2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
23 #include <isl/schedule.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
30 #include "ppcg_options.h"
33 /* The fields stride, shift and shift_map only contain valid information
35 * If so, they express that current index is such that if you add shift,
36 * then the result is always a multiple of stride.
37 * shift_map contains the mapping
39 * i -> (i + shift)/stride
41 * Let D represent the initial shared_len dimensions of the computed schedule.
42 * The spaces of "lb" and "shift" are of the form
46 * "shift_map" is of the form
48 * [D -> i] -> [D -> (i + shift(D))/stride]
50 struct gpu_array_bound
{
56 isl_basic_map
*shift_map
;
59 /* A tile of an array.
61 * n is the dimension of the array.
62 * bound is an array of size "n" representing the lower bound
63 * and size for each index.
65 * tiling maps a tile in the global array to the corresponding
66 * shared/private memory tile and is of the form
68 * { [D[i] -> A[a]] -> T[(a + shift(i))/stride - lb(i)] }
70 * where D represents the initial shared_len dimensions
71 * of the computed schedule.
73 struct gpu_array_tile
{
75 struct gpu_array_bound
*bound
;
76 isl_multi_aff
*tiling
;
79 struct gpu_array_info
;
81 /* A group of array references in a kernel that should be handled together.
82 * If private_tile is not NULL, then it is mapped to registers.
83 * Otherwise, if shared_tile is not NULL, it is mapped to shared memory.
84 * Otherwise, it is accessed from global memory.
86 struct gpu_array_ref_group
{
87 /* The references in this group access this array. */
88 struct gpu_array_info
*array
;
89 /* Position of this group in the list of reference groups of array. */
92 /* The following fields are use during the construction of the groups.
93 * access is the combined access relation relative to the shared
94 * memory tiling. In particular, the domain of the map corresponds
95 * to the first shared_len dimensions of the computed schedule.
96 * write is set if any access in the group is a write.
97 * exact_write is set if all writes are definite writes.
98 * slice is set if there is at least one access in the group
99 * that refers to more than one element
106 /* The shared memory tile, NULL if none. */
107 struct gpu_array_tile
*shared_tile
;
109 /* The private memory tile, NULL if none. */
110 struct gpu_array_tile
*private_tile
;
112 /* References in this group; point to elements of a linked list. */
114 struct gpu_stmt_access
**refs
;
116 /* Last shared memory tile dimension that affects tile of this group. */
122 struct ppcg_options
*options
;
124 /* Callback for printing of AST in appropriate format. */
125 __isl_give isl_printer
*(*print
)(__isl_take isl_printer
*p
,
126 struct gpu_prog
*prog
, __isl_keep isl_ast_node
*tree
,
127 struct gpu_types
*types
, void *user
);
130 struct gpu_prog
*prog
;
131 /* The generated AST. */
134 /* The sequence of types for which a definition has been printed. */
135 struct gpu_types types
;
137 /* User specified tile, grid and block sizes for each kernel */
138 isl_union_map
*sizes
;
140 /* Effectively used tile, grid and block sizes for each kernel */
141 isl_union_map
*used_sizes
;
143 /* Identifier of current kernel. */
145 /* Pointer to the current kernel. */
146 struct ppcg_kernel
*kernel
;
147 /* Does the computed schedule exhibit any parallelism? */
150 /* First tile dimension. */
152 /* Number of tile dimensions. */
154 /* Number of initial parallel loops among tile dimensions. */
157 /* Number of dimensions determining shared memory. */
160 /* Number of rows in the untiled schedule. */
162 /* Number of rows in the tiled schedule. */
164 /* Number of rows in schedule after tiling/wrapping over threads. */
165 int thread_tiled_len
;
167 /* Global untiled schedule. */
168 isl_union_map
*sched
;
169 /* Local (per kernel launch) tiled schedule. */
170 isl_union_map
*tiled_sched
;
171 /* Local schedule per shared memory tile loop iteration. */
172 isl_union_map
*local_sched
;
174 /* Local tiled schedule projected onto the shared tile loops and
175 * the loops that will be wrapped over the threads,
176 * with all shared tile loops parametrized.
178 isl_union_map
*shared_sched
;
179 /* Projects out the loops that will be wrapped over the threads
182 isl_union_map
*shared_proj
;
184 /* A map that takes the range of shared_sched as input,
185 * wraps the appropriate loops over the threads and then projects
188 isl_map
*privatization
;
190 /* The array reference group corresponding to copy_sched. */
191 struct gpu_array_ref_group
*copy_group
;
193 /* Is any array in the current kernel marked force_private? */
194 int any_force_private
;
196 /* First loop to unroll (or -1 if none) in the current part of the
203 /* Note: in the input file, the sizes of the grid and the blocks
204 * are specified in the order x, y, z, but internally, the sizes
205 * are stored in reverse order, so that the last element always
206 * refers to the x dimension.
213 /* Print the name of the local copy of a given group of array references.
215 static __isl_give isl_printer
*print_array_name(__isl_take isl_printer
*p
,
216 struct gpu_array_ref_group
*group
)
220 if (group
->private_tile
)
221 p
= isl_printer_print_str(p
, "private_");
222 else if (group
->shared_tile
)
223 p
= isl_printer_print_str(p
, "shared_");
226 p
= isl_printer_print_str(p
, group
->array
->name
);
227 if (!global
&& group
->array
->n_group
> 1) {
228 p
= isl_printer_print_str(p
, "_");
229 p
= isl_printer_print_int(p
, group
->nr
);
235 /* Collect all references to the given array and store pointers to them
238 * If the array contains structures, then there is no need to collect
239 * the references since we will not be computing any reference groups.
241 static void collect_references(struct gpu_prog
*prog
,
242 struct gpu_array_info
*array
)
247 if (array
->has_compound_element
)
251 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
252 struct gpu_stmt
*stmt
= &prog
->stmts
[i
];
253 struct gpu_stmt_access
*access
;
255 for (access
= stmt
->accesses
; access
; access
= access
->next
) {
257 name
= isl_map_get_tuple_name(access
->access
,
259 if (name
&& !strcmp(array
->name
, name
))
265 array
->refs
= isl_alloc_array(prog
->ctx
, struct gpu_stmt_access
*, n
);
269 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
270 struct gpu_stmt
*stmt
= &prog
->stmts
[i
];
271 struct gpu_stmt_access
*access
;
273 for (access
= stmt
->accesses
; access
; access
= access
->next
) {
275 name
= isl_map_get_tuple_name(access
->access
,
277 if (!name
|| strcmp(array
->name
, name
))
280 array
->refs
[n
++] = access
;
285 /* Create a gpu_array_tile for an array of dimension "n_index".
287 static struct gpu_array_tile
*create_tile(isl_ctx
*ctx
, int n_index
)
290 struct gpu_array_tile
*tile
;
292 tile
= isl_calloc_type(ctx
, struct gpu_array_tile
);
297 tile
->bound
= isl_alloc_array(ctx
, struct gpu_array_bound
, n_index
);
300 for (i
= 0; i
< n_index
; ++i
) {
301 tile
->bound
[i
].size
= NULL
;
302 tile
->bound
[i
].lb
= NULL
;
303 tile
->bound
[i
].stride
= NULL
;
304 tile
->bound
[i
].shift
= NULL
;
305 tile
->bound
[i
].shift_map
= NULL
;
311 static void *free_tile(struct gpu_array_tile
*tile
)
318 for (j
= 0; j
< tile
->n
; ++j
) {
319 isl_val_free(tile
->bound
[j
].size
);
320 isl_val_free(tile
->bound
[j
].stride
);
321 isl_aff_free(tile
->bound
[j
].lb
);
322 isl_aff_free(tile
->bound
[j
].shift
);
323 isl_basic_map_free(tile
->bound
[j
].shift_map
);
326 isl_multi_aff_free(tile
->tiling
);
332 static struct pet_array
*find_array(struct ppcg_scop
*scop
,
333 __isl_keep isl_set
*accessed
)
338 id
= isl_set_get_tuple_id(accessed
);
340 for (i
= 0; i
< scop
->pet
->n_array
; ++i
) {
343 id_i
= isl_set_get_tuple_id(scop
->pet
->arrays
[i
]->extent
);
350 return i
< scop
->pet
->n_array
? scop
->pet
->arrays
[i
] : NULL
;
353 /* Compute and return the extent of "array", taking into account the set of
356 * In particular, the extent in the outer dimension is taken
357 * from "accessed", while then extent in the remaing dimensions
358 * are taken from array->extent.
360 * The extent in the outer dimension cannot be taken from array->extent
361 * because that may be unbounded. Furthermore, even if it is bounded,
362 * it may be larger than the piece of the array that is being accessed.
364 static __isl_give isl_set
*compute_extent(struct pet_array
*array
,
365 __isl_keep isl_set
*accessed
)
372 extent
= isl_set_copy(array
->extent
);
374 n_index
= isl_set_dim(accessed
, isl_dim_set
);
378 extent
= isl_set_project_out(extent
, isl_dim_set
, 0, 1);
379 outer
= isl_set_copy(accessed
);
380 outer
= isl_set_project_out(outer
, isl_dim_set
, 1, n_index
- 1);
381 extent
= isl_set_flat_product(outer
, extent
);
382 id
= isl_set_get_tuple_id(accessed
);
383 extent
= isl_set_set_tuple_id(extent
, id
);
388 /* Is the array "array" being extracted a read-only scalar?
390 * That is, is "array" a scalar that is never possibly written to.
391 * An array containing structures is never considered to be a scalar.
393 static int is_read_only_scalar(struct gpu_array_info
*array
,
394 struct gpu_prog
*prog
)
397 isl_union_map
*write
;
400 if (array
->has_compound_element
)
402 if (array
->n_index
!= 0)
405 write
= isl_union_map_copy(prog
->may_write
);
406 space
= isl_set_universe(isl_space_copy(array
->space
));
407 write
= isl_union_map_intersect_range(write
,
408 isl_union_set_from_set(space
));
409 empty
= isl_union_map_is_empty(write
);
410 isl_union_map_free(write
);
415 /* Compute bounds on the host arrays based on the accessed elements
416 * and collect all references to the array.
418 * If the array is zero-dimensional and does not contain structures,
419 * i.e., if the array is a scalar, we check whether it is read-only.
421 static int extract_array_info(__isl_take isl_set
*array
, void *user
)
424 struct gpu_prog
*prog
= (struct gpu_prog
*)user
;
428 struct pet_array
*pa
;
429 struct gpu_array_info
*info
;
432 info
= &prog
->array
[prog
->n_array
];
435 n_index
= isl_set_dim(array
, isl_dim_set
);
436 name
= isl_set_get_tuple_name(array
);
437 bounds
= isl_alloc_array(isl_set_get_ctx(array
),
438 isl_pw_aff
*, n_index
);
442 info
->space
= isl_set_get_space(array
);
443 info
->name
= strdup(name
);
444 info
->n_index
= n_index
;
445 info
->bound
= bounds
;
446 info
->linearize
= prog
->scop
->options
->linearize_device_arrays
;
448 pa
= find_array(prog
->scop
, array
);
450 isl_die(isl_set_get_ctx(array
), isl_error_internal
,
451 "unable to find array in scop", goto error
);
453 info
->type
= strdup(pa
->element_type
);
454 info
->size
= pa
->element_size
;
455 info
->local
= pa
->declared
&& !pa
->exposed
;
456 info
->has_compound_element
= pa
->element_is_record
;
457 info
->read_only_scalar
= is_read_only_scalar(info
, prog
);
459 extent
= compute_extent(pa
, array
);
460 info
->extent
= extent
;
461 for (i
= 0; i
< n_index
; ++i
) {
467 dom
= isl_set_copy(extent
);
468 dom
= isl_set_project_out(dom
, isl_dim_set
, i
+ 1,
470 dom
= isl_set_project_out(dom
, isl_dim_set
, 0, i
);
471 if (!isl_set_dim_has_upper_bound(dom
, isl_dim_set
, 0)) {
472 fprintf(stderr
, "unable to determine extent of '%s' "
473 "in dimension %d\n", info
->name
, i
);
474 dom
= isl_set_free(dom
);
476 bound
= isl_set_dim_max(dom
, 0);
477 dom
= isl_pw_aff_domain(isl_pw_aff_copy(bound
));
478 ls
= isl_local_space_from_space(isl_set_get_space(dom
));
479 one
= isl_aff_zero_on_domain(ls
);
480 one
= isl_aff_add_constant_si(one
, 1);
481 bound
= isl_pw_aff_add(bound
, isl_pw_aff_alloc(dom
, one
));
482 bound
= isl_pw_aff_gist(bound
, isl_set_copy(prog
->context
));
485 if (!isl_pw_aff_is_cst(bound
))
489 collect_references(prog
, info
);
498 /* Remove independence from the order constraints "order" on array "array".
499 * Since the pairs of iterations in the filter relation of an independence
500 * are guaranteed to be completely independent by the user, there is
501 * no need to ensure that live ranges are ordered along thong pairs.
502 * We make an exception for local variables, though, as the independence
503 * guarantee does not apply to those.
505 * The order constraints are used in two places.
506 * Those on scalars are used in check_scalar_live_ranges to check if
507 * we need to force the scalar to be private. Any non-local scalar
508 * should not be forced scalar if it only appears in independent loops.
509 * Those on non-scalars are added to the coincidence constraints
510 * in compute_schedule because we do not support any array expansion.
511 * Accesses to non-local arrays should not prevent a loop from being
512 * considered coincident so we should indeed remove those constraints
513 * from the order constraints.
515 static __isl_give isl_union_map
*remove_independences(struct gpu_prog
*prog
,
516 struct gpu_array_info
*array
, __isl_take isl_union_map
*order
)
520 for (i
= 0; i
< prog
->scop
->pet
->n_independence
; ++i
) {
521 struct pet_independence
*pi
= prog
->scop
->pet
->independences
[i
];
522 if (isl_union_set_contains(pi
->local
, array
->space
))
525 order
= isl_union_map_subtract(order
,
526 isl_union_map_copy(pi
->filter
));
532 /* For each array in "prog", store the (untagged) order dependences
533 * derived from the array in array->dep_order.
534 * In particular, consider all references that access the given array
535 * and take the order dependences that have one of these references
536 * as source. (Since an order dependence relates two references to
537 * the same array, the target of these order dependences will also
538 * be one of these references.)
539 * Additionally, store the union of these array->dep_order relations
540 * for all non-scalar arrays in prog->array_order.
542 void collect_order_dependences(struct gpu_prog
*prog
)
546 isl_union_map
*accesses
;
548 space
= isl_union_map_get_space(prog
->read
);
549 prog
->array_order
= isl_union_map_empty(space
);
551 accesses
= isl_union_map_copy(prog
->scop
->tagged_reads
);
552 accesses
= isl_union_map_union(accesses
,
553 isl_union_map_copy(prog
->scop
->tagged_may_writes
));
554 accesses
= isl_union_map_universe(accesses
);
555 accesses
= isl_union_map_apply_range(accesses
,
556 isl_union_map_copy(prog
->to_outer
));
558 for (i
= 0; i
< prog
->n_array
; ++i
) {
559 struct gpu_array_info
*array
= &prog
->array
[i
];
562 isl_union_map
*order
;
564 set
= isl_set_universe(isl_space_copy(array
->space
));
565 uset
= isl_union_set_from_set(set
);
566 uset
= isl_union_map_domain(
567 isl_union_map_intersect_range(isl_union_map_copy(accesses
),
569 order
= isl_union_map_copy(prog
->scop
->tagged_dep_order
);
570 order
= isl_union_map_intersect_domain(order
, uset
);
571 order
= isl_union_map_zip(order
);
572 order
= isl_union_set_unwrap(isl_union_map_domain(order
));
573 order
= remove_independences(prog
, array
, order
);
574 array
->dep_order
= order
;
576 if (gpu_array_is_scalar(array
))
579 prog
->array_order
= isl_union_map_union(prog
->array_order
,
580 isl_union_map_copy(array
->dep_order
));
583 isl_union_map_free(accesses
);
586 /* Construct a gpu_array_info for each array possibly accessed by "prog" and
587 * collect them in prog->array.
589 * If there are any member accesses involved, then they are first mapped
590 * to the outer arrays of structs.
592 * If we are allowing live range reordering, then also set
593 * the dep_order field. Otherwise leave it NULL.
595 static int collect_array_info(struct gpu_prog
*prog
)
598 isl_union_set
*arrays
;
600 arrays
= isl_union_map_range(isl_union_map_copy(prog
->read
));
601 arrays
= isl_union_set_union(arrays
,
602 isl_union_map_range(isl_union_map_copy(prog
->may_write
)));
604 arrays
= isl_union_set_apply(arrays
,
605 isl_union_map_copy(prog
->to_outer
));
607 arrays
= isl_union_set_coalesce(arrays
);
609 prog
->n_array
= isl_union_set_n_set(arrays
);
610 prog
->array
= isl_calloc_array(prog
->ctx
,
611 struct gpu_array_info
, prog
->n_array
);
614 r
= isl_union_set_foreach_set(arrays
, &extract_array_info
, prog
);
615 isl_union_set_free(arrays
);
617 if (prog
->scop
->options
->live_range_reordering
)
618 collect_order_dependences(prog
);
623 static void free_array_info(struct gpu_prog
*prog
)
627 for (i
= 0; i
< prog
->n_array
; ++i
) {
628 int n_index
= prog
->array
[i
].n_index
;
629 free(prog
->array
[i
].type
);
630 free(prog
->array
[i
].name
);
631 for (j
= 0; j
< n_index
; ++j
)
632 isl_pw_aff_free(prog
->array
[i
].bound
[j
]);
633 isl_space_free(prog
->array
[i
].space
);
634 isl_set_free(prog
->array
[i
].extent
);
635 free(prog
->array
[i
].bound
);
636 free(prog
->array
[i
].refs
);
637 isl_union_map_free(prog
->array
[i
].dep_order
);
642 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
643 * as an array or through a pointer reference, but as a single data element.
644 * At the moment, scalars are represented as zero-dimensional arrays.
645 * A zero-dimensional array containing structures is not considered
648 int gpu_array_is_scalar(struct gpu_array_info
*array
)
650 return !array
->has_compound_element
&& array
->n_index
== 0;
653 /* Is "array" a read-only scalar?
655 int gpu_array_is_read_only_scalar(struct gpu_array_info
*array
)
657 return array
->read_only_scalar
;
660 /* Return the set of parameter values for which the array has a positive
661 * size in all dimensions.
662 * If the sizes are only valid for some parameter values, then those
663 * constraints are also taken into account.
665 __isl_give isl_set
*gpu_array_positive_size_guard(struct gpu_array_info
*array
)
671 space
= isl_space_params(isl_space_copy(array
->space
));
672 guard
= isl_set_universe(space
);
674 for (i
= 0; i
< array
->n_index
; ++i
) {
676 isl_set
*guard_i
, *zero
;
678 bound
= isl_pw_aff_copy(array
->bound
[i
]);
679 guard_i
= isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound
));
680 zero
= isl_pw_aff_zero_set(bound
);
681 guard_i
= isl_set_subtract(guard_i
, zero
);
682 guard
= isl_set_intersect(guard
, guard_i
);
688 /* Internal data structure for extract_size_of_type.
689 * "type" specifies the name of the space that we want to extract.
690 * "res" is used to store the subset of that space.
692 struct ppcg_extract_size_data
{
697 /* This function is called for each set in a union_set.
698 * If the name of the set matches data->type, we store the
701 static int extract_size_of_type(__isl_take isl_set
*size
, void *user
)
703 struct ppcg_extract_size_data
*data
= user
;
706 name
= isl_set_get_tuple_name(size
);
707 if (name
&& !strcmp(name
, data
->type
)) {
716 /* Given a union map { kernel[i] -> *[...] },
717 * return the range in the space called "type" for the kernel with
718 * sequence number "id".
720 static __isl_give isl_set
*extract_sizes(__isl_keep isl_union_map
*sizes
,
721 const char *type
, int id
)
725 isl_union_set
*local_sizes
;
726 struct ppcg_extract_size_data data
= { type
, NULL
};
731 space
= isl_union_map_get_space(sizes
);
732 space
= isl_space_set_from_params(space
);
733 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
734 space
= isl_space_set_tuple_name(space
, isl_dim_set
, "kernel");
735 dom
= isl_set_universe(space
);
736 dom
= isl_set_fix_si(dom
, isl_dim_set
, 0, id
);
738 local_sizes
= isl_union_set_apply(isl_union_set_from_set(dom
),
739 isl_union_map_copy(sizes
));
740 isl_union_set_foreach_set(local_sizes
, &extract_size_of_type
, &data
);
741 isl_union_set_free(local_sizes
);
745 /* Given a singleton set, extract the first (at most *len) elements
746 * of the single integer tuple into *sizes and update *len if needed.
748 static void read_sizes_from_set(__isl_take isl_set
*set
, int *sizes
, int *len
)
756 dim
= isl_set_dim(set
, isl_dim_set
);
760 for (i
= 0; i
< *len
; ++i
) {
763 v
= isl_set_plain_get_val_if_fixed(set
, isl_dim_set
, i
);
766 sizes
[i
] = isl_val_get_num_si(v
);
773 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
774 * if the option debug->dump_sizes is set.
776 static void set_used_sizes(struct gpu_gen
*gen
, const char *type
, int id
,
783 if (!gen
->options
->debug
->dump_sizes
)
786 space
= isl_union_map_get_space(gen
->used_sizes
);
787 space
= isl_space_set_from_params(space
);
788 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
789 space
= isl_space_set_tuple_name(space
, isl_dim_set
, "kernel");
790 space
= isl_space_from_domain(space
);
791 space
= isl_space_add_dims(space
, isl_dim_out
, len
);
792 space
= isl_space_set_tuple_name(space
, isl_dim_out
, type
);
794 map
= isl_map_universe(space
);
795 map
= isl_map_fix_si(map
, isl_dim_in
, 0, id
);
796 for (i
= 0; i
< len
; ++i
)
797 map
= isl_map_fix_si(map
, isl_dim_out
, i
, sizes
[i
]);
799 gen
->used_sizes
= isl_union_map_add_map(gen
->used_sizes
, map
);
802 /* Extract user specified "tile" sizes from the "sizes" command line option,
803 * defaulting to option->tile_size in each dimension.
804 * Add the effectively used sizes to gen->used_sizes.
806 static void read_tile_sizes(struct gpu_gen
*gen
)
811 gen
->tile_size
= isl_alloc_array(gen
->ctx
, int, gen
->tile_len
);
812 assert(gen
->tile_size
);
813 for (n
= 0; n
< gen
->tile_len
; ++n
)
814 gen
->tile_size
[n
] = gen
->options
->tile_size
;
816 size
= extract_sizes(gen
->sizes
, "tile", gen
->kernel_id
);
817 read_sizes_from_set(size
, gen
->tile_size
, &gen
->tile_len
);
818 set_used_sizes(gen
, "tile", gen
->kernel_id
,
819 gen
->tile_size
, gen
->tile_len
);
821 if (gen
->n_parallel
> gen
->tile_len
)
822 gen
->n_parallel
= gen
->tile_len
;
825 /* Extract user specified "block" sizes from the "sizes" command line option,
826 * after filling in some potentially useful defaults.
827 * Add the effectively used sizes to gen->used_sizes.
829 static void read_block_sizes(struct gpu_gen
*gen
)
835 gen
->n_block
= (n
<= 3) ? n
: 3;
836 switch (gen
->n_block
) {
838 gen
->block_dim
[0] = 512;
841 gen
->block_dim
[0] = 32;
842 gen
->block_dim
[1] = 16;
845 gen
->block_dim
[0] = 32;
846 gen
->block_dim
[1] = 4;
847 gen
->block_dim
[2] = 4;
851 size
= extract_sizes(gen
->sizes
, "block", gen
->kernel_id
);
852 read_sizes_from_set(size
, gen
->block_dim
, &gen
->n_block
);
853 set_used_sizes(gen
, "block", gen
->kernel_id
,
854 gen
->block_dim
, gen
->n_block
);
857 /* Extract user specified "grid" sizes from the "sizes" command line option,
858 * after filling in some potentially useful defaults.
859 * Add the effectively used sizes to gen->used_sizes.
861 static void read_grid_sizes(struct gpu_gen
*gen
)
863 int n
= gen
->n_parallel
;
866 gen
->n_grid
= (n
<= 2) ? n
: 2;
867 switch (gen
->n_grid
) {
869 gen
->grid_dim
[0] = 32768;
872 gen
->grid_dim
[0] = 256;
873 gen
->grid_dim
[1] = 256;
877 size
= extract_sizes(gen
->sizes
, "grid", gen
->kernel_id
);
878 read_sizes_from_set(size
, gen
->grid_dim
, &gen
->n_grid
);
879 set_used_sizes(gen
, "grid", gen
->kernel_id
, gen
->grid_dim
, gen
->n_grid
);
882 /* Extract user specified sizes from the "sizes" command line option
883 * after filling in some potentially useful defaults.
