update isl for isl_pw_multi_aff_coalesce
[ppcg.git] / cuda.c
blob96b7d44f5a62c579a39b28d7d08f4fc9f59c1536
1 /*
2 * Copyright 2010-2011 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <assert.h>
12 #include <stdlib.h>
14 #include <isl/polynomial.h>
15 #include <isl/union_set.h>
16 #include <isl/aff.h>
17 #include <isl/ilp.h>
18 #include <isl/flow.h>
19 #include <isl/band.h>
20 #include <isl/schedule.h>
21 #include <isl/options.h>
22 #include <cloog/isl/cloog.h>
24 #include "cuda.h"
25 #include "cuda_common.h"
26 #include "gpucode.h"
27 #include "schedule.h"
28 #include "ppcg_options.h"
30 /* The fields stride, shift and shift_map only contain valid information
31 * if shift != NULL.
32 * If so, they express that current index is such that if you add shift,
33 * then the result is always a multiple of stride.
34 * shift_map contains the mapping
36 * i -> (i + shift)/stride
38 struct cuda_array_bound {
39 isl_int size;
40 isl_aff *lb;
42 isl_int stride;
43 isl_aff *shift;
44 isl_basic_map *shift_map;
47 struct cuda_array_info;
49 /* A group of array references in a kernel that should be handled together.
50 * If private_bound is not NULL, then it is mapped to registers.
51 * Otherwise, if shared_bound is not NULL, it is mapped to shared memory.
52 * Otherwise, it is accessed from global memory.
54 struct cuda_array_ref_group {
55 /* The references in this group access this array. */
56 struct cuda_array_info *array;
57 /* Position of this group in the list of reference groups of array. */
58 int nr;
60 /* The following fields are use during the construction of the groups.
61 * access is the combined access relation relative to the shared
62 * memory tiling.
63 * write is set if any access in the group is a write.
65 isl_map *access;
66 int write;
68 /* For each index, size and offset of piece in shared memory. */
69 struct cuda_array_bound *shared_bound;
71 /* For each index, size and offset of piece in private memory. */
72 struct cuda_array_bound *private_bound;
74 /* References in this group; point to elements of a linked list. */
75 int n_ref;
76 struct cuda_stmt_access **refs;
79 struct cuda_array_info {
80 isl_space *dim;
81 /* Element type. */
82 char *type;
83 /* Name of the array. */
84 char *name;
85 /* Number of indices. */
86 unsigned n_index;
87 /* For each index, a bound on the array in that direction. */
88 isl_pw_aff **bound;
89 /* For each index, bound[i] specialized to the current kernel. */
90 isl_pw_aff **local_bound;
92 /* All references to this array; point to elements of a linked list. */
93 int n_ref;
94 struct cuda_stmt_access **refs;
96 /* The reference groups associated to this array. */
97 int n_group;
98 struct cuda_array_ref_group **groups;
100 /* Last shared memory tile dimension that affects tile of this array. */
101 int last_shared;
102 /* Dimension at which copying to/from shared memory is printed.
103 * if >= 0, then the value is >= last_shared
104 * if -1, then the copying is done at the leaf level.
106 int print_shared_level;
109 /* Print the name of the local copy of a given group of array references.
111 static void print_array_name(FILE *out, struct cuda_array_ref_group *group)
113 int global = 0;
115 if (group->private_bound)
116 fprintf(out, "private_");
117 else if (group->shared_bound)
118 fprintf(out, "shared_");
119 else
120 global = 1;
121 fprintf(out, "%s", group->array->name);
122 if (!global && group->array->n_group > 1)
123 fprintf(out, "_%d", group->nr);
126 /* Collect all references to the given array and store pointers to them
127 * in array->refs.
129 static void collect_references(struct cuda_gen *gen,
130 struct cuda_array_info *array)
132 int i;
133 int n;
135 n = 0;
136 for (i = 0; i < gen->n_stmts; ++i) {
137 struct cuda_stmt *stmt = &gen->stmts[i];
138 struct cuda_stmt_access *access;
140 for (access = stmt->accesses; access; access = access->next) {
141 const char *name;
142 name = isl_map_get_tuple_name(access->access,
143 isl_dim_out);
144 if (name && !strcmp(array->name, name))
145 n++;
149 array->n_ref = n;
150 array->refs = isl_alloc_array(gen->ctx, struct cuda_stmt_access *, n);
151 assert(array->refs);
153 n = 0;
154 for (i = 0; i < gen->n_stmts; ++i) {
155 struct cuda_stmt *stmt = &gen->stmts[i];
156 struct cuda_stmt_access *access;
158 for (access = stmt->accesses; access; access = access->next) {
159 const char *name;
160 name = isl_map_get_tuple_name(access->access,
161 isl_dim_out);
162 if (!name || strcmp(array->name, name))
163 continue;
165 array->refs[n++] = access;
170 static struct cuda_array_bound *create_bound_list(isl_ctx *ctx, int n_index)
172 int i;
173 struct cuda_array_bound *bound;
175 bound = isl_alloc_array(ctx, struct cuda_array_bound, n_index);
176 assert(bound);
178 for (i = 0; i < n_index; ++i) {
179 isl_int_init(bound[i].size);
180 bound[i].lb = NULL;
181 isl_int_init(bound[i].stride);
182 bound[i].shift = NULL;
183 bound[i].shift_map = NULL;
186 return bound;
189 static void free_bound_list(struct cuda_array_bound *bound, int n_index)
191 int j;
193 if (!bound)
194 return;
196 for (j = 0; j < n_index; ++j) {
197 isl_int_clear(bound[j].size);
198 isl_int_clear(bound[j].stride);
199 isl_aff_free(bound[j].lb);
200 isl_aff_free(bound[j].shift);
201 isl_basic_map_free(bound[j].shift_map);
203 free(bound);
206 static struct pet_array *find_array(struct pet_scop *scop,
207 __isl_keep isl_set *accessed)
209 int i;
210 isl_id *id;
212 id = isl_set_get_tuple_id(accessed);
214 for (i = 0; i < scop->n_array; ++i) {
215 isl_id *id_i;
217 id_i = isl_set_get_tuple_id(scop->arrays[i]->extent);
218 isl_id_free(id_i);
219 if (id == id_i)
220 break;
222 isl_id_free(id);
224 return i < scop->n_array ? scop->arrays[i] : NULL;
227 /* Compute bounds on the host arrays based on the accessed elements
228 * and collect all references to the array.
230 static int extract_array_info(__isl_take isl_set *array, void *user)
232 int i;
233 struct cuda_gen *gen = (struct cuda_gen *)user;
234 const char *name;
235 int n_index;
236 isl_pw_aff **bounds;
237 isl_pw_aff **local_bounds;
238 struct pet_array *pa;
240 n_index = isl_set_dim(array, isl_dim_set);
241 name = isl_set_get_tuple_name(array);
242 bounds = isl_alloc_array(isl_set_get_ctx(array),
243 isl_pw_aff *, n_index);
244 assert(bounds);
245 local_bounds = isl_calloc_array(isl_set_get_ctx(array),
246 isl_pw_aff *, n_index);
247 assert(local_bounds);
248 gen->array[gen->n_array].dim = isl_set_get_space(array);
249 gen->array[gen->n_array].name = strdup(name);
250 gen->array[gen->n_array].n_index = n_index;
251 gen->array[gen->n_array].bound = bounds;
252 gen->array[gen->n_array].local_bound = local_bounds;
254 pa = find_array(gen->scop, array);
255 assert(pa);
257 gen->array[gen->n_array].type = strdup(pa->element_type);
259 for (i = 0; i < n_index; ++i) {
260 isl_set *dom;
261 isl_local_space *ls;
262 isl_aff *one;
263 isl_pw_aff *bound;
264 isl_set *size = i == 0 ? array : pa->extent;
266 bound = isl_set_dim_max(isl_set_copy(size), i);
267 assert(bound);
268 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
269 ls = isl_local_space_from_space(isl_set_get_space(dom));
270 one = isl_aff_zero_on_domain(ls);
271 one = isl_aff_add_constant_si(one, 1);
272 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
273 bound = isl_pw_aff_gist(bound, isl_set_copy(gen->context));
275 bounds[i] = bound;
278 collect_references(gen, &gen->array[gen->n_array]);
280 gen->n_array++;
282 isl_set_free(array);
283 return 0;
286 void collect_array_info(struct cuda_gen *gen)
288 isl_union_set *arrays;
290 arrays = isl_union_map_range(isl_union_map_copy(gen->read));
291 arrays = isl_union_set_union(arrays,
292 isl_union_map_range(isl_union_map_copy(gen->write)));
293 arrays = isl_union_set_coalesce(arrays);
295 gen->n_array = isl_union_set_n_set(arrays);
296 gen->array = isl_alloc_array(gen->ctx,
297 struct cuda_array_info, gen->n_array);
298 assert(gen->array);
299 gen->n_array = 0;
300 isl_union_set_foreach_set(arrays, &extract_array_info, gen);
301 isl_union_set_free(arrays);
304 static void free_array_info(struct cuda_gen *gen)
306 int i, j;
308 for (i = 0; i < gen->n_array; ++i) {
309 int n_index = gen->array[i].n_index;
310 free(gen->array[i].type);
311 free(gen->array[i].name);
312 for (j = 0; j < n_index; ++j) {
313 isl_pw_aff_free(gen->array[i].bound[j]);
314 isl_pw_aff_free(gen->array[i].local_bound[j]);
316 isl_space_free(gen->array[i].dim);
317 free(gen->array[i].bound);
318 free(gen->array[i].local_bound);
319 free(gen->array[i].refs);
321 free(gen->array);
324 static void declare_device_arrays(struct cuda_gen *gen)
326 int i;
328 for (i = 0; i < gen->n_array; ++i)
329 fprintf(gen->cuda.host_c, "%s *dev_%s;\n",
330 gen->array[i].type, gen->array[i].name);
331 fprintf(gen->cuda.host_c, "\n");
334 static void print_array_size(struct cuda_gen *gen, FILE *out,
335 struct cuda_array_info *array)
337 int i;
338 isl_printer *prn;
340 prn = isl_printer_to_file(gen->ctx, out);
341 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
342 for (i = 0; i < array->n_index; ++i) {
343 prn = isl_printer_print_str(prn, "(");
344 prn = isl_printer_print_pw_aff(prn, array->bound[i]);
345 prn = isl_printer_print_str(prn, ") * ");
347 prn = isl_printer_print_str(prn, "sizeof(");
348 prn = isl_printer_print_str(prn, array->type);
349 prn = isl_printer_print_str(prn, ")");
350 isl_printer_free(prn);
353 static void allocate_device_arrays(struct cuda_gen *gen)
355 int i;
357 for (i = 0; i < gen->n_array; ++i) {
358 fprintf(gen->cuda.host_c,
359 "cudaCheckReturn(cudaMalloc((void **) &dev_%s, ",
360 gen->array[i].name);
361 print_array_size(gen, gen->cuda.host_c, &gen->array[i]);
362 fprintf(gen->cuda.host_c, "));\n");
364 fprintf(gen->cuda.host_c, "\n");
367 static void free_device_arrays(struct cuda_gen *gen)
369 int i;
371 for (i = 0; i < gen->n_array; ++i)
372 fprintf(gen->cuda.host_c, "cudaCheckReturn(cudaFree(dev_%s));\n",
373 gen->array[i].name);
376 /* Check if a cuda array is a scalar. A scalar is a value that is not stored
377 * as an array or through a pointer reference, but as single data element. At
378 * the moment, scalars are represented as zero dimensional arrays.
380 static int cuda_array_is_scalar(struct cuda_array_info *array)
382 return (array->n_index == 0);
385 static void copy_arrays_to_device(struct cuda_gen *gen)
387 int i;
389 for (i = 0; i < gen->n_array; ++i) {
390 isl_space *dim;
391 isl_set *read_i;
392 int empty;
394 dim = isl_space_copy(gen->array[i].dim);
395 read_i = isl_union_set_extract_set(gen->copy_in, dim);
396 empty = isl_set_fast_is_empty(read_i);
397 isl_set_free(read_i);
398 if (empty)
399 continue;
401 fprintf(gen->cuda.host_c, "cudaCheckReturn(cudaMemcpy(dev_%s,",
402 gen->array[i].name);
404 if (cuda_array_is_scalar(&(gen->array[i])))
405 fprintf(gen->cuda.host_c, " &%s, ",
406 gen->array[i].name);
407 else
408 fprintf(gen->cuda.host_c, " %s, ", gen->array[i].name);
410 print_array_size(gen, gen->cuda.host_c, &gen->array[i]);
411 fprintf(gen->cuda.host_c, ", cudaMemcpyHostToDevice));\n");
413 fprintf(gen->cuda.host_c, "\n");
416 static void copy_arrays_from_device(struct cuda_gen *gen)
418 int i;
419 isl_union_set *write;
420 write = isl_union_map_range(isl_union_map_copy(gen->write));
422 for (i = 0; i < gen->n_array; ++i) {
423 isl_space *dim;
424 isl_set *write_i;
425 int empty;
427 dim = isl_space_copy(gen->array[i].dim);
428 write_i = isl_union_set_extract_set(write, dim);
429 empty = isl_set_fast_is_empty(write_i);
430 isl_set_free(write_i);
431 if (empty)
432 continue;
434 fprintf(gen->cuda.host_c, "cudaCheckReturn(cudaMemcpy(");
435 if (cuda_array_is_scalar(&gen->array[i]))
436 fprintf(gen->cuda.host_c, "&%s, ", gen->array[i].name);
437 else
438 fprintf(gen->cuda.host_c, "%s, ", gen->array[i].name);
439 fprintf(gen->cuda.host_c, "dev_%s, ", gen->array[i].name);
440 print_array_size(gen, gen->cuda.host_c, &gen->array[i]);
441 fprintf(gen->cuda.host_c, ", cudaMemcpyDeviceToHost));\n");
444 isl_union_set_free(write);
445 fprintf(gen->cuda.host_c, "\n");
448 static void read_sizes_from_file(struct cuda_gen *gen, const char *filename,
449 int *sizes, int len)
451 int i;
452 FILE *file;
454 file = fopen(filename, "r");
455 if (!file)
456 return;
458 for (i = 0; i < len; ++i)
459 if (fscanf(file, "%d", &sizes[i]) < 1)
460 break;
462 fclose(file);
465 static void reverse_list(int *list, int len)
467 int i;
468 int t;
470 for (i = 0; 2 * i < len; ++i) {
471 t = list[i];
472 list[i] = list[len - 1 - i];
473 list[len - 1 - i] = t;
477 /* Read user specified sizes from "tile.sizes", "block.sizes" and "grid.sizes"
478 * after filling in some potentially useful defaults.
