gpu.c: remove_local_accesses: pass tagged access relation instead of group
[ppcg.git] / gpu.c
blobd3f74bffeaadc8f8e9c8c0e262aed24f134203b4
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
19 #include <isl/aff.h>
20 #include <isl/ilp.h>
21 #include <isl/flow.h>
22 #include <isl/schedule.h>
23 #include <isl/schedule_node.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
27 #include "cpu.h"
28 #include "gpu.h"
29 #include "gpu_array_tile.h"
30 #include "gpu_group.h"
31 #include "gpu_tree.h"
32 #include "schedule.h"
33 #include "ppcg_options.h"
34 #include "print.h"
36 struct gpu_array_info;
38 /* Collect all references to the given array and store pointers to them
39 * in array->refs.
41 * If the array contains structures, then there is no need to collect
42 * the references since we will not be computing any reference groups.
44 static void collect_references(struct gpu_prog *prog,
45 struct gpu_array_info *array)
47 int i;
48 int n;
50 if (array->has_compound_element)
51 return;
53 n = 0;
54 for (i = 0; i < prog->n_stmts; ++i) {
55 struct gpu_stmt *stmt = &prog->stmts[i];
56 struct gpu_stmt_access *access;
58 for (access = stmt->accesses; access; access = access->next) {
59 const char *name;
60 name = isl_map_get_tuple_name(access->access,
61 isl_dim_out);
62 if (name && !strcmp(array->name, name))
63 n++;
67 array->n_ref = n;
68 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
69 assert(array->refs);
71 n = 0;
72 for (i = 0; i < prog->n_stmts; ++i) {
73 struct gpu_stmt *stmt = &prog->stmts[i];
74 struct gpu_stmt_access *access;
76 for (access = stmt->accesses; access; access = access->next) {
77 const char *name;
78 name = isl_map_get_tuple_name(access->access,
79 isl_dim_out);
80 if (!name || strcmp(array->name, name))
81 continue;
83 array->refs[n++] = access;
88 /* Compute and return the extent of "array", taking into account the set of
89 * accessed elements.
91 * In particular, the extent in the outer dimension is taken
92 * from "accessed", while the extents in the remaining dimensions
93 * are taken from array->extent.
95 * The extent in the outer dimension cannot be taken from array->extent
96 * because that may be unbounded. Furthermore, even if it is bounded,
97 * it may be larger than the piece of the array that is being accessed.
99 static __isl_give isl_set *compute_extent(struct pet_array *array,
100 __isl_keep isl_set *accessed)
102 int n_index;
103 isl_id *id;
104 isl_set *outer;
105 isl_set *extent;
107 extent = isl_set_copy(array->extent);
109 n_index = isl_set_dim(accessed, isl_dim_set);
110 if (n_index == 0)
111 return extent;
113 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
114 outer = isl_set_copy(accessed);
115 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
116 extent = isl_set_flat_product(outer, extent);
117 id = isl_set_get_tuple_id(accessed);
118 extent = isl_set_set_tuple_id(extent, id);
120 return extent;
123 /* Is the array "array" being extracted a read-only scalar?
125 * That is, is "array" a scalar that is never possibly written to.
126 * An array containing structures is never considered to be a scalar.
128 static int is_read_only_scalar(struct gpu_array_info *array,
129 struct gpu_prog *prog)
131 isl_set *space;
132 isl_union_map *write;
133 int empty;
135 if (array->has_compound_element)
136 return 0;
137 if (array->n_index != 0)
138 return 0;
140 write = isl_union_map_copy(prog->may_write);
141 space = isl_set_universe(isl_space_copy(array->space));
142 write = isl_union_map_intersect_range(write,
143 isl_union_set_from_set(space));
144 empty = isl_union_map_is_empty(write);
145 isl_union_map_free(write);
147 return empty;
150 /* Compute bounds on the host array "pa" based on the corresponding
151 * accessed elements in "arrays"
152 * and collect all references to the array.
153 * Store the results in "info".
155 * If the array is zero-dimensional and does not contain structures,
156 * i.e., if the array is a scalar, we check whether it is read-only.
157 * We also check whether the array is accessed at all.
159 static int extract_array_info(struct gpu_prog *prog,
160 struct gpu_array_info *info, struct pet_array *pa,
161 __isl_keep isl_union_set *arrays)
163 int i, empty;
164 const char *name;
165 int n_index;
166 isl_pw_aff **bounds;
167 isl_set *accessed, *extent;
169 n_index = isl_set_dim(pa->extent, isl_dim_set);
170 name = isl_set_get_tuple_name(pa->extent);
171 bounds = isl_alloc_array(prog->ctx, isl_pw_aff *, n_index);
172 if (!bounds)
173 return -1;
175 info->space = isl_set_get_space(pa->extent);
176 info->name = strdup(name);
177 info->n_index = n_index;
178 info->bound = bounds;
179 info->linearize = prog->scop->options->linearize_device_arrays;
181 info->type = strdup(pa->element_type);
182 info->size = pa->element_size;
183 info->local = pa->declared && !pa->exposed;
184 info->has_compound_element = pa->element_is_record;
185 info->read_only_scalar = is_read_only_scalar(info, prog);
187 accessed = isl_union_set_extract_set(arrays,
188 isl_space_copy(info->space));
189 empty = isl_set_is_empty(accessed);
190 extent = compute_extent(pa, accessed);
191 isl_set_free(accessed);
192 info->extent = extent;
193 if (empty < 0)
194 return -1;
195 info->accessed = !empty;
196 for (i = 0; i < n_index; ++i) {
197 isl_set *dom;
198 isl_local_space *ls;
199 isl_aff *one;
200 isl_pw_aff *bound;
202 dom = isl_set_copy(extent);
203 dom = isl_set_project_out(dom, isl_dim_set, i + 1,
204 n_index - (i + 1));
205 dom = isl_set_project_out(dom, isl_dim_set, 0, i);
206 if (!isl_set_dim_has_upper_bound(dom, isl_dim_set, 0)) {
207 fprintf(stderr, "unable to determine extent of '%s' "
208 "in dimension %d\n", info->name, i);
209 dom = isl_set_free(dom);
211 bound = isl_set_dim_max(dom, 0);
212 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
213 ls = isl_local_space_from_space(isl_set_get_space(dom));
214 one = isl_aff_zero_on_domain(ls);
215 one = isl_aff_add_constant_si(one, 1);
216 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
217 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
219 bounds[i] = bound;
220 if (!isl_pw_aff_is_cst(bound))
221 info->linearize = 1;
224 collect_references(prog, info);
226 return 0;
229 /* Remove independence from the order constraints "order" on array "array".
230 * Since the pairs of iterations in the filter relation of an independence
231 * are guaranteed to be completely independent by the user, there is
232 * no need to ensure that live ranges are ordered along thong pairs.
233 * We make an exception for local variables, though, as the independence
234 * guarantee does not apply to those.
236 * The order constraints are used in two places.
237 * Those on scalars are used in check_scalar_live_ranges to check if
238 * we need to force the scalar to be private. Any non-local scalar
239 * should not be forced scalar if it only appears in independent loops.
240 * Those on non-scalars are added to the coincidence constraints
241 * in compute_schedule because we do not support any array expansion.
242 * Accesses to non-local arrays should not prevent a loop from being
243 * considered coincident so we should indeed remove those constraints
244 * from the order constraints.
246 static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
247 struct gpu_array_info *array, __isl_take isl_union_map *order)
249 int i;
251 for (i = 0; i < prog->scop->pet->n_independence; ++i) {
252 struct pet_independence *pi = prog->scop->pet->independences[i];
253 if (isl_union_set_contains(pi->local, array->space))
254 continue;
256 order = isl_union_map_subtract(order,
257 isl_union_map_copy(pi->filter));
260 return order;
263 /* For each array in "prog", store the (untagged) order dependences
264 * derived from the array in array->dep_order.
265 * In particular, consider all references that access the given array
266 * and take the order dependences that have one of these references
267 * as source. (Since an order dependence relates two references to
268 * the same array, the target of these order dependences will also
269 * be one of these references.)
270 * Additionally, store the union of these array->dep_order relations
271 * for all non-scalar arrays in prog->array_order.
273 void collect_order_dependences(struct gpu_prog *prog)
275 int i;
276 isl_space *space;
277 isl_union_map *accesses;
279 space = isl_union_map_get_space(prog->read);
280 prog->array_order = isl_union_map_empty(space);
282 accesses = isl_union_map_copy(prog->scop->tagged_reads);
283 accesses = isl_union_map_union(accesses,
284 isl_union_map_copy(prog->scop->tagged_may_writes));
285 accesses = isl_union_map_universe(accesses);
286 accesses = isl_union_map_apply_range(accesses,
287 isl_union_map_copy(prog->to_outer));
289 for (i = 0; i < prog->n_array; ++i) {
290 struct gpu_array_info *array = &prog->array[i];
291 isl_set *set;
292 isl_union_set *uset;
293 isl_union_map *order;
295 set = isl_set_universe(isl_space_copy(array->space));
296 uset = isl_union_set_from_set(set);
297 uset = isl_union_map_domain(
298 isl_union_map_intersect_range(isl_union_map_copy(accesses),
299 uset));
300 order = isl_union_map_copy(prog->scop->tagged_dep_order);
301 order = isl_union_map_intersect_domain(order, uset);
302 order = isl_union_map_zip(order);
303 order = isl_union_set_unwrap(isl_union_map_domain(order));
304 order = remove_independences(prog, array, order);
305 array->dep_order = order;
307 if (gpu_array_is_scalar(array) && !array->has_compound_element)
308 continue;
310 prog->array_order = isl_union_map_union(prog->array_order,
311 isl_union_map_copy(array->dep_order));
314 isl_union_map_free(accesses);
317 /* Construct a gpu_array_info for each array referenced by prog->scop and
318 * collect them in prog->array.
320 * The sizes are based on the extents and the set of possibly accessed
321 * elements by "prog".
322 * If there are any member accesses involved, then they are first mapped
323 * to the outer arrays of structs.
325 * If we are allowing live range reordering, then also set
326 * the dep_order field. Otherwise leave it NULL.
328 static int collect_array_info(struct gpu_prog *prog)
330 int i;
331 int r = 0;
332 isl_union_set *arrays;
334 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
335 arrays = isl_union_set_union(arrays,
336 isl_union_map_range(isl_union_map_copy(prog->may_write)));
338 arrays = isl_union_set_apply(arrays,
339 isl_union_map_copy(prog->to_outer));
341 arrays = isl_union_set_coalesce(arrays);
343 prog->n_array = prog->scop->pet->n_array;
344 prog->array = isl_calloc_array(prog->ctx,
345 struct gpu_array_info, prog->n_array);
346 assert(prog->array);
347 for (i = 0; i < prog->scop->pet->n_array; ++i)
348 if (extract_array_info(prog, &prog->array[i],
349 prog->scop->pet->arrays[i], arrays) < 0)
350 r = -1;
352 isl_union_set_free(arrays);
354 if (prog->scop->options->live_range_reordering)
355 collect_order_dependences(prog);
357 return r;
360 static void free_array_info(struct gpu_prog *prog)
362 int i, j;
364 for (i = 0; i < prog->n_array; ++i) {
365 int n_index = prog->array[i].n_index;
366 free(prog->array[i].type);
367 free(prog->array[i].name);
368 for (j = 0; j < n_index; ++j)
369 isl_pw_aff_free(prog->array[i].bound[j]);
370 isl_space_free(prog->array[i].space);
371 isl_set_free(prog->array[i].extent);
372 free(prog->array[i].bound);
373 free(prog->array[i].refs);
374 isl_union_map_free(prog->array[i].dep_order);
376 free(prog->array);
379 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
380 * as an array or through a pointer reference, but as a single data element.
381 * At the moment, scalars are represented as zero-dimensional arrays.
382 * Note that the single data element may be an entire structure.
384 int gpu_array_is_scalar(struct gpu_array_info *array)
386 return array->n_index == 0;
389 /* Is "array" a read-only scalar?
391 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
393 return array->read_only_scalar;
396 /* Return the set of parameter values for which the array has a positive
397 * size in all dimensions.
398 * If the sizes are only valid for some parameter values, then those
399 * constraints are also taken into account.
401 __isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
403 int i;
404 isl_space *space;
405 isl_set *guard;
407 space = isl_space_params(isl_space_copy(array->space));
408 guard = isl_set_universe(space);
410 for (i = 0; i < array->n_index; ++i) {
411 isl_pw_aff *bound;
412 isl_set *guard_i, *zero;
414 bound = isl_pw_aff_copy(array->bound[i]);
415 guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
416 zero = isl_pw_aff_zero_set(bound);
417 guard_i = isl_set_subtract(guard_i, zero);
418 guard = isl_set_intersect(guard, guard_i);
421 return guard;
424 /* Internal data structure for extract_size_of_type.
425 * "type" specifies the name of the space that we want to extract.
426 * "res" is used to store the subset of that space.
428 struct ppcg_extract_size_data {
429 const char *type;
430 isl_set *res;
433 /* This function is called for each set in a union_set.
434 * If the name of the set matches data->type, we store the
435 * set in data->res.
437 static int extract_size_of_type(__isl_take isl_set *size, void *user)
439 struct ppcg_extract_size_data *data = user;
440 const char *name;
442 name = isl_set_get_tuple_name(size);
443 if (name && !strcmp(name, data->type)) {
444 data->res = size;
445 return -1;
448 isl_set_free(size);
449 return 0;
452 /* Given a union map { kernel[i] -> *[...] },
453 * return the range in the space called "type" for the kernel with
454 * sequence number "id".
456 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
457 const char *type, int id)
459 isl_space *space;
460 isl_set *dom;
461 isl_union_set *local_sizes;
462 struct ppcg_extract_size_data data = { type, NULL };
464 if (!sizes)
465 return NULL;
467 space = isl_union_map_get_space(sizes);
468 space = isl_space_set_from_params(space);
469 space = isl_space_add_dims(space, isl_dim_set, 1);
470 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
471 dom = isl_set_universe(space);
472 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
474 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
475 isl_union_map_copy(sizes));
476 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
477 isl_union_set_free(local_sizes);
478 return data.res;
481 /* Given a singleton set, extract the first (at most *len) elements
482 * of the single integer tuple into *sizes and update *len if needed.
484 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
486 int i;
487 int dim;
489 if (!set)
490 return;
492 dim = isl_set_dim(set, isl_dim_set);
493 if (dim < *len)
494 *len = dim;
496 for (i = 0; i < *len; ++i) {
497 isl_val *v;
499 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
500 assert(v);
502 sizes[i] = isl_val_get_num_si(v);
503 isl_val_free(v);
506 isl_set_free(set);
509 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
510 * if the option debug->dump_sizes is set.
512 static void set_used_sizes(struct gpu_gen *gen, const char *type, int id,
513 int *sizes, int len)
515 int i;
516 isl_space *space;
517 isl_map *map;
519 if (!gen->options->debug->dump_sizes)
520 return;
522 space = isl_union_map_get_space(gen->used_sizes);
523 space = isl_space_set_from_params(space);
524 space = isl_space_add_dims(space, isl_dim_set, 1);
525 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
526 space = isl_space_from_domain(space);
527 space = isl_space_add_dims(space, isl_dim_out, len);
528 space = isl_space_set_tuple_name(space, isl_dim_out, type);
530 map = isl_map_universe(space);
531 map = isl_map_fix_si(map, isl_dim_in, 0, id);
532 for (i = 0; i < len; ++i)
533 map = isl_map_fix_si(map, isl_dim_out, i, sizes[i]);
535 gen->used_sizes = isl_union_map_add_map(gen->used_sizes, map);
538 /* Extract user specified "tile" sizes from the "sizes" command line option,
539 * defaulting to option->tile_size in each dimension.
540 * *tile_len contains the maximum number of tile sizes needed.
541 * Update *tile_len to the number of specified tile sizes, if any, and
542 * return a pointer to the tile sizes (or NULL on error).
543 * Add the effectively used sizes to gen->used_sizes.
545 static int *read_tile_sizes(struct gpu_gen *gen, int *tile_len)
547 int n;
548 int *tile_size;
549 isl_set *size;
551 tile_size = isl_alloc_array(gen->ctx, int, *tile_len);
552 if (!tile_size)
553 return NULL;
554 for (n = 0; n < *tile_len; ++n)
555 tile_size[n] = gen->options->tile_size;
557 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
558 read_sizes_from_set(size, tile_size, tile_len);
559 set_used_sizes(gen, "tile", gen->kernel_id, tile_size, *tile_len);
561 return tile_size;
564 /* Extract user specified "block" sizes from the "sizes" command line option,
565 * after filling in some potentially useful defaults.
567 static void read_block_sizes(struct ppcg_kernel *kernel,
568 __isl_keep isl_union_map *sizes)
570 isl_set *size;
572 if (kernel->n_block > 3)
573 kernel->n_block = 3;
574 switch (kernel->n_block) {
575 case 1:
576 kernel->block_dim[0] = 512;
577 break;
578 case 2:
579 kernel->block_dim[0] = 32;
580 kernel->block_dim[1] = 16;
581 break;
582 default:
583 kernel->block_dim[0] = 32;
584 kernel->block_dim[1] = 4;
585 kernel->block_dim[2] = 4;
586 break;
589 size = extract_sizes(sizes, "block", kernel->id);
590 read_sizes_from_set(size, kernel->block_dim, &kernel->n_block);
593 /* Extract user specified "grid" sizes from the "sizes" command line option,
594 * after filling in some potentially useful defaults.
596 static void read_grid_sizes(struct ppcg_kernel *kernel,
597 __isl_keep isl_union_map *sizes)
599 isl_set *size;
601 if (kernel->n_grid > 2)
602 kernel->n_grid = 2;
603 switch (kernel->n_grid) {
604 case 1:
605 kernel->grid_dim[0] = 32768;
606 break;
607 default:
608 kernel->grid_dim[0] = 256;
609 kernel->grid_dim[1] = 256;
610 break;
613 size = extract_sizes(sizes, "grid", kernel->id);
614 read_sizes_from_set(size, kernel->grid_dim, &kernel->n_grid);
617 /* Extract user specified grid and block sizes from the gen->sizes
618 * command line option after filling in some potentially useful defaults.
619 * Store the extracted sizes in "kernel".
620 * Add the effectively used sizes to gen->used_sizes.
622 static void read_grid_and_block_sizes(struct ppcg_kernel *kernel,
623 struct gpu_gen *gen)
625 read_block_sizes(kernel, gen->sizes);
626 read_grid_sizes(kernel, gen->sizes);
627 set_used_sizes(gen, "block", kernel->id,
628 kernel->block_dim, kernel->n_block);
629 set_used_sizes(gen, "grid", kernel->id,
630 kernel->grid_dim, kernel->n_grid);
633 static void *free_stmts(struct gpu_stmt *stmts, int n)
635 int i;
637 if (!stmts)
638 return NULL;
640 for (i = 0; i < n; ++i) {
641 struct gpu_stmt_access *access, *next;
643 for (access = stmts[i].accesses; access; access = next) {
644 next = access->next;
645 isl_id_free(access->ref_id);
646 isl_map_free(access->access);
647 isl_map_free(access->tagged_access);
648 free(access);
651 isl_id_free(stmts[i].id);
653 free(stmts);
655 return NULL;
658 /* Add parameters p[i] with identifiers "ids" to "set",
659 * with bounds to 0 <= p[i] < size[i].
