);
196 isl_set_free(accessed);
197 info->extent = extent;
198 if (empty < 0)
199 return -1;
200 info->accessed = !empty;
201 bounds = ppcg_size_from_extent(isl_set_copy(extent));
202 bounds = isl_multi_pw_aff_gist(bounds, isl_set_copy(prog->context));
203 if (!bounds)
204 return -1;
205 if (!isl_multi_pw_aff_is_cst(bounds))
206 info->linearize = 1;
207 info->bound = bounds;
209 collect_references(prog, info);
211 return 0;
214 /* Remove independence from the order constraints "order" on array "array".
215 * Since the pairs of iterations in the filter relation of an independence
216 * are guaranteed to be completely independent by the user, there is
217 * no need to ensure that live ranges are ordered along thong pairs.
218 * We make an exception for local variables, though, as the independence
219 * guarantee does not apply to those.
221 * The order constraints are used in two places.
222 * Those on scalars are used in check_scalar_live_ranges to check if
223 * we need to force the scalar to be private. Any non-local scalar
224 * should not be forced scalar if it only appears in independent loops.
225 * Those on non-scalars are added to the coincidence constraints
226 * in compute_schedule because we do not support any array expansion.
227 * Accesses to non-local arrays should not prevent a loop from being
228 * considered coincident so we should indeed remove those constraints
229 * from the order constraints.
231 static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
232 struct gpu_array_info *array, __isl_take isl_union_map *order)
234 int i;
236 for (i = 0; i < prog->scop->pet->n_independence; ++i) {
237 struct pet_independence *pi = prog->scop->pet->independences[i];
238 if (isl_union_set_contains(pi->local, array->space))
239 continue;
241 order = isl_union_map_subtract(order,
242 isl_union_map_copy(pi->filter));
245 return order;
248 /* For each array in "prog", store the (untagged) order dependences
249 * derived from the array in array->dep_order.
250 * In particular, consider all references that access the given array
251 * and take the order dependences that have one of these references
252 * as source. (Since an order dependence relates two references to
253 * the same array, the target of these order dependences will also
254 * be one of these references.)
255 * Additionally, store the union of these array->dep_order relations
256 * for all non-scalar arrays in prog->array_order.
258 void collect_order_dependences(struct gpu_prog *prog)
260 int i;
261 isl_space *space;
262 isl_union_map *accesses;
264 space = isl_union_map_get_space(prog->read);
265 prog->array_order = isl_union_map_empty(space);
267 accesses = isl_union_map_copy(prog->scop->tagged_reads);
268 accesses = isl_union_map_union(accesses,
269 isl_union_map_copy(prog->scop->tagged_may_writes));
270 accesses = isl_union_map_universe(accesses);
271 accesses = isl_union_map_apply_range(accesses,
272 isl_union_map_copy(prog->to_outer));
274 for (i = 0; i < prog->n_array; ++i) {
275 struct gpu_array_info *array = &prog->array[i];
276 isl_set *set;
277 isl_union_set *uset;
278 isl_union_map *order;
280 set = isl_set_universe(isl_space_copy(array->space));
281 uset = isl_union_set_from_set(set);
282 uset = isl_union_map_domain(
283 isl_union_map_intersect_range(isl_union_map_copy(accesses),
284 uset));
285 order = isl_union_map_copy(prog->scop->tagged_dep_order);
286 order = isl_union_map_intersect_domain(order, uset);
287 order = isl_union_map_zip(order);
288 order = isl_union_set_unwrap(isl_union_map_domain(order));
289 order = remove_independences(prog, array, order);
290 array->dep_order = order;
292 if (gpu_array_is_scalar(array) && !array->has_compound_element)
293 continue;
295 prog->array_order = isl_union_map_union(prog->array_order,
296 isl_union_map_copy(array->dep_order));
299 isl_union_map_free(accesses);
302 /* Construct a gpu_array_info for each array referenced by prog->scop and
303 * collect them in prog->array.
305 * The sizes are based on the extents and the set of possibly accessed
306 * elements by "prog".
307 * If there are any member accesses involved, then they are first mapped
308 * to the outer arrays of structs.
310 * If we are allowing live range reordering, then also set
311 * the dep_order field. Otherwise leave it NULL.
313 static int collect_array_info(struct gpu_prog *prog)
315 int i;
316 int r = 0;
317 isl_union_set *arrays;
319 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
320 arrays = isl_union_set_union(arrays,
321 isl_union_map_range(isl_union_map_copy(prog->may_write)));
323 arrays = isl_union_set_apply(arrays,
324 isl_union_map_copy(prog->to_outer));
326 arrays = isl_union_set_coalesce(arrays);
328 prog->n_array = prog->scop->pet->n_array;
329 prog->array = isl_calloc_array(prog->ctx,
330 struct gpu_array_info, prog->n_array);
331 assert(prog->array);
332 for (i = 0; i < prog->scop->pet->n_array; ++i)
333 if (extract_array_info(prog, &prog->array[i],
334 prog->scop->pet->arrays[i], arrays) < 0)
335 r = -1;
337 isl_union_set_free(arrays);
339 if (prog->scop->options->live_range_reordering)
340 collect_order_dependences(prog);
342 return r;
345 static void free_array_info(struct gpu_prog *prog)
347 int i;
349 for (i = 0; i < prog->n_array; ++i) {
350 free(prog->array[i].type);
351 free(prog->array[i].name);
352 isl_multi_pw_aff_free(prog->array[i].bound);
353 isl_ast_expr_free(prog->array[i].bound_expr);
354 isl_space_free(prog->array[i].space);
355 isl_set_free(prog->array[i].extent);
356 isl_ast_expr_free(prog->array[i].declared_size);
357 free(prog->array[i].refs);
358 isl_union_map_free(prog->array[i].dep_order);
360 free(prog->array);
363 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
364 * as an array or through a pointer reference, but as a single data element.
365 * At the moment, scalars are represented as zero-dimensional arrays.
366 * Note that the single data element may be an entire structure.
368 int gpu_array_is_scalar(struct gpu_array_info *array)
370 return array->n_index == 0;
373 /* Is "array" a read-only scalar?
375 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
377 return array->read_only_scalar;
380 /* Does "array" need to be allocated on the device?
381 * If it is a read-only scalar, then it will be passed as an argument
382 * to the kernel and therefore does not require any allocation.
383 * If this device memory is not accessed at all, then it does not
384 * need to be allocated either.
386 int gpu_array_requires_device_allocation(struct gpu_array_info *array)
388 if (gpu_array_is_read_only_scalar(array))
389 return 0;
390 if (!array->global)
391 return 0;
392 return 1;
395 /* Return the set of parameter values for which the array has a positive
396 * size in all dimensions.
397 * If the sizes are only valid for some parameter values, then those
398 * constraints are also taken into account.
400 __isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
402 int i;
403 isl_space *space;
404 isl_set *guard;
406 if (!array)
407 return NULL;
409 space = isl_space_params(isl_space_copy(array->space));
410 guard = isl_set_universe(space);
412 for (i = 0; i < array->n_index; ++i) {
413 isl_pw_aff *bound;
414 isl_set *guard_i, *zero;
416 bound = isl_multi_pw_aff_get_pw_aff(array->bound, i);
417 guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
418 zero = isl_pw_aff_zero_set(bound);
419 guard_i = isl_set_subtract(guard_i, zero);
420 guard = isl_set_intersect(guard, guard_i);
423 return guard;
426 /* Internal data structure for extract_size_of_type.
427 * "type" specifies the name of the space that we want to extract.
428 * "res" is used to store the subset of that space.
430 struct ppcg_extract_size_data {
431 const char *type;
432 isl_set *res;
435 /* This function is called for each set in a union_set.
436 * If the name of the set matches data->type, we store the
437 * set in data->res.
439 static isl_stat extract_size_of_type(__isl_take isl_set *size, void *user)
441 struct ppcg_extract_size_data *data = user;
442 const char *name;
444 name = isl_set_get_tuple_name(size);
445 if (name && !strcmp(name, data->type)) {
446 data->res = size;
447 return isl_stat_error;
450 isl_set_free(size);
451 return isl_stat_ok;
454 /* Given a union map { kernel[i] -> *[...] },
455 * return the range in the space called "type" for the kernel with
456 * sequence number "id".
458 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
459 const char *type, int id)
461 isl_space *space;
462 isl_set *dom;
463 isl_union_set *local_sizes;
464 struct ppcg_extract_size_data data = { type, NULL };
466 if (!sizes)
467 return NULL;
469 space = isl_union_map_get_space(sizes);
470 space = isl_space_set_from_params(space);
471 space = isl_space_add_dims(space, isl_dim_set, 1);
472 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
473 dom = isl_set_universe(space);
474 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
476 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
477 isl_union_map_copy(sizes));
478 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
479 isl_union_set_free(local_sizes);
480 return data.res;
483 /* Given a singleton set, extract the first (at most *len) elements
484 * of the single integer tuple into *sizes and update *len if needed.
486 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
488 int i;
489 int dim;
491 if (!set)
492 return;
494 dim = isl_set_dim(set, isl_dim_set);
495 if (dim < *len)
496 *len = dim;
498 for (i = 0; i < *len; ++i) {
499 isl_val *v;
501 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
502 assert(v);
504 sizes[i] = isl_val_get_num_si(v);
505 isl_val_free(v);
508 isl_set_free(set);
511 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
512 * if the option debug->dump_sizes is set.
514 static void set_used_sizes(struct gpu_gen *gen, const char *type, int id,
515 int *sizes, int len)
517 int i;
518 isl_space *space;
519 isl_map *map;
521 if (!gen->options->debug->dump_sizes)
522 return;
524 space = isl_union_map_get_space(gen->used_sizes);
525 space = isl_space_set_from_params(space);
526 space = isl_space_add_dims(space, isl_dim_set, 1);
527 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
528 space = isl_space_from_domain(space);
529 space = isl_space_add_dims(space, isl_dim_out, len);
530 space = isl_space_set_tuple_name(space, isl_dim_out, type);
532 map = isl_map_universe(space);
533 map = isl_map_fix_si(map, isl_dim_in, 0, id);
534 for (i = 0; i < len; ++i)
535 map = isl_map_fix_si(map, isl_dim_out, i, sizes[i]);
537 gen->used_sizes = isl_union_map_add_map(gen->used_sizes, map);
540 /* Extract user specified "tile" sizes from the "sizes" command line option,
541 * defaulting to option->tile_size in each dimension.
542 * *tile_len contains the maximum number of tile sizes needed.
543 * Update *tile_len to the number of specified tile sizes, if any, and
544 * return a pointer to the tile sizes (or NULL on error).
545 * Add the effectively used sizes to gen->used_sizes.
547 static int *read_tile_sizes(struct gpu_gen *gen, int *tile_len)
549 int n;
550 int *tile_size;
551 isl_set *size;
553 tile_size = isl_alloc_array(gen->ctx, int, *tile_len);
554 if (!tile_size)
555 return NULL;
556 for (n = 0; n < *tile_len; ++n)
557 tile_size[n] = gen->options->tile_size;
559 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
560 read_sizes_from_set(size, tile_size, tile_len);
561 set_used_sizes(gen, "tile", gen->kernel_id, tile_size, *tile_len);
563 return tile_size;
566 /* Extract user specified "block" sizes from the "sizes" command line option,
567 * after filling in some potentially useful defaults.
569 static void read_block_sizes(struct ppcg_kernel *kernel,
570 __isl_keep isl_union_map *sizes)
572 isl_set *size;
574 if (kernel->n_block > 3)
575 kernel->n_block = 3;
576 switch (kernel->n_block) {
577 case 1:
578 kernel->block_dim[0] = 512;
579 break;
580 case 2:
581 kernel->block_dim[0] = 32;
582 kernel->block_dim[1] = 16;
583 break;
584 default:
585 kernel->block_dim[0] = 32;
586 kernel->block_dim[1] = 4;
587 kernel->block_dim[2] = 4;
588 break;
591 size = extract_sizes(sizes, "block", kernel->id);
592 read_sizes_from_set(size, kernel->block_dim, &kernel->n_block);
595 /* Extract user specified "grid" sizes from the "sizes" command line option,
596 * after filling in some potentially useful defaults.
598 static void read_grid_sizes(struct ppcg_kernel *kernel,
599 __isl_keep isl_union_map *sizes)
601 isl_set *size;
603 if (kernel->n_grid > 2)
604 kernel->n_grid = 2;
605 switch (kernel->n_grid) {
606 case 1:
607 kernel->grid_dim[0] = 32768;
608 break;
609 default:
610 kernel->grid_dim[0] = 256;
611 kernel->grid_dim[1] = 256;
612 break;
615 size = extract_sizes(sizes, "grid", kernel->id);
616 read_sizes_from_set(size, kernel->grid_dim, &kernel->n_grid);
619 /* Extract user specified grid and block sizes from the gen->sizes
620 * command line option after filling in some potentially useful defaults.
621 * Store the extracted sizes in "kernel".
622 * Add the effectively used sizes to gen->used_sizes.
624 static void read_grid_and_block_sizes(struct ppcg_kernel *kernel,
625 struct gpu_gen *gen)
627 read_block_sizes(kernel, gen->sizes);
628 read_grid_sizes(kernel, gen->sizes);
629 set_used_sizes(gen, "block", kernel->id,
630 kernel->block_dim, kernel->n_block);
631 set_used_sizes(gen, "grid", kernel->id,
632 kernel->grid_dim, kernel->n_grid);
635 static void *free_stmts(struct gpu_stmt *stmts, int n)
637 int i;
639 if (!stmts)
640 return NULL;
642 for (i = 0; i < n; ++i) {
643 struct gpu_stmt_access *access, *next;
645 for (access = stmts[i].accesses; access; access = next) {
646 next = access->next;
647 isl_id_free(access->ref_id);
648 isl_map_free(access->access);
649 isl_map_free(access->tagged_access);
650 free(access);
653 isl_id_free(stmts[i].id);
655 free(stmts);
657 return NULL;
660 /* Add parameters p[i] with identifiers "ids" to "set",
661 * with bounds to 0 <= p[i] < size[i].
663 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
664 int *size, __isl_keep isl_id_list *ids)
666 int i, len;
667 unsigned nparam;
669 len = isl_id_list_n_id(ids);
670 nparam = isl_set_dim(set, isl_dim_param);
671 set = isl_set_add_dims(set, isl_dim_param, len);
673 for (i = 0; i < len; ++i) {
674 isl_id *id;
676 id = isl_id_list_get_id(ids, i);
677 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
678 set = isl_set_lower_bound_si(set, isl_dim_param, nparam + i, 0);
679 set = isl_set_upper_bound_si(set, isl_dim_param,
680 nparam + i, size[i] - 1);
683 return set;
686 /* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
687 * with
689 * { : 0 <= p[i] < size[i] }
691 * or an overapproximation.
693 static __isl_give isl_set *add_bounded_parameters_dynamic(
694 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
695 __isl_keep isl_id_list *ids)
697 int i, len;
698 unsigned nparam;
699 isl_space *space;
700 isl_local_space *ls;
702 len = isl_multi_pw_aff_dim(size, isl_dim_out);
703 nparam = isl_set_dim(set, isl_dim_param);
704 set = isl_set_add_dims(set, isl_dim_param, len);
706 for (i = 0; i < len; ++i) {
707 isl_id *id;
709 id = isl_id_list_get_id(ids, i);
710 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
713 space = isl_space_params(isl_set_get_space(set));
714 ls = isl_local_space_from_space(space);
715 for (i = 0; i < len; ++i) {
716 isl_pw_aff *param, *size_i, *zero;
717 isl_set *bound;
719 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
720 isl_dim_param, nparam + i);
722 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
723 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
724 bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
725 set = isl_set_intersect_params(set, bound);
727 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
728 bound = isl_pw_aff_ge_set(param, zero);
729 set = isl_set_intersect_params(set, bound);
731 isl_local_space_free(ls);
733 return set;
736 /* Return the union of all tagged access relations in the group.
738 static __isl_give isl_union_map *group_tagged_access_relation(
739 struct gpu_array_ref_group *group)
741 int i;
742 isl_union_map *access;
744 access = isl_union_map_empty(isl_map_get_space(group->access));
745 for (i = 0; i < group->n_ref; ++i) {
746 isl_map *map_i;
748 map_i = isl_map_copy(group->refs[i]->tagged_access);
749 access = isl_union_map_union(access,
750 isl_union_map_from_map(map_i));
753 return access;
756 /* Return the extent of "array", recomputed from the bounds.
757 * The recomputed extent may be simpler than the original extent.
759 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
761 int i;
762 isl_id *id;
763 isl_space *space;
764 isl_local_space *ls;
765 isl_set *extent;
767 id = isl_set_get_tuple_id(array->extent);
768 space = isl_set_get_space(array->extent);
769 extent = isl_set_universe(isl_space_copy(space));
770 ls = isl_local_space_from_space(space);
771 for (i = 0; i < array->n_index; ++i) {
772 isl_pw_aff *bound;
773 isl_aff *aff;
774 isl_pw_aff *index;
775 isl_set *lt;
777 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
779 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
780 isl_dim_set, i);
781 index = isl_pw_aff_from_aff(aff);
782 bound = isl_multi_pw_aff_get_pw_aff(array->bound, i);
783 bound = isl_pw_aff_from_range(bound);
784 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
785 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
786 isl_id_copy(id));
787 lt = isl_pw_aff_lt_set(index, bound);
788 extent = isl_set_intersect(extent, lt);
790 isl_local_space_free(ls);
791 isl_id_free(id);
793 return extent;
796 /* Return a map from the first group->shared_tile->depth dimensions
797 * of the computed schedule to the array tile in
798 * global memory that corresponds to the shared memory copy.
800 * In particular, return a map
802 * { D[i] -> A[a] }
804 * with constraints
806 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
808 * and
810 * 0 <= a <= array_size - 1 (2)
812 * Note that if some stride has been detected (i.e., when
813 * group->shared_tile->bound[i].shift is set), then a in (1) refers
814 * to the shifted and scaled down version.
816 * Constraints (1) are obtained by mapping the size constraints on the
817 * shared/private memory tile back to the access relation.
818 * Constraints (2) are obtained from the (recomputed) extent.
820 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
822 int i;
823 int n_index = group->array->n_index;
824 isl_map *tile;
825 isl_space *space;
826 isl_set *local;
827 isl_set *extent;
829 space = isl_multi_aff_get_space(group->shared_tile->tiling);
830 space = isl_space_range(space);
831 local = isl_set_universe(space);
832 for (i = 0; i < n_index; ++i) {
833 isl_val *bound;
835 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
836 bound = isl_val_copy(group->shared_tile->bound[i].size);
837 bound = isl_val_sub_ui(bound, 1);
838 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
840 local = isl_set_preimage_multi_aff(local,
841 isl_multi_aff_copy(group->shared_tile->tiling));
842 tile = isl_set_unwrap(local);
843 extent = array_extent(group->array);
844 tile = isl_map_intersect_range(tile, extent);
846 return tile;
849 /* Given a mapping "iterator_map" from the AST schedule to a domain,
850 * return the corresponding mapping from the AST schedule to
851 * to the outer kernel->copy_schedule_dim dimensions of
852 * the schedule computed by PPCG for this kernel.
854 * Note that kernel->copy_schedule_dim is at least as large as
855 * the largest depth of any array reference group associated to the kernel.
856 * This is needed as the returned schedule is used to extract a mapping
857 * to the outer tile->depth dimensions in transform_index.
859 static __isl_give isl_pw_multi_aff *compute_sched_to_copy(
860 struct ppcg_kernel *kernel, __isl_take isl_pw_multi_aff *iterator_map)
862 isl_union_pw_multi_aff *upma;
863 isl_pw_multi_aff *pma;
864 isl_space *space;
866 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
867 space = isl_space_from_domain(space);
868 space = isl_space_add_dims(space, isl_dim_out,
869 kernel->copy_schedule_dim);
871 upma = isl_union_pw_multi_aff_copy(kernel->copy_schedule);
872 pma = isl_union_pw_multi_aff_extract_pw_multi_aff(upma, space);
873 isl_union_pw_multi_aff_free(upma);
875 return isl_pw_multi_aff_pullback_pw_multi_aff(pma, iterator_map);
878 /* If max_shared_memory is not set to infinity (-1), then make
879 * sure that the total amount of shared memory required by the
880 * array reference groups mapped to shared memory by "kernel"
881 * is no larger than this maximum.
883 * We apply a greedy approach and discard (keep in global memory)
884 * those groups that would result in a total memory size that
885 * is larger than the maximum.
887 * This function should be called after any function that may
888 * affect the decision on whether to place a reference group
889 * in private, shared or global memory.
891 static void check_shared_memory_bound(struct ppcg_kernel *kernel)
893 int i, j;
894 isl_val *left, *size;
896 if (kernel->options->max_shared_memory < 0)
897 return;
899 left = isl_val_int_from_si(kernel->ctx,
900 kernel->options->max_shared_memory);
902 for (i = 0; i < kernel->n_array; ++i) {
903 struct gpu_local_array_info *local = &kernel->array[i];
905 for (j = 0; j < local->n_group; ++j) {
906 struct gpu_array_ref_group *group;
907 enum ppcg_group_access_type type;
909 group = local->groups[j];
910 type = gpu_array_ref_group_type(group);
911 if (type != ppcg_access_shared)
912 continue;
914 size = gpu_array_tile_size(group->shared_tile);
915 size = isl_val_mul_ui(size, local->array->size);
917 if (isl_val_le(size, left)) {
918 left = isl_val_sub(left, size);
919 continue;
921 isl_val_free(size);
923 group->shared_tile =
924 gpu_array_tile_free(group->shared_tile);
928 isl_val_free(left);
931 /* Mark all arrays of "kernel" that have an array reference group
932 * that is not mapped to private or shared memory as
933 * accessing the corresponding global device memory.
935 static void mark_global_arrays(struct ppcg_kernel *kernel)
937 int i, j;
939 for (i = 0; i < kernel->n_array; ++i) {
940 struct gpu_local_array_info *local = &kernel->array[i];
942 if (local->global)
943 continue;
944 for (j = 0; j < local->n_group; ++j) {
945 if (gpu_array_ref_group_tile(local->groups[j]))
946 continue;
948 local->global = 1;
949 local->array->global = 1;
950 break;
955 /* Compute a tiling for all the array reference groups in "kernel".
957 static void compute_group_tilings(struct ppcg_kernel *kernel)
959 int i, j;
961 for (i = 0; i < kernel->n_array; ++i) {
962 struct gpu_local_array_info *array = &kernel->array[i];
964 for (j = 0; j < array->n_group; ++j)
965 gpu_array_ref_group_compute_tiling(array->groups[j]);
969 /* Compute the effective grid size as a list of the sizes in each dimension.
971 * The grid size specified by the user or set by default
972 * in read_grid_sizes() and applied by the block filter,
973 * may be too large for the given code in the sense that
974 * it may contain blocks that don't need to execute anything.
975 * We therefore don't return this grid size, but instead the
976 * smallest grid size that ensures that all blocks that actually
977 * execute code are included in the grid.
979 * We first extract a description of the grid, i.e., the possible values
980 * of the block ids, from the domain elements in "domain" and
981 * kernel->block_filter.
