2 * Copyright 2011 INRIA Saclay
3 * Copyright 2013 Ecole Normale Superieure
4 * Copyright 2015 Sven Verdoolaege
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
20 #include <isl/options.h>
21 #include <isl/schedule.h>
22 #include <isl/ast_build.h>
23 #include <isl/schedule.h>
26 #include "ppcg_options.h"
32 struct isl_options
*isl
;
33 struct pet_options
*pet
;
34 struct ppcg_options
*ppcg
;
39 const char *ppcg_version(void);
40 static void print_version(void)
42 printf("%s", ppcg_version());
45 ISL_ARGS_START(struct options
, options_args
)
46 ISL_ARG_CHILD(struct options
, isl
, "isl", &isl_options_args
, "isl options")
47 ISL_ARG_CHILD(struct options
, pet
, "pet", &pet_options_args
, "pet options")
48 ISL_ARG_CHILD(struct options
, ppcg
, NULL
, &ppcg_options_args
, "ppcg options")
49 ISL_ARG_STR(struct options
, output
, 'o', NULL
,
50 "filename", NULL
, "output filename (c and opencl targets)")
51 ISL_ARG_ARG(struct options
, input
, "input", NULL
)
52 ISL_ARG_VERSION(print_version
)
55 ISL_ARG_DEF(options
, struct options
, options_args
)
57 /* Return a pointer to the final path component of "filename" or
58 * to "filename" itself if it does not contain any components.
60 const char *ppcg_base_name(const char *filename
)
64 base
= strrchr(filename
, '/');
71 /* Copy the base name of "input" to "name" and return its length.
72 * "name" is not NULL terminated.
74 * In particular, remove all leading directory components and
75 * the final extension, if any.
77 int ppcg_extract_base_name(char *name
, const char *input
)
83 base
= ppcg_base_name(input
);
84 ext
= strrchr(base
, '.');
85 len
= ext
? ext
- base
: strlen(base
);
87 memcpy(name
, base
, len
);
92 /* Collect all variable names that are in use in "scop".
93 * In particular, collect all parameters in the context and
94 * all the array names.
95 * Store these names in an isl_id_to_ast_expr by mapping
96 * them to a dummy value (0).
98 static __isl_give isl_id_to_ast_expr
*collect_names(struct pet_scop
*scop
)
103 isl_id_to_ast_expr
*names
;
105 ctx
= isl_set_get_ctx(scop
->context
);
107 n
= isl_set_dim(scop
->context
, isl_dim_param
);
109 names
= isl_id_to_ast_expr_alloc(ctx
, n
+ scop
->n_array
);
110 zero
= isl_ast_expr_from_val(isl_val_zero(ctx
));
112 for (i
= 0; i
< n
; ++i
) {
115 id
= isl_set_get_dim_id(scop
->context
, isl_dim_param
, i
);
116 names
= isl_id_to_ast_expr_set(names
,
117 id
, isl_ast_expr_copy(zero
));
120 for (i
= 0; i
< scop
->n_array
; ++i
) {
121 struct pet_array
*array
= scop
->arrays
[i
];
124 id
= isl_set_get_tuple_id(array
->extent
);
125 names
= isl_id_to_ast_expr_set(names
,
126 id
, isl_ast_expr_copy(zero
));
129 isl_ast_expr_free(zero
);
134 /* Return an isl_id called "prefix%d", with "%d" set to "i".
135 * If an isl_id with such a name already appears among the variable names
136 * of "scop", then adjust the name to "prefix%d_%d".
138 static __isl_give isl_id
*generate_name(struct ppcg_scop
*scop
,
139 const char *prefix
, int i
)
147 ctx
= isl_set_get_ctx(scop
->context
);
148 snprintf(name
, sizeof(name
), "%s%d", prefix
, i
);
149 id
= isl_id_alloc(ctx
, name
, NULL
);
152 while ((has_name
= isl_id_to_ast_expr_has(scop
->names
, id
)) == 1) {
154 snprintf(name
, sizeof(name
), "%s%d_%d", prefix
, i
, j
++);
155 id
= isl_id_alloc(ctx
, name
, NULL
);
158 return has_name
< 0 ? isl_id_free(id
) : id
;
161 /* Return a list of "n" isl_ids of the form "prefix%d".