661 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
662 int *size, __isl_keep isl_id_list *ids)
664 int i, len;
665 unsigned nparam;
667 len = isl_id_list_n_id(ids);
668 nparam = isl_set_dim(set, isl_dim_param);
669 set = isl_set_add_dims(set, isl_dim_param, len);
671 for (i = 0; i < len; ++i) {
672 isl_id *id;
674 id = isl_id_list_get_id(ids, i);
675 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
676 set = isl_set_lower_bound_si(set, isl_dim_param, nparam + i, 0);
677 set = isl_set_upper_bound_si(set, isl_dim_param,
678 nparam + i, size[i] - 1);
681 return set;
684 /* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
685 * with
687 * { : 0 <= p[i] < size[i] }
689 * or an overapproximation.
691 static __isl_give isl_set *add_bounded_parameters_dynamic(
692 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
693 __isl_keep isl_id_list *ids)
695 int i, len;
696 unsigned nparam;
697 isl_space *space;
698 isl_local_space *ls;
700 len = isl_multi_pw_aff_dim(size, isl_dim_out);
701 nparam = isl_set_dim(set, isl_dim_param);
702 set = isl_set_add_dims(set, isl_dim_param, len);
704 for (i = 0; i < len; ++i) {
705 isl_id *id;
707 id = isl_id_list_get_id(ids, i);
708 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
711 space = isl_space_params(isl_set_get_space(set));
712 ls = isl_local_space_from_space(space);
713 for (i = 0; i < len; ++i) {
714 isl_pw_aff *param, *size_i, *zero;
715 isl_set *bound;
717 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
718 isl_dim_param, nparam + i);
720 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
721 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
722 bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
723 set = isl_set_intersect_params(set, bound);
725 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
726 bound = isl_pw_aff_ge_set(param, zero);
727 set = isl_set_intersect_params(set, bound);
729 isl_local_space_free(ls);
731 return set;
734 /* Return the union of all tagged access relations in the group.
736 static __isl_give isl_union_map *group_tagged_access_relation(
737 struct gpu_array_ref_group *group)
739 int i;
740 isl_union_map *access;
742 access = isl_union_map_empty(isl_map_get_space(group->access));
743 for (i = 0; i < group->n_ref; ++i) {
744 isl_map *map_i;
746 map_i = isl_map_copy(group->refs[i]->tagged_access);
747 access = isl_union_map_union(access,
748 isl_union_map_from_map(map_i));
751 return access;
754 /* Return the extent of "array", recomputed from the bounds.
755 * The recomputed extent may be simpler than the original extent.
757 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
759 int i;
760 isl_id *id;
761 isl_space *space;
762 isl_local_space *ls;
763 isl_set *extent;
765 id = isl_set_get_tuple_id(array->extent);
766 space = isl_set_get_space(array->extent);
767 extent = isl_set_universe(isl_space_copy(space));
768 ls = isl_local_space_from_space(space);
769 for (i = 0; i < array->n_index; ++i) {
770 isl_pw_aff *bound;
771 isl_aff *aff;
772 isl_pw_aff *index;
773 isl_set *lt;
775 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
777 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
778 isl_dim_set, i);
779 index = isl_pw_aff_from_aff(aff);
780 bound = isl_pw_aff_copy(array->bound[i]);
781 bound = isl_pw_aff_from_range(bound);
782 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
783 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
784 isl_id_copy(id));
785 lt = isl_pw_aff_lt_set(index, bound);
786 extent = isl_set_intersect(extent, lt);
788 isl_local_space_free(ls);
789 isl_id_free(id);
791 return extent;
794 /* Return a map from the first group->depth dimensions of the computed
795 * schedule to the array tile in
796 * global memory that corresponds to the shared memory copy.
798 * In particular, return a map
800 * { D[i] -> A[a] }
802 * with constraints
804 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
806 * and
808 * 0 <= a <= array_size - 1 (2)
810 * Note that if some stride has been detected (i.e., when
811 * group->shared_tile->bound[i].shift is set), then a in (1) refers
812 * to the shifted and scaled down version.
814 * Constraints (1) are obtained by mapping the size constraints on the
815 * shared/private memory tile back to the access relation.
816 * Constraints (2) are obtained from the (recomputed) extent.
818 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
820 int i;
821 int n_index = group->array->n_index;
822 isl_map *tile;
823 isl_space *space;
824 isl_set *local;
825 isl_set *extent;
827 space = isl_multi_aff_get_space(group->shared_tile->tiling);
828 space = isl_space_range(space);
829 local = isl_set_universe(space);
830 for (i = 0; i < n_index; ++i) {
831 isl_val *bound;
833 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
834 bound = isl_val_copy(group->shared_tile->bound[i].size);
835 bound = isl_val_sub_ui(bound, 1);
836 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
838 local = isl_set_preimage_multi_aff(local,
839 isl_multi_aff_copy(group->shared_tile->tiling));
840 tile = isl_set_unwrap(local);
841 extent = array_extent(group->array);
842 tile = isl_map_intersect_range(tile, extent);
844 return tile;
847 /* Given a mapping "iterator_map" from the AST schedule to a domain,
848 * return the corresponding mapping from the AST schedule to
849 * to the outer kernel->shared_schedule_dim dimensions of
850 * the schedule computed by PPCG for this kernel.
852 * Note that kernel->shared_schedule_dim is at least as large as
853 * the largest depth of any array reference group associated to the kernel.
854 * This is needed as the returned schedule is used to extract a mapping
855 * to the outer group->depth dimensions in transform_index.
857 static __isl_give isl_pw_multi_aff *compute_sched_to_shared(
858 struct ppcg_kernel *kernel, __isl_take isl_pw_multi_aff *iterator_map)
860 isl_union_pw_multi_aff *upma;
861 isl_pw_multi_aff *pma;
862 isl_space *space;
864 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
865 space = isl_space_from_domain(space);
866 space = isl_space_add_dims(space, isl_dim_out,
867 kernel->shared_schedule_dim);
869 upma = isl_union_pw_multi_aff_copy(kernel->shared_schedule);
870 pma = isl_union_pw_multi_aff_extract_pw_multi_aff(upma, space);
871 isl_union_pw_multi_aff_free(upma);
873 return isl_pw_multi_aff_pullback_pw_multi_aff(pma, iterator_map);
876 /* If max_shared_memory is not set to infinity (-1), then make
877 * sure that the total amount of shared memory required by the
878 * array reference groups mapped to shared memory by "kernel"
879 * is no larger than this maximum.
881 * We apply a greedy approach and discard (keep in global memory)
882 * those groups that would result in a total memory size that
883 * is larger than the maximum.
885 * This function should be called after any function that may
886 * affect the decision on whether to place a reference group
887 * in private, shared or global memory.
889 static void check_shared_memory_bound(struct ppcg_kernel *kernel)
891 int i, j;
892 isl_val *left, *size;
894 if (kernel->options->max_shared_memory < 0)
895 return;
897 left = isl_val_int_from_si(kernel->ctx,
898 kernel->options->max_shared_memory);
900 for (i = 0; i < kernel->n_array; ++i) {
901 struct gpu_local_array_info *local = &kernel->array[i];
903 for (j = 0; j < local->n_group; ++j) {
904 struct gpu_array_ref_group *group;
906 group = local->groups[j];
907 if (group->private_tile)
908 continue;
909 if (!group->shared_tile)
910 continue;
912 size = gpu_array_tile_size(group->shared_tile);
913 size = isl_val_mul_ui(size, local->array->size);
915 if (isl_val_le(size, left)) {
916 left = isl_val_sub(left, size);
917 continue;
919 isl_val_free(size);
921 group->shared_tile =
922 gpu_array_tile_free(group->shared_tile);
926 isl_val_free(left);
929 /* Compute a tiling for all the array reference groups in "kernel".
931 static void compute_group_tilings(struct ppcg_kernel *kernel)
933 int i, j;
935 for (i = 0; i < kernel->n_array; ++i) {
936 struct gpu_local_array_info *array = &kernel->array[i];
938 for (j = 0; j < array->n_group; ++j)
939 gpu_array_ref_group_compute_tiling(array->groups[j]);
943 /* Compute the size of a bounding box around the origin and "set",
944 * where "set" is assumed to contain only non-negative elements.
945 * In particular, compute the maximal value of "set" in each direction
946 * and add one.
948 static __isl_give isl_multi_pw_aff *extract_size(__isl_take isl_set *set,
949 __isl_take isl_set *context)
951 int i, n;
952 isl_multi_pw_aff *mpa;
954 context = isl_set_params(context);
955 n = isl_set_dim(set, isl_dim_set);
956 mpa = isl_multi_pw_aff_zero(isl_set_get_space(set));
957 for (i = 0; i < n; ++i) {
958 isl_space *space;
959 isl_aff *one;
960 isl_pw_aff *bound;
962 bound = isl_set_dim_max(isl_set_copy(set), i);
963 bound = isl_pw_aff_coalesce(bound);
964 bound = isl_pw_aff_gist(bound, isl_set_copy(context));
966 space = isl_pw_aff_get_domain_space(bound);
967 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
968 one = isl_aff_add_constant_si(one, 1);
969 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
970 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
972 isl_set_free(set);
973 isl_set_free(context);
975 return mpa;
978 /* Compute the effective grid size as a list of the sizes in each dimension.
980 * The grid size specified by the user or set by default
981 * in read_grid_sizes() and applied by the block filter,
982 * may be too large for the given code in the sense that
983 * it may contain blocks that don't need to execute anything.
984 * We therefore don't return this grid size, but instead the
985 * smallest grid size that ensures that all blocks that actually
986 * execute code are included in the grid.
988 * We first extract a description of the grid, i.e., the possible values
989 * of the block ids, from the domain elements in "domain" and
990 * kernel->block_filter.
991 * The block ids are parameters in kernel->block_filter.
992 * We simply need to change them into set dimensions.
994 * Then, for each block dimension, we compute the maximal value of the block id
995 * and add one.
997 static __isl_give isl_multi_pw_aff *extract_grid_size(
998 struct ppcg_kernel *kernel, __isl_take isl_union_set *domain)
1000 int i;
1001 isl_set *grid;
1003 domain = isl_union_set_intersect(domain,
1004 isl_union_set_copy(kernel->block_filter));
1005 grid = isl_union_set_params(domain);
1006 grid = isl_set_from_params(grid);
1007 grid = isl_set_add_dims(grid, isl_dim_set, kernel->n_grid);
1008 for (i = 0; i < kernel->n_grid; ++i) {
1009 int pos;
1010 isl_id *id;
1012 id = isl_id_list_get_id(kernel->block_ids, i);
1013 pos = isl_set_find_dim_by_id(grid, isl_dim_param, id);
1014 isl_id_free(id);
1015 assert(pos >= 0);
1016 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
1017 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
1020 return extract_size(grid, isl_set_copy(kernel->context));
1023 /* Compute the size of a fixed bounding box around the origin and "set",
1024 * where "set" is assumed to contain only non-negative elements,
1025 * and store the results in "size".
1026 * In particular, compute the maximal value of "set" in each direction
1027 * and add one.
1029 static void extract_fixed_size(__isl_take isl_set *set, int *size)
1031 int i, n;
1032 isl_local_space *ls;
1033 isl_aff *obj;
1035 n = isl_set_dim(set, isl_dim_set);
1036 ls = isl_local_space_from_space(isl_set_get_space(set));
1037 obj = isl_aff_zero_on_domain(ls);
1038 for (i = 0; i < n; ++i) {
1039 isl_val *max;
1041 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
1042 max = isl_set_max_val(set, obj);
1043 size[i] = isl_val_get_num_si(max) + 1;
1044 isl_val_free(max);
1045 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
1047 isl_aff_free(obj);
1048 isl_set_free(set);
1051 /* Compute the effective block size as a list of the sizes in each dimension
1052 * and store the sizes in kernel->block_dim.
1054 * The block size specified by the user or set by default
1055 * in read_block_sizes() and applied by the thread filter,
1056 * may be too large for the given code in the sense that
1057 * it may contain threads that don't need to execute anything.
1058 * We therefore update this block size in kernel->block_dim
1059 * to the smallest block size that ensures that all threads
1060 * that actually execute code are included in the block.
1062 * The possible values of the thread ids is obtained from
1063 * the domain elements "domain" and kernel->thread_filter.
1064 * The current implementation eliminates all parameters, ensuring
1065 * that the size is a fixed constant in each dimension.
1066 * In principle we could also compute parametric sizes.
1067 * We would have to make sure to project out all b%d and t%d parameters,
1068 * however.
1070 static void extract_block_size(struct ppcg_kernel *kernel,
1071 __isl_take isl_union_set *domain)
1073 int i;
1074 int nparam;
1075 isl_set *block;
1077 domain = isl_union_set_intersect(domain,
1078 isl_union_set_copy(kernel->thread_filter));
1079 block = isl_union_set_params(domain);
1080 block = isl_set_from_params(block);
1081 block = isl_set_add_dims(block, isl_dim_set, kernel->n_block);
1082 for (i = 0; i < kernel->n_block; ++i) {
1083 int pos;
1084 isl_id *id;
1086 id = isl_id_list_get_id(kernel->thread_ids, i);
1087 pos = isl_set_find_dim_by_id(block, isl_dim_param, id);
1088 isl_id_free(id);
1089 assert(pos >= 0);
1090 block = isl_set_equate(block, isl_dim_param, pos,
1091 isl_dim_set, i);
1093 nparam = isl_set_dim(block, isl_dim_param);
1094 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
1096 extract_fixed_size(block, kernel->block_dim);
1099 struct ppcg_kernel *ppcg_kernel_free(struct ppcg_kernel *kernel)
1101 int i, j;
1103 if (!kernel)
1104 return NULL;
1106 isl_id_list_free(kernel->block_ids);
1107 isl_id_list_free(kernel->thread_ids);
1108 isl_multi_pw_aff_free(kernel->grid_size);
1109 isl_set_free(kernel->context);
1110 isl_union_set_free(kernel->core);
1111 isl_union_set_free(kernel->arrays);
1112 isl_space_free(kernel->space);
1113 isl_ast_node_free(kernel->tree);
1114 isl_union_set_free(kernel->block_filter);
1115 isl_union_set_free(kernel->thread_filter);
1116 isl_union_pw_multi_aff_free(kernel->shared_schedule);
1117 isl_union_set_free(kernel->sync_writes);
1119 for (i = 0; i < kernel->n_array; ++i) {
1120 struct gpu_local_array_info *array = &kernel->array[i];
1122 for (j = 0; j < array->n_group; ++j)
1123 gpu_array_ref_group_free(array->groups[j]);
1124 free(array->groups);
1126 isl_pw_aff_list_free(array->bound);
1128 free(kernel->array);
1130 for (i = 0; i < kernel->n_var; ++i) {
1131 free(kernel->var[i].name);
1132 isl_vec_free(kernel->var[i].size);
1134 free(kernel->var);
1136 free(kernel);
1138 return NULL;
1141 /* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
1143 static void ppcg_kernel_free_wrap(void *user)
1145 struct ppcg_kernel *kernel = user;
1147 ppcg_kernel_free(kernel);
1150 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
1151 struct ppcg_kernel_var *var)
1153 int j;
1154 struct gpu_array_tile *tile;
1155 isl_printer *p;
1156 char *name;
1158 var->array = group->array;
1160 tile = group->private_tile;
1161 var->type = ppcg_access_private;
1162 if (!tile) {
1163 tile = group->shared_tile;
1164 var->type = ppcg_access_shared;
1167 p = isl_printer_to_str(ctx);
1168 p = gpu_array_ref_group_print_name(group, p);
1169 var->name = isl_printer_get_str(p);
1170 isl_printer_free(p);
1172 var->size = isl_vec_alloc(ctx, group->array->n_index);
1174 for (j = 0; j < group->array->n_index; ++j)
1175 var->size = isl_vec_set_element_val(var->size, j,
1176 isl_val_copy(tile->bound[j].size));
1179 static int create_kernel_vars(struct ppcg_kernel *kernel)
1181 int i, j, n;
1183 n = 0;
1184 for (i = 0; i < kernel->n_array; ++i) {
1185 struct gpu_local_array_info *array = &kernel->array[i];
1187 for (j = 0; j < array->n_group; ++j) {
1188 struct gpu_array_ref_group *group = array->groups[j];
1189 if (group->private_tile || group->shared_tile)
1190 ++n;
1194 kernel->n_var = n;
1195 kernel->var = isl_calloc_array(kernel->ctx, struct ppcg_kernel_var, n);
1196 if (!kernel->var)
1197 return -1;
1199 n = 0;
1200 for (i = 0; i < kernel->n_array; ++i) {
1201 struct gpu_local_array_info *array = &kernel->array[i];
1203 for (j = 0; j < array->n_group; ++j) {
1204 struct gpu_array_ref_group *group = array->groups[j];
1205 if (!group->private_tile && !group->shared_tile)
1206 continue;
1207 create_kernel_var(kernel->ctx, group, &kernel->var[n]);
1208 ++n;
1212 return 0;
1215 /* Replace "pa" by the zero function defined over the universe domain
1216 * in the space of "pa".
1218 static __isl_give isl_pw_aff *set_universally_zero(__isl_take isl_pw_aff *pa)
1220 isl_space *space;
1221 isl_aff *zero;
1223 space = isl_space_domain(isl_pw_aff_get_space(pa));
1224 isl_pw_aff_free(pa);
1225 zero = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1227 return isl_pw_aff_from_aff(zero);
1230 /* The sizes of the arrays on the host that have been computed by
1231 * extract_array_info may depend on the parameters. Use the extra
1232 * constraints on the parameters that are valid at "host_domain"
1233 * to simplify these expressions and store the results in kernel->array.
1235 * We only need these localized bounds for arrays that are accessed
1236 * by the current kernel. If we have found at least one reference group
1237 * then the array is accessed by the kernel. If the array has compound
1238 * elements then we skipped the construction of array reference groups.
1240 * The resulting sizes may be functions that are nowhere defined
1241 * in case the access function cannot possibly access anything inside
1242 * the kernel for some reason. If so, they are replaced by the zero
1243 * function. Since the access function cannot actually access anything,
1244 * there is no harm in printing the array sizes as zero.