885 static void read_sizes(struct gpu_gen
*gen
)
887 read_tile_sizes(gen
);
888 read_block_sizes(gen
);
889 read_grid_sizes(gen
);
892 static void *free_stmts(struct gpu_stmt
*stmts
, int n
)
899 for (i
= 0; i
< n
; ++i
) {
900 struct gpu_stmt_access
*access
, *next
;
902 for (access
= stmts
[i
].accesses
; access
; access
= next
) {
904 isl_id_free(access
->ref_id
);
905 isl_map_free(access
->access
);
906 isl_map_free(access
->tagged_access
);
910 isl_id_free(stmts
[i
].id
);
917 /* Construct a map from a domain of dimensionality "len"
918 * to a domain of dimensionality "len" + "tile_len" that tiles
919 * the "tile_len" coordinates starting at "first".
920 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
921 * "dim" prescribes the parameters.
923 static __isl_give isl_map
*tile(__isl_take isl_space
*dim
, int len
,
924 int first
, int tile_len
, int *tile_size
)
931 dim
= isl_space_add_dims(dim
, isl_dim_in
, len
);
932 dim
= isl_space_add_dims(dim
, isl_dim_out
, len
+ tile_len
);
933 bmap
= isl_basic_map_universe(isl_space_copy(dim
));
934 ls
= isl_local_space_from_space(dim
);
936 for (i
= 0; i
< len
- tile_len
; ++i
) {
937 int j
= i
< first
? i
: i
+ tile_len
;
938 int k
= i
< first
? i
: i
+ 2 * tile_len
;
940 c
= isl_equality_alloc(isl_local_space_copy(ls
));
941 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, j
, -1);
942 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, k
, 1);
943 bmap
= isl_basic_map_add_constraint(bmap
, c
);
946 for (i
= 0; i
< tile_len
; ++i
) {
947 c
= isl_equality_alloc(isl_local_space_copy(ls
));
948 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
,
950 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
951 first
+ i
, tile_size
[i
]);
952 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
953 first
+ i
+ tile_len
, 1);
954 bmap
= isl_basic_map_add_constraint(bmap
, c
);
956 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
957 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
958 first
+ i
+ tile_len
, 1);
959 bmap
= isl_basic_map_add_constraint(bmap
, c
);
961 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
962 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
963 first
+ i
+ tile_len
, -1);
964 c
= isl_constraint_set_constant_si(c
, tile_size
[i
] - 1);
965 bmap
= isl_basic_map_add_constraint(bmap
, c
);
968 isl_local_space_free(ls
);
970 return isl_map_from_basic_map(bmap
);
973 /* Construct a map from a domain of dimensionality "len"
974 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
975 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
976 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
977 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
978 * that are projected out at the end.
979 * "dim" prescribes the parameters.
981 static __isl_give isl_map
*wrap(__isl_take isl_space
*dim
, int len
,
982 int first
, int wrap_len
, int *wrap_size
)
989 dim
= isl_space_add_dims(dim
, isl_dim_in
, len
);
990 dim
= isl_space_add_dims(dim
, isl_dim_out
, len
+ 2 * wrap_len
);
991 bmap
= isl_basic_map_universe(isl_space_copy(dim
));
992 ls
= isl_local_space_from_space(dim
);
994 for (i
= 0; i
< len
; ++i
) {
995 int k
= i
< first
+ wrap_len
? i
: i
+ 2 * wrap_len
;
997 c
= isl_equality_alloc(isl_local_space_copy(ls
));
998 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, -1);
999 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, k
, 1);
1000 bmap
= isl_basic_map_add_constraint(bmap
, c
);
1003 for (i
= 0; i
< wrap_len
; ++i
) {
1004 c
= isl_equality_alloc(isl_local_space_copy(ls
));
1005 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
1007 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
1008 first
+ wrap_len
+ i
, 1);
1009 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
1010 first
+ 2 * wrap_len
+ i
, wrap_size
[i
]);
1011 bmap
= isl_basic_map_add_constraint(bmap
, c
);
1013 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
1014 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
1015 first
+ wrap_len
+ i
, 1);
1016 bmap
= isl_basic_map_add_constraint(bmap
, c
);
1018 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
1019 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
,
1020 first
+ wrap_len
+ i
, -1);
1021 c
= isl_constraint_set_constant_si(c
, wrap_size
[i
] - 1);
1022 bmap
= isl_basic_map_add_constraint(bmap
, c
);
1025 isl_local_space_free(ls
);
1027 bmap
= isl_basic_map_project_out(bmap
, isl_dim_out
,
1028 first
+ 2 * wrap_len
, wrap_len
);
1030 return isl_map_from_basic_map(bmap
);
1033 /* Add "n" parameters named prefix%d.
1035 static __isl_give isl_set
*add_params( __isl_take isl_set
*set
,
1036 int n
, const char *prefix
)
1042 nparam
= isl_set_dim(set
, isl_dim_param
);
1043 set
= isl_set_add_dims(set
, isl_dim_param
, n
);
1045 for (i
= 0; i
< n
; ++i
) {
1046 snprintf(name
, sizeof(name
), "%s%d", prefix
, i
);
1047 set
= isl_set_set_dim_name(set
, isl_dim_param
,
1054 /* Equate the "n" dimensions of "set" starting at "first" to
1055 * freshly created parameters named prefix%d.
1057 static __isl_give isl_set
*parametrize(__isl_take isl_set
*set
,
1058 int first
, int n
, const char *prefix
)
1063 nparam
= isl_set_dim(set
, isl_dim_param
);
1065 set
= add_params(set
, n
, prefix
);
1067 for (i
= 0; i
< n
; ++i
)
1068 set
= isl_set_equate(set
, isl_dim_param
, nparam
+ i
,
1069 isl_dim_set
, first
+ i
);
1074 /* Given a parameter space "space", create a set of dimension "len"
1075 * of which the "n" dimensions starting at "first" are equated to
1076 * freshly created parameters named prefix%d.
1078 static __isl_give isl_set
*parametrization(__isl_take isl_space
*space
,
1079 int len
, int first
, int n
, const char *prefix
)
1083 space
= isl_space_set_from_params(space
);
1084 space
= isl_space_add_dims(space
, isl_dim_set
, len
);
1085 set
= isl_set_universe(space
);
1087 return parametrize(set
, first
, n
, prefix
);
1090 /* Tile the B loops over the tile sizes and then tile/wrap
1091 * the T1 loops over the blocks.
1093 static __isl_give isl_union_map
*tile_schedule(struct gpu_gen
*gen
,
1094 __isl_take isl_union_map
*sched
)
1097 isl_map
*tiling
, *block_tiling
;
1099 dim
= isl_union_map_get_space(sched
);
1100 tiling
= tile(isl_space_copy(dim
), gen
->untiled_len
,
1101 gen
->tile_first
, gen
->tile_len
, gen
->tile_size
);
1103 if (gen
->options
->wrap
)
1104 block_tiling
= wrap(dim
, gen
->untiled_len
+ gen
->tile_len
,
1105 gen
->tile_first
, gen
->n_grid
, gen
->grid_dim
);
1107 block_tiling
= tile(dim
, gen
->untiled_len
+ gen
->tile_len
,
1108 gen
->tile_first
, gen
->n_grid
, gen
->grid_dim
);
1110 gen
->tiled_len
= gen
->untiled_len
+ gen
->tile_len
+ gen
->n_grid
;
1112 tiling
= isl_map_apply_range(tiling
, block_tiling
);
1114 sched
= isl_union_map_apply_range(sched
,
1115 isl_union_map_from_map(tiling
));
1117 gen
->shared_len
= gen
->tile_first
+ gen
->tile_len
+ gen
->n_grid
;
1122 /* Equate the "T1P" iterators in the tiled schedule "sched"
1123 * to the block dimensions.
1125 static __isl_give isl_union_map
*parametrize_tiled_schedule(
1126 struct gpu_gen
*gen
, __isl_take isl_union_map
*sched
)
1131 dim
= isl_union_map_get_space(sched
);
1132 par
= parametrization(dim
, gen
->tiled_len
,
1133 gen
->tile_first
+ gen
->n_grid
, gen
->n_grid
, "b");
1134 sched
= isl_union_map_intersect_range(sched
,
1135 isl_union_set_from_set(par
));
1140 /* Tile/wrap the P1 loops over the threads.
1142 static __isl_give isl_union_map
*thread_tile_schedule(struct gpu_gen
*gen
,
1143 __isl_take isl_union_map
*sched
)
1149 dim
= isl_union_map_get_space(sched
);
1151 if (gen
->options
->wrap
)
1152 tiling
= wrap(isl_space_copy(dim
), gen
->tiled_len
,
1153 gen
->shared_len
, gen
->n_block
, gen
->block_dim
);
1155 tiling
= tile(isl_space_copy(dim
), gen
->tiled_len
,
1156 gen
->shared_len
, gen
->n_block
, gen
->block_dim
);
1157 gen
->thread_tiled_len
= gen
->tiled_len
+ gen
->n_block
;
1159 sched
= isl_union_map_apply_range(sched
,
1160 isl_union_map_from_map(tiling
));
1162 par
= parametrization(dim
, gen
->thread_tiled_len
,
1163 gen
->tile_first
+ gen
->tile_len
+ gen
->n_grid
+ gen
->n_block
,
1165 sched
= isl_union_map_intersect_range(sched
,
1166 isl_union_set_from_set(par
));
1168 gen
->shared_len
= gen
->tile_first
+ gen
->tile_len
+ gen
->n_grid
;
1173 /* If the user asked for it, scale the shared memory tile loops
1174 * (T1T and T2) of "sched" by gen->tile_size[i].
1175 * If we are not performing "wrapping", then additionally scale the T1P
1176 * loops by gen->grid_dim[i].
1178 static __isl_give isl_union_map
*scale_tile_loops(struct gpu_gen
*gen
,
1179 __isl_take isl_union_map
*sched
)
1183 isl_basic_map
*scale
;
1185 isl_local_space
*ls
;
1187 if (!gen
->options
->scale_tile_loops
)
1190 dim
= isl_union_map_get_space(sched
);
1191 dim
= isl_space_add_dims(dim
, isl_dim_in
, gen
->tiled_len
);
1192 dim
= isl_space_add_dims(dim
, isl_dim_out
, gen
->tiled_len
);
1193 scale
= isl_basic_map_universe(isl_space_copy(dim
));
1194 ls
= isl_local_space_from_space(dim
);
1196 for (i
= 0; i
< gen
->tiled_len
; ++i
) {
1199 if (i
>= gen
->tile_first
&& i
< gen
->tile_first
+ gen
->n_grid
) {
1200 f
= gen
->tile_size
[i
- gen
->tile_first
];
1201 if (!gen
->options
->wrap
)
1202 f
*= gen
->grid_dim
[i
- gen
->tile_first
];
1203 } else if (i
>= gen
->tile_first
+ gen
->n_grid
&&
1204 i
< gen
->tile_first
+ gen
->n_grid
+ gen
->tile_len
) {
1205 f
= gen
->tile_size
[i
- (gen
->tile_first
+ gen
->n_grid
)];
1208 c
= isl_equality_alloc(isl_local_space_copy(ls
));
1209 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, f
);
1210 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
1211 scale
= isl_basic_map_add_constraint(scale
, c
);
1214 isl_local_space_free(ls
);
1216 sched
= isl_union_map_apply_range(sched
,
1217 isl_union_map_from_map(isl_map_from_basic_map(scale
)));
1222 /* If we are not performing "wrapping" and if the user asked for it,
1223 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
1225 static __isl_give isl_union_map
*scale_thread_tile_loops(struct gpu_gen
*gen
,
1226 __isl_take isl_union_map
*sched
)
1230 isl_basic_map
*scale
;
1232 isl_local_space
*ls
;
1234 if (gen
->options
->wrap
)
1236 if (!gen
->options
->scale_tile_loops
)
1239 dim
= isl_union_map_get_space(sched
);
1240 dim
= isl_space_add_dims(dim
, isl_dim_in
, gen
->thread_tiled_len
);
1241 dim
= isl_space_add_dims(dim
, isl_dim_out
, gen
->thread_tiled_len
);
1242 scale
= isl_basic_map_universe(isl_space_copy(dim
));
1243 ls
= isl_local_space_from_space(dim
);
1245 for (i
= 0; i
< gen
->thread_tiled_len
; ++i
) {
1248 if (i
>= gen
->shared_len
&&
1249 i
< gen
->shared_len
+ gen
->n_block
)
1250 f
= gen
->block_dim
[i
- gen
->shared_len
];
1252 c
= isl_equality_alloc(isl_local_space_copy(ls
));
1253 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, f
);
1254 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
1255 scale
= isl_basic_map_add_constraint(scale
, c
);
1258 isl_local_space_free(ls
);
1260 sched
= isl_union_map_apply_range(sched
,
1261 isl_union_map_from_map(isl_map_from_basic_map(scale
)));
1266 /* If we are not performing "wrapping" and if the user asked for it,
1267 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1269 static __isl_give isl_union_map
*scale_access_tile_loops(struct gpu_gen
*gen
,
1270 __isl_take isl_union_map
*sched
, int len
, int first
, int n_tile
)
1274 isl_basic_map
*scale
;
1276 isl_local_space
*ls
;
1278 if (gen
->options
->wrap
)
1280 if (!gen
->options
->scale_tile_loops
)
1283 dim
= isl_union_map_get_space(sched
);
1284 dim
= isl_space_add_dims(dim
, isl_dim_in
, len
);
1285 dim
= isl_space_add_dims(dim
, isl_dim_out
, len
);
1286 scale
= isl_basic_map_universe(isl_space_copy(dim
));
1287 ls
= isl_local_space_from_space(dim
);
1289 for (i
= 0; i
< len
; ++i
) {
1292 if (i
>= first
&& i
< first
+ n_tile
)
1293 f
= gen
->kernel
->block_dim
[i
- first
];
1295 c
= isl_equality_alloc(isl_local_space_copy(ls
));
1296 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, f
);
1297 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
1298 scale
= isl_basic_map_add_constraint(scale
, c
);
1301 isl_local_space_free(ls
);
1303 sched
= isl_union_map_apply_range(sched
,
1304 isl_union_map_from_map(isl_map_from_basic_map(scale
)));
1309 /* Add "len" parameters p[i] called prefix%d,
1310 * with bounds to 0 <= p[i] < size[i].
1312 __isl_give isl_set
*add_bounded_parameters(__isl_take isl_set
*set
,
1313 int len
, int *size
, const char *prefix
)
1318 isl_basic_set
*bset
;
1320 isl_local_space
*ls
;
1323 nparam
= isl_set_dim(set
, isl_dim_param
);
1324 set
= isl_set_add_dims(set
, isl_dim_param
, len
);
1326 for (i
= 0; i
< len
; ++i
) {
1327 snprintf(name
, sizeof(name
), "%s%d", prefix
, i
);
1328 set
= isl_set_set_dim_name(set
, isl_dim_param
,
1332 dim
= isl_set_get_space(set
);
1333 bset
= isl_basic_set_universe(isl_space_copy(dim
));
1334 ls
= isl_local_space_from_space(dim
);
1336 for (i
= 0; i
< len
; ++i
) {
1337 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
1338 c
= isl_constraint_set_coefficient_si(c
, isl_dim_param
,
1340 bset
= isl_basic_set_add_constraint(bset
, c
);
1342 c
= isl_inequality_alloc(isl_local_space_copy(ls
));
1343 c
= isl_constraint_set_coefficient_si(c
, isl_dim_param
,
1345 c
= isl_constraint_set_constant_si(c
, size
[i
] - 1);
1346 bset
= isl_basic_set_add_constraint(bset
, c
);
1349 isl_local_space_free(ls
);
1351 return isl_set_intersect(set
, isl_set_from_basic_set(bset
));
1354 /* Add "len" parameters p[i] called prefix%d and intersect "set"
1357 * { : 0 <= p[i] < size[i] }
1359 * or an overapproximation.
1361 static __isl_give isl_set
*add_bounded_parameters_dynamic(
1362 __isl_take isl_set
*set
, __isl_keep isl_multi_pw_aff
*size
,
1368 isl_local_space
*ls
;
1371 len
= isl_multi_pw_aff_dim(size
, isl_dim_out
);
1372 nparam
= isl_set_dim(set
, isl_dim_param
);
1373 set
= isl_set_add_dims(set
, isl_dim_param
, len
);
1375 for (i
= 0; i
< len
; ++i
) {
1376 snprintf(name
, sizeof(name
), "%s%d", prefix
, i
);
1377 set
= isl_set_set_dim_name(set
, isl_dim_param
,
1381 space
= isl_space_params(isl_set_get_space(set
));
1382 ls
= isl_local_space_from_space(space
);
1383 for (i
= 0; i
< len
; ++i
) {
1384 isl_pw_aff
*param
, *size_i
, *zero
;
1387 param
= isl_pw_aff_var_on_domain(isl_local_space_copy(ls
),
1388 isl_dim_param
, nparam
+ i
);
1390 size_i
= isl_multi_pw_aff_get_pw_aff(size
, i
);
1391 bound
= isl_pw_aff_lt_set(isl_pw_aff_copy(param
), size_i
);
1392 bound
= isl_set_from_basic_set(isl_set_simple_hull(bound
));
1393 set
= isl_set_intersect_params(set
, bound
);
1395 zero
= isl_pw_aff_zero_on_domain(isl_local_space_copy(ls
));
1396 bound
= isl_pw_aff_ge_set(param
, zero
);
1397 set
= isl_set_intersect_params(set
, bound
);
1399 isl_local_space_free(ls
);
1404 /* Construct a map from an access to group->array to the corresponding
1405 * shared/private memory tile.
1406 * The map is of the form
1408 * { [D[i] -> A[a]] -> T[t] }
1410 * where D represents the initial shared_len dimensions
1411 * of the computed schedule.
1413 static __isl_give isl_map
*shift_access(struct gpu_array_ref_group
*group
)
1415 struct gpu_array_tile
*tile
;
1416 isl_multi_aff
*tiling
;
1418 tile
= group
->private_tile
;
1420 tile
= group
->shared_tile
;
1422 tiling
= isl_multi_aff_copy(tile
->tiling
);
1424 return isl_map_from_multi_aff(tiling
);
1427 /* Does "map" have an obviously fixed value at variable "pos" of "type"?
1429 static int map_plain_is_fixed(isl_map
*map
, enum isl_dim_type type
,
1435 v
= isl_map_plain_get_val_if_fixed(map
, type
, pos
);
1438 fixed
= isl_val_is_int(v
);
1444 /* Given a schedule that iterates over all elements in a piece of an array,
1445 * perform tiling/wrapping over the threads.
1447 * In particular, we tile the final iterators so that the final thread
1448 * dimension runs over the final array dimension.
1449 * However, if those final iterators have only a single iteration,
1450 * we try to tile earlier iterators instead.
1452 static __isl_give isl_map
*tile_access_schedule(struct gpu_gen
*gen
,
1453 __isl_take isl_map
*sched
)
1456 isl_union_map
*usched
;
1459 unsigned nvar
= isl_map_dim(sched
, isl_dim_out
);
1463 n_tile
= gen
->kernel
->n_block
;
1464 if (n_tile
> nvar
) {
1466 sched
= isl_map_insert_dims(sched
,
1467 isl_dim_out
, 0, n_tile
- nvar
);
1468 for (i
= 0; i
< n_tile
- nvar
; ++i
)
1469 sched
= isl_map_fix_si(sched
, isl_dim_out
, i
, 0);
1473 first
= nvar
- n_tile
;
1475 for (; first
> 0; first
--)
1476 if (!map_plain_is_fixed(sched
, isl_dim_out
, first
+ n_tile
- 1))
1479 dim
= isl_map_get_space(sched
);
1480 dim
= isl_space_params(dim
);
1481 if (gen
->options
->wrap
)
1482 tiling
= wrap(isl_space_copy(dim
), nvar
, first
,
1483 n_tile
, gen
->kernel
->block_dim
);
1485 tiling
= tile(isl_space_copy(dim
), nvar
, first
,
1486 n_tile
, gen
->kernel
->block_dim
);
1487 sched
= isl_map_apply_range(sched
, tiling
);
1489 par
= parametrization(dim
, nvar
+ n_tile
, first
+ n_tile
, n_tile
, "t");
1490 sched
= isl_map_intersect_range(sched
, par
);
1492 usched
= isl_union_map_from_map(sched
);
1493 usched
= scale_access_tile_loops(gen
, usched
, nvar
+ n_tile
,
1495 sched
= isl_map_from_union_map(usched
);
1500 /* Return the union of all read (read = 1) and/or write (write = 1)
1501 * access relations in the group.
1503 static __isl_give isl_union_map
*group_access_relation(
1504 struct gpu_array_ref_group
*group
, int read
, int write
)
1507 isl_union_map
*access
;
1509 access
= isl_union_map_empty(isl_map_get_space(group
->access
));
1510 for (i
= 0; i
< group
->n_ref
; ++i
) {
1513 if (!((read
&& group
->refs
[i
]->read
) ||
1514 (write
&& group
->refs
[i
]->write
)))
1516 map_i
= isl_map_copy(group
->refs
[i
]->access
);
1517 access
= isl_union_map_union(access
,
1518 isl_union_map_from_map(map_i
));
1524 /* Return the union of all tagged access relations in the group.
1526 static __isl_give isl_union_map
*group_tagged_access_relation(
1527 struct gpu_array_ref_group
*group
)
1530 isl_union_map
*access
;
1532 access
= isl_union_map_empty(isl_map_get_space(group
->access
));
1533 for (i
= 0; i
< group
->n_ref
; ++i
) {
1536 map_i
= isl_map_copy(group
->refs
[i
]->tagged_access
);
1537 access
= isl_union_map_union(access
,
1538 isl_union_map_from_map(map_i
));
1544 /* Return the extent of "array", recomputed from the bounds.
1545 * The recomputed extent may be simpler than the original extent.
1547 static __isl_give isl_set
*array_extent(struct gpu_array_info
*array
)
1552 isl_local_space
*ls
;
1555 id
= isl_set_get_tuple_id(array
->extent
);
1556 space
= isl_set_get_space(array
->extent
);
1557 extent
= isl_set_universe(isl_space_copy(space
));
1558 ls
= isl_local_space_from_space(space
);
1559 for (i
= 0; i
< array
->n_index
; ++i
) {
1565 extent
= isl_set_lower_bound_si(extent
, isl_dim_set
, i
, 0);
1567 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
1569 index
= isl_pw_aff_from_aff(aff
);
1570 bound
= isl_pw_aff_copy(array
->bound
[i
]);
1571 bound
= isl_pw_aff_from_range(bound
);
1572 bound
= isl_pw_aff_add_dims(bound
, isl_dim_in
, array
->n_index
);
1573 bound
= isl_pw_aff_set_tuple_id(bound
, isl_dim_in
,
1575 lt
= isl_pw_aff_lt_set(index
, bound
);
1576 extent
= isl_set_intersect(extent
, lt
);
1578 isl_local_space_free(ls
);
1584 /* Return a map from the first shared_len dimensions of the computed
1585 * schedule to the array tile in
1586 * global memory that corresponds to the shared memory copy.
1588 * In particular, return a map
1594 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
1598 * 0 <= a <= array_size - 1 (2)
1600 * Note that if some stride has been detected (i.e., when
1601 * group->shared_tile->bound[i].shift is set), then a in (1) refers
1602 * to the shifted and scaled down version.
1604 * Constraints (1) are obtained by mapping the size constraints on the
1605 * shared/private memory tile back to the access relation.
1606 * Constraints (2) are obtained from the (recomputed) extent.
1608 static __isl_give isl_map
*group_tile(struct gpu_array_ref_group
*group
)
1611 int n_index
= group
->array
->n_index
;
1617 space
= isl_multi_aff_get_space(group
->shared_tile
->tiling
);
1618 space
= isl_space_range(space
);
1619 local
= isl_set_universe(space
);
1620 for (i
= 0; i
< n_index
; ++i
) {
1623 local
= isl_set_lower_bound_si(local
, isl_dim_set
, i
, 0);
1624 bound
= isl_val_copy(group
->shared_tile
->bound
[i
].size
);
1625 bound
= isl_val_sub_ui(bound
, 1);
1626 local
= isl_set_upper_bound_val(local
, isl_dim_set
, i
, bound
);
1628 local
= isl_set_preimage_multi_aff(local
,
1629 isl_multi_aff_copy(group
->shared_tile
->tiling
));
1630 tile
= isl_set_unwrap(local
);
1631 extent
= array_extent(group
->array
);
1632 tile
= isl_map_intersect_range(tile
, extent
);
1637 /* Given a mapping "iterator_map" from the AST schedule to a domain,
1638 * return the corresponding mapping from the AST schedule to
1639 * to the first shared_len dimensions of the schedule computed by PPCG.