162 * If an isl_id with such a name already appears among the variable names
163 * of "scop", then adjust the name to "prefix%d_%d".
165 __isl_give isl_id_list
*ppcg_scop_generate_names(struct ppcg_scop
*scop
,
166 int n
, const char *prefix
)
173 ctx
= isl_set_get_ctx(scop
->context
);
174 names
= isl_id_list_alloc(ctx
, n
);
175 for (i
= 0; i
< n
; ++i
) {
178 id
= generate_name(scop
, prefix
, i
);
179 names
= isl_id_list_add(names
, id
);
185 /* Is "stmt" not a kill statement?
187 static int is_not_kill(struct pet_stmt
*stmt
)
189 return !pet_stmt_is_kill(stmt
);
192 /* Collect the iteration domains of the statements in "scop" that
195 static __isl_give isl_union_set
*collect_domains(struct pet_scop
*scop
,
196 int (*pred
)(struct pet_stmt
*stmt
))
200 isl_union_set
*domain
;
205 domain
= isl_union_set_empty(isl_set_get_space(scop
->context
));
207 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
208 struct pet_stmt
*stmt
= scop
->stmts
[i
];
214 isl_die(isl_union_set_get_ctx(domain
),
215 isl_error_unsupported
,
216 "data dependent conditions not supported",
217 return isl_union_set_free(domain
));
219 domain_i
= isl_set_copy(scop
->stmts
[i
]->domain
);
220 domain
= isl_union_set_add_set(domain
, domain_i
);
226 /* Collect the iteration domains of the statements in "scop",
227 * skipping kill statements.
229 static __isl_give isl_union_set
*collect_non_kill_domains(struct pet_scop
*scop
)
231 return collect_domains(scop
, &is_not_kill
);
234 /* This function is used as a callback to pet_expr_foreach_call_expr
235 * to detect if there is any call expression in the input expression.
236 * Assign the value 1 to the integer that "user" points to and
237 * abort the search since we have found what we were looking for.
239 static int set_has_call(__isl_keep pet_expr
*expr
, void *user
)
241 int *has_call
= user
;
248 /* Does "expr" contain any call expressions?
250 static int expr_has_call(__isl_keep pet_expr
*expr
)
254 if (pet_expr_foreach_call_expr(expr
, &set_has_call
, &has_call
) < 0 &&
261 /* This function is a callback for pet_tree_foreach_expr.
262 * If "expr" contains any call (sub)expressions, then set *has_call
263 * and abort the search.
265 static int check_call(__isl_keep pet_expr
*expr
, void *user
)
267 int *has_call
= user
;
269 if (expr_has_call(expr
))
272 return *has_call
? -1 : 0;
275 /* Does "stmt" contain any call expressions?
277 static int has_call(struct pet_stmt
*stmt
)
281 if (pet_tree_foreach_expr(stmt
->body
, &check_call
, &has_call
) < 0 &&
288 /* Collect the iteration domains of the statements in "scop"
289 * that contain a call expression.
291 static __isl_give isl_union_set
*collect_call_domains(struct pet_scop
*scop
)
293 return collect_domains(scop
, &has_call
);
296 /* Given a union of "tagged" access relations of the form
298 * [S_i[...] -> R_j[]] -> A_k[...]
300 * project out the "tags" (R_j[]).
301 * That is, return a union of relations of the form
303 * S_i[...] -> A_k[...]
305 static __isl_give isl_union_map
*project_out_tags(
306 __isl_take isl_union_map
*umap
)
308 return isl_union_map_domain_factor_domain(umap
);
311 /* Construct a function from tagged iteration domains to the corresponding
312 * untagged iteration domains with as range of the wrapped map in the domain
313 * the reference tags that appear in any of the reads, writes or kills.
314 * Store the result in ps->tagger.