982 * The block ids are parameters in kernel->block_filter.
983 * We simply need to change them into set dimensions.
985 * Then, for each block dimension, we compute the maximal value of the block id
986 * and add one.
988 static __isl_give isl_multi_pw_aff *extract_grid_size(
989 struct ppcg_kernel *kernel, __isl_take isl_union_set *domain)
991 int i;
992 isl_set *grid;
993 isl_set *context;
994 isl_multi_pw_aff *size;
996 domain = isl_union_set_intersect(domain,
997 isl_union_set_copy(kernel->block_filter));
998 grid = isl_union_set_params(domain);
999 grid = isl_set_from_params(grid);
1000 grid = isl_set_add_dims(grid, isl_dim_set, kernel->n_grid);
1001 for (i = 0; i < kernel->n_grid; ++i) {
1002 int pos;
1003 isl_id *id;
1005 id = isl_id_list_get_id(kernel->block_ids, i);
1006 pos = isl_set_find_dim_by_id(grid, isl_dim_param, id);
1007 isl_id_free(id);
1008 assert(pos >= 0);
1009 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
1010 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
1013 grid = isl_set_coalesce(grid);
1014 size = ppcg_size_from_extent(grid);
1015 context = isl_set_params(isl_set_copy(kernel->context));
1016 return isl_multi_pw_aff_gist(size, context);
1019 /* Compute the size of a fixed bounding box around the origin and "set",
1020 * where "set" is assumed to contain only non-negative elements,
1021 * and store the results in "size".
1022 * In particular, compute the maximal value of "set" in each direction
1023 * and add one.
1025 static void extract_fixed_size(__isl_take isl_set *set, int *size)
1027 int i, n;
1028 isl_local_space *ls;
1029 isl_aff *obj;
1031 n = isl_set_dim(set, isl_dim_set);
1032 ls = isl_local_space_from_space(isl_set_get_space(set));
1033 obj = isl_aff_zero_on_domain(ls);
1034 for (i = 0; i < n; ++i) {
1035 isl_val *max;
1037 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
1038 max = isl_set_max_val(set, obj);
1039 size[i] = isl_val_get_num_si(max) + 1;
1040 isl_val_free(max);
1041 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
1043 isl_aff_free(obj);
1044 isl_set_free(set);
1047 /* Compute the effective block size as a list of the sizes in each dimension
1048 * and store the sizes in kernel->block_dim.
1050 * The block size specified by the user or set by default
1051 * in read_block_sizes() and applied by the thread filter,
1052 * may be too large for the given code in the sense that
1053 * it may contain threads that don't need to execute anything.
1054 * We therefore update this block size in kernel->block_dim
1055 * to the smallest block size that ensures that all threads
1056 * that actually execute code are included in the block.
1058 * The possible values of the thread ids is obtained from
1059 * the domain elements "domain" and kernel->thread_filter.
1060 * The current implementation eliminates all parameters, ensuring
1061 * that the size is a fixed constant in each dimension.
1062 * In principle we could also compute parametric sizes.
1063 * We would have to make sure to project out all b%d and t%d parameters,
1064 * however.
1066 static isl_stat extract_block_size(struct ppcg_kernel *kernel,
1067 __isl_take isl_union_set *domain)
1069 int i;
1070 int nparam;
1071 isl_set *block;
1073 domain = isl_union_set_intersect(domain,
1074 isl_union_set_copy(kernel->thread_filter));
1075 block = isl_union_set_params(domain);
1076 block = isl_set_from_params(block);
1077 block = isl_set_add_dims(block, isl_dim_set, kernel->n_block);
1078 for (i = 0; i < kernel->n_block; ++i) {
1079 int pos;
1080 isl_id *id;
1082 if (!block)
1083 return isl_stat_error;
1085 id = isl_id_list_get_id(kernel->thread_ids, i);
1086 pos = isl_set_find_dim_by_id(block, isl_dim_param, id);
1087 isl_id_free(id);
1088 if (pos < 0)
1089 isl_die(isl_set_get_ctx(block), isl_error_internal,
1090 "missing constraints on thread identifier",
1091 block = isl_set_free(block));
1092 block = isl_set_equate(block, isl_dim_param, pos,
1093 isl_dim_set, i);
1095 nparam = isl_set_dim(block, isl_dim_param);
1096 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
1098 if (!block)
1099 return isl_stat_error;
1101 extract_fixed_size(block, kernel->block_dim);
1103 return isl_stat_ok;
1106 struct ppcg_kernel *ppcg_kernel_free(struct ppcg_kernel *kernel)
1108 int i, j;
1110 if (!kernel)
1111 return NULL;
1113 isl_id_list_free(kernel->block_ids);
1114 isl_id_list_free(kernel->thread_ids);
1115 isl_multi_pw_aff_free(kernel->grid_size);
1116 isl_ast_expr_free(kernel->grid_size_expr);
1117 isl_set_free(kernel->context);
1118 isl_union_set_free(kernel->core);
1119 isl_union_set_free(kernel->arrays);
1120 isl_space_free(kernel->space);
1121 isl_ast_node_free(kernel->tree);
1122 isl_union_set_free(kernel->block_filter);
1123 isl_union_set_free(kernel->thread_filter);
1124 isl_union_pw_multi_aff_free(kernel->copy_schedule);
1125 isl_union_set_free(kernel->sync_writes);
1127 for (i = 0; i < kernel->n_array; ++i) {
1128 struct gpu_local_array_info *array = &kernel->array[i];
1130 for (j = 0; j < array->n_group; ++j)
1131 gpu_array_ref_group_free(array->groups[j]);
1132 free(array->groups);
1134 isl_multi_pw_aff_free(array->bound);
1135 isl_ast_expr_free(array->bound_expr);
1137 free(kernel->array);
1139 for (i = 0; i < kernel->n_var; ++i) {
1140 free(kernel->var[i].name);
1141 isl_vec_free(kernel->var[i].size);
1143 free(kernel->var);
1145 free(kernel);
1147 return NULL;
1150 /* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
1152 static void ppcg_kernel_free_wrap(void *user)
1154 struct ppcg_kernel *kernel = user;
1156 ppcg_kernel_free(kernel);
1159 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
1160 struct ppcg_kernel_var *var)
1162 int j;
1163 struct gpu_array_tile *tile;
1164 isl_printer *p;
1166 var->array = group->array;
1168 var->type = gpu_array_ref_group_type(group);
1169 tile = gpu_array_ref_group_tile(group);
1171 p = isl_printer_to_str(ctx);
1172 p = gpu_array_ref_group_print_name(group, p);
1173 var->name = isl_printer_get_str(p);
1174 isl_printer_free(p);
1176 var->size = isl_vec_alloc(ctx, group->array->n_index);
1178 for (j = 0; j < group->array->n_index; ++j)
1179 var->size = isl_vec_set_element_val(var->size, j,
1180 isl_val_copy(tile->bound[j].size));
1183 static int create_kernel_vars(struct ppcg_kernel *kernel)
1185 int i, j, n;
1187 n = 0;
1188 for (i = 0; i < kernel->n_array; ++i) {
1189 struct gpu_local_array_info *array = &kernel->array[i];
1191 for (j = 0; j < array->n_group; ++j) {
1192 struct gpu_array_ref_group *group = array->groups[j];
1193 enum ppcg_group_access_type type;
1195 type = gpu_array_ref_group_type(group);
1196 if (type != ppcg_access_global)
1197 ++n;
1201 kernel->n_var = n;
1202 kernel->var = isl_calloc_array(kernel->ctx, struct ppcg_kernel_var, n);
1203 if (!kernel->var)
1204 return -1;
1206 n = 0;
1207 for (i = 0; i < kernel->n_array; ++i) {
1208 struct gpu_local_array_info *array = &kernel->array[i];
1210 for (j = 0; j < array->n_group; ++j) {
1211 struct gpu_array_ref_group *group = array->groups[j];
1212 enum ppcg_group_access_type type;
1214 type = gpu_array_ref_group_type(group);
1215 if (type == ppcg_access_global)
1216 continue;
1217 create_kernel_var(kernel->ctx, group, &kernel->var[n]);
1218 ++n;
1222 return 0;
1225 /* Replace "pa" by the zero function defined over the universe domain
1226 * in the space of "pa".
1228 static __isl_give isl_pw_aff *set_universally_zero(__isl_take isl_pw_aff *pa)
1230 isl_space *space;
1231 isl_aff *zero;
1233 space = isl_space_domain(isl_pw_aff_get_space(pa));
1234 isl_pw_aff_free(pa);
1235 zero = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1237 return isl_pw_aff_from_aff(zero);
1240 /* The sizes of the arrays on the host that have been computed by
1241 * extract_array_info may depend on the parameters. Use the extra
1242 * constraints on the parameters that are valid at "host_domain"
1243 * to simplify these expressions and store the results in kernel->array.
1245 * We only need these localized bounds for arrays that are accessed
1246 * by the current kernel. If we have found at least one reference group
1247 * then the array is accessed by the kernel.
1249 * The resulting sizes may be functions that are nowhere defined
1250 * in case the access function cannot possibly access anything inside
1251 * the kernel for some reason. If so, they are replaced by the zero
1252 * function. Since the access function cannot actually access anything,
1253 * there is no harm in printing the array sizes as zero.
1255 static void localize_bounds(struct ppcg_kernel *kernel,
1256 __isl_keep isl_set *host_domain)
1258 int i, j;
1259 isl_set *context;
1261 context = isl_set_copy(host_domain);
1262 context = isl_set_params(context);
1264 for (i = 0; i < kernel->n_array; ++i) {
1265 struct gpu_local_array_info *local = &kernel->array[i];
1266 isl_multi_pw_aff *bound;
1267 int n_index;
1269 if (local->n_group == 0)
1270 continue;
1272 n_index = local->array->n_index;
1273 bound = isl_multi_pw_aff_copy(local->array->bound);
1275 for (j = 0; j < n_index; ++j) {
1276 isl_pw_aff *pwaff;
1277 int empty;
1279 pwaff = isl_multi_pw_aff_get_pw_aff(bound, j);
1280 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
1281 empty = isl_pw_aff_is_empty(pwaff);
1282 if (empty < 0)
1283 pwaff = isl_pw_aff_free(pwaff);
1284 else if (empty)
1285 pwaff = set_universally_zero(pwaff);
1286 bound = isl_multi_pw_aff_set_pw_aff(bound, j, pwaff);
1289 local->n_index = n_index;
1290 local->bound = bound;
1292 isl_set_free(context);
1295 /* Create the array of gpu_local_array_info structures "array"
1296 * inside "kernel". The number of elements in this array is
1297 * the same as the number of arrays in "prog".
1298 * Initialize the "array" field of each local array to point
1299 * to the corresponding array in "prog".
1301 static struct ppcg_kernel *ppcg_kernel_create_local_arrays(
1302 struct ppcg_kernel *kernel, struct gpu_prog *prog)
1304 int i;
1305 isl_ctx *ctx;
1307 ctx = isl_set_get_ctx(prog->context);
1308 kernel->array = isl_calloc_array(ctx,
1309 struct gpu_local_array_info, prog->n_array);
1310 if (!kernel->array)
1311 return ppcg_kernel_free(kernel);
1312 kernel->n_array = prog->n_array;
1314 for (i = 0; i < prog->n_array; ++i)
1315 kernel->array[i].array = &prog->array[i];
1317 return kernel;
1320 /* Does "kernel" need to be passed an argument corresponding to array "i"?
1322 * The argument is only needed if the kernel accesses this device memory.
1324 int ppcg_kernel_requires_array_argument(struct ppcg_kernel *kernel, int i)
1326 return kernel->array[i].global;
1329 /* Find the element in gen->stmt that has the given "id".
1330 * Return NULL if no such gpu_stmt can be found.
1332 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
1334 int i;
1336 for (i = 0; i < prog->n_stmts; ++i) {
1337 if (id == prog->stmts[i].id)
1338 break;
1341 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
1344 void ppcg_kernel_stmt_free(void *user)
1346 struct ppcg_kernel_stmt *stmt = user;
1348 if (!stmt)
1349 return;
1351 switch (stmt->type) {
1352 case ppcg_kernel_copy:
1353 isl_ast_expr_free(stmt->u.c.index);
1354 isl_ast_expr_free(stmt->u.c.local_index);
1355 break;
1356 case ppcg_kernel_domain:
1357 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
1358 break;
1359 case ppcg_kernel_sync:
1360 break;
1363 free(stmt);
1366 /* Return the gpu_stmt_access in the list "accesses" that corresponds
1367 * to "ref_id".
1369 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
1370 __isl_keep isl_id *ref_id)
1372 struct gpu_stmt_access *access;
1374 for (access = accesses; access; access = access->next)
1375 if (access->ref_id == ref_id)
1376 return access;
1378 return NULL;
1381 /* Return the index of the array called "name" in the list of arrays.
1383 static int find_array_index(struct ppcg_kernel *kernel, const char *name)
1385 int i;
1387 for (i = 0; i < kernel->n_array; ++i)
1388 if (!strcmp(name, kernel->array[i].array->name))
1389 return i;
1391 return -1;
1394 /* Internal data structure for the index and AST expression transformation
1395 * callbacks for pet_stmt_build_ast_exprs.
1397 * "kernel" is the kernel for which are computing AST expressions and
1398 * may be NULL if we are not inside a kernel.
1399 * "accesses" is the list of gpu_stmt_access in the statement.
1400 * "iterator_map" expresses the statement iterators in terms of
1401 * the AST loop iterators.
1402 * "sched2copy" expresses the outer copy_schedule_dim dimensions of
1403 * the kernel schedule in terms of the AST loop iterators and
1404 * may be NULL if we are not inside a kernel.
1406 * The following fields are set in transform_index and used in transform_expr.
1407 * "array" is the array that is being accessed.
1408 * "global" is set if the global array is accessed (rather than
1409 * shared/private memory).
1410 * "local_array" refers to information on the array specialized
1411 * to the current kernel.
1413 struct ppcg_transform_data {
1414 struct ppcg_kernel *kernel;
1415 struct gpu_stmt_access *accesses;
1416 isl_pw_multi_aff *iterator_map;
1417 isl_pw_multi_aff *sched2copy;
1419 struct gpu_array_info *array;
1420 int global;
1421 struct gpu_local_array_info *local_array;
1424 /* Return a pointer to the gpu_array_ref_group in "local"
1425 * that contains the reference "access".
1426 * Return NULL if no such group can be found.
1428 static struct gpu_array_ref_group *find_ref_group(
1429 struct gpu_local_array_info *local, struct gpu_stmt_access *access)
1431 int i, j;
1433 for (i = 0; i < local->n_group; ++i) {
1434 struct gpu_array_ref_group *group = local->groups[i];
1436 for (j = 0; j < group->n_ref; ++j)
1437 if (group->refs[j] == access)
1438 return group;
1441 return NULL;
1444 /* Index transformation callback for pet_stmt_build_ast_exprs.
1446 * "index" expresses the array indices in terms of statement iterators
1448 * We first reformulate "index" in terms of the AST loop iterators.
1449 * Then we check if we are accessing the global array or
1450 * a shared/private copy. In particular, if we are not inside a kernel
1451 * then we must be accessing a global array.
1452 * In the former case, we simply return
1453 * the updated index. If "index" is an affine expression rather
1454 * than an array access, then we also return the updated index here.
1456 * If no reference groups have been computed for the array,
1457 * then we can only be accessing the global array.
1459 * Otherwise, we apply the tiling to the index.
1460 * This tiling is of the form
1462 * [D -> A] -> T
1464 * where D corresponds to the outer tile->depth dimensions of
1465 * the kernel schedule.
1466 * The index is of the form
1468 * L -> A
1470 * We update the tiling to refer to the AST loop iterators
1472 * [L -> A] -> T
1474 * and modify index to keep track of those iterators
1476 * L -> [L -> A]
1478 * Combining these two yields a tiled index expression in terms
1479 * of the AST loop iterators
1481 * L -> T
1483 static __isl_give isl_multi_pw_aff *transform_index(
1484 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
1485 void *user)
1487 struct ppcg_transform_data *data = user;
1488 struct gpu_stmt_access *access;
1489 struct gpu_array_ref_group *group;
1490 struct gpu_array_tile *tile;
1491 isl_pw_multi_aff *iterator_map;
1492 int i;
1493 int dim;
1494 const char *name;
1495 isl_space *space;
1496 isl_multi_pw_aff *tiling;
1497 isl_pw_multi_aff *pma;
1498 isl_multi_pw_aff *mpa;
1499 isl_pw_multi_aff *sched2depth;
1501 data->array = NULL;
1503 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
1504 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
1506 if (!data->kernel)
1507 return index;
1509 access = find_access(data->accesses, ref_id);
1510 if (!access)
1511 return index;
1512 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
1513 return index;
1515 name = get_outer_array_name(access->access);
1516 i = find_array_index(data->kernel, name);
1517 if (i < 0)
1518 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
1519 "cannot find array",
1520 return isl_multi_pw_aff_free(index));
1521 data->local_array = &data->kernel->array[i];
1522 data->array = data->local_array->array;
1524 group = find_ref_group(data->local_array, access);
1525 if (!group) {
1526 data->global = 1;
1527 return index;
1530 tile = gpu_array_ref_group_tile(group);
1531 data->global = !tile;
1532 if (!tile)
1533 return index;
1535 space = isl_space_range(isl_multi_pw_aff_get_space(index));
1536 space = isl_space_map_from_set(space);
1537 pma = isl_pw_multi_aff_identity(space);
1538 sched2depth = isl_pw_multi_aff_copy(data->sched2copy);
1539 dim = isl_pw_multi_aff_dim(sched2depth, isl_dim_out);
1540 sched2depth = isl_pw_multi_aff_drop_dims(sched2depth, isl_dim_out,
1541 tile->depth, dim - tile->depth);
1542 pma = isl_pw_multi_aff_product(sched2depth, pma);
1543 tiling = isl_multi_pw_aff_from_multi_aff(
1544 isl_multi_aff_copy(tile->tiling));
1545 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
1547 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
1548 space = isl_space_map_from_set(space);
1549 mpa = isl_multi_pw_aff_identity(space);
1550 index = isl_multi_pw_aff_range_product(mpa, index);
1551 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
1553 return index;
1556 /* Dereference "expr" by adding an index [0].
1557 * The original "expr" is assumed not to have any indices.
1559 * If "expr" is a member access, then the dereferencing needs
1560 * to be applied to the structure argument of this member access.
1562 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
1564 isl_ctx *ctx;
1565 isl_ast_expr *arg0, *res;
1566 isl_ast_expr_list *list;
1568 arg0 = isl_ast_expr_get_op_arg(expr, 0);
1569 if (!arg0)
1570 return isl_ast_expr_free(expr);
1571 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
1572 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
1573 isl_ast_expr *arg;
1575 arg = isl_ast_expr_get_op_arg(arg0, 0);
1576 arg = dereference(arg);
1577 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
1578 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
1580 return expr;
1582 isl_ast_expr_free(arg0);
1584 ctx = isl_ast_expr_get_ctx(expr);
1585 res = isl_ast_expr_from_val(isl_val_zero(ctx));
1586 list = isl_ast_expr_list_from_ast_expr(res);
1587 res = isl_ast_expr_get_op_arg(expr, 0);
1588 res = isl_ast_expr_access(res, list);
1589 isl_ast_expr_free(expr);
1591 return res;
1594 /* Linearize the index expression "expr" based on the array bounds
1595 * of "array".
1597 * That is, transform expression
1599 * A[i_0][i_1]...[i_n]
1601 * to
1603 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
1605 * where b_0, b_1, ..., b_n are the bounds on the array.
1607 * If the base of "expr" is a member access, then the linearization needs
1608 * to be applied to the structure argument of this member access.
1610 * In the base case, if "expr" has no arguments (other than the name of
1611 * the array), then we are passing an entire array to a function.
1612 * In this case, there is nothing to linearize.
1613 * Note that at this point an expression with no arguments can
1614 * only be an entire array because the scalar case and
1615 * the case of single struct are handled by the caller.
1617 * If the number of specified index expressions in "expr"
1618 * is smaller than the dimension of the accessed array,
1619 * then the missing i_j also do not appear in the linearized expression.
1620 * Furthermore, since such an expression does not refer to a single
1621 * element while the default linearized expression would refer to
1622 * a single element, we return the expression
1624 * A + (..((i_0 * b_1 + i_1) ... ) * b_l + i_l)
1626 * instead. Note that because of the special case handling above,
1627 * we can assume here that there is at least one index expression.
1629 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
1630 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
1632 int i, n;
1633 isl_ast_expr *arg0;
1634 isl_ast_expr *res;
1635 isl_ast_expr_list *list;
1637 arg0 = isl_ast_expr_get_op_arg(expr, 0);
1638 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
1639 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
1640 isl_ast_expr *arg;
1642 arg = isl_ast_expr_get_op_arg(arg0, 0);
1643 arg = gpu_local_array_info_linearize_index(array, arg);
1644 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
1645 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
1647 return expr;
1649 isl_ast_expr_free(arg0);
1651 if (isl_ast_expr_get_op_n_arg(expr) == 1)
1652 return expr;
1654 n = isl_ast_expr_get_op_n_arg(expr);
1655 res = isl_ast_expr_get_op_arg(expr, 1);
1656 for (i = 1; i < array->n_index; ++i) {
1657 isl_ast_expr *expr_i;
1659 expr_i = isl_ast_expr_get_op_arg(array->bound_expr, 1 + i);
1660 res = isl_ast_expr_mul(res, expr_i);
1662 if (i + 1 >= n)
1663 continue;
1664 expr_i = isl_ast_expr_get_op_arg(expr, i + 1);
1665 res = isl_ast_expr_add(res, expr_i);
1668 if (1 + array->n_index > n) {
1669 res = isl_ast_expr_add(isl_ast_expr_get_op_arg(expr, 0), res);
1670 } else {
1671 list = isl_ast_expr_list_from_ast_expr(res);
1672 res = isl_ast_expr_get_op_arg(expr, 0);
1673 res = isl_ast_expr_access(res, list);
1676 isl_ast_expr_free(expr);
1678 return res;
1681 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
1683 * If the AST expression refers to an array that is not accessed
1684 * at all, then this means the value of the expression is not used,
1685 * so we might as well print zero (NULL pointer) instead.
1687 * If the AST expression refers to a global scalar that is not
1688 * a read-only scalar, then its address was passed to the kernel and
1689 * we need to dereference it.
1691 * If the AST expression refers to an access to a global array,
1692 * then we linearize the access exploiting the bounds in data->local_array.
1694 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
1695 __isl_keep isl_id *id, void *user)
1697 struct ppcg_transform_data *data = user;
1699 if (!data->array)
1700 return expr;
1701 if (!data->array->accessed) {
1702 isl_ctx *ctx;
1704 ctx = isl_ast_expr_get_ctx(expr);
1705 isl_ast_expr_free(expr);
1706 return isl_ast_expr_from_val(isl_val_zero(ctx));
1708 if (gpu_array_is_read_only_scalar(data->array))
1709 return expr;
1710 if (!data->global)
1711 return expr;
1712 if (data->array->n_index == 0)
1713 return dereference(expr);
1714 if (!data->array->linearize)
1715 return expr;
1717 return gpu_local_array_info_linearize_index(data->local_array, expr);
1720 /* This function is called for each instance of a user statement
1721 * in the kernel "kernel", identified by "gpu_stmt".