480 static void read_sizes(struct cuda_gen *gen)
482 int n;
484 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
485 assert(gen->tile_size);
486 for (n = 0; n < gen->tile_len; ++n)
487 gen->tile_size[n] = gen->options->tile_size;
488 read_sizes_from_file(gen, "tile.sizes", gen->tile_size, gen->tile_len);
490 n = gen->n_parallel;
491 gen->n_block = (n <= 3) ? n : 3;
492 switch (gen->n_block) {
493 case 1:
494 gen->block_dim[0] = 512;
495 break;
496 case 2:
497 gen->block_dim[0] = 32;
498 gen->block_dim[1] = 16;
499 break;
500 default:
501 gen->block_dim[0] = 32;
502 gen->block_dim[1] = 4;
503 gen->block_dim[2] = 4;
504 break;
506 read_sizes_from_file(gen, "block.sizes", gen->block_dim, gen->n_block);
507 reverse_list(gen->block_dim, gen->n_block);
509 gen->n_grid = (n <= 2) ? n : 2;
510 switch (gen->n_grid) {
511 case 1:
512 gen->grid_dim[0] = 32768;
513 break;
514 default:
515 gen->grid_dim[0] = 256;
516 gen->grid_dim[1] = 256;
517 break;
519 read_sizes_from_file(gen, "grid.sizes", gen->grid_dim, gen->n_grid);
520 reverse_list(gen->grid_dim, gen->n_grid);
523 static void free_stmts(struct cuda_stmt *stmts, int n)
525 int i;
527 for (i = 0; i < n; ++i) {
528 struct cuda_stmt_access *access, *next;
530 for (access = stmts[i].accesses; access; access = next) {
531 next = access->next;
532 isl_map_free(access->access);
533 free(access);
536 isl_set_free(stmts[i].domain);
538 free(stmts);
541 void clear_cuda_gen(struct cuda_gen *gen)
543 free_stmts(gen->stmts, gen->n_stmts);
544 free_array_info(gen);
545 isl_set_free(gen->context);
546 isl_union_set_free(gen->copy_in);
547 isl_union_map_free(gen->sched);
548 isl_union_map_free(gen->read);
549 isl_union_map_free(gen->write);
552 static void print_reverse_list(FILE *out, int len, int *list)
554 int i;
556 if (len == 0)
557 return;
559 fprintf(out, "(");
560 for (i = 0; i < len; ++i) {
561 if (i)
562 fprintf(out, ", ");
563 fprintf(out, "%d", list[len - 1 - i]);
565 fprintf(out, ")");
568 static void print_kernel_launch(struct cuda_gen *gen,
569 __isl_keep isl_union_set *arrays)
571 int i;
572 int first = 1;
573 unsigned nparam;
574 isl_space *dim;
576 print_indent(gen->code.dst, gen->code.indent);
577 fprintf(gen->code.dst, "kernel%d <<<k%d_dimGrid, k%d_dimBlock>>> (",
578 gen->kernel_id, gen->kernel_id, gen->kernel_id);
579 fprintf(gen->cuda.kernel_c, "__global__ void kernel%d(",
580 gen->kernel_id);
581 fprintf(gen->cuda.kernel_h, "__global__ void kernel%d(",
582 gen->kernel_id);
584 for (i = 0; i < gen->n_array; ++i) {
585 isl_space *dim;
586 isl_set *arr;
587 int empty;
589 dim = isl_space_copy(gen->array[i].dim);
590 arr = isl_union_set_extract_set(arrays, dim);
591 empty = isl_set_fast_is_empty(arr);
592 isl_set_free(arr);
593 if (empty)
594 continue;
596 if (!first) {
597 fprintf(gen->code.dst, ", ");
598 fprintf(gen->cuda.kernel_c, ", ");
599 fprintf(gen->cuda.kernel_h, ", ");
602 fprintf(gen->code.dst, "dev_%s", gen->array[i].name);
603 fprintf(gen->cuda.kernel_c, "%s *%s",
604 gen->array[i].type, gen->array[i].name);
605 fprintf(gen->cuda.kernel_h, "%s *%s",
606 gen->array[i].type, gen->array[i].name);
608 first = 0;
611 dim = isl_union_set_get_space(arrays);
612 nparam = isl_space_dim(dim, isl_dim_param);
613 for (i = 0; i < nparam; ++i) {
614 const char *name = isl_space_get_dim_name(dim, isl_dim_param, i);
615 if (!first) {
616 fprintf(gen->code.dst, ", ");
617 fprintf(gen->cuda.kernel_c, ", ");
618 fprintf(gen->cuda.kernel_h, ", ");
620 fprintf(gen->code.dst, "%s", name);
621 fprintf(gen->cuda.kernel_c, "int %s", name);
622 fprintf(gen->cuda.kernel_h, "int %s", name);
623 first = 0;
625 isl_space_free(dim);
627 for (i = 0; i < gen->tile_first; ++i) {
628 if (!first) {
629 fprintf(gen->code.dst, ", ");
630 fprintf(gen->cuda.kernel_c, ", ");
631 fprintf(gen->cuda.kernel_h, ", ");
633 fprintf(gen->code.dst, "h%d", i);
634 fprintf(gen->cuda.kernel_c, "int h%d", i);
635 fprintf(gen->cuda.kernel_h, "int h%d", i);
636 first = 0;
639 fprintf(gen->code.dst, ");\n");
640 fprintf(gen->cuda.kernel_c, ")\n");
641 fprintf(gen->cuda.kernel_h, ");\n");
643 fprintf(gen->code.dst, "cudaCheckKernel();\n");
646 /* Construct a map from a domain of dimensionality "len"
647 * to a domain of dimensionality "len" + "tile_len" that tiles
648 * the "tile_len" coordinates starting at "first".
649 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
650 * "dim" prescribes the parameters.
652 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
653 int first, int tile_len, int *tile_size)
655 int i;
656 isl_int v;
657 isl_basic_map *bmap;
658 isl_constraint *c;
659 isl_local_space *ls;
661 isl_int_init(v);
663 dim = isl_space_add_dims(dim, isl_dim_in, len);
664 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
665 bmap = isl_basic_map_universe(isl_space_copy(dim));
666 ls = isl_local_space_from_space(dim);
668 for (i = 0; i < len - tile_len; ++i) {
669 int j = i < first ? i : i + tile_len;
670 int k = i < first ? i : i + 2 * tile_len;
672 c = isl_equality_alloc(isl_local_space_copy(ls));
673 isl_int_set_si(v, -1);
674 isl_constraint_set_coefficient(c, isl_dim_in, j, v);
675 isl_int_set_si(v, 1);
676 isl_constraint_set_coefficient(c, isl_dim_out, k, v);
677 bmap = isl_basic_map_add_constraint(bmap, c);
680 for (i = 0; i < tile_len; ++i) {
681 c = isl_equality_alloc(isl_local_space_copy(ls));
682 isl_int_set_si(v, -1);
683 isl_constraint_set_coefficient(c, isl_dim_in, first + i, v);
684 isl_int_set_si(v, tile_size[i]);
685 isl_constraint_set_coefficient(c, isl_dim_out, first + i, v);
686 isl_int_set_si(v, 1);
687 isl_constraint_set_coefficient(c, isl_dim_out,
688 first + i + tile_len, v);
689 bmap = isl_basic_map_add_constraint(bmap, c);
691 c = isl_inequality_alloc(isl_local_space_copy(ls));
692 isl_int_set_si(v, 1);
693 isl_constraint_set_coefficient(c, isl_dim_out,
694 first + i + tile_len, v);
695 bmap = isl_basic_map_add_constraint(bmap, c);
697 c = isl_inequality_alloc(isl_local_space_copy(ls));
698 isl_int_set_si(v, -1);
699 isl_constraint_set_coefficient(c, isl_dim_out,
700 first + i + tile_len, v);
701 isl_int_set_si(v, tile_size[i] - 1);
702 isl_constraint_set_constant(c, v);
703 bmap = isl_basic_map_add_constraint(bmap, c);
706 isl_local_space_free(ls);
707 isl_int_clear(v);
709 return isl_map_from_basic_map(bmap);
712 /* Construct a map from a domain of dimensionality "len"
713 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
714 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
715 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
716 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
717 * that are projected out at the end.
718 * "dim" prescribes the parameters.
720 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
721 int first, int wrap_len, int *wrap_size)
723 int i;
724 isl_basic_map *bmap;
725 isl_constraint *c;
726 isl_local_space *ls;
728 dim = isl_space_add_dims(dim, isl_dim_in, len);
729 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
730 bmap = isl_basic_map_universe(isl_space_copy(dim));
731 ls = isl_local_space_from_space(dim);
733 for (i = 0; i < len; ++i) {
734 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
736 c = isl_equality_alloc(isl_local_space_copy(ls));
737 isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
738 isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
739 bmap = isl_basic_map_add_constraint(bmap, c);
742 for (i = 0; i < wrap_len; ++i) {
743 c = isl_equality_alloc(isl_local_space_copy(ls));
744 isl_constraint_set_coefficient_si(c, isl_dim_out,
745 first + i, -1);
746 isl_constraint_set_coefficient_si(c, isl_dim_out,
747 first + wrap_len + i, 1);
748 isl_constraint_set_coefficient_si(c, isl_dim_out,
749 first + 2 * wrap_len + i, wrap_size[i]);
750 bmap = isl_basic_map_add_constraint(bmap, c);
752 c = isl_inequality_alloc(isl_local_space_copy(ls));
753 isl_constraint_set_coefficient_si(c, isl_dim_out,
754 first + wrap_len + i, 1);
755 bmap = isl_basic_map_add_constraint(bmap, c);
757 c = isl_inequality_alloc(isl_local_space_copy(ls));
758 isl_constraint_set_coefficient_si(c, isl_dim_out,
759 first + wrap_len + i, -1);
760 isl_constraint_set_constant_si(c, wrap_size[i] - 1);
761 bmap = isl_basic_map_add_constraint(bmap, c);
764 isl_local_space_free(ls);
766 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
767 first + 2 * wrap_len, wrap_len);
769 return isl_map_from_basic_map(bmap);
772 /* Add "n" parameters named prefix%d.
774 static __isl_give isl_set *add_params( __isl_take isl_set *set,
775 int n, const char *prefix)
777 int i;
778 unsigned nparam;
779 char name[20];
781 nparam = isl_set_dim(set, isl_dim_param);
782 set = isl_set_add_dims(set, isl_dim_param, n);
784 for (i = 0; i < n; ++i) {
785 snprintf(name, sizeof(name), "%s%d", prefix, i);
786 set = isl_set_set_dim_name(set, isl_dim_param,
787 nparam + i, name);
790 return set;
793 /* Equate the "n" dimensions of "set" starting at "first" to
794 * freshly created parameters named prefix%d.
796 static __isl_give isl_set *parametrize(__isl_take isl_set *set,
797 int first, int n, const char *prefix)
799 int i;
800 unsigned nparam;
801 isl_int v;
802 isl_space *dim;
803 isl_basic_set *bset;
804 isl_constraint *c;
805 isl_local_space *ls;
807 nparam = isl_set_dim(set, isl_dim_param);
809 set = add_params(set, n, prefix);
811 dim = isl_set_get_space(set);
812 bset = isl_basic_set_universe(isl_space_copy(dim));
813 ls = isl_local_space_from_space(dim);
815 isl_int_init(v);
817 for (i = 0; i < n; ++i) {
818 c = isl_equality_alloc(isl_local_space_copy(ls));
819 isl_int_set_si(v, -1);
820 isl_constraint_set_coefficient(c, isl_dim_param, nparam + i, v);
821 isl_int_set_si(v, 1);
822 isl_constraint_set_coefficient(c, isl_dim_set, first + i, v);
823 bset = isl_basic_set_add_constraint(bset, c);
826 isl_int_clear(v);
827 isl_local_space_free(ls);
829 return isl_set_intersect(set, isl_set_from_basic_set(bset));
832 static __isl_give isl_set *parametrization(__isl_take isl_space *dim,
833 int len, int first, int n, const char *prefix)
835 isl_set *set;
837 dim = isl_space_add_dims(dim, isl_dim_set, len);
838 set = isl_set_universe(dim);
840 return parametrize(set, first, n, prefix);
843 /* Tile the B loops over the tile sizes and then tile/wrap
844 * the T1 loops over the blocks.
846 static __isl_give isl_union_map *tile_schedule(struct cuda_gen *gen,
847 __isl_take isl_union_map *sched)
849 isl_space *dim;
850 isl_map *tiling, *block_tiling;
852 dim = isl_union_map_get_space(sched);
853 tiling = tile(isl_space_copy(dim), gen->untiled_len,
854 gen->tile_first, gen->tile_len, gen->tile_size);
856 if (gen->options->wrap)
857 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
858 gen->tile_first, gen->n_grid, gen->grid_dim);
859 else
860 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
861 gen->tile_first, gen->n_grid, gen->grid_dim);
863 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
865 tiling = isl_map_apply_range(tiling, block_tiling);
867 sched = isl_union_map_apply_range(sched,
868 isl_union_map_from_map(tiling));
870 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
872 return sched;
875 static __isl_give isl_union_map *parametrize_tiled_schedule(
876 struct cuda_gen *gen, __isl_take isl_union_map *sched)
878 isl_space *dim;
879 isl_set *par;
881 dim = isl_union_map_get_space(sched);
882 par = parametrization(dim, gen->tiled_len, 0, gen->tile_first, "h");
883 sched = isl_union_map_intersect_range(sched,
884 isl_union_set_from_set(par));
886 dim = isl_union_map_get_space(sched);
887 par = parametrization(dim, gen->tiled_len,
888 gen->tile_first + gen->n_grid, gen->n_grid, "b");
889 sched = isl_union_map_intersect_range(sched,
890 isl_union_set_from_set(par));
892 return sched;
895 /* Tile/wrap the P1 loops over the threads.
897 static __isl_give isl_union_map *thread_tile_schedule(struct cuda_gen *gen,
898 __isl_take isl_union_map *sched)
900 isl_space *dim;
901 isl_map *tiling;
902 isl_set *par;
904 dim = isl_union_map_get_space(sched);
906 if (gen->options->wrap)
907 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
908 gen->shared_len, gen->n_block, gen->block_dim);
909 else
910 tiling = tile(isl_space_copy(dim), gen->tiled_len,
911 gen->shared_len, gen->n_block, gen->block_dim);
912 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
914 sched = isl_union_map_apply_range(sched,
915 isl_union_map_from_map(tiling));
917 par = parametrization(dim, gen->thread_tiled_len,
918 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
919 gen->n_block, "t");
920 sched = isl_union_map_intersect_range(sched,
921 isl_union_set_from_set(par));
923 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
925 return sched;
928 /* If the user asked for it, scale the shared memory tile loops
929 * (T1P and T2) of "sched" by gen->tile_size[i].
930 * If we are not performing "wrapping", then additionally scale the T1P
931 * loops by gen->grid_dim[i].
933 static __isl_give isl_union_map *scale_tile_loops(struct cuda_gen *gen,
934 __isl_take isl_union_map *sched)
936 int i;
937 isl_space *dim;
938 isl_basic_map *scale;
939 isl_constraint *c;
940 isl_local_space *ls;
942 if (!gen->options->scale_tile_loops)
943 return sched;
945 dim = isl_union_map_get_space(sched);
946 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
947 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
948 scale = isl_basic_map_universe(isl_space_copy(dim));
949 ls = isl_local_space_from_space(dim);
951 for (i = 0; i < gen->tiled_len; ++i) {
952 int f = 1;
954 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
955 f = gen->tile_size[i - gen->tile_first];
956 if (!gen->options->wrap)
957 f *= gen->grid_dim[i - gen->tile_first];
958 } else if (i >= gen->tile_first + gen->n_grid &&
959 i < gen->tile_first + gen->n_grid + gen->tile_len) {
960 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
963 c = isl_equality_alloc(isl_local_space_copy(ls));
964 isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
965 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
966 scale = isl_basic_map_add_constraint(scale, c);
969 isl_local_space_free(ls);
971 sched = isl_union_map_apply_range(sched,
972 isl_union_map_from_map(isl_map_from_basic_map(scale)));
974 return sched;
977 /* If we are not performing "wrapping" and if the user asked for it,
978 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
980 static __isl_give isl_union_map *scale_thread_tile_loops(struct cuda_gen *gen,
981 __isl_take isl_union_map *sched)
983 int i;
984 isl_space *dim;
985 isl_basic_map *scale;
986 isl_constraint *c;
987 isl_local_space *ls;
989 if (gen->options->wrap)
990 return sched;
991 if (!gen->options->scale_tile_loops)
992 return sched;
994 dim = isl_union_map_get_space(sched);
995 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
996 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
997 scale = isl_basic_map_universe(isl_space_copy(dim));
998 ls = isl_local_space_from_space(dim);
1000 for (i = 0; i < gen->thread_tiled_len; ++i) {
1001 int f = 1;
1003 if (i >= gen->shared_len &&
1004 i < gen->shared_len + gen->n_block)
1005 f = gen->block_dim[i - gen->shared_len];
1007 c = isl_equality_alloc(isl_local_space_copy(ls));
1008 isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1009 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1010 scale = isl_basic_map_add_constraint(scale, c);
1013 isl_local_space_free(ls);
1015 sched = isl_union_map_apply_range(sched,
1016 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1018 return sched;
1021 /* If we are not performing "wrapping" and if the user asked for it,
1022 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1024 static __isl_give isl_union_map *scale_access_tile_loops(struct cuda_gen *gen,
1025 __isl_take isl_union_map *sched, int len, int first, int n_tile)
1027 int i;
1028 isl_space *dim;
1029 isl_basic_map *scale;
1030 isl_constraint *c;
1031 isl_local_space *ls;
1033 if (gen->options->wrap)
1034 return sched;
1035 if (!gen->options->scale_tile_loops)
1036 return sched;
1038 dim = isl_union_map_get_space(sched);
1039 dim = isl_space_add_dims(dim, isl_dim_in, len);
1040 dim = isl_space_add_dims(dim, isl_dim_out, len);
1041 scale = isl_basic_map_universe(isl_space_copy(dim));
1042 ls = isl_local_space_from_space(dim);
1044 for (i = 0; i < len; ++i) {
1045 int f = 1;
1047 if (i >= first && i < first + n_tile)
1048 f = gen->block_dim[i - first];
1050 c = isl_equality_alloc(isl_local_space_copy(ls));
1051 isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1052 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1053 scale = isl_basic_map_add_constraint(scale, c);
1056 isl_local_space_free(ls);
1058 sched = isl_union_map_apply_range(sched,
1059 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1061 return sched;
1064 /* If print_user_stmt is set, we want to print the statements ourselves,
1065 * instead of relying on the C preprocessor. If so, we need to use
1066 * the stop option so that the domains will be saved on the statement
1067 * nodes.