316 * For example, if the statement with iteration space S[i,j]
317 * contains two array references R_1[] and R_2[], then ps->tagger will contain
319 * { [S[i,j] -> R_1[]] -> S[i,j]; [S[i,j] -> R_2[]] -> S[i,j] }
321 static void compute_tagger(struct ppcg_scop
*ps
)
323 isl_union_map
*tagged
;
324 isl_union_pw_multi_aff
*tagger
;
326 tagged
= isl_union_map_copy(ps
->tagged_reads
);
327 tagged
= isl_union_map_union(tagged
,
328 isl_union_map_copy(ps
->tagged_may_writes
));
329 tagged
= isl_union_map_union(tagged
,
330 isl_union_map_copy(ps
->tagged_must_kills
));
331 tagged
= isl_union_map_universe(tagged
);
332 tagged
= isl_union_set_unwrap(isl_union_map_domain(tagged
));
334 tagger
= isl_union_map_domain_map_union_pw_multi_aff(tagged
);
339 /* Compute the live out accesses, i.e., the writes that are
340 * potentially not killed by any kills or any other writes, and
341 * store them in ps->live_out.
343 * We compute the "dependence" of any "kill" (an explicit kill
344 * or a must write) on any may write.
345 * The may writes with a "depending" kill are definitely killed.
346 * The remaining may writes can potentially be live out.
348 static void compute_live_out(struct ppcg_scop
*ps
)
350 isl_union_pw_multi_aff
*tagger
;
351 isl_schedule
*schedule
;
352 isl_union_map
*kills
;
353 isl_union_map
*exposed
;
354 isl_union_map
*covering
;
355 isl_union_access_info
*access
;
356 isl_union_flow
*flow
;
358 tagger
= isl_union_pw_multi_aff_copy(ps
->tagger
);
359 schedule
= isl_schedule_copy(ps
->schedule
);
360 schedule
= isl_schedule_pullback_union_pw_multi_aff(schedule
, tagger
);
361 kills
= isl_union_map_union(isl_union_map_copy(ps
->tagged_must_writes
),
362 isl_union_map_copy(ps
->tagged_must_kills
));
363 access
= isl_union_access_info_from_sink(kills
);
364 access
= isl_union_access_info_set_may_source(access
,
365 isl_union_map_copy(ps
->tagged_may_writes
));
366 access
= isl_union_access_info_set_schedule(access
, schedule
);
367 flow
= isl_union_access_info_compute_flow(access
);
368 covering
= isl_union_flow_get_may_dependence(flow
);
369 isl_union_flow_free(flow
);
370 exposed
= isl_union_map_copy(ps
->tagged_may_writes
);
371 exposed
= isl_union_map_subtract_domain(exposed
,
372 isl_union_map_domain(covering
));
373 ps
->live_out
= project_out_tags(exposed
);
376 /* Compute the flow dependences and the live_in accesses and store
377 * the results in ps->dep_flow and ps->live_in.
378 * A copy of the flow dependences, tagged with the reference tags
379 * is stored in ps->tagged_dep_flow.
381 * We first compute ps->tagged_dep_flow, i.e., the tagged flow dependences
382 * and then project out the tags.
384 * We allow both the must writes and the must kills to serve as
385 * definite sources such that a subsequent read would not depend
386 * on any earlier write. The resulting flow dependences with
387 * a must kill as source reflect possibly uninitialized reads.
388 * No dependences need to be introduced to protect such reads
389 * (other than those imposed by potential flows from may writes
390 * that follow the kill). We therefore those flow dependences.
391 * This is also useful for the dead code elimination, which assumes
392 * the flow sources are non-kill instances.
394 static void compute_tagged_flow_dep(struct ppcg_scop
*ps
)
396 isl_union_pw_multi_aff
*tagger
;
397 isl_schedule
*schedule
;
398 isl_union_map
*live_in
;
399 isl_union_access_info
*access
;
400 isl_union_flow
*flow
;
401 isl_union_map
*must_source
;
402 isl_union_map
*kills
;
403 isl_union_map
*tagged_flow
;
405 tagger
= isl_union_pw_multi_aff_copy(ps
->tagger
);
406 schedule
= isl_schedule_copy(ps
->schedule
);
407 schedule
= isl_schedule_pullback_union_pw_multi_aff(schedule
, tagger
);
408 kills
= isl_union_map_copy(ps
->tagged_must_kills
);
409 must_source
= isl_union_map_copy(ps
->tagged_must_writes
);
410 must_source
= isl_union_map_union(must_source
,
411 isl_union_map_copy(kills
));
412 access
= isl_union_access_info_from_sink(
413 isl_union_map_copy(ps
->tagged_reads
));
414 access
= isl_union_access_info_set_must_source(access
, must_source
);
415 access
= isl_union_access_info_set_may_source(access
,
416 isl_union_map_copy(ps
->tagged_may_writes
));
417 access
= isl_union_access_info_set_schedule(access
, schedule
);
418 flow
= isl_union_access_info_compute_flow(access
);
419 tagged_flow
= isl_union_flow_get_may_dependence(flow
);
420 tagged_flow
= isl_union_map_subtract_domain(tagged_flow
,
421 isl_union_map_domain(kills
));
422 ps
->tagged_dep_flow
= tagged_flow
;
423 ps
->dep_flow
= isl_union_map_copy(ps
->tagged_dep_flow
);
424 ps
->dep_flow
= isl_union_map_factor_domain(ps
->dep_flow
);
425 live_in
= isl_union_flow_get_may_no_source(flow
);
426 ps
->live_in
= project_out_tags(live_in
);
427 isl_union_flow_free(flow
);
430 /* Compute the order dependences that prevent the potential live ranges
432 * "before" contains all pairs of statement iterations where
433 * the first is executed before the second according to the original schedule.