1722 * "kernel" may be NULL if we are not inside a kernel.
1724 * We attach a struct ppcg_kernel_stmt to the "node", containing
1725 * a computed AST expression for each access, through an annotation
1726 * with name "user".
1727 * These AST expressions are computed from iterator_map,
1728 * which expresses the domain
1729 * elements in terms of the generated loops, and sched2copy,
1730 * which expresses the outer copy_schedule_dim dimensions of
1731 * the kernel schedule computed by PPCG in terms of the generated loops.
1733 static __isl_give isl_ast_node *create_domain_leaf(
1734 struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
1735 __isl_keep isl_ast_build *build, struct gpu_stmt *gpu_stmt)
1737 struct ppcg_transform_data data;
1738 struct ppcg_kernel_stmt *stmt;
1739 isl_ctx *ctx;
1740 isl_id *id;
1741 isl_pw_multi_aff *sched2copy;
1742 isl_map *map;
1743 isl_pw_multi_aff *iterator_map;
1744 isl_union_map *schedule;
1746 if (!node)
1747 return NULL;
1748 ctx = isl_ast_node_get_ctx(node);
1750 stmt = isl_calloc_type(ctx, struct ppcg_kernel_stmt);
1751 if (!stmt)
1752 return isl_ast_node_free(node);
1754 schedule = isl_ast_build_get_schedule(build);
1755 map = isl_map_reverse(isl_map_from_union_map(schedule));
1756 iterator_map = isl_pw_multi_aff_from_map(map);
1757 if (kernel)
1758 sched2copy = compute_sched_to_copy(kernel,
1759 isl_pw_multi_aff_copy(iterator_map));
1760 else
1761 sched2copy = NULL;
1763 stmt->type = ppcg_kernel_domain;
1764 stmt->u.d.stmt = gpu_stmt;
1766 data.kernel = kernel;
1767 data.accesses = stmt->u.d.stmt->accesses;
1768 data.iterator_map = iterator_map;
1769 data.sched2copy = sched2copy;
1770 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
1771 build, &transform_index, &data,
1772 &transform_expr, &data);
1774 isl_pw_multi_aff_free(iterator_map);
1775 isl_pw_multi_aff_free(sched2copy);
1777 id = isl_id_alloc(ctx, "user", stmt);
1778 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1779 return isl_ast_node_set_annotation(node, id);
1782 /* This function is called for each statement node in the AST
1783 * for copying to or from shared/private memory.
1784 * Attach a pointer to a ppcg_kernel_stmt representing the copy
1785 * statement to the node.
1786 * The statement name is "read" or "write", depending on whether we are
1787 * reading from global memory or writing to global memory.
1789 * The schedule is of the form
1791 * type[D -> A] -> L
1793 * where D corresponds to the outer tile->depth dimensions of
1794 * the kernel schedule, A to the global array and L to the outer
1795 * generated AST schedule.
1796 * We compute the inverse and strip off the type, resulting in
1798 * L -> [D -> A]
1800 * We combine this mapping with on the one hand the projection
1802 * [D -> A] -> A
1804 * and on the other hand the group tiling
1806 * [D -> A] -> T
1808 * resulting in
1810 * L -> A and L -> T
1812 * and store the corresponding expressions in stmt->index and stmt->local_index,
1813 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
1814 * stmt->index is linearized if the global memory array is linearized.
1816 static __isl_give isl_ast_node *create_access_leaf(struct ppcg_kernel *kernel,
1817 struct gpu_array_ref_group *group, __isl_take isl_ast_node *node,
1818 __isl_keep isl_ast_build *build)
1820 struct ppcg_kernel_stmt *stmt;
1821 struct gpu_array_tile *tile;
1822 isl_id *id;
1823 isl_ast_expr *expr;
1824 isl_space *space;
1825 isl_map *access;
1826 isl_pw_multi_aff *pma, *pma2;
1827 const char *type;
1829 stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
1830 if (!stmt)
1831 return isl_ast_node_free(node);
1833 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
1834 type = isl_map_get_tuple_name(access, isl_dim_in);
1835 stmt->u.c.read = !strcmp(type, "read");
1836 access = isl_map_reverse(access);
1837 pma = isl_pw_multi_aff_from_map(access);
1838 pma = isl_pw_multi_aff_reset_tuple_id(pma, isl_dim_out);
1840 space = isl_space_range(isl_pw_multi_aff_get_space(pma));
1841 space = isl_space_unwrap(space);
1842 pma2 = isl_pw_multi_aff_range_map(space);
1843 pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2,
1844 isl_pw_multi_aff_copy(pma));
1845 expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
1846 if (group->array->linearize)
1847 expr = gpu_local_array_info_linearize_index(group->local_array,
1848 expr);
1849 stmt->u.c.index = expr;
1851 tile = gpu_array_ref_group_tile(group);
1852 pma2 = isl_pw_multi_aff_from_multi_aff(
1853 isl_multi_aff_copy(tile->tiling));
1854 pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2, pma);
1855 expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
1856 stmt->u.c.local_index = expr;
1858 stmt->u.c.array = group->array;
1859 stmt->u.c.local_array = group->local_array;
1860 stmt->type = ppcg_kernel_copy;
1862 id = isl_id_alloc(kernel->ctx, "copy", stmt);
1863 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1864 return isl_ast_node_set_annotation(node, id);
1867 /* Create a synchronization ppcg_kernel_stmt and
1868 * attach it to the node "node" representing the synchronization.
1870 static __isl_give isl_ast_node *create_sync_leaf(
1871 struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
1872 __isl_keep isl_ast_build *build)
1874 struct ppcg_kernel_stmt *stmt;
1875 isl_id *id;
1877 stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
1878 if (!stmt)
1879 return isl_ast_node_free(node);
1881 stmt->type = ppcg_kernel_sync;
1882 id = isl_id_alloc(kernel->ctx, "sync", stmt);
1883 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1884 return isl_ast_node_set_annotation(node, id);
1887 /* Build AST expressions for the device array sizes of all arrays in "prog"
1888 * that require allocation on the device using "build", as well as
1889 * for the original array sizes of all arrays that need to be declared
1890 * on the host.
1891 * "node" is freed in case of error.
1893 static __isl_give isl_ast_node *build_array_bounds(
1894 __isl_take isl_ast_node *node, struct gpu_prog *prog,
1895 __isl_keep isl_ast_build *build)
1897 int i;
1899 for (i = 0; i < prog->n_array; ++i) {
1900 struct gpu_array_info *array = &prog->array[i];
1901 isl_multi_pw_aff *size;
1902 isl_ast_expr *expr;
1904 if (!gpu_array_requires_device_allocation(array))
1905 continue;
1907 size = isl_multi_pw_aff_copy(array->bound);
1908 expr = ppcg_build_size_expr(size, build);
1909 array->bound_expr = expr;
1910 if (!expr)
1911 return isl_ast_node_free(node);
1914 for (i = 0; i < prog->n_array; ++i) {
1915 struct gpu_array_info *array = &prog->array[i];
1916 struct pet_array *pet_array = prog->scop->pet->arrays[i];
1917 isl_multi_pw_aff *size;
1918 isl_ast_expr *expr;
1920 if (!array->declare_local)
1921 continue;
1922 size = ppcg_size_from_extent(isl_set_copy(pet_array->extent));
1923 expr = ppcg_build_size_expr(size, build);
1924 array->declared_size = expr;
1925 if (!expr)
1926 return isl_ast_node_free(node);
1929 return node;
1932 /* Internal data structure for at_domain.
1934 * "prog" represents the entire scop.
1935 * "kernel" points to the kernel to which the current schedule node
1936 * belongs. It is set by before_mark and reset by after_mark.
1937 * It may be NULL if we are outside any kernel.
1939 struct ppcg_at_domain_data {
1940 struct gpu_prog *prog;
1941 struct ppcg_kernel *kernel;
1944 /* This function is called for each instance of a user statement
1945 * in the kernel. This may be one of the original user statements
1946 * or a statement introduced by PPCG.
1948 * We first check if the statement id corresponds to a gpu statement,
1949 * which indicates the statement is an original user statement. Any statement
1950 * that is not an original user statement has been introduced by PPCG and
1951 * requires special handling.
1953 * If the user statement is one of the original user statements, then we call
1954 * create_domain_leaf. If it is "init_device", then we call
1955 * build_array_bounds. Otherwise, we check if it is a copy or synchronization
1956 * statement and call the appropriate functions. Statements that copy an array
1957 * to/from the device do not need any further treatment.
1958 * Neither does "clear_device".
1960 static __isl_give isl_ast_node *at_domain(__isl_take isl_ast_node *node,
1961 __isl_keep isl_ast_build *build, void *user)
1963 struct ppcg_at_domain_data *data = user;
1964 struct gpu_stmt *gpu_stmt;
1965 isl_ast_expr *expr, *arg;
1966 isl_id *id;
1967 int is_sync;
1968 const char *name;
1969 void *p;
1971 expr = isl_ast_node_user_get_expr(node);
1972 arg = isl_ast_expr_get_op_arg(expr, 0);
1973 id = isl_ast_expr_get_id(arg);
1974 name = isl_id_get_name(id);
1975 p = isl_id_get_user(id);
1976 isl_ast_expr_free(expr);
1977 isl_ast_expr_free(arg);
1979 gpu_stmt = find_stmt(data->prog, id);
1980 is_sync = gpu_tree_id_is_sync(id, data->kernel);
1981 isl_id_free(id);
1983 if (gpu_stmt)
1984 return create_domain_leaf(data->kernel, node, build, gpu_stmt);
1986 if (!prefixcmp(name, "to_device_") || !prefixcmp(name, "from_device_"))
1987 return node;
1988 if (!strcmp(name, "init_device"))
1989 return build_array_bounds(node, data->prog, build);
1990 if (!strcmp(name, "clear_device"))
1991 return node;
1992 if (is_sync < 0)
1993 return isl_ast_node_free(node);
1994 if (!strcmp(name, "read") || !strcmp(name, "write")) {
1995 struct gpu_array_ref_group *group = p;
1996 return create_access_leaf(data->kernel, group, node, build);
1998 if (!is_sync)
1999 isl_die(data->prog->ctx, isl_error_internal,
2000 "unknown statement type",
2001 return isl_ast_node_free(node));
2002 return create_sync_leaf(data->kernel, node, build);
2005 /* Given a set of wrapped references "ref", return the corresponding
2006 * access relations based on the tagged access relations "tagged".
2008 * The elements of "ref" are of the form
2010 * [D -> R]
2012 * with D an iteration domains and R a reference.
2013 * The elements of "tagged" are of the form
2015 * [D -> R] -> A
2017 * with A an array.
2019 * Extend "tagged" to include the iteration domain in the range, i.e.,
2021 * [D -> R] -> [D -> A]
2023 * apply the result to "ref" and then unwrap the resulting set
2024 * to obtain relations of the form
2026 * D -> A
2028 static __isl_give isl_union_map *wrapped_reference_to_access(
2029 __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
2031 isl_union_map *tag2access;
2033 tag2access = isl_union_map_copy(tagged);
2034 tag2access = isl_union_map_universe(tag2access);
2035 tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
2036 tag2access = isl_union_map_domain_map(tag2access);
2037 tag2access = isl_union_map_range_product(tag2access, tagged);
2039 ref = isl_union_set_coalesce(ref);
2040 ref = isl_union_set_apply(ref, tag2access);
2042 return isl_union_set_unwrap(ref);
2045 /* Given an access relation "access" from one or more array reference groups,
2046 * remove those reads if ("read" is 1) or writes (if "read" is 0)
2047 * that are only needed to communicate data within
2048 * the same iteration of "sched".
2049 * "tagged" contains all tagged access relations to all
2050 * the array reference groups accessed by "access" from statement
2051 * instances scheduled by "sched".
2053 * If the access is a read then it is either an element of
2055 * live_in union (range flow)
2057 * where live_in and flow may be overapproximations, or
2058 * it reads an uninitialized value (that is not live-in because
2059 * there is an intermediate kill) or it reads a value that was
2060 * written within the same (compound) statement instance.
2061 * If the access is a write then it is either an element of
2063 * live_out union (domain flow)
2065 * or it writes a value that is never read (and is not live-out
2066 * because of an intermediate kill) or only
2067 * within the same (compound) statement instance.
2068 * In both cases, the access relation is also a subset of
2069 * the group access relation.
2071 * The cases where an uninitialized value is read or a value is written
2072 * that is never read or where the dataflow occurs within a statement
2073 * instance are also considered local and may also be removed.
2075 * Essentially, we compute the intersection of "access" with either
2077 * live_in union (range non-local-flow)
2079 * or
2081 * live_out union (domain non-local-flow)
2083 * We first construct a relation "local"
2085 * [[D -> R] -> [D' -> R']]
2087 * of pairs of domain iterations accessing the reference group
2088 * and references in the group that are coscheduled by "sched".
2090 * If this relation does not intersect the dataflow dependences,
2091 * then there is nothing we can possibly remove, unless the dataflow
2092 * dependences themselves only relate a subset of the accesses.
2093 * In particular, the accesses may not be involved in any dataflow
2094 * dependences, either because they are uninitialized reads/dead writes
2095 * or because the dataflow occurs inside a statement instance.
2097 * Since the computation below may break up the access relation
2098 * into smaller pieces, we only perform the intersection with
2099 * the non-local dependent accesses if the local pairs
2100 * intersect the dataflow dependences. Otherwise, we intersect
2101 * with the universe of the non-local dependent accesses.
2102 * This should at least remove accesses from statements that
2103 * do not participate in any dependences.
2105 * In particular, we remove the "local" dataflow dependences from
2106 * the set of all dataflow dependences, or at least those
2107 * that may contribute to a domain/range that intersects
2108 * the domain of "access".
2109 * Note that if the potential dataflow dependences are an overapproximation
2110 * of the actual dataflow dependences, then the result remains an
2111 * overapproximation of the non-local dataflow dependences.
2112 * Copying to/from global memory is only needed for the references
2113 * in the domain/range of the result or for accesses that are live out/in
2114 * for the entire scop.
2116 * We therefore map the domain/range of the "external" relation
2117 * to the corresponding access relation and take the union with
2118 * the live out/in relation.
2120 static __isl_give isl_union_map *remove_local_accesses(
2121 struct gpu_prog *prog, __isl_take isl_union_map *tagged,
2122 __isl_take isl_union_map *access, __isl_take isl_union_map *sched,
2123 int read)
2125 int empty;
2126 isl_union_pw_multi_aff *tagger;
2127 isl_union_set *domain, *access_domain;
2128 isl_union_map *local, *external, *universe;
2129 isl_union_set *tag_set;
2131 if (isl_union_map_is_empty(access)) {
2132 isl_union_map_free(sched);
2133 isl_union_map_free(tagged);
2134 return access;
2137 tagger = isl_union_pw_multi_aff_copy(prog->scop->tagger);
2138 domain = isl_union_map_domain(isl_union_map_copy(tagged));
2139 tagger = isl_union_pw_multi_aff_intersect_domain(tagger,
2140 isl_union_set_copy(domain));
2141 sched = isl_union_map_preimage_domain_union_pw_multi_aff(sched, tagger);
2143 local = isl_union_map_apply_range(sched,
2144 isl_union_map_reverse(isl_union_map_copy(sched)));
2145 local = isl_union_map_intersect(local,
2146 isl_union_map_copy(prog->scop->tagged_dep_flow));
2148 empty = isl_union_map_is_empty(local);
2150 external = isl_union_map_copy(prog->scop->tagged_dep_flow);
2151 universe = isl_union_map_universe(isl_union_map_copy(access));
2152 access_domain = isl_union_map_domain(universe);
2153 domain = isl_union_set_universe(domain);
2154 universe = isl_union_set_unwrap(domain);
2155 universe = isl_union_map_intersect_domain(universe, access_domain);
2156 domain = isl_union_map_wrap(universe);
2157 if (read)
2158 external = isl_union_map_intersect_range(external, domain);
2159 else
2160 external = isl_union_map_intersect_domain(external, domain);
2161 external = isl_union_map_intersect_params(external,
2162 isl_set_copy(prog->scop->context));
2163 external = isl_union_map_subtract(external, local);
2165 if (read) {
2166 tag_set = isl_union_map_range(external);
2167 external = wrapped_reference_to_access(tag_set, tagged);
2168 external = isl_union_map_union(external,
2169 isl_union_map_copy(prog->scop->live_in));
2170 } else {
2171 tag_set = isl_union_map_domain(external);
2172 external = wrapped_reference_to_access(tag_set, tagged);
2173 external = isl_union_map_union(external,
2174 isl_union_map_copy(prog->scop->live_out));
2177 if (empty < 0)
2178 external = isl_union_map_free(external);
2179 else if (empty)
2180 external = isl_union_map_universe(external);
2182 access = isl_union_map_intersect(access, external);
2184 return access;
2187 /* Given an access relation "access" from "group", remove those reads
2188 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
2189 * communicate data within the same iteration of the schedule at the
2190 * position where the copying of the group is inserted.
2191 * "node" points to this position, i.e., the depth at "node"
2192 * is equal to tile->depth.
2194 * We extract a schedule that picks out the iterations of the outer
2195 * tile->depth dimensions and call remove_local_accesses.
2197 static __isl_give isl_union_map *remove_local_accesses_group(
2198 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
2199 __isl_take isl_union_map *access, __isl_keep isl_schedule_node *node,
2200 int read)
2202 isl_union_map *sched, *tagged;
2204 if (isl_union_map_is_empty(access))
2205 return access;
2207 tagged = group_tagged_access_relation(group);
2208 sched = isl_schedule_node_get_prefix_schedule_relation(node);
2210 return remove_local_accesses(kernel->prog, tagged, access, sched, read);
2213 /* Build an access AST expression for the effective grid size using "build".
2214 * Store the result in kernel->grid_size_expr.
2216 static isl_stat build_grid_size(struct ppcg_kernel *kernel,
2217 __isl_keep isl_ast_build *build)
2219 isl_multi_pw_aff *size;
2221 size = isl_multi_pw_aff_copy(kernel->grid_size);
2222 size = isl_multi_pw_aff_set_tuple_name(size, isl_dim_out, "grid");
2223 kernel->grid_size_expr = ppcg_build_size_expr(size, build);
2225 if (!kernel->grid_size_expr)
2226 return isl_stat_error;
2227 return isl_stat_ok;
2230 /* Build access AST expressions for the localized array sizes using "build".
2231 * Store the result in local->bound_expr.
2232 * Only do this for arrays for which localized bounds have been computed.
2234 static isl_stat build_local_array_sizes(struct ppcg_kernel *kernel,
2235 __isl_keep isl_ast_build *build)
2237 int i;
2239 for (i = 0; i < kernel->n_array; ++i) {
2240 struct gpu_local_array_info *local = &kernel->array[i];
2241 isl_multi_pw_aff *size;
2243 if (local->n_group == 0)
2244 continue;
2245 size = isl_multi_pw_aff_copy(local->bound);
2246 local->bound_expr = ppcg_build_size_expr(size, build);
2247 if (!local->bound_expr)
2248 return isl_stat_error;
2251 return isl_stat_ok;
2254 /* Build access AST expressions for the effective grid size and
2255 * the localized array sizes using "build".
2257 static isl_stat build_grid_and_local_array_sizes(struct ppcg_kernel *kernel,
2258 __isl_keep isl_ast_build *build)
2260 if (build_grid_size(kernel, build) < 0)
2261 return isl_stat_error;
2262 if (build_local_array_sizes(kernel, build) < 0)
2263 return isl_stat_error;
2264 return isl_stat_ok;
2267 /* This function is called before the AST generator starts traversing
2268 * the schedule subtree of a node with mark "mark".
2270 * If the mark is called "kernel", store the kernel pointer in data->kernel
2271 * for use in at_domain and build AST expressions for the grid size and
2272 * the localized array sizes.
2274 static isl_stat before_mark(__isl_keep isl_id *mark,
2275 __isl_keep isl_ast_build *build, void *user)
2277 struct ppcg_at_domain_data *data = user;
2279 if (!mark)
2280 return isl_stat_error;
2281 if (!strcmp(isl_id_get_name(mark), "kernel")) {
2282 data->kernel = isl_id_get_user(mark);
2283 if (build_grid_and_local_array_sizes(data->kernel, build) < 0)
2284 return isl_stat_error;
2286 return isl_stat_ok;
2289 /* This function is called after the AST generator has finished traversing
2290 * the schedule subtree of a mark node. "node" points to the corresponding
2291 * mark AST node.
2293 * If the mark is called "kernel", then replace "node" by a user node
2294 * that "calls" the kernel, representing the launch of the kernel.
2295 * The original "node" is stored inside the kernel object so that
2296 * it can be used to print the device code.
2297 * Note that this assumes that a kernel is only launched once.
2298 * Also clear data->kernel.
2300 static __isl_give isl_ast_node *after_mark(__isl_take isl_ast_node *node,
2301 __isl_keep isl_ast_build *build, void *user)
2303 isl_ctx *ctx;
2304 isl_id *id;
2305 isl_ast_expr *expr;
2306 isl_ast_expr_list *list;
2307 struct ppcg_kernel *kernel;
2308 struct ppcg_at_domain_data *data = user;
2310 ctx = isl_ast_node_get_ctx(node);
2311 id = isl_ast_node_mark_get_id(node);
2312 if (!id)
2313 return isl_ast_node_free(node);
2314 if (strcmp(isl_id_get_name(id), "kernel") || !data->kernel) {
2315 isl_id_free(id);
2316 return node;
2318 kernel = data->kernel;
2319 data->kernel = NULL;
2320 kernel->space = isl_ast_build_get_schedule_space(build);
2321 kernel->tree = isl_ast_node_mark_get_node(node);
2322 isl_ast_node_free(node);
2324 expr = isl_ast_expr_from_id(isl_id_copy(id));
2325 list = isl_ast_expr_list_alloc(ctx, 0);
2326 expr = isl_ast_expr_call(expr, list);
2327 node = isl_ast_node_alloc_user(expr);
2328 node = isl_ast_node_set_annotation(node, id);
2330 return node;
2333 static isl_bool update_depth(__isl_keep isl_schedule_node *node, void *user)
2335 int *depth = user;
2336 int node_depth;
2338 if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
2339 return isl_bool_true;
2340 node_depth = isl_schedule_node_get_schedule_depth(node);
2341 if (node_depth > *depth)
2342 *depth = node_depth;
2344 return isl_bool_false;
2347 /* Use isl to generate code for both the host and the device
2348 * from "schedule".
2349 * The device code is marked by "kernel" mark nodes in the schedule tree,
2350 * containing a pointer to a ppcg_kernel object.
2351 * The returned AST only contains the AST for the host code.
2352 * The ASTs for the device code are embedded in ppcg_kernel objects
2353 * attached to the leaf nodes that call "kernel".