1246 static void localize_bounds(struct ppcg_kernel *kernel,
1247 __isl_keep isl_set *host_domain)
1249 int i, j;
1250 isl_set *context;
1252 context = isl_set_copy(host_domain);
1253 context = isl_set_params(context);
1255 for (i = 0; i < kernel->n_array; ++i) {
1256 struct gpu_local_array_info *local = &kernel->array[i];
1257 isl_pw_aff_list *bound;
1258 int n_index;
1260 if (local->n_group == 0 && !local->array->has_compound_element)
1261 continue;
1263 n_index = local->array->n_index;
1264 bound = isl_pw_aff_list_alloc(kernel->ctx, n_index);
1266 for (j = 0; j < n_index; ++j) {
1267 isl_pw_aff *pwaff;
1268 int empty;
1270 pwaff = isl_pw_aff_copy(local->array->bound[j]);
1271 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
1272 empty = isl_pw_aff_is_empty(pwaff);
1273 if (empty < 0)
1274 pwaff = isl_pw_aff_free(pwaff);
1275 else if (empty)
1276 pwaff = set_universally_zero(pwaff);
1277 bound = isl_pw_aff_list_add(bound, pwaff);
1280 local->n_index = n_index;
1281 local->bound = bound;
1283 isl_set_free(context);
1286 /* Create the array of gpu_local_array_info structures "array"
1287 * inside "kernel". The number of elements in this array is
1288 * the same as the number of arrays in "prog".
1289 * Initialize the "array" field of each local array to point
1290 * to the corresponding array in "prog".
1292 static struct ppcg_kernel *ppcg_kernel_create_local_arrays(
1293 struct ppcg_kernel *kernel, struct gpu_prog *prog)
1295 int i;
1296 isl_ctx *ctx;
1298 ctx = isl_set_get_ctx(prog->context);
1299 kernel->array = isl_calloc_array(ctx,
1300 struct gpu_local_array_info, prog->n_array);
1301 if (!kernel->array)
1302 return ppcg_kernel_free(kernel);
1303 kernel->n_array = prog->n_array;
1305 for (i = 0; i < prog->n_array; ++i)
1306 kernel->array[i].array = &prog->array[i];
1308 return kernel;
1311 /* Find the element in gen->stmt that has the given "id".
1312 * Return NULL if no such gpu_stmt can be found.
1314 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
1316 int i;
1318 for (i = 0; i < prog->n_stmts; ++i) {
1319 if (id == prog->stmts[i].id)
1320 break;
1323 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
1326 void ppcg_kernel_stmt_free(void *user)
1328 int i;
1329 struct ppcg_kernel_stmt *stmt = user;
1331 if (!stmt)
1332 return;
1334 switch (stmt->type) {
1335 case ppcg_kernel_copy:
1336 isl_ast_expr_free(stmt->u.c.index);
1337 isl_ast_expr_free(stmt->u.c.local_index);
1338 break;
1339 case ppcg_kernel_domain:
1340 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
1341 break;
1342 case ppcg_kernel_sync:
1343 break;
1346 free(stmt);
1349 /* Return the gpu_stmt_access in the list "accesses" that corresponds
1350 * to "ref_id".
1352 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
1353 __isl_keep isl_id *ref_id)
1355 struct gpu_stmt_access *access;
1357 for (access = accesses; access; access = access->next)
1358 if (access->ref_id == ref_id)
1359 return access;
1361 return NULL;
1364 /* Return the index of the array called "name" in the list of arrays.
1366 static int find_array_index(struct ppcg_kernel *kernel, const char *name)
1368 int i;
1370 for (i = 0; i < kernel->n_array; ++i)
1371 if (!strcmp(name, kernel->array[i].array->name))
1372 return i;
1374 return -1;
1377 /* Internal data structure for the index and AST expression transformation
1378 * callbacks for pet_stmt_build_ast_exprs.
1380 * "kernel" is the kernel for which are computing AST expressions.
1381 * "accesses" is the list of gpu_stmt_access in the statement.
1382 * "iterator_map" expresses the statement iterators in terms of
1383 * the AST loop iterators.
1384 * "sched2shared" expresses the outer shared_schedule_dim dimensions of
1385 * the kernel schedule in terms of the AST loop iterators.
1387 * The following fields are set in transform_index and used in transform_expr.
1388 * "array" is the array that is being accessed.
1389 * "global" is set if the global array is accessed (rather than
1390 * shared/private memory).
1391 * "local_array" refers to information on the array specialized
1392 * to the current kernel.
1394 struct ppcg_transform_data {
1395 struct ppcg_kernel *kernel;
1396 struct gpu_stmt_access *accesses;
1397 isl_pw_multi_aff *iterator_map;
1398 isl_pw_multi_aff *sched2shared;
1400 struct gpu_array_info *array;
1401 int global;
1402 struct gpu_local_array_info *local_array;
1405 /* Return the name of the outer array (of structs) accessed by "access".
1407 static const char *get_outer_array_name(__isl_keep isl_map *access)
1409 isl_space *space;
1410 const char *name;
1412 space = isl_space_range(isl_map_get_space(access));
1413 while (space && isl_space_is_wrapping(space))
1414 space = isl_space_domain(isl_space_unwrap(space));
1415 name = isl_space_get_tuple_name(space, isl_dim_set);
1416 isl_space_free(space);
1418 return name;
1421 /* Return a pointer to the gpu_array_ref_group in "local"
1422 * that contains the reference "access".
1423 * Return NULL if no such group can be found.
1425 static struct gpu_array_ref_group *find_ref_group(
1426 struct gpu_local_array_info *local, struct gpu_stmt_access *access)
1428 int i, j;
1430 for (i = 0; i < local->n_group; ++i) {
1431 struct gpu_array_ref_group *group = local->groups[i];
1433 for (j = 0; j < group->n_ref; ++j)
1434 if (group->refs[j] == access)
1435 return group;
1438 return NULL;
1441 /* Index transformation callback for pet_stmt_build_ast_exprs.
1443 * "index" expresses the array indices in terms of statement iterators
1445 * We first reformulate "index" in terms of the AST loop iterators.
1446 * Then we check if we are accessing the global array or
1447 * a shared/private copy. In the former case, we simply return
1448 * the updated index. If "index" is an affine expression rather
1449 * than an array access, then we also return the updated index here.
1451 * If no reference groups have been computed for the array,
1452 * then we can only be accessing the global array.
1454 * Otherwise, we apply the tiling to the index.
1455 * This tiling is of the form
1457 * [D -> A] -> T
1459 * where D corresponds to the outer group->depth dimensions of
1460 * the kernel schedule.
1461 * The index is of the form
1463 * L -> A
1465 * We update the tiling to refer to the AST loop iterators
1467 * [L -> A] -> T
1469 * and modify index to keep track of those iterators
1471 * L -> [L -> A]
1473 * Combining these two yields a tiled index expression in terms
1474 * of the AST loop iterators
1476 * L -> T
1478 static __isl_give isl_multi_pw_aff *transform_index(
1479 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
1480 void *user)
1482 struct ppcg_transform_data *data = user;
1483 struct gpu_stmt_access *access;
1484 struct gpu_array_ref_group *group;
1485 struct gpu_array_tile *tile;
1486 isl_pw_multi_aff *iterator_map;
1487 int i;
1488 int dim;
1489 const char *name;
1490 isl_space *space;
1491 isl_multi_pw_aff *tiling;
1492 isl_pw_multi_aff *pma;
1493 isl_multi_pw_aff *mpa;
1494 isl_pw_multi_aff *sched2depth;
1496 data->array = NULL;
1498 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
1499 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
1501 access = find_access(data->accesses, ref_id);
1502 if (!access)
1503 return index;
1504 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
1505 return index;
1507 name = get_outer_array_name(access->access);
1508 i = find_array_index(data->kernel, name);
1509 if (i < 0)
1510 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
1511 "cannot find array",
1512 return isl_multi_pw_aff_free(index));
1513 data->local_array = &data->kernel->array[i];
1514 data->array = data->local_array->array;
1516 group = find_ref_group(data->local_array, access);
1517 if (!group) {
1518 data->global = 1;
1519 return index;
1522 tile = group->private_tile;
1523 if (!tile)
1524 tile = group->shared_tile;
1525 data->global = !tile;
1526 if (!tile)
1527 return index;
1529 space = isl_space_range(isl_multi_pw_aff_get_space(index));
1530 space = isl_space_map_from_set(space);
1531 pma = isl_pw_multi_aff_identity(space);
1532 sched2depth = isl_pw_multi_aff_copy(data->sched2shared);
1533 dim = isl_pw_multi_aff_dim(sched2depth, isl_dim_out);
1534 sched2depth = isl_pw_multi_aff_drop_dims(sched2depth, isl_dim_out,
1535 group->depth, dim - group->depth);
1536 pma = isl_pw_multi_aff_product(sched2depth, pma);
1537 tiling = isl_multi_pw_aff_from_multi_aff(
1538 isl_multi_aff_copy(tile->tiling));
1539 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
1541 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
1542 space = isl_space_map_from_set(space);
1543 mpa = isl_multi_pw_aff_identity(space);
1544 index = isl_multi_pw_aff_range_product(mpa, index);
1545 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
1547 return index;
1550 /* Dereference "expr" by adding an index [0].
1551 * The original "expr" is assumed not to have any indices.
1553 * If "expr" is a member access, then the dereferencing needs
1554 * to be applied to the structure argument of this member access.
1556 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
1558 isl_ctx *ctx;
1559 isl_ast_expr *arg0, *res;
1560 isl_ast_expr_list *list;
1562 arg0 = isl_ast_expr_get_op_arg(expr, 0);
1563 if (!arg0)
1564 return isl_ast_expr_free(expr);
1565 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
1566 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
1567 isl_ast_expr *arg;
1569 arg = isl_ast_expr_get_op_arg(arg0, 0);
1570 arg = dereference(arg);
1571 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
1572 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
1574 return expr;
1576 isl_ast_expr_free(arg0);
1578 ctx = isl_ast_expr_get_ctx(expr);
1579 res = isl_ast_expr_from_val(isl_val_zero(ctx));
1580 list = isl_ast_expr_list_from_ast_expr(res);
1581 res = isl_ast_expr_get_op_arg(expr, 0);
1582 res = isl_ast_expr_access(res, list);
1583 isl_ast_expr_free(expr);
1585 return res;
1588 /* Linearize the index expression "expr" based on the array bounds
1589 * of "array".
1591 * That is, transform expression
1593 * A[i_0][i_1]...[i_n]
1595 * to
1597 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
1599 * where b_0, b_1, ..., b_n are the bounds on the array.
1601 * If the base of "expr" is a member access, then the linearization needs
1602 * to be applied to the structure argument of this member access.
1604 * In the base case, if "expr" has no arguments (other than the name of
1605 * the array), then we are passing an entire array to a function.
1606 * In this case, there is nothing to linearize.
1607 * Note that at this point an expression with no arguments can
1608 * only be an entire array because the scalar case and
1609 * the case of single struct are handled by the caller.
1611 * If the number of specified index expressions in "expr"
1612 * is smaller than the dimension of the accessed array,
1613 * then the missing i_j also do not appear in the linearized expression.
1614 * Furthermore, since such an expression does not refer to a single
1615 * element while the default linearized expression would refer to
1616 * a single element, we return the expression
1618 * A + (..((i_0 * b_1 + i_1) ... ) * b_n]
1620 * instead. Note that because of the special case handling above,
1621 * we can assume here that here that there is at least one index expression.
1623 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
1624 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
1626 int i, n;
1627 isl_ctx *ctx;
1628 isl_set *context;
1629 isl_ast_expr *arg0;
1630 isl_ast_expr *res;
1631 isl_ast_expr_list *list;
1632 isl_ast_build *build;
1634 arg0 = isl_ast_expr_get_op_arg(expr, 0);
1635 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
1636 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
1637 isl_ast_expr *arg;
1639 arg = isl_ast_expr_get_op_arg(arg0, 0);
1640 arg = gpu_local_array_info_linearize_index(array, arg);
1641 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
1642 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
1644 return expr;
1646 isl_ast_expr_free(arg0);
1648 if (isl_ast_expr_get_op_n_arg(expr) == 1)
1649 return expr;
1651 ctx = isl_ast_expr_get_ctx(expr);
1652 context = isl_set_universe(isl_space_params_alloc(ctx, 0));
1653 build = isl_ast_build_from_context(context);
1655 n = isl_ast_expr_get_op_n_arg(expr);
1656 res = isl_ast_expr_get_op_arg(expr, 1);
1657 for (i = 1; i < array->n_index; ++i) {
1658 isl_pw_aff *bound_i;
1659 isl_ast_expr *expr_i;
1661 bound_i = isl_pw_aff_list_get_pw_aff(array->bound, i);
1662 expr_i = isl_ast_build_expr_from_pw_aff(build, bound_i);
1663 res = isl_ast_expr_mul(res, expr_i);
1665 if (i + 1 >= n)
1666 continue;
1667 expr_i = isl_ast_expr_get_op_arg(expr, i + 1);
1668 res = isl_ast_expr_add(res, expr_i);
1671 isl_ast_build_free(build);
1673 if (1 + array->n_index > n) {
1674 res = isl_ast_expr_add(isl_ast_expr_get_op_arg(expr, 0), res);
1675 } else {
1676 list = isl_ast_expr_list_from_ast_expr(res);
1677 res = isl_ast_expr_get_op_arg(expr, 0);
1678 res = isl_ast_expr_access(res, list);
1681 isl_ast_expr_free(expr);
1683 return res;
1686 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
1688 * If the AST expression refers to an array that is not accessed
1689 * at all, then this means the value of the expression is not used,
1690 * so we might as well print zero (NULL pointer) instead.
1692 * If the AST expression refers to a global scalar that is not
1693 * a read-only scalar, then its address was passed to the kernel and
1694 * we need to dereference it.
1696 * If the AST expression refers to an access to a global array,
1697 * then we linearize the access exploiting the bounds in data->local_array.
1699 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
1700 __isl_keep isl_id *id, void *user)
1702 struct ppcg_transform_data *data = user;
1704 if (!data->array)
1705 return expr;
1706 if (!data->array->accessed) {
1707 isl_ctx *ctx;
1709 ctx = isl_ast_expr_get_ctx(expr);
1710 isl_ast_expr_free(expr);
1711 return isl_ast_expr_from_val(isl_val_zero(ctx));
1713 if (gpu_array_is_read_only_scalar(data->array))
1714 return expr;
1715 if (!data->global)
1716 return expr;
1717 if (data->array->n_index == 0)
1718 return dereference(expr);
1719 if (!data->array->linearize)
1720 return expr;
1722 return gpu_local_array_info_linearize_index(data->local_array, expr);
1725 /* This function is called for each instance of a user statement
1726 * in the kernel "kernel", identified by "gpu_stmt".
1728 * We attach a struct ppcg_kernel_stmt to the "node", containing
1729 * a computed AST expression for each access.
1730 * These AST expressions are computed from iterator_map,
1731 * which expresses the domain
1732 * elements in terms of the generated loops, and sched2shared,
1733 * which expresses the outer shared_schedule_dim dimensions of
1734 * the kernel schedule computed by PPCG in terms of the generated loops.
1736 static __isl_give isl_ast_node *create_domain_leaf(
1737 struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
1738 __isl_keep isl_ast_build *build, struct gpu_stmt *gpu_stmt)
1740 struct ppcg_transform_data data;
1741 struct ppcg_kernel_stmt *stmt;
1742 isl_id *id;
1743 isl_pw_multi_aff *sched2shared;
1744 isl_map *map;
1745 isl_pw_multi_aff *iterator_map;
1746 isl_union_map *schedule;
1748 stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
1749 if (!stmt)
1750 return isl_ast_node_free(node);
1752 schedule = isl_ast_build_get_schedule(build);
1753 map = isl_map_reverse(isl_map_from_union_map(schedule));
1754 iterator_map = isl_pw_multi_aff_from_map(map);
1755 sched2shared = compute_sched_to_shared(kernel,
1756 isl_pw_multi_aff_copy(iterator_map));
1758 stmt->type = ppcg_kernel_domain;
1759 stmt->u.d.stmt = gpu_stmt;
1761 data.kernel = kernel;
1762 data.accesses = stmt->u.d.stmt->accesses;
1763 data.iterator_map = iterator_map;
1764 data.sched2shared = sched2shared;
1765 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
1766 build, &transform_index, &data,
1767 &transform_expr, &data);
1769 isl_pw_multi_aff_free(iterator_map);
1770 isl_pw_multi_aff_free(sched2shared);
1772 id = isl_id_alloc(kernel->ctx, NULL, stmt);
1773 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1774 return isl_ast_node_set_annotation(node, id);
1777 /* This function is called for each statement node in the AST
1778 * for copying to or from shared/private memory.
1779 * Attach a pointer to a ppcg_kernel_stmt representing the copy
1780 * statement to the node.
1781 * The statement name is "read" or "write", depending on whether we are
1782 * reading from global memory or writing to global memory.
1784 * The schedule is of the form
1786 * type[D -> A] -> L
1788 * where D corresponds to the outer group->depth dimensions of
1789 * the kernel schedule, A to the global array and L to the outer
1790 * generated AST schedule.
1791 * We compute the inverse and strip off the type, resulting in
1793 * L -> [D -> A]
1795 * We combine this mapping with on the one hand the projection
1797 * [D -> A] -> A
1799 * and on the other hand the group tiling
1801 * [D -> A] -> T
1803 * resulting in
1805 * L -> A and L -> T
1807 * and store the corresponding expressions in stmt->index and stmt->local_index,
1808 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
1810 static __isl_give isl_ast_node *create_access_leaf(struct ppcg_kernel *kernel,
1811 struct gpu_array_ref_group *group, __isl_take isl_ast_node *node,
1812 __isl_keep isl_ast_build *build)
1814 struct ppcg_kernel_stmt *stmt;
1815 struct gpu_array_tile *tile;
1816 isl_id *id;
1817 isl_ast_expr *expr;
1818 isl_space *space;
1819 isl_map *access;
1820 isl_pw_multi_aff *pma, *pma2;
1821 const char *type;
1823 stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
1824 if (!stmt)
1825 return isl_ast_node_free(node);
1827 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
1828 type = isl_map_get_tuple_name(access, isl_dim_in);
1829 stmt->u.c.read = !strcmp(type, "read");
1830 access = isl_map_reverse(access);
1831 pma = isl_pw_multi_aff_from_map(access);
1832 pma = isl_pw_multi_aff_reset_tuple_id(pma, isl_dim_out);
1834 space = isl_space_range(isl_pw_multi_aff_get_space(pma));
1835 space = isl_space_unwrap(space);
1836 pma2 = isl_pw_multi_aff_range_map(space);
1837 pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2,
1838 isl_pw_multi_aff_copy(pma));
1839 expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
1840 stmt->u.c.index = expr;
1842 tile = gpu_array_ref_group_tile(group);
1843 pma2 = isl_pw_multi_aff_from_multi_aff(
1844 isl_multi_aff_copy(tile->tiling));
1845 pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2, pma);
1846 expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
1847 stmt->u.c.local_index = expr;
1849 stmt->u.c.array = group->array;
1850 stmt->u.c.local_array = group->local_array;
1851 stmt->type = ppcg_kernel_copy;
1853 id = isl_id_alloc(kernel->ctx, NULL, stmt);
1854 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1855 return isl_ast_node_set_annotation(node, id);
1858 /* Create a synchronization ppcg_kernel_stmt and
1859 * attach it to the node "node" representing the synchronization.