1069 static void print_cloog_shared_body(struct cuda_gen *gen,
1070 __isl_keep isl_set *context, __isl_keep isl_union_map *sched, int len,
1071 void (*print_user_stmt)(struct gpucode_info *info,
1072 struct clast_user_stmt *s),
1073 int first_unroll)
1075 int i;
1076 CloogOptions *options;
1077 CloogDomain *cloog_context;
1078 CloogUnionDomain *ud;
1079 CloogInput *input;
1080 struct clast_stmt *stmt;
1081 char name[20];
1083 sched = isl_union_map_copy(sched);
1084 sched = isl_union_map_align_params(sched, isl_set_get_space(context));
1086 options = cloog_options_malloc(gen->state);
1087 options->language = CLOOG_LANGUAGE_C;
1088 options->strides = 1;
1089 options->sh = 1;
1090 options->f = len;
1091 options->l = -1;
1092 options->override = 1;
1093 options->save_domains = 1;
1094 options->noscalars = 1;
1095 options->first_unroll = first_unroll;
1097 ud = cloog_union_domain_from_isl_union_map(sched);
1098 for (i = 0; i < len; ++i) {
1099 snprintf(name, sizeof(name), "c%d", i);
1100 ud = cloog_union_domain_set_name(ud, CLOOG_SCAT, i, name);
1102 cloog_context = cloog_domain_from_isl_set(isl_set_copy(context));
1103 input = cloog_input_alloc(cloog_context, ud);
1105 stmt = cloog_clast_create_from_input(input, options);
1107 gen->stmt_code.indent = gen->kernel_code.indent;
1108 gen->stmt_code.dst = gen->cuda.kernel_c;
1109 gen->stmt_code.print_user_stmt = print_user_stmt;
1110 gen->stmt_code.print_user_stmt_list = NULL;
1111 gen->stmt_code.print_for_head = NULL;
1112 gen->stmt_code.print_for_foot = NULL;
1113 gen->stmt_code.user = gen;
1114 gpu_print_host_stmt(&gen->stmt_code, stmt);
1116 cloog_clast_free(stmt);
1117 cloog_options_free(options);
1120 /* Add "len" parameters p[i] called prefix%d,
1121 * with bounds to 0 <= p[i] < size[i].
1123 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1124 int len, int *size, const char *prefix)
1126 int i;
1127 unsigned nparam;
1128 isl_int v;
1129 isl_space *dim;
1130 isl_basic_set *bset;
1131 isl_constraint *c;
1132 isl_local_space *ls;
1133 char name[20];
1135 nparam = isl_set_dim(set, isl_dim_param);
1136 set = isl_set_add_dims(set, isl_dim_param, len);
1138 for (i = 0; i < len; ++i) {
1139 snprintf(name, sizeof(name), "%s%d", prefix, i);
1140 set = isl_set_set_dim_name(set, isl_dim_param,
1141 nparam + i, name);
1144 dim = isl_set_get_space(set);
1145 bset = isl_basic_set_universe(isl_space_copy(dim));
1146 ls = isl_local_space_from_space(dim);
1148 isl_int_init(v);
1150 for (i = 0; i < len; ++i) {
1151 c = isl_inequality_alloc(isl_local_space_copy(ls));
1152 isl_int_set_si(v, 1);
1153 isl_constraint_set_coefficient(c, isl_dim_param, nparam + i, v);
1154 bset = isl_basic_set_add_constraint(bset, c);
1156 c = isl_inequality_alloc(isl_local_space_copy(ls));
1157 isl_int_set_si(v, -1);
1158 isl_constraint_set_coefficient(c, isl_dim_param, nparam + i, v);
1159 isl_int_set_si(v, size[i] - 1);
1160 isl_constraint_set_constant(c, v);
1161 bset = isl_basic_set_add_constraint(bset, c);
1164 isl_int_clear(v);
1165 isl_local_space_free(ls);
1167 return isl_set_intersect(set, isl_set_from_basic_set(bset));
1170 static void print_shared_body(struct cuda_gen *gen,
1171 __isl_keep isl_set *shared_domain, __isl_keep isl_union_map *sched,
1172 int len, void (*print_user_stmt)(struct gpucode_info *info,
1173 struct clast_user_stmt *s),
1174 int first_unroll)
1176 isl_set *context;
1178 context = isl_set_copy(shared_domain);
1179 context = parametrize(context, 0, gen->shared_len, "g");
1180 context = isl_set_project_out(context, isl_dim_set, 0, gen->shared_len);
1181 context = add_bounded_parameters(context,
1182 gen->n_block, gen->block_dim, "t");
1184 print_cloog_shared_body(gen, context, sched, len, print_user_stmt,
1185 first_unroll);
1187 isl_set_free(context);
1190 /* Given a tile of an array, construct a map that maps each element
1191 * of the tile to a copy of the tile shifted to the origin
1192 * (based on the lower bounds in group->private_bound or group->shared_bound).
1193 * If any of the indices is strided, then {private,shared}_bound[i].shift_map
1194 * is applied to the index first.
1195 * The domain of the resulting map is "access",
1196 * while the range space is anonymous.
1198 static __isl_give isl_map *shift_access(__isl_take isl_set *access,
1199 struct cuda_array_ref_group *group)
1201 int i;
1202 isl_space *dim;
1203 isl_basic_set *bset;
1204 isl_basic_map *bmap;
1205 isl_aff *lb;
1206 isl_basic_set *offset;
1207 isl_basic_map *shift;
1208 isl_basic_map *pre_shift;
1209 isl_map *sched;
1210 const char *name;
1211 struct cuda_array_bound *bounds;
1212 int n_index = group->array->n_index;
1214 bounds = group->private_bound;
1215 if (!bounds)
1216 bounds = group->shared_bound;
1218 dim = isl_set_get_space(access);
1219 dim = isl_space_drop_dims(dim, isl_dim_set, 0, n_index);
1220 offset = isl_basic_set_universe(dim);
1221 for (i = 0; i < n_index; ++i) {
1222 lb = isl_aff_copy(bounds[i].lb);
1223 bmap = isl_basic_map_from_aff(lb);
1224 bset = isl_basic_map_range(bmap);
1225 offset = isl_basic_set_flat_product(offset, bset);
1227 offset = isl_basic_set_neg(offset);
1229 dim = isl_space_map_from_set(isl_set_get_space(access));
1230 shift = isl_basic_map_identity(dim);
1231 shift = isl_basic_map_set_tuple_name(shift, isl_dim_out, NULL);
1233 bset = isl_basic_set_universe(isl_set_get_space(access));
1234 bmap = isl_basic_map_from_domain_and_range(bset, offset);
1236 shift = isl_basic_map_sum(shift, bmap);
1238 dim = isl_set_get_space(access);
1239 dim = isl_space_drop_dims(dim, isl_dim_set, 0, n_index);
1240 dim = isl_space_map_from_set(dim);
1241 pre_shift = isl_basic_map_universe(isl_space_copy(dim));
1242 dim = isl_space_add_dims(dim, isl_dim_in, 1);
1243 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1244 for (i = 0; i < n_index; ++i) {
1245 if (!bounds[i].shift_map)
1246 bmap = isl_basic_map_identity(isl_space_copy(dim));
1247 else
1248 bmap = isl_basic_map_copy(bounds[i].shift_map);
1249 pre_shift = isl_basic_map_flat_product(pre_shift, bmap);
1251 isl_space_free(dim);
1252 name = isl_basic_map_get_tuple_name(shift, isl_dim_in);
1253 pre_shift = isl_basic_map_set_tuple_name(pre_shift, isl_dim_in, name);
1254 pre_shift = isl_basic_map_set_tuple_name(pre_shift, isl_dim_out, name);
1255 shift = isl_basic_map_apply_range(pre_shift, shift);
1257 sched = isl_map_from_basic_map(shift);
1258 sched = isl_map_intersect_domain(sched, access);
1260 return sched;
1263 /* Construct a schedule for iterating over all elements in the given
1264 * piece of an array. The schedule iterates over a copy of the piece
1265 * that is shifted to the origin.
1266 * We subsequently also perform the tiling/wrapping over the threads.
1268 * In particular, we tile the final iterators so that the final thread
1269 * dimension runs over the final array dimension.
1270 * However, if those final iterators have only a single iteration,
1271 * we try to tile earlier iterators instead.
1273 static __isl_give isl_union_map *access_schedule(struct cuda_gen *gen,
1274 __isl_take isl_set *access, struct cuda_array_ref_group *group)
1276 isl_space *dim;
1277 isl_map *sched;
1278 isl_union_map *usched;
1279 isl_map *tiling;
1280 isl_set *par;
1281 unsigned nvar = isl_set_dim(access, isl_dim_set);
1282 int n_tile;
1283 int first;
1285 sched = shift_access(access, group);
1287 n_tile = gen->n_block;
1288 if (n_tile > nvar) {
1289 int i;
1290 sched = isl_map_insert_dims(sched,
1291 isl_dim_out, 0, n_tile - nvar);
1292 for (i = 0; i < n_tile - nvar; ++i)
1293 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1294 nvar = n_tile;
1297 first = nvar - n_tile;
1299 for (; first > 0; first --)
1300 if (!isl_map_plain_is_fixed(sched, isl_dim_out,
1301 first + n_tile - 1, NULL))
1302 break;
1304 dim = isl_map_get_space(sched);
1305 dim = isl_space_params(dim);
1306 if (gen->options->wrap)
1307 tiling = wrap(isl_space_copy(dim), nvar, first,
1308 n_tile, gen->block_dim);
1309 else
1310 tiling = tile(isl_space_copy(dim), nvar, first,
1311 n_tile, gen->block_dim);
1312 sched = isl_map_apply_range(sched, tiling);
1314 par = parametrization(dim, nvar + n_tile, first + n_tile, n_tile, "t");
1315 usched = isl_union_map_from_map(sched);
1316 usched = isl_union_map_intersect_range(usched,
1317 isl_union_set_from_set(par));
1319 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1320 first, n_tile);
1322 return usched;
1325 /* Print an access to the element in the global memory copy of the
1326 * given array that corresponds to element [aff[0]][aff[1]]...
1327 * of the original array.
1328 * The copy in global memory has been linearized, so we need to take
1329 * the array size into account.
1331 static void print_global_index(isl_ctx *ctx, FILE *out,
1332 struct cuda_array_info *array, __isl_keep isl_aff **aff)
1334 int i;
1335 isl_printer *prn;
1337 if (cuda_array_is_scalar(array)) {
1338 fprintf(out, "*%s", array->name);
1339 return;
1342 fprintf(out, "%s[", array->name);
1343 prn = isl_printer_to_file(ctx, out);
1344 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
1345 for (i = 0; i + 1 < array->n_index; ++i)
1346 prn = isl_printer_print_str(prn, "(");
1347 for (i = 0; i < array->n_index; ++i) {
1348 if (i) {
1349 prn = isl_printer_print_str(prn, ") * (");
1350 prn = isl_printer_print_pw_aff(prn,
1351 array->local_bound[i]);
1352 prn = isl_printer_print_str(prn, ") + ");
1354 prn = isl_printer_print_aff(prn, aff[i]);
1356 isl_printer_free(prn);
1357 fprintf(out, "]");
1360 /* Given an index expression into a tile of an array, adjust the expression
1361 * to a shift of the tile to the origin
1362 * (based on the lower bounds in array->shared_bound).
1363 * If the index is strided, then we first add
1364 * bound->shift and divide by bound->stride.
1366 static __isl_give isl_aff *shift_index(__isl_take isl_aff *aff,
1367 struct cuda_array_info *array,
1368 struct cuda_array_bound *bound, __isl_take isl_set *domain)
1370 isl_aff *lb;
1372 if (bound->shift) {
1373 isl_aff *shift;
1374 shift = bound->shift;
1375 shift = isl_aff_copy(shift);
1376 shift = isl_aff_project_domain_on_params(shift);
1377 shift = isl_aff_align_params(shift, isl_aff_get_space(aff));
1378 aff = isl_aff_add(aff, shift);
1379 aff = isl_aff_scale_down(aff, bound->stride);
1382 lb = isl_aff_copy(bound->lb);
1383 lb = isl_aff_project_domain_on_params(lb);
1385 lb = isl_aff_align_params(lb, isl_aff_get_space(aff));
1387 aff = isl_aff_sub(aff, lb);
1388 aff = isl_aff_gist(aff, domain);
1390 return aff;
1393 /* Print an access to the element in the private/shared memory copy of the
1394 * given array reference group that corresponds to element [affs[0]][affs[1]]...
1395 * of the original array.
1396 * Since the array in private/shared memory is just a shifted copy of part
1397 * of the original array, we simply need to subtract the lower bound,
1398 * which was computed in can_tile_for_shared_memory.
1399 * If any of the indices is strided, then we first add
1400 * bounds[i].shift and divide by bounds[i].stride.
1402 static void print_local_index(isl_ctx *ctx, FILE *out,
1403 struct cuda_array_ref_group *group, struct cuda_array_bound *bounds,
1404 __isl_keep isl_aff **affs, __isl_keep isl_set *domain)
1406 int i;
1407 isl_printer *prn;
1408 struct cuda_array_info *array = group->array;
1410 print_array_name(out, group);
1411 for (i = 0; i < array->n_index; ++i) {
1412 isl_aff *aff = isl_aff_copy(affs[i]);
1414 aff = shift_index(aff, array, &bounds[i], isl_set_copy(domain));
1416 fprintf(out, "[");
1417 prn = isl_printer_to_file(ctx, out);
1418 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
1419 prn = isl_printer_print_aff(prn, aff);
1420 isl_printer_free(prn);
1421 fprintf(out, "]");
1422 isl_aff_free(aff);
1426 /* This function is called for each leaf in the clast of the code
1427 * for copying to or from shared/private memory.
1428 * The statement name is {read,write}_{shared,private}_<array>.
1430 * The schedule iterates over the array elements, so we can use
1431 * the domain of copy_sched at the current scheduling position
1432 * as the index of the array.