2355 static __isl_give isl_ast_node *generate_code(struct gpu_gen *gen,
2356 __isl_take isl_schedule *schedule)
2358 struct ppcg_at_domain_data data;
2359 isl_ast_build *build;
2360 isl_ast_node *tree;
2361 isl_id_list *iterators;
2362 int depth;
2364 data.prog = gen->prog;
2365 data.kernel = NULL;
2367 depth = 0;
2368 if (isl_schedule_foreach_schedule_node_top_down(schedule, &update_depth,
2369 &depth) < 0)
2370 return NULL;
2371 build = isl_ast_build_alloc(gen->prog->ctx);
2372 iterators = ppcg_scop_generate_names(gen->prog->scop, depth, "c");
2373 build = isl_ast_build_set_iterators(build, iterators);
2374 build = isl_ast_build_set_at_each_domain(build, &at_domain, &data);
2375 build = isl_ast_build_set_before_each_mark(build, &before_mark, &data);
2376 build = isl_ast_build_set_after_each_mark(build, &after_mark, &data);
2377 if (gen->prog->scop->options->debug->dump_final_schedule)
2378 isl_schedule_dump(schedule);
2379 tree = isl_ast_build_node_from_schedule(build, schedule);
2380 isl_ast_build_free(build);
2382 return tree;
2385 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
2387 if (!str)
2388 return NULL;
2389 return isl_union_map_read_from_str(ctx, str);
2392 /* Can "node" be tiled and then mapped to block and thread identifiers?
2393 * That is, is it permutable with at least one coincident dimension?
2395 static int is_permutable(__isl_keep isl_schedule_node *node)
2397 if (!node)
2398 return -1;
2400 if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
2401 return 0;
2402 if (!isl_schedule_node_band_get_permutable(node))
2403 return 0;
2404 if (isl_schedule_node_band_n_member(node) < 1)
2405 return 0;
2406 if (!isl_schedule_node_band_member_get_coincident(node, 0))
2407 return 0;
2409 return 1;
2412 /* A isl_schedule_foreach_schedule_node_top_down callback
2413 * for setting *any_permutable and aborting the search
2414 * if "node" is a permutable band with coincident dimensions.
2415 * Otherwise, continue searching.
2417 static isl_bool set_permutable(__isl_keep isl_schedule_node *node, void *user)
2419 int *any_permutable = user;
2420 int permutable;
2422 permutable = is_permutable(node);
2423 if (permutable < 0)
2424 return isl_bool_error;
2425 if (!permutable)
2426 return isl_bool_true;
2428 *any_permutable = 1;
2430 return isl_bool_error;
2433 /* Does the subtree rooted at "node" have any suitably permutable band nodes?
2434 * That is, does it have any nodes that are permutable and that
2435 * have a least one coincident dimension?
2437 static int subtree_has_permutable_bands(__isl_keep isl_schedule_node *node)
2439 int any_parallelism = 0;
2441 if (isl_schedule_node_foreach_descendant_top_down(node, &set_permutable,
2442 &any_parallelism) < 0 &&
2443 !any_parallelism)
2444 return -1;
2446 return any_parallelism;
2449 /* Does "schedule" contain any permutable band with at least one coincident
2450 * member?
2452 static int has_any_permutable_node(__isl_keep isl_schedule *schedule)
2454 isl_schedule_node *root;
2455 int any_permutable;
2457 root = isl_schedule_get_root(schedule);
2458 any_permutable = subtree_has_permutable_bands(root);
2459 isl_schedule_node_free(root);
2461 return any_permutable;
2464 /* Is "node" a candidate for mapping to block and thread identifiers?
2465 * In particular, is it permutable with at least one coincident dimension?
2466 * Alternatively, does the subtree rooted at "node" not contain
2467 * any such permutable node? Filter nodes are skipped in this case,
2468 * because a band node will be inserted in front of the returned
2469 * node and this is not possible for filter nodes that are children
2470 * of set or sequence nodes.
2472 static int is_candidate(__isl_keep isl_schedule_node *node)
2474 int permutable;
2476 if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf)
2477 return 1;
2478 permutable = is_permutable(node);
2479 if (permutable < 0 || permutable)
2480 return permutable;
2481 if (isl_schedule_node_get_type(node) == isl_schedule_node_filter)
2482 return 0;
2483 permutable = subtree_has_permutable_bands(node);
2484 if (permutable < 0)
2485 return -1;
2486 return !permutable;
2489 /* Is "node" the outermost node in its branch that can be tiled
2490 * and then mapped to block and thread identifiers?
2491 * If there are no such nodes in the subtree at "node" and
2492 * if "node" is not a filter node, then it is accepted too.
2494 static int is_outer_tilable(__isl_keep isl_schedule_node *node)
2496 int tilable;
2497 isl_schedule_node *ancestor;
2499 tilable = is_candidate(node);
2500 if (tilable < 0)
2501 return -1;
2502 if (!tilable)
2503 return 0;
2505 tilable = 0;
2506 ancestor = isl_schedule_node_copy(node);
2507 while (isl_schedule_node_has_parent(ancestor)) {
2508 ancestor = isl_schedule_node_parent(ancestor);
2510 tilable = is_candidate(ancestor);
2511 if (tilable < 0 || tilable)
2512 break;
2515 isl_schedule_node_free(ancestor);
2516 return tilable < 0 ? -1 : !tilable;
2519 /* Collect the references to all writes in "group".
2520 * Each reference is represented by a universe set in a space
2522 * [S[i,j] -> R[]]
2524 * with S[i,j] the statement instance space and R[] the array reference.
2526 static __isl_give isl_union_set *group_tagged_writes(
2527 struct gpu_array_ref_group *group)
2529 int i;
2530 isl_space *space;
2531 isl_union_set *writes;
2533 space = isl_map_get_space(group->access);
2534 writes = isl_union_set_empty(space);
2535 for (i = 0; i < group->n_ref; ++i) {
2536 isl_space *space;
2537 isl_set *writes_i;
2539 if (!group->refs[i]->write)
2540 continue;
2542 space = isl_map_get_space(group->refs[i]->tagged_access);
2543 space = isl_space_domain(space);
2544 writes_i = isl_set_universe(space);
2545 writes = isl_union_set_add_set(writes, writes_i);
2548 return writes;
2551 /* Is there any write access in "group" that requires synchronization
2552 * on a write to global memory?
2553 * We currently take into account all writes that would require
2554 * synchronization at the thread level depth, but if the copying
2555 * for this group is performed at an outer level, then we do not
2556 * actually need to take into account dependences at intermediate levels.
2558 static int any_sync_writes_in_group(struct ppcg_kernel *kernel,
2559 struct gpu_array_ref_group *group)
2561 isl_union_set *writes;
2562 int empty, disjoint;
2564 empty = isl_union_set_is_empty(kernel->sync_writes);
2565 if (empty < 0)
2566 return -1;
2567 if (empty)
2568 return 0;
2570 writes = group_tagged_writes(group);
2571 disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
2572 isl_union_set_free(writes);
2574 return disjoint < 0 ? -1 : !disjoint;
2577 /* Collect the references to all writes in "kernel" that write directly
2578 * to global or shared memory, i.e., that are not mapped to private memory.
2579 * Each reference is represented by a universe set in a space
2581 * [S[i,j] -> R[]]
2583 * with S[i,j] the statement instance space and R[] the array reference.
2585 static __isl_give isl_union_set *collect_non_private_tagged_writes(
2586 struct ppcg_kernel *kernel)
2588 isl_union_set *writes;
2589 int i, j;
2591 writes = isl_union_set_empty(isl_union_set_get_space(kernel->arrays));
2593 for (i = 0; i < kernel->n_array; ++i) {
2594 struct gpu_local_array_info *array = &kernel->array[i];
2596 for (j = 0; j < array->n_group; ++j) {
2597 struct gpu_array_ref_group *group = array->groups[j];
2598 enum ppcg_group_access_type type;
2599 isl_union_set *writes_ij;
2601 if (!group->write)
2602 continue;
2603 type = gpu_array_ref_group_type(group);
2604 if (type == ppcg_access_private)
2605 continue;
2606 writes_ij = group_tagged_writes(group);
2607 writes = isl_union_set_union(writes, writes_ij);
2611 return writes;
2614 /* Are there any direct writes to global memory that require
2615 * synchronization?
2617 static int any_global_or_shared_sync_writes(struct ppcg_kernel *kernel)
2619 isl_union_set *writes;
2620 int empty, disjoint;
2622 empty = isl_union_set_is_empty(kernel->sync_writes);
2623 if (empty < 0)
2624 return -1;
2625 if (empty)
2626 return 0;
2628 writes = collect_non_private_tagged_writes(kernel);
2629 disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
2630 isl_union_set_free(writes);
2632 return disjoint < 0 ? -1 : !disjoint;
2635 /* Construct an isl_multi_val for use as tile sizes for tiling "node"
2636 * from the elements in "tile_size".
2638 static __isl_give isl_multi_val *construct_band_tiles_sizes(
2639 __isl_keep isl_schedule_node *node, int *tile_size)
2641 int i, n;
2642 isl_ctx *ctx;
2643 isl_space *space;
2644 isl_multi_val *mv;
2646 if (!node)
2647 return NULL;
2649 ctx = isl_schedule_node_get_ctx(node);
2650 space = isl_schedule_node_band_get_space(node);
2651 n = isl_schedule_node_band_n_member(node);
2652 mv = isl_multi_val_zero(space);
2653 for (i = 0; i < n; ++i) {
2654 isl_val *v;
2656 v = isl_val_int_from_si(ctx, tile_size[i]);
2657 mv = isl_multi_val_set_val(mv, i, v);
2660 return mv;
2663 /* Replace the partial schedule S of the band node "node" by
2665 * floor(S/f)
2667 * or
2669 * f * floor(S/f)
2671 * if scale_tile_loops is set, with f the integers in "factor".
2672 * The list that "factor" points to is assumed to contain at least
2673 * as many elements as the number of members in the band.
2675 static __isl_give isl_schedule_node *snap_band_to_sizes(
2676 __isl_take isl_schedule_node *node, int *factor,
2677 struct ppcg_options *options)
2679 isl_multi_val *mv;
2681 mv = construct_band_tiles_sizes(node, factor);
2682 node = isl_schedule_node_band_scale_down(node, isl_multi_val_copy(mv));
2683 if (options->scale_tile_loops)
2684 node = isl_schedule_node_band_scale(node,
2685 isl_multi_val_copy(mv));
2686 isl_multi_val_free(mv);
2688 return node;
2691 /* Tile "band" with tile size specified by "sizes".
2693 * Since the tile loops will be mapped to block ids, we forcibly
2694 * turn off tile loop scaling. We may want to enable tile loop scaling
2695 * at some later point, but then we would have to support the detection
2696 * of strides during the mapping to block ids.
2697 * Similarly, since the point loops will be mapped to thread ids,
2698 * we forcibly shift the point loops so that they start at zero.
2700 static __isl_give isl_schedule_node *tile_band(
2701 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
2703 isl_ctx *ctx = isl_schedule_node_get_ctx(node);
2704 int scale_tile;
2705 int shift_point;
2707 scale_tile = isl_options_get_tile_scale_tile_loops(ctx);
2708 isl_options_set_tile_scale_tile_loops(ctx, 0);
2709 shift_point = isl_options_get_tile_shift_point_loops(ctx);
2710 isl_options_set_tile_shift_point_loops(ctx, 1);
2712 node = isl_schedule_node_band_tile(node, sizes);
2714 isl_options_set_tile_scale_tile_loops(ctx, scale_tile);
2715 isl_options_set_tile_shift_point_loops(ctx, shift_point);
2717 return node;
2720 /* Extract the set of parameter values and outer schedule dimensions
2721 * for which any statement instance
2722 * in the kernel inserted at "node" needs to be executed.
2723 * Intersect the set of parameter values derived from the host schedule
2724 * relation with the context of "prog".
2726 static __isl_give isl_set *extract_context(__isl_keep isl_schedule_node *node,
2727 struct gpu_prog *prog)
2729 isl_union_map *schedule;
2730 isl_union_set *schedule_domain;
2731 isl_set *context;
2732 int empty;
2734 schedule = isl_schedule_node_get_prefix_schedule_relation(node);
2735 schedule_domain = isl_union_map_range(schedule);
2736 empty = isl_union_set_is_empty(schedule_domain);
2737 if (empty < 0) {
2738 isl_union_set_free(schedule_domain);
2739 return NULL;
2741 if (empty) {
2742 int depth;
2743 isl_space *space;
2745 space = isl_union_set_get_space(schedule_domain);
2746 isl_union_set_free(schedule_domain);
2747 space = isl_space_set_from_params(space);
2748 depth = isl_schedule_node_get_schedule_depth(node);
2749 space = isl_space_add_dims(space, isl_dim_set, depth);
2750 context = isl_set_empty(space);
2751 } else {
2752 context = isl_set_from_union_set(schedule_domain);
2754 context = isl_set_intersect_params(context,
2755 isl_set_copy(prog->context));
2757 return context;
2760 /* Return the set of outer array elements accessed by
2761 * by the statement instance in "domain" in "prog".
2763 static __isl_give isl_union_set *accessed_by_domain(
2764 __isl_take isl_union_set *domain, struct gpu_prog *prog)
2766 isl_union_map *access;
2767 isl_union_set *arrays;
2769 access = isl_union_map_union(isl_union_map_copy(prog->read),
2770 isl_union_map_copy(prog->may_write));
2771 access = isl_union_map_intersect_domain(access, domain);
2772 arrays = isl_union_map_range(access);
2773 arrays = isl_union_set_apply(arrays,
2774 isl_union_map_copy(prog->to_outer));
2776 return arrays;
2779 /* Return the number of outer band members of the band node "node"
2780 * that are marked coincident.
2782 static int n_outer_coincidence(__isl_keep isl_schedule_node *node)
2784 int i, n;
2786 n = isl_schedule_node_band_n_member(node);
2788 for (i = 0; i < n; ++i)
2789 if (!isl_schedule_node_band_member_get_coincident(node, i))
2790 break;
2792 return i;
2795 /* If the band node "node" has more than "n" members, then split off
2796 * the first "n" of them.
2798 static __isl_give isl_schedule_node *split_band(
2799 __isl_take isl_schedule_node *node, int n)
2801 int dim;
2803 dim = isl_schedule_node_band_n_member(node);
2804 if (n < dim)
2805 node = isl_schedule_node_band_split(node, n);
2807 return node;
2810 /* Scale a band node that may have been split by split_band.
2811 * "sizes" are the scaling factors for the original node.
2812 * "node" either points to the original band node, or the outer
2813 * of the two pieces after splitting.
2815 * If the number of elements in "node" is smaller than the number of
2816 * elements in "sizes", then some splitting has occurred and we split
2817 * "sizes" in the same way.
2819 static __isl_give isl_schedule_node *scale_band(
2820 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
2822 int n, dim;
2824 n = isl_multi_val_dim(sizes, isl_dim_set);
2825 dim = isl_schedule_node_band_n_member(node);
2826 if (n > dim) {
2827 isl_multi_val *sizes2;
2829 sizes2 = isl_multi_val_copy(sizes);
2830 sizes = isl_multi_val_drop_dims(sizes,
2831 isl_dim_set, dim, n - dim);
2832 sizes2 = isl_multi_val_drop_dims(sizes2, isl_dim_set, 0, dim);
2833 node = isl_schedule_node_child(node, 0);
2834 node = isl_schedule_node_band_scale(node, sizes2);
2835 node = isl_schedule_node_parent(node);
2838 return isl_schedule_node_band_scale(node, sizes);
2841 /* Return an isl_multi_aff, with as elements the parameters in "space"
2842 * that have the names specified by the elements in "names".
2843 * If (some of) these parameters do not already appear in "space",
2844 * then they are added first.
2846 static __isl_give isl_multi_aff *parameter_vector(__isl_take isl_space *space,
2847 __isl_keep isl_id_list *names)
2849 int i, n;
2850 isl_local_space *ls;
2851 isl_multi_aff *ma;
2853 if (!names)
2854 space = isl_space_free(space);
2856 n = isl_id_list_n_id(names);
2857 for (i = 0; i < n; ++i) {
2858 int pos;
2859 isl_id *id;
2861 id = isl_id_list_get_id(names, i);
2862 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
2863 if (pos >= 0) {
2864 isl_id_free(id);
2865 continue;
2867 pos = isl_space_dim(space, isl_dim_param);
2868 space = isl_space_add_dims(space, isl_dim_param, 1);
2869 space = isl_space_set_dim_id(space, isl_dim_param, pos, id);
2871 ma = isl_multi_aff_zero(isl_space_copy(space));
2872 ls = isl_local_space_from_space(isl_space_domain(space));
2873 for (i = 0; i < n; ++i) {
2874 int pos;
2875 isl_id *id;
2876 isl_aff *aff;
2878 id = isl_id_list_get_id(names, i);
2879 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
2880 isl_id_free(id);
2881 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
2882 isl_dim_param, pos);
2883 ma = isl_multi_aff_set_aff(ma, i, aff);
2885 isl_local_space_free(ls);
2887 return ma;
2890 /* Return constraints on the domain elements that equate a sequence of
2891 * parameters called "names", to the partial schedule
2892 * of "node" modulo the integers in "size".
2893 * The number of elements in the array "size" should be equal
2894 * to the number of elements in "names".
2895 * The number of members of the band node "node" should be smaller
2896 * than or equal to this number. If it is smaller, then the first
2897 * elements of "names" are equated to zero.
2899 static __isl_give isl_union_set *set_schedule_modulo(
2900 __isl_keep isl_schedule_node *node, __isl_keep isl_id_list *names,
2901 int *size)
2903 int n, n_zero;
2904 isl_space *space;
2905 isl_multi_aff *ma;
2906 isl_multi_union_pw_aff *mupa, *mupa2;
2907 isl_multi_val *mv;
2908 isl_union_set *domain;
2910 if (!node)
2911 return NULL;
2912 n = isl_id_list_n_id(names);
2913 if (n == 0)
2914 return isl_schedule_node_get_universe_domain(node);
2915 n_zero = n - isl_schedule_node_band_n_member(node);
2917 mupa = isl_schedule_node_band_get_partial_schedule(node);
2918 mv = construct_band_tiles_sizes(node, size + n_zero);
2919 mupa = isl_multi_union_pw_aff_mod_multi_val(mupa, mv);
2921 space = isl_multi_union_pw_aff_get_space(mupa);
2922 space = isl_space_params(space);
2923 space = isl_space_set_from_params(space);
2924 space = isl_space_add_dims(space, isl_dim_set, n_zero);
2925 ma = isl_multi_aff_zero(space);
2927 domain = isl_schedule_node_get_universe_domain(node);
2928 mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(
2929 isl_union_set_copy(domain), ma);
2930 mupa = isl_multi_union_pw_aff_range_product(mupa2, mupa);
2932 space = isl_multi_union_pw_aff_get_space(mupa);
2933 ma = parameter_vector(space, names);
2935 mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(domain, ma);
2936 mupa = isl_multi_union_pw_aff_sub(mupa, mupa2);
2938 return isl_multi_union_pw_aff_zero_union_set(mupa);
2941 /* Insert a context node at "node" introducing the block and thread
2942 * identifiers along with their bounds, which are stored in kernel->grid_size
2943 * and kernel->block_dim.
2944 * Note that the bounds on the block identifiers may implicitly impose
2945 * constraints on the parameters. A guard needs to be inserted
2946 * in the schedule tree to ensure that those bounds hold at "node".
2947 * This guard is inserted in insert_guard.
2949 static __isl_give isl_schedule_node *insert_context(struct ppcg_kernel *kernel,
2950 __isl_take isl_schedule_node *node)
2952 isl_set *context;
2954 context = isl_set_universe(isl_set_get_space(kernel->context));
2956 context = add_bounded_parameters_dynamic(context,
2957 kernel->grid_size, kernel->block_ids);
2958 context = add_bounded_parameters(context,
2959 kernel->block_dim, kernel->thread_ids);
2961 node = isl_schedule_node_insert_context(node, context);
2963 return node;
2966 /* Insert a guard that eliminates kernel launches where the kernel
2967 * obviously does not have any work to do.
2969 * In particular, eliminate kernel launches where there are obviously
2970 * zero blocks.
2971 * Use the same block size constraints that are used to create the context
2972 * to ensure that all constraints implicit in the constructed context
2973 * are imposed by the guard.
2975 * Additionally, add other constraints that are valid
2976 * for each executed instance ("context"), as long as this does not result
2977 * in a disjunction.
2979 static __isl_give isl_schedule_node *insert_guard(
2980 __isl_take isl_schedule_node *node, __isl_keep isl_set *context,
2981 __isl_keep isl_multi_pw_aff *size, struct ppcg_scop *scop)
2983 unsigned nparam, n;
2984 isl_set *guard;
2985 isl_id_list *ids;
2987 guard = isl_set_copy(context);
2988 guard = isl_set_compute_divs(guard);
2989 guard = isl_set_from_basic_set(isl_set_simple_hull(guard));
2991 nparam = isl_set_dim(guard, isl_dim_param);
2992 n = isl_multi_pw_aff_dim(size, isl_dim_out);
2993 ids = ppcg_scop_generate_names(scop, n, "__ppcg_tmp");
2994 guard = add_bounded_parameters_dynamic(guard, size, ids);
2995 isl_id_list_free(ids);
2996 guard = isl_set_project_out(guard, isl_dim_param, nparam, n);
2998 node = isl_schedule_node_insert_guard(node, guard);
3000 return node;
3003 /* Does any array reference group mapping require the band that is mapped
3004 * to threads to be unrolled?
3006 static int kernel_requires_unroll(struct ppcg_kernel *kernel)
3008 int i, j;
3010 for (i = 0; i < kernel->n_array; ++i) {
3011 struct gpu_local_array_info *array = &kernel->array[i];
3013 for (j = 0; j < array->n_group; ++j) {
3014 struct gpu_array_ref_group *group = array->groups[j];
3015 if (gpu_array_ref_group_requires_unroll(group))
3016 return 1;
3020 return 0;
3023 /* Mark the given band node "node" for unrolling by the AST generator and
3024 * then sink it to the leaves of the schedule tree.
3025 * All dimensions of "node" are assumed to be coincident, such that this
3026 * sinking is a valid operation.
3028 static __isl_give isl_schedule_node *unroll(__isl_take isl_schedule_node *node)
3030 node = ppcg_set_schedule_node_type(node, isl_ast_loop_unroll);
3032 node = isl_schedule_node_band_sink(node);
3034 return node;
3037 /* Insert a synchronization node in the schedule tree of "node"
3038 * after the core computation of "kernel" at the level of the band
3039 * that is mapped to threads, except if that level is equal to
3040 * that of the band that is mapped to blocks or if there are no writes
3041 * to global or shared memory in the core computation that require
3042 * synchronization.
3043 * If there are any writes to shared memory and the shared memory
3044 * copying is performed at the same level, then synchronization
3045 * is needed between the core and the copying anyway, so we might
3046 * as well add it here. If the copying is performed at a higher
3047 * level, then different iterations of intermediate schedule dimensions
3048 * may have a different mapping from between shared memory elements and
3049 * threads, such that synchronization is required after the core.