1861 static __isl_give isl_ast_node *create_sync_leaf(
1862 struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
1863 __isl_keep isl_ast_build *build)
1865 struct ppcg_kernel_stmt *stmt;
1866 isl_id *id;
1868 stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
1869 if (!stmt)
1870 return isl_ast_node_free(node);
1872 stmt->type = ppcg_kernel_sync;
1873 id = isl_id_alloc(kernel->ctx, NULL, stmt);
1874 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1875 return isl_ast_node_set_annotation(node, id);
1878 /* Internal data structure for at_domain.
1880 * "prog" represents the entire scop.
1881 * "kernel" points to the kernel to which the current schedule node
1882 * belongs. It is set by before_mark and reset by after_mark.
1884 struct ppcg_at_domain_data {
1885 struct gpu_prog *prog;
1886 struct ppcg_kernel *kernel;
1889 /* This function is called for each instance of a user statement
1890 * in the kernel. This may be one of the original user statements
1891 * or a statement introduced by PPCG.
1893 * We assume that the original user statements only have a name
1894 * and no user pointer. The statements introduced by PPCG
1895 * on the other hand all have a user pointer.
1897 * If the user statement is one of the original user statements
1898 * (one with no user pointer), then we call create_domain_leaf. Otherwise,
1899 * we check if it is a copy or synchronization statement and
1900 * call the appropriate functions.
1902 static __isl_give isl_ast_node *at_domain(__isl_take isl_ast_node *node,
1903 __isl_keep isl_ast_build *build, void *user)
1905 struct ppcg_at_domain_data *data = user;
1906 isl_ast_expr *expr, *arg;
1907 isl_id *id;
1908 int is_sync;
1909 const char *name;
1910 void *p;
1912 expr = isl_ast_node_user_get_expr(node);
1913 arg = isl_ast_expr_get_op_arg(expr, 0);
1914 id = isl_ast_expr_get_id(arg);
1915 name = isl_id_get_name(id);
1916 p = isl_id_get_user(id);
1917 isl_ast_expr_free(expr);
1918 isl_ast_expr_free(arg);
1920 if (!p) {
1921 struct gpu_stmt *gpu_stmt;
1923 gpu_stmt = find_stmt(data->prog, id);
1924 isl_id_free(id);
1925 if (!gpu_stmt)
1926 isl_die(data->prog->ctx, isl_error_internal,
1927 "statement not found",
1928 return isl_ast_node_free(node));
1930 return create_domain_leaf(data->kernel, node, build, gpu_stmt);
1933 is_sync = gpu_tree_id_is_sync(id, data->kernel);
1934 isl_id_free(id);
1935 if (is_sync < 0)
1936 return isl_ast_node_free(node);
1937 if (!strcmp(name, "read") || !strcmp(name, "write")) {
1938 struct gpu_array_ref_group *group = p;
1939 return create_access_leaf(data->kernel, group, node, build);
1941 if (!is_sync)
1942 isl_die(data->prog->ctx, isl_error_internal,
1943 "unknown statement type",
1944 return isl_ast_node_free(node));
1945 return create_sync_leaf(data->kernel, node, build);
1948 /* Given a set of wrapped references "ref", return the corresponding
1949 * access relations based on the tagged access relations "tagged".
1951 * The elements of "ref" are of the form
1953 * [D -> R]
1955 * with D an iteration domains and R a reference.
1956 * The elements of "tagged" are of the form
1958 * [D -> R] -> A
1960 * with A an array.
1962 * Extend "tagged" to include the iteration domain in the range, i.e.,
1964 * [D -> R] -> [D -> A]
1966 * apply the result to "ref" and then unwrap the resulting set
1967 * to obtain relations of the form
1969 * D -> A
1971 static __isl_give isl_union_map *wrapped_reference_to_access(
1972 __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
1974 isl_union_map *tag2access;
1976 tag2access = isl_union_map_copy(tagged);
1977 tag2access = isl_union_map_universe(tag2access);
1978 tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
1979 tag2access = isl_union_map_domain_map(tag2access);
1980 tag2access = isl_union_map_range_product(tag2access, tagged);
1982 ref = isl_union_set_coalesce(ref);
1983 ref = isl_union_set_apply(ref, tag2access);
1985 return isl_union_set_unwrap(ref);
1988 /* Given an access relation "access" from one or more array reference groups,
1989 * remove those reads if ("read" is 1) or writes (if "read" is 0)
1990 * that are only needed to communicate data within
1991 * the same iteration of "sched".
1992 * "tagged" contains all tagged access relations to all
1993 * the array reference groups accessed by "access" from statement
1994 * instances scheduled by "sched".
1996 * If the access is a read then it is either an element of
1998 * live_in union (range flow)
2000 * where live_in and flow may be overapproximations, or
2001 * it reads an uninitialized value (that is not live-in because
2002 * there is an intermediate kill) or it reads a value that was
2003 * written within the same (compound) statement instance.
2004 * If the access is a write then it is either an element of
2006 * live_out union (domain flow)
2008 * or it writes a value that is never read (and is not live-out
2009 * because of an intermediate kill) or only
2010 * within the same (compound) statement instance.
2011 * In both cases, the access relation is also a subset of
2012 * the group access relation.
2014 * The cases where an uninitialized value is read or a value is written
2015 * that is never read or where the dataflow occurs within a statement
2016 * instance are also considered local and may also be removed.
2018 * Essentially, we compute the intersection of "access" with either
2020 * live_in union (range non-local-flow)
2022 * or
2024 * live_out union (domain non-local-flow)
2026 * We first construct a relation "local"
2028 * [[D -> R] -> [D' -> R']]
2030 * of pairs of domain iterations accessing the reference group
2031 * and references in the group that are coscheduled by "sched".
2033 * If this relation does not intersect the dataflow dependences,
2034 * then there is nothing we can possibly remove, unless the dataflow
2035 * dependences themselves only relate a subset of the accesses.
2036 * In particular, the accesses may not be involved in any dataflow
2037 * dependences, either because they are uninitialized reads/dead writes
2038 * or because the dataflow occurs inside a statement instance.
2040 * Since the computation below may break up the access relation
2041 * into smaller pieces, we only perform the intersection with
2042 * the non-local dependent accesses if the local pairs
2043 * intersect the dataflow dependences. Otherwise, we intersect
2044 * with the universe of the non-local dependent accesses.
2045 * This should at least remove accesses from statements that
2046 * do not participate in any dependences.
2048 * In particular, we remove the "local" dataflow dependences from
2049 * the set of all dataflow dependences.
2050 * Note that if the potential dataflow dependences are an overapproximation
2051 * of the actual dataflow dependences, then the result remains an
2052 * overapproximation of the non-local dataflow dependences.
2053 * Copying to/from global memory is only needed for the references
2054 * in the domain/range of the result or for accesses that are live out/in
2055 * for the entire scop.
2057 * We therefore map the domain/range of the "external" relation
2058 * to the corresponding access relation and take the union with
2059 * the live out/in relation.
2061 static __isl_give isl_union_map *remove_local_accesses(
2062 struct gpu_prog *prog, __isl_take isl_union_map *tagged,
2063 __isl_take isl_union_map *access, __isl_take isl_union_map *sched,
2064 int read)
2066 int empty;
2067 isl_union_pw_multi_aff *tagger;
2068 isl_union_set *domain;
2069 isl_union_map *local, *external;
2070 isl_union_set *tag_set;
2072 if (isl_union_map_is_empty(access)) {
2073 isl_union_map_free(sched);
2074 isl_union_map_free(tagged);
2075 return access;
2078 tagger = isl_union_pw_multi_aff_copy(prog->scop->tagger);
2079 domain = isl_union_map_domain(isl_union_map_copy(tagged));
2080 tagger = isl_union_pw_multi_aff_intersect_domain(tagger, domain);
2081 sched = isl_union_map_preimage_domain_union_pw_multi_aff(sched, tagger);
2083 local = isl_union_map_apply_range(sched,
2084 isl_union_map_reverse(isl_union_map_copy(sched)));
2085 local = isl_union_map_intersect(local,
2086 isl_union_map_copy(prog->scop->tagged_dep_flow));
2088 empty = isl_union_map_is_empty(local);
2090 external = isl_union_map_copy(prog->scop->tagged_dep_flow);
2091 external = isl_union_map_intersect_params(external,
2092 isl_set_copy(prog->scop->context));
2093 external = isl_union_map_subtract(external, local);
2095 if (read) {
2096 tag_set = isl_union_map_range(external);
2097 external = wrapped_reference_to_access(tag_set, tagged);
2098 external = isl_union_map_union(external,
2099 isl_union_map_copy(prog->scop->live_in));
2100 } else {
2101 tag_set = isl_union_map_domain(external);
2102 external = wrapped_reference_to_access(tag_set, tagged);
2103 external = isl_union_map_union(external,
2104 isl_union_map_copy(prog->scop->live_out));
2107 if (empty < 0)
2108 external = isl_union_map_free(external);
2109 else if (empty)
2110 external = isl_union_map_universe(external);
2112 access = isl_union_map_intersect(access, external);
2114 return access;
2117 /* Given an access relation "access" from "group", remove those reads
2118 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
2119 * communicate data within the same iteration of the schedule at the
2120 * position where the copying of the group is inserted.
2121 * "node" points to this position, i.e., the depth at "node"
2122 * is equal to group->depth.
2124 * We extract a schedule that picks out the iterations of the outer
2125 * group->depth dimensions and call remove_local_accesses.
2127 static __isl_give isl_union_map *remove_local_accesses_group(
2128 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
2129 __isl_take isl_union_map *access, __isl_keep isl_schedule_node *node,
2130 int read)
2132 isl_union_map *sched, *tagged;
2134 if (isl_union_map_is_empty(access))
2135 return access;
2137 tagged = group_tagged_access_relation(group);
2138 sched = isl_schedule_node_get_prefix_schedule_relation(node);
2140 return remove_local_accesses(kernel->prog, tagged, access, sched, read);
2143 /* This function is called before the AST generator starts traversing
2144 * the schedule subtree of a node with mark "mark".
2146 * If the mark is called "kernel", store the kernel pointer in data->kernel
2147 * for use in at_domain.
2149 static int before_mark(__isl_keep isl_id *mark,
2150 __isl_keep isl_ast_build *build, void *user)
2152 struct ppcg_at_domain_data *data = user;
2154 if (!mark)
2155 return -1;
2156 if (!strcmp(isl_id_get_name(mark), "kernel"))
2157 data->kernel = isl_id_get_user(mark);
2158 return 0;
2161 /* This function is called after the AST generator has finished traversing
2162 * the schedule subtree of a mark node. "node" points to the corresponding
2163 * mark AST node.
2165 * If the mark is called "kernel", then replace "node" by a user node
2166 * that "calls" the kernel, representing the launch of the kernel.
2167 * The original "node" is stored inside the kernel object so that
2168 * it can be used to print the device code.
2169 * Note that this assumes that a kernel is only launched once.
2170 * Also clear data->kernel.
2172 static __isl_give isl_ast_node *after_mark(__isl_take isl_ast_node *node,
2173 __isl_keep isl_ast_build *build, void *user)
2175 isl_ctx *ctx;
2176 isl_id *id;
2177 isl_ast_expr *expr;
2178 isl_ast_expr_list *list;
2179 struct ppcg_kernel *kernel;
2180 struct ppcg_at_domain_data *data = user;
2182 ctx = isl_ast_node_get_ctx(node);
2183 id = isl_ast_node_mark_get_id(node);
2184 if (!id)
2185 return isl_ast_node_free(node);
2186 if (strcmp(isl_id_get_name(id), "kernel") || !data->kernel) {
2187 isl_id_free(id);
2188 return node;
2190 kernel = data->kernel;
2191 data->kernel = NULL;
2192 kernel->space = isl_ast_build_get_schedule_space(build);
2193 kernel->tree = isl_ast_node_mark_get_node(node);
2194 isl_ast_node_free(node);
2196 expr = isl_ast_expr_from_id(isl_id_copy(id));
2197 list = isl_ast_expr_list_alloc(ctx, 0);
2198 expr = isl_ast_expr_call(expr, list);
2199 node = isl_ast_node_alloc_user(expr);
2200 node = isl_ast_node_set_annotation(node, id);
2202 return node;
2205 static int update_depth(__isl_keep isl_schedule_node *node, void *user)
2207 int *depth = user;
2208 int node_depth;
2210 if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
2211 return 1;
2212 node_depth = isl_schedule_node_get_schedule_depth(node);
2213 if (node_depth > *depth)
2214 *depth = node_depth;
2216 return 0;
2219 /* Use isl to generate code for both the host and the device
2220 * from "schedule".
2221 * The device code is marked by "kernel" mark nodes in the schedule tree,
2222 * containing a pointer to a ppcg_kernel object.
2223 * The returned AST only contains the AST for the host code.
2224 * The ASTs for the device code are embedded in ppcg_kernel objects
2225 * attached to the leaf nodes that call "kernel".
2227 static __isl_give isl_ast_node *generate_code(struct gpu_gen *gen,
2228 __isl_take isl_schedule *schedule)
2230 struct ppcg_at_domain_data data;
2231 isl_ast_build *build;
2232 isl_ast_node *tree;
2233 isl_id_list *iterators;
2234 int depth;
2236 data.prog = gen->prog;
2237 data.kernel = NULL;
2239 depth = 0;
2240 if (isl_schedule_foreach_schedule_node(schedule, &update_depth,
2241 &depth) < 0)
2242 return NULL;
2243 build = isl_ast_build_alloc(gen->prog->ctx);
2244 iterators = ppcg_scop_generate_names(gen->prog->scop, depth, "c");
2245 build = isl_ast_build_set_iterators(build, iterators);
2246 build = isl_ast_build_set_at_each_domain(build, &at_domain, &data);
2247 build = isl_ast_build_set_before_each_mark(build, &before_mark, &data);
2248 build = isl_ast_build_set_after_each_mark(build, &after_mark, &data);
2249 if (gen->prog->scop->options->debug->dump_final_schedule)
2250 isl_schedule_dump(schedule);
2251 tree = isl_ast_build_node_from_schedule(build, schedule);
2252 isl_ast_build_free(build);
2254 return tree;
2257 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
2259 if (!str)
2260 return NULL;
2261 return isl_union_map_read_from_str(ctx, str);
2264 /* Can "node" be tiled and then mapped to block and thread identifiers?
2265 * That is, is it permutable with at least one coincident dimension?
2267 static int is_permutable(__isl_keep isl_schedule_node *node)
2269 if (!node)
2270 return -1;
2272 if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
2273 return 0;
2274 if (!isl_schedule_node_band_get_permutable(node))
2275 return 0;
2276 if (isl_schedule_node_band_n_member(node) < 1)
2277 return 0;
2278 if (!isl_schedule_node_band_member_get_coincident(node, 0))
2279 return 0;
2281 return 1;
2284 /* A isl_schedule_foreach_schedule_node callback
2285 * for setting *any_permutable and aborting the search
2286 * if "node" is a permutable band with coincident dimensions.
2287 * Otherwise, continue searching.
2289 static int set_permutable(__isl_keep isl_schedule_node *node, void *user)
2291 int *any_permutable = user;
2292 int permutable;
2294 permutable = is_permutable(node);
2295 if (permutable < 0)
2296 return -1;
2297 if (!permutable)
2298 return 1;
2300 *any_permutable = 1;
2302 return -1;
2305 /* Does "schedule" contain any permutable band with at least one coincident
2306 * member?
2308 static int has_any_permutable_node(__isl_keep isl_schedule *schedule)
2310 int any_permutable = 0;
2312 if (isl_schedule_foreach_schedule_node(schedule, &set_permutable,
2313 &any_permutable) < 0 &&
2314 !any_permutable)
2315 return -1;
2317 return any_permutable;
2320 /* Is "node" a leaf or can it be tiled and then mapped to
2321 * block and thread identifiers?
2323 static int is_leaf_or_tilable(__isl_keep isl_schedule_node *node)
2325 if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf)
2326 return 1;
2327 return is_permutable(node);
2330 /* Is "node" the outermost node in its branch that can be tiled
2331 * and then mapped to block and thread identifiers?
2332 * If there are no such nodes in the branch and if "node" is a leaf,
2333 * then it is accepted too.
2335 static int is_outer_tilable(__isl_keep isl_schedule_node *node)
2337 int tilable;
2338 isl_schedule_node *ancestor;
2340 tilable = is_leaf_or_tilable(node);
2341 if (tilable < 0)
2342 return -1;
2343 if (!tilable)
2344 return 0;
2346 tilable = 0;
2347 ancestor = isl_schedule_node_copy(node);
2348 while (isl_schedule_node_has_parent(ancestor)) {
2349 ancestor = isl_schedule_node_parent(ancestor);
2351 tilable = is_permutable(ancestor);
2352 if (tilable < 0 || tilable)
2353 break;
2356 isl_schedule_node_free(ancestor);
2357 return tilable < 0 ? -1 : !tilable;
2360 /* Collect the references to all writes in "group".
2361 * Each reference is represented by a universe set in a space
2363 * [S[i,j] -> R[]]
2365 * with S[i,j] the statement instance space and R[] the array reference.
2367 static __isl_give isl_union_set *group_tagged_writes(
2368 struct gpu_array_ref_group *group)
2370 int i;
2371 isl_space *space;
2372 isl_union_set *writes;
2374 space = isl_map_get_space(group->access);
2375 writes = isl_union_set_empty(space);
2376 for (i = 0; i < group->n_ref; ++i) {
2377 isl_space *space;
2378 isl_set *writes_i;
2380 if (!group->refs[i]->write)
2381 continue;
2383 space = isl_map_get_space(group->refs[i]->tagged_access);
2384 space = isl_space_domain(space);
2385 writes_i = isl_set_universe(space);
2386 writes = isl_union_set_add_set(writes, writes_i);
2389 return writes;
2392 /* Is there any write access in "group" that requires synchronization
2393 * on a write to global memory?
2394 * We currently take into account all writes that would require
2395 * synchronization at the thread level depth, but if the copying
2396 * for this group is performed at an outer level, then we do not
2397 * actually need to take into account dependences at intermediate levels.
2399 static int any_sync_writes_in_group(struct ppcg_kernel *kernel,
2400 struct gpu_array_ref_group *group)
2402 isl_union_set *writes;
2403 int empty, disjoint;
2405 empty = isl_union_set_is_empty(kernel->sync_writes);
2406 if (empty < 0)
2407 return -1;
2408 if (empty)
2409 return 0;
2411 writes = group_tagged_writes(group);
2412 disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
2413 isl_union_set_free(writes);
2415 return disjoint < 0 ? -1 : !disjoint;
2418 /* Collect the references to all writes in "kernel" that write directly
2419 * to global or shared memory, i.e., that are not mapped to private memory.