1641 static __isl_give isl_pw_multi_aff
*compute_sched_to_shared(struct gpu_gen
*gen
,
1642 __isl_take isl_pw_multi_aff
*iterator_map
)
1644 isl_union_map
*umap
;
1646 isl_map
*map
, *sched
;;
1648 space
= isl_space_range(isl_pw_multi_aff_get_space(iterator_map
));
1649 space
= isl_space_from_domain(space
);
1650 space
= isl_space_add_dims(space
, isl_dim_out
, gen
->shared_len
);
1652 umap
= isl_union_map_copy(gen
->shared_sched
);
1653 umap
= isl_union_map_apply_range(umap
,
1654 isl_union_map_copy(gen
->shared_proj
));
1655 map
= isl_union_map_extract_map(umap
, space
);
1656 isl_union_map_free(umap
);
1658 sched
= isl_map_preimage_domain_pw_multi_aff(map
, iterator_map
);
1659 sched
= isl_map_detect_equalities(sched
);
1661 return isl_pw_multi_aff_from_map(sched
);
1664 /* Set unroll[j] if the input dimension j is involved in
1665 * the index expression represented by ma.
1667 static int check_unroll(__isl_take isl_set
*set
, __isl_take isl_multi_aff
*ma
,
1671 int n_in
= isl_multi_aff_dim(ma
, isl_dim_in
);
1672 int n_out
= isl_multi_aff_dim(ma
, isl_dim_out
);
1675 for (i
= 0; i
< n_out
; ++i
) {
1678 aff
= isl_multi_aff_get_aff(ma
, i
);
1679 for (j
= 0; j
< n_in
; ++j
)
1680 if (isl_aff_involves_dims(aff
, isl_dim_in
, j
, 1))
1686 isl_multi_aff_free(ma
);
1690 /* Given an array pos mapping input dimensions to the corresponding
1691 * output dimension, construct the corresponding map.
1693 static __isl_give isl_map
*permutation(__isl_take isl_space
*dim
,
1698 isl_basic_map
*bmap
;
1699 isl_local_space
*ls
;
1701 dim
= isl_space_add_dims(dim
, isl_dim_in
, len
);
1702 dim
= isl_space_add_dims(dim
, isl_dim_out
, len
);
1703 bmap
= isl_basic_map_universe(isl_space_copy(dim
));
1704 ls
= isl_local_space_from_space(dim
);
1706 for (i
= 0; i
< len
; ++i
) {
1707 c
= isl_equality_alloc(isl_local_space_copy(ls
));
1708 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
,
1710 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, pos
[i
],
1712 bmap
= isl_basic_map_add_constraint(bmap
, c
);
1714 isl_local_space_free(ls
);
1716 return isl_map_from_basic_map(bmap
);
1719 /* Remove the private tiles from all array reference groups,
1720 * except for the groups of arrays that are marked force_private.
1722 static void remove_private_tiles(struct gpu_gen
*gen
)
1726 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
1727 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
1729 if (array
->force_private
)
1732 for (j
= 0; j
< array
->n_group
; ++j
) {
1733 struct gpu_array_ref_group
*group
= array
->groups
[j
];
1735 group
->private_tile
= free_tile(group
->private_tile
);
1740 /* Find all loops involved in any of the index expressions for any of
1741 * the private accesses, move them innermost and then mark them as
1742 * requiring unrolling by setting gen->first_unroll.
1743 * The loops involved should all be parallel because of the checks
1744 * we performed in check_private_group_access. Moving them innermost
1745 * is therefore a valid transformation.
1747 * If any of the arrays are marked force_private, however, then
1748 * those loops may not be parallel with respect to the marked arrays.
1749 * If any of the loops would have to be moved innermost for the
1750 * (non forced) private accesses and if there are any force_private
1751 * arrays, then we revert the decision to map the selected arrays
1752 * to private memory. An alternative solution would be to expand
1753 * the force_private arrays.
1755 * Loops up to gen->shared_len are generated before the mapping to
1756 * threads is applied. They should therefore be ignored.
1758 * We compute the hidden equalities of the schedule first
1759 * since we will need them in our calls to isl_pw_multi_aff_from_map
1760 * and because we want to make sure that the same equalities
1761 * are also available to the code generator.
1763 static __isl_give isl_union_map
*interchange_for_unroll(struct gpu_gen
*gen
,
1764 __isl_take isl_union_map
*sched
)
1767 int unroll
[gen
->thread_tiled_len
];
1768 int perm
[gen
->thread_tiled_len
];
1771 int len
= gen
->shared_len
+ gen
->n_parallel
+ gen
->n_block
;
1773 gen
->first_unroll
= -1;
1775 sched
= isl_union_map_detect_equalities(sched
);
1776 for (i
= 0; i
< gen
->thread_tiled_len
; ++i
)
1778 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
1779 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
1781 for (j
= 0; j
< array
->n_group
; ++j
) {
1782 isl_union_map
*access
;
1784 isl_pw_multi_aff
*pma
;
1786 if (!array
->groups
[j
]->private_tile
)
1789 access
= group_access_relation(array
->groups
[j
], 1, 1);
1790 access
= isl_union_map_apply_domain(access
,
1791 isl_union_map_copy(sched
));
1793 acc
= isl_map_from_union_map(access
);
1794 pma
= isl_pw_multi_aff_from_map(acc
);
1795 isl_pw_multi_aff_foreach_piece(pma
,
1796 &check_unroll
, unroll
);
1798 isl_pw_multi_aff_free(pma
);
1802 for (i
= gen
->shared_len
; i
< len
; ++i
)
1809 for (i
= len
; i
< gen
->thread_tiled_len
; ++i
)
1813 if (gen
->any_force_private
) {
1814 remove_private_tiles(gen
);
1819 for (i
= 0; i
< gen
->shared_len
; ++i
)
1821 for (i
= gen
->shared_len
; i
< gen
->thread_tiled_len
; ++i
)
1824 gen
->first_unroll
= j
- gen
->shared_len
;
1825 for (i
= gen
->shared_len
; i
< len
; ++i
)
1829 dim
= isl_union_map_get_space(sched
);
1830 permute
= permutation(dim
, perm
, gen
->thread_tiled_len
);
1831 sched
= isl_union_map_apply_range(sched
,
1832 isl_union_map_from_map(permute
));
1837 /* Given a constraint
1839 * a(p,i) + j = g f(e)
1841 * or -a(p,i) - j = g f(e) if sign < 0,
1842 * store a(p,i) in bound->shift and g (stride) in bound->stride.
1843 * a(p,i) is assumed to be an expression in only the parameters
1844 * and the input dimensions.
1846 static void extract_stride(__isl_keep isl_constraint
*c
,
1847 struct gpu_array_bound
*bound
, __isl_keep isl_val
*stride
, int sign
)
1856 isl_val_free(bound
->stride
);
1857 bound
->stride
= isl_val_copy(stride
);
1859 space
= isl_constraint_get_space(c
);
1860 space
= isl_space_domain(space
);
1862 nparam
= isl_space_dim(space
, isl_dim_param
);
1863 nvar
= isl_space_dim(space
, isl_dim_set
);
1865 v
= isl_constraint_get_constant_val(c
);
1868 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
1869 aff
= isl_aff_set_constant_val(aff
, v
);
1871 for (i
= 0; i
< nparam
; ++i
) {
1872 if (!isl_constraint_involves_dims(c
, isl_dim_param
, i
, 1))
1874 v
= isl_constraint_get_coefficient_val(c
, isl_dim_param
, i
);
1877 aff
= isl_aff_add_coefficient_val(aff
, isl_dim_param
, i
, v
);
1880 for (i
= 0; i
< nvar
; ++i
) {
1881 if (!isl_constraint_involves_dims(c
, isl_dim_in
, i
, 1))
1883 v
= isl_constraint_get_coefficient_val(c
, isl_dim_in
, i
);
1886 aff
= isl_aff_add_coefficient_val(aff
, isl_dim_in
, i
, v
);
1892 /* Given an equality constraint of a map with a single output dimension j,
1893 * check if the constraint is of the form
1895 * a(p,i) + j = g f(e)
1897 * with a(p,i) an expression in the parameters and input dimensions
1898 * and f(e) an expression in the existentially quantified variables.
1899 * If so, and if g is larger than any such g from a previously considered
1900 * constraint, then call extract_stride to record the stride information
1903 static int check_stride_constraint(__isl_take isl_constraint
*c
, void *user
)
1909 struct gpu_array_bound
*bound
= user
;
1911 ctx
= isl_constraint_get_ctx(c
);
1912 n_div
= isl_constraint_dim(c
, isl_dim_div
);
1913 v
= isl_constraint_get_coefficient_val(c
, isl_dim_out
, 0);
1915 if (n_div
&& (isl_val_is_one(v
) || isl_val_is_negone(v
))) {
1916 int s
= isl_val_sgn(v
);
1917 isl_val
*stride
= isl_val_zero(ctx
);
1920 for (i
= 0; i
< n_div
; ++i
) {
1921 v
= isl_constraint_get_coefficient_val(c
,
1923 stride
= isl_val_gcd(stride
, v
);
1925 if (!isl_val_is_zero(stride
) &&
1926 isl_val_gt(stride
, bound
->stride
))
1927 extract_stride(c
, bound
, stride
, s
);
1929 isl_val_free(stride
);
1933 isl_constraint_free(c
);
1937 /* Given contraints on an array index i, check if we can find
1938 * a shift a(p) and a stride g such that
1940 * a(p) + i = 0 mod g
1942 * If so, record the information in bound and apply the mapping
1943 * i -> (i + a(p))/g to the array index in bounds and return
1944 * the new constraints.
1945 * If not, simply return the original constraints.
1947 * If bounds is a subset of the space
1951 * then the bound recorded in bound->shift is of the form
1955 * with s(D) equal to a(p) above.
1956 * The mapping recorded in bound->shift_map is of the form
1958 * [D -> i] -> [D -> (i + S(D))/g]
1960 * This mapping is computed as follows.
1961 * We first introduce "i" in the domain through precomposition
1962 * with [D -> i] -> D obtaining
1966 * Adding [D -> i] -> i produces
1968 * [D -> i] -> i + s(D)
1970 * and the domain product with [D -> i] -> D yields
1972 * [D -> i] -> [D -> i + s(D)]
1974 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
1976 static __isl_give isl_basic_map
*check_stride(struct gpu_array_bound
*bound
,
1977 __isl_take isl_basic_map
*bounds
)
1980 isl_basic_map
*hull
;
1981 isl_basic_map
*shift
, *id
, *bmap
, *scale
;
1982 isl_basic_set
*bset
;
1985 bound
->stride
= NULL
;
1987 hull
= isl_basic_map_affine_hull(isl_basic_map_copy(bounds
));
1989 isl_basic_map_foreach_constraint(hull
, &check_stride_constraint
, bound
);
1991 isl_basic_map_free(hull
);
1996 shift
= isl_basic_map_from_aff(isl_aff_copy(bound
->shift
));
1997 space
= isl_basic_map_get_space(bounds
);
1998 bmap
= isl_basic_map_domain_map(isl_basic_map_universe(space
));
1999 shift
= isl_basic_map_apply_range(bmap
, shift
);
2000 space
= isl_basic_map_get_space(bounds
);
2001 id
= isl_basic_map_range_map(isl_basic_map_universe(space
));
2002 shift
= isl_basic_map_sum(id
, shift
);
2003 space
= isl_basic_map_get_space(bounds
);
2004 id
= isl_basic_map_domain_map(isl_basic_map_universe(space
));
2005 shift
= isl_basic_map_range_product(id
, shift
);
2007 space
= isl_space_domain(isl_basic_map_get_space(bounds
));
2008 id
= isl_basic_map_identity(isl_space_map_from_set(space
));
2009 space
= isl_space_range(isl_basic_map_get_space(bounds
));
2010 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
2011 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, 0, 1);
2012 aff
= isl_aff_scale_down_val(aff
, isl_val_copy(bound
->stride
));
2013 scale
= isl_basic_map_from_aff(aff
);
2014 scale
= isl_basic_map_product(id
, scale
);
2016 bound
->shift_map
= isl_basic_map_apply_range(shift
, scale
);
2017 bmap
= isl_basic_map_copy(bound
->shift_map
);
2018 bset
= isl_basic_set_apply(isl_basic_map_wrap(bounds
), bmap
);
2019 bounds
= isl_basic_set_unwrap(bset
);
2024 /* Data used in compute_array_dim_size and compute_size_in_direction.
2026 * pos is the position of the variable representing the array index,
2027 * i.e., the variable for which want to compute the size. This variable
2028 * is also the last variable in the set.
2030 struct gpu_size_info
{
2031 isl_basic_set
*bset
;
2032 struct gpu_array_bound
*bound
;
2036 /* Given a constraint from the basic set describing the bounds on
2037 * an array index, check if it is a lower bound, say m i >= b(x), and,
2038 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
2039 * upper bound. If so, and if this bound is smaller than any bound
2040 * derived from earlier constraints, set the size to this bound on
2041 * the expression and the lower bound to ceil(b(x)/m).
2043 static int compute_size_in_direction(__isl_take isl_constraint
*c
, void *user
)
2045 struct gpu_size_info
*size
= user
;
2052 nparam
= isl_basic_set_dim(size
->bset
, isl_dim_param
);
2053 n_div
= isl_constraint_dim(c
, isl_dim_div
);
2055 if (isl_constraint_involves_dims(c
, isl_dim_div
, 0, n_div
) ||
2056 !isl_constraint_is_lower_bound(c
, isl_dim_set
, size
->pos
)) {
2057 isl_constraint_free(c
);
2061 aff
= isl_constraint_get_bound(c
, isl_dim_set
, size
->pos
);
2062 aff
= isl_aff_ceil(aff
);
2064 lb
= isl_aff_copy(aff
);
2066 aff
= isl_aff_neg(aff
);
2067 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, size
->pos
, 1);
2069 v
= isl_basic_set_max_val(size
->bset
, aff
);
2072 if (isl_val_is_int(v
)) {
2073 v
= isl_val_add_ui(v
, 1);
2074 if (!size
->bound
->size
|| isl_val_lt(v
, size
->bound
->size
)) {
2075 isl_val_free(size
->bound
->size
);
2076 size
->bound
->size
= isl_val_copy(v
);
2077 lb
= isl_aff_drop_dims(lb
, isl_dim_in
, size
->pos
, 1);
2078 isl_aff_free(size
->bound
->lb
);
2079 size
->bound
->lb
= isl_aff_copy(lb
);
2085 isl_constraint_free(c
);
2090 /* Given a basic map "bounds" that maps parameters and input dimensions
2091 * to a single output dimension, look for an expression in the parameters
2092 * and input dimensions such that the range of the output dimension shifted
2093 * by this expression is a constant.
2095 * In particular, we currently only consider lower bounds on the output
2096 * dimension as candidate expressions.
2098 static int compute_array_dim_size(struct gpu_array_bound
*bound
,
2099 __isl_take isl_basic_map
*bounds
)
2101 struct gpu_size_info size
;
2103 bounds
= isl_basic_map_detect_equalities(bounds
);
2104 bounds
= check_stride(bound
, bounds
);
2110 size
.pos
= isl_basic_map_dim(bounds
, isl_dim_in
);
2111 size
.bset
= isl_basic_map_wrap(bounds
);
2112 size
.bset
= isl_basic_set_flatten(size
.bset
);
2113 size
.bset
= isl_set_simple_hull(isl_basic_set_compute_divs(size
.bset
));
2114 isl_basic_set_foreach_constraint(size
.bset
, &compute_size_in_direction
,
2116 isl_basic_set_free(size
.bset
);
2118 return bound
->size
? 0 : -1;
2121 /* Check if we can find a memory tile for the given array
2122 * based on the given accesses, and if so, put the results in "tile".
2124 * We project the accesses on each index in turn and look for a parametric
2125 * offset such that the size is constant.
2127 static int can_tile(__isl_keep isl_map
*access
, struct gpu_array_tile
*tile
)
2131 for (i
= 0; i
< tile
->n
; ++i
) {
2133 isl_basic_map
*hull
;
2135 access_i
= isl_map_copy(access
);
2136 access_i
= isl_map_project_out(access_i
, isl_dim_out
, 0, i
);
2137 access_i
= isl_map_project_out(access_i
, isl_dim_out
,
2138 1, tile
->n
- (i
+ 1));
2139 access_i
= isl_map_compute_divs(access_i
);
2140 hull
= isl_map_simple_hull(access_i
);
2141 if (compute_array_dim_size(&tile
->bound
[i
], hull
) < 0)
2148 /* Construct a map with input the shared tile loops and the loops that
2149 * will be wrapped around the threads that relates these later loops
2150 * to the thread indices and then projects them out.
2152 static __isl_give isl_map
*compute_privatization(struct gpu_gen
*gen
)
2160 dim
= isl_union_map_get_space(gen
->shared_sched
);
2162 if (gen
->options
->wrap
)
2163 tiling
= wrap(isl_space_copy(dim
), gen
->shared_len
+ gen
->n_block
,
2164 gen
->shared_len
, gen
->n_block
, gen
->block_dim
);
2166 tiling
= tile(isl_space_copy(dim
), gen
->shared_len
+ gen
->n_block
,
2167 gen
->shared_len
, gen
->n_block
, gen
->block_dim
);
2171 par
= parametrization(dim
, gen
->shared_len
+ 2 * gen
->n_block
,
2172 gen
->tile_first
+ gen
->tile_len
+ gen
->n_grid
+ gen
->n_block
,
2175 priv
= isl_map_align_params(priv
, isl_set_get_space(par
));
2176 priv
= isl_map_intersect_range(priv
, par
);
2178 dim
= isl_map_get_space(priv
);
2179 dim
= isl_space_drop_dims(dim
, isl_dim_in
, 0, isl_space_dim(dim
, isl_dim_in
));
2180 dim
= isl_space_drop_dims(dim
, isl_dim_out
, 0, isl_space_dim(dim
, isl_dim_out
));
2181 proj
= projection(dim
, gen
->shared_len
+ 2 * gen
->n_block
,
2184 priv
= isl_map_apply_range(priv
, proj
);
2189 /* Construct a map from domain_dim to domain_dim that increments
2190 * the dimension at position "pos" and leaves all other dimensions
2193 static __isl_give isl_map
*next(__isl_take isl_space
*domain_dim
, int pos
)
2196 int len
= isl_space_dim(domain_dim
, isl_dim_set
);
2198 isl_basic_map
*next
;
2199 isl_local_space
*ls
;
2201 dim
= isl_space_map_from_set(domain_dim
);
2202 next
= isl_basic_map_universe(isl_space_copy(dim
));
2203 ls
= isl_local_space_from_space(dim
);
2205 for (i
= 0; i
< len
; ++i
) {
2208 c
= isl_equality_alloc(isl_local_space_copy(ls
));
2209 c
= isl_constraint_set_coefficient_si(c
, isl_dim_in
, i
, 1);
2210 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, i
, -1);
2212 c
= isl_constraint_set_constant_si(c
, 1);
2213 next
= isl_basic_map_add_constraint(next
, c
);
2216 isl_local_space_free(ls
);
2218 return isl_map_from_basic_map(next
);
2221 /* Check if the given access is coalesced.
2222 * That is, check whether incrementing the dimension that will get
2223 * wrapped over the last thread index results in incrementing
2224 * the last array index.
2226 * This function is only called for access relations without reuse and
2227 * kernels with at least one block dimension.
2229 static int access_is_coalesced(struct gpu_gen
*gen
,
2230 __isl_keep isl_union_map
*access
)
2233 isl_map
*access_map
;
2234 isl_map
*next_thread_x
;
2235 isl_map
*next_element
;
2239 access
= isl_union_map_copy(access
);
2240 access
= isl_union_map_apply_domain(access
,
2241 isl_union_map_copy(gen
->tiled_sched
));
2242 access_map
= isl_map_from_union_map(access
);
2244 dim
= isl_map_get_space(access_map
);
2245 dim
= isl_space_domain(dim
);
2246 next_thread_x
= next(dim
, gen
->shared_len
+ gen
->n_block
- 1);
2248 dim
= isl_map_get_space(access_map
);
2249 dim
= isl_space_range(dim
);
2250 next_element
= next(dim
, isl_space_dim(dim
, isl_dim_set
) - 1);
2252 map
= isl_map_apply_domain(next_thread_x
, isl_map_copy(access_map
));
2253 map
= isl_map_apply_range(map
, access_map
);
2255 coalesced
= isl_map_is_subset(map
, next_element
);
2257 isl_map_free(next_element
);
2263 /* Given an access relation in terms of the first gen->shared_len + gen->n_block
2264 * dimensions of the computed schedule, check if it is bijective for
2265 * fixed values of the first gen->shared_len dimensions.
2266 * We perform this check by equating these dimensions to parameters.
2268 static int access_is_bijective(struct gpu_gen
*gen
, __isl_keep isl_map
*access
)
2274 access
= isl_map_copy(access
);
2275 space
= isl_space_params(isl_map_get_space(access
));
2276 par
= parametrization(space
, gen
->shared_len
+ gen
->n_block
,
2277 0, gen
->shared_len
, "s");
2278 access
= isl_map_intersect_domain(access
, par
);
2279 res
= isl_map_is_bijective(access
);
2280 isl_map_free(access
);
2285 /* Look for the last shared tile loop that affects the offset of "tile"
2286 * and return the result.
2287 * If there is no such loop, then return the index of the loop
2288 * before the first shared tile loop, in particular gen->tile_first - 1.
2290 static int compute_tile_last_shared(struct gpu_gen
*gen
,
2291 struct gpu_array_tile
*tile
)
2295 for (j
= gen
->shared_len
- 1; j
>= gen
->tile_first
; --j
) {
2296 for (i
= 0; i
< tile
->n
; ++i
) {
2300 lb
= tile
->bound
[i
].lb
;
2301 if (isl_aff_involves_dims(lb
, isl_dim_in
, j
, 1))
2304 shift
= tile
->bound
[i
].shift
;
2307 if (isl_aff_involves_dims(shift
, isl_dim_in
, j
, 1))
2317 /* Look for the last shared tile loop that affects the offset of the
2318 * shared or private tile and store the result in group->last_shared.
2319 * If there is no such loop, then group->last_shared is set to a value
2320 * before the first shared tile loop, in particular gen->tile_first - 1.
2321 * If there is no tile defined on the array reference group,
2322 * then set group->last_shared to gen->shared_len - 1.
2324 static void set_last_shared(struct gpu_gen
*gen
,
2325 struct gpu_array_ref_group
*group
)
2327 struct gpu_array_tile
*tile
;
2329 group
->last_shared
= gen
->shared_len
- 1;
2331 tile
= group
->private_tile
;
2333 tile
= group
->shared_tile
;
2337 group
->last_shared
= compute_tile_last_shared(gen
, tile
);
2340 /* Compute the size of the tile specified by "tile"
2341 * in number of elements and return the result.
2343 static __isl_give isl_val
*tile_size(isl_ctx
*ctx
, struct gpu_array_tile
*tile
)
2348 size
= isl_val_one(ctx
);
2350 for (i
= 0; i
< tile
->n
; ++i
)
2351 size
= isl_val_mul(size
, isl_val_copy(tile
->bound
[i
].size
));
2356 /* If max_shared_memory is not set to infinity (-1), then make
2357 * sure that the total amount of shared memory required by the
2358 * array reference groups mapped to shared memory is no larger
2359 * than this maximum.
2361 * We apply a greedy approach and discard (keep in global memory)
2362 * those groups that would result in a total memory size that
2363 * is larger than the maximum.
2365 * This function should be called after any function that may
2366 * affect the decision on whether to place a reference group
2367 * in private, shared or global memory.