3050 * "node" is assumed to point to the kernel node.
3052 static __isl_give isl_schedule_node *add_sync(struct ppcg_kernel *kernel,
3053 __isl_take isl_schedule_node *node)
3055 int kernel_depth;
3056 int need_sync;
3058 need_sync = any_global_or_shared_sync_writes(kernel);
3059 if (need_sync < 0)
3060 return isl_schedule_node_free(node);
3061 if (!need_sync)
3062 return node;
3064 kernel_depth = isl_schedule_node_get_schedule_depth(node);
3066 node = gpu_tree_move_down_to_thread(node, kernel->core);
3067 if (kernel_depth == isl_schedule_node_get_schedule_depth(node))
3068 return gpu_tree_move_up_to_kernel(node);
3070 node = gpu_tree_ensure_following_sync(node, kernel);
3072 node = gpu_tree_move_up_to_kernel(node);
3074 return node;
3077 /* Return a read ("read" is 1) or write access relation for "group"
3078 * with those accesses removed that are only needed to communicate data
3079 * within the subtree of the schedule rooted at "node".
3080 * Furthermore, include the prefix schedule at "node".
3081 * That is, return a relation of the form
3083 * S -> [D -> A]
3085 * with D the outer schedule dimensions at "node".
3087 static __isl_give isl_union_map *anchored_non_local_accesses(
3088 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3089 __isl_take isl_schedule_node *node, int read)
3091 isl_union_map *access;
3092 isl_union_map *prefix;
3094 access = gpu_array_ref_group_access_relation(group, read, !read);
3095 access = remove_local_accesses_group(kernel, group, access, node, read);
3096 prefix = isl_schedule_node_get_prefix_schedule_relation(node);
3097 access = isl_union_map_range_product(prefix, access);
3099 return access;
3102 /* Given an array reference group "group", create a mapping
3104 * read[D -> A] -> [D -> A]
3106 * if "read" is set or
3108 * write[D -> A] -> [D -> A]
3110 * if "read" is not set.
3111 * D corresponds to the outer tile->depth dimensions of
3112 * the kernel schedule.
3114 static __isl_give isl_multi_aff *create_from_access(isl_ctx *ctx,
3115 struct gpu_array_ref_group *group, int read)
3117 struct gpu_array_tile *tile;
3118 isl_space *space;
3119 isl_id *id;
3121 tile = gpu_array_ref_group_tile(group);
3122 space = isl_space_copy(group->array->space);
3123 space = isl_space_from_range(space);
3124 space = isl_space_add_dims(space, isl_dim_in, tile->depth);
3125 space = isl_space_wrap(space);
3126 space = isl_space_map_from_set(space);
3128 id = isl_id_alloc(ctx, read ? "read" : "write", group);
3129 space = isl_space_set_tuple_id(space, isl_dim_in, id);
3131 return isl_multi_aff_identity(space);
3134 /* If any writes in "group" require synchronization, then make sure
3135 * that there is a synchronization node for "kernel" after the node
3136 * following "node" in a sequence.
3138 * If "shared" is set and no synchronization is needed for
3139 * the writes to global memory, then add synchronization before
3140 * the kernel to protect shared memory from being overwritten
3141 * by the next iteration of the core computation.
3142 * No additional synchronization is needed to protect against
3143 * the next copy into shared memory because each element of
3144 * the shared memory tile is always copied by the same thread.
3146 static __isl_give isl_schedule_node *add_group_write_sync(
3147 __isl_take isl_schedule_node *node, struct ppcg_kernel *kernel,
3148 struct gpu_array_ref_group *group, int shared)
3150 int need_sync;
3152 need_sync = any_sync_writes_in_group(kernel, group);
3153 if (need_sync < 0)
3154 return isl_schedule_node_free(node);
3155 if (need_sync) {
3156 node = isl_schedule_node_parent(node);
3157 node = isl_schedule_node_next_sibling(node);
3158 node = isl_schedule_node_child(node, 0);
3159 node = gpu_tree_ensure_following_sync(node, kernel);
3160 } else if (shared) {
3161 struct gpu_array_tile *tile;
3163 tile = gpu_array_ref_group_tile(group);
3164 node = isl_schedule_node_parent(node);
3165 node = isl_schedule_node_parent(node);
3166 node = gpu_tree_move_down_to_depth(node, tile->depth,
3167 kernel->core);
3168 node = gpu_tree_move_left_to_sync(node, kernel);
3171 return node;
3174 /* Add copy statements to the schedule tree of "node"
3175 * for reading from global memory to private memory (if "read" is set) or
3176 * for writing back from private memory to global memory
3177 * (if "read" is not set) for the array reference group "group" that
3178 * is mapped to private memory.
3179 * On input, "node" points to the kernel node, and it is moved
3180 * back there on output.
3182 * The copies are performed in the order of the array elements.
3183 * The copy statement instances include a reference to the outer
3184 * tile->depth dimensions of the kernel schedule for ease of
3185 * combining them with the group tiling.
3187 * That is, the extra schedule is of the form
3189 * type[D -> A] -> A
3191 * where D corresponds to the outer tile->depth dimensions of
3192 * the kernel schedule and A to the global array.
3193 * This schedule is unrolled because registers are not addressable.
3195 * The copying is inserted in the schedule tree through an extension
3196 * of the form
3198 * D -> type[D -> A]
3200 * where the extra domain elements type[D -> A] are those accessed
3201 * by the group.
3202 * A filter is inserted on type[D -> A] to ensure that the element
3203 * is read/written by the same thread that needs the element.
3204 * This filter is obtained by applying
3206 * S -> type[D -> A]
3208 * to the thread filter for the core statements.
3210 * The extension is inserted before the core computation in case of a read
3211 * and after the core computation in case of a write.
3212 * In the latter case, we also make sure that there is a synchronization
3213 * node after the write to global memory, unless this write is performed
3214 * at the outer level of the kernel.
3215 * In principle, this synchronization could be inserted higher
3216 * in the schedule tree depending on where the corresponding reads
3217 * from global memory are performed.
3219 static __isl_give isl_schedule_node *add_copies_group_private(
3220 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3221 __isl_take isl_schedule_node *node, int read)
3223 struct gpu_array_tile *tile;
3224 isl_union_map *access;
3225 isl_union_set *domain;
3226 isl_space *space;
3227 isl_multi_aff *from_access;
3228 isl_multi_pw_aff *mpa;
3229 isl_multi_union_pw_aff *mupa;
3230 isl_schedule_node *graft;
3231 isl_union_set *filter;
3232 int kernel_depth;
3233 int empty;
3235 kernel_depth = isl_schedule_node_get_schedule_depth(node);
3236 tile = gpu_array_ref_group_tile(group);
3237 node = gpu_tree_move_down_to_depth(node, tile->depth, kernel->core);
3239 access = anchored_non_local_accesses(kernel, group, node, read);
3240 empty = isl_union_map_is_empty(access);
3241 if (empty < 0 || empty) {
3242 isl_union_map_free(access);
3243 if (empty < 0)
3244 return isl_schedule_node_free(node);
3245 return gpu_tree_move_up_to_kernel(node);
3248 group->array->global = 1;
3249 group->local_array->global = 1;
3251 from_access = create_from_access(kernel->ctx, group, read);
3252 space = isl_space_domain(isl_multi_aff_get_space(from_access));
3253 access = isl_union_map_preimage_range_multi_aff(access, from_access);
3255 filter = isl_union_set_copy(kernel->thread_filter);
3256 filter = isl_union_set_apply(filter, isl_union_map_copy(access));
3257 filter = isl_union_set_detect_equalities(filter);
3258 filter = isl_union_set_coalesce(filter);
3260 domain = isl_union_map_range(access);
3261 access = isl_union_set_wrapped_domain_map(domain);
3262 access = isl_union_map_reverse(access);
3263 access = isl_union_map_coalesce(access);
3264 graft = isl_schedule_node_from_extension(access);
3266 space = isl_space_map_from_set(space);
3267 mpa = isl_multi_pw_aff_identity(space);
3268 mpa = isl_multi_pw_aff_range_factor_range(mpa);
3269 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3271 graft = isl_schedule_node_child(graft, 0);
3272 graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
3273 graft = unroll(graft);
3275 graft = isl_schedule_node_insert_filter(graft, filter);
3277 graft = isl_schedule_node_parent(graft);
3279 if (read)
3280 node = isl_schedule_node_graft_before(node, graft);
3281 else {
3282 node = isl_schedule_node_graft_after(node, graft);
3283 if (kernel_depth < tile->depth)
3284 node = add_group_write_sync(node, kernel, group, 0);
3287 node = gpu_tree_move_up_to_kernel(node);
3289 return node;
3292 /* Add copy statements to the schedule tree of "node"
3293 * for reading from global memory to shared memory (if "read" is set) or
3294 * for writing back from shared memory to global memory
3295 * (if "read" is not set) for the array reference group "group" that
3296 * is mapped to shared memory.
3297 * On input, "node" points to the kernel node, and it is moved
3298 * back there on output.
3300 * The copies are performed in the order of the corresponding shared
3301 * memory tile.
3302 * The copy statement instances include a reference to the outer
3303 * tile->depth dimensions of the kernel schedule for ease of
3304 * combining them with the group tiling.
3306 * If we are performing a read from global memory to shared memory and
3307 * if the array involved is not a scalar, then we copy
3308 * the entire tile to shared memory. This may result in some extra
3309 * elements getting copied, but it should lead to simpler code
3310 * (which means that fewer registers may be needed) and less divergence.
3312 * Otherwise, we only copy the elements that will be read or have been written
3313 * in the kernel.
3315 * That is, the extra schedule is of the form
3317 * type[D -> A] -> T
3319 * where D corresponds to the outer tile->depth dimensions of
3320 * the kernel schedule, A to the global array and T is the corresponding
3321 * shared memory tile.
3323 * The copying is inserted in the schedule tree through an extension
3324 * of the form
3326 * D -> type[D -> A]
3328 * where the extra domain elements type[D -> A] are those accessed
3329 * by the group. In the case of read from a non-scalar, this set
3330 * is replaced by the entire shared memory tile.
3332 * A filter is inserted on type[D -> A] to map the copy instances
3333 * to the threads. In particular, the thread identifiers are
3334 * equated to the position inside the shared memory tile (T)
3335 * modulo the block size.
3336 * We try to align the innermost tile dimension with the innermost
3337 * thread identifier (x) as a heuristic to improve coalescing.
3338 * In particular, if the dimension of the tile is greater than
3339 * the dimension of the block, then the schedule mapping to the tile
3340 * is broken up into two pieces and the filter is applied to the inner part.
3341 * If, on the other hand, the dimension of the tile is smaller than
3342 * the dimension of the block, then the initial thread identifiers
3343 * are equated to zero and the remaining thread identifiers are
3344 * matched to the memory tile.
3346 * The extension is inserted before the core computation in case of a read
3347 * and after the core computation in case of a write.
3348 * In the case of a read, we first need to make sure there is some
3349 * synchronization before the core computation such that we can put the read
3350 * from global memory to shared memory before that synchronization.
3351 * This ensures that all threads have finished copying into shared memory
3352 * before the shared memory is used.
3353 * We also need to make sure that there is a synchronization node after
3354 * the core computation to ensure that the next load into shared memory
3355 * only happens after all data has been used. There is no need for
3356 * this synchronization if we are at the outer level since then there
3357 * won't be a next load.
3358 * In the case of a write, we need to make sure there is some synchronization
3359 * after the core computation such taht we can put the write from shared
3360 * memory to global memory after that synchronization.
3361 * Unless we are at the outer level, we also need a synchronization node
3362 * after the write to ensure the data is saved to global memory
3363 * before the next iteration write to the same shared memory.
3364 * It also makes sure the data has arrived in global memory before
3365 * it is read in a subsequent iteration.
3367 static __isl_give isl_schedule_node *add_copies_group_shared(
3368 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3369 __isl_take isl_schedule_node *node, int read)
3371 struct gpu_array_tile *tile;
3372 isl_union_map *access;
3373 isl_union_set *domain;
3374 isl_multi_aff *ma;
3375 isl_multi_aff *from_access;
3376 isl_multi_pw_aff *mpa;
3377 isl_multi_union_pw_aff *mupa;
3378 isl_schedule_node *graft;
3379 isl_union_set *filter;
3380 int skip;
3381 int kernel_depth;
3382 int empty;
3384 tile = gpu_array_ref_group_tile(group);
3385 kernel_depth = isl_schedule_node_get_schedule_depth(node);
3386 node = gpu_tree_move_down_to_depth(node, tile->depth, kernel->core);
3388 access = anchored_non_local_accesses(kernel, group, node, read);
3389 empty = isl_union_map_is_empty(access);
3390 if (empty < 0 || empty) {
3391 isl_union_map_free(access);
3392 if (empty < 0)
3393 return isl_schedule_node_free(node);
3394 return gpu_tree_move_up_to_kernel(node);
3397 group->array->global = 1;
3398 group->local_array->global = 1;
3400 from_access = create_from_access(kernel->ctx, group, read);
3402 ma = isl_multi_aff_copy(tile->tiling);
3403 ma = isl_multi_aff_pullback_multi_aff(ma,
3404 isl_multi_aff_copy(from_access));
3405 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3406 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3408 domain = isl_union_map_range(access);
3410 if (read && !gpu_array_is_scalar(group->array)) {
3411 isl_map *map;
3412 isl_union_set_free(domain);
3413 map = group_tile(group);
3414 domain = isl_union_set_from_set(isl_map_wrap(map));
3417 domain = isl_union_set_preimage_multi_aff(domain, from_access);
3418 access = isl_union_set_wrapped_domain_map(domain);
3419 access = isl_union_map_reverse(access);
3420 access = isl_union_map_coalesce(access);
3421 graft = isl_schedule_node_from_extension(access);
3423 graft = isl_schedule_node_child(graft, 0);
3425 graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
3427 if (tile->n > kernel->n_block && kernel->n_block > 0) {
3428 graft = isl_schedule_node_band_split(graft,
3429 tile->n - kernel->n_block);
3430 graft = isl_schedule_node_child(graft, 0);
3432 if (tile->n < kernel->n_block)
3433 skip = kernel->n_block - tile->n;
3434 else
3435 skip = 0;
3436 filter = set_schedule_modulo(graft, kernel->thread_ids,
3437 kernel->block_dim);
3438 if (!kernel->options->wrap)
3439 graft = snap_band_to_sizes(graft, kernel->block_dim + skip,
3440 kernel->options);
3441 if (tile->n > kernel->n_block && kernel->n_block > 0)
3442 graft = isl_schedule_node_parent(graft);
3443 graft = isl_schedule_node_insert_filter(graft, filter);
3445 while (graft && isl_schedule_node_has_parent(graft))
3446 graft = isl_schedule_node_parent(graft);
3448 if (read) {
3449 if (kernel_depth < tile->depth)
3450 node = gpu_tree_ensure_sync_after_core(node, kernel);
3451 node = gpu_tree_move_left_to_sync(node, kernel);
3452 node = isl_schedule_node_graft_before(node, graft);
3453 } else {
3454 node = gpu_tree_move_right_to_sync(node, kernel);
3455 node = isl_schedule_node_graft_after(node, graft);
3456 if (kernel_depth < tile->depth)
3457 node = add_group_write_sync(node, kernel, group, 1);
3460 node = gpu_tree_move_up_to_kernel(node);
3462 return node;
3465 /* Check whether the array reference group "group" is mapped to
3466 * private or shared memory and, if so,
3467 * add copy statements to the schedule tree of "node"
3468 * for reading from global memory to private or shared memory
3469 * (if "read" is set) or for writing back from private or shared memory
3470 * to global memory (if "read" is not set) for this group.
3471 * On input, "node" points to the kernel node, and it is moved
3472 * back there on output.
3474 static __isl_give isl_schedule_node *add_copies_group(
3475 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3476 __isl_take isl_schedule_node *node, int read)
3478 enum ppcg_group_access_type type;
3480 type = gpu_array_ref_group_type(group);
3481 if (type == ppcg_access_private)
3482 return add_copies_group_private(kernel, group, node, read);
3483 if (type == ppcg_access_shared)
3484 return add_copies_group_shared(kernel, group, node, read);
3485 return node;
3488 /* For each array reference group that is mapped to private or shared memory,
3489 * add copy statements to the schedule tree of "node"
3490 * for reading from global memory to private or shared memory
3491 * and for writing back.
3492 * On input, "node" points to the kernel node, and it is moved
3493 * back there on output.
3495 static __isl_give isl_schedule_node *add_copies(struct ppcg_kernel *kernel,
3496 __isl_take isl_schedule_node *node)
3498 int i, j;
3500 for (i = 0; i < kernel->n_array; ++i) {
3501 struct gpu_local_array_info *array = &kernel->array[i];
3503 for (j = 0; j < array->n_group; ++j) {
3504 struct gpu_array_ref_group *group = array->groups[j];
3506 node = add_copies_group(kernel, group, node, 1);
3507 if (!node)
3508 return NULL;
3509 node = add_copies_group(kernel, group, node, 0);
3510 if (!node)
3511 return NULL;
3515 return node;
3518 /* Mark all dimensions in the current band node atomic.
3520 static __isl_give isl_schedule_node *atomic(__isl_take isl_schedule_node *node)
3522 return ppcg_set_schedule_node_type(node, isl_ast_loop_atomic);
3525 /* Mark "node" atomic, if it is a band node.
3526 * Do the same for all ancestors.
3527 * Return a pointer to "node" (in the updated schedule tree).
3529 static __isl_give isl_schedule_node *atomic_ancestors(
3530 __isl_take isl_schedule_node *node)
3532 int pos;
3534 if (!node)
3535 return NULL;
3536 if (!isl_schedule_node_has_parent(node))
3537 return node;
3539 pos = isl_schedule_node_get_child_position(node);
3540 node = isl_schedule_node_parent(node);
3541 if (isl_schedule_node_get_type(node) == isl_schedule_node_band)
3542 node = atomic(node);
3543 node = atomic_ancestors(node);
3544 node = isl_schedule_node_child(node, pos);
3546 return node;
3549 /* Collect all write references that require synchronization.
3550 * "node" is assumed to point to the kernel node.
3551 * Each reference is represented by a universe set in a space
3553 * [S[i,j] -> R[]]
3555 * with S[i,j] the statement instance space and R[] the array reference.
3557 * This function should be called before block and thread filters are added.
3559 * Synchronization is needed after a write if there is a subsequent read
3560 * within the same block that may not be performed by the same thread.
3561 * There should not be any dependences between different blocks,
3562 * so we start with the flow dependences within the same kernel invocation
3563 * and we subtract from these those dependences that are mapped
3564 * to the same iteration of the bands where synchronization is inserted.
3565 * We do not remove pairs of instances that are known to map to
3566 * the same thread across different iterations of the intermediate
3567 * bands because the read may be performed by a different thread
3568 * than the one that needs the value if shared memory is involved.
3570 * We also consider all pairs of possible writes that access the same
3571 * memory location and that may be mapped to the same block but not
3572 * to the same iteration of the intermediate bands.
3573 * In theory, it would be possible for one thread to still be in
3574 * a previous iteration of a loop in these bands.
3575 * A write to global memory in this delayed thread could then overwrite
3576 * a write from another thread that has already moved on to
3577 * the next iteration.
3579 * After computing the above writes paired off with reads or writes
3580 * that depend on them, we project onto the domain writes.
3581 * Sychronization is needed after writes to global memory
3582 * through these references.
3584 static __isl_give isl_union_set *compute_sync_writes(
3585 struct ppcg_kernel *kernel, __isl_keep isl_schedule_node *node)
3587 isl_union_map *local;
3588 isl_union_map *may_writes, *shared_access;
3589 isl_union_map *kernel_prefix, *thread_prefix;
3590 isl_union_map *equal;
3591 isl_union_set *wrap;
3592 isl_union_set *domain;
3594 domain = isl_schedule_node_get_universe_domain(node);
3595 kernel_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
3596 node = isl_schedule_node_copy(node);
3597 node = gpu_tree_move_down_to_thread(node, kernel->core);
3598 thread_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
3599 isl_schedule_node_free(node);
3601 may_writes = isl_union_map_copy(kernel->prog->scop->tagged_may_writes);
3602 may_writes = isl_union_map_curry(may_writes);
3603 may_writes = isl_union_map_intersect_domain(may_writes, domain);
3604 may_writes = isl_union_map_uncurry(may_writes);
3605 shared_access = isl_union_map_copy(may_writes);
3606 shared_access = isl_union_map_apply_range(shared_access,
3607 isl_union_map_reverse(may_writes));
3609 local = isl_union_map_copy(kernel->prog->scop->tagged_dep_flow);
3610 local = isl_union_map_union(local, shared_access);
3611 local = isl_union_map_zip(local);
3613 equal = isl_union_map_apply_range(kernel_prefix,
3614 isl_union_map_reverse(isl_union_map_copy(kernel_prefix)));
3615 wrap = isl_union_map_wrap(equal);
3616 local = isl_union_map_intersect_domain(local, wrap);
3617 equal = isl_union_map_apply_range(thread_prefix,
3618 isl_union_map_reverse(isl_union_map_copy(thread_prefix)));
3619 wrap = isl_union_map_wrap(equal);
3620 local = isl_union_map_subtract_domain(local, wrap);
3622 local = isl_union_map_zip(local);
3623 local = isl_union_map_universe(local);
3625 return isl_union_map_domain(local);
3628 /* Group the domain elements into a single space, named kernelX,
3629 * with X the kernel sequence number "kernel_id".
3631 static __isl_give isl_schedule_node *group_statements(
3632 __isl_take isl_schedule_node *node, int kernel_id)
3634 char buffer[20];
3635 isl_id *id;
3637 if (!node)
3638 return NULL;
3640 snprintf(buffer, sizeof(buffer), "kernel%d", kernel_id);
3641 id = isl_id_alloc(isl_schedule_node_get_ctx(node), buffer, NULL);
3642 return isl_schedule_node_group(node, id);
3645 /* Create a ppcg_kernel representing the domain instances that reach "node"
3646 * and insert a mark node pointing to the ppcg_kernel before "node".
3647 * The band that "node" points to is the band that needs to be mapped
3648 * to block identifiers. The band that needs to be mapped to thread
3649 * identifiers should be marked by a "thread" mark by the caller.
3650 * This mark is removed by this function.
3651 * If "scale" is set, then the band that "node" points to is scaled
3652 * by "sizes".
3654 * Mark all outer band nodes as atomic to ensure each kernel is only
3655 * scheduled once.
3656 * If the domain elements that reach "node" live in more than one space,
3657 * then group the domain elements into a single space, named kernelX,
3658 * with X the kernel sequence number.
3660 * Insert a guard node governing the kernel node to ensure that
3661 * no kernels with zero blocks are launched.
3663 * Insert a context node describing the block and thread
3664 * identifiers inside the kernel mark.
3665 * The context node needs to be inserted after the effective block size
3666 * has been determined such that the bounds on the thread identifiers
3667 * would reflect the effective block size.