2420 * Each reference is represented by a universe set in a space
2422 * [S[i,j] -> R[]]
2424 * with S[i,j] the statement instance space and R[] the array reference.
2426 static __isl_give isl_union_set *collect_non_private_tagged_writes(
2427 struct ppcg_kernel *kernel)
2429 isl_union_set *writes;
2430 int i, j;
2432 writes = isl_union_set_empty(isl_union_set_get_space(kernel->arrays));
2434 for (i = 0; i < kernel->n_array; ++i) {
2435 struct gpu_local_array_info *array = &kernel->array[i];
2437 for (j = 0; j < array->n_group; ++j) {
2438 struct gpu_array_ref_group *group = array->groups[j];
2439 isl_union_set *writes_ij;
2441 if (!group->write)
2442 continue;
2443 if (group->private_tile)
2444 continue;
2445 writes_ij = group_tagged_writes(group);
2446 writes = isl_union_set_union(writes, writes_ij);
2450 return writes;
2453 /* Are there any direct writes to global memory that require
2454 * synchronization?
2456 static int any_global_or_shared_sync_writes(struct ppcg_kernel *kernel)
2458 isl_union_set *writes;
2459 int empty, disjoint;
2461 empty = isl_union_set_is_empty(kernel->sync_writes);
2462 if (empty < 0)
2463 return -1;
2464 if (empty)
2465 return 0;
2467 writes = collect_non_private_tagged_writes(kernel);
2468 disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
2469 isl_union_set_free(writes);
2471 return disjoint < 0 ? -1 : !disjoint;
2474 /* Construct an isl_multi_val for use as tile sizes for tiling "node"
2475 * from the elements in "tile_size".
2477 static __isl_give isl_multi_val *construct_band_tiles_sizes(
2478 __isl_keep isl_schedule_node *node, int *tile_size)
2480 int i, n;
2481 isl_ctx *ctx;
2482 isl_space *space;
2483 isl_multi_val *mv;
2485 if (!node)
2486 return NULL;
2488 ctx = isl_schedule_node_get_ctx(node);
2489 space = isl_schedule_node_band_get_space(node);
2490 n = isl_schedule_node_band_n_member(node);
2491 mv = isl_multi_val_zero(space);
2492 for (i = 0; i < n; ++i) {
2493 isl_val *v;
2495 v = isl_val_int_from_si(ctx, tile_size[i]);
2496 mv = isl_multi_val_set_val(mv, i, v);
2499 return mv;
2502 /* Replace the partial schedule S of the band node "node" by
2504 * floor(S/f)
2506 * or
2508 * f * floor(S/f)
2510 * if scale_tile_loops is set, with f the integers in "factor".
2511 * The list that "factor" points to is assumed to contain at least
2512 * as many elements as the number of members in the band.
2514 static __isl_give isl_schedule_node *snap_band_to_sizes(
2515 __isl_take isl_schedule_node *node, int *factor,
2516 struct ppcg_options *options)
2518 isl_multi_val *mv;
2520 mv = construct_band_tiles_sizes(node, factor);
2521 node = isl_schedule_node_band_scale_down(node, isl_multi_val_copy(mv));
2522 if (options->scale_tile_loops)
2523 node = isl_schedule_node_band_scale(node,
2524 isl_multi_val_copy(mv));
2525 isl_multi_val_free(mv);
2527 return node;
2530 /* Tile "band" with tile size specified by "sizes".
2532 * Since the tile loops will be mapped to block ids, we forcibly
2533 * turn off tile loop scaling. We may want to enable tile loop scaling
2534 * at some later point, but then we would have to support the detection
2535 * of strides during the mapping to block ids.
2536 * Similarly, since the point loops will be mapped to thread ids,
2537 * we forcibly shift the point loops so that they start at zero.
2539 static __isl_give isl_schedule_node *tile_band(
2540 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
2542 isl_ctx *ctx = isl_schedule_node_get_ctx(node);
2543 int scale_tile;
2544 int shift_point;
2546 scale_tile = isl_options_get_tile_scale_tile_loops(ctx);
2547 isl_options_set_tile_scale_tile_loops(ctx, 0);
2548 shift_point = isl_options_get_tile_shift_point_loops(ctx);
2549 isl_options_set_tile_shift_point_loops(ctx, 1);
2551 node = isl_schedule_node_band_tile(node, sizes);
2553 isl_options_set_tile_scale_tile_loops(ctx, scale_tile);
2554 isl_options_set_tile_shift_point_loops(ctx, shift_point);
2556 return node;
2559 /* Extract the set of parameter values and outer schedule dimensions
2560 * for which any statement instance
2561 * in the kernel inserted at "node" needs to be executed.
2562 * Intersect the set of parameter values derived from the host schedule
2563 * relation with the context of "prog".
2565 static __isl_give isl_set *extract_context(__isl_keep isl_schedule_node *node,
2566 struct gpu_prog *prog)
2568 isl_union_map *schedule;
2569 isl_union_set *schedule_domain;
2570 isl_set *context;
2571 int empty;
2573 schedule = isl_schedule_node_get_prefix_schedule_relation(node);
2574 schedule_domain = isl_union_map_range(schedule);
2575 empty = isl_union_set_is_empty(schedule_domain);
2576 if (empty < 0) {
2577 isl_union_set_free(schedule_domain);
2578 return NULL;
2580 if (empty) {
2581 int depth;
2582 isl_space *space;
2584 space = isl_union_set_get_space(schedule_domain);
2585 isl_union_set_free(schedule_domain);
2586 space = isl_space_set_from_params(space);
2587 depth = isl_schedule_node_get_schedule_depth(node);
2588 space = isl_space_add_dims(space, isl_dim_set, depth);
2589 context = isl_set_empty(space);
2590 } else {
2591 context = isl_set_from_union_set(schedule_domain);
2593 context = isl_set_intersect_params(context,
2594 isl_set_copy(prog->context));
2596 return context;
2599 /* Return the set of outer array elements accessed by
2600 * by the statement instance in "domain" in "prog".
2602 static __isl_give isl_union_set *accessed_by_domain(
2603 __isl_take isl_union_set *domain, struct gpu_prog *prog)
2605 isl_union_map *access;
2606 isl_union_set *arrays;
2608 access = isl_union_map_union(isl_union_map_copy(prog->read),
2609 isl_union_map_copy(prog->may_write));
2610 access = isl_union_map_intersect_domain(access, domain);
2611 arrays = isl_union_map_range(access);
2612 arrays = isl_union_set_apply(arrays,
2613 isl_union_map_copy(prog->to_outer));
2615 return arrays;
2618 /* Return the number of outer band members of the band node "node"
2619 * that are marked coincident.
2621 static int n_outer_coincidence(__isl_keep isl_schedule_node *node)
2623 int i, n;
2625 n = isl_schedule_node_band_n_member(node);
2627 for (i = 0; i < n; ++i)
2628 if (!isl_schedule_node_band_member_get_coincident(node, i))
2629 break;
2631 return i;
2634 /* If the band node "node" has more than "n" members, then split off
2635 * the first "n" of them.
2637 static __isl_give isl_schedule_node *split_band(
2638 __isl_take isl_schedule_node *node, int n)
2640 int dim;
2642 dim = isl_schedule_node_band_n_member(node);
2643 if (n < dim)
2644 node = isl_schedule_node_band_split(node, n);
2646 return node;
2649 /* Scale a band node that may have been split by split_band.
2650 * "sizes" are the scaling factors for the original node.
2651 * "node" either points to the original band node, or the outer
2652 * of the two pieces after splitting.
2654 * If the number of elements in "node" is smaller than the number of
2655 * elements in "sizes", then some splitting has occurred and we split
2656 * "sizes" in the same way.
2658 static __isl_give isl_schedule_node *scale_band(
2659 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
2661 int n, dim;
2663 n = isl_multi_val_dim(sizes, isl_dim_set);
2664 dim = isl_schedule_node_band_n_member(node);
2665 if (n > dim) {
2666 isl_multi_val *sizes2;
2668 sizes2 = isl_multi_val_copy(sizes);
2669 sizes = isl_multi_val_drop_dims(sizes,
2670 isl_dim_set, dim, n - dim);
2671 sizes2 = isl_multi_val_drop_dims(sizes2, isl_dim_set, 0, dim);
2672 node = isl_schedule_node_child(node, 0);
2673 node = isl_schedule_node_band_scale(node, sizes2);
2674 node = isl_schedule_node_parent(node);
2677 return isl_schedule_node_band_scale(node, sizes);
2680 /* Return an isl_multi_aff, with as elements the parameters in "space"
2681 * that have the names specified by the elements in "names".
2682 * If (some of) these parameters do not already appear in "space",
2683 * then they are added first.
2685 static __isl_give isl_multi_aff *parameter_vector(__isl_take isl_space *space,
2686 __isl_keep isl_id_list *names)
2688 int i, n;
2689 isl_local_space *ls;
2690 isl_multi_aff *ma;
2692 if (!names)
2693 space = isl_space_free(space);
2695 n = isl_id_list_n_id(names);
2696 for (i = 0; i < n; ++i) {
2697 int pos;
2698 isl_id *id;
2700 id = isl_id_list_get_id(names, i);
2701 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
2702 if (pos >= 0) {
2703 isl_id_free(id);
2704 continue;
2706 pos = isl_space_dim(space, isl_dim_param);
2707 space = isl_space_add_dims(space, isl_dim_param, 1);
2708 space = isl_space_set_dim_id(space, isl_dim_param, pos, id);
2710 ma = isl_multi_aff_zero(isl_space_copy(space));
2711 ls = isl_local_space_from_space(isl_space_domain(space));
2712 for (i = 0; i < n; ++i) {
2713 int pos;
2714 isl_id *id;
2715 isl_aff *aff;
2717 id = isl_id_list_get_id(names, i);
2718 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
2719 isl_id_free(id);
2720 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
2721 isl_dim_param, pos);
2722 ma = isl_multi_aff_set_aff(ma, i, aff);
2724 isl_local_space_free(ls);
2726 return ma;
2729 /* Return constraints on the domain elements that equate a sequence of
2730 * parameters called "names", to the partial schedule
2731 * of "node" modulo the integers in "size".
2732 * The number of elements in the array "size" should be equal
2733 * to the number of elements in "names".
2734 * The number of members of the band node "node" should be smaller
2735 * than or equal to this number. If it is smaller, then the first
2736 * elements of "names" are equated to zero.
2738 static __isl_give isl_union_set *set_schedule_modulo(
2739 __isl_keep isl_schedule_node *node, __isl_keep isl_id_list *names,
2740 int *size)
2742 int n, n_zero;
2743 isl_space *space;
2744 isl_multi_aff *ma;
2745 isl_multi_union_pw_aff *mupa, *mupa2;
2746 isl_multi_val *mv;
2747 isl_union_set *domain;
2749 if (!node)
2750 return NULL;
2751 n = isl_id_list_n_id(names);
2752 if (n == 0)
2753 return isl_schedule_node_get_universe_domain(node);
2754 n_zero = n - isl_schedule_node_band_n_member(node);
2756 mupa = isl_schedule_node_band_get_partial_schedule(node);
2757 mv = construct_band_tiles_sizes(node, size + n_zero);
2758 mupa = isl_multi_union_pw_aff_mod_multi_val(mupa, mv);
2760 space = isl_multi_union_pw_aff_get_space(mupa);
2761 space = isl_space_params(space);
2762 space = isl_space_set_from_params(space);
2763 space = isl_space_add_dims(space, isl_dim_set, n_zero);
2764 ma = isl_multi_aff_zero(space);
2766 domain = isl_schedule_node_get_universe_domain(node);
2767 mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(
2768 isl_union_set_copy(domain), ma);
2769 mupa = isl_multi_union_pw_aff_range_product(mupa2, mupa);
2771 space = isl_multi_union_pw_aff_get_space(mupa);
2772 ma = parameter_vector(space, names);
2774 mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(domain, ma);
2775 mupa = isl_multi_union_pw_aff_sub(mupa, mupa2);
2777 return isl_multi_union_pw_aff_zero_union_set(mupa);
2780 /* Insert a context node at "node" introducing the block and thread
2781 * identifiers along with their bounds, which are stored in kernel->grid_size
2782 * and kernel->block_dim.
2783 * Note that the bounds on the block identifiers may implicitly impose
2784 * constraints on the parameters. A guard needs to be inserted
2785 * in the schedule tree to ensure that those bounds hold at "node".
2786 * This guard is inserted in insert_guard.
2788 static __isl_give isl_schedule_node *insert_context(struct ppcg_kernel *kernel,
2789 __isl_take isl_schedule_node *node)
2791 isl_set *context;
2793 context = isl_set_universe(isl_set_get_space(kernel->context));
2795 context = add_bounded_parameters_dynamic(context,
2796 kernel->grid_size, kernel->block_ids);
2797 context = add_bounded_parameters(context,
2798 kernel->block_dim, kernel->thread_ids);
2800 node = isl_schedule_node_insert_context(node, context);
2802 return node;
2805 /* Insert a guard that eliminates kernel launches where the kernel
2806 * obviously does not have any work to do.
2808 * In particular, eliminate kernel launches where there are obviously
2809 * zero blocks.
2810 * Use the same block size constraints that are used to create the context
2811 * to ensure that all constraints implicit in the constructed context
2812 * are imposed by the guard.
2814 * Additionally, add other constraints that are valid
2815 * for each executed instance ("context"), as long as this does not result
2816 * in a disjunction.
2818 static __isl_give isl_schedule_node *insert_guard(
2819 __isl_take isl_schedule_node *node, __isl_keep isl_set *context,
2820 __isl_keep isl_multi_pw_aff *size, struct ppcg_scop *scop)
2822 unsigned nparam, n;
2823 isl_set *guard;
2824 isl_id_list *ids;
2826 guard = isl_set_copy(context);
2827 guard = isl_set_compute_divs(guard);
2828 guard = isl_set_from_basic_set(isl_set_simple_hull(guard));
2830 nparam = isl_set_dim(guard, isl_dim_param);
2831 n = isl_multi_pw_aff_dim(size, isl_dim_out);
2832 ids = ppcg_scop_generate_names(scop, n, "__ppcg_tmp");
2833 guard = add_bounded_parameters_dynamic(guard, size, ids);
2834 isl_id_list_free(ids);
2835 guard = isl_set_project_out(guard, isl_dim_param, nparam, n);
2837 node = isl_schedule_node_insert_guard(node, guard);
2839 return node;
2842 /* Does any array reference group mapping require the band that is mapped
2843 * to threads to be unrolled?
2845 static int kernel_requires_unroll(struct ppcg_kernel *kernel)
2847 int i, j;
2849 for (i = 0; i < kernel->n_array; ++i) {
2850 struct gpu_local_array_info *array = &kernel->array[i];
2852 for (j = 0; j < array->n_group; ++j) {
2853 struct gpu_array_ref_group *group = array->groups[j];
2854 if (gpu_array_ref_group_requires_unroll(group))
2855 return 1;
2859 return 0;
2862 /* Mark the given band node "node" for unrolling by the AST generator and
2863 * then sink it to the leaves of the schedule tree.
2864 * All dimensions of "node" are assumed to be coincident, such that this
2865 * sinking is a valid operation.
2867 static __isl_give isl_schedule_node *unroll(__isl_take isl_schedule_node *node)
2869 int i, n;
2871 n = isl_schedule_node_band_n_member(node);
2872 for (i = 0; i < n; ++i)
2873 node = isl_schedule_node_band_member_set_ast_loop_type(node, i,
2874 isl_ast_loop_unroll);
2876 node = isl_schedule_node_band_sink(node);
2878 return node;
2881 /* Insert a synchronization node in the schedule tree of "node"
2882 * after the core computation of "kernel" at the level of the band
2883 * that is mapped to threads, except if that level is equal to
2884 * that of the band that is mapped to blocks or if there are no writes
2885 * to global or shared memory in the core computation that require
2886 * synchronization.
2887 * If there are any writes to shared memory and the shared memory
2888 * copying is performed at the same level, then synchronization
2889 * is needed between the core and the copying anyway, so we might
2890 * as well add it here. If the copying is performed at a higher
2891 * level, then different iterations of intermediate schedule dimensions
2892 * may have a different mapping from between shared memory elements and
2893 * threads, such that synchronization is required after the core.
2894 * "node" is assumed to point to the kernel node.
2896 static __isl_give isl_schedule_node *add_sync(struct ppcg_kernel *kernel,
2897 __isl_take isl_schedule_node *node)
2899 int kernel_depth;
2900 int need_sync;
2902 need_sync = any_global_or_shared_sync_writes(kernel);
2903 if (need_sync < 0)
2904 return isl_schedule_node_free(node);
2905 if (!need_sync)
2906 return node;
2908 kernel_depth = isl_schedule_node_get_schedule_depth(node);
2910 node = gpu_tree_move_down_to_thread(node, kernel->core);
2911 if (kernel_depth == isl_schedule_node_get_schedule_depth(node))
2912 return gpu_tree_move_up_to_kernel(node);
2914 node = gpu_tree_ensure_following_sync(node, kernel);
2916 node = gpu_tree_move_up_to_kernel(node);
2918 return node;
2921 /* Return a read ("read" is 1) or write access relation for "group"
2922 * with those accesses removed that are only needed to communicate data
2923 * within the subtree of the schedule rooted at "node".
2924 * Furthermore, include the prefix schedule at "node".
2925 * That is, return a relation of the form
2927 * S -> [D -> A]
2929 * with D the outer schedule dimensions at "node".
2931 static __isl_give isl_union_map *anchored_non_local_accesses(
2932 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
2933 __isl_take isl_schedule_node *node, int read)
2935 isl_union_map *access;
2936 isl_union_map *prefix;
2938 access = gpu_array_ref_group_access_relation(group, read, !read);
2939 access = remove_local_accesses_group(kernel, group, access, node, read);
2940 prefix = isl_schedule_node_get_prefix_schedule_relation(node);
2941 access = isl_union_map_range_product(prefix, access);
2943 return access;
2946 /* Given an array reference group "group", create a mapping
2948 * read[D -> A] -> [D -> A]
2950 * if "read" is set or
2952 * write[D -> A] -> [D -> A]
2954 * if "read" is not set.
2955 * D corresponds to the outer group->depth dimensions of
2956 * the kernel schedule.
2958 static __isl_give isl_multi_aff *create_from_access(isl_ctx *ctx,
2959 struct gpu_array_ref_group *group, int read)
2961 isl_space *space;
2962 isl_id *id;
2964 space = isl_space_copy(group->array->space);
2965 space = isl_space_from_range(space);
2966 space = isl_space_add_dims(space, isl_dim_in, group->depth);
2967 space = isl_space_wrap(space);
2968 space = isl_space_map_from_set(space);
2970 id = isl_id_alloc(ctx, read ? "read" : "write", group);
2971 space = isl_space_set_tuple_id(space, isl_dim_in, id);
2973 return isl_multi_aff_identity(space);
2976 /* If any writes in "group" require synchronization, then make sure
2977 * that there is a synchronization node for "kernel" after the node
2978 * following "node" in a sequence.