435 * In particular, construct a union of relations
437 * [R[...] -> R_1[]] -> [W[...] -> R_2[]]
439 * where [R[...] -> R_1[]] is the range of one or more live ranges
440 * (i.e., a read) and [W[...] -> R_2[]] is the domain of one or more
441 * live ranges (i.e., a write). Moreover, the read and the write
442 * access the same memory element and the read occurs before the write
443 * in the original schedule.
444 * The scheduler allows some of these dependences to be violated, provided
445 * the adjacent live ranges are all local (i.e., their domain and range
446 * are mapped to the same point by the current schedule band).
448 * Note that if a live range is not local, then we need to make
449 * sure it does not overlap with _any_ other live range, and not
450 * just with the "previous" and/or the "next" live range.
451 * We therefore add order dependences between reads and
452 * _any_ later potential write.
454 * We also need to be careful about writes without a corresponding read.
455 * They are already prevented from moving past non-local preceding
456 * intervals, but we also need to prevent them from moving past non-local
457 * following intervals. We therefore also add order dependences from
458 * potential writes that do not appear in any intervals
459 * to all later potential writes.
460 * Note that dead code elimination should have removed most of these
461 * dead writes, but the dead code elimination may not remove all dead writes,
462 * so we need to consider them to be safe.
464 static void compute_order_dependences(struct ppcg_scop
*ps
,
465 __isl_take isl_union_map
*before
)
467 isl_union_map
*reads
;
468 isl_union_map
*shared_access
;
469 isl_union_set
*matched
;
470 isl_union_map
*unmatched
;
471 isl_union_set
*domain
;
473 reads
= isl_union_map_copy(ps
->tagged_reads
);
474 matched
= isl_union_map_domain(isl_union_map_copy(ps
->tagged_dep_flow
));
475 unmatched
= isl_union_map_copy(ps
->tagged_may_writes
);
476 unmatched
= isl_union_map_subtract_domain(unmatched
, matched
);
477 reads
= isl_union_map_union(reads
, unmatched
);
478 shared_access
= isl_union_map_copy(ps
->tagged_may_writes
);
479 shared_access
= isl_union_map_reverse(shared_access
);
480 shared_access
= isl_union_map_apply_range(reads
, shared_access
);
481 shared_access
= isl_union_map_zip(shared_access
);
482 shared_access
= isl_union_map_intersect_domain(shared_access
,
483 isl_union_map_wrap(before
));
484 domain
= isl_union_map_domain(isl_union_map_copy(shared_access
));
485 shared_access
= isl_union_map_zip(shared_access
);
486 ps
->dep_order
= isl_union_set_unwrap(domain
);
487 ps
->tagged_dep_order
= shared_access
;
490 /* Compute those validity dependences of the program represented by "scop"
491 * that should be unconditionally enforced even when live-range reordering
493 * "before" contains all pairs of statement iterations where
494 * the first is executed before the second according to the original schedule.
496 * In particular, compute the external false dependences
497 * as well as order dependences between sources with the same sink.
498 * The anti-dependences are already taken care of by the order dependences.
499 * The external false dependences are only used to ensure that live-in and
500 * live-out data is not overwritten by any writes inside the scop.