3668 * Insert a filter node inside the context node mapping the statement
3669 * instances to block identifiers. In particular, the block identifiers
3670 * are equated to the partial schedule of band that was marked for mapping
3671 * to blocks modulo the grid size.
3672 * Insert a filter node inside the "thread" mark mapping the statement
3673 * instances to thread identifiers. In particular, the thread identifiers
3674 * are equated to the partial schedule of band that was marked for mapping
3675 * to threads modulo the block size.
3677 * Compute array reference groups for all arrays, set the local
3678 * array bounds based on the set of domain instances that reach
3679 * the kernel node, check the total amount of shared memory used
3680 * and compute all group tilings.
3681 * The array reference groups are computed after the block filter
3682 * has been inserted because it affects the mapping to shared or
3683 * private memory. This computation also requires the thread filter
3684 * (in the ppcg_kernel object), but this thread filter should not
3685 * have been added to the schedule tree yet since the computation
3686 * requires the schedule of the band that needs to be mapped to
3687 * threads before the privatization is applied.
3689 * If any array reference group requires the band mapped to threads
3690 * to be unrolled, then we perform the required unrolling.
3692 * We save a copy of the schedule that may influence the mappings
3693 * to shared or private memory in kernel->copy_schedule.
3695 * Finally, we add synchronization and copy statements to the schedule tree,
3696 * remove the "thread" mark and create representations for the local
3697 * variables in the kernel.
3699 * We keep a copy of the isl_id that points to the kernel to ensure
3700 * that the kernel does not get destroyed if the schedule node
3701 * is freed due to some error condition.
3703 static __isl_give isl_schedule_node *create_kernel(struct gpu_gen *gen,
3704 __isl_take isl_schedule_node *node, int scale,
3705 __isl_keep isl_multi_val *sizes)
3707 struct ppcg_kernel *kernel;
3708 isl_id *id;
3709 isl_schedule_node *node_thread;
3710 isl_union_map *host_schedule;
3711 isl_set *host_domain;
3712 isl_union_set *domain;
3713 int single_statement;
3715 kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
3716 kernel = ppcg_kernel_create_local_arrays(kernel, gen->prog);
3717 if (!kernel)
3718 return isl_schedule_node_free(node);
3720 domain = isl_schedule_node_get_domain(node);
3721 single_statement = isl_union_set_n_set(domain) == 1;
3723 kernel->ctx = gen->ctx;
3724 kernel->prog = gen->prog;
3725 kernel->options = gen->options;
3726 kernel->context = extract_context(node, gen->prog);
3727 kernel->core = isl_union_set_universe(isl_union_set_copy(domain));
3728 kernel->arrays = accessed_by_domain(isl_union_set_copy(domain),
3729 gen->prog);
3730 kernel->n_grid = n_outer_coincidence(node);
3731 node_thread = isl_schedule_node_copy(node);
3732 node_thread = gpu_tree_move_down_to_thread(node_thread, kernel->core);
3733 node_thread = isl_schedule_node_child(node_thread, 0);
3734 kernel->n_block = n_outer_coincidence(node_thread);
3735 isl_schedule_node_free(node_thread);
3736 kernel->id = gen->kernel_id++;
3737 read_grid_and_block_sizes(kernel, gen);
3739 kernel->sync_writes = compute_sync_writes(kernel, node);
3741 host_schedule = isl_schedule_node_get_prefix_schedule_union_map(node);
3742 host_domain = isl_set_from_union_set(isl_union_map_range(
3743 host_schedule));
3745 node = atomic_ancestors(node);
3747 id = isl_id_alloc(gen->ctx, "kernel", kernel);
3748 id = isl_id_set_free_user(id, &ppcg_kernel_free_wrap);
3749 node = isl_schedule_node_insert_mark(node, isl_id_copy(id));
3751 if (!single_statement)
3752 node = group_statements(node, kernel->id);
3754 node = isl_schedule_node_child(node, 0);
3755 node = split_band(node, kernel->n_grid);
3756 kernel->block_ids = ppcg_scop_generate_names(gen->prog->scop,
3757 kernel->n_grid, "b");
3758 kernel->block_filter = set_schedule_modulo(node, kernel->block_ids,
3759 kernel->grid_dim);
3760 kernel->grid_size = extract_grid_size(kernel,
3761 isl_union_set_copy(domain));
3762 if (!kernel->options->wrap)
3763 node = snap_band_to_sizes(node, kernel->grid_dim,
3764 kernel->options);
3765 if (scale)
3766 node = scale_band(node, isl_multi_val_copy(sizes));
3767 node = isl_schedule_node_parent(node);
3768 if (!single_statement)
3769 node = isl_schedule_node_parent(node);
3770 node = insert_guard(node, kernel->context, kernel->grid_size,
3771 gen->prog->scop);
3772 node = gpu_tree_move_down_to_thread(node, kernel->core);
3773 node = isl_schedule_node_child(node, 0);
3774 node = split_band(node, kernel->n_block);
3775 kernel->thread_ids = ppcg_scop_generate_names(gen->prog->scop,
3776 kernel->n_block, "t");
3777 kernel->thread_filter = set_schedule_modulo(node, kernel->thread_ids,
3778 kernel->block_dim);
3779 if (extract_block_size(kernel, domain) < 0)
3780 node = isl_schedule_node_free(node);
3782 node = gpu_tree_move_up_to_kernel(node);
3783 node = isl_schedule_node_child(node, 0);
3784 node = insert_context(kernel, node);
3785 node = isl_schedule_node_child(node, 0);
3786 node = isl_schedule_node_insert_filter(node,
3787 isl_union_set_copy(kernel->block_filter));
3789 node = gpu_tree_move_up_to_kernel(node);
3791 if (gpu_group_references(kernel, node) < 0)
3792 node = isl_schedule_node_free(node);
3793 localize_bounds(kernel, host_domain);
3794 isl_set_free(host_domain);
3796 check_shared_memory_bound(kernel);
3797 mark_global_arrays(kernel);
3798 compute_group_tilings(kernel);
3800 node = gpu_tree_move_down_to_thread(node, kernel->core);
3801 node = isl_schedule_node_child(node, 0);
3802 if (!kernel->options->wrap)
3803 node = snap_band_to_sizes(node, kernel->block_dim,
3804 kernel->options);
3805 node = isl_schedule_node_insert_filter(node,
3806 isl_union_set_copy(kernel->thread_filter));
3807 if (kernel_requires_unroll(kernel)) {
3808 node = isl_schedule_node_child(node, 0);
3809 node = unroll(node);
3812 node = gpu_tree_move_up_to_thread(node);
3813 kernel->copy_schedule_dim = isl_schedule_node_get_schedule_depth(node);
3814 kernel->copy_schedule =
3815 isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node);
3817 node = gpu_tree_move_up_to_kernel(node);
3819 node = add_sync(kernel, node);
3820 node = add_copies(kernel, node);
3822 node = gpu_tree_move_down_to_thread(node, kernel->core);
3823 node = isl_schedule_node_delete(node);
3825 node = gpu_tree_move_up_to_kernel(node);
3827 if (create_kernel_vars(kernel) < 0)
3828 node = isl_schedule_node_free(node);
3830 if (!single_statement)
3831 node = isl_schedule_node_parent(node);
3832 node = isl_schedule_node_parent(node);
3834 isl_id_free(id);
3835 return node;
3838 /* Insert a zero-dimensional permutable band at "node".
3840 static __isl_give isl_schedule_node *insert_empty_permutable_band(
3841 __isl_take isl_schedule_node *node)
3843 isl_space *space;
3844 isl_schedule *schedule;
3845 isl_union_set *domain;
3846 isl_multi_union_pw_aff *mupa;
3848 schedule = isl_schedule_node_get_schedule(node);
3849 domain = isl_schedule_get_domain(schedule);
3850 space = isl_union_set_get_space(domain);
3851 isl_union_set_free(domain);
3852 isl_schedule_free(schedule);
3854 space = isl_space_set_from_params(space);
3855 mupa = isl_multi_union_pw_aff_zero(space);
3856 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3857 node = isl_schedule_node_band_set_permutable(node, 1);
3859 return node;
3862 /* If "node" is the outermost permutable band that can be mapped to block and
3863 * thread identifiers in its branch (or the root of a subtree with
3864 * no such outer bands),
3865 * then mark the band as such, attaching a ppcg_kernel to the mark.
3867 * If "node" is the root of a subtree without permutable bands,
3868 * then insert a zero-dimensional permutable band such that
3869 * we can assume that "node" always points to a band node.
3870 * This includes the case where "node" already points to a band node,
3871 * but one without any coincident dimension. In this case,
3872 * the extra node ensures that this original node does not get tiled.
3874 * Tile "node" using user specified tile sizes, after splitting the band
3875 * if the number of specified tile sizes is smaller than the dimension
3876 * of the band. Mark the point band of this tiling as the band that
3877 * needs to be mapped to threads.
3878 * Create a kernel representing the domain instances that reach "node" and
3879 * insert a mark node pointing to the ppcg_kernel before the band node.
3881 static __isl_give isl_schedule_node *mark_outer_permutable(
3882 __isl_take isl_schedule_node *node, void *user)
3884 struct gpu_gen *gen = user;
3885 int outer;
3886 int scale;
3887 int tile_len;
3888 int *tile_size;
3889 isl_id *id;
3890 isl_multi_val *sizes;
3892 outer = is_outer_tilable(node);
3893 if (outer < 0)
3894 return isl_schedule_node_free(node);
3895 if (!outer)
3896 return node;
3898 if (isl_schedule_node_get_type(node) != isl_schedule_node_band ||
3899 !isl_schedule_node_band_member_get_coincident(node, 0))
3900 node = insert_empty_permutable_band(node);
3902 tile_len = isl_schedule_node_band_n_member(node);
3903 tile_size = read_tile_sizes(gen, &tile_len);
3904 if (!tile_size)
3905 return isl_schedule_node_free(node);
3906 if (tile_len < isl_schedule_node_band_n_member(node))
3907 node = isl_schedule_node_band_split(node, tile_len);
3908 sizes = construct_band_tiles_sizes(node, tile_size);
3909 node = tile_band(node, isl_multi_val_copy(sizes));
3910 node = isl_schedule_node_child(node, 0);
3911 id = isl_id_alloc(gen->ctx, "thread", NULL);
3912 node = isl_schedule_node_insert_mark(node, id);
3913 node = isl_schedule_node_parent(node);
3915 scale = gen->options->scale_tile_loops;
3916 node = create_kernel(gen, node, scale, sizes);
3917 isl_multi_val_free(sizes);
3918 free(tile_size);
3920 return node;
3923 /* Given a set or sequence node, return the union the filters of either all
3924 * (if "only_initial" is not set) or the initial (if "only_initial" is set)
3925 * direct subtrees that do not contain any suitably permutable bands
3926 * (according to subtree_has_permutable_bands).
3928 static __isl_give isl_union_set *get_non_parallel_subtree_filters(
3929 __isl_keep isl_schedule_node *node, int only_initial)
3931 isl_space *space;
3932 isl_union_set *filter;
3933 int i, n;
3935 n = isl_schedule_node_n_children(node);
3936 if (n < 0)
3937 return NULL;
3939 node = isl_schedule_node_copy(node);
3940 node = isl_schedule_node_child(node, 0);
3941 filter = isl_schedule_node_filter_get_filter(node);
3942 node = isl_schedule_node_parent(node);
3943 space = isl_union_set_get_space(filter);
3944 isl_union_set_free(filter);
3945 filter = isl_union_set_empty(space);
3947 for (i = 0; i < n; ++i) {
3948 int parallelism;
3950 node = isl_schedule_node_child(node, i);
3951 parallelism = subtree_has_permutable_bands(node);
3952 if (parallelism < 0) {
3953 filter = isl_union_set_free(filter);
3954 } else if (!parallelism) {
3955 isl_union_set *filter_i;
3956 filter_i = isl_schedule_node_filter_get_filter(node);
3957 filter = isl_union_set_union(filter, filter_i);
3958 } else if (only_initial)
3959 break;
3960 node = isl_schedule_node_parent(node);
3963 isl_schedule_node_free(node);
3965 return filter;
3968 /* Given a set or sequence node, return the union of the filters of
3969 * the direct subtrees that do not contain any suitably permutable bands
3970 * (according to subtree_has_permutable_bands).
3972 static __isl_give isl_union_set *get_all_non_parallel_subtree_filters(
3973 __isl_keep isl_schedule_node *node)
3975 return get_non_parallel_subtree_filters(node, 0);
3978 /* Given a set or sequence node, return the union of the filters of
3979 * the initial direct subtrees that do not contain any suitably permutable
3980 * bands (according to subtree_has_permutable_bands).
3982 static __isl_give isl_union_set *get_initial_non_parallel_subtree_filters(
3983 __isl_keep isl_schedule_node *node)
3985 return get_non_parallel_subtree_filters(node, 1);
3988 /* Mark all variables that are accessed by the statement instances in "domain"
3989 * and that are local to "prog" as requiring a declaration in the host code.
3991 static int declare_accessed_local_variables(struct gpu_prog *prog,
3992 __isl_keep isl_union_set *domain)
3994 isl_union_set *arrays;
3995 int i;
3997 if (!ppcg_scop_any_hidden_declarations(prog->scop))
3998 return 0;
3999 arrays = accessed_by_domain(isl_union_set_copy(domain), prog);
4001 for (i = 0; i < prog->n_array; ++i) {
4002 isl_space *space;
4003 isl_set *set;
4004 int empty;
4006 if (!prog->array[i].local)
4007 continue;
4008 space = isl_set_get_space(prog->array[i].extent);
4009 set = isl_union_set_extract_set(arrays, space);
4010 empty = isl_set_plain_is_empty(set);
4011 isl_set_free(set);
4012 if (empty < 0)
4013 goto error;
4014 if (!empty)
4015 prog->array[i].declare_local = 1;
4018 isl_union_set_free(arrays);
4019 return 0;
4020 error:
4021 isl_union_set_free(arrays);
4022 return -1;
4025 /* If "node" points to a set node, then separate its children
4026 * into subtrees that have suitably permutable bands and
4027 * those that do not.
4028 * Adjust the schedule tree in order to execute the second group
4029 * after the first group and return a pointer to the first group,
4030 * assuming there are any such subtrees.
4031 * If "node" points to a sequence node, then separate the initial
4032 * children that do not have suitably permutable bands and
4033 * return a pointer to the subsequence of children that do have such bands,
4034 * assuming there are any such subtrees.
4036 * In both cases, mark all local variables in "prog" that are accessed by
4037 * the group without permutable bands as requiring a declaration on the host.
4039 static __isl_give isl_schedule_node *isolate_permutable_subtrees(
4040 __isl_take isl_schedule_node *node, struct gpu_prog *prog)
4042 isl_union_set *filter;
4043 enum isl_schedule_node_type type;
4045 if (!node)
4046 return NULL;
4047 type = isl_schedule_node_get_type(node);
4048 if (type == isl_schedule_node_set) {
4049 filter = get_all_non_parallel_subtree_filters(node);
4050 if (!filter)
4051 node = isl_schedule_node_free(node);
4053 if (declare_accessed_local_variables(prog, filter) < 0)
4054 node = isl_schedule_node_free(node);
4055 node = isl_schedule_node_order_after(node, filter);
4056 } else if (type == isl_schedule_node_sequence) {
4057 filter = get_initial_non_parallel_subtree_filters(node);
4058 if (!filter)
4059 node = isl_schedule_node_free(node);
4061 if (declare_accessed_local_variables(prog, filter) < 0)
4062 node = isl_schedule_node_free(node);
4063 node = isl_schedule_node_order_before(node, filter);
4066 return node;
4069 /* Replace any reference to an array element in the range of "copy"
4070 * by a reference to all array elements (defined by the extent of the array).
4072 static __isl_give isl_union_map *approximate_copy_out(
4073 __isl_take isl_union_map *copy, struct gpu_prog *prog)
4075 int i;
4076 isl_union_map *res;
4078 res = isl_union_map_empty(isl_union_map_get_space(copy));
4080 for (i = 0; i < prog->n_array; ++i) {
4081 isl_space *space;
4082 isl_set *set;
4083 isl_union_map *copy_i;
4084 isl_union_set *extent, *domain;
4086 space = isl_space_copy(prog->array[i].space);
4087 extent = isl_union_set_from_set(isl_set_universe(space));
4088 copy_i = isl_union_map_copy(copy);
4089 copy_i = isl_union_map_intersect_range(copy_i, extent);
4090 set = isl_set_copy(prog->array[i].extent);
4091 extent = isl_union_set_from_set(set);
4092 domain = isl_union_map_domain(copy_i);
4093 copy_i = isl_union_map_from_domain_and_range(domain, extent);
4094 res = isl_union_map_union(res, copy_i);
4097 isl_union_map_free(copy);
4099 return res;
4102 /* Insert "kernel" marks that point to a ppcg_kernel structure
4103 * in front of all outermost tilable band that (by construction)
4104 * have at least one parallel loop.
4106 static __isl_give isl_schedule_node *mark_kernels(struct gpu_gen *gen,
4107 __isl_take isl_schedule_node *node)
4109 return isl_schedule_node_map_descendant_bottom_up(node,
4110 &mark_outer_permutable, gen);
4113 /* Construct schedule constraints from the dependences in prog->scop and
4114 * the array order dependences in prog->array_order.
4116 * If live range reordering is allowed, then we need to make sure
4117 * that live ranges on arrays are not run in parallel since doing
4118 * so would require array expansion. We therefore add the array
4119 * order dependences to the coincidence dependences. Non-zero array
4120 * order dependences will then prevent a schedule dimension from being
4121 * considered parallel.
4122 * Live ranges derived from scalars are allowed to be run in parallel
4123 * since we force the scalars to be mapped to private memory in
4124 * check_scalar_live_ranges.
4125 * If live range reordering is allowed, then the false dependences
4126 * are not added to the validity constraints as that would prevent
4127 * reordering. Instead, the external false dependences that enforce that reads
4128 * from potentially live-in data precede any later write and
4129 * that writes of potentially live-out data follow any other earlier write
4130 * are added to the validity and the coincidence constraints.
4131 * The false dependences are still added to the proximity constraints
4132 * for consistency with the case where live range reordering is not allowed.
4133 * The coincidence constraints then consist of flow dependences,
4134 * external false dependences and array order dependences.
4135 * The independences can be filtered out from the first two sets.
4136 * They have already been filtered out from the array order dependences
4137 * on a per array basis in collect_order_dependences.
4138 * There is no need for a per array handling of the other two sets
4139 * as there should be no flow or external false dependence on local
4140 * variables that can be filtered out.
4142 static __isl_give isl_schedule_constraints *construct_schedule_constraints(
4143 struct gpu_prog *prog)
4145 isl_union_set *domain;
4146 isl_union_map *dep_raw, *dep;
4147 isl_union_map *validity, *proximity, *coincidence;
4148 isl_schedule_constraints *sc;
4150 domain = isl_union_set_copy(prog->scop->domain);
4151 sc = isl_schedule_constraints_on_domain(domain);
4152 sc = isl_schedule_constraints_set_context(sc,
4153 isl_set_copy(prog->scop->context));
4154 if (prog->scop->options->live_range_reordering) {
4155 sc = isl_schedule_constraints_set_conditional_validity(sc,
4156 isl_union_map_copy(prog->scop->tagged_dep_flow),
4157 isl_union_map_copy(prog->scop->tagged_dep_order));
4158 proximity = isl_union_map_copy(prog->scop->dep_flow);
4159 validity = isl_union_map_copy(proximity);
4160 validity = isl_union_map_union(validity,
4161 isl_union_map_copy(prog->scop->dep_forced));
4162 proximity = isl_union_map_union(proximity,
4163 isl_union_map_copy(prog->scop->dep_false));
4164 coincidence = isl_union_map_copy(validity);
4165 coincidence = isl_union_map_subtract(coincidence,
4166 isl_union_map_copy(prog->scop->independence));
4167 coincidence = isl_union_map_union(coincidence,
4168 isl_union_map_copy(prog->array_order));
4169 } else {
4170 dep_raw = isl_union_map_copy(prog->scop->dep_flow);
4171 dep = isl_union_map_copy(prog->scop->dep_false);
4172 dep = isl_union_map_union(dep, dep_raw);
4173 dep = isl_union_map_coalesce(dep);
4174 proximity = isl_union_map_copy(dep);
4175 coincidence = isl_union_map_copy(dep);
4176 validity = dep;
4178 sc = isl_schedule_constraints_set_validity(sc, validity);
4179 sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
4180 sc = isl_schedule_constraints_set_proximity(sc, proximity);
4182 if (prog->scop->options->debug->dump_schedule_constraints)
4183 isl_schedule_constraints_dump(sc);
4184 return sc;
4187 /* Compute an appropriate schedule based on the accesses in
4188 * gen->read and gen->write.
4190 * We derive schedule constraints from the dependences in gen->prog->scop
4191 * and then use isl to compute a schedule that has a parallel loop
4192 * in each tilable band.
4194 static __isl_give isl_schedule *compute_schedule(struct gpu_gen *gen)
4196 isl_schedule_constraints *sc;
4197 isl_schedule *schedule;
4199 sc = construct_schedule_constraints(gen->prog);
4200 schedule = isl_schedule_constraints_compute_schedule(sc);
4202 return schedule;
4205 /* If the band node "node" has exactly one member then mark it permutable.
4207 static __isl_give isl_schedule_node *band_set_permutable(
4208 __isl_take isl_schedule_node *node,
4209 __isl_keep isl_schedule_constraints *sc)
4211 if (isl_schedule_node_band_n_member(node) == 1)
4212 node = isl_schedule_node_band_set_permutable(node, 1);
4214 return node;
4217 /* Return the coincidence constraints between pairs of instances
4218 * that are scheduled together by the ancestors of "node".
4219 * That is, select those coincidence constraints that relate
4220 * pairs of instances that have the same value for the prefix schedule.
4221 * If the schedule depth is zero, then the prefix schedule does not
4222 * contain any information, so we intersect domain and range
4223 * of the schedule constraints with the reaching domain elements instead.
4225 static __isl_give isl_union_map *get_local_coincidence(
4226 __isl_keep isl_schedule_node *node,
4227 __isl_keep isl_schedule_constraints *sc)
4229 isl_union_map *coincidence;
4230 isl_multi_union_pw_aff *prefix;
4231 isl_union_pw_multi_aff *contraction;
4233 coincidence = isl_schedule_constraints_get_coincidence(sc);
4234 contraction = isl_schedule_node_get_subtree_contraction(node);
4235 if (isl_schedule_node_get_schedule_depth(node) == 0) {
4236 isl_union_set *domain;
4238 domain = isl_schedule_node_get_domain(node);
4239 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4240 contraction);
4241 coincidence = isl_union_map_intersect_domain(coincidence,
4242 isl_union_set_copy(domain));
4243 coincidence = isl_union_map_intersect_range(coincidence,
4244 domain);
4245 return coincidence;
4248 prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
4249 prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix,
4250 contraction);
4251 return isl_union_map_eq_at_multi_union_pw_aff(coincidence, prefix);
4254 /* For each member in the band node "node", determine whether
4255 * it is coincident with respect to the outer nodes and mark
4256 * it accordingly.