1434 static void print_copy_statement(struct gpucode_info *code,
1435 struct clast_user_stmt *u)
1437 struct cuda_gen *gen = code->user;
1438 isl_set *domain;
1439 isl_map *sched;
1440 struct cuda_array_ref_group *group = gen->copy_group;
1441 struct cuda_array_bound *bounds = gen->copy_bound;
1442 int i;
1443 unsigned n_in;
1444 unsigned n_out;
1445 isl_space *dim;
1446 isl_set *param;
1447 isl_set *index;
1448 isl_basic_set *aff;
1449 isl_ctx *ctx;
1450 isl_aff **affs;
1451 int read;
1453 read = !strncmp(u->statement->name, "read", 4);
1455 domain = extract_host_domain(u);
1456 assert(domain);
1458 sched = isl_map_copy(gen->copy_sched);
1459 sched = isl_map_reverse(sched);
1460 sched = isl_map_intersect_domain(sched, domain);
1461 n_in = isl_map_dim(sched, isl_dim_in);
1462 n_out = isl_map_dim(sched, isl_dim_out);
1463 dim = isl_map_get_space(sched);
1464 dim = isl_space_drop_dims(dim, isl_dim_in, 0, n_in);
1465 dim = isl_space_drop_dims(dim, isl_dim_out, 0, n_out);
1466 param = parametrization(dim, n_in, 0, n_in, "c");
1467 sched = isl_map_align_params(sched, isl_set_get_space(param));
1468 sched = isl_map_intersect_domain(sched, param);
1469 index = isl_map_range(sched);
1470 domain = isl_set_copy(index);
1471 aff = isl_set_affine_hull(index);
1472 domain = isl_set_params(domain);
1474 ctx = isl_basic_set_get_ctx(aff);
1475 affs = isl_alloc_array(ctx, isl_aff *, n_out);
1476 assert(affs);
1478 for (i = 0; i < n_out; ++i) {
1479 isl_constraint *c;
1480 int ok;
1482 ok = isl_basic_set_has_defining_equality(aff,
1483 isl_dim_set, i, &c);
1484 assert(ok);
1485 affs[i] = isl_constraint_get_bound(c, isl_dim_set, i);
1486 isl_constraint_free(c);
1487 affs[i] = isl_aff_project_domain_on_params(affs[i]);
1490 print_indent(code->dst, code->indent);
1491 if (read) {
1492 print_local_index(ctx, code->dst, group, bounds, affs, domain);
1493 fprintf(code->dst, " = ");
1494 print_global_index(ctx, code->dst, group->array, affs);
1495 } else {
1496 print_global_index(ctx, code->dst, group->array, affs);
1497 fprintf(code->dst, " = ");
1498 print_local_index(ctx, code->dst, group, bounds, affs, domain);
1500 fprintf(code->dst, ";\n");
1502 for (i = 0; i < n_out; ++i)
1503 isl_aff_free(affs[i]);
1504 free(affs);
1506 isl_basic_set_free(aff);
1507 isl_set_free(domain);
1510 static void print_shared_access(struct cuda_gen *gen,
1511 __isl_keep isl_set *shared_domain, __isl_take isl_set *access,
1512 const char *type, struct cuda_array_ref_group *group)
1514 const char *array_name;
1515 char *name;
1516 isl_ctx *ctx;
1517 isl_union_map *sched;
1518 unsigned nvar = isl_set_dim(access, isl_dim_set);
1519 int n_tile;
1521 ctx = isl_set_get_ctx(access);
1522 array_name = isl_set_get_tuple_name(access);
1523 name = isl_alloc_array(ctx, char,
1524 strlen(type) + sizeof("_shared_") + strlen(array_name) + 20);
1525 if (group->array->n_group > 1)
1526 sprintf(name, "%s_shared_%s_%d", type, array_name, group->nr);
1527 else
1528 sprintf(name, "%s_shared_%s", type, array_name);
1529 access = isl_set_set_tuple_name(access, name);
1530 free(name);
1532 sched = access_schedule(gen, access, group);
1534 n_tile = gen->n_block;
1535 if (n_tile > nvar)
1536 n_tile = nvar;
1538 gen->copy_sched = isl_map_from_union_map(isl_union_map_copy(sched));
1539 gen->copy_group = group;
1540 gen->copy_bound = group->shared_bound;
1542 print_shared_body(gen, shared_domain, sched, nvar + n_tile,
1543 &print_copy_statement, -1);
1545 isl_union_map_free(sched);
1546 isl_map_free(gen->copy_sched);
1549 /* Return the union of all read (read = 1) and/or write (write = 1)
1550 * access relations in the group.
1552 static __isl_give isl_union_map *group_access_relation(
1553 struct cuda_array_ref_group *group, int read, int write)
1555 int i;
1556 isl_union_map *access;
1558 access = isl_union_map_empty(isl_map_get_space(group->access));
1559 for (i = 0; i < group->n_ref; ++i) {
1560 isl_map *map_i;
1562 if (!((read && group->refs[i]->read) ||
1563 (write && group->refs[i]->write)))
1564 continue;
1565 map_i = isl_map_copy(group->refs[i]->access);
1566 access = isl_union_map_union(access,
1567 isl_union_map_from_map(map_i));
1570 return access;
1573 /* Check that none of the shared memory tiles involve any strides.
1575 static int no_strides(struct cuda_array_ref_group *group)
1577 int i;
1578 int n_index = group->array->n_index;
1580 for (i = 0; i < n_index; ++i)
1581 if (group->shared_bound[i].shift)
1582 return 0;
1584 return 1;
1587 /* Return a set containing the values of the given index i
1588 * of the elements in the array tile in global memory that corresponds
1589 * to the shared memory copy.
1590 * In particular, if a is the index, we return a set with constraints
1592 * tile_offset <= a <= tile_offset + tile_size - 1
1594 * and
1596 * 0 <= a <= array_size - 1
1599 static __isl_give isl_set *group_tile_dim(struct cuda_array_ref_group *group,
1600 int i)
1602 isl_basic_set *tile;
1603 isl_aff *aff;
1604 isl_constraint *c;
1605 isl_local_space *ls;
1606 isl_pw_aff *bound;
1607 isl_set *dom;
1608 isl_set *tile_set;
1610 aff = isl_aff_copy(group->shared_bound[i].lb);
1611 aff = isl_aff_add_dims(aff, isl_dim_in, 1);
1612 ls = isl_aff_get_domain_local_space(aff);
1613 aff = isl_aff_neg(aff);
1614 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1615 c = isl_inequality_from_aff(isl_aff_copy(aff));
1616 tile = isl_basic_set_from_constraint(c);
1618 aff = isl_aff_neg(aff);
1619 aff = isl_aff_add_constant(aff, group->shared_bound[i].size);
1620 aff = isl_aff_add_constant_si(aff, -1);
1621 c = isl_inequality_from_aff(aff);
1622 tile = isl_basic_set_add_constraint(tile, c);
1624 aff = isl_aff_zero_on_domain(ls);
1625 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1626 c = isl_inequality_from_aff(aff);
1627 tile = isl_basic_set_add_constraint(tile, c);
1629 bound = isl_pw_aff_copy(group->array->bound[i]);
1630 bound = isl_pw_aff_add_dims(bound, isl_dim_in, 1);
1631 ls = isl_local_space_from_space(isl_pw_aff_get_domain_space(bound));
1632 aff = isl_aff_zero_on_domain(ls);
1633 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1634 aff = isl_aff_add_constant_si(aff, 1);
1635 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
1637 tile_set = isl_pw_aff_ge_set(bound, isl_pw_aff_alloc(dom, aff));
1638 tile_set = isl_set_align_params(tile_set, isl_basic_set_get_space(tile));
1639 tile_set = isl_set_intersect(tile_set, isl_set_from_basic_set(tile));
1641 return tile_set;
1644 /* Return a set containing the elements in the array tile in
1645 * global memory that corresponds to the shared memory copy.
1647 static __isl_give isl_set *group_tile(struct cuda_array_ref_group *group)
1649 int i;
1650 int n_index = group->array->n_index;
1651 isl_set *tile;
1653 tile = group_tile_dim(group, 0);
1654 for (i = 1; i < n_index; ++i) {
1655 isl_set *tile_i;
1657 tile_i = group_tile_dim(group, i);
1658 tile = isl_set_flat_product(tile, tile_i);
1661 tile = isl_set_set_tuple_name(tile, group->array->name);
1663 return tile;
1666 /* Print code for reading into or writing from shared memory
1667 * the given array reference group.
1669 * sched maps the original iteration domains to the shared memory tile loops.
1671 * If we are performing a read from global memory to shared memory,
1672 * if the array involved is not a scalar and if the definition of the
1673 * shared memory tiles does not involve any strides, then we copy
1674 * the entire tile to shared memory. This may result in some extra
1675 * elements getting copied, but it should lead to simpler code
1676 * (which means that fewer registers may be needed) and less divergence.
1678 * Otherwise, we only copy the elements that will be read or have been written
1679 * in the kernel.
1681 * Note that the absence of stride requirement can easily be lifted.
1682 * We would just need to add constraints of the form
1684 * shift + a = stride * alpha
1686 static int print_group_shared_accesses(struct cuda_gen *gen,
1687 struct cuda_array_ref_group *group, const char *type,
1688 __isl_keep isl_set *shared_domain, __isl_keep isl_union_map *sched)
1690 int read;
1691 isl_union_map *access;
1692 isl_union_set *uset;
1693 isl_set *access_set;
1695 if (group->private_bound)
1696 return 0;
1697 if (!group->shared_bound)
1698 return 0;
1700 read = !strcmp(type, "read");
1702 access = group_access_relation(group, read, !read);
1703 access = isl_union_map_apply_domain(access, isl_union_map_copy(sched));
1704 uset = isl_union_map_range(access);
1706 if (isl_union_set_is_empty(uset)) {
1707 isl_union_set_free(uset);
1708 return 0;
1711 if (read && group->array->n_index > 0 && no_strides(group)) {
1712 isl_union_set_free(uset);
1713 access_set = group_tile(group);
1714 print_shared_access(gen, shared_domain, access_set,
1715 type, group);
1716 return 1;
1719 access_set = isl_set_from_union_set(uset);
1720 access_set = isl_set_coalesce(access_set);
1722 print_shared_access(gen, shared_domain, access_set, type, group);
1724 return 1;
1727 /* Print code for reading into or writing from shared memory at
1728 * the given level (-1 for innermost).
1730 * If we are not printing at the innermost level, then the dimensionality
1731 * of shared_domain may be smaller than gen->shared_len.
1732 * As the rest of the code assumes that the domain of access has
1733 * gen->shared_len dimensions, we therefore may need to embed this domain
1734 * in a higher dimensional space after intersection with shared_domain.
1736 static void print_shared_accesses(struct cuda_gen *gen,
1737 __isl_keep isl_set *shared_domain, __isl_keep isl_union_map *access,
1738 const char *type, int level)
1740 int i, j;
1741 isl_space *dim;
1742 isl_map *proj;
1743 isl_set *par;
1744 int shared_len = isl_set_dim(shared_domain, isl_dim_set);
1745 int sync = 0;
1746 isl_union_map *sched;
1748 shared_domain = isl_set_copy(shared_domain);
1749 sched = isl_union_map_copy(gen->tiled_sched);
1750 dim = isl_union_map_get_space(sched);
1751 proj = projection(dim, gen->tiled_len, shared_len);
1752 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
1753 sched = isl_union_map_intersect_range(sched,
1754 isl_union_set_from_set(isl_set_copy(shared_domain)));
1755 if (shared_len != gen->shared_len) {
1756 dim = isl_union_map_get_space(sched);
1757 proj = projection(dim, gen->shared_len, shared_len);
1758 proj = isl_map_reverse(proj);
1759 shared_domain = isl_set_apply(shared_domain,
1760 isl_map_copy(proj));
1761 sched = isl_union_map_apply_range(sched,
1762 isl_union_map_from_map(proj));
1765 dim = isl_union_map_get_space(sched);
1766 par = parametrization(dim, gen->shared_len, 0, gen->shared_len, "g");
1767 sched = isl_union_map_intersect_range(sched,
1768 isl_union_set_from_set(par));
1770 for (i = 0; i < gen->n_array; ++i) {
1771 struct cuda_array_info *array = &gen->array[i];
1773 if (gen->array[i].print_shared_level != level)
1774 continue;
1776 for (j = 0; j < array->n_group; ++j) {
1777 if (print_group_shared_accesses(gen, array->groups[j],
1778 type, shared_domain, sched))
1779 sync = 1;
1783 isl_union_map_free(sched);
1784 isl_set_free(shared_domain);
1786 if (sync) {
1787 print_indent(gen->cuda.kernel_c, gen->kernel_code.indent);
1788 fprintf(gen->cuda.kernel_c, "__syncthreads();\n");
1792 /* This function is called for each access to an array in some statement
1793 * in the original code.
1794 * Replace that access by an access to shared or (linearized) global memory.
1795 * Since the array in shared memory is just
1796 * a shifted copy of part of the original array, we simply need
1797 * to subtract the lower bound, which was computed
1798 * in can_tile_for_shared_memory.
1799 * If any of the indices is strided, then we first add
1800 * shared_bound[i].shift and divide by shared_bound[i].stride.
1802 * If the given array is accessed directly from global memory,
1803 * we don't need to perform any shifting and simply simplify
1804 * expression in the context of the domain instead.
1806 * If the array space (range of access) has no name, then we are
1807 * accessing an iterator in the original program.
1809 static void print_access(struct cuda_gen *gen, __isl_take isl_map *access,
1810 int group_nr)
1812 int i;
1813 const char *name;
1814 unsigned n_index;
1815 struct cuda_array_info *array = NULL;
1816 isl_printer *prn;
1817 isl_basic_set *aff;
1818 isl_set *data_set;
1819 isl_set *domain;
1820 struct cuda_array_bound *bounds = NULL;
1822 access = isl_map_align_params(access,
1823 isl_set_get_space(gen->stmt_domain));
1825 data_set = isl_set_apply(isl_set_copy(gen->stmt_domain), access);
1827 name = isl_set_get_tuple_name(data_set);
1829 if (!name)
1830 fprintf(gen->cuda.kernel_c, "(");
1831 else {
1832 struct cuda_array_ref_group *group;
1834 for (i = 0; i < gen->n_array; ++i) {
1835 if (strcmp(name, gen->array[i].name))
1836 continue;
1837 array = &gen->array[i];
1839 assert(array);
1840 group = array->groups[group_nr];
1841 bounds = group->private_bound;
1842 if (!bounds)
1843 bounds = group->shared_bound;
1845 if (!bounds && cuda_array_is_scalar(array))
1846 fprintf(gen->cuda.kernel_c, "*");
1847 print_array_name(gen->cuda.kernel_c, group);
1849 if (cuda_array_is_scalar(array)) {
1850 isl_set_free(data_set);
1851 return;
1854 fprintf(gen->cuda.kernel_c, "[");
1858 n_index = isl_set_dim(data_set, isl_dim_set);
1859 aff = isl_set_affine_hull(data_set);
1861 prn = isl_printer_to_file(gen->ctx, gen->cuda.kernel_c);
1862 prn = isl_printer_set_output_format(prn, ISL_FORMAT_C);
1864 if (!bounds)
1865 for (i = 0; i + 1 < n_index; ++i)
1866 prn = isl_printer_print_str(prn, "(");
1868 for (i = 0; i < n_index; ++i) {
1869 isl_constraint *c;
1870 isl_aff *index;
1871 int ok;
1873 ok = isl_basic_set_has_defining_equality(aff,
1874 isl_dim_out, i, &c);
1875 assert(ok);
1876 index = isl_constraint_get_bound(c, isl_dim_out, i);
1877 isl_constraint_free(c);
1878 index = isl_aff_project_domain_on_params(index);
1880 if (!array) {
1881 prn = isl_printer_print_aff(prn, index);
1882 isl_aff_free(index);
1883 continue;
1886 domain = isl_set_copy(gen->stmt_domain);
1887 domain = isl_set_params(domain);
1888 if (!bounds)
1889 index = isl_aff_gist(index, domain);
1890 else
1891 index = shift_index(index, array, &bounds[i], domain);
1893 if (i) {
1894 if (!bounds) {
1895 prn = isl_printer_print_str(prn, ") * (");
1896 prn = isl_printer_print_pw_aff(prn,
1897 array->local_bound[i]);
1898 prn = isl_printer_print_str(prn, ") + ");
1899 } else
1900 prn = isl_printer_print_str(prn, "][");
1902 prn = isl_printer_print_aff(prn, index);
1903 isl_aff_free(index);
1905 if (!name)
1906 prn = isl_printer_print_str(prn, ")");
1907 else
1908 prn = isl_printer_print_str(prn, "]");
1909 isl_printer_free(prn);
1911 isl_basic_set_free(aff);
1914 static struct cuda_stmt_access *print_expr(struct cuda_gen *gen, FILE *out,
1915 struct pet_expr *expr, struct cuda_stmt_access *access, int outer)
1917 int i;
1919 switch (expr->type) {
1920 case pet_expr_double:
1921 fprintf(out, "%g", expr->d);
1922 break;
1923 case pet_expr_access:
1924 print_access(gen, isl_map_copy(access->access), access->group);
1925 access = access->next;
1926 break;
1927 case pet_expr_unary:
1928 if (!outer)
1929 fprintf(out, "(");
1930 fprintf(out, " %s ", pet_op_str(expr->op));
1931 access = print_expr(gen, out, expr->args[pet_un_arg],
1932 access, 0);
1933 if (!outer)
1934 fprintf(out, ")");
1935 break;
1936 case pet_expr_binary:
1937 if (!outer)
1938 fprintf(out, "(");
1939 access = print_expr(gen, out, expr->args[pet_bin_lhs],
1940 access, 0);
1941 fprintf(out, " %s ", pet_op_str(expr->op));
1942 access = print_expr(gen, out, expr->args[pet_bin_rhs],
1943 access, 0);
1944 if (!outer)
1945 fprintf(out, ")");
1946 break;
1947 case pet_expr_ternary:
1948 if (!outer)
1949 fprintf(out, "(");
1950 access = print_expr(gen, out, expr->args[pet_ter_cond],
1951 access, 0);
1952 fprintf(out, " ? ");
1953 access = print_expr(gen, out, expr->args[pet_ter_true],
1954 access, 0);
1955 fprintf(out, " : ");
1956 access = print_expr(gen, out, expr->args[pet_ter_false],
1957 access, 0);
1958 if (!outer)
1959 fprintf(out, ")");
1960 break;
1961 case pet_expr_call:
1962 fprintf(out, "%s(", expr->name);
1963 for (i = 0; i < expr->n_arg; ++i) {
1964 if (i)
1965 fprintf(out, ", ");
1966 access = print_expr(gen, out, expr->args[i],
1967 access, 1);
1969 fprintf(out, ")");
1971 return access;
1974 static void print_stmt_body(struct cuda_gen *gen,
1975 FILE *out, struct cuda_stmt *stmt)
1977 print_expr(gen, out, stmt->body, stmt->accesses, 1);
1978 fprintf(out, ";\n");
1981 /* This function is called for each leaf in the innermost clast,
1982 * i.e., for each statement.