2980 * If "shared" is set and no synchronization is needed for
2981 * the writes to global memory, then add synchronization before
2982 * the kernel to protect shared memory from being overwritten
2983 * by the next iteration of the core computation.
2984 * No additional synchronization is needed to protect against
2985 * the next copy into shared memory because each element of
2986 * the shared memory tile is always copied by the same thread.
2988 static __isl_give isl_schedule_node *add_group_write_sync(
2989 __isl_take isl_schedule_node *node, struct ppcg_kernel *kernel,
2990 struct gpu_array_ref_group *group, int shared)
2992 int need_sync;
2994 need_sync = any_sync_writes_in_group(kernel, group);
2995 if (need_sync < 0)
2996 return isl_schedule_node_free(node);
2997 if (need_sync) {
2998 node = isl_schedule_node_parent(node);
2999 node = isl_schedule_node_next_sibling(node);
3000 node = isl_schedule_node_child(node, 0);
3001 node = gpu_tree_ensure_following_sync(node, kernel);
3002 } else if (shared) {
3003 node = isl_schedule_node_parent(node);
3004 node = isl_schedule_node_parent(node);
3005 node = gpu_tree_move_down_to_depth(node, group->depth,
3006 kernel->core);
3007 node = gpu_tree_move_left_to_sync(node, kernel);
3010 return node;
3013 /* Add copy statements to the schedule tree of "node"
3014 * for reading from global memory to private memory (if "read" is set) or
3015 * for writing back from private memory to global memory
3016 * (if "read" is not set) for the array reference group "group" that
3017 * is mapped to private memory.
3018 * On input, "node" points to the kernel node, and it is moved
3019 * back there on output.
3021 * The copies are performed in the order of the array elements.
3022 * The copy statement instances include a reference to the outer
3023 * group->depth dimensions of the kernel schedule for ease of
3024 * combining them with the group tiling.
3026 * That is, the extra schedule is of the form
3028 * type[D -> A] -> A
3030 * where D corresponds to the outer group->depth dimensions of
3031 * the kernel schedule and A to the global array.
3032 * This schedule is unrolled because registers are not addressable.
3034 * The copying is inserted in the schedule tree through an extension
3035 * of the form
3037 * D -> type[D -> A]
3039 * where the extra domain elements type[D -> A] are those accessed
3040 * by the group.
3041 * A filter is inserted on type[D -> A] to ensure that the element
3042 * is read/written by the same thread that needs the element.
3043 * This filter is obtained by applying
3045 * S -> type[D -> A]
3047 * to the thread filter for the core statements.
3049 * The extension is inserted before the core computation in case of a read
3050 * and after the core computation in case of a write.
3051 * In the latter case, we also make sure that there is a synchronization
3052 * node after the write to global memory, unless this write is performed
3053 * at the outer level of the kernel.
3054 * In principle, this synchronization could be inserted higher
3055 * in the schedule tree depending on where the corresponding reads
3056 * from global memory are performed.
3058 static __isl_give isl_schedule_node *add_copies_group_private(
3059 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3060 __isl_take isl_schedule_node *node, int read)
3062 isl_union_map *access;
3063 isl_union_map *prefix;
3064 isl_union_set *domain;
3065 isl_space *space;
3066 isl_multi_aff *from_access;
3067 isl_multi_pw_aff *mpa;
3068 isl_multi_union_pw_aff *mupa;
3069 isl_schedule_node *graft;
3070 isl_union_set *filter;
3071 int kernel_depth;
3072 int empty;
3074 kernel_depth = isl_schedule_node_get_schedule_depth(node);
3075 node = gpu_tree_move_down_to_depth(node, group->depth, kernel->core);
3077 access = anchored_non_local_accesses(kernel, group, node, read);
3078 empty = isl_union_map_is_empty(access);
3079 if (empty < 0 || empty) {
3080 isl_union_map_free(access);
3081 if (empty < 0)
3082 return isl_schedule_node_free(node);
3083 return gpu_tree_move_up_to_kernel(node);
3086 from_access = create_from_access(kernel->ctx, group, read);
3087 space = isl_space_domain(isl_multi_aff_get_space(from_access));
3088 access = isl_union_map_preimage_range_multi_aff(access, from_access);
3090 filter = isl_union_set_copy(kernel->thread_filter);
3091 filter = isl_union_set_apply(filter, isl_union_map_copy(access));
3092 filter = isl_union_set_detect_equalities(filter);
3093 filter = isl_union_set_coalesce(filter);
3095 domain = isl_union_map_range(access);
3096 access = isl_union_set_wrapped_domain_map(domain);
3097 access = isl_union_map_reverse(access);
3098 access = isl_union_map_coalesce(access);
3099 graft = isl_schedule_node_from_extension(access);
3101 space = isl_space_map_from_set(space);
3102 mpa = isl_multi_pw_aff_identity(space);
3103 mpa = isl_multi_pw_aff_range_factor_range(mpa);
3104 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3106 graft = isl_schedule_node_child(graft, 0);
3107 graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
3108 graft = unroll(graft);
3110 graft = isl_schedule_node_insert_filter(graft, filter);
3112 graft = isl_schedule_node_parent(graft);
3114 if (read)
3115 node = isl_schedule_node_graft_before(node, graft);
3116 else {
3117 node = isl_schedule_node_graft_after(node, graft);
3118 if (kernel_depth < group->depth)
3119 node = add_group_write_sync(node, kernel, group, 0);
3122 node = gpu_tree_move_up_to_kernel(node);
3124 return node;
3127 /* Add copy statements to the schedule tree of "node"
3128 * for reading from global memory to shared memory (if "read" is set) or
3129 * for writing back from shared memory to global memory
3130 * (if "read" is not set) for the array reference group "group" that
3131 * is mapped to shared memory.
3132 * On input, "node" points to the kernel node, and it is moved
3133 * back there on output.
3135 * The copies are performed in the order of the corresponding shared
3136 * memory tile.
3137 * The copy statement instances include a reference to the outer
3138 * group->depth dimensions of the kernel schedule for ease of
3139 * combining them with the group tiling.
3141 * If we are performing a read from global memory to shared memory and
3142 * if the array involved is not a scalar, then we copy
3143 * the entire tile to shared memory. This may result in some extra
3144 * elements getting copied, but it should lead to simpler code
3145 * (which means that fewer registers may be needed) and less divergence.
3147 * Otherwise, we only copy the elements that will be read or have been written
3148 * in the kernel.
3150 * That is, the extra schedule is of the form
3152 * type[D -> A] -> T
3154 * where D corresponds to the outer group->depth dimensions of
3155 * the kernel schedule, A to the global array and T is the corresponding
3156 * shared memory tile.
3158 * The copying is inserted in the schedule tree through an extension
3159 * of the form
3161 * D -> type[D -> A]
3163 * where the extra domain elements type[D -> A] are those accessed
3164 * by the group. In the case of read from a non-scalar, this set
3165 * is replaced by the entire shared memory tile.
3167 * A filter is inserted on type[D -> A] to map the copy instances
3168 * to the threads. In particular, the thread identifiers are
3169 * equated to the position inside the shared memory tile (T)
3170 * modulo the block size.
3171 * We try to align the innermost tile dimension with the innermost
3172 * thread identifier (x) as a heuristic to improve coalescing.
3173 * In particular, if the dimension of the tile is greater than
3174 * the dimension of the block, then the schedule mapping to the tile
3175 * is broken up into two pieces and the filter is applied to the inner part.
3176 * If, on the other hand, the dimension of the tile is smaller than
3177 * the dimension of the block, then the initial thread identifiers
3178 * are equated to zero and the remaining thread identifiers are
3179 * matched to the memory tile.
3181 * The extension is inserted before the core computation in case of a read
3182 * and after the core computation in case of a write.
3183 * In the case of a read, we first need to make sure there is some
3184 * synchronization before the core computation such that we can put the read
3185 * from global memory to shared memory before that synchronization.
3186 * This ensures that all threads have finished copying into shared memory
3187 * before the shared memory is used.
3188 * We also need to make sure that there is a synchronization node after
3189 * the core computation to ensure that the next load into shared memory
3190 * only happens after all data has been used. There is no need for
3191 * this synchronization if we are at the outer level since then there
3192 * won't be a next load.
3193 * In the case of a write, we need to make sure there is some synchronization
3194 * after the core computation such taht we can put the write from shared
3195 * memory to global memory after that synchronization.
3196 * Unless we are at the outer level, we also need a synchronization node
3197 * after the write to ensure the data is saved to global memory
3198 * before the next iteration write to the same shared memory.
3199 * It also makes sure the data has arrived in global memory before
3200 * it is read in a subsequent iteration.
3202 static __isl_give isl_schedule_node *add_copies_group_shared(
3203 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3204 __isl_take isl_schedule_node *node, int read)
3206 struct gpu_array_tile *tile;
3207 isl_union_map *access;
3208 isl_union_set *domain;
3209 isl_union_set *sync;
3210 isl_multi_aff *ma;
3211 isl_multi_aff *from_access;
3212 isl_multi_pw_aff *mpa;
3213 isl_multi_union_pw_aff *mupa;
3214 isl_schedule_node *graft;
3215 isl_union_set *filter;
3216 int skip;
3217 int kernel_depth;
3218 int empty;
3220 kernel_depth = isl_schedule_node_get_schedule_depth(node);
3221 node = gpu_tree_move_down_to_depth(node, group->depth, kernel->core);
3223 access = anchored_non_local_accesses(kernel, group, node, read);
3224 empty = isl_union_map_is_empty(access);
3225 if (empty < 0 || empty) {
3226 isl_union_map_free(access);
3227 if (empty < 0)
3228 return isl_schedule_node_free(node);
3229 return gpu_tree_move_up_to_kernel(node);
3232 from_access = create_from_access(kernel->ctx, group, read);
3234 tile = gpu_array_ref_group_tile(group);
3235 ma = isl_multi_aff_copy(tile->tiling);
3236 ma = isl_multi_aff_pullback_multi_aff(ma,
3237 isl_multi_aff_copy(from_access));
3238 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3239 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3241 domain = isl_union_map_range(access);
3243 if (read && !gpu_array_is_scalar(group->array)) {
3244 isl_map *map;
3245 isl_union_set_free(domain);
3246 map = group_tile(group);
3247 domain = isl_union_set_from_set(isl_map_wrap(map));
3250 domain = isl_union_set_preimage_multi_aff(domain, from_access);
3251 access = isl_union_set_wrapped_domain_map(domain);
3252 access = isl_union_map_reverse(access);
3253 access = isl_union_map_coalesce(access);
3254 graft = isl_schedule_node_from_extension(access);
3256 graft = isl_schedule_node_child(graft, 0);
3258 graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
3260 if (tile->n > kernel->n_block && kernel->n_block > 0) {
3261 graft = isl_schedule_node_band_split(graft,
3262 tile->n - kernel->n_block);
3263 graft = isl_schedule_node_child(graft, 0);
3265 if (tile->n < kernel->n_block)
3266 skip = kernel->n_block - tile->n;
3267 else
3268 skip = 0;
3269 filter = set_schedule_modulo(graft, kernel->thread_ids,
3270 kernel->block_dim);
3271 if (!kernel->options->wrap)
3272 graft = snap_band_to_sizes(graft, kernel->block_dim + skip,
3273 kernel->options);
3274 if (tile->n > kernel->n_block && kernel->n_block > 0)
3275 graft = isl_schedule_node_parent(graft);
3276 graft = isl_schedule_node_insert_filter(graft, filter);
3278 while (graft && isl_schedule_node_has_parent(graft))
3279 graft = isl_schedule_node_parent(graft);
3281 if (read) {
3282 if (kernel_depth < group->depth)
3283 node = gpu_tree_ensure_sync_after_core(node, kernel);
3284 node = gpu_tree_move_left_to_sync(node, kernel);
3285 node = isl_schedule_node_graft_before(node, graft);
3286 } else {
3287 node = gpu_tree_move_right_to_sync(node, kernel);
3288 node = isl_schedule_node_graft_after(node, graft);
3289 if (kernel_depth < group->depth)
3290 node = add_group_write_sync(node, kernel, group, 1);
3293 node = gpu_tree_move_up_to_kernel(node);
3295 return node;
3298 /* Check whether the array reference group "group" is mapped to
3299 * private or shared memory and, if so,
3300 * add copy statements to the schedule tree of "node"
3301 * for reading from global memory to private or shared memory
3302 * (if "read" is set) or for writing back from private or shared memory
3303 * to global memory (if "read" is not set) for this group.
3304 * On input, "node" points to the kernel node, and it is moved
3305 * back there on output.
3307 static __isl_give isl_schedule_node *add_copies_group(
3308 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3309 __isl_take isl_schedule_node *node, int read)
3311 if (group->private_tile)
3312 return add_copies_group_private(kernel, group, node, read);
3313 if (group->shared_tile)
3314 return add_copies_group_shared(kernel, group, node, read);
3315 return node;
3318 /* For each array reference group that is mapped to private or shared memory,
3319 * add copy statements to the schedule tree of "node"
3320 * for reading from global memory to private or shared memory
3321 * and for writing back.
3322 * On input, "node" points to the kernel node, and it is moved
3323 * back there on output.
3325 static __isl_give isl_schedule_node *add_copies(struct ppcg_kernel *kernel,
3326 __isl_take isl_schedule_node *node)
3328 int i, j;
3330 for (i = 0; i < kernel->n_array; ++i) {
3331 struct gpu_local_array_info *array = &kernel->array[i];
3333 for (j = 0; j < array->n_group; ++j) {
3334 struct gpu_array_ref_group *group = array->groups[j];
3336 node = add_copies_group(kernel, group, node, 1);
3337 if (!node)
3338 return NULL;
3339 node = add_copies_group(kernel, group, node, 0);
3340 if (!node)
3341 return NULL;
3345 return node;
3348 /* Mark all dimensions in the current band node atomic.
3350 static __isl_give isl_schedule_node *atomic(__isl_take isl_schedule_node *node)
3352 int i, n;
3354 n = isl_schedule_node_band_n_member(node);
3355 for (i = 0; i < n; ++i)
3356 node = isl_schedule_node_band_member_set_ast_loop_type(node, i,
3357 isl_ast_loop_atomic);
3359 return node;
3362 /* Mark "node" atomic, if it is a band node.
3363 * Do the same for all ancestors.
3364 * Return a pointer to "node" (in the updated schedule tree).
3366 static __isl_give isl_schedule_node *atomic_ancestors(
3367 __isl_take isl_schedule_node *node)
3369 int pos;
3371 if (!node)
3372 return NULL;
3373 if (!isl_schedule_node_has_parent(node))
3374 return node;
3376 pos = isl_schedule_node_get_child_position(node);
3377 node = isl_schedule_node_parent(node);
3378 if (isl_schedule_node_get_type(node) == isl_schedule_node_band)
3379 node = atomic(node);
3380 node = atomic_ancestors(node);
3381 node = isl_schedule_node_child(node, pos);
3383 return node;
3386 /* Collect all write references that require synchronization.
3387 * "node" is assumed to point to the kernel node.
3388 * Each reference is represented by a universe set in a space
3390 * [S[i,j] -> R[]]
3392 * with S[i,j] the statement instance space and R[] the array reference.
3394 * This function should be called before block and thread filters are added.
3396 * Synchronization is needed after a write if there is a subsequent read
3397 * within the same block that may not be performed by the same thread.
3398 * There should not be any dependences between different blocks,
3399 * so we start with the flow dependences within the same kernel invocation
3400 * and we subtract from these those dependences that are mapped
3401 * to the same iteration of the bands where synchronization is inserted.
3402 * We do not remove pairs of instances that are known to map to
3403 * the same thread across different iterations of the intermediate
3404 * bands because the read may be performed by a different thread
3405 * than the one that needs the value if shared memory is involved.
3407 * We also consider all pairs of possible writes that access the same
3408 * memory location and that may be mapped to the same block but not
3409 * to the same iteration of the intermediate bands.
3410 * In theory, it would be possible for one thread to still be in
3411 * a previous iteration of a loop in these bands.
3412 * A write to global memory in this delayed thread could then overwrite
3413 * a write from another thread that has already moved on to
3414 * the next iteration.
3416 * After computing the above writes paired off with reads or writes
3417 * that depend on them, we project onto the domain writes.
3418 * Sychronization is needed after writes to global memory
3419 * through these references.
3421 static __isl_give isl_union_set *compute_sync_writes(
3422 struct ppcg_kernel *kernel, __isl_keep isl_schedule_node *node)
3424 isl_union_map *local;
3425 isl_union_map *may_writes, *shared_access;
3426 isl_union_map *kernel_prefix, *thread_prefix;
3427 isl_union_map *equal;
3428 isl_union_set *wrap;
3429 isl_union_set *domain;
3431 domain = isl_schedule_node_get_universe_domain(node);
3432 kernel_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
3433 node = isl_schedule_node_copy(node);
3434 node = gpu_tree_move_down_to_thread(node, kernel->core);
3435 thread_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
3436 isl_schedule_node_free(node);
3438 may_writes = isl_union_map_copy(kernel->prog->scop->tagged_may_writes);
3439 may_writes = isl_union_map_curry(may_writes);
3440 may_writes = isl_union_map_intersect_domain(may_writes, domain);
3441 may_writes = isl_union_map_uncurry(may_writes);
3442 shared_access = isl_union_map_copy(may_writes);
3443 shared_access = isl_union_map_apply_range(shared_access,
3444 isl_union_map_reverse(may_writes));
3446 local = isl_union_map_copy(kernel->prog->scop->tagged_dep_flow);
3447 local = isl_union_map_union(local, shared_access);
3448 local = isl_union_map_zip(local);
3450 equal = isl_union_map_apply_range(kernel_prefix,
3451 isl_union_map_reverse(isl_union_map_copy(kernel_prefix)));
3452 wrap = isl_union_map_wrap(equal);
3453 local = isl_union_map_intersect_domain(local, wrap);
3454 equal = isl_union_map_apply_range(thread_prefix,
3455 isl_union_map_reverse(isl_union_map_copy(thread_prefix)));
3456 wrap = isl_union_map_wrap(equal);
3457 local = isl_union_map_subtract_domain(local, wrap);
3459 local = isl_union_map_zip(local);
3460 local = isl_union_map_universe(local);
3462 return isl_union_map_domain(local);
3465 /* Group the domain elements into a single space, named kernelX,
3466 * with X the kernel sequence number "kernel_id".