2369 static void check_shared_memory_bound(struct gpu_gen
*gen
)
2372 isl_val
*left
, *size
;
2374 if (gen
->options
->max_shared_memory
< 0)
2377 left
= isl_val_int_from_si(gen
->ctx
, gen
->options
->max_shared_memory
);
2379 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
2380 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
2382 for (j
= 0; j
< array
->n_group
; ++j
) {
2383 struct gpu_array_ref_group
*group
;
2385 group
= array
->groups
[j
];
2386 if (group
->private_tile
)
2388 if (!group
->shared_tile
)
2391 size
= tile_size(gen
->ctx
, group
->shared_tile
);
2392 size
= isl_val_mul_ui(size
, array
->size
);
2394 if (isl_val_le(size
, left
)) {
2395 left
= isl_val_sub(left
, size
);
2400 group
->shared_tile
= free_tile(group
->shared_tile
);
2407 /* Given a description of an array tile "tile" and the "space"
2411 * where D represents the first shared_len schedule dimensions
2412 * and A represents the array, construct an isl_multi_aff
2414 * { [D[i] -> A[a]] -> A'[a'] }
2416 * with A' a scaled down copy of A according to the shifts and strides
2417 * in "tile". In particular,
2419 * a' = (a + shift(i))/stride
2421 * "insert_array" represents
2425 * and is used to insert A into the domain of functions that only
2428 static __isl_give isl_multi_aff
*strided_tile(
2429 struct gpu_array_tile
*tile
, __isl_keep isl_space
*space
,
2430 __isl_keep isl_multi_aff
*insert_array
)
2434 isl_multi_aff
*shift
;
2435 isl_multi_val
*stride
;
2437 isl_local_space
*ls
;
2438 isl_multi_aff
*tiling
;
2440 ctx
= isl_space_get_ctx(space
);
2441 space2
= isl_space_domain(isl_space_copy(space
));
2442 ls
= isl_local_space_from_space(space2
);
2443 space2
= isl_space_range(isl_space_copy(space
));
2444 stride
= isl_multi_val_zero(space2
);
2445 shift
= isl_multi_aff_zero(isl_space_copy(space
));
2447 for (i
= 0; i
< tile
->n
; ++i
) {
2448 struct gpu_array_bound
*bound
= &tile
->bound
[i
];
2452 if (tile
->bound
[i
].shift
) {
2453 stride_i
= isl_val_copy(bound
->stride
);
2454 shift_i
= isl_aff_copy(bound
->shift
);
2456 stride_i
= isl_val_one(ctx
);
2457 shift_i
= isl_aff_zero_on_domain(
2458 isl_local_space_copy(ls
));
2461 stride
= isl_multi_val_set_val(stride
, i
, stride_i
);
2462 shift
= isl_multi_aff_set_aff(shift
, i
, shift_i
);
2464 isl_local_space_free(ls
);
2466 shift
= isl_multi_aff_pullback_multi_aff(shift
,
2467 isl_multi_aff_copy(insert_array
));
2469 tiling
= isl_multi_aff_range_map(isl_space_copy(space
));
2470 tiling
= isl_multi_aff_add(tiling
, shift
);
2471 tiling
= isl_multi_aff_scale_down_multi_val(tiling
, stride
);
2476 /* Compute a tiling for the array reference group "group".
2478 * The tiling is of the form
2480 * { [D[i] -> A[a]] -> T[t] }
2482 * where D represents the first shared_len schedule dimensions,
2483 * A represents the global array and T represents the shared or
2484 * private memory tile. The name of T is the name of the local
2487 * If there is any stride in the accesses, then the mapping is
2489 * t = (a + shift(i))/stride - lb(i)
2491 * otherwise, it is simply
2495 static void compute_group_tiling(struct gpu_array_ref_group
*group
)
2498 struct gpu_array_tile
*tile
;
2499 struct gpu_array_info
*array
= group
->array
;
2501 isl_multi_aff
*tiling
, *lb
, *insert_array
;
2505 tile
= group
->private_tile
;
2507 tile
= group
->shared_tile
;
2511 space
= isl_map_get_space(group
->access
);
2512 insert_array
= isl_multi_aff_domain_map(isl_space_copy(space
));
2514 for (i
= 0; i
< tile
->n
; ++i
)
2515 if (tile
->bound
[i
].shift
)
2519 tiling
= strided_tile(tile
, space
, insert_array
);
2521 tiling
= isl_multi_aff_range_map(isl_space_copy(space
));
2523 lb
= isl_multi_aff_zero(space
);
2524 for (i
= 0; i
< tile
->n
; ++i
) {
2525 isl_aff
*lb_i
= isl_aff_copy(tile
->bound
[i
].lb
);
2526 lb
= isl_multi_aff_set_aff(lb
, i
, lb_i
);
2528 lb
= isl_multi_aff_pullback_multi_aff(lb
, insert_array
);
2530 tiling
= isl_multi_aff_sub(tiling
, lb
);
2532 p
= isl_printer_to_str(isl_multi_aff_get_ctx(tiling
));
2533 p
= print_array_name(p
, group
);
2534 local_name
= isl_printer_get_str(p
);
2535 isl_printer_free(p
);
2536 tiling
= isl_multi_aff_set_tuple_name(tiling
, isl_dim_out
, local_name
);
2539 tile
->tiling
= tiling
;
2542 /* Compute a tiling for all the array reference groups.
2544 static void compute_group_tilings(struct gpu_gen
*gen
)
2548 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
2549 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
2551 for (j
= 0; j
< array
->n_group
; ++j
)
2552 compute_group_tiling(array
->groups
[j
]);
2556 /* Fill up the groups array with singleton groups, i.e., one group
2557 * per reference, initializing the array, access, write, n_ref and refs fields.
2558 * In particular the access field is initialized to the scheduled
2559 * access relation of the array reference.
2561 * Return the number of elements initialized, i.e., the number of
2562 * active references in the current kernel.
2564 static int populate_array_references(struct gpu_array_info
*array
,
2565 __isl_keep isl_union_map
*sched
, struct gpu_array_ref_group
**groups
)
2569 isl_ctx
*ctx
= isl_union_map_get_ctx(sched
);
2572 for (i
= 0; i
< array
->n_ref
; ++i
) {
2573 isl_union_map
*umap
;
2575 struct gpu_array_ref_group
*group
;
2576 struct gpu_stmt_access
*access
= array
->refs
[i
];
2578 map
= isl_map_copy(access
->access
);
2579 umap
= isl_union_map_from_map(map
);
2580 umap
= isl_union_map_apply_domain(umap
,
2581 isl_union_map_copy(sched
));
2583 if (isl_union_map_is_empty(umap
)) {
2584 isl_union_map_free(umap
);
2588 map
= isl_map_from_union_map(umap
);
2589 map
= isl_map_detect_equalities(map
);
2591 group
= isl_calloc_type(ctx
, struct gpu_array_ref_group
);
2593 group
->array
= array
;
2594 group
->access
= map
;
2595 group
->write
= access
->write
;
2596 group
->exact_write
= access
->exact_write
;
2597 group
->slice
= access
->n_index
< array
->n_index
;
2598 group
->refs
= &array
->refs
[i
];
2601 groups
[n
++] = group
;
2607 /* If group->n_ref == 1, then group->refs was set by
2608 * populate_array_references to point directly into
2609 * group->array->refs and should not be freed.
2610 * If group->n_ref > 1, then group->refs was set by join_groups
2611 * to point to a newly allocated array.
2613 static void free_array_ref_group(struct gpu_array_ref_group
*group
)
2617 free_tile(group
->shared_tile
);
2618 free_tile(group
->private_tile
);
2619 isl_map_free(group
->access
);
2620 if (group
->n_ref
> 1)
2625 /* Given a map where the input dimensions represent the tile loops,
2626 * eliminate the innermost of those that have a fixed value
2627 * until we reach one that does not (obviously) have a fixed value.
2629 static __isl_give isl_map
*eliminate_fixed_inner_loops(
2630 __isl_take isl_map
*access
)
2634 n
= isl_map_dim(access
, isl_dim_in
);
2636 for (i
= n
- 1; i
>= 0; --i
) {
2637 if (!map_plain_is_fixed(access
, isl_dim_in
, i
))
2639 access
= isl_map_eliminate(access
, isl_dim_in
, i
, 1);
2644 /* Check if the access relations of group1 and group2 overlap within
2645 * the innermost loop. In particular, ignore any inner dimension
2646 * with a fixed value.
2647 * The copying to and from shared memory will be performed within
2648 * the innermost actual loop so we are only allowed to consider
2649 * the dimensions up to that innermost loop while checking whether
2650 * two access relations overlap.
2652 static int accesses_overlap(struct gpu_array_ref_group
*group1
,
2653 struct gpu_array_ref_group
*group2
)
2656 isl_map
*access1
, *access2
;
2658 access1
= isl_map_copy(group1
->access
);
2659 access1
= eliminate_fixed_inner_loops(access1
);
2660 access2
= isl_map_copy(group2
->access
);
2661 access2
= eliminate_fixed_inner_loops(access2
);
2662 access1
= isl_map_intersect(access1
, access2
);
2663 empty
= isl_map_is_empty(access1
);
2664 isl_map_free(access1
);
2669 /* Combine the given two groups into a single group, containing
2670 * the references of both groups.
2672 static struct gpu_array_ref_group
*join_groups(
2673 struct gpu_array_ref_group
*group1
,
2674 struct gpu_array_ref_group
*group2
)
2678 struct gpu_array_ref_group
*group
;
2680 ctx
= isl_map_get_ctx(group1
->access
);
2681 group
= isl_calloc_type(ctx
, struct gpu_array_ref_group
);
2683 group
->array
= group1
->array
;
2684 group
->access
= isl_map_union(isl_map_copy(group1
->access
),
2685 isl_map_copy(group2
->access
));
2686 group
->write
= group1
->write
|| group2
->write
;
2687 group
->exact_write
= group1
->exact_write
&& group2
->exact_write
;
2688 group
->slice
= group1
->slice
|| group2
->slice
;
2689 group
->n_ref
= group1
->n_ref
+ group2
->n_ref
;
2690 group
->refs
= isl_alloc_array(ctx
, struct gpu_stmt_access
*,
2692 assert(group
->refs
);
2693 for (i
= 0; i
< group1
->n_ref
; ++i
)
2694 group
->refs
[i
] = group1
->refs
[i
];
2695 for (i
= 0; i
< group2
->n_ref
; ++i
)
2696 group
->refs
[group1
->n_ref
+ i
] = group2
->refs
[i
];
2701 /* Combine the given two groups into a single group and free
2702 * the original two groups.
2704 static struct gpu_array_ref_group
*join_groups_and_free(
2705 struct gpu_array_ref_group
*group1
,
2706 struct gpu_array_ref_group
*group2
)
2708 struct gpu_array_ref_group
*group
;
2710 group
= join_groups(group1
, group2
);
2711 free_array_ref_group(group1
);
2712 free_array_ref_group(group2
);
2716 /* Report that the array reference group with the given access relation
2717 * is not mapped to shared memory in the given kernel because
2718 * it does not exhibit any reuse and is considered to be coalesced.
2720 static void report_no_reuse_and_coalesced(struct ppcg_kernel
*kernel
,
2721 __isl_keep isl_union_map
*access
)
2726 ctx
= isl_union_map_get_ctx(access
);
2727 p
= isl_printer_to_file(ctx
, stdout
);
2728 p
= isl_printer_print_str(p
, "Array reference group ");
2729 p
= isl_printer_print_union_map(p
, access
);
2730 p
= isl_printer_print_str(p
,
2731 " not considered for mapping to shared memory in kernel");
2732 p
= isl_printer_print_int(p
, kernel
->id
);
2733 p
= isl_printer_print_str(p
,
2734 " because it exhibits no reuse and is considered to be coalesced");
2735 p
= isl_printer_end_line(p
);
2736 isl_printer_free(p
);
2739 /* Compute the private and/or shared memory tiles for the array
2740 * reference group "group" of array "array".
2741 * Return 0 on success and -1 on error.
2743 * If the array is a read-only scalar or if the user requested
2744 * not to use shared or private memory, then we do not need to do anything.
2746 * If any reference in the reference group accesses more than one element,
2747 * then we would have to make sure that the layout in shared memory
2748 * is the same as that in global memory. Since we do not handle this yet
2749 * (and it may not even be possible), we refuse to map to private or
2750 * shared memory in such cases.
2752 * If the array group involves any may writes (that are not must writes),
2753 * then we would have to make sure that we load the data into shared/private
2754 * memory first in case the data is not written by the kernel
2755 * (but still written back out to global memory).
2756 * Since we don't have any such mechanism at the moment, we don't
2757 * compute shared/private tiles for groups involving may writes.
2759 * We only try to compute a shared memory tile if there is any reuse
2760 * or if the access is not coalesced.
2762 * For computing a private memory tile, we also require that there is
2763 * some reuse. Moreover, we require that the access is private
2764 * to the thread. That is, we check that any given array element
2765 * is only accessed by a single thread.
2766 * We compute an access relation that maps the shared tile loop iterators
2767 * and the shared point loop iterators that will be wrapped over the
2768 * threads to the array elements.
2769 * We actually check that those iterators that will be wrapped
2770 * partition the array space. This check is stricter than necessary
2771 * since several iterations may be mapped onto the same thread
2772 * and then they could be allowed to access the same memory elements,
2773 * but our check does not allow this situation.
2775 * We also check that the index expression only depends on parallel
2776 * loops. That way, we can move those loops innermost and unroll them.
2777 * Again, we use a test that is stricter than necessary.
2778 * We actually check whether the index expression only depends
2779 * on the iterators that are wrapped over the threads.
2780 * These are necessarily parallel, but there may be more parallel loops.
2782 * Combining the injectivity of the first test with the single-valuedness
2783 * of the second test, we simply test for bijectivity.
2785 * If the array is marked force_private, then we bypass all checks
2786 * and assume we can (and should) use registers.
2788 * If it turns out we can (or have to) use registers, we compute
2789 * the private memory tile size using can_tile, after introducing a dependence
2790 * on the thread indices.
2792 static int compute_group_bounds_core(struct gpu_gen
*gen
,
2793 struct gpu_array_ref_group
*group
)
2795 isl_ctx
*ctx
= isl_space_get_ctx(group
->array
->space
);
2796 isl_union_map
*access
;
2797 int n_index
= group
->array
->n_index
;
2798 int no_reuse
, coalesced
;
2800 int force_private
= group
->array
->force_private
;
2801 int use_shared
= gen
->options
->use_shared_memory
&& gen
->n_block
> 0;
2802 int use_private
= force_private
|| gen
->options
->use_private_memory
;
2804 if (!use_shared
&& !use_private
)
2806 if (gpu_array_is_read_only_scalar(group
->array
))
2808 if (!force_private
&& !group
->exact_write
)
2813 access
= group_access_relation(group
, 1, 1);
2814 no_reuse
= isl_union_map_is_injective(access
);
2815 if (use_shared
&& no_reuse
)
2816 coalesced
= access_is_coalesced(gen
, access
);
2818 if (gen
->options
->debug
->verbose
&& use_shared
&& no_reuse
&& coalesced
)
2819 report_no_reuse_and_coalesced(gen
->kernel
, access
);
2821 if (use_shared
&& (!no_reuse
|| !coalesced
)) {
2822 group
->shared_tile
= create_tile(ctx
, group
->array
->n_index
);
2823 if (!can_tile(group
->access
, group
->shared_tile
))
2824 group
->shared_tile
= free_tile(group
->shared_tile
);
2827 if (!force_private
&& (!use_private
|| no_reuse
)) {
2828 isl_union_map_free(access
);
2832 access
= isl_union_map_apply_domain(access
,
2833 isl_union_map_copy(gen
->shared_sched
));
2835 acc
= isl_map_from_union_map(access
);
2837 if (!force_private
&& !access_is_bijective(gen
, acc
)) {
2842 group
->private_tile
= create_tile(gen
->ctx
, n_index
);
2843 acc
= isl_map_apply_domain(acc
, isl_map_copy(gen
->privatization
));
2844 if (!can_tile(acc
, group
->private_tile
))
2845 group
->private_tile
= free_tile(group
->private_tile
);
2849 if (force_private
&& !group
->private_tile
)
2850 isl_die(ctx
, isl_error_internal
,
2851 "unable to map array reference group to registers",
2857 /* Compute the private and/or shared memory tiles for the array
2858 * reference group "group" of array "array" and set last_shared.
2859 * Return 0 on success and -1 on error.
2861 static int compute_group_bounds(struct gpu_gen
*gen
,
2862 struct gpu_array_ref_group
*group
)
2864 if (compute_group_bounds_core(gen
, group
) < 0)
2866 set_last_shared(gen
, group
);
2871 /* If two groups have overlapping access relations (as determined by
2872 * the "overlap" function) and if one of them involves a write,
2873 * then merge the two groups into one.
2874 * If "compute_bounds" is set, then call compute_group_bounds
2875 * on the merged groups.
2877 * Return the updated number of groups.
2878 * Return -1 on error.
2880 static int group_writes(struct gpu_gen
*gen
,
2881 int n
, struct gpu_array_ref_group
**groups
,
2882 int (*overlap
)(struct gpu_array_ref_group
*group1
,
2883 struct gpu_array_ref_group
*group2
), int compute_bounds
)
2887 for (i
= 0; i
< n
; ++i
) {
2888 for (j
= n
- 1; j
> i
; --j
) {
2889 if (!groups
[i
]->write
&& !groups
[j
]->write
)
2892 if (!overlap(groups
[i
], groups
[j
]))
2895 groups
[i
] = join_groups_and_free(groups
[i
], groups
[j
]);
2896 if (compute_bounds
&&
2897 compute_group_bounds(gen
, groups
[i
]) < 0)
2900 groups
[j
] = groups
[n
- 1];
2901 groups
[n
- 1] = NULL
;
2909 /* If two groups have overlapping access relations (within the innermost
2910 * loop) and if one of them involves a write, then merge the two groups
2913 * Return the updated number of groups.
2915 static int group_overlapping_writes(struct gpu_gen
*gen
,
2916 int n
, struct gpu_array_ref_group
**groups
)
2918 return group_writes(gen
, n
, groups
, &accesses_overlap
, 0);
2921 /* Check if the access relations of group1 and group2 overlap within
2922 * the outermost min(group1->last_shared, group2->last_shared) loops.
2924 static int last_shared_accesses_overlap(struct gpu_array_ref_group
*group1
,
2925 struct gpu_array_ref_group
*group2
)
2930 isl_map
*map_i
, *map_j
, *map
;
2932 last_shared
= group1
->last_shared
;
2933 if (group2
->last_shared
< last_shared
)
2934 last_shared
= group2
->last_shared
;
2935 map_i
= isl_map_copy(group1
->access
);
2936 dim
= isl_map_dim(map_i
, isl_dim_in
);
2937 map_i
= isl_map_eliminate(map_i
, isl_dim_in
,
2938 last_shared
+ 1, dim
- (last_shared
+ 1));
2939 map_j
= isl_map_copy(group2
->access
);
2940 map_j
= isl_map_eliminate(map_j
, isl_dim_in
,
2941 last_shared
+ 1, dim
- (last_shared
+ 1));
2942 map
= isl_map_intersect(map_i
, map_j
);
2943 empty
= isl_map_is_empty(map
);
2949 /* If two groups have overlapping access relations (within the outer
2950 * last_shared loops) and if one of them involves a write,
2951 * then merge the two groups into one.
2953 * Return the updated number of groups.
2955 static int group_last_shared_overlapping_writes(struct gpu_gen
*gen
, int n
,
2956 struct gpu_array_ref_group
**groups
)
2958 return group_writes(gen
, n
, groups
, &last_shared_accesses_overlap
, 1);
2961 /* Is the size of the tile specified by "tile" smaller than the sum of
2962 * the sizes of the tiles specified by "tile1" and "tile2"?
2964 static int smaller_tile(isl_ctx
*ctx
, struct gpu_array_tile
*tile
,
2965 struct gpu_array_tile
*tile1
, struct gpu_array_tile
*tile2
)
2968 isl_val
*size
, *size1
, *size2
;
2970 size
= tile_size(ctx
, tile
);
2971 size1
= tile_size(ctx
, tile1
);
2972 size2
= tile_size(ctx
, tile2
);
2974 size
= isl_val_sub(size
, size1
);
2975 size
= isl_val_sub(size
, size2
);
2976 smaller
= isl_val_is_neg(size
);
2983 /* Given an initial grouping of array references and shared memory tiles
2984 * for each group that allows for a shared memory tile, merge two groups
2985 * if both have a shared memory tile, the merged group also has
2986 * a shared memory tile and the size of the tile for the merge group
2987 * is smaller than the sum of the tile sizes of the individual groups.
2989 * If merging two groups decreases the "last_shared" dimension of
2990 * one or both of the two groups, then we need to check for overlapping
2993 * Return the number of groups after merging.
2994 * Return -1 on error.
2996 static int group_common_shared_memory_tile(struct gpu_gen
*gen
,
2997 struct gpu_array_info
*array
, int n
,
2998 struct gpu_array_ref_group
**groups
)
3001 int recompute_overlap
= 0;
3002 isl_ctx
*ctx
= isl_space_get_ctx(array
->space
);
3004 for (i
= 0; i
< n
; ++i
) {
3005 if (!groups
[i
]->shared_tile
)
3007 for (j
= n
- 1; j
> i
; --j
) {
3010 struct gpu_array_ref_group
*group
;
3012 if (!groups
[j
]->shared_tile
)
3015 map
= isl_map_intersect(isl_map_copy(groups
[i
]->access
),
3016 isl_map_copy(groups
[j
]->access
));
3017 empty
= isl_map_is_empty(map
);
3023 group
= join_groups(groups
[i
], groups
[j
]);
3024 if (compute_group_bounds(gen
, group
) < 0) {
3025 free_array_ref_group(group
);
3028 if (!group
->shared_tile
||
3029 !smaller_tile(ctx
, group
->shared_tile
,
3030 groups
[i
]->shared_tile
,
3031 groups
[j
]->shared_tile
)) {
3032 free_array_ref_group(group
);
3036 if (group
->last_shared
< groups
[i
]->last_shared
||
3037 group
->last_shared
< groups
[j
]->last_shared
)
3038 recompute_overlap
= 1;
3039 free_array_ref_group(groups
[i
]);
3040 free_array_ref_group(groups
[j
]);
3043 groups
[j
] = groups
[n
- 1];
3048 if (recompute_overlap
)
3049 n
= group_last_shared_overlapping_writes(gen
, n
, groups
);
3053 /* Set array->n_group and array->groups to n and groups.
3055 * Additionally, set the "nr" field of each group
3056 * and the "group" field of each reference in each group.
3058 static void set_array_groups(struct gpu_array_info
*array
,
3059 int n
, struct gpu_array_ref_group
**groups
)
3064 array
->groups
= groups
;
3066 for (i
= 0; i
< n
; ++i
) {
3069 for (j
= 0; j
< groups
[i
]->n_ref
; ++j
)
3070 groups
[i
]->refs
[j
]->group
= i
;
3074 /* Group array references that should be considered together when
3075 * deciding whether to access them from private, shared or global memory.
3076 * Return -1 on error.
3078 * In particular, if two array references overlap and if one of them
3079 * is a write, then the two references are grouped together.
3080 * We first perform an initial grouping based only on the access relation.
3081 * After computing shared and private memory tiles, we check for
3082 * overlapping writes again, but this time taking into account
3083 * the "last_shared" property.
3085 * Furthermore, if two groups admit a shared memory tile and if the
3086 * combination of the two also admits a shared memory tile, we merge
3089 * If the array contains structures, then there is no need to compute
3090 * reference groups since we do not map such arrays to private or shared
3093 static int group_array_references(struct gpu_gen
*gen
,
3094 struct gpu_array_info
*array
, __isl_keep isl_union_map
*sched
)
3098 isl_ctx
*ctx
= isl_union_map_get_ctx(sched
);
3099 struct gpu_array_ref_group
**groups
;
3101 if (array
->has_compound_element
)
3104 groups
= isl_calloc_array(ctx
, struct gpu_array_ref_group
*,
3109 n
= populate_array_references(array
, sched
, groups
);
3111 n
= group_overlapping_writes(gen
, n
, groups
);
3113 for (i
= 0; i
< n
; ++i
)
3114 if (compute_group_bounds(gen
, groups
[i
]) < 0)
3117 n
= group_last_shared_overlapping_writes(gen
, n
, groups
);
3119 n
= group_common_shared_memory_tile(gen
, array
, n
, groups
);
3121 set_array_groups(array
, n
, groups
);
3126 for (i
= 0; i
< array
->n_ref
; ++i
)
3127 free_array_ref_group(groups
[i
]);
3131 /* Take tiled_sched, project it onto the shared tile loops and
3132 * the loops that will be wrapped over the threads and
3133 * store the result in gen->shared_sched.
3134 * Also compute a projection that projects out the loops that will be
3135 * wrapped over the threads and store this projection in gen->shared_proj.
3137 static void compute_shared_sched(struct gpu_gen
*gen
)
3142 isl_union_map
*sched
;
3144 sched
= isl_union_map_copy(gen
->tiled_sched
);
3146 dim
= isl_union_map_get_space(sched
);
3147 proj
= projection(dim
, gen
->tiled_len
, gen
->shared_len
+ gen
->n_block
);
3148 sched
= isl_union_map_apply_range(sched
, isl_union_map_from_map(proj
));
3150 dim
= isl_union_map_get_space(sched
);
3151 proj
= projection(dim
, gen
->shared_len
+ gen
->n_block
, gen
->shared_len
);
3153 gen
->shared_sched
= sched
;
3154 gen
->shared_proj
= isl_union_map_from_map(proj
);
3157 /* For each scalar in the input program, check if there are any
3158 * order dependences active inside the current kernel, within
3159 * the same iteration of the host schedule.
3160 * If so, mark the scalar as force_private so that it will be
3161 * mapped to a register.