1983 * We print the statement body, simplifying the accesses based
1984 * on the schedule.
1986 static void print_statement(struct gpucode_info *code,
1987 struct clast_user_stmt *u)
1989 struct cuda_gen *gen = code->user;
1990 isl_space *dim;
1991 isl_set *par;
1992 isl_set *stmt_domain;
1993 isl_union_map *stmt_sched;
1994 isl_union_set *uset;
1995 int nr;
1996 struct cuda_stmt *stmt;
1998 nr = atoi(u->statement->name + 2);
1999 stmt = &gen->stmts[nr];
2001 stmt_domain = extract_host_domain(u);
2003 stmt_sched = isl_union_map_intersect_range(
2004 isl_union_map_copy(gen->local_sched),
2005 isl_union_set_from_set(extend(stmt_domain,
2006 gen->thread_tiled_len)));
2007 dim = isl_union_map_get_space(stmt_sched);
2008 par = parametrization(dim, gen->thread_tiled_len, 0,
2009 gen->thread_tiled_len, "c");
2010 stmt_sched = isl_union_map_intersect_range(stmt_sched,
2011 isl_union_set_from_set(par));
2013 uset = isl_union_map_domain(stmt_sched);
2014 dim = isl_union_set_get_space(uset);
2015 dim = isl_space_add_dims(dim, isl_dim_set,
2016 isl_set_dim(stmt->domain, isl_dim_set));
2017 dim = isl_space_set_tuple_name(dim, isl_dim_set, u->statement->name);
2018 gen->stmt_domain = isl_union_set_extract_set(uset, dim);
2019 isl_union_set_free(uset);
2021 print_indent(code->dst, code->indent);
2022 print_stmt_body(gen, code->dst, stmt);
2024 isl_set_free(gen->stmt_domain);
2027 static void print_private_access(struct cuda_gen *gen,
2028 __isl_keep isl_set *shared_domain, __isl_take isl_set *access,
2029 const char *type, struct cuda_array_ref_group *group)
2031 const char *array_name;
2032 char *name;
2033 isl_ctx *ctx;
2034 unsigned nvar = isl_set_dim(access, isl_dim_set);
2035 isl_union_map *usched;
2037 if (isl_set_fast_is_empty(access)) {
2038 isl_set_free(access);
2039 return;
2042 ctx = isl_set_get_ctx(access);
2043 array_name = isl_set_get_tuple_name(access);
2044 name = isl_alloc_array(ctx, char,
2045 strlen(type) + sizeof("_private_") + strlen(array_name) + 20);
2046 if (group->array->n_group > 1)
2047 sprintf(name, "%s_private_%s_%d", type, array_name, group->nr);
2048 else
2049 sprintf(name, "%s_private_%s", type, array_name);
2050 access = isl_set_set_tuple_name(access, name);
2051 free(name);
2053 gen->copy_sched = shift_access(access, group);
2054 gen->copy_group = group;
2055 gen->copy_bound = group->private_bound;
2057 usched = isl_union_map_from_map(isl_map_copy(gen->copy_sched));
2058 print_shared_body(gen, shared_domain, usched, nvar,
2059 &print_copy_statement, 1);
2060 isl_union_map_free(usched);
2062 isl_map_free(gen->copy_sched);
2065 /* Print code for reading into or writing from private memory
2066 * the given array reference group.
2068 * sched maps the original iteration domains to the shared memory tile loops.
2070 static void print_group_private_accesses(struct cuda_gen *gen,
2071 struct cuda_array_ref_group *group,
2072 const char *type, __isl_keep isl_set *shared_domain,
2073 unsigned first_shared, int shared_len, __isl_keep isl_union_map *sched)
2075 int read;
2076 isl_union_map *access;
2077 isl_union_set *uset;
2078 isl_set *access_set;
2080 if (!group->private_bound)
2081 return;
2083 read = !strcmp(type, "read");
2085 access = group_access_relation(group, read, !read);
2086 access = isl_union_map_apply_domain(access, isl_union_map_copy(sched));
2087 access = isl_union_map_intersect(access,
2088 isl_union_map_copy(gen->private_access));
2089 uset = isl_union_map_range(access);
2091 if (isl_union_set_is_empty(uset)) {
2092 isl_union_set_free(uset);
2093 return;
2096 access_set = isl_set_from_union_set(uset);
2097 access_set = isl_set_coalesce(access_set);
2098 access_set = isl_set_eliminate(access_set, isl_dim_param,
2099 first_shared + shared_len,
2100 gen->shared_len - shared_len);
2102 print_private_access(gen, shared_domain, access_set, type, group);
2105 /* Print code for reading into or writing from private memory at
2106 * the given level (-1 for innermost).
2108 * If we are not printing at the innermost level, then the dimensionality
2109 * of shared_domain may be smaller than gen->shared_len.
2110 * As the rest of the code assumes that the domain of access has
2111 * gen->shared_len dimensions, we therefore may need to embed this domain
2112 * in a higher dimensional space after intersection with shared_domain.
2114 * This code is very similar to print_shared_accesses.
2115 * The main difference is that we to take into account gen->private_access.
2117 static void print_private_accesses(struct cuda_gen *gen,
2118 __isl_keep isl_set *shared_domain, __isl_keep isl_union_map *access,
2119 const char *type, int level)
2121 int i, j;
2122 isl_space *dim;
2123 isl_map *proj;
2124 int shared_len = isl_set_dim(shared_domain, isl_dim_set);
2125 unsigned first_shared;
2126 isl_union_map *sched;
2128 shared_domain = isl_set_copy(shared_domain);
2129 sched = isl_union_map_copy(gen->tiled_sched);
2130 dim = isl_union_map_get_space(sched);
2131 first_shared = isl_space_dim(dim, isl_dim_param);
2132 proj = projection(dim, gen->tiled_len, shared_len);
2133 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
2134 sched = isl_union_map_intersect_range(sched,
2135 isl_union_set_from_set(isl_set_copy(shared_domain)));
2136 if (shared_len != gen->shared_len) {
2137 dim = isl_union_map_get_space(sched);
2138 proj = projection(dim, gen->shared_len, shared_len);
2139 proj = isl_map_reverse(proj);
2140 shared_domain = isl_set_apply(shared_domain,
2141 isl_map_copy(proj));
2142 sched = isl_union_map_apply_range(sched,
2143 isl_union_map_from_map(proj));
2146 for (i = 0; i < gen->n_array; ++i) {
2147 struct cuda_array_info *array = &gen->array[i];
2149 if (gen->array[i].print_shared_level != level)
2150 continue;
2152 for (j = 0; j < array->n_group; ++j)
2153 print_group_private_accesses(gen, array->groups[j],
2154 type, shared_domain,
2155 first_shared, shared_len, sched);
2158 isl_union_map_free(sched);
2159 isl_set_free(shared_domain);
2162 /* Set unroll[j] if the input dimension j is involved in
2163 * the index expression represented by bmap.
2165 static int check_unroll(__isl_take isl_basic_map *bmap, void *user)
2167 int i, j;
2168 int n_in = isl_basic_map_dim(bmap, isl_dim_in);
2169 int n_out = isl_basic_map_dim(bmap, isl_dim_out);
2170 int *unroll = user;
2172 for (i = 0; i < n_out; ++i) {
2173 isl_constraint *c;
2174 int ok;
2176 ok = isl_basic_map_has_defining_equality(bmap,
2177 isl_dim_out, i, &c);
2178 assert(ok);
2179 for (j = 0; j < n_in; ++j)
2180 if (isl_constraint_involves_dims(c, isl_dim_in, j, 1))
2181 unroll[j] = 1;
2182 isl_constraint_free(c);
2185 isl_basic_map_free(bmap);
2186 return 0;
2189 /* Given an array pos mapping input dimensions to the corresponding
2190 * output dimension, construct the corresponding map.
2192 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
2193 int *pos, int len)
2195 int i;
2196 isl_constraint *c;
2197 isl_basic_map *bmap;
2198 isl_local_space *ls;
2200 dim = isl_space_add_dims(dim, isl_dim_in, len);
2201 dim = isl_space_add_dims(dim, isl_dim_out, len);
2202 bmap = isl_basic_map_universe(isl_space_copy(dim));
2203 ls = isl_local_space_from_space(dim);
2205 for (i = 0; i < len; ++i) {
2206 c = isl_equality_alloc(isl_local_space_copy(ls));
2207 isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
2208 isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i], 1);
2209 bmap = isl_basic_map_add_constraint(bmap, c);
2211 isl_local_space_free(ls);
2213 return isl_map_from_basic_map(bmap);
2216 /* Find all loops involved in any of the index expressions for any of
2217 * the private accesses, move them innermost and then mark them as
2218 * requiring unrolling by setting gen->first_unroll.
2219 * The loops involved should all be parallel because of the checks
2220 * we performed in check_private_group_access. Moving them innermost
2221 * is therefore a valid transformation.
2223 static __isl_give isl_union_map *interchange_for_unroll(struct cuda_gen *gen,
2224 __isl_take isl_union_map *sched)
2226 int i, j;
2227 int unroll[gen->thread_tiled_len];
2228 int perm[gen->thread_tiled_len];
2229 isl_space *dim;
2230 isl_map *permute;
2231 int len = gen->shared_len + gen->n_parallel + gen->n_block;
2233 gen->first_unroll = -1;
2235 for (i = 0; i < gen->thread_tiled_len; ++i)
2236 unroll[i] = 0;
2237 for (i = 0; i < gen->n_array; ++i) {
2238 struct cuda_array_info *array = &gen->array[i];
2240 for (j = 0; j < array->n_group; ++j) {
2241 isl_union_map *access;
2242 isl_map *acc;
2244 if (!array->groups[j]->private_bound)
2245 continue;
2247 access = group_access_relation(array->groups[j], 1, 1);
2248 access = isl_union_map_apply_domain(access,
2249 isl_union_map_copy(sched));
2251 acc = isl_map_from_union_map(access);
2252 isl_map_foreach_basic_map(acc, &check_unroll, unroll);
2254 isl_map_free(acc);
2258 for (i = 0; i < gen->shared_len; ++i)
2259 if (unroll[i])
2260 return sched;
2262 for (i = gen->shared_len; i < len; ++i)
2263 if (unroll[i])
2264 break;
2266 if (i >= len)
2267 return sched;
2269 for (i = len; i < gen->thread_tiled_len; ++i)
2270 if (unroll[i])
2271 return sched;
2273 j = 0;
2274 for (i = 0; i < gen->thread_tiled_len; ++i)
2275 if (!unroll[i])
2276 perm[i] = j++;
2277 gen->first_unroll = 1 + j;
2278 for (i = 0; i < len; ++i)
2279 if (unroll[i])
2280 perm[i] = j++;
2282 dim = isl_union_map_get_space(sched);
2283 permute = permutation(dim, perm, gen->thread_tiled_len);
2284 sched = isl_union_map_apply_range(sched,
2285 isl_union_map_from_map(permute));
2287 return sched;
2290 /* This function is called for each leaf in the clast of the kernel code.
2291 * We first specialize the schedule to the site of the leaf and
2292 * print code for reading into shared memory, performing the actual
2293 * computations and writing from shared memory, with the required
2294 * synchronizations.
2296 static void print_kernel_user(struct gpucode_info *code,
2297 struct clast_user_stmt *u)
2299 struct cuda_gen *gen = code->user;
2300 isl_set *shared_domain;
2302 shared_domain = extract_entire_host_domain(u);
2304 print_shared_accesses(gen, shared_domain, gen->read, "read", -1);
2306 print_private_accesses(gen, shared_domain, gen->read, "read", -1);
2308 print_shared_body(gen, shared_domain, gen->local_sched,
2309 gen->thread_tiled_len, &print_statement,
2310 gen->first_unroll);
2312 print_private_accesses(gen, shared_domain, gen->write, "write", -1);
2314 print_indent(gen->cuda.kernel_c, gen->kernel_code.indent);
2315 fprintf(gen->cuda.kernel_c, "__syncthreads();\n");
2317 print_shared_accesses(gen, shared_domain, gen->write, "write", -1);
2319 isl_set_free(shared_domain);
2322 /* Check if we need to perform any copying to shared memory at this level
2323 * and if so, print the copying instructions.
2324 * Any array for which we are allowed to print copying instructions at
2325 * this level, but haven't done so already, is printed.
2327 static void print_kernel_for_head(struct gpucode_info *code,
2328 struct clast_for *f)
2330 int i;
2331 struct cuda_gen *gen = code->user;
2332 isl_set *domain;
2333 int level;
2334 int print = 0;
2336 domain = isl_set_from_cloog_domain(cloog_domain_copy(f->domain));
2337 level = isl_set_dim(domain, isl_dim_set) - 1;
2339 for (i = 0; i < gen->n_array; ++i) {
2340 if (gen->array[i].print_shared_level >= 0)
2341 continue;
2342 if (gen->array[i].last_shared > level)
2343 continue;
2344 gen->array[i].print_shared_level = level;
2345 print = 1;
2348 if (print) {
2349 print_shared_accesses(gen, domain, gen->read, "read", level);
2350 print_private_accesses(gen, domain, gen->read, "read", level);
2353 isl_set_free(domain);
2356 /* Print instructions for copying from shared memory for each array
2357 * for which print_kernel_for_head has added copying instructions
2358 * to shared memory.
2360 static void print_kernel_for_foot(struct gpucode_info *code,
2361 struct clast_for *f)
2363 int i;
2364 struct cuda_gen *gen = code->user;
2365 isl_set *domain;
2366 int level;
2367 int print = 0;
2369 domain = isl_set_from_cloog_domain(cloog_domain_copy(f->domain));
2370 level = isl_set_dim(domain, isl_dim_set) - 1;
2372 for (i = 0; i < gen->n_array; ++i) {
2373 if (gen->array[i].print_shared_level != level)
2374 continue;
2375 print = 1;
2376 break;
2379 if (print) {
2380 print_private_accesses(gen, domain, gen->write, "write", level);
2381 print_shared_accesses(gen, domain, gen->write, "write", level);
2384 isl_set_free(domain);
2387 /* Use CLooG to generate code for the outer gen->shared_first loops
2388 * of the local schedule "sched".
2389 * The pretty printing of this code is handled by gpu_print_host_stmt,
2390 * which calls print_kernel_user for each iteration of the shared tile loops.