502 * In particular, the reads from live-in data need to precede any
503 * later write to the same memory element.
504 * As to live-out data, the last writes need to remain the last writes.
505 * That is, any earlier write in the original schedule needs to precede
506 * the last write to the same memory element in the computed schedule.
507 * The possible last writes have been computed by compute_live_out.
508 * They may include kills, but if the last access is a kill,
509 * then the corresponding dependences will effectively be ignored
510 * since we do not schedule any kill statements.
512 * Note that the set of live-in and live-out accesses may be
513 * an overapproximation. There may therefore be potential writes
514 * before a live-in access and after a live-out access.
516 * In the presence of may-writes, there may be multiple live-ranges
517 * with the same sink, accessing the same memory element.
518 * The sources of these live-ranges need to be executed
519 * in the same relative order as in the original program
520 * since we do not know which of the may-writes will actually
521 * perform a write. Consider all sources that share a sink and
522 * that may write to the same memory element and compute
523 * the order dependences among them.
525 static void compute_forced_dependences(struct ppcg_scop
*ps
,
526 __isl_take isl_union_map
*before
)
528 isl_union_map
*shared_access
;
529 isl_union_map
*exposed
;
530 isl_union_map
*live_in
;
531 isl_union_map
*sink_access
;
532 isl_union_map
*shared_sink
;
533 isl_union_access_info
*access
;
534 isl_union_flow
*flow
;
535 isl_schedule
*schedule
;
537 exposed
= isl_union_map_copy(ps
->live_out
);
539 exposed
= isl_union_map_reverse(exposed
);
540 shared_access
= isl_union_map_copy(ps
->may_writes
);
541 shared_access
= isl_union_map_apply_range(shared_access
, exposed
);
543 ps
->dep_forced
= shared_access
;
545 live_in
= isl_union_map_apply_range(isl_union_map_copy(ps
->live_in
),
546 isl_union_map_reverse(isl_union_map_copy(ps
->may_writes
)));
548 ps
->dep_forced
= isl_union_map_union(ps
->dep_forced
, live_in
);
549 ps
->dep_forced
= isl_union_map_intersect(ps
->dep_forced
, before
);
551 schedule
= isl_schedule_copy(ps
->schedule
);
552 sink_access
= isl_union_map_copy(ps
->tagged_dep_flow
);
553 sink_access
= isl_union_map_range_product(sink_access
,
554 isl_union_map_copy(ps
->tagged_may_writes
));
555 sink_access
= isl_union_map_domain_factor_domain(sink_access
);
556 access
= isl_union_access_info_from_sink(
557 isl_union_map_copy(sink_access
));
558 access
= isl_union_access_info_set_may_source(access
, sink_access
);
559 access
= isl_union_access_info_set_schedule(access
, schedule
);
560 flow
= isl_union_access_info_compute_flow(access
);
561 shared_sink
= isl_union_flow_get_may_dependence(flow
);
562 isl_union_flow_free(flow
);
563 ps
->dep_forced
= isl_union_map_union(ps
->dep_forced
, shared_sink
);
566 /* Compute the dependences of the program represented by "scop"
567 * in case live range reordering is allowed.
569 * We compute the actual live ranges and the corresponding order
572 static void compute_live_range_reordering_dependences(struct ppcg_scop
*ps
)
574 isl_union_map
*before
;
575 isl_union_map
*schedule
;
577 schedule
= isl_schedule_get_map(ps
->schedule
);
578 before
= isl_union_map_lex_lt_union_map(schedule
,
579 isl_union_map_copy(schedule
));
581 compute_tagged_flow_dep(ps
);
582 compute_order_dependences(ps
, isl_union_map_copy(before
));
583 compute_forced_dependences(ps
, before
);
586 /* Compute the potential flow dependences and the potential live in
589 static void compute_flow_dep(struct ppcg_scop
*ps
)
591 isl_union_access_info
*access
;
592 isl_union_flow
*flow
;
594 access
= isl_union_access_info_from_sink(isl_union_map_copy(ps
->reads
));
595 access
= isl_union_access_info_set_must_source(access
,
596 isl_union_map_copy(ps
->must_writes
));
597 access
= isl_union_access_info_set_may_source(access
,
598 isl_union_map_copy(ps
->may_writes
));
599 access
= isl_union_access_info_set_schedule(access
,
600 isl_schedule_copy(ps
->schedule
));
601 flow
= isl_union_access_info_compute_flow(access
);
603 ps
->dep_flow
= isl_union_flow_get_may_dependence(flow
);
604 ps
->live_in
= isl_union_flow_get_may_no_source(flow
);
605 isl_union_flow_free(flow
);
608 /* Compute the dependences of the program represented by "scop".