3163 static void check_scalar_live_ranges(struct gpu_gen
*gen
)
3167 isl_union_map
*sched
;
3168 isl_union_set
*domain
;
3169 isl_union_map
*same_host_iteration
;
3171 gen
->any_force_private
= 0;
3173 if (!gen
->options
->live_range_reordering
)
3176 sched
= gen
->shared_sched
;
3177 sched
= isl_union_map_universe(isl_union_map_copy(sched
));
3178 domain
= isl_union_map_domain(sched
);
3180 sched
= isl_union_map_copy(gen
->sched
);
3181 proj
= projection(isl_union_map_get_space(sched
),
3182 gen
->untiled_len
, gen
->tile_first
);
3183 sched
= isl_union_map_apply_range(sched
, isl_union_map_from_map(proj
));
3184 same_host_iteration
= isl_union_map_apply_range(sched
,
3185 isl_union_map_reverse(isl_union_map_copy(sched
)));
3187 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
3188 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
3189 isl_union_map
*order
;
3191 array
->force_private
= 0;
3192 if (array
->n_index
!= 0)
3194 order
= isl_union_map_copy(array
->dep_order
);
3195 order
= isl_union_map_intersect_domain(order
,
3196 isl_union_set_copy(domain
));
3197 order
= isl_union_map_intersect_range(order
,
3198 isl_union_set_copy(domain
));
3199 order
= isl_union_map_intersect(order
,
3200 isl_union_map_copy(same_host_iteration
));
3201 if (!isl_union_map_is_empty(order
)) {
3202 array
->force_private
= 1;
3203 gen
->any_force_private
= 1;
3205 isl_union_map_free(order
);
3208 isl_union_map_free(same_host_iteration
);
3209 isl_union_set_free(domain
);
3212 /* Group references of all arrays in the program.
3214 static int group_references(struct gpu_gen
*gen
)
3218 isl_union_map
*sched
;
3220 sched
= isl_union_map_apply_range(isl_union_map_copy(gen
->shared_sched
),
3221 isl_union_map_copy(gen
->shared_proj
));
3223 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
3224 r
= group_array_references(gen
, &gen
->prog
->array
[i
], sched
);
3229 isl_union_map_free(sched
);
3234 /* Free all array information that is local to the current kernel.
3236 static void free_local_array_info(struct gpu_gen
*gen
)
3240 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
3241 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
3243 for (j
= 0; j
< array
->n_group
; ++j
)
3244 free_array_ref_group(array
->groups
[j
]);
3245 free(array
->groups
);
3249 /* Compute the size of a bounding box around the origin and "set",
3250 * where "set" is assumed to contain only non-negative elements.
3251 * In particular, compute the maximal value of "set" in each direction
3254 static __isl_give isl_multi_pw_aff
*extract_size(__isl_take isl_set
*set
,
3255 __isl_keep isl_set
*context
)
3258 isl_multi_pw_aff
*mpa
;
3260 n
= isl_set_dim(set
, isl_dim_set
);
3261 mpa
= isl_multi_pw_aff_zero(isl_set_get_space(set
));
3262 for (i
= 0; i
< n
; ++i
) {
3267 bound
= isl_set_dim_max(isl_set_copy(set
), i
);
3268 bound
= isl_pw_aff_coalesce(bound
);
3269 bound
= isl_pw_aff_gist(bound
, isl_set_copy(context
));
3271 space
= isl_pw_aff_get_domain_space(bound
);
3272 one
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
3273 one
= isl_aff_add_constant_si(one
, 1);
3274 bound
= isl_pw_aff_add(bound
, isl_pw_aff_from_aff(one
));
3275 mpa
= isl_multi_pw_aff_set_pw_aff(mpa
, i
, bound
);
3282 /* Compute the effective grid size as a list of the sizes in each dimension.
3284 * The grid size specified by the user or set by default
3285 * in read_grid_sizes() and applied in tile_schedule(),
3286 * may be too large for the given code in the sense that
3287 * it may contain blocks that don't need to execute anything.
3288 * We therefore don't return this grid size, but instead the
3289 * smallest grid size that ensures that all blocks that actually
3290 * execute code are included in the grid.
3292 * We first extract a description of the grid, i.e., the possible values
3293 * of the block ids, from gen->tiled_sched.
3294 * The block ids are parameters in gen->tiled_sched.
3295 * We simply need to change them into set dimensions.
3297 * Then, for each block dimension, we compute the maximal value of the block id
3300 static __isl_give isl_multi_pw_aff
*extract_grid_size(struct gpu_gen
*gen
,
3301 struct ppcg_kernel
*kernel
)
3306 grid
= isl_union_map_params(isl_union_map_copy(gen
->tiled_sched
));
3307 grid
= isl_set_from_params(grid
);
3308 grid
= isl_set_add_dims(grid
, isl_dim_set
, gen
->n_grid
);
3309 for (i
= 0; i
< gen
->n_grid
; ++i
) {
3313 snprintf(name
, sizeof(name
), "b%d", i
);
3314 pos
= isl_set_find_dim_by_name(grid
, isl_dim_param
, name
);
3316 grid
= isl_set_equate(grid
, isl_dim_param
, pos
, isl_dim_set
, i
);
3317 grid
= isl_set_project_out(grid
, isl_dim_param
, pos
, 1);
3320 return extract_size(grid
, kernel
->context
);
3323 /* Compute the size of a fixed bounding box around the origin and "set",
3324 * where "set" is assumed to contain only non-negative elements,
3325 * and store the results in "size".
3326 * In particular, compute the maximal value of "set" in each direction
3329 static void extract_fixed_size(__isl_take isl_set
*set
, int *size
)
3332 isl_local_space
*ls
;
3335 n
= isl_set_dim(set
, isl_dim_set
);
3336 ls
= isl_local_space_from_space(isl_set_get_space(set
));
3337 obj
= isl_aff_zero_on_domain(ls
);
3338 for (i
= 0; i
< n
; ++i
) {
3341 obj
= isl_aff_set_coefficient_si(obj
, isl_dim_in
, i
, 1);
3342 max
= isl_set_max_val(set
, obj
);
3343 size
[i
] = isl_val_get_num_si(max
) + 1;
3345 obj
= isl_aff_set_coefficient_si(obj
, isl_dim_in
, i
, 0);
3351 /* Compute the effective block size as a list of the sizes in each dimension
3352 * and store the sizes in kernel->block_dim.
3354 * The block size specified by the user or set by default
3355 * in read_block_sizes() and applied in thread_tile_schedule(),
3356 * may be too large for the given code in the sense that
3357 * it may contain threads that don't need to execute anything.
3358 * We therefore don't store this block size in kernel->block_dim,
3359 * but instead the smallest block size that ensures that all threads
3360 * that actually execute code are included in the block.
3362 * The current implementation eliminates all parameters, ensuring
3363 * that the size is a fixed constant in each dimension.
3364 * In principle we could also compute parametric sizes.
3365 * We would have to make sure to project out all b%d and t%d parameters,
3368 static void extract_block_size(struct gpu_gen
*gen
, struct ppcg_kernel
*kernel
)
3373 isl_multi_pw_aff
*mpa
;
3375 block
= isl_union_map_params(isl_union_map_copy(gen
->local_sched
));
3376 block
= isl_set_from_params(block
);
3377 block
= isl_set_add_dims(block
, isl_dim_set
, gen
->n_block
);
3378 kernel
->n_block
= gen
->n_block
;
3379 for (i
= 0; i
< gen
->n_block
; ++i
) {
3383 snprintf(name
, sizeof(name
), "t%d", i
);
3384 pos
= isl_set_find_dim_by_name(block
, isl_dim_param
, name
);
3386 block
= isl_set_equate(block
, isl_dim_param
, pos
,
3389 nparam
= isl_set_dim(block
, isl_dim_param
);
3390 block
= isl_set_project_out(block
, isl_dim_param
, 0, nparam
);
3392 extract_fixed_size(block
, kernel
->block_dim
);
3395 void ppcg_kernel_free(void *user
)
3397 struct ppcg_kernel
*kernel
= user
;
3403 isl_multi_pw_aff_free(kernel
->grid_size
);
3404 isl_set_free(kernel
->context
);
3405 isl_union_set_free(kernel
->arrays
);
3406 isl_space_free(kernel
->space
);
3407 isl_ast_node_free(kernel
->tree
);
3409 for (i
= 0; i
< kernel
->n_array
; ++i
)
3410 isl_pw_aff_list_free(kernel
->array
[i
].bound
);
3411 free(kernel
->array
);
3413 for (i
= 0; i
< kernel
->n_var
; ++i
) {
3414 free(kernel
->var
[i
].name
);
3415 isl_vec_free(kernel
->var
[i
].size
);
3422 static void create_kernel_var(isl_ctx
*ctx
, struct gpu_array_ref_group
*group
,
3423 struct ppcg_kernel_var
*var
)
3426 struct gpu_array_tile
*tile
;
3430 var
->array
= group
->array
;
3432 tile
= group
->private_tile
;
3433 var
->type
= ppcg_access_private
;
3435 tile
= group
->shared_tile
;
3436 var
->type
= ppcg_access_shared
;
3439 p
= isl_printer_to_str(ctx
);
3440 p
= print_array_name(p
, group
);
3441 var
->name
= isl_printer_get_str(p
);
3442 isl_printer_free(p
);
3444 var
->size
= isl_vec_alloc(ctx
, group
->array
->n_index
);
3446 for (j
= 0; j
< group
->array
->n_index
; ++j
)
3447 var
->size
= isl_vec_set_element_val(var
->size
, j
,
3448 isl_val_copy(tile
->bound
[j
].size
));
3451 static void create_kernel_vars(struct gpu_gen
*gen
, struct ppcg_kernel
*kernel
)
3456 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
3457 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
3459 for (j
= 0; j
< array
->n_group
; ++j
) {
3460 struct gpu_array_ref_group
*group
= array
->groups
[j
];
3461 if (group
->private_tile
|| group
->shared_tile
)
3467 kernel
->var
= isl_calloc_array(gen
->ctx
, struct ppcg_kernel_var
, n
);
3468 assert(kernel
->var
);
3471 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
3472 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
3474 for (j
= 0; j
< array
->n_group
; ++j
) {
3475 struct gpu_array_ref_group
*group
= array
->groups
[j
];
3476 if (!group
->private_tile
&& !group
->shared_tile
)
3478 create_kernel_var(gen
->ctx
, group
, &kernel
->var
[n
]);
3484 /* The sizes of the arrays on the host that have been computed by
3485 * extract_array_info may depend on the parameters. Use the extra
3486 * constraints on the parameters that are valid at "host_domain"
3487 * to simplify these expressions and store the results in kernel->array.
3489 * We only need these localized bounds for arrays that are accessed
3490 * by the current kernel. If we have found at least one reference group
3491 * then the array is accessed by the kernel. If the array has compound
3492 * elements then we skipped the construction of array reference groups.
3494 static void localize_bounds(struct gpu_gen
*gen
, struct ppcg_kernel
*kernel
,
3495 __isl_keep isl_set
*host_domain
)
3500 kernel
->array
= isl_calloc_array(gen
->ctx
,
3501 struct gpu_local_array_info
, gen
->prog
->n_array
);
3502 assert(kernel
->array
);
3503 kernel
->n_array
= gen
->prog
->n_array
;
3505 context
= isl_set_copy(host_domain
);
3506 context
= isl_set_params(context
);
3508 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
3509 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
3510 isl_pw_aff_list
*local
;
3512 if (array
->n_group
== 0 && !array
->has_compound_element
)
3515 local
= isl_pw_aff_list_alloc(gen
->ctx
, array
->n_index
);
3517 for (j
= 0; j
< array
->n_index
; ++j
) {
3520 pwaff
= isl_pw_aff_copy(array
->bound
[j
]);
3521 pwaff
= isl_pw_aff_gist(pwaff
, isl_set_copy(context
));
3522 local
= isl_pw_aff_list_add(local
, pwaff
);
3525 kernel
->array
[i
].n_index
= array
->n_index
;
3526 kernel
->array
[i
].bound
= local
;
3528 isl_set_free(context
);
3531 /* Find the element in gen->stmt that has the given "id".
3532 * Return NULL if no such gpu_stmt can be found.
3534 static struct gpu_stmt
*find_stmt(struct gpu_prog
*prog
, __isl_keep isl_id
*id
)
3538 for (i
= 0; i
< prog
->n_stmts
; ++i
) {
3539 if (id
== prog
->stmts
[i
].id
)
3543 return i
< prog
->n_stmts
? &prog
->stmts
[i
] : NULL
;
3546 /* Set gen->tile_len and gen->n_parallel to those of the statement
3547 * affected by the first map (part of the schedule)
3548 * on which this function is called.
3549 * Because of the way the schedule is constructed, the other statements
3550 * in the list, if any, should have the same values for these properties.
3552 static int extract_tile_len(__isl_take isl_map
*map
, void *user
)
3554 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
3556 struct gpu_stmt
*stmt
;
3558 id
= isl_map_get_tuple_id(map
, isl_dim_in
);
3559 stmt
= find_stmt(gen
->prog
, id
);
3565 isl_die(gen
->ctx
, isl_error_unknown
,
3566 "statement not found", return -1);
3568 gen
->tile_len
= stmt
->tile_len
;
3569 gen
->n_parallel
= stmt
->n_parallel
;
3574 void ppcg_kernel_stmt_free(void *user
)
3577 struct ppcg_kernel_stmt
*stmt
= user
;
3582 switch (stmt
->type
) {
3583 case ppcg_kernel_copy
:
3584 isl_ast_expr_free(stmt
->u
.c
.index
);
3585 isl_ast_expr_free(stmt
->u
.c
.local_index
);
3587 case ppcg_kernel_domain
:
3588 isl_id_to_ast_expr_free(stmt
->u
.d
.ref2expr
);
3590 case ppcg_kernel_sync
:
3597 /* Set the options of "context" to
3599 * { space -> [x] : x >= first }
3601 static __isl_give isl_ast_build
*set_unroll(
3602 __isl_take isl_ast_build
*build
, __isl_take isl_space
*space
,
3609 ctx
= isl_ast_build_get_ctx(build
);
3611 space
= isl_space_from_domain(space
);
3612 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
3613 space
= isl_space_set_tuple_name(space
, isl_dim_out
, "unroll");
3614 unroll
= isl_map_universe(space
);
3615 unroll
= isl_map_lower_bound_si(unroll
, isl_dim_out
, 0, first
);
3616 opt
= isl_union_map_from_map(unroll
);
3618 build
= isl_ast_build_set_options(build
, opt
);
3623 /* Return a list of isl_ids of the form "prefix%d".
3625 static __isl_give isl_id_list
*generate_names(isl_ctx
*ctx
,
3626 int n
, const char *prefix
)
3632 names
= isl_id_list_alloc(ctx
, n
);
3633 for (i
= 0; i
< n
; ++i
) {
3636 snprintf(name
, sizeof(name
), "%s%d", prefix
, i
);
3637 id
= isl_id_alloc(ctx
, name
, NULL
);
3638 names
= isl_id_list_add(names
, id
);
3644 /* Extend the schedule "schedule" with the part of "extension"
3645 * starting at "first" up to "len".
3647 static __isl_give isl_union_map
*extend_schedule(
3648 __isl_take isl_union_map
*schedule
,
3649 __isl_take isl_union_map
*extension
, int first
, int len
)
3653 isl_union_map
*umap
;
3656 space
= isl_union_map_get_space(schedule
);
3657 space
= isl_space_set_from_params(space
);
3658 space
= isl_space_add_dims(space
, isl_dim_set
, len
);
3659 proj
= isl_set_identity(isl_set_universe(space
));
3660 proj
= isl_map_project_out(proj
, isl_dim_out
, 0, first
);
3661 extension
= isl_union_map_apply_range(extension
,
3662 isl_union_map_from_map(proj
));
3664 schedule
= isl_union_map_range_product(schedule
, extension
);
3669 /* Return the gpu_stmt_access in the list "accesses" that corresponds
3672 static struct gpu_stmt_access
*find_access(struct gpu_stmt_access
*accesses
,
3673 __isl_keep isl_id
*ref_id
)
3675 struct gpu_stmt_access
*access
;
3677 for (access
= accesses
; access
; access
= access
->next
)
3678 if (access
->ref_id
== ref_id
)
3684 /* Return the index of the array called "name" in the list of arrays.
3686 static int find_array_index(struct gpu_gen
*gen
, const char *name
)
3690 for (i
= 0; i
< gen
->prog
->n_array
; ++i
)
3691 if (!strcmp(name
, gen
->prog
->array
[i
].name
))
3697 /* Internal data structure for the index and AST expression transformation
3698 * callbacks for pet_stmt_build_ast_exprs.
3700 * "accesses" is the list of gpu_stmt_access in the statement.
3701 * "iterator_map" expresses the statement iterators in terms of
3702 * the AST loop iterators.
3703 * "sched2shared" expresses the first shared_len dimensions of
3704 * the computed schedule in terms of the AST loop iterators.
3706 * The following fields are set in transform_index and used in transform_expr.
3707 * "array" is the array that is being accessed.
3708 * "global" is set if the global array is accessed (rather than
3709 * shared/private memory).
3710 * "local_array" refers to information on the array specialized
3711 * to the current kernel.
3713 struct ppcg_transform_data
{
3714 struct gpu_gen
*gen
;
3715 struct gpu_stmt_access
*accesses
;
3716 isl_pw_multi_aff
*iterator_map
;
3717 isl_pw_multi_aff
*sched2shared
;
3719 struct gpu_array_info
*array
;
3721 struct gpu_local_array_info
*local_array
;
3724 /* Return the name of the outer array (of structs) accessed by "access".
3726 static const char *get_outer_array_name(__isl_keep isl_map
*access
)
3731 space
= isl_space_range(isl_map_get_space(access
));
3732 while (space
&& isl_space_is_wrapping(space
))
3733 space
= isl_space_domain(isl_space_unwrap(space
));
3734 name
= isl_space_get_tuple_name(space
, isl_dim_set
);
3735 isl_space_free(space
);
3740 /* Index transformation callback for pet_stmt_build_ast_exprs.
3742 * "index" expresses the array indices in terms of statement iterators
3744 * We first reformulate "index" in terms of the AST loop iterators.
3745 * Then we check if we are accessing the global array or
3746 * a shared/private copy. In the former case, we simply return
3747 * the updated index. If "index" is an affine expression rather
3748 * than an array access, then we also return the updated index here.
3750 * If no reference groups have been computed for the array,
3751 * then we can only be accessing the global array.
3753 * Otherwise, we apply the tiling to the index.
3754 * This tiling is of the form
3758 * The index is of the form
3762 * We update the tiling to refer to the AST loop iteratos
3766 * and modify index to keep track of those iterators
3770 * Combining these two yields a tiled index expression in terms
3771 * of the AST loop iterators
3775 static __isl_give isl_multi_pw_aff
*transform_index(
3776 __isl_take isl_multi_pw_aff
*index
, __isl_keep isl_id
*ref_id
,
3779 struct ppcg_transform_data
*data
= user
;
3780 struct gpu_stmt_access
*access
;
3781 struct gpu_array_ref_group
*group
;
3782 struct gpu_array_tile
*tile
;
3783 isl_pw_multi_aff
*iterator_map
;
3787 isl_multi_pw_aff
*tiling
;
3788 isl_pw_multi_aff
*pma
;
3789 isl_multi_pw_aff
*mpa
;
3793 iterator_map
= isl_pw_multi_aff_copy(data
->iterator_map
);
3794 index
= isl_multi_pw_aff_pullback_pw_multi_aff(index
, iterator_map
);
3796 access
= find_access(data
->accesses
, ref_id
);
3799 if (!isl_map_has_tuple_name(access
->access
, isl_dim_out
))
3802 name
= get_outer_array_name(access
->access
);
3803 i
= find_array_index(data
->gen
, name
);
3805 isl_die(isl_multi_pw_aff_get_ctx(index
), isl_error_internal
,
3806 "cannot find array",
3807 return isl_multi_pw_aff_free(index
));
3808 data
->array
= &data
->gen
->prog
->array
[i
];
3809 data
->local_array
= &data
->gen
->kernel
->array
[i
];
3811 if (access
->group
< 0) {
3816 group
= data
->array
->groups
[access
->group
];
3817 tile
= group
->private_tile
;
3819 tile
= group
->shared_tile
;
3820 data
->global
= !tile
;
3824 space
= isl_space_range(isl_multi_pw_aff_get_space(index
));
3825 space
= isl_space_map_from_set(space
);
3826 pma
= isl_pw_multi_aff_identity(space
);
3827 pma
= isl_pw_multi_aff_product(
3828 isl_pw_multi_aff_copy(data
->sched2shared
), pma
);
3829 tiling
= isl_multi_pw_aff_from_multi_aff(
3830 isl_multi_aff_copy(tile
->tiling
));
3831 tiling
= isl_multi_pw_aff_pullback_pw_multi_aff(tiling
, pma
);
3833 space
= isl_space_domain(isl_multi_pw_aff_get_space(index
));
3834 space
= isl_space_map_from_set(space
);
3835 mpa
= isl_multi_pw_aff_identity(space
);
3836 index
= isl_multi_pw_aff_range_product(mpa
, index
);
3837 index
= isl_multi_pw_aff_pullback_multi_pw_aff(tiling
, index
);
3842 /* Dereference "expr" by adding an index [0].
3843 * The original "expr" is assumed not to have any indices.
3845 * If "expr" is a member access, then the dereferencing needs
3846 * to be applied to the structure argument of this member access.
3848 static __isl_give isl_ast_expr
*dereference(__isl_take isl_ast_expr
*expr
)
3852 isl_ast_expr_list
*list
;
3854 if (isl_ast_expr_get_op_type(expr
) == isl_ast_op_member
) {
3857 arg
= isl_ast_expr_get_op_arg(expr
, 0);
3858 arg
= dereference(arg
);
3859 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg
);
3864 ctx
= isl_ast_expr_get_ctx(expr
);
3865 res
= isl_ast_expr_from_val(isl_val_zero(ctx
));
3866 list
= isl_ast_expr_list_from_ast_expr(res
);
3867 res
= isl_ast_expr_get_op_arg(expr
, 0);
3868 res
= isl_ast_expr_access(res
, list
);
3869 isl_ast_expr_free(expr
);
3874 /* Linearize the index expression "expr" based on the array bounds
3877 * That is, transform expression
3879 * A[i_0][i_1]...[i_n]
3883 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
3885 * where b_0, b_1, ..., b_n are the bounds on the array.
3887 * If the base of "expr" is a member access, then the linearization needs
3888 * to be applied to the structure argument of this member access.
3890 * In the base case, if "expr" has no arguments (other than the name of
3891 * the array), then we are passing an entire array to a function.
3892 * In this case, there is nothing to linearize.
3893 * Note that at this point an expression with no arguments can
3894 * only be an entire array because the scalar case and
3895 * the case of single struct are handled by the caller.
3897 * If the number of specified index expressions in "expr"
3898 * is smaller than the dimension of the accessed array,
3899 * then the missing i_j also do not appear in the linearized expression.
3900 * Furthermore, since such an expression does not refer to a single
3901 * element while the default linearized expression would refer to
3902 * a single element, we return the expression
3904 * A + (..((i_0 * b_1 + i_1) ... ) * b_n]
3906 * instead. Note that because of the special case handling above,
3907 * we can assume here that here that there is at least one index expression.
3909 __isl_give isl_ast_expr
*gpu_local_array_info_linearize_index(
3910 struct gpu_local_array_info
*array
, __isl_take isl_ast_expr
*expr
)
3917 isl_ast_expr_list
*list
;
3918 isl_ast_build
*build
;
3920 arg0
= isl_ast_expr_get_op_arg(expr
, 0);
3921 if (isl_ast_expr_get_type(arg0
) == isl_ast_expr_op
&&
3922 isl_ast_expr_get_op_type(arg0
) == isl_ast_op_member
) {
3925 arg
= isl_ast_expr_get_op_arg(arg0
, 0);
3926 arg
= gpu_local_array_info_linearize_index(array
, arg
);
3927 arg0
= isl_ast_expr_set_op_arg(arg0
, 0, arg
);
3928 expr
= isl_ast_expr_set_op_arg(expr
, 0, arg0
);
3932 isl_ast_expr_free(arg0
);
3934 if (isl_ast_expr_get_op_n_arg(expr
) == 1)
3937 ctx
= isl_ast_expr_get_ctx(expr
);
3938 context
= isl_set_universe(isl_space_params_alloc(ctx
, 0));
3939 build
= isl_ast_build_from_context(context
);
3941 n
= isl_ast_expr_get_op_n_arg(expr
);
3942 res
= isl_ast_expr_get_op_arg(expr
, 1);
3943 for (i
= 1; i
< array
->n_index
; ++i
) {
3944 isl_pw_aff
*bound_i
;
3945 isl_ast_expr
*expr_i
;
3947 bound_i
= isl_pw_aff_list_get_pw_aff(array
->bound
, i
);
3948 expr_i
= isl_ast_build_expr_from_pw_aff(build
, bound_i
);
3949 res
= isl_ast_expr_mul(res
, expr_i
);
3953 expr_i
= isl_ast_expr_get_op_arg(expr
, i
+ 1);
3954 res
= isl_ast_expr_add(res
, expr_i
);
3957 isl_ast_build_free(build
);
3959 if (1 + array
->n_index
> n
) {
3960 res
= isl_ast_expr_add(isl_ast_expr_get_op_arg(expr
, 0), res
);
3962 list
= isl_ast_expr_list_from_ast_expr(res
);
3963 res
= isl_ast_expr_get_op_arg(expr
, 0);
3964 res
= isl_ast_expr_access(res
, list
);
3967 isl_ast_expr_free(expr
);
3972 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
3974 * If the AST expression refers to a global scalar that is not
3975 * a read-only scalar, then its address was passed to the kernel and
3976 * we need to dereference it.