2392 static void print_cloog_kernel_body(struct cuda_gen *gen,
2393 __isl_keep isl_set *context, __isl_keep isl_union_map *sched)
2395 int i;
2396 CloogOptions *options;
2397 CloogDomain *cloog_context;
2398 CloogUnionDomain *ud;
2399 CloogInput *input;
2400 struct clast_stmt *stmt;
2401 char name[20];
2403 sched = isl_union_map_copy(sched);
2404 sched = isl_union_map_align_params(sched, isl_set_get_space(context));
2406 options = cloog_options_malloc(gen->state);
2407 options->language = CLOOG_LANGUAGE_C;
2408 options->strides = 1;
2409 options->sh = 1;
2410 options->stop = gen->shared_len;
2411 options->f = gen->tiled_len;
2412 options->l = gen->tiled_len;
2413 options->save_domains = 1;
2414 options->noscalars = 1;
2416 ud = cloog_union_domain_from_isl_union_map(sched);
2417 for (i = 0; i < gen->shared_len; ++i) {
2418 snprintf(name, sizeof(name), "g%d", i);
2419 ud = cloog_union_domain_set_name(ud, CLOOG_SCAT, i, name);
2421 cloog_context = cloog_domain_from_isl_set(isl_set_copy(context));
2422 input = cloog_input_alloc(cloog_context, ud);
2424 stmt = cloog_clast_create_from_input(input, options);
2426 gen->kernel_code.indent = 4;
2427 gen->kernel_code.dst = gen->cuda.kernel_c;
2428 gen->kernel_code.print_user_stmt = NULL;
2429 gen->kernel_code.print_user_stmt_list = &print_kernel_user;
2430 gen->kernel_code.print_for_head = &print_kernel_for_head;
2431 gen->kernel_code.print_for_foot = &print_kernel_for_foot;
2432 gen->kernel_code.user = gen;
2433 gpu_print_host_stmt(&gen->kernel_code, stmt);
2435 cloog_clast_free(stmt);
2436 cloog_options_free(options);
2439 static void print_kernel_iterators(struct cuda_gen *gen)
2441 int i;
2442 const char *block_dims[] = { "blockIdx.x", "blockIdx.y" };
2443 const char *thread_dims[] = { "threadIdx.x", "threadIdx.y",
2444 "threadIdx.z" };
2446 if (gen->n_grid > 0) {
2447 print_indent(gen->cuda.kernel_c, 4);
2448 fprintf(gen->cuda.kernel_c, "int ");
2449 for (i = 0; i < gen->n_grid; ++i) {
2450 if (i)
2451 fprintf(gen->cuda.kernel_c, ", ");
2452 fprintf(gen->cuda.kernel_c, "b%d = %s",
2453 i, block_dims[gen->n_grid - 1 - i]);
2455 fprintf(gen->cuda.kernel_c, ";\n");
2458 if (gen->n_block > 0) {
2459 print_indent(gen->cuda.kernel_c, 4);
2460 fprintf(gen->cuda.kernel_c, "int ");
2461 for (i = 0; i < gen->n_block; ++i) {
2462 if (i)
2463 fprintf(gen->cuda.kernel_c, ", ");
2464 fprintf(gen->cuda.kernel_c, "t%d = %s",
2465 i, thread_dims[gen->n_block - 1 - i]);
2467 fprintf(gen->cuda.kernel_c, ";\n");
2471 static void print_group_shared_array(struct cuda_gen *gen,
2472 struct cuda_array_ref_group *group)
2474 int j;
2475 struct cuda_array_bound *bounds;
2477 bounds = group->private_bound;
2478 if (!bounds)
2479 bounds = group->shared_bound;
2480 if (!bounds)
2481 return;
2483 print_indent(gen->cuda.kernel_c, 4);
2484 fprintf(gen->cuda.kernel_c, "%s%s ",
2485 group->private_bound ? "" : "__shared__ ", group->array->type);
2486 print_array_name(gen->cuda.kernel_c, group);
2487 for (j = 0; j < group->array->n_index; ++j) {
2488 fprintf(gen->cuda.kernel_c, "[");
2489 isl_int_print(gen->cuda.kernel_c, bounds[j].size, 0);
2490 fprintf(gen->cuda.kernel_c, "]");
2492 fprintf(gen->cuda.kernel_c, ";\n");
2495 static void print_shared_arrays(struct cuda_gen *gen)
2497 int i, j;
2499 for (i = 0; i < gen->n_array; ++i) {
2500 struct cuda_array_info *array = &gen->array[i];
2502 for (j = 0; j < array->n_group; ++j)
2503 print_group_shared_array(gen, array->groups[j]);
2507 static void print_kernel_body(struct cuda_gen *gen,
2508 __isl_keep isl_set *host_domain, __isl_keep isl_union_map *sched)
2510 isl_set *context;
2512 context = isl_set_copy(host_domain);
2513 context = parametrize(context, 0, gen->tile_first, "h");
2514 context = isl_set_project_out(context, isl_dim_set, 0, gen->tile_first);
2515 context = add_bounded_parameters(context,
2516 gen->n_grid, gen->grid_dim, "b");
2518 print_kernel_iterators(gen);
2519 print_shared_arrays(gen);
2521 fprintf(gen->cuda.kernel_c, "\n");
2523 print_cloog_kernel_body(gen, context, sched);
2525 isl_set_free(context);
2528 /* Given a constraint
2530 * a(p,i) + j = g f(e)
2532 * or -a(p,i) - j = g f(e) if sign < 0,
2533 * store a(p,i) in bound->shift and g (stride) in bound->stride.
2534 * a(p,i) is assumed to be an expression in only the parameters.
2536 static void extract_stride(__isl_keep isl_constraint *c,
2537 struct cuda_array_bound *bound, isl_int stride, int sign)
2539 int i;
2540 isl_int v;
2541 isl_space *dim;
2542 unsigned nparam;
2543 isl_aff *aff;
2545 isl_int_set(bound->stride, stride);
2547 dim = isl_constraint_get_space(c);
2548 dim = isl_space_params(dim);
2550 nparam = isl_space_dim(dim, isl_dim_param);
2552 isl_int_init(v);
2554 isl_constraint_get_constant(c, &v);
2555 if (sign < 0)
2556 isl_int_neg(v, v);
2557 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2558 aff = isl_aff_set_constant(aff, v);
2560 for (i = 0; i < nparam; ++i) {
2561 isl_constraint_get_coefficient(c, isl_dim_param, i, &v);
2562 if (isl_int_is_zero(v))
2563 continue;
2564 if (sign < 0)
2565 isl_int_neg(v, v);
2566 aff = isl_aff_add_coefficient(aff, isl_dim_param, i, v);
2569 isl_int_clear(v);
2571 bound->shift = aff;
2574 /* Given an equality constraint of a map with a single output dimension j,
2575 * check if the constraint is of the form
2577 * a(p,i) + j = g f(e)
2579 * with a(p,i) an expression in the parameters and input dimensions
2580 * and f(e) an expression in the existentially quantified variables.
2581 * If so, and if g is larger than any such g from a previously considered
2582 * constraint, then call extract_stride. to record the stride information
2583 * in bound.
2585 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
2587 int i;
2588 isl_int v, stride;
2589 unsigned n_div;
2590 struct cuda_array_bound *bound = user;
2592 isl_int_init(v);
2593 isl_int_init(stride);
2595 n_div = isl_constraint_dim(c, isl_dim_div);
2596 isl_constraint_get_coefficient(c, isl_dim_out, 0, &v);
2598 if (n_div && (isl_int_is_one(v) || isl_int_is_negone(v))) {
2599 int s = isl_int_sgn(v);
2600 isl_int_set_si(stride, 0);
2601 for (i = 0; i < n_div; ++i) {
2602 isl_constraint_get_coefficient(c, isl_dim_div, i, &v);
2603 isl_int_gcd(stride, stride, v);
2605 if (!isl_int_is_zero(stride) &&
2606 isl_int_gt(stride, bound->stride))
2607 extract_stride(c, bound, stride, s);
2610 isl_int_clear(stride);
2611 isl_int_clear(v);
2613 isl_constraint_free(c);
2614 return 0;
2617 /* Given contraints on an array index i, check if we can find
2618 * a shift a(p) and a stride g such that
2620 * a(p) + i = 0 mod g
2622 * If so, record the information in bound and apply the mapping
2623 * i -> (i + a(p))/g to the array index in bounds and return
2624 * the new constraints.
2625 * If not, simply return the original constraints.
2627 static __isl_give isl_basic_map *check_stride(struct cuda_gen *gen,
2628 struct cuda_array_bound *bound, __isl_take isl_basic_map *bounds)
2630 isl_basic_map *aff;
2631 isl_basic_map *shift;
2632 isl_aff *aff_shift;
2634 isl_int_set_si(bound->stride, -1);
2636 aff = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
2638 isl_basic_map_foreach_constraint(aff, &check_stride_constraint, bound);
2640 isl_basic_map_free(aff);
2642 if (isl_int_is_neg(bound->stride))
2643 return bounds;
2645 aff_shift = isl_aff_copy(bound->shift);
2646 aff_shift = isl_aff_add_dims(aff_shift, isl_dim_in, 1);
2647 aff_shift = isl_aff_add_coefficient_si(aff_shift, isl_dim_in, 0, 1);
2648 aff_shift = isl_aff_scale_down(aff_shift, bound->stride);
2649 shift = isl_basic_map_from_aff(aff_shift);
2651 bound->shift_map = isl_basic_map_copy(shift);
2652 bounds = isl_basic_map_apply_range(bounds, shift);
2654 return bounds;
2657 struct cuda_size_info {
2658 isl_basic_set *bset;
2659 struct cuda_array_bound *bound;
2660 int pos;
2663 /* Given a constraint from the basic set describing the bounds on
2664 * an array index, check if it is a lower bound, say m i >= b(x), and,
2665 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
2666 * upper bound. If so, and if this bound is smaller than any bound
2667 * derived from earlier constraints, set the size to this bound on
2668 * the expression and the lower bound to ceil(b(x)/m).
2670 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
2672 struct cuda_size_info *size = user;
2673 unsigned nparam;
2674 unsigned n_div;
2675 isl_int v;
2677 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
2678 n_div = isl_constraint_dim(c, isl_dim_div);
2680 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div)) {
2681 isl_constraint_free(c);
2682 return 0;
2685 isl_int_init(v);
2687 isl_constraint_get_coefficient(c, isl_dim_set, size->pos, &v);
2689 if (isl_int_is_pos(v)) {
2690 isl_aff *aff;
2691 isl_aff *lb;
2692 enum isl_lp_result res;
2694 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
2695 aff = isl_aff_ceil(aff);
2697 lb = isl_aff_copy(aff);
2699 aff = isl_aff_neg(aff);
2700 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
2702 res = isl_basic_set_max(size->bset, aff, &v);
2703 isl_aff_free(aff);
2705 if (res == isl_lp_ok) {
2706 isl_int_add_ui(v, v, 1);
2707 if (isl_int_is_neg(size->bound->size) ||
2708 isl_int_lt(v, size->bound->size)) {
2709 isl_int_set(size->bound->size, v);
2710 lb = isl_aff_drop_dims(lb, isl_dim_in,
2711 0, size->pos + 1);
2712 isl_aff_free(size->bound->lb);
2713 size->bound->lb = isl_aff_copy(lb);
2716 isl_aff_free(lb);
2719 isl_int_clear(v);
2720 isl_constraint_free(c);
2722 return 0;
2725 /* Given a basic map "bounds" that maps parameters and input dimensions
2726 * to a single output dimension, look for an expression in the parameters
2727 * and input dimensions such that the range of the output dimension shifted
2728 * by this expression is a constant.
2730 * In particular, we currently only consider lower bounds on the output
2731 * dimension as candidate expressions.
2733 static int compute_array_dim_size(struct cuda_gen *gen,
2734 struct cuda_array_bound *bound, __isl_take isl_basic_map *bounds)
2736 struct cuda_size_info size;
2738 bounds = isl_basic_map_detect_equalities(bounds);
2739 bounds = check_stride(gen, bound, bounds);
2741 isl_int_set_si(bound->size, -1);
2742 bound->lb = NULL;
2744 size.bound = bound;
2745 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
2746 size.bset = isl_basic_map_wrap(bounds);
2747 size.bset = isl_basic_set_flatten(size.bset);
2748 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
2749 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
2750 &size);
2751 isl_basic_set_free(size.bset);
2753 return isl_int_is_nonneg(bound->size) ? 0 : -1;
2756 /* Check if we can find a shared memory tile for the given array
2757 * based on the given accesses, and if so, put the results
2758 * in array->shared_bound.
2760 * We project the accesses on each index in turn and look for a parametric
2761 * offset such that the size is constant.
2763 static int can_tile_for_shared_memory(struct cuda_gen *gen,
2764 struct cuda_array_info *array, __isl_keep isl_map *access,
2765 struct cuda_array_bound *bounds)
2767 int i;
2769 for (i = 0; i < array->n_index; ++i) {
2770 isl_map *access_i;
2771 isl_basic_map *hull;
2773 access_i = isl_map_copy(access);
2774 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
2775 access_i = isl_map_project_out(access_i, isl_dim_out,
2776 1, array->n_index - (i + 1));
2777 access_i = isl_map_compute_divs(access_i);
2778 hull = isl_map_simple_hull(access_i);
2779 if (compute_array_dim_size(gen, &bounds[i], hull) < 0)
2780 return 0;
2783 return 1;
2786 /* Construct a map with input the shared tile loops and the loops that
2787 * will be wrapped around the threads that relates these later loops
2788 * to the thread indices and the projects them out.
2790 static __isl_give isl_map *compute_privatization(struct cuda_gen *gen)
2792 isl_map *priv;
2793 isl_map *tiling;
2794 isl_map *proj;
2795 isl_set *par;
2796 isl_space *dim;
2798 dim = isl_union_map_get_space(gen->shared_sched);
2800 if (gen->options->wrap)
2801 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
2802 gen->shared_len, gen->n_block, gen->block_dim);
2803 else
2804 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
2805 gen->shared_len, gen->n_block, gen->block_dim);
2807 priv = tiling;
2809 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
2810 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
2811 gen->n_block, "t");
2813 priv = isl_map_align_params(priv, isl_set_get_space(par));
2814 priv = isl_map_intersect_range(priv, par);
2816 dim = isl_map_get_space(priv);
2817 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
2818 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
2819 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
2820 gen->shared_len);
2822 priv = isl_map_apply_range(priv, proj);
2824 return priv;
2827 /* Construct a map from domain_dim to domain_dim that increments
2828 * the dimension at position "pos" and leaves all other dimensions
2829 * constant.
2831 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
2833 int i;
2834 int len = isl_space_dim(domain_dim, isl_dim_set);
2835 isl_space *dim;
2836 isl_basic_map *next;
2837 isl_local_space *ls;
2839 dim = isl_space_map_from_set(domain_dim);
2840 next = isl_basic_map_universe(isl_space_copy(dim));
2841 ls = isl_local_space_from_space(dim);
2843 for (i = 0; i < len; ++i) {
2844 isl_constraint *c;
2846 c = isl_equality_alloc(isl_local_space_copy(ls));
2847 isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
2848 isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
2849 if (i == pos)
2850 isl_constraint_set_constant_si(c, 1);
2851 next = isl_basic_map_add_constraint(next, c);
2854 isl_local_space_free(ls);
2856 return isl_map_from_basic_map(next);
2859 /* Check if the given access is coalesced.
2860 * That is, check whether incrementing the dimension that will get
2861 * wrapped over the last thread index results in incrementing
2862 * the last array index.
2864 * This function is only called for access relations without reuse.
2866 static int access_is_coalesced(struct cuda_gen *gen,
2867 __isl_keep isl_union_map *access)
2869 isl_space *dim;
2870 isl_map *access_map;
2871 isl_map *next_thread_x;
2872 isl_map *next_element;
2873 isl_map *map;
2874 int coalesced;
2876 access = isl_union_map_copy(access);
2877 access = isl_union_map_apply_domain(access,
2878 isl_union_map_copy(gen->tiled_sched));
2879 access_map = isl_map_from_union_map(access);
2881 dim = isl_map_get_space(access_map);
2882 dim = isl_space_domain(dim);
2883 next_thread_x = next(dim, gen->shared_len + gen->n_block - 1);
2885 dim = isl_map_get_space(access_map);
2886 dim = isl_space_range(dim);
2887 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
2889 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
2890 map = isl_map_apply_range(map, access_map);
2892 coalesced = isl_map_is_subset(map, next_element);
2894 isl_map_free(next_element);
2895 isl_map_free(map);
2897 return coalesced;
2900 /* For the given array reference group, check whether the access is private
2901 * to the thread. That is, check that any given array element
2902 * is only accessed by a single thread.
2903 * We compute an access relation that maps the shared tile loop iterators
2904 * and the shared point loop iterators that will be wrapped over the
2905 * threads to the array elements.
2906 * We actually check that those iterators that will be wrapped
2907 * partition the array space. This check is stricter than necessary
2908 * since several iterations may be mapped onto the same thread
2909 * and then they could be allowed to access the same memory elements,
2910 * but our check does not allow this situation.
2912 * We also check that the index expression only depends on parallel
2913 * loops. That way, we can move those loops innermost and unroll them.
2914 * Again, we use a test that is stricter than necessary.
2915 * We actually check whether the index expression only depends
2916 * on the iterators that are wrapped over the threads.
2917 * These are necessarily parallel, but there may be more parallel loops.
2919 * Combining the injectivity of the first test with the single-valuedness
2920 * of the second test, we simply test for bijectivity.
2922 * If it turns out we can use registers, we compute the private memory
2923 * tile size using can_tile_for_shared_memory, after introducing a dependence
2924 * on the thread indices.
2926 * Before performing any of the above computations, we first check
2927 * if there is any reuse on the reference group. If not, we simply
2928 * return. If, moreover, the access is coalesced then we also remove
2929 * the shared memory tiling since we should just use global memory instead.