609 * Store the computed potential flow dependences
610 * in scop->dep_flow and the reads with potentially no corresponding writes in
612 * Store the potential live out accesses in scop->live_out.
613 * Store the potential false (anti and output) dependences in scop->dep_false.
615 * If live range reordering is allowed, then we compute a separate
616 * set of order dependences and a set of external false dependences
617 * in compute_live_range_reordering_dependences.
619 static void compute_dependences(struct ppcg_scop
*scop
)
621 isl_union_map
*may_source
;
622 isl_union_access_info
*access
;
623 isl_union_flow
*flow
;
628 compute_live_out(scop
);
630 if (scop
->options
->live_range_reordering
)
631 compute_live_range_reordering_dependences(scop
);
632 else if (scop
->options
->target
!= PPCG_TARGET_C
)
633 compute_tagged_flow_dep(scop
);
635 compute_flow_dep(scop
);
637 may_source
= isl_union_map_union(isl_union_map_copy(scop
->may_writes
),
638 isl_union_map_copy(scop
->reads
));
639 access
= isl_union_access_info_from_sink(
640 isl_union_map_copy(scop
->may_writes
));
641 access
= isl_union_access_info_set_must_source(access
,
642 isl_union_map_copy(scop
->must_writes
));
643 access
= isl_union_access_info_set_may_source(access
, may_source
);
644 access
= isl_union_access_info_set_schedule(access
,
645 isl_schedule_copy(scop
->schedule
));
646 flow
= isl_union_access_info_compute_flow(access
);
648 scop
->dep_false
= isl_union_flow_get_may_dependence(flow
);
649 scop
->dep_false
= isl_union_map_coalesce(scop
->dep_false
);
650 isl_union_flow_free(flow
);
653 /* Eliminate dead code from ps->domain.
655 * In particular, intersect both ps->domain and the domain of
656 * ps->schedule with the (parts of) iteration
657 * domains that are needed to produce the output or for statement
658 * iterations that call functions.
659 * Also intersect the range of the dataflow dependences with
660 * this domain such that the removed instances will no longer
661 * be considered as targets of dataflow.
663 * We start with the iteration domains that call functions
664 * and the set of iterations that last write to an array
665 * (except those that are later killed).
667 * Then we add those statement iterations that produce
668 * something needed by the "live" statements iterations.
669 * We keep doing this until no more statement iterations can be added.
670 * To ensure that the procedure terminates, we compute the affine
671 * hull of the live iterations (bounded to the original iteration
672 * domains) each time we have added extra iterations.
674 static void eliminate_dead_code(struct ppcg_scop
*ps
)
678 isl_union_pw_multi_aff
*tagger
;
680 live
= isl_union_map_domain(isl_union_map_copy(ps
->live_out
));
681 if (!isl_union_set_is_empty(ps
->call
)) {
682 live
= isl_union_set_union(live
, isl_union_set_copy(ps
->call
));
683 live
= isl_union_set_coalesce(live
);
686 dep
= isl_union_map_copy(ps
->dep_flow
);
687 dep
= isl_union_map_reverse(dep
);
690 isl_union_set
*extra
;
692 extra
= isl_union_set_apply(isl_union_set_copy(live
),
693 isl_union_map_copy(dep
));
694 if (isl_union_set_is_subset(extra
, live
)) {
695 isl_union_set_free(extra
);
699 live
= isl_union_set_union(live
, extra
);
700 live
= isl_union_set_affine_hull(live
);
701 live
= isl_union_set_intersect(live
,
702 isl_union_set_copy(ps
->domain
));
705 isl_union_map_free(dep
);
707 ps
->domain
= isl_union_set_intersect(ps
->domain
,
708 isl_union_set_copy(live
));
709 ps
->schedule
= isl_schedule_intersect_domain(ps
->schedule
,
710 isl_union_set_copy(live
));
711 ps
->dep_flow
= isl_union_map_intersect_range(ps
->dep_flow
,
712 isl_union_set_copy(live
));
713 tagger
= isl_union_pw_multi_aff_copy(ps
->tagger
);
714 live
= isl_union_set_preimage_union_pw_multi_aff(live
, tagger
);
715 ps
->tagged_dep_flow
= isl_union_map_intersect_range(ps
->tagged_dep_flow
,
719 /* Intersect "set" with the set described by "str", taking the NULL
720 * string to represent the universal set.