3978 * If the AST expression refers to an access to a global array,
3979 * then we linearize the access exploiting the bounds in data->local_array.
3981 static __isl_give isl_ast_expr
*transform_expr(__isl_take isl_ast_expr
*expr
,
3982 __isl_keep isl_id
*id
, void *user
)
3984 struct ppcg_transform_data
*data
= user
;
3988 if (gpu_array_is_read_only_scalar(data
->array
))
3992 if (data
->array
->n_index
== 0)
3993 return dereference(expr
);
3994 if (!data
->array
->linearize
)
3997 return gpu_local_array_info_linearize_index(data
->local_array
, expr
);
4000 /* This function is called for each instance of a user statement
4003 * We attach a struct ppcg_kernel_stmt to the "node", containing
4004 * a computed AST expression for each access.
4005 * These AST expressions are computed from iterator_map,
4006 * which expresses the domain
4007 * elements in terms of the generated loops, and sched2shared,
4008 * which expresses the first shared_len dimensions of the schedule
4009 * computed by PPCG in terms of the generated loops.
4011 static __isl_give isl_ast_node
*at_each_domain(__isl_take isl_ast_node
*node
,
4012 __isl_keep isl_ast_build
*build
, void *user
)
4014 struct ppcg_transform_data data
;
4015 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
4016 struct ppcg_kernel_stmt
*stmt
;
4018 isl_pw_multi_aff
*sched2shared
;
4020 isl_pw_multi_aff
*iterator_map
;
4021 isl_ast_expr
*expr
, *arg
;
4022 isl_union_map
*schedule
;
4025 stmt
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel_stmt
);
4027 return isl_ast_node_free(node
);
4029 expr
= isl_ast_node_user_get_expr(node
);
4030 arg
= isl_ast_expr_get_op_arg(expr
, 0);
4031 id
= isl_ast_expr_get_id(arg
);
4033 schedule
= isl_ast_build_get_schedule(build
);
4034 map
= isl_map_reverse(isl_map_from_union_map(schedule
));
4035 iterator_map
= isl_pw_multi_aff_from_map(map
);
4036 sched2shared
= compute_sched_to_shared(gen
,
4037 isl_pw_multi_aff_copy(iterator_map
));
4039 stmt
->type
= ppcg_kernel_domain
;
4040 stmt
->u
.d
.stmt
= find_stmt(gen
->prog
, id
);
4041 if (!stmt
->u
.d
.stmt
)
4045 data
.accesses
= stmt
->u
.d
.stmt
->accesses
;
4046 data
.iterator_map
= iterator_map
;
4047 data
.sched2shared
= sched2shared
;
4048 stmt
->u
.d
.ref2expr
= pet_stmt_build_ast_exprs(stmt
->u
.d
.stmt
->stmt
,
4049 build
, &transform_index
, &data
,
4050 &transform_expr
, &data
);
4053 isl_pw_multi_aff_free(iterator_map
);
4054 isl_pw_multi_aff_free(sched2shared
);
4055 isl_ast_expr_free(arg
);
4056 isl_ast_expr_free(expr
);
4058 id
= isl_id_alloc(gen
->ctx
, NULL
, stmt
);
4059 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
4060 return isl_ast_node_set_annotation(node
, id
);
4063 isl_pw_multi_aff_free(iterator_map
);
4064 ppcg_kernel_stmt_free(stmt
);
4065 isl_pw_multi_aff_free(sched2shared
);
4066 return isl_ast_node_free(node
);
4069 /* This function is called when code has been generated for the shared
4070 * tile loops. The "schedule" refers only to the original statements.
4072 * We extend the schedule with that part of gen->local_sched that hasn't
4073 * been taken into account yet. This introduces parameters referring
4074 * to thread ids in the schedule, so we add them (with the appropriate
4075 * bounds to the context as well).
4076 * Finally, we set the appropriate unrolling options
4077 * if gen->first_unroll is set.
4079 static __isl_give isl_ast_node
*create_domain_leaf(
4080 __isl_take isl_union_map
*schedule
, __isl_take isl_ast_build
*build
,
4083 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
4085 isl_union_map
*sched
;
4088 isl_id_list
*iterators
;
4091 schedule
= extend_schedule(schedule
,
4092 isl_union_map_copy(gen
->local_sched
),
4093 gen
->shared_len
, gen
->thread_tiled_len
);
4095 space
= isl_ast_build_get_schedule_space(build
);
4096 set
= isl_set_universe(space
);
4097 set
= add_bounded_parameters(set
, gen
->kernel
->n_block
,
4098 gen
->kernel
->block_dim
, "t");
4099 build
= isl_ast_build_restrict(build
, set
);
4101 n
= gen
->thread_tiled_len
- gen
->shared_len
;
4103 if (gen
->first_unroll
>= 0) {
4104 space
= isl_space_set_alloc(gen
->ctx
, 0, n
);
4105 build
= set_unroll(build
, space
, gen
->first_unroll
);
4107 iterators
= generate_names(gen
->ctx
, n
, "c");
4108 build
= isl_ast_build_set_iterators(build
, iterators
);
4109 build
= isl_ast_build_set_at_each_domain(build
, &at_each_domain
, gen
);
4110 tree
= isl_ast_build_ast_from_schedule(build
, schedule
);
4111 isl_ast_build_free(build
);
4116 /* This function is called for each statement node in the AST of the code
4117 * for copying to or from shared/private memory.
4118 * Attach a pointer to a ppcg_kernel_stmt representing the copy
4119 * statement to the node.
4120 * The statement name is "read" or "write", depending on whether we are
4121 * reading from global memory or writing to global memory.
4122 * The name of the T space is {shared,private}_<array>.
4124 * The schedule is of the form
4128 * where A refers to a piece of an array and T to the corresponding
4129 * shifted tile. We split this schedule into mappings L -> A and L -> T
4130 * and store the corresponding expressions in stmt->index and stmt->local_index,
4131 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
4133 static __isl_give isl_ast_node
*attach_copy_stmt(__isl_take isl_ast_node
*node
,
4134 __isl_keep isl_ast_build
*build
, void *user
)
4136 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
4137 struct ppcg_kernel_stmt
*stmt
;
4141 isl_map
*access
, *local_access
, *map
;
4142 isl_pw_multi_aff
*pma
;
4146 stmt
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel_stmt
);
4148 return isl_ast_node_free(node
);
4150 access
= isl_map_from_union_map(isl_ast_build_get_schedule(build
));
4151 type
= isl_map_get_tuple_name(access
, isl_dim_in
);
4152 stmt
->u
.c
.read
= !strcmp(type
, "read");
4153 access
= isl_map_reverse(access
);
4154 space
= isl_space_unwrap(isl_space_range(isl_map_get_space(access
)));
4155 local_access
= isl_map_copy(access
);
4157 map
= isl_map_domain_map(isl_map_universe(isl_space_copy(space
)));
4158 id
= isl_map_get_tuple_id(access
, isl_dim_out
);
4159 map
= isl_map_set_tuple_id(map
, isl_dim_in
, id
);
4160 access
= isl_map_apply_range(access
, map
);
4161 pma
= isl_pw_multi_aff_from_map(access
);
4162 expr
= isl_ast_build_access_from_pw_multi_aff(build
, pma
);
4163 stmt
->u
.c
.index
= expr
;
4165 map
= isl_map_range_map(isl_map_universe(space
));
4166 id
= isl_map_get_tuple_id(local_access
, isl_dim_out
);
4167 map
= isl_map_set_tuple_id(map
, isl_dim_in
, id
);
4168 local_access
= isl_map_apply_range(local_access
, map
);
4169 pma
= isl_pw_multi_aff_from_map(local_access
);
4170 expr
= isl_ast_build_access_from_pw_multi_aff(build
, pma
);
4171 stmt
->u
.c
.local_index
= expr
;
4173 stmt
->u
.c
.array
= gen
->copy_group
->array
;
4174 array_index
= stmt
->u
.c
.array
- gen
->prog
->array
;
4175 stmt
->u
.c
.local_array
= &gen
->kernel
->array
[array_index
];
4176 stmt
->type
= ppcg_kernel_copy
;
4178 id
= isl_id_alloc(gen
->ctx
, NULL
, stmt
);
4179 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
4180 return isl_ast_node_set_annotation(node
, id
);
4183 /* Given a schedule of the form
4187 * (with S the first shared_len dimensions of the computed schedule,
4188 * A the array and L the schedule correponding to the generated loops),
4189 * indicating where to copy the array elements that need to be copied,
4190 * construct code for performing the copying.
4192 * "group" is the array reference group that is being copied
4193 * "type" is either "read" or "write"
4194 * private is set if copying needs to be performed to/from registers
4196 * We first construct a mapping to a shifted tile of the array,
4198 * [S -> A] -> T(S,A) (1)
4200 * If private is set, then we also use this mapping as a schedule
4201 * (which is already thread-specific and will be completely unrolled).
4202 * Otherwise, we wrap/tile the range over the threads.
4205 * [S -> A] -> T'(S,A)
4207 * Combined with the given schedule, we have
4209 * [S -> A] -> [L -> T'(S,A)] (2)
4211 * From the shifted tile mapping, we construct a mapping
4213 * [S -> A] -> [A -> T(S,A)]
4215 * and apply it to the schedule (2), obtaining
4217 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
4219 * Note that we can project out S because it is uniquely defined by L.
4221 static __isl_give isl_ast_node
*copy_access(struct gpu_gen
*gen
,
4222 __isl_take isl_map
*sched
,
4223 const char *type
, struct gpu_array_ref_group
*group
,
4224 __isl_take isl_ast_build
*build
, int private)
4228 isl_map
*schedule
, *shift
, *map
;
4230 isl_id_list
*iterators
;
4233 shift
= shift_access(group
);
4235 schedule
= isl_map_copy(shift
);
4236 schedule
= isl_map_reset_tuple_id(schedule
, isl_dim_out
);
4238 schedule
= tile_access_schedule(gen
, schedule
);
4240 n
= isl_map_dim(schedule
, isl_dim_out
);
4241 set
= isl_set_universe(isl_ast_build_get_schedule_space(build
));
4242 set
= add_bounded_parameters(set
, gen
->kernel
->n_block
,
4243 gen
->kernel
->block_dim
, "t");
4245 schedule
= isl_map_range_product(sched
, schedule
);
4247 space
= isl_space_domain(isl_map_get_space(shift
));
4248 map
= isl_map_range_map(isl_map_universe(isl_space_unwrap(space
)));
4249 map
= isl_map_range_product(map
, shift
);
4251 schedule
= isl_map_apply_domain(schedule
, map
);
4253 schedule
= isl_map_set_tuple_name(schedule
, isl_dim_in
, type
);
4255 build
= isl_ast_build_restrict(build
, set
);
4257 gen
->copy_group
= group
;
4260 space
= isl_space_range(isl_map_get_space(schedule
));
4261 space
= isl_space_range(isl_space_unwrap(space
));
4262 build
= set_unroll(build
, space
, 0);
4264 iterators
= generate_names(gen
->ctx
, n
, "c");
4265 build
= isl_ast_build_set_iterators(build
, iterators
);
4266 build
= isl_ast_build_set_at_each_domain(build
, &attach_copy_stmt
, gen
);
4267 tree
= isl_ast_build_ast_from_schedule(build
,
4268 isl_union_map_from_map(schedule
));
4269 isl_ast_build_free(build
);
4274 /* Return code for reading into or writing from shared memory
4275 * the given array reference group.
4277 * If we are performing a read from global memory to shared memory and
4278 * if the array involved is not a scalar, then we copy
4279 * the entire tile to shared memory. This may result in some extra
4280 * elements getting copied, but it should lead to simpler code
4281 * (which means that fewer registers may be needed) and less divergence.
4283 * Otherwise, we only copy the elements that will be read or have been written
4287 * The input "sched" is of the form.
4291 * with S the first shared_len dimensions of the computed schedule,
4292 * A the array and L the schedule correponding to the generated loops.
4294 * We first drop "type",
4298 * If the above conditions are satisfied, we project out A,
4303 * and then introduce the group tile [S -> T], resulting in
4307 static __isl_give isl_ast_node
*copy_group_shared_accesses(
4308 struct gpu_gen
*gen
, struct gpu_array_ref_group
*group
,
4309 __isl_take isl_map
*sched
, __isl_take isl_ast_build
*build
)
4313 isl_union_map
*access
;
4315 type
= isl_map_get_tuple_name(sched
, isl_dim_in
);
4316 read
= !strcmp(type
, "read");
4318 sched
= isl_map_reset_tuple_id(sched
, isl_dim_in
);
4320 if (read
&& !gpu_array_is_scalar(group
->array
)) {
4324 space
= isl_space_domain(isl_map_get_space(sched
));
4325 space
= isl_space_unwrap(space
);
4326 map
= isl_map_domain_map(isl_map_universe(space
));
4327 sched
= isl_map_apply_domain(sched
, map
);
4329 map
= group_tile(group
);
4330 map
= isl_map_reverse(isl_map_domain_map(map
));
4331 sched
= isl_map_apply_domain(sched
, map
);
4334 return copy_access(gen
, sched
, type
, group
, build
, 0);
4337 /* Return code for reading into or writing from private memory
4338 * the given array reference group.
4340 * Let S be the first shared_len dimensions of the computed schedule,
4341 * D the iteration domains, A the array and L the schedule correponding
4342 * to the generated loops.
4343 * "sched" is of the form
4347 * where type is either "read" or "write".
4348 * We apply the privatization D -> S(t), with t the thread ids,
4349 * to the access relation D -> A to obtain the privatized access relation
4353 * We drop the type from "sched" and intersect with the privatized access
4354 * relation to obtain
4358 static __isl_give isl_ast_node
*copy_group_private_accesses(
4359 struct gpu_gen
*gen
, struct gpu_array_ref_group
*group
,
4360 __isl_take isl_map
*sched
, __isl_take isl_ast_build
*build
)
4364 isl_union_map
*priv
;
4365 isl_union_map
*access
;
4366 isl_map
*access_map
;
4368 type
= isl_map_get_tuple_name(sched
, isl_dim_in
);
4369 read
= !strcmp(type
, "read");
4371 priv
= isl_union_map_from_map(isl_map_copy(gen
->privatization
));
4372 priv
= isl_union_map_apply_range(isl_union_map_copy(gen
->shared_sched
),
4375 access
= group_access_relation(group
, read
, !read
);
4376 access
= isl_union_map_apply_domain(access
, priv
);
4377 access_map
= isl_map_from_union_map(access
);
4379 sched
= isl_map_reset_tuple_id(sched
, isl_dim_in
);
4380 sched
= isl_map_intersect_domain(sched
, isl_map_wrap(access_map
));
4382 return copy_access(gen
, sched
, type
, group
, build
, 1);
4385 /* Return code for reading into or writing from shared or private memory.
4387 * "schedule" is of the form
4391 * with S be the first shared_len dimensions of the computed schedule,
4392 * A the array and L the schedule correponding to the generated loops.
4393 * The array reference group is attached to "type".
4395 static __isl_give isl_ast_node
*create_access_leaf(
4396 struct gpu_gen
*gen
, __isl_take isl_map
*schedule
,
4397 __isl_take isl_ast_build
*build
)
4399 struct gpu_array_ref_group
*group
;
4402 id
= isl_map_get_tuple_id(schedule
, isl_dim_in
);
4403 group
= isl_id_get_user(id
);
4406 if (group
->private_tile
)
4407 return copy_group_private_accesses(gen
, group
, schedule
,
4410 return copy_group_shared_accesses(gen
, group
, schedule
,
4414 /* Create a domain node representing a synchronization.
4416 static __isl_give isl_ast_node
*create_sync_leaf(
4417 struct gpu_gen
*gen
, __isl_take isl_map
*schedule
,
4418 __isl_take isl_ast_build
*build
)
4420 struct ppcg_kernel_stmt
*stmt
;
4426 isl_map_free(schedule
);
4428 stmt
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel_stmt
);
4432 stmt
->type
= ppcg_kernel_sync
;
4434 space
= isl_ast_build_get_schedule_space(build
);
4435 space
= isl_space_from_domain(space
);
4436 space
= isl_space_set_tuple_name(space
, isl_dim_out
, "sync");
4437 expr
= isl_ast_build_call_from_pw_multi_aff(build
,
4438 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space
)));
4439 node
= isl_ast_node_alloc_user(expr
);
4440 isl_ast_build_free(build
);
4442 id
= isl_id_alloc(gen
->ctx
, NULL
, stmt
);
4443 id
= isl_id_set_free_user(id
, &ppcg_kernel_stmt_free
);
4444 return isl_ast_node_set_annotation(node
, id
);
4447 /* This function is called during the code generation at the point
4448 * where the schedule domain element is completely determined by
4449 * the generated code. The input schedule contains the original
4450 * statements as well as synchronization and copy "statements".
4451 * The latter are scheduled at different points than any of the original
4452 * statements, so they will only arrive here in isolation.
4454 * If the current schedule only refers to a single statement,
4455 * we check if it is a copy or synchronization statement and
4456 * call the appropriate functions.
4457 * Otherwise, we assume we are dealing with the original statements
4458 * and we call create_domain_leaf.
4460 static __isl_give isl_ast_node
*create_kernel_leaf(
4461 __isl_take isl_ast_build
*build
, void *user
)
4463 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
4465 isl_union_map
*schedule
;
4468 schedule
= isl_ast_build_get_schedule(build
);
4470 if (isl_union_map_n_map(schedule
) != 1)
4471 return create_domain_leaf(schedule
, build
, user
);
4473 map
= isl_map_from_union_map(schedule
);
4474 name
= isl_map_get_tuple_name(map
, isl_dim_in
);
4475 if (!strcmp(name
, "read") || !strcmp(name
, "write"))
4476 return create_access_leaf(gen
, map
, build
);
4477 if (!strcmp(name
, "sync"))
4478 return create_sync_leaf(gen
, map
, build
);
4480 return create_domain_leaf(isl_union_map_from_map(map
), build
, user
);
4483 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
4484 * have value 0) and all even schedule dimensions as "unroll".
4486 * That is, the options look as follows
4488 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
4489 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
4491 * The even positions are used to be able to schedule copying blocks
4492 * and synchronization before or after each level of the shared memory
4493 * tile loops and we want to make sure that code for these is generated
4494 * separately (within each level).
4496 static __isl_give isl_ast_build
*set_atomic_and_unroll(
4497 __isl_take isl_ast_build
*build
,
4498 __isl_take isl_space
*space
, int sched_len
)
4504 isl_local_space
*ls
;
4507 ctx
= isl_ast_build_get_ctx(build
);
4509 space
= isl_space_params(space
);
4510 space
= isl_space_add_dims(space
, isl_dim_set
, sched_len
);
4511 space
= isl_space_from_domain(space
);
4512 space
= isl_space_add_dims(space
, isl_dim_out
, 2);
4513 map
= isl_map_universe(isl_space_copy(space
));
4514 for (i
= 0; i
< sched_len
; i
+= 2)
4515 map
= isl_map_fix_si(map
, isl_dim_in
, i
, 0);
4516 ls
= isl_local_space_from_space(isl_map_get_space(map
));
4517 c
= isl_equality_alloc(ls
);
4518 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, 0, 1);
4519 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, 1, 2);
4520 c
= isl_constraint_set_constant_si(c
, 1);
4521 map
= isl_map_add_constraint(map
, c
);
4522 map
= isl_map_project_out(map
, isl_dim_out
, 1, 1);
4523 map
= isl_map_set_tuple_name(map
, isl_dim_out
, "atomic");
4524 opt
= isl_union_map_from_map(map
);
4526 map
= isl_map_universe(space
);
4527 ls
= isl_local_space_from_space(isl_map_get_space(map
));
4528 c
= isl_equality_alloc(ls
);
4529 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, 0, 1);
4530 c
= isl_constraint_set_coefficient_si(c
, isl_dim_out
, 1, 2);
4531 map
= isl_map_add_constraint(map
, c
);
4532 map
= isl_map_project_out(map
, isl_dim_out
, 1, 1);
4533 map
= isl_map_set_tuple_name(map
, isl_dim_out
, "unroll");
4534 opt
= isl_union_map_add_map(opt
, map
);
4536 build
= isl_ast_build_set_options(build
, opt
);
4541 /* Return a map that maps a space of dimension gen->shared_len
4542 * to its last dimensions starting at gen->tile_first.
4543 * The range is of dimension
4545 * 2 * (gen->shared_len - gen->tile_first) + 1
4547 * The input dimensions are mapped to the odd dimensions in the output,
4548 * while the even dimensions (except 2*pos) are fixed to 0.
4549 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
4550 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
4551 * are mapped to the output. The remaining input dimensions are projected
4552 * out and the corresponding output dimensions are fixed to 0.
4554 static __isl_give isl_map
*insert_even(struct gpu_gen
*gen
,
4555 __isl_take isl_space
*space
, int pos
, int val
)
4560 space
= isl_space_set_from_params(space
);
4561 space
= isl_space_add_dims(space
, isl_dim_set
, gen
->shared_len
);
4562 space
= isl_space_map_from_set(space
);
4563 proj
= isl_map_identity(space
);
4564 proj
= isl_map_project_out(proj
, isl_dim_out
, 0, gen
->tile_first
);
4565 n
= gen
->shared_len
- gen
->tile_first
;
4566 for (i
= 0; i
<= n
; ++i
) {
4567 proj
= isl_map_insert_dims(proj
, isl_dim_out
, 2 * i
, 1);
4569 proj
= isl_map_fix_si(proj
, isl_dim_out
, 2 * i
, val
);
4571 proj
= isl_map_fix_si(proj
, isl_dim_out
, 2 * i
, 0);
4577 proj
= isl_map_eliminate(proj
, isl_dim_in
, gen
->tile_first
+ pos
,
4578 gen
->shared_len
- (gen
->tile_first
+ pos
));
4579 for (i
= pos
; i
< n
; ++i
)
4580 proj
= isl_map_fix_si(proj
, isl_dim_out
, 2 * i
+ 1, 0);
4585 /* Given the AST context schedule "schedule" and the mapping from
4586 * domains to the shared tile loops "shared_sched", add a schedule
4587 * for a synchronization operation at position "val" of loop level "pos".
4589 * schedule is of the form
4593 * (with D the iteration domains and L the already generated loops),
4594 * while shared_sched is of the form
4598 * We combine them into
4604 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4606 * and use the result as a schedule for "sync".
4608 static __isl_give isl_union_map
*add_sync_schedule(struct gpu_gen
*gen
,
4609 __isl_take isl_union_map
*res
, __isl_keep isl_union_map
*schedule
,
4610 __isl_keep isl_union_map
*shared_sched
, int pos
, int val
)
4613 isl_map
*proj
, *map
;
4615 shared_sched
= isl_union_map_copy(shared_sched
);
4616 schedule
= isl_union_map_copy(schedule
);
4618 space
= isl_union_map_get_space(shared_sched
);
4619 schedule
= isl_union_map_apply_domain(shared_sched
, schedule
);
4620 map
= isl_map_from_union_map(schedule
);
4622 proj
= insert_even(gen
, space
, pos
, val
);
4623 map
= isl_map_apply_range(map
, proj
);
4624 map
= isl_map_from_range(isl_map_wrap(map
));
4625 map
= isl_map_set_tuple_name(map
, isl_dim_in
, "sync");
4627 res
= isl_union_map_add_map(res
, map
);
4632 /* Given a set of wrapped references "ref", return the corresponding
4633 * access relations based on the tagged access relations "tagged".
4635 * The elements of "ref" are of the form
4639 * with D an iteration domains and R a reference.
4640 * The elements of "tagged" are of the form
4646 * Extend "tagged" to include the iteration domain in the range, i.e.,
4648 * [D -> R] -> [D -> A]
4650 * apply the result to "ref" and then unwrap the resulting set
4651 * to obtain relations of the form
4655 static __isl_give isl_union_map
*wrapped_reference_to_access(
4656 __isl_take isl_union_set
*ref
, __isl_take isl_union_map
*tagged
)
4658 isl_union_map
*tag2access
;
4660 tag2access
= isl_union_map_copy(tagged
);
4661 tag2access
= isl_union_map_universe(tag2access
);
4662 tag2access
= isl_union_set_unwrap(isl_union_map_domain(tag2access
));
4663 tag2access
= isl_union_map_domain_map(tag2access
);
4664 tag2access
= isl_union_map_range_product(tag2access
, tagged
);
4666 ref
= isl_union_set_coalesce(ref
);
4667 ref
= isl_union_set_apply(ref
, tag2access
);
4669 return isl_union_set_unwrap(ref
);
4672 /* Given an access relation "access" from "group", remove those reads
4673 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
4674 * communicate data within the same iteration of the last_shared dimension
4677 * If the access is a read then it is necessarily an element of
4679 * live_in union (range flow)
4681 * where live_in and flow may be overapproximations.