2931 static void check_private_group_access(struct cuda_gen *gen,
2932 struct cuda_array_ref_group *group)
2934 isl_map *acc;
2935 isl_union_map *access;
2936 int n_index = group->array->n_index;
2938 access = group_access_relation(group, 1, 1);
2939 if (isl_union_map_is_injective(access)) {
2940 if (group->shared_bound && access_is_coalesced(gen, access)) {
2941 free_bound_list(group->shared_bound, n_index);
2942 group->shared_bound = NULL;
2944 isl_union_map_free(access);
2945 return;
2947 access = isl_union_map_apply_domain(access,
2948 isl_union_map_copy(gen->shared_sched));
2950 acc = isl_map_from_union_map(access);
2952 if (!isl_map_is_bijective(acc)) {
2953 isl_map_free(acc);
2954 return;
2957 group->private_bound = create_bound_list(gen->ctx, n_index);
2958 acc = isl_map_align_params(acc, isl_map_get_space(gen->privatization));
2959 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
2960 if (!can_tile_for_shared_memory(gen, group->array, acc,
2961 group->private_bound)) {
2962 free_bound_list(group->private_bound, n_index);
2963 group->private_bound = NULL;
2966 isl_map_free(acc);
2969 /* Look for the last shared tile loop that affects the offset of the
2970 * shared or private tile and store the result in array->last_shared.
2972 static void set_last_shared(struct cuda_gen *gen,
2973 struct cuda_array_ref_group *group)
2975 int i, j;
2976 struct cuda_array_bound *bounds;
2977 unsigned first_shared = gen->first_shared;
2978 int n_index = group->array->n_index;
2980 bounds = group->private_bound;
2981 if (!bounds)
2982 bounds = group->shared_bound;
2983 if (!bounds)
2984 return;
2986 for (j = gen->shared_len - 1; j >= 0; --j) {
2987 for (i = 0; i < n_index; ++i) {
2988 isl_aff *lb;
2989 isl_aff *shift;
2991 lb = bounds[i].lb;
2992 if (isl_aff_involves_dims(lb, isl_dim_param,
2993 first_shared + j, 1))
2994 break;
2996 shift = bounds[i].shift;
2997 if (!shift)
2998 continue;
2999 if (isl_aff_involves_dims(shift, isl_dim_param,
3000 first_shared + j, 1))
3001 break;
3003 if (i < n_index)
3004 break;
3006 group->array->last_shared = j;
3009 /* Compute the sizes of all private arrays for the current kernel,
3010 * as well as the offsets of the private pieces in the original arrays.
3011 * If we cannot or don't want to privatize a given array group,
3012 * we use the shared memory tile sizes computed in
3013 * compute_group_shared_bound instead.
3015 * If a given Array only has a single reference group and if we have
3016 * been able to find a privated or shared tile,
3017 * we also look for the last shared tile loop that affects the offset
3018 * (and therefore the array tile) and store the result in array->last_shared.
3020 * A privatized copy of all access relations from reference groups that
3021 * are mapped to private memory is stored in gen->privatization.
3023 static void compute_private_size(struct cuda_gen *gen)
3025 int i, j;
3026 isl_union_map *private;
3028 if (!gen->options->use_private_memory)
3029 return;
3031 private = isl_union_map_empty(isl_union_map_get_space(gen->shared_sched));
3033 for (i = 0; i < gen->n_array; ++i) {
3034 struct cuda_array_info *array = &gen->array[i];
3036 for (j = 0; j < array->n_group; ++j) {
3037 check_private_group_access(gen, array->groups[j]);
3039 if (!array->groups[j]->private_bound)
3040 continue;
3042 private = isl_union_map_union(private,
3043 group_access_relation(array->groups[j], 1, 1));
3046 array->last_shared = gen->shared_len - 1;
3047 array->print_shared_level = -1;
3049 if (array->n_group != 1)
3050 continue;
3051 set_last_shared(gen, array->groups[0]);
3054 if (isl_union_map_is_empty(private))
3055 isl_union_map_free(private);
3056 else {
3057 isl_union_map *priv;
3059 private = isl_union_map_apply_domain(private,
3060 isl_union_map_copy(gen->shared_sched));
3061 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
3062 private = isl_union_map_apply_domain(private, priv);
3063 gen->private_access = private;
3067 /* Fill up the groups array with singleton groups, i.e., one group
3068 * per reference, initializing the array, access, write and refs fields.
3069 * In particular the access field is initialized to the scheduled
3070 * access relation of the array reference.
3072 * Return the number of elements initialized, i.e., the number of
3073 * active references in the current kernel.
3075 static int populate_array_references(struct cuda_gen *gen,
3076 struct cuda_array_info *array, __isl_keep isl_union_map *sched,
3077 struct cuda_array_ref_group **groups)
3079 int i;
3080 int n;
3081 isl_ctx *ctx = isl_union_map_get_ctx(sched);
3083 n = 0;
3084 for (i = 0; i < array->n_ref; ++i) {
3085 isl_union_map *umap;
3086 isl_map *map;
3087 struct cuda_array_ref_group *group;
3088 struct cuda_stmt_access *access = array->refs[i];
3090 map = isl_map_copy(access->access);
3091 umap = isl_union_map_from_map(map);
3092 umap = isl_union_map_apply_domain(umap,
3093 isl_union_map_copy(sched));
3095 if (isl_union_map_is_empty(umap)) {
3096 isl_union_map_free(umap);
3097 continue;
3100 map = isl_map_from_union_map(umap);
3102 group = isl_calloc_type(ctx, struct cuda_array_ref_group);
3103 assert(group);
3104 group->array = array;
3105 group->access = map;
3106 group->write = access->write;
3107 group->refs = &array->refs[i];
3109 groups[n++] = group;
3112 return n;
3115 static void free_array_ref_group(struct cuda_array_ref_group *group,
3116 int n_index)
3118 if (!group)
3119 return;
3120 free_bound_list(group->shared_bound, n_index);
3121 free_bound_list(group->private_bound, n_index);
3122 isl_map_free(group->access);
3123 free(group->refs);
3124 free(group);
3127 /* If two groups have overlapping access relations and if one of them
3128 * involves a write, then merge the two groups into one.
3130 * We keep track of the grouping in "leader". leader[j] points to
3131 * an earlier group array element that belongs to the same group,
3132 * or the array element j itself if this element is the first in the group.
3134 * Return the number of group leaders.
3136 static int group_overlapping_writes(int n,
3137 struct cuda_array_ref_group **groups, int *leader)
3139 int i, j;
3140 int n_group = n;
3142 for (i = 0; i < n; ++i) {
3143 int l = i;
3144 groups[l]->n_ref = 1;
3145 for (j = i - 1; j >= 0; --j) {
3146 isl_map *map;
3147 int empty;
3149 if (leader[j] != j)
3150 continue;
3151 if (!groups[l]->write && !groups[j]->write)
3152 continue;
3154 map = isl_map_intersect(isl_map_copy(groups[l]->access),
3155 isl_map_copy(groups[j]->access));
3156 empty = isl_map_is_empty(map);
3157 isl_map_free(map);
3159 if (empty)
3160 continue;
3162 groups[j]->access = isl_map_union(groups[j]->access,
3163 groups[l]->access);
3164 groups[j]->write = 1;
3165 groups[l]->access = NULL;
3166 groups[j]->n_ref += groups[l]->n_ref;
3167 l = leader[l] = j;
3168 n_group--;
3170 leader[i] = l;
3173 return n_group;
3176 /* Compute the size of the shared array corresponding to the given array
3177 * array refrence group, based on the accesses from the current kernel,
3178 * as well as the offset of the shared piece in the original array.
3180 static void compute_group_shared_bound(struct cuda_gen *gen,
3181 struct cuda_array_info *array, struct cuda_array_ref_group *group)
3183 isl_ctx *ctx = isl_space_get_ctx(array->dim);
3185 if (!gen->options->use_shared_memory)
3186 return;
3188 group->shared_bound = create_bound_list(ctx, array->n_index);
3189 if (!can_tile_for_shared_memory(gen, array, group->access,
3190 group->shared_bound)) {
3191 free_bound_list(group->shared_bound, array->n_index);
3192 group->shared_bound = NULL;
3196 /* Given an initial grouping of array references and shared memory tiles
3197 * for each group that allows for a shared memory tile, merge two groups
3198 * if both have a shared memory tile and if the merged group also has
3199 * a shared memory tile.
3201 * Return the number of group leaders after merging.
3203 static int group_common_shared_memory_tile(struct cuda_gen *gen,
3204 struct cuda_array_info *array, int n,
3205 struct cuda_array_ref_group **groups, int *leader, int n_group)
3207 int i, j;
3208 isl_ctx *ctx = isl_space_get_ctx(array->dim);
3210 for (i = 0; n_group > 1 && i < n; ++i) {
3211 int l = i;
3212 if (leader[i] != i)
3213 continue;
3214 if (!groups[i]->shared_bound)
3215 continue;
3216 for (j = i - 1; j >= 0; --j) {
3217 isl_map *map;
3218 int empty;
3219 struct cuda_array_bound *shared_bound;
3221 if (leader[j] != j)
3222 continue;
3223 if (!groups[j]->shared_bound)
3224 continue;
3226 map = isl_map_intersect(isl_map_copy(groups[l]->access),
3227 isl_map_copy(groups[j]->access));
3228 empty = isl_map_is_empty(map);
3229 isl_map_free(map);
3231 if (empty)
3232 continue;
3234 map = isl_map_union(isl_map_copy(groups[l]->access),
3235 isl_map_copy(groups[j]->access));
3236 shared_bound = create_bound_list(ctx, array->n_index);
3237 if (!can_tile_for_shared_memory(gen, array, map,
3238 shared_bound)) {
3239 isl_map_free(map);
3240 free_bound_list(shared_bound, array->n_index);
3241 continue;
3244 free_bound_list(groups[j]->shared_bound,
3245 array->n_index);
3246 groups[j]->shared_bound = shared_bound;
3247 isl_map_free(groups[j]->access);
3248 groups[j]->access = map;
3249 groups[j]->n_ref += groups[l]->n_ref;
3250 l = leader[l] = j;
3251 n_group--;
3255 return n_group;
3258 /* Extract an array of array reference groups from the array of references
3259 * and the grouping information in "leader".
3261 * Store the results in array->n_group and array->groups.
3263 static void extract_array_groups(isl_ctx *ctx, struct cuda_array_info *array,
3264 int n, struct cuda_array_ref_group **groups, int *leader, int n_group)
3266 int i, j;
3268 for (i = 2; i < n; ++i)
3269 leader[i] = leader[leader[i]];
3271 array->n_group = n_group;
3272 array->groups = isl_alloc_array(ctx, struct cuda_array_ref_group *,
3273 n_group);
3274 assert(array->groups);
3276 j = 0;
3277 for (i = 0; i < n; ++i) {
3278 int k, l;
3279 struct cuda_stmt_access **refs;
3281 if (leader[i] != i) {
3282 groups[i]->refs = NULL;
3283 free_array_ref_group(groups[i], array->n_index);
3284 continue;
3287 refs = isl_alloc_array(ctx, struct cuda_stmt_access *,
3288 groups[i]->n_ref);
3289 assert(refs);
3290 l = 0;
3291 for (k = i; k < n; ++k)
3292 if (leader[k] == i) {
3293 refs[l++] = *groups[k]->refs;
3294 (*groups[k]->refs)->group = j;
3297 groups[i]->refs = refs;
3298 groups[i]->nr = j;
3299 array->groups[j++] = groups[i];
3303 /* Group array references that should be considered together when
3304 * deciding whether to access them from private, shared or global memory.
3306 * In particular, if two array references overlap and if one of them
3307 * is a write, then the two references are grouped together.
3308 * Furthermore, if two groups admit a shared memory tile and if the
3309 * combination of the two also admits a shared memory tile, we merge
3310 * the two groups.
3312 * During the construction the group->refs field points to a single
3313 * array reference inside the array of array references, while
3314 * group->n_ref contains the number of element in leader that
3315 * (directly or indirectly) point to this group, provided the group
3316 * is a leader.
3318 static void group_array_references(struct cuda_gen *gen,
3319 struct cuda_array_info *array, __isl_keep isl_union_map *sched)
3321 int i;
3322 int n, n_group;
3323 isl_ctx *ctx = isl_union_map_get_ctx(sched);
3324 struct cuda_array_ref_group **groups;
3325 int *leader;
3327 groups = isl_calloc_array(ctx, struct cuda_array_ref_group *,
3328 array->n_ref);
3329 assert(groups);
3331 n = populate_array_references(gen, array, sched, groups);
3333 leader = isl_alloc_array(ctx, int, n);
3334 assert(leader);
3336 n_group = group_overlapping_writes(n, groups, leader);
3338 for (i = 0; i < n; ++i)
3339 if (leader[i] == i)
3340 compute_group_shared_bound(gen, array, groups[i]);
3342 n_group = group_common_shared_memory_tile(gen, array, n, groups,
3343 leader, n_group);
3345 extract_array_groups(ctx, array, n, groups, leader, n_group);
3347 free(leader);
3348 free(groups);
3351 /* Take tiled_sched, project it onto the shared tile loops and
3352 * the loops that will be wrapped over the threads,
3353 * parametrize the shared tile loops and store the result in gen->shared_sched.
3354 * The position of the first of these parameters is stored in gen->first_shared.
3355 * Also compute a projection that projects out the loops that will be
3356 * wrapped over the threads and store this projection in gen->shared_proj.
3358 static void compute_shared_sched(struct cuda_gen *gen)
3360 isl_space *dim;
3361 isl_map *proj;
3362 isl_set *par;
3363 isl_union_map *sched;
3365 sched = isl_union_map_copy(gen->tiled_sched);
3367 dim = isl_union_map_get_space(sched);
3368 gen->first_shared = isl_space_dim(dim, isl_dim_param);
3369 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
3370 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3372 dim = isl_union_map_get_space(sched);
3373 par = parametrization(dim, gen->shared_len + gen->n_block,
3374 0, gen->shared_len, "g");
3375 sched = isl_union_map_intersect_range(sched,
3376 isl_union_set_from_set(par));
3378 dim = isl_union_map_get_space(sched);
3379 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
3381 gen->shared_sched = sched;
3382 gen->shared_proj = isl_union_map_from_map(proj);
3385 /* Group references of all arrays in the program.
3387 static void group_references(struct cuda_gen *gen)
3389 int i;
3390 isl_union_map *sched;
3392 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
3393 isl_union_map_copy(gen->shared_proj));
3395 for (i = 0; i < gen->n_array; ++i)
3396 group_array_references(gen, &gen->array[i], sched);
3398 isl_union_map_free(sched);
3401 /* Free all array information that is local to the current kernel.
3403 static void free_local_array_info(struct cuda_gen *gen)
3405 int i, j;
3407 for (i = 0; i < gen->n_array; ++i) {
3408 struct cuda_array_info *array = &gen->array[i];
3410 for (j = 0; j < array->n_group; ++j)
3411 free_array_ref_group(array->groups[j], array->n_index);
3412 free(array->groups);
3414 if (array->n_group == 0)
3415 continue;
3416 for (j = 0; j < gen->array[i].n_index; ++j) {
3417 isl_pw_aff_free(gen->array[i].local_bound[j]);
3418 gen->array[i].local_bound[j] = NULL;
3423 static void print_iterator_list(FILE *out, int len, const char *prefix,
3424 int parens)
3426 int i;
3428 fprintf(out, "(");
3429 for (i = 0; i < len; ++i) {
3430 if (i)
3431 fprintf(out, ", ");
3432 if (parens)
3433 fprintf(out, "(%s%d)", prefix, i);
3434 else
3435 fprintf(out, "%s%d", prefix, i);
3437 fprintf(out, ")");
3440 /* The sizes of the arrays on the host that have been computed by
3441 * extract_array_info may depend on the parameters. Use the extra
3442 * constraints on the parameters that are valid at "host_domain"
3443 * to simplify these expressions.
3445 static void localize_bounds(struct cuda_gen *gen,
3446 __isl_keep isl_set *host_domain)
3448 int i, j;
3449 isl_set *context;
3451 context = isl_set_copy(host_domain);
3452 context = isl_set_params(host_domain);
3454 for (i = 0; i < gen->n_array; ++i) {
3455 struct cuda_array_info *array = &gen->array[i];
3457 if (array->n_group == 0)
3458 continue;
3460 for (j = 0; j < array->n_index; ++j) {
3461 isl_pw_aff *pwaff;
3463 pwaff = isl_pw_aff_copy(array->bound[j]);
3464 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
3465 array->local_bound[j] = pwaff;
3468 isl_set_free(context);
3471 /* Set gen->tile_len and gen->n_parallel to those of the first statement
3472 * in the statement list u.
3473 * Because of the way the schedule is constructed, the other statements
3474 * in the list, if any, should have the same values for these properties.