722 static __isl_give isl_set
*set_intersect_str(__isl_take isl_set
*set
,
731 ctx
= isl_set_get_ctx(set
);
732 set2
= isl_set_read_from_str(ctx
, str
);
733 set
= isl_set_intersect(set
, set2
);
738 static void *ppcg_scop_free(struct ppcg_scop
*ps
)
743 isl_set_free(ps
->context
);
744 isl_union_set_free(ps
->domain
);
745 isl_union_set_free(ps
->call
);
746 isl_union_map_free(ps
->tagged_reads
);
747 isl_union_map_free(ps
->reads
);
748 isl_union_map_free(ps
->live_in
);
749 isl_union_map_free(ps
->tagged_may_writes
);
750 isl_union_map_free(ps
->tagged_must_writes
);
751 isl_union_map_free(ps
->may_writes
);
752 isl_union_map_free(ps
->must_writes
);
753 isl_union_map_free(ps
->live_out
);
754 isl_union_map_free(ps
->tagged_must_kills
);
755 isl_union_map_free(ps
->tagged_dep_flow
);
756 isl_union_map_free(ps
->dep_flow
);
757 isl_union_map_free(ps
->dep_false
);
758 isl_union_map_free(ps
->dep_forced
);
759 isl_union_map_free(ps
->tagged_dep_order
);
760 isl_union_map_free(ps
->dep_order
);
761 isl_schedule_free(ps
->schedule
);
762 isl_union_pw_multi_aff_free(ps
->tagger
);
763 isl_union_map_free(ps
->independence
);
764 isl_id_to_ast_expr_free(ps
->names
);
771 /* Extract a ppcg_scop from a pet_scop.
773 * The constructed ppcg_scop refers to elements from the pet_scop
774 * so the pet_scop should not be freed before the ppcg_scop.
776 static struct ppcg_scop
*ppcg_scop_from_pet_scop(struct pet_scop
*scop
,
777 struct ppcg_options
*options
)
781 struct ppcg_scop
*ps
;
786 ctx
= isl_set_get_ctx(scop
->context
);
788 ps
= isl_calloc_type(ctx
, struct ppcg_scop
);
792 ps
->names
= collect_names(scop
);
793 ps
->options
= options
;
794 ps
->start
= pet_loc_get_start(scop
->loc
);
795 ps
->end
= pet_loc_get_end(scop
->loc
);
796 ps
->context
= isl_set_copy(scop
->context
);
797 ps
->context
= set_intersect_str(ps
->context
, options
->ctx
);
798 ps
->domain
= collect_non_kill_domains(scop
);
799 ps
->call
= collect_call_domains(scop
);
800 ps
->tagged_reads
= pet_scop_collect_tagged_may_reads(scop
);
801 ps
->reads
= pet_scop_collect_may_reads(scop
);
802 ps
->tagged_may_writes
= pet_scop_collect_tagged_may_writes(scop
);
803 ps
->may_writes
= pet_scop_collect_may_writes(scop
);
804 ps
->tagged_must_writes
= pet_scop_collect_tagged_must_writes(scop
);
805 ps
->must_writes
= pet_scop_collect_must_writes(scop
);
806 ps
->tagged_must_kills
= pet_scop_collect_tagged_must_kills(scop
);
807 ps
->schedule
= isl_schedule_copy(scop
->schedule
);
809 ps
->independence
= isl_union_map_empty(isl_set_get_space(ps
->context
));
810 for (i
= 0; i
< scop
->n_independence
; ++i
)
811 ps
->independence
= isl_union_map_union(ps
->independence
,
812 isl_union_map_copy(scop
->independences
[i
]->filter
));
815 compute_dependences(ps
);
816 eliminate_dead_code(ps
);
818 if (!ps
->context
|| !ps
->domain
|| !ps
->call
|| !ps
->reads
||
819 !ps
->may_writes
|| !ps
->must_writes
|| !ps
->tagged_must_kills
||
820 !ps
->schedule
|| !ps
->independence
|| !ps
->names
)
821 return ppcg_scop_free(ps
);
826 /* Internal data structure for ppcg_transform.