4682 * If the access is a write then it is necessarily an element of
4684 * live_out union (domain flow)
4686 * In both cases, the access relation is also a subset of
4687 * the group access relation.
4689 * Essentially, we compute the intersection of "access" with either
4691 * live_in union (range non-local-flow)
4695 * live_out union (domain non-local-flow)
4697 * We first construct a relation "local"
4699 * [[D -> R] -> [D' -> R']]
4701 * of pairs of domain iterations accessing the reference group
4702 * and references in the group that are scheduled to the same iteration
4703 * of the last_shared dimension.
4705 * If this relation does not intersect the dataflow dependences,
4706 * then there is nothing we can possibly remove and we simply
4709 * Otherwise, we remove the "local" dataflow dependences from
4710 * the set of all dataflow dependences.
4711 * Note that if the potential dataflow dependences are an overapproximation
4712 * of the actual dataflow dependences, then the result remains an
4713 * overapproximation of the non-local dataflow dependences.
4714 * Copying to/from global memory is only needed for the references
4715 * in the domain/range of the result or for accesses that are live out/in
4716 * for the entire scop.
4718 * We therefore map the domain/range of the "external" relation
4719 * to the corresponding access relation and take the union with
4720 * the live out/in relation.
4722 static __isl_give isl_union_map
*remove_local_accesses(struct gpu_gen
*gen
,
4723 struct gpu_array_ref_group
*group
, __isl_take isl_union_map
*access
,
4727 isl_union_map
*tagger
;
4728 isl_union_set
*domain
;
4730 isl_union_map
*sched
, *local
, *tagged
, *external
;
4731 isl_union_set
*tag_set
;
4734 if (isl_union_map_is_empty(access
))
4737 tagged
= group_tagged_access_relation(group
);
4739 sched
= isl_union_map_copy(gen
->sched
);
4741 space
= isl_union_map_get_space(sched
);
4742 proj
= projection(space
, gen
->untiled_len
, group
->last_shared
+ 1);
4743 sched
= isl_union_map_apply_range(sched
, isl_union_map_from_map(proj
));
4745 tagger
= isl_union_map_copy(gen
->prog
->scop
->tagger
);
4746 domain
= isl_union_map_domain(isl_union_map_copy(tagged
));
4747 tagger
= isl_union_map_intersect_range(tagger
, domain
);
4748 sched
= isl_union_map_apply_domain(sched
, tagger
);
4750 local
= isl_union_map_apply_range(sched
,
4751 isl_union_map_reverse(isl_union_map_copy(sched
)));
4752 local
= isl_union_map_intersect(local
,
4753 isl_union_map_copy(gen
->prog
->scop
->tagged_dep_flow
));
4755 empty
= isl_union_map_is_empty(local
);
4756 if (empty
< 0 || empty
) {
4757 isl_union_map_free(tagged
);
4758 isl_union_map_free(local
);
4760 return isl_union_map_free(access
);
4764 external
= isl_union_map_copy(gen
->prog
->scop
->tagged_dep_flow
);
4765 external
= isl_union_map_intersect_params(external
,
4766 isl_set_copy(gen
->prog
->scop
->context
));
4767 external
= isl_union_map_subtract(external
, local
);
4770 tag_set
= isl_union_map_range(external
);
4771 external
= wrapped_reference_to_access(tag_set
, tagged
);
4772 external
= isl_union_map_union(external
,
4773 isl_union_map_copy(gen
->prog
->scop
->live_in
));
4775 tag_set
= isl_union_map_domain(external
);
4776 external
= wrapped_reference_to_access(tag_set
, tagged
);
4777 external
= isl_union_map_union(external
,
4778 isl_union_map_copy(gen
->prog
->scop
->live_out
));
4781 access
= isl_union_map_intersect(access
, external
);
4786 /* Given the AST context schedule "schedule" and the mapping from
4787 * domains to the shared tile loops "shared_sched", add a schedule
4788 * for copying an array reference group to/from shared/private memory.
4789 * "read" is set if data should be copied from global memory
4790 * to shared/private memory.
4791 * "k" represents the current group
4792 * "s" is the total number of groups
4794 * We schedule an operation before or after the innermost loop
4795 * of "shared_sched" that affects the tile of the array reference group.
4797 * schedule is of the form
4801 * (with D the iteration domains and L the already generated loops),
4802 * while shared_sched is of the form
4806 * We first compute the access relation for the reference group
4810 * and remove from this access relation those reads or writes
4811 * that only needed to communicate data within the same iteration
4812 * of the last_shared dimension of the group.
4813 * We then combine what is left with shared_sched into
4817 * If this results in an empty relation, no copying needs to be performed
4819 * Otherwise, we invert the relation and combine it with "schedule" into
4823 * The actual additional piece of the schedule is obtained from combining
4829 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4831 * The position of "val" corresponds to the innermost loop that affects
4832 * the tile and the value indicates where the copying is scheduled
4833 * with respect to the actual kernel code (at value 0).
4834 * Reads are schedule before the code, writes to global memory from
4835 * private memory are scheduled at values 1 to s, writes to global
4836 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
4838 * If we are scheduling a read from global memory to shared memory,
4839 * we insert a synchronization before the kernel code (at the innermost
4841 * If we are scheduling a write to global memory, then we add
4842 * a synchronization after all writes (at value 2 *s + 2).
4843 * However, there is no need for a synchronization after the outermost loop.
4844 * A write to global memory from private memory at the innermost level
4845 * does not require a synchronization, because it is covered by
4846 * the synchronization after the kernel inserted by body_schedule.
4848 static __isl_give isl_union_map
*add_group_schedule(struct gpu_gen
*gen
,
4849 __isl_take isl_union_map
*res
, __isl_keep isl_union_map
*schedule
,
4850 __isl_keep isl_union_map
*shared_sched
,
4851 struct gpu_array_ref_group
*group
, int read
, int k
, int s
)
4856 isl_union_map
*access
;
4857 isl_map
*map
, *proj
, *access_map
;
4860 access
= group_access_relation(group
, read
, !read
);
4861 access
= remove_local_accesses(gen
, group
, access
, read
);
4862 access
= isl_union_map_range_product(isl_union_map_copy(shared_sched
),
4865 if (isl_union_map_is_empty(access
)) {
4866 isl_union_map_free(access
);
4870 access
= isl_union_map_reverse(access
);
4871 access
= isl_union_map_apply_range(access
,
4872 isl_union_map_copy(schedule
));
4873 access_map
= isl_map_from_union_map(access
);
4875 space
= isl_space_copy(group
->array
->space
);
4876 space
= isl_space_from_range(space
);
4877 space
= isl_space_add_dims(space
, isl_dim_in
, gen
->shared_len
);
4878 map
= isl_map_domain_map(isl_map_universe(space
));
4880 space
= isl_union_map_get_space(schedule
);
4881 pos
= group
->last_shared
+ 1 - gen
->tile_first
;
4885 else if (group
->private_tile
)
4888 val
= 1 + s
+ 1 + k
;
4889 proj
= insert_even(gen
, space
, pos
, val
);
4890 map
= isl_map_apply_range(map
, proj
);
4892 access_map
= isl_map_range_product(access_map
, map
);
4894 id
= isl_id_alloc(gen
->ctx
, read
? "read" : "write", group
);
4895 access_map
= isl_map_set_tuple_id(access_map
, isl_dim_in
, id
);
4897 res
= isl_union_map_add_map(res
, access_map
);
4899 n
= gen
->shared_len
- gen
->tile_first
;
4901 if (!group
->private_tile
)
4902 res
= add_sync_schedule(gen
, res
, schedule
,
4903 shared_sched
, n
, -1);
4907 if (pos
== n
&& group
->private_tile
)
4909 res
= add_sync_schedule(gen
, res
, schedule
, shared_sched
,
4916 /* Return a schedule for the shared tile loops based on the current
4917 * AST context schedule.
4919 * We create a "shared_sched" that maps the domains to the first
4920 * shared_len dimensions of the computed schedule, project out the
4921 * first tile_first dimensions (as these are already covered by
4922 * the host code) and insert "statement-level" dimensions at even
4923 * positions so that we can schedule copy blocks and synchronization
4924 * before/after each level.
4926 * In particular, copy blocks are inserted inside the innermost
4927 * level that affect the tile. For the copying to global memory,
4928 * those from private memory are scheduled before those from shared
4929 * memory such that synchronization can be inserted between the two
4930 * at the innermost level.
4931 * Synchronization is inserted at the innermost level before the
4932 * actual kernel code if there is any copying from global memory
4933 * to shared memory. It is inserted unconditionally at the innermost
4934 * level after the actual kernel code and the copying to global memory
4935 * from private memory (if any). Finally, it is inserted after
4936 * any copying to global memory, except at the outermost level
4937 * and at the innermost level if there is no copying from shared
4938 * memory. The copying from private memory is covered by the unconditional
4939 * synchronization at the innermost level.
4941 static __isl_give isl_union_map
*body_schedule(struct gpu_gen
*gen
,
4942 __isl_take isl_union_map
*schedule
)
4946 isl_union_map
*shared_sched
;
4947 isl_union_map
*sched
;
4948 isl_map
*proj
, *map
;
4951 shared_sched
= isl_union_map_copy(gen
->tiled_sched
);
4952 proj
= projection(isl_union_map_get_space(shared_sched
),
4953 gen
->tiled_len
, gen
->shared_len
);
4954 shared_sched
= isl_union_map_apply_range(shared_sched
,
4955 isl_union_map_from_map(proj
));
4956 space
= isl_union_map_get_space(shared_sched
);
4957 proj
= insert_even(gen
, space
, -1, 0);
4958 sched
= isl_union_map_apply_range(isl_union_map_copy(shared_sched
),
4959 isl_union_map_from_map(proj
));
4961 res
= isl_union_map_range_product(isl_union_map_copy(schedule
), sched
);
4964 for (i
= 0; i
< gen
->prog
->n_array
; ++i
)
4965 s
+= gen
->prog
->array
[i
].n_group
;
4968 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
4969 struct gpu_array_info
*array
= &gen
->prog
->array
[i
];
4971 for (j
= 0; j
< array
->n_group
; ++j
) {
4972 struct gpu_array_ref_group
*group
;
4974 group
= array
->groups
[j
];
4975 if (!group
->private_tile
&& !group
->shared_tile
)
4977 res
= add_group_schedule(gen
, res
, schedule
,
4978 shared_sched
, group
, 0, k
, s
);
4979 res
= add_group_schedule(gen
, res
, schedule
,
4980 shared_sched
, group
, 1, k
, s
);
4985 res
= add_sync_schedule(gen
, res
, schedule
, shared_sched
,
4986 gen
->shared_len
- gen
->tile_first
, 1 + s
);
4988 isl_union_map_free(shared_sched
);
4989 isl_union_map_free(schedule
);
4994 /* Generate code for "kernel" in the given "context".
4996 * We first generate code for the shared tile loops (T1T, T1P and T2)
4997 * in a context that includes the block ids.
4998 * Within each iteration of these loops an additional code generation
4999 * is performed (within create_kernel_leaf) for the rest of the schedule
5000 * in a context that includes the thread ids.
5002 static __isl_give isl_ast_node
*generate_kernel(struct gpu_gen
*gen
,
5003 __isl_keep isl_ast_build
*build
, __isl_keep isl_set
*host_domain
,
5004 __isl_keep isl_multi_pw_aff
*grid_size
)
5008 isl_id_list
*iterators
;
5009 isl_union_map
*schedule
;
5013 schedule
= isl_ast_build_get_schedule(build
);
5015 build
= isl_ast_build_copy(build
);
5016 build
= isl_ast_build_restrict(build
, isl_set_copy(host_domain
));
5017 space
= isl_ast_build_get_schedule_space(build
);
5018 set
= isl_set_universe(isl_space_copy(space
));
5019 set
= add_bounded_parameters_dynamic(set
, grid_size
, "b");
5020 build
= isl_ast_build_restrict(build
, set
);
5022 schedule
= body_schedule(gen
, schedule
);
5024 sched_len
= 2 * (gen
->shared_len
- gen
->tile_first
) + 1;
5026 build
= set_atomic_and_unroll(build
, space
, sched_len
);
5027 iterators
= generate_names(gen
->ctx
, sched_len
, "g");
5028 build
= isl_ast_build_set_iterators(build
, iterators
);
5029 build
= isl_ast_build_set_create_leaf(build
, &create_kernel_leaf
, gen
);
5030 tree
= isl_ast_build_ast_from_schedule(build
, schedule
);
5031 isl_ast_build_free(build
);
5036 /* Attach "id" to the given node.
5038 static __isl_give isl_ast_node
*attach_id(__isl_take isl_ast_node
*node
,
5039 __isl_keep isl_ast_build
*build
, void *user
)
5043 node
= isl_ast_node_set_annotation(node
, id
);
5048 /* Construct an AST node for performing a kernel launch and attach
5049 * the information about the kernel to that node.
5051 * The kernel AST has been constructed in the context of the range
5052 * of "schedule". In particular, the grid size has been computed
5053 * in the context. We therefore still need to make sure that these
5054 * constraints are expressed in the code. We do this by creating a schedule
5056 * kernel[] -> [S -> []]
5058 * where S is the schedule domain, i.e., the range of "schedule".
5059 * The AST generation will then create a single call surrounded by
5060 * all the condition in "S" that have not been expressed yet.
5062 * The kernel information is attached to this node in attach_id.
5064 static __isl_give isl_ast_node
*construct_launch(
5065 __isl_take isl_ast_build
*build
, __isl_take isl_union_map
*schedule
,
5066 __isl_take
struct ppcg_kernel
*kernel
)
5070 isl_union_set
*domain
;
5075 ctx
= isl_ast_build_get_ctx(build
);
5077 id
= isl_id_alloc(ctx
, NULL
, kernel
);
5078 id
= isl_id_set_free_user(id
, &ppcg_kernel_free
);
5080 domain
= isl_union_map_range(schedule
);
5081 set
= isl_set_from_union_set(domain
);
5082 map
= isl_map_from_domain(set
);
5083 map
= isl_map_from_range(isl_map_wrap(map
));
5084 map
= isl_map_set_tuple_name(map
, isl_dim_in
, "kernel");
5085 schedule
= isl_union_map_from_map(map
);
5087 build
= isl_ast_build_set_at_each_domain(build
, &attach_id
, id
);
5088 node
= isl_ast_build_ast_from_schedule(build
, schedule
);
5089 isl_ast_build_free(build
);
5094 /* This function is called for each leaf in the AST of the host code.
5095 * We first specialize the schedule to the site of the leaf, compute
5096 * the size of shared memory and then construct the body of the host code
5097 * and the associated kernel.
5099 * The necessary information for printing the kernel launch is
5100 * stored in a struct ppcg_kernel and attached to the leaf node
5101 * created to represent the launch.
5103 static __isl_give isl_ast_node
*create_host_leaf(
5104 __isl_take isl_ast_build
*build
, void *user
)
5106 struct gpu_gen
*gen
= (struct gpu_gen
*) user
;
5109 struct ppcg_kernel
*kernel
;
5110 isl_set
*host_domain
;
5111 isl_union_map
*schedule
;
5112 isl_union_map
*local_sched
;
5113 isl_union_map
*access
;
5114 isl_union_set
*domain
;
5117 schedule
= isl_ast_build_get_schedule(build
);
5119 isl_union_map_foreach_map(schedule
, &extract_tile_len
, gen
);
5122 domain
= isl_union_map_domain(isl_union_map_copy(schedule
));
5124 local_sched
= isl_union_map_copy(gen
->sched
);
5125 local_sched
= isl_union_map_intersect_domain(local_sched
, domain
);
5126 access
= isl_union_map_union(isl_union_map_copy(gen
->prog
->read
),
5127 isl_union_map_copy(gen
->prog
->may_write
));
5128 access
= isl_union_map_apply_domain(access
,
5129 isl_union_map_copy(local_sched
));
5131 gen
->tiled_sched
= tile_schedule(gen
, local_sched
);
5132 gen
->tiled_sched
= parametrize_tiled_schedule(gen
, gen
->tiled_sched
);
5133 gen
->tiled_sched
= scale_tile_loops(gen
, gen
->tiled_sched
);
5135 gen
->local_sched
= isl_union_map_copy(gen
->tiled_sched
);
5136 gen
->local_sched
= thread_tile_schedule(gen
, gen
->local_sched
);
5137 gen
->local_sched
= scale_thread_tile_loops(gen
, gen
->local_sched
);
5139 kernel
= gen
->kernel
= isl_calloc_type(gen
->ctx
, struct ppcg_kernel
);
5143 kernel
->id
= gen
->kernel_id
++;
5144 kernel
->context
= isl_union_map_params(isl_union_map_copy(schedule
));
5145 kernel
->grid_size
= extract_grid_size(gen
, kernel
);
5146 extract_block_size(gen
, kernel
);
5147 kernel
->arrays
= isl_union_map_range(access
);
5148 kernel
->arrays
= isl_union_set_apply(kernel
->arrays
,
5149 isl_union_map_copy(gen
->prog
->to_outer
));
5150 kernel
->space
= isl_ast_build_get_schedule_space(build
);
5152 compute_shared_sched(gen
);
5153 gen
->privatization
= compute_privatization(gen
);
5154 check_scalar_live_ranges(gen
);
5155 if (group_references(gen
) < 0)
5156 schedule
= isl_union_map_free(schedule
);
5157 host_domain
= isl_set_from_union_set(isl_union_map_range(
5158 isl_union_map_copy(schedule
)));
5159 localize_bounds(gen
, kernel
, host_domain
);
5161 gen
->local_sched
= interchange_for_unroll(gen
, gen
->local_sched
);
5162 check_shared_memory_bound(gen
);
5163 compute_group_tilings(gen
);
5165 kernel
->tree
= generate_kernel(gen
, build
, host_domain
,
5167 create_kernel_vars(gen
, kernel
);
5169 free_local_array_info(gen
);
5170 isl_map_free(gen
->privatization
);
5171 isl_union_map_free(gen
->local_sched
);
5172 isl_union_map_free(gen
->tiled_sched
);
5173 isl_union_map_free(gen
->shared_sched
);
5174 isl_union_map_free(gen
->shared_proj
);
5175 isl_set_free(host_domain
);
5176 free(gen
->tile_size
);
5178 node
= construct_launch(build
, schedule
, kernel
);
5182 isl_union_map_free(schedule
);
5186 /* Use isl to generate code for the outer gen->tile_first loops
5187 * of the global schedule in gen->sched, resulting in the host code.
5188 * Within each iteration of this partial schedule, i.e., for each kernel
5189 * launch, create_host_leaf takes care of generating the kernel code.
5191 static __isl_give isl_ast_node
*generate_host_code(struct gpu_gen
*gen
)
5193 isl_ast_build
*build
;
5195 isl_union_map
*sched
;
5197 isl_id_list
*iterators
;
5199 sched
= isl_union_map_copy(gen
->sched
);
5200 proj
= projection(isl_union_map_get_space(sched
),
5201 gen
->untiled_len
, gen
->tile_first
);
5202 sched
= isl_union_map_apply_range(sched
, isl_union_map_from_map(proj
));
5204 isl_options_set_ast_build_group_coscheduled(gen
->ctx
, 1);
5205 build
= isl_ast_build_from_context(isl_set_copy(gen
->prog
->context
));
5206 iterators
= generate_names(gen
->ctx
, gen
->tile_first
, "h");
5207 build
= isl_ast_build_set_iterators(build
, iterators
);
5208 build
= isl_ast_build_set_create_leaf(build
, &create_host_leaf
, gen
);
5209 tree
= isl_ast_build_ast_from_schedule(build
, sched
);
5210 isl_ast_build_free(build
);
5215 __isl_give isl_union_map
*extract_sizes_from_str(isl_ctx
*ctx
, const char *str
)
5219 return isl_union_map_read_from_str(ctx
, str
);
5222 /* Information about the outermost tilable bands in the forest of bands.
5224 * tile_len and n_parallel are only sets on band_info structures
5225 * that correspond to outermost bands. For other bands (in particular,
5226 * ancestors of the outermost bands), n_parallal is set to 0.
5228 * prefix is the (padded) schedule leading up to the outermost tilable bands.
5230 * tile_first is the number of schedule dimensions in prefix.
5232 * suffix is the schedule of the outermost tilable bands and their descendants.
5235 struct gpu_gen
*gen
;
5239 isl_union_map
*prefix
;
5240 isl_union_map
*suffix
;
5243 /* Set tile_len and n_parallel of the statement to that of
5244 * their outermost band, recorded in the band_info.
5246 static int set_stmt_tile_len(__isl_take isl_map
*map
, void *user
)
5248 struct band_info
*info
= user
;
5249 struct gpu_stmt
*stmt
;
5252 id
= isl_map_get_tuple_id(map
, isl_dim_in
);
5253 stmt
= find_stmt(info
->gen
->prog
, id
);
5256 stmt
->tile_len
= info
->tile_len
;
5257 stmt
->n_parallel
= info
->n_parallel
;
5264 static void list_select_outer_band(struct gpu_gen
*gen
,
5265 __isl_take isl_band_list
*list
, int pos
, struct band_info
*list_info
);
5267 /* Check if this band has any parallel loops. If so, take it as
5268 * the outermost tilable band. If not, continue looking for the
5269 * outermost tilable band in the children of the current band.
5271 static void band_select_outer_band(struct gpu_gen
*gen
,
5272 __isl_take isl_band
*band
, int pos
, struct band_info
*info
)
5274 int n
= isl_band_n_member(band
);
5277 for (n_parallel
= 0; n_parallel
< n
; ++n_parallel
)
5278 if (!isl_band_member_is_coincident(band
, n_parallel
))
5281 info
->n_parallel
= n_parallel
;
5283 gen
->any_parallelism
= 1;
5285 info
->tile_first
= pos
;
5287 info
->prefix
= isl_band_get_prefix_schedule(band
);
5288 info
->suffix
= isl_union_map_flat_range_product(
5289 isl_band_get_partial_schedule(band
),
5290 isl_band_get_suffix_schedule(band
));
5291 isl_union_map_foreach_map(info
->prefix
,
5292 &set_stmt_tile_len
, info
);
5293 } else if (isl_band_has_children(band
)) {
5294 isl_band_list
*children
;
5295 children
= isl_band_get_children(band
);
5296 list_select_outer_band(gen
, children
, pos
+ n
, info
);
5299 info
->tile_first
= pos
+ n
;
5301 info
->prefix
= isl_union_map_flat_range_product(
5302 isl_band_get_prefix_schedule(band
),
5303 isl_band_get_partial_schedule(band
));
5304 info
->suffix
= isl_band_get_suffix_schedule(band
);
5305 isl_union_map_foreach_map(info
->prefix
,
5306 &set_stmt_tile_len
, info
);
5309 isl_band_free(band
);
5312 /* Comparison function that returns a non-zero value for band_infos
5313 * with different tile_len fields or different n_parallel fields.
5315 static int cmp_band(const void *p1
, const void *p2
)
5317 const struct band_info
*info1
= p1
;
5318 const struct band_info
*info2
= p2
;
5320 if (info1
->tile_len
!= info2
->tile_len
)
5321 return info1
->tile_len
- info2
->tile_len
;
5323 return info1
->n_parallel
- info2
->n_parallel
;
5326 /* Extend "umap" with coordinates with fixed value "val"
5327 * to a total length of "dst_len", assuming the original dimension is "src_len".
5329 static __isl_give isl_union_map
*extend_range(
5330 __isl_take isl_union_map
*umap
, int src_len
, int dst_len
, int val
)
5336 dim
= isl_union_map_get_space(umap
);
5337 map
= isl_map_reverse(projection(dim
, dst_len
, src_len
));
5338 for (i
= src_len
; i
< dst_len
; ++i
)
5339 map
= isl_map_fix_si(map
, isl_dim_out
, i
, val
);
5341 umap
= isl_union_map_apply_range(umap
, isl_union_map_from_map(map
));
5346 /* Group bands with the same values for tile_len and n_parallel.
5347 * The prefix schedule is then extended with a fixed coordinate that
5348 * is different for each such group.
5349 * Note that the actual values for this coordinate are not important.
5350 * The bands have already been effectively separated at a higher level
5351 * or they are independent and may be executed in parallel.
5352 * The list of band_info has been sorted before this functions is called.