4258 * That is, for each coincidence constraint between pairs
4259 * of instances that are scheduled together by the outer nodes,
4260 * check that domain and range are assigned the same value
4261 * by the band member. This test is performed by checking
4262 * that imposing the same value for the band member does not
4263 * remove any elements from the set of coincidence constraints.
4265 static __isl_give isl_schedule_node *band_set_coincident(
4266 __isl_take isl_schedule_node *node,
4267 __isl_keep isl_schedule_constraints *sc)
4269 isl_union_map *coincidence;
4270 isl_union_pw_multi_aff *contraction;
4271 isl_multi_union_pw_aff *partial;
4272 int i, n;
4274 coincidence = get_local_coincidence(node, sc);
4276 partial = isl_schedule_node_band_get_partial_schedule(node);
4277 contraction = isl_schedule_node_get_subtree_contraction(node);
4278 partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4279 contraction);
4280 n = isl_schedule_node_band_n_member(node);
4281 for (i = 0; i < n; ++i) {
4282 isl_union_map *coincidence_i;
4283 isl_union_pw_aff *upa;
4284 isl_multi_union_pw_aff *partial_i;
4285 int subset;
4287 upa = isl_multi_union_pw_aff_get_union_pw_aff(partial, i);
4288 partial_i = isl_multi_union_pw_aff_from_union_pw_aff(upa);
4289 coincidence_i = isl_union_map_copy(coincidence);
4290 coincidence_i = isl_union_map_eq_at_multi_union_pw_aff(
4291 coincidence_i, partial_i);
4292 subset = isl_union_map_is_subset(coincidence, coincidence_i);
4293 isl_union_map_free(coincidence_i);
4295 if (subset < 0)
4296 break;
4297 node = isl_schedule_node_band_member_set_coincident(node, i,
4298 subset);
4300 if (i < n)
4301 node = isl_schedule_node_free(node);
4302 isl_multi_union_pw_aff_free(partial);
4303 isl_union_map_free(coincidence);
4305 return node;
4308 /* If "node" is a band, then set its properties.
4310 * In particular, if the band has exactly one member, then mark it permutable.
4311 * Mark the band member coincident based on the coincidence constraints
4312 * of "sc".
4314 static __isl_give isl_schedule_node *set_band_properties(
4315 __isl_take isl_schedule_node *node, void *user)
4317 isl_schedule_constraints *sc = user;
4319 if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
4320 return node;
4321 if (isl_schedule_node_band_n_member(node) == 0)
4322 return node;
4324 node = band_set_permutable(node, sc);
4325 node = band_set_coincident(node, sc);
4327 return node;
4330 /* Return the original schedule with all bands marked permutable and
4331 * all band members marked coincident based on the coincidence constraints.
4332 * The bands are explicitly marked permutable so that they will be considered
4333 * by mark_outer_permutable.
4335 static __isl_give isl_schedule *determine_properties_original_schedule(
4336 struct gpu_gen *gen)
4338 isl_schedule *schedule;
4339 isl_schedule_constraints *sc;
4341 schedule = isl_schedule_copy(gen->prog->scop->schedule);
4342 sc = construct_schedule_constraints(gen->prog);
4343 schedule = isl_schedule_map_schedule_node_bottom_up(schedule,
4344 &set_band_properties, sc);
4345 isl_schedule_constraints_free(sc);
4347 return schedule;
4350 /* Compute a schedule or determine the properties of the original schedule
4351 * depending on the value of the "reschedule" option.
4353 static __isl_give isl_schedule *compute_or_set_properties(void *user)
4355 struct gpu_gen *gen = user;
4357 if (gen->options->reschedule)
4358 return compute_schedule(gen);
4359 else
4360 return determine_properties_original_schedule(gen);
4363 /* Obtain a schedule for the scop, by reading it from
4364 * a file, by computing one or by determining the properties
4365 * of the original schedule.
4367 static __isl_give isl_schedule *get_schedule(struct gpu_gen *gen)
4369 return ppcg_get_schedule(gen->ctx, gen->options,
4370 &compute_or_set_properties, gen);
4373 /* Construct the string "<a>_<b>".
4375 static char *concat(isl_ctx *ctx, const char *a, const char *b)
4377 isl_printer *p;
4378 char *s;
4380 p = isl_printer_to_str(ctx);
4381 p = isl_printer_print_str(p, a);
4382 p = isl_printer_print_str(p, "_");
4383 p = isl_printer_print_str(p, b);
4384 s = isl_printer_get_str(p);
4385 isl_printer_free(p);
4387 return s;
4390 /* For each array in "prog" of which an element appears in "accessed" and
4391 * that is not a read only scalar, create a zero-dimensional universe set
4392 * of which the tuple id has name "<prefix>_<name of array>" and a user
4393 * pointer pointing to the array (gpu_array_info).
4395 * If the array is local to "prog", then make sure it will be declared
4396 * in the host code.
4398 * Return the list of these universe sets.
4400 static __isl_give isl_union_set_list *create_copy_filters(struct gpu_prog *prog,
4401 const char *prefix, __isl_take isl_union_set *accessed)
4403 int i;
4404 isl_ctx *ctx;
4405 isl_union_set_list *filters;
4407 ctx = prog->ctx;
4408 filters = isl_union_set_list_alloc(ctx, 0);
4409 for (i = 0; i < prog->n_array; ++i) {
4410 struct gpu_array_info *array = &prog->array[i];
4411 isl_space *space;
4412 isl_set *accessed_i;
4413 int empty;
4414 char *name;
4415 isl_id *id;
4416 isl_union_set *uset;
4418 if (gpu_array_is_read_only_scalar(array))
4419 continue;
4421 space = isl_space_copy(array->space);
4422 accessed_i = isl_union_set_extract_set(accessed, space);
4423 empty = isl_set_plain_is_empty(accessed_i);
4424 isl_set_free(accessed_i);
4425 if (empty < 0) {
4426 filters = isl_union_set_list_free(filters);
4427 break;
4429 if (empty)
4430 continue;
4432 array->global = 1;
4433 if (array->local)
4434 array->declare_local = 1;
4436 name = concat(ctx, prefix, array->name);
4437 id = name ? isl_id_alloc(ctx, name, array) : NULL;
4438 free(name);
4439 space = isl_space_set_alloc(ctx, 0, 0);
4440 space = isl_space_set_tuple_id(space, isl_dim_set, id);
4441 uset = isl_union_set_from_set(isl_set_universe(space));
4443 filters = isl_union_set_list_add(filters, uset);
4445 isl_union_set_free(accessed);
4447 return filters;
4450 /* Make sure that code for the statements in "filters" that
4451 * copy arrays to or from the device is only generated when
4452 * the size of the corresponding array is positive.
4453 * That is, add a set node underneath "graft" with "filters" as children
4454 * and for each child add a guard that the selects the parameter
4455 * values for which the corresponding array has a positive size.
4456 * The array is available in the user pointer of the statement identifier.
4457 * "depth" is the schedule depth of the position where "graft"
4458 * will be added.
4460 static __isl_give isl_schedule_node *insert_positive_size_guards(
4461 __isl_take isl_schedule_node *graft,
4462 __isl_take isl_union_set_list *filters, int depth)
4464 int i, n;
4466 graft = isl_schedule_node_child(graft, 0);
4467 graft = isl_schedule_node_insert_set(graft, filters);
4468 n = isl_schedule_node_n_children(graft);
4469 for (i = 0; i < n; ++i) {
4470 isl_union_set *filter;
4471 isl_set *domain, *guard;
4472 isl_id *id;
4473 struct gpu_array_info *array;
4475 graft = isl_schedule_node_child(graft, i);
4476 filter = isl_schedule_node_filter_get_filter(graft);
4477 domain = isl_set_from_union_set(filter);
4478 id = isl_set_get_tuple_id(domain);
4479 array = isl_id_get_user(id);
4480 isl_id_free(id);
4481 isl_set_free(domain);
4482 guard = gpu_array_positive_size_guard(array);
4483 guard = isl_set_from_params(guard);
4484 guard = isl_set_add_dims(guard, isl_dim_set, depth);
4485 graft = isl_schedule_node_child(graft, 0);
4486 graft = isl_schedule_node_insert_guard(graft, guard);
4487 graft = isl_schedule_node_parent(graft);
4488 graft = isl_schedule_node_parent(graft);
4490 graft = isl_schedule_node_parent(graft);
4492 return graft;
4495 /* Create a graft for copying arrays to or from the device,
4496 * whenever the size of the array is strictly positive.
4497 * Each statement is called "<prefix>_<name of array>" and
4498 * the identifier has a user pointer pointing to the array.
4499 * The graft will be added at the position specified by "node".
4500 * "copy" contains the array elements that need to be copied.
4501 * Only arrays of which some elements need to be copied
4502 * will have a corresponding statement in the graph.
4503 * Note though that each such statement will copy the entire array.
4505 static __isl_give isl_schedule_node *create_copy_device(struct gpu_prog *prog,
4506 __isl_keep isl_schedule_node *node, const char *prefix,
4507 __isl_take isl_union_set *copy)
4509 int depth;
4510 isl_ctx *ctx;
4511 isl_space *space;
4512 isl_union_set *all, *domain;
4513 isl_union_set_list *filters;
4514 isl_union_map *extension;
4515 isl_schedule_node *graft;
4517 ctx = prog->ctx;
4518 depth = isl_schedule_node_get_schedule_depth(node);
4519 filters = create_copy_filters(prog, prefix, copy);
4520 all = isl_union_set_list_union(isl_union_set_list_copy(filters));
4522 space = depth < 0 ? NULL : isl_space_set_alloc(ctx, 0, depth);
4523 domain = isl_union_set_from_set(isl_set_universe(space));
4524 extension = isl_union_map_from_domain_and_range(domain, all);
4525 graft = isl_schedule_node_from_extension(extension);
4527 if (!filters)
4528 return isl_schedule_node_free(graft);
4529 if (isl_union_set_list_n_union_set(filters) == 0) {
4530 isl_union_set_list_free(filters);
4531 return graft;
4534 return insert_positive_size_guards(graft, filters, depth);
4537 /* Return (the universe spaces of) the arrays that are declared
4538 * inside the scop corresponding to "prog" and for which all
4539 * potential writes inside the scop form a subset of "domain".
4541 static __isl_give isl_union_set *extract_local_accesses(struct gpu_prog *prog,
4542 __isl_keep isl_union_set *domain)
4544 int i;
4545 isl_union_set *local;
4547 local = isl_union_set_empty(isl_union_set_get_space(domain));
4549 for (i = 0; i < prog->n_array; ++i) {
4550 isl_set *set;
4551 isl_union_map *to_outer;
4552 isl_union_map *may_write;
4553 isl_union_set *write_domain;
4554 isl_union_set *fields;
4555 int subset;
4557 if (!prog->array[i].local)
4558 continue;
4560 set = isl_set_universe(isl_space_copy(prog->array[i].space));
4561 to_outer = isl_union_map_copy(prog->to_outer);
4562 to_outer = isl_union_map_intersect_range(to_outer,
4563 isl_union_set_from_set(isl_set_copy(set)));
4564 fields = isl_union_map_domain(to_outer);
4565 may_write = isl_union_map_copy(prog->may_write);
4566 may_write = isl_union_map_intersect_range(may_write, fields);
4567 write_domain = isl_union_map_domain(may_write);
4568 subset = isl_union_set_is_subset(write_domain, domain);
4569 isl_union_set_free(write_domain);
4571 if (subset < 0) {
4572 isl_set_free(set);
4573 return isl_union_set_free(local);
4574 } else if (subset) {
4575 local = isl_union_set_add_set(local, set);
4576 } else {
4577 isl_set_free(set);
4581 return local;
4584 /* Internal data structure for node_may_persist.
4586 * "tagger" maps tagged iteration domains to the corresponding untagged
4587 * iteration domain.
4589 * "may_persist_flow" is the set of all tagged dataflow dependences
4590 * with those dependences removed that either precede or follow
4591 * the kernel launch in a sequence.
4592 * "inner_band_flow" is the set of all tagged dataflow dependences
4593 * that are local to a given iteration of the outer band nodes
4594 * with respect to the current node.
4595 * "local_flow" is equal to "inner_band_flow", except that the domain
4596 * and the range have been intersected with intermediate filters
4597 * on children of sets or sequences.
4599 struct ppcg_may_persist_data {
4600 isl_union_pw_multi_aff *tagger;
4602 isl_union_map *local_flow;
4603 isl_union_map *inner_band_flow;
4604 isl_union_map *may_persist_flow;
4607 /* Update the information in "data" based on the band ancestor "node".
4609 * In particular, we restrict the dependences in data->local_flow
4610 * to those dependence where the source and the sink occur in
4611 * the same iteration of the given band node.
4612 * We also update data->inner_band_flow to the new value of
4613 * data->local_flow.
4615 static int update_may_persist_at_band(__isl_keep isl_schedule_node *node,
4616 struct ppcg_may_persist_data *data)
4618 isl_multi_union_pw_aff *partial;
4619 isl_union_pw_multi_aff *contraction;
4620 isl_union_map *flow;
4622 if (isl_schedule_node_band_n_member(node) == 0)
4623 return 0;
4625 partial = isl_schedule_node_band_get_partial_schedule(node);
4626 contraction = isl_schedule_node_get_subtree_contraction(node);
4627 partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4628 contraction);
4629 partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4630 isl_union_pw_multi_aff_copy(data->tagger));
4632 flow = data->local_flow;
4633 flow = isl_union_map_eq_at_multi_union_pw_aff(flow, partial);
4634 data->local_flow = flow;
4636 isl_union_map_free(data->inner_band_flow);
4637 data->inner_band_flow = isl_union_map_copy(data->local_flow);
4639 return 0;
4642 /* Given a set of local reaching domain elements "domain",
4643 * expand them to the corresponding leaf domain elements using "contraction"
4644 * and insert the array references tags using data->tagger.
4646 static __isl_give isl_union_set *expand_and_tag(
4647 __isl_take isl_union_set *domain,
4648 __isl_take isl_union_pw_multi_aff *contraction,
4649 struct ppcg_may_persist_data *data)
4651 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4652 contraction);
4653 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4654 isl_union_pw_multi_aff_copy(data->tagger));
4655 return domain;
4658 /* Given a filter node that is the child of a set or sequence node,
4659 * restrict data->local_flow to refer only to those elements
4660 * in the filter of the node.
4661 * "contraction" maps the leaf domain elements of the schedule tree
4662 * to the corresponding domain elements at (the parent of) "node".
4664 static int filter_flow(__isl_keep isl_schedule_node *node,
4665 struct ppcg_may_persist_data *data,
4666 __isl_take isl_union_pw_multi_aff *contraction)
4668 isl_union_set *filter;
4669 isl_union_map *flow;
4671 flow = data->local_flow;
4672 filter = isl_schedule_node_filter_get_filter(node);
4673 filter = expand_and_tag(filter, contraction, data);
4674 flow = isl_union_map_intersect_domain(flow, isl_union_set_copy(filter));
4675 flow = isl_union_map_intersect_range(flow, filter);
4676 data->local_flow = flow;
4678 return 0;
4681 /* Given a filter node "node", collect the filters on all preceding siblings
4682 * (which are also filter nodes), add them to "filters" and return the result.
4684 static __isl_give isl_union_set *add_previous_filters(
4685 __isl_take isl_union_set *filters, __isl_keep isl_schedule_node *node)
4687 isl_schedule_node *sibling;
4689 sibling = isl_schedule_node_copy(node);
4690 while (sibling && isl_schedule_node_has_previous_sibling(sibling)) {
4691 isl_union_set *filter;
4693 sibling = isl_schedule_node_previous_sibling(sibling);
4694 filter = isl_schedule_node_filter_get_filter(sibling);
4695 filters = isl_union_set_union(filters, filter);
4697 isl_schedule_node_free(sibling);
4698 if (!sibling)
4699 return isl_union_set_free(filters);
4701 return filters;
4704 /* Given a filter node "node", collect the filters on all following siblings
4705 * (which are also filter nodes), add them to "filters" and return the result.
4707 static __isl_give isl_union_set *add_next_filters(
4708 __isl_take isl_union_set *filters, __isl_keep isl_schedule_node *node)
4710 isl_schedule_node *sibling;
4712 sibling = isl_schedule_node_copy(node);
4713 while (sibling && isl_schedule_node_has_next_sibling(sibling)) {
4714 isl_union_set *filter;
4716 sibling = isl_schedule_node_next_sibling(sibling);
4717 filter = isl_schedule_node_filter_get_filter(sibling);
4718 filters = isl_union_set_union(filters, filter);
4720 isl_schedule_node_free(sibling);
4721 if (!sibling)
4722 return isl_union_set_free(filters);
4724 return filters;
4727 /* Remove those flow dependences from data->may_persist_flow
4728 * that flow between elements of "domain" within the same iteration
4729 * of all outer band nodes.
4730 * "contraction" maps the leaf domain elements of the schedule tree
4731 * to the corresponding elements "domain".
4733 static void remove_external_flow(struct ppcg_may_persist_data *data,
4734 __isl_take isl_union_set *domain,
4735 __isl_keep isl_union_pw_multi_aff *contraction)
4737 isl_union_map *flow;
4739 contraction = isl_union_pw_multi_aff_copy(contraction);
4740 domain = expand_and_tag(domain, contraction, data);
4741 flow = isl_union_map_copy(data->local_flow);
4742 flow = isl_union_map_intersect_domain(flow, isl_union_set_copy(domain));
4743 flow = isl_union_map_intersect_range(flow, domain);
4745 data->may_persist_flow = isl_union_map_subtract(data->may_persist_flow,
4746 flow);
4749 /* Update the information in "data" based on the filter ancestor "node".
4750 * We only need to modify anything if the filter is the child
4751 * of a set or sequence node.
4753 * In the case of a sequence, we remove the dependences between
4754 * statement instances that are both executed either before or
4755 * after the subtree that will be mapped to a kernel, within
4756 * the same iteration of outer bands.
4758 * In both cases, we restrict data->local_flow to the current child.
4760 static int update_may_persist_at_filter(__isl_keep isl_schedule_node *node,
4761 struct ppcg_may_persist_data *data)
4763 enum isl_schedule_node_type type;
4764 isl_schedule_node *parent;
4765 isl_space *space;
4766 isl_union_pw_multi_aff *contraction;
4767 isl_union_set *before, *after, *filter;
4769 type = isl_schedule_node_get_parent_type(node);
4770 if (type != isl_schedule_node_sequence && type != isl_schedule_node_set)
4771 return 0;
4773 parent = isl_schedule_node_copy(node);
4774 parent = isl_schedule_node_parent(parent);
4775 contraction = isl_schedule_node_get_subtree_contraction(parent);
4776 isl_schedule_node_free(parent);
4778 if (type == isl_schedule_node_set)
4779 return filter_flow(node, data, contraction);
4781 filter = isl_schedule_node_filter_get_filter(node);
4782 space = isl_union_set_get_space(filter);
4783 isl_union_set_free(filter);
4784 before = isl_union_set_empty(space);
4785 after = isl_union_set_copy(before);
4786 before = add_previous_filters(before, node);
4787 after = add_next_filters(after, node);
4789 remove_external_flow(data, before, contraction);
4790 remove_external_flow(data, after, contraction);
4792 return filter_flow(node, data, contraction);
4795 /* Update the information in "data" based on the ancestor "node".
4797 static isl_stat update_may_persist_at(__isl_keep isl_schedule_node *node,
4798 void *user)
4800 struct ppcg_may_persist_data *data = user;
4802 switch (isl_schedule_node_get_type(node)) {
4803 case isl_schedule_node_error:
4804 return isl_stat_error;
4805 case isl_schedule_node_context:
4806 case isl_schedule_node_domain:
4807 case isl_schedule_node_expansion:
4808 case isl_schedule_node_extension:
4809 case isl_schedule_node_guard:
4810 case isl_schedule_node_leaf:
4811 case isl_schedule_node_mark:
4812 case isl_schedule_node_sequence:
4813 case isl_schedule_node_set:
4814 break;
4815 case isl_schedule_node_band:
4816 if (update_may_persist_at_band(node, data) < 0)
4817 return isl_stat_error;
4818 break;
4819 case isl_schedule_node_filter:
4820 if (update_may_persist_at_filter(node, data) < 0)
4821 return isl_stat_error;
4822 break;
4825 return isl_stat_ok;
4828 /* Determine the set of array elements that may need to be perserved
4829 * by a kernel constructed from the subtree at "node".
4830 * This includes the set of array elements that may need to be preserved
4831 * by the entire scop (prog->may_persist) and the elements for which
4832 * there is a potential flow dependence that may cross a kernel launch.
4834 * To determine the second set, we start from all flow dependences.
4835 * From this set of dependences, we remove those that cannot possibly
4836 * require data to be preserved by a kernel launch.
4837 * In particular, we consider the following sets of dependences.
4838 * - dependences of which the write occurs inside the kernel.
4839 * If the data is needed outside the kernel, then it will
4840 * be copied out immediately after the kernel launch, so there
4841 * is no need for any special care.
4842 * - dependences of which the read occurs inside the kernel and the
4843 * corresponding write occurs inside the same iteration of the
4844 * outer band nodes. This means that the data is needed in
4845 * the first kernel launch after the write, which is already
4846 * taken care of by the standard copy-in. That is, the data
4847 * do not need to be preserved by any intermediate call to
4848 * the same kernel.
4849 * - dependences of which the write and the read either both occur
4850 * before the kernel launch or both occur after the kernel launch,
4851 * within the same iteration of the outer band nodes with respect
4852 * to the sequence that determines the ordering of the dependence
4853 * and the kernel launch. Such flow dependences cannot cross
4854 * any kernel launch.
4856 * For the remaining (tagged) dependences, we take the domain
4857 * (i.e., the tagged writes) and apply the tagged access relation
4858 * to obtain the accessed data elements.
4859 * These are then combined with the elements that may need to be
4860 * preserved by the entire scop.
4862 static __isl_give isl_union_set *node_may_persist(
4863 __isl_keep isl_schedule_node *node, struct gpu_prog *prog)
4865 struct ppcg_may_persist_data data;
4866 isl_union_pw_multi_aff *contraction;
4867 isl_union_set *domain;
4868 isl_union_set *persist;
4869 isl_union_map *flow, *local_flow;
4871 data.tagger = prog->scop->tagger;
4873 flow = isl_union_map_copy(prog->scop->tagged_dep_flow);
4874 data.local_flow = isl_union_map_copy(flow);
4875 data.inner_band_flow = isl_union_map_copy(flow);
4876 data.may_persist_flow = flow;
4877 if (isl_schedule_node_foreach_ancestor_top_down(node,
4878 &update_may_persist_at, &data) < 0)
4879 data.may_persist_flow =
4880 isl_union_map_free(data.may_persist_flow);
4881 flow = data.may_persist_flow;
4882 isl_union_map_free(data.local_flow);
4884 domain = isl_schedule_node_get_domain(node);
4885 contraction = isl_schedule_node_get_subtree_contraction(node);
4886 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4887 contraction);
4888 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4889 isl_union_pw_multi_aff_copy(data.tagger));
4890 flow = isl_union_map_subtract_domain(flow, isl_union_set_copy(domain));
4891 local_flow = data.inner_band_flow;
4892 local_flow = isl_union_map_intersect_range(local_flow, domain);
4893 flow = isl_union_map_subtract(flow, local_flow);
4895 persist = isl_union_map_domain(flow);
4896 persist = isl_union_set_apply(persist,
4897 isl_union_map_copy(prog->scop->tagged_may_writes));
4898 persist = isl_union_set_union(persist,
4899 isl_union_set_copy(prog->may_persist));
4901 return persist;
4904 /* Add nodes for copying outer arrays in and out of the device
4905 * before and after the subtree "node", which contains one or more kernels.