828 struct ppcg_transform_data
{
829 struct ppcg_options
*options
;
830 __isl_give isl_printer
*(*transform
)(__isl_take isl_printer
*p
,
831 struct ppcg_scop
*scop
, void *user
);
835 /* Should we print the original code?
836 * That is, does "scop" involve any data dependent conditions or
837 * nested expressions that cannot be handled by pet_stmt_build_ast_exprs?
839 static int print_original(struct pet_scop
*scop
, struct ppcg_options
*options
)
841 if (!pet_scop_can_build_ast_exprs(scop
)) {
842 if (options
->debug
->verbose
)
843 fprintf(stdout
, "Printing original code because "
844 "some index expressions cannot currently "
849 if (pet_scop_has_data_dependent_conditions(scop
)) {
850 if (options
->debug
->verbose
)
851 fprintf(stdout
, "Printing original code because "
852 "input involves data dependent conditions\n");
859 /* Callback for pet_transform_C_source that transforms
860 * the given pet_scop to a ppcg_scop before calling the
861 * ppcg_transform callback.
863 * If "scop" contains any data dependent conditions or if we may
864 * not be able to print the transformed program, then just print
867 static __isl_give isl_printer
*transform(__isl_take isl_printer
*p
,
868 struct pet_scop
*scop
, void *user
)
870 struct ppcg_transform_data
*data
= user
;
871 struct ppcg_scop
*ps
;
873 if (print_original(scop
, data
->options
)) {
874 p
= pet_scop_print_original(scop
, p
);
879 scop
= pet_scop_align_params(scop
);
880 ps
= ppcg_scop_from_pet_scop(scop
, data
->options
);
882 p
= data
->transform(p
, ps
, data
->user
);
890 /* Transform the C source file "input" by rewriting each scop
891 * through a call to "transform".
892 * The transformed C code is written to "out".
894 * This is a wrapper around pet_transform_C_source that transforms
895 * the pet_scop to a ppcg_scop before calling "fn".
897 int ppcg_transform(isl_ctx
*ctx
, const char *input
, FILE *out
,
898 struct ppcg_options
*options
,
899 __isl_give isl_printer
*(*fn
)(__isl_take isl_printer
*p
,
900 struct ppcg_scop
*scop
, void *user
), void *user
)
902 struct ppcg_transform_data data
= { options
, fn
, user
};
903 return pet_transform_C_source(ctx
, input
, out
, &transform
, &data
);
906 /* Check consistency of options.
908 * Return -1 on error.
910 static int check_options(isl_ctx
*ctx
)
912 struct options
*options
;
914 options
= isl_ctx_peek_options(ctx
, &options_args
);
916 isl_die(ctx
, isl_error_internal
,
917 "unable to find options", return -1);
919 if (options
->ppcg
->openmp
&&
920 !isl_options_get_ast_build_atomic_upper_bound(ctx
))
921 isl_die(ctx
, isl_error_invalid
,
922 "OpenMP requires atomic bounds", return -1);
927 int main(int argc
, char **argv
)
931 struct options
*options
;
933 options
= options_new_with_defaults();
936 ctx
= isl_ctx_alloc_with_options(&options_args
, options
);
937 isl_options_set_schedule_outer_coincidence(ctx
, 1);
938 isl_options_set_schedule_maximize_band_depth(ctx
, 1);
939 pet_options_set_encapsulate_dynamic_control(ctx
, 1);
940 argc
= options_parse(options
, argc
, argv
, ISL_ARG_ALL
);
942 if (check_options(ctx
) < 0)
944 else if (options
->ppcg
->target
== PPCG_TARGET_CUDA
)
945 r
= generate_cuda(ctx
, options
->ppcg
, options
->input
);
946 else if (options
->ppcg
->target
== PPCG_TARGET_OPENCL
)
947 r
= generate_opencl(ctx
, options
->ppcg
, options
->input
,
950 r
= generate_cpu(ctx
, options
->ppcg
, options
->input
,