5354 static void separate_bands(struct band_info
*info
, int n
)
5359 for (i
= 0; i
< n
; ++i
) {
5360 int l
= info
[i
].tile_first
;
5363 (info
[i
].tile_len
!= info
[i
- 1].tile_len
||
5364 info
[i
].n_parallel
!= info
[i
- 1].n_parallel
))
5367 info
[i
].prefix
= extend_range(info
[i
].prefix
,
5369 info
[i
].tile_first
= l
+ 1;
5373 /* Select the outermost bands in the elements of the list, align
5374 * their prefix schedules, separate bands with different values
5375 * for tile_len and/or n_parallel and then combine the resulting
5376 * prefix and suffix schedules into a single pair of prefix and
5377 * suffix schedules for the entire list.
5379 static void list_select_outer_band(struct gpu_gen
*gen
,
5380 __isl_take isl_band_list
*list
, int pos
, struct band_info
*list_info
)
5384 int n
= isl_band_list_n_band(list
);
5385 isl_ctx
*ctx
= isl_band_list_get_ctx(list
);
5386 struct band_info
*info
;
5388 isl_union_map
*prefix
;
5389 isl_union_map
*suffix
;
5392 info
= isl_calloc_array(ctx
, struct band_info
, n
);
5396 for (i
= 0; i
< n
; ++i
) {
5397 band
= isl_band_list_get_band(list
, i
);
5398 band_select_outer_band(gen
, band
, pos
, &info
[i
]);
5399 if (info
[i
].tile_first
> max_tile_first
)
5400 max_tile_first
= info
[i
].tile_first
;
5403 for (i
= 0; i
< n
; ++i
) {
5404 if (info
[i
].tile_first
== max_tile_first
)
5406 info
[i
].prefix
= extend_range(info
[i
].prefix
,
5407 info
[i
].tile_first
, max_tile_first
, 0);
5408 info
[i
].tile_first
= max_tile_first
;
5411 qsort(info
, n
, sizeof(struct band_info
), &cmp_band
);
5413 for (i
= 0; i
< n
- 1; ++i
)
5414 if (info
[i
].tile_len
!= info
[i
+ 1].tile_len
||
5415 info
[i
].n_parallel
!= info
[i
+ 1].n_parallel
)
5419 separate_bands(info
, n
);
5421 prefix
= info
[0].prefix
;
5422 suffix
= info
[0].suffix
;
5424 for (i
= 1; i
< n
; ++i
) {
5425 prefix
= isl_union_map_union(prefix
, info
[i
].prefix
);
5426 suffix
= isl_union_map_union(suffix
, info
[i
].suffix
);
5429 list_info
->tile_first
= info
[0].tile_first
;
5430 list_info
->tile_len
= -1;
5431 list_info
->prefix
= prefix
;
5432 list_info
->suffix
= suffix
;
5434 isl_band_list_free(list
);
5438 /* Select the outermost tilable band that (by construction)
5439 * has at least one parallel loop.
5440 * The starting position of the aligned band is stored in the pair
5442 * The sizes and number of parallel loops may be different in different
5443 * parts of the band forest and are therefore stored in the gpu_stmts.
5445 * Return the complete schedule, with the tilable bands aligned
5446 * at gen->tile_first and padded with zero, if needed.
5448 static __isl_give isl_union_map
*select_outer_tilable_band(struct gpu_gen
*gen
,
5449 __isl_keep isl_schedule
*schedule
)
5451 isl_band_list
*list
;
5452 struct band_info info
;
5454 gen
->n_parallel
= 0;
5457 list
= isl_schedule_get_band_forest(schedule
);
5459 if (isl_band_list_n_band(list
) == 0) {
5460 isl_band_list_free(list
);
5461 return isl_schedule_get_map(schedule
);
5464 list_select_outer_band(gen
, list
, 0, &info
);
5466 gen
->tile_first
= info
.tile_first
;
5467 info
.suffix
= align_range(info
.suffix
);
5469 return isl_union_map_flat_range_product(info
.prefix
, info
.suffix
);
5472 /* Set gen->untiled_len to the number of scheduling dimensions
5473 * for the schedule of the first domain.
5474 * We assume here that this number is the same for all domains.
5476 static int set_untiled_len(__isl_take isl_map
*map
, void *user
)
5478 unsigned *untiled_len
= user
;
5480 *untiled_len
= isl_map_dim(map
, isl_dim_out
);
5486 /* Compute an appropriate schedule based on the accesses in
5487 * gen->read and gen->write.
5489 * We use the dependences in gen->prog->scop to compute
5490 * a schedule that has a parallel loop in each tilable band.
5491 * Finally, we select the outermost tilable band.
5493 * If live range reordering is allowed, then we need to make sure
5494 * that live ranges on arrays are not run in parallel since doing
5495 * so would require array expansion. We therefore add the array
5496 * order dependences to the coincidence dependences. Non-zero array
5497 * order dependences will then prevent a schedule dimension from being
5498 * considered parallel.
5499 * Live ranges derived from scalars are allowed to be run in parallel
5500 * since we force the scalars to be mapped to private memory in
5501 * check_scalar_live_ranges.
5502 * If live range reordering is allowed, then the false dependences
5503 * are not added to the validity constraints as that would prevent
5504 * reordering. Instead, the external false dependences that enforce that reads
5505 * from potentially live-in data precede any later write and
5506 * that writes of potentially live-out data follow any other earlier write
5507 * are added to the validity and the coincidence constraints.
5508 * The false dependences are still added to the proximity constraints
5509 * for consistency with the case where live range reordering is not allowed.
5510 * The coincidence constraints then consist of flow dependences,
5511 * exernal false dependences and array order dependences.
5512 * The independences can be filtered out from the first two sets.
5513 * They have already been filtered out from the array order dependences
5514 * on a per array basis in collect_order_dependences.
5515 * There is no need for a per array handling of the other two sets
5516 * as there should be no flow or external false dependence on local
5517 * variables that can be filtered out.
5519 static void compute_schedule(struct gpu_gen
*gen
)
5521 isl_union_set
*domain
;
5522 isl_union_map
*dep_raw
, *dep
;
5523 isl_union_map
*validity
, *proximity
, *coincidence
;
5524 isl_union_map
*sched
;
5525 isl_schedule_constraints
*sc
;
5526 isl_schedule
*schedule
;
5528 domain
= isl_union_set_copy(gen
->prog
->scop
->domain
);
5529 domain
= isl_union_set_intersect_params(domain
,
5530 isl_set_copy(gen
->prog
->scop
->context
));
5531 sc
= isl_schedule_constraints_on_domain(isl_union_set_copy(domain
));
5532 if (gen
->options
->live_range_reordering
) {
5533 sc
= isl_schedule_constraints_set_conditional_validity(sc
,
5534 isl_union_map_copy(gen
->prog
->scop
->tagged_dep_flow
),
5535 isl_union_map_copy(gen
->prog
->scop
->tagged_dep_order
));
5536 proximity
= isl_union_map_copy(gen
->prog
->scop
->dep_flow
);
5537 validity
= isl_union_map_copy(proximity
);
5538 validity
= isl_union_map_union(validity
,
5539 isl_union_map_copy(gen
->prog
->scop
->dep_external
));
5540 proximity
= isl_union_map_union(proximity
,
5541 isl_union_map_copy(gen
->prog
->scop
->dep_false
));
5542 coincidence
= isl_union_map_copy(validity
);
5543 coincidence
= isl_union_map_subtract(coincidence
,
5544 isl_union_map_copy(gen
->prog
->scop
->independence
));
5545 coincidence
= isl_union_map_union(coincidence
,
5546 isl_union_map_copy(gen
->prog
->array_order
));
5548 dep_raw
= isl_union_map_copy(gen
->prog
->scop
->dep_flow
);
5549 dep
= isl_union_map_copy(gen
->prog
->scop
->dep_false
);
5550 dep
= isl_union_map_union(dep
, dep_raw
);
5551 dep
= isl_union_map_coalesce(dep
);
5552 proximity
= isl_union_map_copy(dep
);
5553 coincidence
= isl_union_map_copy(dep
);
5556 sc
= isl_schedule_constraints_set_validity(sc
, validity
);
5557 sc
= isl_schedule_constraints_set_coincidence(sc
, coincidence
);
5558 sc
= isl_schedule_constraints_set_proximity(sc
, proximity
);
5560 if (gen
->options
->debug
->dump_schedule_constraints
)
5561 isl_schedule_constraints_dump(sc
);
5562 schedule
= isl_schedule_constraints_compute_schedule(sc
);
5563 if (gen
->options
->debug
->dump_schedule
)
5564 isl_schedule_dump(schedule
);
5566 sched
= select_outer_tilable_band(gen
, schedule
);
5568 isl_union_map_foreach_map(sched
, &set_untiled_len
, &gen
->untiled_len
);
5569 sched
= isl_union_map_intersect_domain(sched
, domain
);
5572 isl_schedule_free(schedule
);
5575 /* Compute the sets of outer array elements that need to be copied in and out.
5577 * In particular, for each array that is possibly written anywhere in
5578 * gen->prog and that is visible outside the corresponding scop,
5579 * we copy out its entire extent.
5581 * Any array elements that is read without first being written needs
5582 * to be copied in. Furthermore, if there are any array elements that
5583 * are copied out, but that may not be written inside gen->prog, then
5584 * they also need to be copied in to ensure that the value after execution
5585 * is the same as the value before execution.
5586 * In case the array elements are structures, we need to take into
5587 * account that all members of the structures need to be written
5588 * by gen->prog before we can avoid copying the data structure in.
5590 * While computing the set of array elements that are copied out but
5591 * not necessarily written, we intersect both sets with the context.
5592 * This helps in those cases where the arrays are declared with a fixed size,
5593 * while the accesses are parametric and the context assigns a fixed value
5594 * to the parameters.
5596 * If an element from a local array is read without first being written,
5597 * then there is no point in copying it in since it cannot have been
5598 * written prior to the scop. Warn about the uninitialized read instead.
5600 static void compute_copy_in_and_out(struct gpu_gen
*gen
)
5603 isl_union_set
*local
;
5604 isl_union_set
*may_write
, *must_write
;
5605 isl_union_set
*copy_in
, *copy_out
;
5606 isl_union_set
*not_written
;
5607 isl_union_map
*uninitialized
;
5608 isl_union_map
*local_uninitialized
;
5610 must_write
= isl_union_map_range(
5611 isl_union_map_copy(gen
->prog
->must_write
));
5612 must_write
= isl_union_set_intersect_params(must_write
,
5613 isl_set_copy(gen
->prog
->context
));
5614 may_write
= isl_union_map_range(
5615 isl_union_map_copy(gen
->prog
->may_write
));
5616 may_write
= isl_union_set_intersect_params(may_write
,
5617 isl_set_copy(gen
->prog
->context
));
5618 may_write
= isl_union_set_universe(may_write
);
5619 may_write
= isl_union_set_apply(may_write
,
5620 isl_union_map_copy(gen
->prog
->to_outer
));
5621 copy_out
= isl_union_set_empty(isl_union_set_get_space(may_write
));
5622 local
= isl_union_set_copy(copy_out
);
5624 for (i
= 0; i
< gen
->prog
->n_array
; ++i
) {
5629 space
= isl_space_copy(gen
->prog
->array
[i
].space
);
5631 if (gen
->prog
->array
[i
].local
) {
5634 set
= isl_set_universe(space
);
5635 local
= isl_union_set_add_set(local
, set
);
5639 write_i
= isl_union_set_extract_set(may_write
, space
);
5640 empty
= isl_set_plain_is_empty(write_i
);
5641 isl_set_free(write_i
);
5645 write_i
= isl_set_copy(gen
->prog
->array
[i
].extent
);
5646 copy_out
= isl_union_set_add_set(copy_out
, write_i
);
5648 isl_union_set_free(may_write
);
5650 copy_out
= isl_union_set_intersect_params(copy_out
,
5651 isl_set_copy(gen
->prog
->context
));
5653 gen
->prog
->copy_out
= isl_union_set_copy(copy_out
);
5655 copy_out
= isl_union_set_apply(copy_out
,
5656 isl_union_map_copy(gen
->prog
->to_inner
));
5657 not_written
= isl_union_set_subtract(copy_out
, must_write
);
5659 uninitialized
= isl_union_map_copy(gen
->prog
->scop
->live_in
);
5660 local_uninitialized
= isl_union_map_copy(uninitialized
);
5662 local
= isl_union_set_apply(local
,
5663 isl_union_map_copy(gen
->prog
->to_inner
));
5664 local_uninitialized
= isl_union_map_intersect_range(local_uninitialized
,
5666 if (!isl_union_map_is_empty(local_uninitialized
)) {
5668 "possibly uninitialized reads (not copied in):\n");
5669 isl_union_map_dump(local_uninitialized
);
5671 uninitialized
= isl_union_map_subtract(uninitialized
,
5672 local_uninitialized
);
5673 copy_in
= isl_union_map_range(uninitialized
);
5674 copy_in
= isl_union_set_union(copy_in
, not_written
);
5675 copy_in
= isl_union_set_apply(copy_in
,
5676 isl_union_map_copy(gen
->prog
->to_outer
));
5678 gen
->prog
->copy_in
= copy_in
;
5681 /* Internal data structure for extract_access.
5682 * "next_access" points to the end of a linked list that is extended
5683 * by extract_access.
5684 * "single_expression" is set if the access expressions belong to
5685 * an expression statement (i.e., a statement without internal control).
5686 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5688 struct ppcg_extract_access_data
{
5689 struct gpu_stmt_access
**next_access
;
5690 int single_expression
;
5691 isl_union_map
*any_to_outer
;
5694 /* Extract a gpu_stmt_access from "expr", append it to the list
5695 * that ends in *data->next_access and update the end of the list.
5696 * If the access expression performs a write, then it is considered
5697 * exact only if it appears in a single expression statement and
5698 * if its may access relation is equal to its must access relation.
5700 * The combined set of may accesses may be union if member accesses
5701 * are involved, but the entire set is derived from a single reference and
5702 * therefore from a single index expression. These accesses therefore
5703 * all map to the same outer array.
5705 static int extract_access(__isl_keep pet_expr
*expr
, void *user
)
5707 struct ppcg_extract_access_data
*data
= user
;
5708 isl_union_map
*may
, *tagged
;
5709 struct gpu_stmt_access
*access
;
5711 isl_multi_pw_aff
*index
;
5713 may
= pet_expr_access_get_may_read(expr
);
5714 may
= isl_union_map_union(may
, pet_expr_access_get_may_write(expr
));
5715 may
= isl_union_map_apply_range(may
,
5716 isl_union_map_copy(data
->any_to_outer
));
5717 ctx
= isl_union_map_get_ctx(may
);
5718 access
= isl_alloc_type(ctx
, struct gpu_stmt_access
);
5720 access
->next
= NULL
;
5721 access
->read
= pet_expr_access_is_read(expr
);
5722 access
->write
= pet_expr_access_is_write(expr
);
5723 tagged
= pet_expr_access_get_tagged_may_read(expr
);
5724 tagged
= isl_union_map_union(tagged
,
5725 pet_expr_access_get_tagged_may_write(expr
));
5726 tagged
= isl_union_map_apply_range(tagged
,
5727 isl_union_map_copy(data
->any_to_outer
));
5728 access
->tagged_access
= isl_map_from_union_map(tagged
);
5729 if (!access
->write
) {
5730 access
->exact_write
= 1;
5731 } else if (!data
->single_expression
) {
5732 access
->exact_write
= 0;
5734 isl_union_map
*must
;
5735 must
= pet_expr_access_get_must_write(expr
);
5736 access
->exact_write
= isl_union_map_is_equal(must
, may
);
5737 isl_union_map_free(must
);
5739 access
->access
= isl_map_from_union_map(may
);
5740 index
= pet_expr_access_get_index(expr
);
5741 access
->n_index
= isl_multi_pw_aff_dim(index
, isl_dim_out
);
5742 isl_multi_pw_aff_free(index
);
5743 access
->ref_id
= pet_expr_access_get_ref_id(expr
);
5746 *data
->next_access
= access
;
5747 data
->next_access
= &(*data
->next_access
)->next
;
5752 /* Construct a linked list of gpu_stmt_access objects,
5753 * one for each access expression in the statement body.
5754 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5756 static void pet_stmt_extract_accesses(struct gpu_stmt
*stmt
,
5757 __isl_keep isl_union_map
*any_to_outer
)
5759 struct ppcg_extract_access_data data
;
5761 stmt
->accesses
= NULL
;
5762 data
.next_access
= &stmt
->accesses
;
5763 data
.single_expression
=
5764 pet_tree_get_type(stmt
->stmt
->body
) == pet_tree_expr
;
5765 data
.any_to_outer
= any_to_outer
;
5766 pet_tree_foreach_access_expr(stmt
->stmt
->body
, &extract_access
, &data
);
5769 /* Return an array of gpu_stmt representing the statements in "scop".
5771 static struct gpu_stmt
*extract_stmts(isl_ctx
*ctx
, struct ppcg_scop
*scop
,
5772 __isl_keep isl_set
*context
, __isl_keep isl_union_map
*any_to_outer
)
5775 struct gpu_stmt
*stmts
;
5777 stmts
= isl_calloc_array(ctx
, struct gpu_stmt
, scop
->pet
->n_stmt
);
5781 for (i
= 0; i
< scop
->pet
->n_stmt
; ++i
) {
5782 struct gpu_stmt
*s
= &stmts
[i
];
5784 s
->id
= isl_set_get_tuple_id(scop
->pet
->stmts
[i
]->domain
);
5785 s
->stmt
= scop
->pet
->stmts
[i
];
5786 pet_stmt_extract_accesses(s
, any_to_outer
);
5792 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
5794 static __isl_give isl_printer
*print_gpu(__isl_take isl_printer
*p
, void *user
)
5796 struct gpu_gen
*gen
= user
;
5798 return gen
->print(p
, gen
->prog
, gen
->tree
, &gen
->types
,
5802 /* Generate CUDA code for "scop" and print it to "p".
5803 * After generating an AST for the transformed scop as explained below,
5804 * we call "gen->print" to print the AST in the desired output format
5807 * If it turns out that it does not make sense to generate GPU code,
5808 * then we generate CPU code instead.
5810 * The GPU code is generated in a context where at least one
5811 * statement instance is executed. The corresponding guard (if any) is printed
5812 * around the entire generated GPU code, except for the declaration
5813 * of the arrays that are visible outside of the scop and that therefore
5814 * cannot be declared inside the body of any possible guard.
5816 * We first compute a schedule that respects the dependences
5817 * of the original program and select the outermost band
5818 * of tilable dimensions that has at least one parallel loop.
5819 * We then have three blocks of dimensions
5823 * The tilable band "B" is first tiled according to "tile" sizes, resulting
5828 * For each iteration of the T loop and for each array, we compute
5829 * the array elements accessed by that iteration, construct a rectangular
5830 * box around it and shift it to the origin. The result is used
5831 * as shared memory for the array.
5833 * We then split off at most 2 parallel loops from the T loops and
5834 * at most 3 parallel loops from the P loops
5838 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
5839 * according to "grid"/"block" sizes.
5841 * H T1T T1P T2 P1T P1P P2 G
5843 * Finally, the T1P and P1P iterators are equated to the block and
5844 * thread dimensions respectively and so are effectively removed.
5845 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
5846 * are run on the GPU.
5848 * Code is generated in three stages. We first generate code for the
5849 * host (the H loops), with iterators h%d. Then, for each leaf node
5850 * of the resulting AST, we generate code for the shared loops (up to
5851 * and including T2), with iterators g%d and after equating the H loops
5852 * to h%d parameters and the T1P loops to the block dimensions.
5853 * Finally, we generate code for the remaining loops in a similar fashion.
5855 static __isl_give isl_printer
*generate(__isl_take isl_printer
*p
,
5856 struct gpu_gen
*gen
, struct ppcg_scop
*scop
,
5857 struct ppcg_options
*options
)
5859 struct gpu_prog
*prog
;
5861 isl_set
*context
, *guard
;
5864 return isl_printer_free(p
);
5866 ctx
= isl_printer_get_ctx(p
);
5867 prog
= gpu_prog_alloc(ctx
, scop
);
5869 return isl_printer_free(p
);
5871 context
= isl_set_copy(prog
->context
);
5872 guard
= isl_union_set_params(isl_union_set_copy(prog
->scop
->domain
));
5873 prog
->context
= isl_set_intersect(prog
->context
, isl_set_copy(guard
));
5876 gen
->any_parallelism
= 0;
5877 compute_schedule(gen
);
5879 if (!gen
->any_parallelism
) {
5880 isl_set_free(context
);
5881 isl_set_free(guard
);
5882 p
= print_cpu(p
, scop
, options
);
5884 compute_copy_in_and_out(gen
);
5885 gen
->tree
= generate_host_code(gen
);
5886 p
= ppcg_print_exposed_declarations(p
, prog
->scop
);
5887 p
= ppcg_print_guarded(p
, guard
, context
, &print_gpu
, gen
);
5888 isl_ast_node_free(gen
->tree
);
5891 isl_union_map_free(gen
->sched
);
5893 gpu_prog_free(prog
);
5898 /* Wrapper around generate for use as a ppcg_transform callback.
5900 static __isl_give isl_printer
*generate_wrap(__isl_take isl_printer
*p
,
5901 struct ppcg_scop
*scop
, void *user
)
5903 struct gpu_gen
*gen
= user
;
5905 return generate(p
, gen
, scop
, gen
->options
);
5908 /* Transform the code in the file called "input" by replacing
5909 * all scops by corresponding GPU code and write the results to "out".
5911 int generate_gpu(isl_ctx
*ctx
, const char *input
, FILE *out
,
5912 struct ppcg_options
*options
,
5913 __isl_give isl_printer
*(*print
)(__isl_take isl_printer
*p
,
5914 struct gpu_prog
*prog
, __isl_keep isl_ast_node
*tree
,
5915 struct gpu_types
*types
, void *user
), void *user
)
5922 gen
.sizes
= extract_sizes_from_str(ctx
, options
->sizes
);
5923 gen
.options
= options
;
5926 gen
.print_user
= user
;
5928 gen
.types
.name
= NULL
;
5930 if (options
->debug
->dump_sizes
) {
5931 isl_space
*space
= isl_space_params_alloc(ctx
, 0);
5932 gen
.used_sizes
= isl_union_map_empty(space
);
5935 r
= ppcg_transform(ctx
, input
, out
, options
, &generate_wrap
, &gen
);
5937 if (options
->debug
->dump_sizes
) {
5938 isl_union_map_dump(gen
.used_sizes
);
5939 isl_union_map_free(gen
.used_sizes
);
5942 isl_union_map_free(gen
.sizes
);
5943 for (i
= 0; i
< gen
.types
.n
; ++i
)
5944 free(gen
.types
.name
[i
]);
5945 free(gen
.types
.name
);
5950 struct gpu_prog
*gpu_prog_alloc(isl_ctx
*ctx
, struct ppcg_scop
*scop
)
5952 struct gpu_prog
*prog
;
5959 prog
= isl_calloc_type(ctx
, struct gpu_prog
);
5964 prog
->context
= isl_set_copy(scop
->context
);
5965 prog
->n_stmts
= scop
->pet
->n_stmt
;
5966 prog
->any_to_outer
= pet_scop_compute_outer_to_any(scop
->pet
);
5967 prog
->any_to_outer
= isl_union_map_reverse(prog
->any_to_outer
);
5968 space
= isl_union_map_get_space(prog
->any_to_outer
);
5969 space
= isl_space_set_from_params(space
);
5970 space
= isl_space_add_dims(space
, isl_dim_set
, 1);
5971 space
= isl_space_map_from_set(space
);
5972 id
= isl_map_identity(space
);
5973 prog
->any_to_outer
= isl_union_map_add_map(prog
->any_to_outer
, id
);
5974 prog
->stmts
= extract_stmts(ctx
, scop
,
5975 prog
->context
, prog
->any_to_outer
);
5976 prog
->read
= isl_union_map_copy(scop
->reads
);
5977 prog
->may_write
= isl_union_map_copy(scop
->may_writes
);
5978 prog
->must_write
= isl_union_map_copy(scop
->must_writes
);
5979 prog
->to_inner
= pet_scop_compute_outer_to_inner(scop
->pet
);
5980 prog
->to_outer
= isl_union_map_copy(prog
->to_inner
);
5981 prog
->to_outer
= isl_union_map_reverse(prog
->to_outer
);
5984 return gpu_prog_free(prog
);
5986 if (collect_array_info(prog
) < 0)
5987 return gpu_prog_free(prog
);
5992 void *gpu_prog_free(struct gpu_prog
*prog
)
5996 free_array_info(prog
);
5997 free_stmts(prog
->stmts
, prog
->n_stmts
);
5998 isl_union_map_free(prog
->any_to_outer
);
5999 isl_union_map_free(prog
->to_outer
);
6000 isl_union_map_free(prog
->to_inner
);
6001 isl_union_set_free(prog
->copy_in
);
6002 isl_union_set_free(prog
->copy_out
);
6003 isl_union_map_free(prog
->read
);
6004 isl_union_map_free(prog
->may_write
);
6005 isl_union_map_free(prog
->must_write
);
6006 isl_union_map_free(prog
->array_order
);
6007 isl_set_free(prog
->context
);