4906 * "domain" contains the original reaching domain elements before
4907 * the kernels were created, i.e., before the contraction that
4908 * may have been performed in creating the kernels has been applied.
4909 * "prefix" contains the prefix schedule at that point, in terms
4910 * of the same original reaching domain elements.
4912 * We first compute the sets of outer array elements that need
4913 * to be copied in and out and then graft in the nodes for
4914 * performing this copying.
4916 * In particular, for each array that is possibly written anywhere in
4917 * the subtree "node" and that may be used after "node"
4918 * or that may be visible outside the corresponding scop,
4919 * we copy out its entire extent.
4921 * Any array elements that is read without first being written inside
4922 * the subtree "node" needs to be copied in.
4923 * Furthermore, if there are any array elements that
4924 * are copied out, but that may not be written inside "node, then
4925 * they also need to be copied in to ensure that the value after execution
4926 * is the same as the value before execution, at least for those array
4927 * elements that may have their values preserved by the scop or that
4928 * may be written before "node" and read after "node".
4929 * In case the array elements are structures, we need to take into
4930 * account that all members of the structures need to be written
4931 * by "node" before we can avoid copying the data structure in.
4933 * Note that the may_write relation is intersected with the domain,
4934 * which has been intersected with the context.
4935 * This helps in those cases where the arrays are declared with a fixed size,
4936 * while the accesses are parametric and the context assigns a fixed value
4937 * to the parameters.
4939 * If an element from a local array is read without first being written,
4940 * then there is no point in copying it in since it cannot have been
4941 * written prior to the scop. Warn about the uninitialized read instead.
4943 static __isl_give isl_schedule_node *add_to_from_device(
4944 __isl_take isl_schedule_node *node, __isl_take isl_union_set *domain,
4945 __isl_take isl_union_map *prefix, struct gpu_prog *prog)
4947 isl_union_set *local;
4948 isl_union_set *may_persist;
4949 isl_union_map *may_write, *must_write, *copy_out, *not_written;
4950 isl_union_map *read, *copy_in;
4951 isl_union_map *tagged;
4952 isl_union_map *local_uninitialized;
4953 isl_schedule_node *graft;
4955 tagged = isl_union_map_copy(prog->scop->tagged_reads);
4956 tagged = isl_union_map_union(tagged,
4957 isl_union_map_copy(prog->scop->tagged_may_writes));
4959 may_write = isl_union_map_copy(prog->may_write);
4960 may_write = isl_union_map_intersect_domain(may_write,
4961 isl_union_set_copy(domain));
4962 may_write = remove_local_accesses(prog,
4963 isl_union_map_copy(tagged), may_write,
4964 isl_union_map_copy(prefix), 0);
4965 may_write = isl_union_map_apply_range(may_write,
4966 isl_union_map_copy(prog->to_outer));
4967 may_write = isl_union_map_apply_domain(may_write,
4968 isl_union_map_copy(prefix));
4969 may_write = approximate_copy_out(may_write, prog);
4970 copy_out = isl_union_map_copy(may_write);
4971 may_write = isl_union_map_apply_range(may_write,
4972 isl_union_map_copy(prog->to_inner));
4973 must_write = isl_union_map_copy(prog->must_write);
4974 must_write = isl_union_map_apply_domain(must_write,
4975 isl_union_map_copy(prefix));
4976 may_persist = node_may_persist(node, prog);
4977 may_write = isl_union_map_intersect_range(may_write, may_persist);
4978 not_written = isl_union_map_subtract(may_write, must_write);
4980 local = extract_local_accesses(prog, domain);
4981 read = isl_union_map_copy(prog->read);
4982 read = isl_union_map_intersect_domain(read, domain);
4983 read = remove_local_accesses(prog, tagged, read,
4984 isl_union_map_copy(prefix), 1);
4985 local = isl_union_set_apply(local, isl_union_map_copy(prog->to_inner));
4986 local_uninitialized = isl_union_map_copy(prog->scop->live_in);
4987 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
4988 local);
4989 local_uninitialized = isl_union_map_intersect(local_uninitialized,
4990 isl_union_map_copy(read));
4991 if (!isl_union_map_is_empty(local_uninitialized)) {
4992 fprintf(stderr,
4993 "possibly uninitialized reads (not copied in):\n");
4994 isl_union_map_dump(local_uninitialized);
4996 read = isl_union_map_subtract(read, local_uninitialized);
4997 read = isl_union_map_apply_domain(read, prefix);
4998 copy_in = isl_union_map_union(read, not_written);
4999 copy_in = isl_union_map_apply_range(copy_in,
5000 isl_union_map_copy(prog->to_outer));
5002 graft = create_copy_device(prog, node, "to_device",
5003 isl_union_map_range(copy_in));
5004 node = isl_schedule_node_graft_before(node, graft);
5005 graft = create_copy_device(prog, node, "from_device",
5006 isl_union_map_range(copy_out));
5007 node = isl_schedule_node_graft_after(node, graft);
5009 return node;
5012 /* Add nodes for initializing ("init_device") and clearing ("clear_device")
5013 * the device before and after "node".
5015 static __isl_give isl_schedule_node *add_init_clear_device(
5016 __isl_take isl_schedule_node *node)
5018 isl_ctx *ctx;
5019 isl_space *space;
5020 isl_union_set *domain;
5021 isl_schedule_node *graft;
5023 ctx = isl_schedule_node_get_ctx(node);
5025 space = isl_space_set_alloc(ctx, 0, 0);
5026 space = isl_space_set_tuple_name(space, isl_dim_set, "init_device");
5027 domain = isl_union_set_from_set(isl_set_universe(space));
5028 graft = isl_schedule_node_from_domain(domain);
5030 node = isl_schedule_node_graft_before(node, graft);
5032 space = isl_space_set_alloc(ctx, 0, 0);
5033 space = isl_space_set_tuple_name(space, isl_dim_set, "clear_device");
5034 domain = isl_union_set_from_set(isl_set_universe(space));
5035 graft = isl_schedule_node_from_domain(domain);
5037 node = isl_schedule_node_graft_after(node, graft);
5039 return node;
5042 /* Update "schedule" for mapping to a GPU device.
5044 * In particular, insert a context node, create kernels for
5045 * each outermost tilable band and introduce nodes for copying arrays
5046 * in and out of the device and for initializing and clearing the device.
5047 * If the child of the initial root points to a set node,
5048 * then children of this node that do not contain any tilable bands
5049 * are separated from the other children and are not mapped to
5050 * the device.
5052 * The GPU code is generated in a context where at least one
5053 * statement instance is executed. The corresponding guard is inserted
5054 * around the entire schedule.
5056 static __isl_give isl_schedule *map_to_device(struct gpu_gen *gen,
5057 __isl_take isl_schedule *schedule)
5059 isl_schedule_node *node;
5060 isl_set *context;
5061 isl_set *guard;
5062 isl_union_set *domain;
5063 isl_union_map *prefix;
5064 struct gpu_prog *prog;
5066 context = isl_set_copy(gen->prog->context);
5067 context = isl_set_from_params(context);
5068 schedule = isl_schedule_insert_context(schedule, context);
5070 prog = gen->prog;
5071 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
5072 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
5073 guard = isl_set_from_params(guard);
5075 node = isl_schedule_get_root(schedule);
5076 isl_schedule_free(schedule);
5077 node = isl_schedule_node_child(node, 0);
5078 node = isl_schedule_node_child(node, 0);
5079 node = isolate_permutable_subtrees(node, gen->prog);
5080 domain = isl_schedule_node_get_domain(node);
5081 prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
5082 node = mark_kernels(gen, node);
5083 node = add_to_from_device(node, domain, prefix, gen->prog);
5084 node = isl_schedule_node_root(node);
5085 node = isl_schedule_node_child(node, 0);
5086 node = isl_schedule_node_child(node, 0);
5087 node = isl_schedule_node_insert_guard(node, guard);
5088 node = isl_schedule_node_child(node, 0);
5089 node = add_init_clear_device(node);
5090 schedule = isl_schedule_node_get_schedule(node);
5091 isl_schedule_node_free(node);
5093 return schedule;
5096 /* Internal data structure for extract_access.
5097 * "next_access" points to the end of a linked list that is extended
5098 * by extract_access.
5099 * "single_expression" is set if the access expressions belong to
5100 * an expression statement (i.e., a statement without internal control).
5101 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5103 struct ppcg_extract_access_data {
5104 struct gpu_stmt_access **next_access;
5105 int single_expression;
5106 isl_union_map *any_to_outer;
5109 /* Given a tagged access relation to a single array "tagged", extract it
5110 * as a map, taking into account that the input may be empty.
5111 * If the access relation is empty, then it does not contain
5112 * any space information, so we try to recover it from the index
5113 * expression.
5114 * The space of the index expression is of the form I -> A,
5115 * with I the statement instances and A the array, or [I -> F] -> A,
5116 * with F the filters corresponding to arguments.
5117 * We first drop F, if present, obtaining I -> A.
5118 * Then we construct I -> R, with R the reference tag,
5119 * combine the two into I -> [R -> A] and uncurry to obtain
5120 * the final result [I -> R] -> A.
5121 * Note that the index expression may have a lower dimension
5122 * than that of the array, but this dimension is not used
5123 * if the access relation is empty.
5125 static __isl_give isl_map *extract_single_tagged_access(
5126 __isl_take isl_union_map *tagged, __isl_keep pet_expr *expr)
5128 int empty;
5129 isl_id *id;
5130 isl_space *space, *space2;
5131 isl_multi_pw_aff *index;
5133 empty = isl_union_map_is_empty(tagged);
5134 if (empty < 0)
5135 goto error;
5136 if (!empty)
5137 return isl_map_from_union_map(tagged);
5138 isl_union_map_free(tagged);
5140 index = pet_expr_access_get_index(expr);
5141 space = isl_multi_pw_aff_get_space(index);
5142 isl_multi_pw_aff_free(index);
5143 if (isl_space_domain_is_wrapping(space))
5144 space = isl_space_domain_factor_domain(space);
5145 space2 = isl_space_copy(space);
5146 space2 = isl_space_from_domain(isl_space_domain(space));
5147 id = pet_expr_access_get_ref_id(expr);
5148 space2 = isl_space_set_tuple_id(space2, isl_dim_out, id);
5149 space = isl_space_range_product(space2, space);
5150 space = isl_space_uncurry(space);
5152 return isl_map_empty(space);
5153 error:
5154 isl_union_map_free(tagged);
5155 return NULL;
5158 /* Extract a gpu_stmt_access from "expr", append it to the list
5159 * that ends in *data->next_access and update the end of the list.
5160 * If the access expression performs a write, then it is considered
5161 * exact only if it appears in a single expression statement and
5162 * if its may access relation is equal to its must access relation.
5164 * The combined set of may accesses may be union if member accesses
5165 * are involved, but the entire set is derived from a single reference and
5166 * therefore from a single index expression. These accesses therefore
5167 * all map to the same outer array.
5169 static int extract_access(__isl_keep pet_expr *expr, void *user)
5171 struct ppcg_extract_access_data *data = user;
5172 isl_union_map *tagged;
5173 struct gpu_stmt_access *access;
5174 isl_ctx *ctx = pet_expr_get_ctx(expr);
5175 isl_multi_pw_aff *index;
5177 access = isl_alloc_type(ctx, struct gpu_stmt_access);
5178 assert(access);
5179 access->next = NULL;
5180 access->read = pet_expr_access_is_read(expr);
5181 access->write = pet_expr_access_is_write(expr);
5182 tagged = pet_expr_access_get_tagged_may_read(expr);
5183 tagged = isl_union_map_union(tagged,
5184 pet_expr_access_get_tagged_may_write(expr));
5185 tagged = isl_union_map_apply_range(tagged,
5186 isl_union_map_copy(data->any_to_outer));
5187 if (!access->write) {
5188 access->exact_write = 1;
5189 } else if (!data->single_expression) {
5190 access->exact_write = 0;
5191 } else {
5192 isl_union_map *must, *may;
5193 may = isl_union_map_copy(tagged);
5194 may = isl_union_map_domain_factor_domain(may);
5195 must = pet_expr_access_get_must_write(expr);
5196 access->exact_write = isl_union_map_is_equal(must, may);
5197 isl_union_map_free(must);
5198 isl_union_map_free(may);
5200 index = pet_expr_access_get_index(expr);
5201 access->n_index = isl_multi_pw_aff_dim(index, isl_dim_out);
5202 isl_multi_pw_aff_free(index);
5203 access->ref_id = pet_expr_access_get_ref_id(expr);
5204 access->tagged_access = extract_single_tagged_access(tagged, expr);
5205 access->access = isl_map_copy(access->tagged_access);
5206 access->access = isl_map_domain_factor_domain(access->access);
5208 *data->next_access = access;
5209 data->next_access = &(*data->next_access)->next;
5211 if (!access->access)
5212 return -1;
5214 return 0;
5217 /* Construct a linked list of gpu_stmt_access objects,
5218 * one for each access expression in the statement body.
5219 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5221 static int pet_stmt_extract_accesses(struct gpu_stmt *stmt,
5222 __isl_keep isl_union_map *any_to_outer)
5224 struct ppcg_extract_access_data data;
5226 stmt->accesses = NULL;
5227 data.next_access = &stmt->accesses;
5228 data.single_expression =
5229 pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
5230 data.any_to_outer = any_to_outer;
5231 return pet_tree_foreach_access_expr(stmt->stmt->body,
5232 &extract_access, &data);
5235 /* Return an array of gpu_stmt representing the statements in "scop".
5237 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
5238 __isl_keep isl_set *context, __isl_keep isl_union_map *any_to_outer)
5240 int i;
5241 struct gpu_stmt *stmts;
5243 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->pet->n_stmt);
5244 if (!stmts)
5245 return NULL;
5247 for (i = 0; i < scop->pet->n_stmt; ++i) {
5248 struct gpu_stmt *s = &stmts[i];
5250 s->id = isl_set_get_tuple_id(scop->pet->stmts[i]->domain);
5251 s->stmt = scop->pet->stmts[i];
5252 if (pet_stmt_extract_accesses(s, any_to_outer) < 0)
5253 return free_stmts(stmts, i + 1);
5256 return stmts;
5259 /* Generate CUDA code for "scop" and print it to "p".
5260 * After generating an AST for the transformed scop as explained below,
5261 * we call "gen->print" to print the AST in the desired output format
5262 * to "p".
5264 * If it turns out that it does not make sense to generate GPU code,
5265 * then we generate CPU code instead.
5267 * The declarations of the arrays that are visible outside of the scop
5268 * are printed outside of the code generated from the schedule,
5269 * because the generated code may involve a guard around the entire code.
5271 * We first compute a schedule that respects the dependences
5272 * of the original program and select the outermost bands
5273 * of tilable dimensions that have at least one parallel loop.
5274 * If the --load-schedule is specified, then the loaded schedule
5275 * is used instead of a computed schedule.
5277 * Each of these bands B is then tiled according to "tile" sizes, resulting
5278 * in two nested bands, with a kernel marker on top
5286 * We then split off at most 2 parallel dimensions from the T band and
5287 * at most 3 parallel dimension from the P band
5292 * T1
5294 * T2
5296 * P1
5298 * P2
5300 * A filter is introduced in front of T1 that maps the domain instances
5301 * to block identifiers. Similarly, a filter is introduced in front of P1
5302 * that maps the domain instances to thread identifiers.
5304 * For each iteration of the T2 band and for each array, we compute
5305 * the array elements accessed by that iteration, construct a rectangular
5306 * box around it and shift it to the origin. The result is used
5307 * as shared memory for the array.
5309 * Copying and synchronization statements are added to this schedule tree.
5310 * In principle, these are added in front of the P1 band, but some of
5311 * them may get hoisted up to higher levels.
5313 * The entire AST is then generated from the single resulting schedule tree.
5314 * During the generation the subtrees at kernel nodes (K) are saved
5315 * aside and replaced by kernel calls. The result is printed as host code
5316 * while the saved subtrees are printed as device code.
5318 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
5319 struct gpu_gen *gen, struct ppcg_scop *scop,
5320 struct ppcg_options *options)
5322 struct gpu_prog *prog;
5323 isl_ctx *ctx;
5324 isl_schedule *schedule;
5325 int any_permutable;
5327 if (!scop)
5328 return isl_printer_free(p);
5330 ctx = isl_printer_get_ctx(p);
5331 prog = gpu_prog_alloc(ctx, scop);
5332 if (!prog)
5333 return isl_printer_free(p);
5335 gen->prog = prog;
5336 schedule = get_schedule(gen);
5338 any_permutable = has_any_permutable_node(schedule);
5339 if (any_permutable < 0 || !any_permutable) {
5340 if (any_permutable < 0)
5341 p = isl_printer_free(p);
5342 else
5343 p = print_cpu(p, scop, options);
5344 isl_schedule_free(schedule);
5345 } else {
5346 schedule = map_to_device(gen, schedule);
5347 gen->tree = generate_code(gen, schedule);
5348 p = ppcg_set_macro_names(p);
5349 p = ppcg_print_exposed_declarations(p, prog->scop);
5350 p = gen->print(p, gen->prog, gen->tree, &gen->types,
5351 gen->print_user);
5352 isl_ast_node_free(gen->tree);
5355 gpu_prog_free(prog);
5357 return p;
5360 /* Wrapper around generate for use as a ppcg_transform callback.
5362 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
5363 struct ppcg_scop *scop, void *user)
5365 struct gpu_gen *gen = user;
5367 return generate(p, gen, scop, gen->options);
5370 /* Transform the code in the file called "input" by replacing
5371 * all scops by corresponding GPU code and write the results to "out".
5373 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
5374 struct ppcg_options *options,
5375 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
5376 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
5377 struct gpu_types *types, void *user), void *user)
5379 struct gpu_gen gen;
5380 int r;
5381 int i;
5383 gen.ctx = ctx;
5384 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
5385 gen.options = options;
5386 gen.kernel_id = 0;
5387 gen.print = print;
5388 gen.print_user = user;
5389 gen.types.n = 0;
5390 gen.types.name = NULL;
5392 if (options->debug->dump_sizes) {
5393 isl_space *space = isl_space_params_alloc(ctx, 0);
5394 gen.used_sizes = isl_union_map_empty(space);
5397 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
5399 if (options->debug->dump_sizes) {
5400 isl_union_map_dump(gen.used_sizes);
5401 isl_union_map_free(gen.used_sizes);
5404 isl_union_map_free(gen.sizes);
5405 for (i = 0; i < gen.types.n; ++i)
5406 free(gen.types.name[i]);
5407 free(gen.types.name);
5409 return r;
5412 /* Compute the set of inner array elements that may have their values
5413 * preserved by "prog". In particular, collect the array elements of
5414 * arrays that are not local to "prog" and remove those elements that
5415 * are definitely killed or definitely written by "prog".
5417 static __isl_give isl_union_set *compute_may_persist(struct gpu_prog *prog)
5419 int i;
5420 isl_union_set *may_persist, *killed;
5421 isl_union_map *must_kill;
5423 may_persist = isl_union_set_empty(isl_set_get_space(prog->context));
5424 for (i = 0; i < prog->n_array; ++i) {
5425 isl_set *extent;
5427 if (prog->array[i].local)
5428 continue;
5430 extent = isl_set_copy(prog->array[i].extent);
5431 may_persist = isl_union_set_add_set(may_persist, extent);
5434 may_persist = isl_union_set_intersect_params(may_persist,
5435 isl_set_copy(prog->context));
5436 may_persist = isl_union_set_apply(may_persist,
5437 isl_union_map_copy(prog->to_inner));
5438 must_kill = isl_union_map_copy(prog->tagged_must_kill);
5439 killed = isl_union_map_range(must_kill);
5440 must_kill = isl_union_map_copy(prog->must_write);
5441 killed = isl_union_set_union(killed, isl_union_map_range(must_kill));
5443 may_persist = isl_union_set_subtract(may_persist, killed);
5444 return may_persist;
5447 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
5449 struct gpu_prog *prog;
5450 isl_space *space;
5451 isl_map *id;
5453 if (!scop)
5454 return NULL;
5456 prog = isl_calloc_type(ctx, struct gpu_prog);
5457 assert(prog);
5459 prog->ctx = ctx;
5460 prog->scop = scop;
5461 prog->context = isl_set_copy(scop->context);
5462 prog->n_stmts = scop->pet->n_stmt;
5463 prog->any_to_outer = pet_scop_compute_outer_to_any(scop->pet);
5464 prog->any_to_outer = isl_union_map_reverse(prog->any_to_outer);
5465 space = isl_union_map_get_space(prog->any_to_outer);
5466 space = isl_space_set_from_params(space);
5467 space = isl_space_add_dims(space, isl_dim_set, 1);
5468 space = isl_space_map_from_set(space);
5469 id = isl_map_identity(space);
5470 prog->any_to_outer = isl_union_map_add_map(prog->any_to_outer, id);
5471 prog->stmts = extract_stmts(ctx, scop,
5472 prog->context, prog->any_to_outer);
5473 prog->read = isl_union_map_copy(scop->reads);
5474 prog->may_write = isl_union_map_copy(scop->may_writes);
5475 prog->must_write = isl_union_map_copy(scop->must_writes);
5476 prog->tagged_must_kill = isl_union_map_copy(scop->tagged_must_kills);
5477 prog->to_inner = pet_scop_compute_outer_to_inner(scop->pet);
5478 prog->to_outer = isl_union_map_copy(prog->to_inner);
5479 prog->to_outer = isl_union_map_reverse(prog->to_outer);
5481 if (!prog->stmts)
5482 return gpu_prog_free(prog);
5484 if (collect_array_info(prog) < 0)
5485 return gpu_prog_free(prog);
5486 prog->may_persist = compute_may_persist(prog);
5488 return prog;
5491 void *gpu_prog_free(struct gpu_prog *prog)
5493 if (!prog)
5494 return NULL;
5495 free_array_info(prog);
5496 free_stmts(prog->stmts, prog->n_stmts);
5497 isl_union_map_free(prog->any_to_outer);
5498 isl_union_map_free(prog->to_outer);
5499 isl_union_map_free(prog->to_inner);
5500 isl_union_map_free(prog->read);
5501 isl_union_map_free(prog->may_write);
5502 isl_union_map_free(prog->must_write);
5503 isl_union_map_free(prog->tagged_must_kill);
5504 isl_union_map_free(prog->array_order);
5505 isl_union_set_free(prog->may_persist);
5506 isl_set_free(prog->context);
5507 free(prog);
5508 return NULL;