3468 static __isl_give isl_schedule_node *group_statements(
3469 __isl_take isl_schedule_node *node, int kernel_id)
3471 char buffer[20];
3472 isl_id *id;
3474 if (!node)
3475 return NULL;
3477 snprintf(buffer, sizeof(buffer), "kernel%d", kernel_id);
3478 id = isl_id_alloc(isl_schedule_node_get_ctx(node), buffer, NULL);
3479 return isl_schedule_node_group(node, id);
3482 /* Create a ppcg_kernel representing the domain instances that reach "node"
3483 * and insert a mark node pointing to the ppcg_kernel before "node".
3484 * The band that "node" points to is the band that needs to be mapped
3485 * to block identifiers. The band that needs to be mapped to thread
3486 * identifiers should be marked by a "thread" mark by the caller.
3487 * This mark is removed by this function.
3488 * If "scale" is set, then the band that "node" points to is scaled
3489 * by "sizes".
3491 * Mark all outer band nodes as atomic to ensure each kernel is only
3492 * scheduled once.
3493 * If the domain elements that reach "node" live in more than one space,
3494 * then group the domain elements into a single space, named kernelX,
3495 * with X the kernel sequence number.
3497 * Insert a guard node governing the kernel node to ensure that
3498 * no kernels with zero blocks are launched.
3500 * Insert a context node describing the block and thread
3501 * identifiers inside the kernel mark.
3502 * The context node needs to be inserted after the effective block size
3503 * has been determined such that the bounds on the thread identifiers
3504 * would reflect the effective block size.
3505 * Insert a filter node inside the context node mapping the statement
3506 * instances to block identifiers. In particular, the block identifiers
3507 * are equated to the partial schedule of band that was marked for mapping
3508 * to blocks modulo the grid size.
3509 * Insert a filter node inside the "thread" mark mapping the statement
3510 * instances to thread identifiers. In particular, the thread identifiers
3511 * are equated to the partial schedule of band that was marked for mapping
3512 * to threads modulo the block size.
3514 * Compute array reference groups for all arrays, set the local
3515 * array bounds based on the set of domain instances that reach
3516 * the kernel node, check the total amount of shared memory used
3517 * and compute all group tilings.
3518 * The array reference groups are computed after the block filter
3519 * has been inserted because it affects the mapping to shared or
3520 * private memory. This computation also requires the thread filter
3521 * (in the ppcg_kernel object), but this thread filter should not
3522 * have been added to the schedule tree yet since the computation
3523 * requires the schedule of the band that needs to be mapped to
3524 * threads before the privatization is applied.
3526 * If any array reference group requires the band mapped to threads
3527 * to be unrolled, then we perform the required unrolling.
3529 * We save a copy of the schedule that may influence the mappings
3530 * to shared or private memory in kernel->shared_schedule.
3532 * Finally, we add synchronization and copy statements to the schedule tree,
3533 * remove the "thread" mark and create representations for the local
3534 * variables in the kernel.
3536 * We keep a copy of the isl_id that points to the kernel to ensure
3537 * that the kernel does not get destroyed if the schedule node
3538 * is freed due to some error condition.
3540 static __isl_give isl_schedule_node *create_kernel(struct gpu_gen *gen,
3541 __isl_take isl_schedule_node *node, int scale,
3542 __isl_keep isl_multi_val *sizes)
3544 struct ppcg_kernel *kernel;
3545 isl_id *id;
3546 isl_schedule_node *node_thread;
3547 isl_union_map *host_schedule;
3548 isl_set *host_domain;
3549 isl_union_set *domain;
3550 int single_statement;
3552 kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
3553 kernel = ppcg_kernel_create_local_arrays(kernel, gen->prog);
3554 if (!kernel)
3555 return isl_schedule_node_free(node);
3557 domain = isl_schedule_node_get_domain(node);
3558 single_statement = isl_union_set_n_set(domain) == 1;
3560 kernel->ctx = gen->ctx;
3561 kernel->prog = gen->prog;
3562 kernel->options = gen->options;
3563 kernel->context = extract_context(node, gen->prog);
3564 kernel->core = isl_union_set_universe(isl_union_set_copy(domain));
3565 kernel->arrays = accessed_by_domain(isl_union_set_copy(domain),
3566 gen->prog);
3567 kernel->n_grid = n_outer_coincidence(node);
3568 node_thread = isl_schedule_node_copy(node);
3569 node_thread = gpu_tree_move_down_to_thread(node_thread, kernel->core);
3570 node_thread = isl_schedule_node_child(node_thread, 0);
3571 kernel->n_block = n_outer_coincidence(node_thread);
3572 isl_schedule_node_free(node_thread);
3573 kernel->id = gen->kernel_id++;
3574 read_grid_and_block_sizes(kernel, gen);
3576 kernel->sync_writes = compute_sync_writes(kernel, node);
3578 host_schedule = isl_schedule_node_get_prefix_schedule_union_map(node);
3579 host_domain = isl_set_from_union_set(isl_union_map_range(
3580 host_schedule));
3582 node = atomic_ancestors(node);
3584 id = isl_id_alloc(gen->ctx, "kernel", kernel);
3585 id = isl_id_set_free_user(id, &ppcg_kernel_free_wrap);
3586 node = isl_schedule_node_insert_mark(node, isl_id_copy(id));
3588 if (!single_statement)
3589 node = group_statements(node, kernel->id);
3591 node = isl_schedule_node_child(node, 0);
3592 node = split_band(node, kernel->n_grid);
3593 kernel->block_ids = ppcg_scop_generate_names(gen->prog->scop,
3594 kernel->n_grid, "b");
3595 kernel->block_filter = set_schedule_modulo(node, kernel->block_ids,
3596 kernel->grid_dim);
3597 kernel->grid_size = extract_grid_size(kernel,
3598 isl_union_set_copy(domain));
3599 if (!kernel->options->wrap)
3600 node = snap_band_to_sizes(node, kernel->grid_dim,
3601 kernel->options);
3602 if (scale)
3603 node = scale_band(node, isl_multi_val_copy(sizes));
3604 node = isl_schedule_node_parent(node);
3605 if (!single_statement)
3606 node = isl_schedule_node_parent(node);
3607 node = insert_guard(node, kernel->context, kernel->grid_size,
3608 gen->prog->scop);
3609 node = gpu_tree_move_down_to_thread(node, kernel->core);
3610 node = isl_schedule_node_child(node, 0);
3611 node = split_band(node, kernel->n_block);
3612 kernel->thread_ids = ppcg_scop_generate_names(gen->prog->scop,
3613 kernel->n_block, "t");
3614 kernel->thread_filter = set_schedule_modulo(node, kernel->thread_ids,
3615 kernel->block_dim);
3616 extract_block_size(kernel, domain);
3618 node = gpu_tree_move_up_to_kernel(node);
3619 node = isl_schedule_node_child(node, 0);
3620 node = insert_context(kernel, node);
3621 node = isl_schedule_node_child(node, 0);
3622 node = isl_schedule_node_insert_filter(node,
3623 isl_union_set_copy(kernel->block_filter));
3625 node = gpu_tree_move_up_to_kernel(node);
3627 if (gpu_group_references(kernel, node) < 0)
3628 node = isl_schedule_node_free(node);
3629 localize_bounds(kernel, host_domain);
3630 isl_set_free(host_domain);
3632 check_shared_memory_bound(kernel);
3633 compute_group_tilings(kernel);
3635 node = gpu_tree_move_down_to_thread(node, kernel->core);
3636 node = isl_schedule_node_child(node, 0);
3637 if (!kernel->options->wrap)
3638 node = snap_band_to_sizes(node, kernel->block_dim,
3639 kernel->options);
3640 node = isl_schedule_node_insert_filter(node,
3641 isl_union_set_copy(kernel->thread_filter));
3642 if (kernel_requires_unroll(kernel)) {
3643 node = isl_schedule_node_child(node, 0);
3644 node = unroll(node);
3647 node = gpu_tree_move_up_to_thread(node);
3648 kernel->shared_schedule_dim =
3649 isl_schedule_node_get_schedule_depth(node);
3650 kernel->shared_schedule =
3651 isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node);
3653 node = gpu_tree_move_up_to_kernel(node);
3655 node = add_sync(kernel, node);
3656 node = add_copies(kernel, node);
3658 node = gpu_tree_move_down_to_thread(node, kernel->core);
3659 node = isl_schedule_node_delete(node);
3661 node = gpu_tree_move_up_to_kernel(node);
3663 if (create_kernel_vars(kernel) < 0)
3664 node = isl_schedule_node_free(node);
3666 if (!single_statement)
3667 node = isl_schedule_node_parent(node);
3668 node = isl_schedule_node_parent(node);
3670 isl_id_free(id);
3671 return node;
3674 /* Insert a zero-dimensional permutable band at "node".
3676 static __isl_give isl_schedule_node *insert_empty_permutable_band(
3677 __isl_take isl_schedule_node *node)
3679 isl_space *space;
3680 isl_schedule *schedule;
3681 isl_union_set *domain;
3682 isl_multi_union_pw_aff *mupa;
3684 schedule = isl_schedule_node_get_schedule(node);
3685 domain = isl_schedule_get_domain(schedule);
3686 space = isl_union_set_get_space(domain);
3687 isl_union_set_free(domain);
3688 isl_schedule_free(schedule);
3690 space = isl_space_set_from_params(space);
3691 mupa = isl_multi_union_pw_aff_zero(space);
3692 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3693 node = isl_schedule_node_band_set_permutable(node, 1);
3695 return node;
3698 /* If "node" is the outermost permutable band that can be mapped to block and
3699 * thread identifiers in its branch (or a leaf with no such outer bands),
3700 * then mark the band as such, attaching a ppcg_kernel to the mark.
3702 * If "node" originally points to a leaf, then insert a zero-dimensional
3703 * permutable band such that we can assume that "node" always
3704 * points to a band node.
3706 * Tile "node" using user specified tile sizes, after splitting the band
3707 * if the number of specified tile sizes is smaller than the dimension
3708 * of the band. Mark the point band of this tiling as the band that
3709 * needs to be mapped to threads.
3710 * Create a kernel representing the domain instances that reach "node" and
3711 * insert a mark node pointing to the ppcg_kernel before the band node.
3713 static __isl_give isl_schedule_node *mark_outer_permutable(
3714 __isl_take isl_schedule_node *node, void *user)
3716 struct gpu_gen *gen = user;
3717 int outer;
3718 int scale;
3719 int tile_len;
3720 int *tile_size;
3721 isl_id *id;
3722 isl_multi_val *sizes;
3724 outer = is_outer_tilable(node);
3725 if (outer < 0)
3726 return isl_schedule_node_free(node);
3727 if (!outer)
3728 return node;
3730 if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf)
3731 node = insert_empty_permutable_band(node);
3733 tile_len = isl_schedule_node_band_n_member(node);
3734 tile_size = read_tile_sizes(gen, &tile_len);
3735 if (!tile_size)
3736 return isl_schedule_node_free(node);
3737 if (tile_len < isl_schedule_node_band_n_member(node))
3738 node = isl_schedule_node_band_split(node, tile_len);
3739 sizes = construct_band_tiles_sizes(node, tile_size);
3740 node = tile_band(node, isl_multi_val_copy(sizes));
3741 node = isl_schedule_node_child(node, 0);
3742 id = isl_id_alloc(gen->ctx, "thread", NULL);
3743 node = isl_schedule_node_insert_mark(node, id);
3744 node = isl_schedule_node_parent(node);
3746 scale = gen->options->scale_tile_loops;
3747 node = create_kernel(gen, node, scale, sizes);
3748 isl_multi_val_free(sizes);
3749 free(tile_size);
3751 return node;
3754 /* Insert "kernel" marks that point to a ppcg_kernel structure
3755 * in front of all outermost tilable band that (by construction)
3756 * have at least one parallel loop.
3758 static __isl_give isl_schedule_node *mark_kernels(struct gpu_gen *gen,
3759 __isl_take isl_schedule_node *node)
3761 return isl_schedule_node_map_descendant(node,
3762 &mark_outer_permutable, gen);
3765 /* Save the schedule "schedule" to a file called "filename".
3766 * The schedule is printed in block style.
3768 static void save_schedule(__isl_keep isl_schedule *schedule,
3769 const char *filename)
3771 FILE *file;
3772 isl_ctx *ctx;
3773 isl_printer *p;
3775 if (!schedule)
3776 return;
3778 file = fopen(filename, "w");
3779 if (!file) {
3780 fprintf(stderr, "Unable to open '%s' for writing\n", filename);
3781 return;
3783 ctx = isl_schedule_get_ctx(schedule);
3784 p = isl_printer_to_file(ctx, file);
3785 p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_BLOCK);
3786 p = isl_printer_print_schedule(p, schedule);
3787 isl_printer_free(p);
3788 fclose(file);
3791 /* Load and return a schedule from a file called "filename".
3793 static __isl_give isl_schedule *load_schedule(isl_ctx *ctx,
3794 const char *filename)
3796 FILE *file;
3797 isl_schedule *schedule;
3799 file = fopen(filename, "r");
3800 if (!file) {
3801 fprintf(stderr, "Unable to open '%s' for reading\n", filename);
3802 return NULL;
3804 schedule = isl_schedule_read_from_file(ctx, file);
3805 fclose(file);
3807 return schedule;
3810 /* Compute an appropriate schedule based on the accesses in
3811 * gen->read and gen->write.
3813 * We use the dependences in gen->prog->scop to compute
3814 * a schedule that has a parallel loop in each tilable band and
3815 * return this schedule.
3817 * If live range reordering is allowed, then we need to make sure
3818 * that live ranges on arrays are not run in parallel since doing
3819 * so would require array expansion. We therefore add the array
3820 * order dependences to the coincidence dependences. Non-zero array
3821 * order dependences will then prevent a schedule dimension from being
3822 * considered parallel.
3823 * Live ranges derived from scalars are allowed to be run in parallel
3824 * since we force the scalars to be mapped to private memory in
3825 * check_scalar_live_ranges.
3826 * If live range reordering is allowed, then the false dependences
3827 * are not added to the validity constraints as that would prevent
3828 * reordering. Instead, the external false dependences that enforce that reads
3829 * from potentially live-in data precede any later write and
3830 * that writes of potentially live-out data follow any other earlier write
3831 * are added to the validity and the coincidence constraints.
3832 * The false dependences are still added to the proximity constraints
3833 * for consistency with the case where live range reordering is not allowed.
3834 * The coincidence constraints then consist of flow dependences,
3835 * external false dependences and array order dependences.
3836 * The independences can be filtered out from the first two sets.
3837 * They have already been filtered out from the array order dependences
3838 * on a per array basis in collect_order_dependences.
3839 * There is no need for a per array handling of the other two sets
3840 * as there should be no flow or external false dependence on local
3841 * variables that can be filtered out.
3843 static __isl_give isl_schedule *compute_schedule(struct gpu_gen *gen)
3845 isl_union_set *domain;
3846 isl_union_map *dep_raw, *dep;
3847 isl_union_map *validity, *proximity, *coincidence;
3848 isl_schedule_constraints *sc;
3849 isl_schedule *schedule;
3851 domain = isl_union_set_copy(gen->prog->scop->domain);
3852 sc = isl_schedule_constraints_on_domain(domain);
3853 sc = isl_schedule_constraints_set_context(sc,
3854 isl_set_copy(gen->prog->scop->context));
3855 if (gen->options->live_range_reordering) {
3856 sc = isl_schedule_constraints_set_conditional_validity(sc,
3857 isl_union_map_copy(gen->prog->scop->tagged_dep_flow),
3858 isl_union_map_copy(gen->prog->scop->tagged_dep_order));
3859 proximity = isl_union_map_copy(gen->prog->scop->dep_flow);
3860 validity = isl_union_map_copy(proximity);
3861 validity = isl_union_map_union(validity,
3862 isl_union_map_copy(gen->prog->scop->dep_forced));
3863 proximity = isl_union_map_union(proximity,
3864 isl_union_map_copy(gen->prog->scop->dep_false));
3865 coincidence = isl_union_map_copy(validity);
3866 coincidence = isl_union_map_subtract(coincidence,
3867 isl_union_map_copy(gen->prog->scop->independence));
3868 coincidence = isl_union_map_union(coincidence,
3869 isl_union_map_copy(gen->prog->array_order));
3870 } else {
3871 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
3872 dep = isl_union_map_copy(gen->prog->scop->dep_false);
3873 dep = isl_union_map_union(dep, dep_raw);
3874 dep = isl_union_map_coalesce(dep);
3875 proximity = isl_union_map_copy(dep);
3876 coincidence = isl_union_map_copy(dep);
3877 validity = dep;
3879 sc = isl_schedule_constraints_set_validity(sc, validity);
3880 sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
3881 sc = isl_schedule_constraints_set_proximity(sc, proximity);
3883 if (gen->options->debug->dump_schedule_constraints)
3884 isl_schedule_constraints_dump(sc);
3885 schedule = isl_schedule_constraints_compute_schedule(sc);
3887 return schedule;
3890 /* Obtain a schedule for the scop, either by reading it from
3891 * a file or by computing one.
3893 static __isl_give isl_schedule *get_schedule(struct gpu_gen *gen)
3895 isl_schedule *schedule;
3897 if (gen->options->load_schedule_file) {
3898 schedule = load_schedule(gen->ctx,
3899 gen->options->load_schedule_file);
3900 } else {
3901 schedule = compute_schedule(gen);
3902 if (gen->options->save_schedule_file)
3903 save_schedule(schedule,
3904 gen->options->save_schedule_file);
3906 if (gen->options->debug->dump_schedule)
3907 isl_schedule_dump(schedule);
3909 return schedule;
3912 /* Compute the sets of outer array elements that need to be copied in and out.
3914 * In particular, for each array that is possibly written anywhere in
3915 * "prog" and that is visible outside the corresponding scop,
3916 * we copy out its entire extent.
3918 * Any array elements that is read without first being written needs
3919 * to be copied in. Furthermore, if there are any array elements that
3920 * are copied out, but that may not be written inside "prog", then
3921 * they also need to be copied in to ensure that the value after execution
3922 * is the same as the value before execution, at least for those array
3923 * elements that may have their values preserved by the scop.
3924 * In case the array elements are structures, we need to take into
3925 * account that all members of the structures need to be written
3926 * by "prog" before we can avoid copying the data structure in.
3928 * While computing the set of array elements that are copied out but
3929 * not necessarily written, we intersect both sets with the context.
3930 * This helps in those cases where the arrays are declared with a fixed size,
3931 * while the accesses are parametric and the context assigns a fixed value
3932 * to the parameters.
3934 * If an element from a local array is read without first being written,
3935 * then there is no point in copying it in since it cannot have been
3936 * written prior to the scop. Warn about the uninitialized read instead.
3938 static void compute_copy_in_and_out(struct gpu_prog *prog)
3940 int i;
3941 isl_union_set *local;
3942 isl_union_set *may_write, *must_write;
3943 isl_union_set *copy_in, *copy_out;
3944 isl_union_set *not_written;
3945 isl_union_map *uninitialized;
3946 isl_union_map *local_uninitialized;
3948 must_write = isl_union_map_range(
3949 isl_union_map_copy(prog->must_write));
3950 must_write = isl_union_set_intersect_params(must_write,
3951 isl_set_copy(prog->context));
3952 may_write = isl_union_map_range(
3953 isl_union_map_copy(prog->may_write));
3954 may_write = isl_union_set_intersect_params(may_write,
3955 isl_set_copy(prog->context));
3956 may_write = isl_union_set_universe(may_write);
3957 may_write = isl_union_set_apply(may_write,
3958 isl_union_map_copy(prog->to_outer));
3959 copy_out = isl_union_set_empty(isl_union_set_get_space(may_write));
3960 local = isl_union_set_copy(copy_out);
3962 for (i = 0; i < prog->n_array; ++i) {
3963 isl_space *space;
3964 isl_set *write_i;
3965 int empty;
3967 space = isl_space_copy(prog->array[i].space);
3969 if (prog->array[i].local) {
3970 isl_set *set;
3972 set = isl_set_universe(space);
3973 local = isl_union_set_add_set(local, set);
3974 continue;
3977 write_i = isl_union_set_extract_set(may_write, space);
3978 empty = isl_set_plain_is_empty(write_i);
3979 isl_set_free(write_i);
3980 if (empty)
3981 continue;
3983 write_i = isl_set_copy(prog->array[i].extent);
3984 copy_out = isl_union_set_add_set(copy_out, write_i);
3986 isl_union_set_free(may_write);
3988 copy_out = isl_union_set_intersect_params(copy_out,
3989 isl_set_copy(prog->context));
3991 prog->copy_out = isl_union_set_copy(copy_out);
3993 copy_out = isl_union_set_apply(copy_out,
3994 isl_union_map_copy(prog->to_inner));
3995 copy_out = isl_union_set_intersect(copy_out,
3996 isl_union_set_copy(prog->may_persist));
3997 not_written = isl_union_set_subtract(copy_out, must_write);
3999 uninitialized = isl_union_map_copy(prog->scop->live_in);
4000 local_uninitialized = isl_union_map_copy(uninitialized);
4002 local = isl_union_set_apply(local, isl_union_map_copy(prog->to_inner));
4003 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
4004 local);
4005 if (!isl_union_map_is_empty(local_uninitialized)) {
4006 fprintf(stderr,
4007 "possibly uninitialized reads (not copied in):\n");
4008 isl_union_map_dump(local_uninitialized);
4010 uninitialized = isl_union_map_subtract(uninitialized,
4011 local_uninitialized);
4012 copy_in = isl_union_map_range(uninitialized);
4013 copy_in = isl_union_set_union(copy_in, not_written);
4014 copy_in = isl_union_set_apply(copy_in,
4015 isl_union_map_copy(prog->to_outer));
4017 prog->copy_in = copy_in;
4020 /* Update "schedule" for mapping to a GPU device.
4022 * In particular, insert a context node and create kernels for
4023 * each outermost tilable band.
4025 static __isl_give isl_schedule *map_to_device(struct gpu_gen *gen,
4026 __isl_take isl_schedule *schedule)
4028 isl_schedule_node *node;
4029 isl_set *context;
4031 context = isl_set_copy(gen->prog->context);
4032 context = isl_set_from_params(context);
4033 schedule = isl_schedule_insert_context(schedule, context);
4035 node = isl_schedule_get_root(schedule);
4036 isl_schedule_free(schedule);
4037 node = isl_schedule_node_child(node, 0);
4038 if (isl_schedule_node_get_type(node) == isl_schedule_node_context)
4039 node = isl_schedule_node_child(node, 0);
4040 node = mark_kernels(gen, node);
4041 schedule = isl_schedule_node_get_schedule(node);
4042 isl_schedule_node_free(node);
4044 return schedule;
4047 /* Internal data structure for extract_access.
4048 * "next_access" points to the end of a linked list that is extended
4049 * by extract_access.
4050 * "single_expression" is set if the access expressions belong to
4051 * an expression statement (i.e., a statement without internal control).
4052 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4054 struct ppcg_extract_access_data {
4055 struct gpu_stmt_access **next_access;
4056 int single_expression;
4057 isl_union_map *any_to_outer;
4060 /* Given a tagged access relation to a single array "tagged", extract it
4061 * as a map, taking into account that the input may be empty.
4062 * If the access relation is empty, then it does not contain
4063 * any space information, so we try to recover it from the index
4064 * expression.
4065 * The space of the index expression is of the form I -> A,
4066 * with I the statement instances and A the array, or [I -> F] -> A,
4067 * with F the filters corresponding to arguments.
4068 * We first drop F, if present, obtaining I -> A.
4069 * Then we construct I -> R, with R the reference tag,
4070 * combine the two into I -> [R -> A] and uncurry to obtain
4071 * the final result [I -> R] -> A.
4072 * Note that the index expression may have a lower dimension
4073 * than that of the array, but this dimension is not used
4074 * if the access relation is empty.
4076 static __isl_give isl_map *extract_single_tagged_access(
4077 __isl_take isl_union_map *tagged, __isl_keep pet_expr *expr)
4079 int empty;
4080 isl_id *id;
4081 isl_space *space, *space2;
4082 isl_multi_pw_aff *index;
4084 empty = isl_union_map_is_empty(tagged);
4085 if (empty < 0)
4086 goto error;
4087 if (!empty)
4088 return isl_map_from_union_map(tagged);
4089 isl_union_map_free(tagged);
4091 index = pet_expr_access_get_index(expr);
4092 space = isl_multi_pw_aff_get_space(index);
4093 isl_multi_pw_aff_free(index);
4094 if (isl_space_domain_is_wrapping(space))
4095 space = isl_space_domain_factor_domain(space);
4096 space2 = isl_space_copy(space);
4097 space2 = isl_space_from_domain(isl_space_domain(space));
4098 id = pet_expr_access_get_ref_id(expr);
4099 space2 = isl_space_set_tuple_id(space2, isl_dim_out, id);
4100 space = isl_space_range_product(space2, space);
4101 space = isl_space_uncurry(space);
4103 return isl_map_empty(space);
4104 error:
4105 isl_union_map_free(tagged);
4106 return NULL;
4109 /* Extract a gpu_stmt_access from "expr", append it to the list
4110 * that ends in *data->next_access and update the end of the list.
4111 * If the access expression performs a write, then it is considered
4112 * exact only if it appears in a single expression statement and
4113 * if its may access relation is equal to its must access relation.
4115 * The combined set of may accesses may be union if member accesses
4116 * are involved, but the entire set is derived from a single reference and
4117 * therefore from a single index expression. These accesses therefore
4118 * all map to the same outer array.
4120 static int extract_access(__isl_keep pet_expr *expr, void *user)
4122 struct ppcg_extract_access_data *data = user;
4123 isl_union_map *tagged;
4124 struct gpu_stmt_access *access;
4125 isl_ctx *ctx = pet_expr_get_ctx(expr);
4126 isl_multi_pw_aff *index;
4128 access = isl_alloc_type(ctx, struct gpu_stmt_access);
4129 assert(access);
4130 access->next = NULL;
4131 access->read = pet_expr_access_is_read(expr);
4132 access->write = pet_expr_access_is_write(expr);
4133 tagged = pet_expr_access_get_tagged_may_read(expr);
4134 tagged = isl_union_map_union(tagged,
4135 pet_expr_access_get_tagged_may_write(expr));
4136 tagged = isl_union_map_apply_range(tagged,
4137 isl_union_map_copy(data->any_to_outer));
4138 if (!access->write) {
4139 access->exact_write = 1;
4140 } else if (!data->single_expression) {
4141 access->exact_write = 0;
4142 } else {
4143 isl_union_map *must, *may;
4144 may = isl_union_map_copy(tagged);
4145 may = isl_union_map_domain_factor_domain(may);
4146 must = pet_expr_access_get_must_write(expr);
4147 access->exact_write = isl_union_map_is_equal(must, may);
4148 isl_union_map_free(must);
4149 isl_union_map_free(may);
4151 index = pet_expr_access_get_index(expr);
4152 access->n_index = isl_multi_pw_aff_dim(index, isl_dim_out);
4153 isl_multi_pw_aff_free(index);
4154 access->ref_id = pet_expr_access_get_ref_id(expr);
4155 access->tagged_access = extract_single_tagged_access(tagged, expr);
4156 access->access = isl_map_copy(access->tagged_access);
4157 access->access = isl_map_domain_factor_domain(access->access);
4159 *data->next_access = access;
4160 data->next_access = &(*data->next_access)->next;
4162 if (!access->access)
4163 return -1;
4165 return 0;
4168 /* Construct a linked list of gpu_stmt_access objects,
4169 * one for each access expression in the statement body.
4170 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4172 static int pet_stmt_extract_accesses(struct gpu_stmt *stmt,
4173 __isl_keep isl_union_map *any_to_outer)
4175 struct ppcg_extract_access_data data;
4177 stmt->accesses = NULL;
4178 data.next_access = &stmt->accesses;
4179 data.single_expression =
4180 pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
4181 data.any_to_outer = any_to_outer;
4182 return pet_tree_foreach_access_expr(stmt->stmt->body,
4183 &extract_access, &data);
4186 /* Return an array of gpu_stmt representing the statements in "scop".
4188 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
4189 __isl_keep isl_set *context, __isl_keep isl_union_map *any_to_outer)
4191 int i;
4192 struct gpu_stmt *stmts;
4194 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->pet->n_stmt);
4195 if (!stmts)
4196 return NULL;
4198 for (i = 0; i < scop->pet->n_stmt; ++i) {
4199 struct gpu_stmt *s = &stmts[i];
4201 s->id = isl_set_get_tuple_id(scop->pet->stmts[i]->domain);
4202 s->stmt = scop->pet->stmts[i];
4203 if (pet_stmt_extract_accesses(s, any_to_outer) < 0)
4204 return free_stmts(stmts, i + 1);
4207 return stmts;
4210 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
4212 static __isl_give isl_printer *print_gpu(__isl_take isl_printer *p, void *user)
4214 struct gpu_gen *gen = user;
4216 return gen->print(p, gen->prog, gen->tree, &gen->types,
4217 gen->print_user);
4220 /* Generate CUDA code for "scop" and print it to "p".
4221 * After generating an AST for the transformed scop as explained below,
4222 * we call "gen->print" to print the AST in the desired output format
4223 * to "p".
4225 * If it turns out that it does not make sense to generate GPU code,
4226 * then we generate CPU code instead.
4228 * The GPU code is generated in a context where at least one
4229 * statement instance is executed. The corresponding guard (if any) is printed
4230 * around the entire generated GPU code, except for the declaration
4231 * of the arrays that are visible outside of the scop and that therefore
4232 * cannot be declared inside the body of any possible guard.
4234 * We first compute a schedule that respects the dependences
4235 * of the original program and select the outermost bands
4236 * of tilable dimensions that have at least one parallel loop.
4237 * If the --load-schedule is specified, then the loaded schedule
4238 * is used instead of a computed schedule.
4240 * Each of these bands B is then tiled according to "tile" sizes, resulting
4241 * in two nested bands, with a kernel marker on top
4249 * We then split off at most 2 parallel dimensions from the T band and
4250 * at most 3 parallel dimension from the P band
4255 * T1
4257 * T2
4259 * P1
4261 * P2
4263 * A filter is introduced in front of T1 that maps the domain instances
4264 * to block identifiers. Similarly, a filter is introduced in front of P1
4265 * that maps the domain instances to thread identifiers.
4267 * For each iteration of the T2 band and for each array, we compute
4268 * the array elements accessed by that iteration, construct a rectangular
4269 * box around it and shift it to the origin. The result is used
4270 * as shared memory for the array.
4272 * Copying and synchronization statements are added to this schedule tree.
4273 * In principle, these are added in front of the P1 band, but some of
4274 * them may get hoisted up to higher levels.
4276 * The entire AST is then generated from the single resulting schedule tree.
4277 * During the generation the subtrees at kernel nodes (K) are saved
4278 * aside and replaced by kernel calls. The result is printed as host code
4279 * while the saved subtrees are printed as device code.
4281 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
4282 struct gpu_gen *gen, struct ppcg_scop *scop,
4283 struct ppcg_options *options)
4285 struct gpu_prog *prog;
4286 isl_ctx *ctx;
4287 isl_set *context, *guard;
4288 isl_schedule *schedule;
4289 int any_permutable;
4291 if (!scop)
4292 return isl_printer_free(p);
4294 ctx = isl_printer_get_ctx(p);
4295 prog = gpu_prog_alloc(ctx, scop);
4296 if (!prog)
4297 return isl_printer_free(p);
4299 context = isl_set_copy(prog->context);
4300 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
4301 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
4303 gen->prog = prog;
4304 schedule = get_schedule(gen);
4306 any_permutable = has_any_permutable_node(schedule);
4307 if (any_permutable < 0 || !any_permutable) {
4308 isl_set_free(context);
4309 isl_set_free(guard);
4310 if (any_permutable < 0)
4311 p = isl_printer_free(p);
4312 else
4313 p = print_cpu(p, scop, options);
4314 isl_schedule_free(schedule);
4315 } else {
4316 compute_copy_in_and_out(prog);
4317 schedule = map_to_device(gen, schedule);
4318 gen->tree = generate_code(gen, schedule);
4319 p = ppcg_print_exposed_declarations(p, prog->scop);
4320 p = ppcg_print_guarded(p, guard, context, &print_gpu, gen);
4321 isl_ast_node_free(gen->tree);
4324 gpu_prog_free(prog);
4326 return p;
4329 /* Wrapper around generate for use as a ppcg_transform callback.
4331 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
4332 struct ppcg_scop *scop, void *user)
4334 struct gpu_gen *gen = user;
4336 return generate(p, gen, scop, gen->options);
4339 /* Transform the code in the file called "input" by replacing
4340 * all scops by corresponding GPU code and write the results to "out".
4342 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
4343 struct ppcg_options *options,
4344 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
4345 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
4346 struct gpu_types *types, void *user), void *user)
4348 struct gpu_gen gen;
4349 int r;
4350 int i;
4352 gen.ctx = ctx;
4353 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
4354 gen.options = options;
4355 gen.kernel_id = 0;
4356 gen.print = print;
4357 gen.print_user = user;
4358 gen.types.n = 0;
4359 gen.types.name = NULL;
4361 if (options->debug->dump_sizes) {
4362 isl_space *space = isl_space_params_alloc(ctx, 0);
4363 gen.used_sizes = isl_union_map_empty(space);
4366 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
4368 if (options->debug->dump_sizes) {
4369 isl_union_map_dump(gen.used_sizes);
4370 isl_union_map_free(gen.used_sizes);
4373 isl_union_map_free(gen.sizes);
4374 for (i = 0; i < gen.types.n; ++i)
4375 free(gen.types.name[i]);
4376 free(gen.types.name);
4378 return r;
4381 /* Compute the set of inner array elements that may have their values
4382 * preserved by "prog". In particular, collect the array elements of
4383 * arrays that are not local to "prog" and remove those elements that
4384 * are definitely killed or definitely written by "prog".
4386 static __isl_give isl_union_set *compute_may_persist(struct gpu_prog *prog)
4388 int i;
4389 isl_union_set *may_persist, *killed;
4390 isl_union_map *must_kill;
4392 may_persist = isl_union_set_empty(isl_set_get_space(prog->context));
4393 for (i = 0; i < prog->n_array; ++i) {
4394 isl_set *extent;
4396 if (prog->array[i].local)
4397 continue;
4399 extent = isl_set_copy(prog->array[i].extent);
4400 may_persist = isl_union_set_add_set(may_persist, extent);
4403 may_persist = isl_union_set_intersect_params(may_persist,
4404 isl_set_copy(prog->context));
4405 may_persist = isl_union_set_apply(may_persist,
4406 isl_union_map_copy(prog->to_inner));
4407 must_kill = isl_union_map_copy(prog->tagged_must_kill);
4408 killed = isl_union_map_range(must_kill);
4409 must_kill = isl_union_map_copy(prog->must_write);
4410 killed = isl_union_set_union(killed, isl_union_map_range(must_kill));
4412 may_persist = isl_union_set_subtract(may_persist, killed);
4413 return may_persist;
4416 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
4418 struct gpu_prog *prog;
4419 isl_space *space;
4420 isl_map *id;
4422 if (!scop)
4423 return NULL;
4425 prog = isl_calloc_type(ctx, struct gpu_prog);
4426 assert(prog);
4428 prog->ctx = ctx;
4429 prog->scop = scop;
4430 prog->context = isl_set_copy(scop->context);
4431 prog->n_stmts = scop->pet->n_stmt;
4432 prog->any_to_outer = pet_scop_compute_outer_to_any(scop->pet);
4433 prog->any_to_outer = isl_union_map_reverse(prog->any_to_outer);
4434 space = isl_union_map_get_space(prog->any_to_outer);
4435 space = isl_space_set_from_params(space);
4436 space = isl_space_add_dims(space, isl_dim_set, 1);
4437 space = isl_space_map_from_set(space);
4438 id = isl_map_identity(space);
4439 prog->any_to_outer = isl_union_map_add_map(prog->any_to_outer, id);
4440 prog->stmts = extract_stmts(ctx, scop,
4441 prog->context, prog->any_to_outer);
4442 prog->read = isl_union_map_copy(scop->reads);
4443 prog->may_write = isl_union_map_copy(scop->may_writes);
4444 prog->must_write = isl_union_map_copy(scop->must_writes);
4445 prog->tagged_must_kill = isl_union_map_copy(scop->tagged_must_kills);
4446 prog->to_inner = pet_scop_compute_outer_to_inner(scop->pet);
4447 prog->to_outer = isl_union_map_copy(prog->to_inner);
4448 prog->to_outer = isl_union_map_reverse(prog->to_outer);
4450 if (!prog->stmts)
4451 return gpu_prog_free(prog);
4453 if (collect_array_info(prog) < 0)
4454 return gpu_prog_free(prog);
4455 prog->may_persist = compute_may_persist(prog);
4457 return prog;
4460 void *gpu_prog_free(struct gpu_prog *prog)
4462 if (!prog)
4463 return NULL;
4464 free_array_info(prog);
4465 free_stmts(prog->stmts, prog->n_stmts);
4466 isl_union_map_free(prog->any_to_outer);
4467 isl_union_map_free(prog->to_outer);
4468 isl_union_map_free(prog->to_inner);
4469 isl_union_set_free(prog->copy_in);
4470 isl_union_set_free(prog->copy_out);
4471 isl_union_map_free(prog->read);
4472 isl_union_map_free(prog->may_write);
4473 isl_union_map_free(prog->must_write);
4474 isl_union_map_free(prog->tagged_must_kill);
4475 isl_union_map_free(prog->array_order);
4476 isl_union_set_free(prog->may_persist);
4477 isl_set_free(prog->context);
4478 free(prog);
4479 return NULL;