3476 static void set_tile_len(struct cuda_gen *gen, struct clast_user_stmt *u)
3478 int nr;
3479 struct cuda_stmt *stmt;
3481 nr = atoi(u->statement->name + 2);
3482 stmt = &gen->stmts[nr];
3484 gen->tile_len = stmt->tile_len;
3485 gen->n_parallel = stmt->n_parallel;
3488 /* This function is called for each leaf in the clast of the host code.
3489 * We first specialize the schedule to the site of the leaf, compute
3490 * the size of shared memory and then print the body of host code
3491 * and the associated kernel (through a call to print_kernel_body).
3493 static void print_host_user(struct gpucode_info *code,
3494 struct clast_user_stmt *u)
3496 struct cuda_gen *gen = code->user;
3497 isl_space *dim;
3498 isl_set *par;
3499 isl_set *host_domain;
3500 isl_union_map *access;
3501 isl_union_map *local_sched;
3502 isl_union_set *arrays;
3504 set_tile_len(gen, u);
3505 read_sizes(gen);
3507 host_domain = extract_entire_host_domain(u);
3509 local_sched = isl_union_map_intersect_range(
3510 isl_union_map_copy(gen->sched),
3511 isl_union_set_from_set(extend(isl_set_copy(host_domain),
3512 gen->untiled_len)));
3513 access = isl_union_map_union(isl_union_map_copy(gen->read),
3514 isl_union_map_copy(gen->write));
3515 access = isl_union_map_apply_domain(access,
3516 isl_union_map_copy(local_sched));
3517 arrays = isl_union_map_range(access);
3519 print_indent(code->dst, code->indent);
3520 fprintf(code->dst, "dim3 k%d_dimBlock", gen->kernel_id);
3521 print_reverse_list(code->dst, gen->n_block, gen->block_dim);
3522 fprintf(code->dst, ";\n");
3524 print_indent(code->dst, code->indent);
3525 fprintf(code->dst, "dim3 k%d_dimGrid", gen->kernel_id);
3526 print_reverse_list(code->dst, gen->n_grid, gen->grid_dim);
3527 fprintf(code->dst, ";\n");
3529 gen->tiled_sched = tile_schedule(gen, local_sched);
3530 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
3531 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
3533 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
3535 dim = isl_union_map_get_space(gen->local_sched);
3536 par = parametrization(dim, gen->tiled_len, 0, gen->shared_len, "g");
3537 gen->local_sched = isl_union_map_intersect_range(gen->local_sched,
3538 isl_union_set_from_set(par));
3540 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
3541 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
3543 gen->private_access = NULL;
3544 compute_shared_sched(gen);
3545 gen->privatization = compute_privatization(gen);
3546 group_references(gen);
3547 compute_private_size(gen);
3548 localize_bounds(gen, host_domain);
3550 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
3552 print_kernel_launch(gen, arrays);
3554 fprintf(gen->cuda.kernel_c, "{\n");
3556 print_kernel_body(gen, host_domain, gen->tiled_sched);
3558 fprintf(gen->cuda.kernel_c, "}\n");
3560 free_local_array_info(gen);
3561 isl_map_free(gen->privatization);
3562 isl_union_map_free(gen->private_access);
3563 isl_union_map_free(gen->local_sched);
3564 isl_union_map_free(gen->tiled_sched);
3565 isl_union_map_free(gen->shared_sched);
3566 isl_union_map_free(gen->shared_proj);
3567 isl_union_set_free(arrays);
3568 isl_set_free(host_domain);
3570 free(gen->tile_size);
3571 gen->kernel_id++;
3574 /* Use CLooG to generate code for the outer gen->tile_first loops
3575 * of the global schedule in gen->sched.
3576 * The pretty printing of this code is handled by gpu_print_host_stmt,
3577 * which calls print_host_user for each kernel invocation location.
3579 static void print_cloog_host_code(struct cuda_gen *gen)
3581 int i;
3582 isl_set *context;
3583 isl_union_map *sched;
3584 CloogOptions *options;
3585 CloogDomain *cloog_context;
3586 CloogUnionDomain *ud;
3587 CloogInput *input;
3588 struct clast_stmt *stmt;
3589 char name[20];
3591 options = cloog_options_malloc(gen->state);
3592 options->language = CLOOG_LANGUAGE_C;
3593 options->otl = 0;
3594 options->strides = 1;
3595 options->stop = gen->tile_first;
3596 options->f = gen->untiled_len;
3597 options->l = gen->untiled_len;
3598 options->save_domains = 1;
3599 options->noscalars = 1;
3601 sched = isl_union_map_copy(gen->sched);
3602 ud = cloog_union_domain_from_isl_union_map(sched);
3603 for (i = 0; i < options->stop; ++i) {
3604 snprintf(name, sizeof(name), "h%d", i);
3605 ud = cloog_union_domain_set_name(ud, CLOOG_SCAT, i, name);
3607 context = isl_set_copy(gen->context);
3608 cloog_context = cloog_domain_from_isl_set(context);
3609 input = cloog_input_alloc(cloog_context, ud);
3611 stmt = cloog_clast_create_from_input(input, options);
3613 gen->code.indent = 0;
3614 gen->code.dst = gen->cuda.host_c;
3615 gen->code.print_user_stmt = NULL;
3616 gen->code.print_user_stmt_list = &print_host_user;
3617 gen->code.print_for_head = NULL;
3618 gen->code.print_for_foot = NULL;
3619 gen->code.user = gen;
3620 gpu_print_host_stmt(&gen->code, stmt);
3622 cloog_clast_free(stmt);
3623 cloog_options_free(options);
3624 fprintf(gen->cuda.host_c, "\n");
3627 void print_cuda_macros(struct cuda_gen *gen)
3629 const char *macros =
3630 "#define cudaCheckReturn(ret) assert((ret) == cudaSuccess)\n"
3631 "#define cudaCheckKernel()"
3632 " assert(cudaGetLastError() == cudaSuccess)\n\n";
3633 fputs(macros, gen->cuda.host_c);
3636 void print_host_code(struct cuda_gen *gen)
3638 fprintf(gen->cuda.host_c, "{\n");
3639 print_cloog_macros(gen->cuda.host_c);
3640 print_cloog_macros(gen->cuda.kernel_c);
3642 print_cuda_macros(gen);
3644 declare_device_arrays(gen);
3646 allocate_device_arrays(gen);
3647 copy_arrays_to_device(gen);
3649 gen->kernel_id = 0;
3650 print_cloog_host_code(gen);
3652 copy_arrays_from_device(gen);
3653 free_device_arrays(gen);
3655 fprintf(gen->cuda.host_c, "}\n");
3658 __isl_give isl_set *add_context_from_str(__isl_take isl_set *set,
3659 const char *str)
3661 isl_ctx *ctx;
3662 isl_set *context;
3664 if (!str)
3665 return set;
3667 ctx = isl_set_get_ctx(set);
3668 context = isl_set_read_from_str(ctx, str);
3669 context = isl_set_align_params(context, isl_set_get_space(set));
3670 set = isl_set_intersect(set, context);
3672 return set;
3675 /* Return the union of all iteration domains of the gen->stmts[i].
3677 static __isl_give isl_union_set *extract_domain(struct cuda_gen *gen)
3679 int i;
3680 isl_union_set *domain;
3682 domain = isl_union_set_empty(isl_set_get_space(gen->context));
3683 for (i = 0; i < gen->n_stmts; ++i) {
3684 isl_set *domain_i;
3686 domain_i = isl_set_copy(gen->stmts[i].domain);
3687 domain = isl_union_set_union(domain,
3688 isl_union_set_from_set(domain_i));
3691 return domain;
3694 /* Information about the outermost tilable bands in the forest of bands.
3696 * tile_len and n_parallel are only sets on band_info structures
3697 * that correspond to outermost bands. For other bands (in particular,
3698 * ancestors of the outermost bands), n_parallal is set to 0.
3700 * prefix is the (padded) schedule leading up to the outermost tilable bands.
3702 * tile_first is the number of schedule dimensions in prefix.
3704 * suffix is the schedule of the outermost tilable bands and their descendants.
3706 struct band_info {
3707 struct cuda_gen *gen;
3708 int tile_first;
3709 int tile_len;
3710 int n_parallel;
3711 isl_union_map *prefix;
3712 isl_union_map *suffix;
3715 /* Set tile_len and n_parallel of the statement to that of
3716 * their outermost band, recorded in the band_info.
3718 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
3720 struct band_info *info = user;
3721 int nr;
3722 struct cuda_stmt *stmt;
3724 nr = atoi(isl_map_get_tuple_name(map, isl_dim_in) + 2);
3725 stmt = &info->gen->stmts[nr];
3727 stmt->tile_len = info->tile_len;
3728 stmt->n_parallel = info->n_parallel;
3730 isl_map_free(map);
3732 return 0;
3735 static void list_select_outer_band(struct cuda_gen *gen,
3736 __isl_take isl_band_list *list, int pos, struct band_info *list_info);
3738 /* Check if this band has any parallel loops. If so, take it as
3739 * the outermost tilable band. If not, continue looking for the
3740 * outermost tilable band in the children of the current band.
3742 static void band_select_outer_band(struct cuda_gen *gen,
3743 __isl_take isl_band *band, int pos, struct band_info *info)
3745 int n = isl_band_n_member(band);
3746 int n_parallel;
3748 for (n_parallel = 0; n_parallel < n; ++n_parallel)
3749 if (!isl_band_member_is_zero_distance(band, n_parallel))
3750 break;
3752 info->n_parallel = n_parallel;
3753 if (n_parallel) {
3754 info->gen = gen;
3755 info->tile_first = pos;
3756 info->tile_len = n;
3757 info->prefix = isl_band_get_prefix_schedule(band);
3758 info->suffix = isl_union_map_flat_range_product(
3759 isl_band_get_partial_schedule(band),
3760 isl_band_get_suffix_schedule(band));
3761 isl_union_map_foreach_map(info->prefix,
3762 &set_stmt_tile_len, info);
3763 } else if (isl_band_has_children(band)) {
3764 isl_band_list *children;
3765 children = isl_band_get_children(band);
3766 list_select_outer_band(gen, children, pos + n, info);
3767 } else {
3768 info->gen = gen;
3769 info->tile_first = pos + n;
3770 info->tile_len = 0;
3771 info->prefix = isl_union_map_flat_range_product(
3772 isl_band_get_prefix_schedule(band),
3773 isl_band_get_partial_schedule(band));
3774 info->suffix = isl_band_get_suffix_schedule(band);
3775 isl_union_map_foreach_map(info->prefix,
3776 &set_stmt_tile_len, info);
3779 isl_band_free(band);
3782 /* Comparison function that returns a non-zero value for band_infos
3783 * with different tile_len fields or different n_parallel fields.
3785 static int cmp_band(const void *p1, const void *p2)
3787 const struct band_info *info1 = p1;
3788 const struct band_info *info2 = p2;
3790 if (info1->tile_len != info2->tile_len)
3791 return info1->tile_len - info2->tile_len;
3793 return info1->n_parallel - info2->n_parallel;
3796 /* Extend "umap" with coordinates with fixed value "val"
3797 * to a total length of "dst_len", assuming the original dimension is "src_len".
3799 static __isl_give isl_union_map *extend_range(__isl_take isl_union_map *umap,
3800 int src_len, int dst_len, int val)
3802 isl_space *dim;
3803 isl_map *map;
3804 int i;
3806 dim = isl_union_map_get_space(umap);
3807 map = isl_map_reverse(projection(dim, dst_len, src_len));
3808 for (i = src_len; i < dst_len; ++i)
3809 map = isl_map_fix_si(map, isl_dim_out, i, val);
3811 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
3813 return umap;
3816 /* Group bands with the same values for tile_len and n_parallel.
3817 * The prefix schedule is then extended with a fixed coordinate that
3818 * is different for each such group.
3819 * Note that the actual values for this coordinate are not important.
3820 * The bands have already been effectively separated at a higher level
3821 * or they are independent and may be executed in parallel.
3822 * The list of band_info has been sorted before this functions is called.
3824 static void separate_bands(struct band_info *info, int n)
3826 int i;
3827 int j = 0;
3829 for (i = 0; i < n; ++i) {
3830 int l = info[i].tile_first;
3832 if (i &&
3833 (info[i].tile_len != info[i - 1].tile_len ||
3834 info[i].n_parallel != info[i - 1].n_parallel))
3835 j++;
3837 info[i].prefix = extend_range(info[i].prefix,
3838 l, l + 1, j);
3839 info[i].tile_first = l + 1;
3843 /* Select the outermost bands in the elements of the list, align
3844 * their prefix schedules, separate bands with different values
3845 * for tile_len and/or n_parallel and then combine the resulting
3846 * prefix and suffix schedules into a single pair of prefix and
3847 * suffix schedules for the entire list.
3849 static void list_select_outer_band(struct cuda_gen *gen,
3850 __isl_take isl_band_list *list, int pos, struct band_info *list_info)
3852 isl_band *band;
3853 int i;
3854 int n = isl_band_list_n_band(list);
3855 isl_ctx *ctx = isl_band_list_get_ctx(list);
3856 struct band_info *info;
3857 int max_tile_first;
3858 isl_union_map *prefix;
3859 isl_union_map *suffix;
3861 assert(n >= 1);
3862 info = isl_calloc_array(ctx, struct band_info, n);
3863 assert(info);
3865 max_tile_first = 0;
3866 for (i = 0; i < n; ++i) {
3867 band = isl_band_list_get_band(list, i);
3868 band_select_outer_band(gen, band, pos, &info[i]);
3869 if (info[i].tile_first > max_tile_first)
3870 max_tile_first = info[i].tile_first;
3873 for (i = 0; i < n; ++i) {
3874 if (info[i].tile_first == max_tile_first)
3875 continue;
3876 info[i].prefix = extend_range(info[i].prefix,
3877 info[i].tile_first, max_tile_first, 0);
3878 info[i].tile_first = max_tile_first;
3881 qsort(info, n, sizeof(struct band_info), &cmp_band);
3883 for (i = 0; i < n - 1; ++i)
3884 if (info[i].tile_len != info[i + 1].tile_len ||
3885 info[i].n_parallel != info[i + 1].n_parallel)
3886 break;
3888 if (i < n -1)
3889 separate_bands(info, n);
3891 prefix = info[0].prefix;
3892 suffix = info[0].suffix;
3894 for (i = 1; i < n; ++i) {
3895 prefix = isl_union_map_union(prefix, info[i].prefix);
3896 suffix = isl_union_map_union(suffix, info[i].suffix);
3899 list_info->tile_first = info[0].tile_first;
3900 list_info->tile_len = -1;
3901 list_info->prefix = prefix;
3902 list_info->suffix = suffix;
3904 isl_band_list_free(list);
3905 free(info);
3908 /* Set max_out to the maximal number of output dimensions over
3909 * all maps.
3911 static int update_max_out(__isl_take isl_map *map, void *user)
3913 int *max_out = user;
3914 int n_out = isl_map_dim(map, isl_dim_out);
3916 if (n_out > *max_out)
3917 *max_out = n_out;
3919 isl_map_free(map);
3920 return 0;
3923 struct align_range_data {
3924 int max_out;
3925 isl_union_map *res;
3928 /* Extend the dimension of the range of the given map to data->max_out and
3929 * then add the result to data->res.
3931 static int map_align_range(__isl_take isl_map *map, void *user)
3933 struct align_range_data *data = user;
3934 int i;
3935 isl_space *dim;
3936 isl_map *proj;
3937 int n_out = isl_map_dim(map, isl_dim_out);
3939 dim = isl_union_map_get_space(data->res);
3940 proj = isl_map_reverse(projection(dim, data->max_out, n_out));
3941 for (i = n_out; i < data->max_out; ++i)
3942 proj = isl_map_fix_si(proj, isl_dim_out, i, 0);
3944 map = isl_map_apply_range(map, proj);
3946 data->res = isl_union_map_add_map(data->res, map);
3948 return 0;
3951 /* Extend the ranges of the maps in the union map such they all have
3952 * the same dimension.
3954 static __isl_give isl_union_map *align_range(__isl_take isl_union_map *umap)
3956 struct align_range_data data;
3958 data.max_out = 0;
3959 isl_union_map_foreach_map(umap, &update_max_out, &data.max_out);
3961 data.res = isl_union_map_empty(isl_union_map_get_space(umap));
3962 isl_union_map_foreach_map(umap, &map_align_range, &data);
3964 isl_union_map_free(umap);
3965 return data.res;
3968 /* Select the outermost tilable band that (by construction)
3969 * has at least one parallel loop.
3970 * The starting position of the aligned band is stored in the pair
3971 * gen->tile_first.
3972 * The sizes and number of parallel loops may be different in different
3973 * parts of the band forest and are therefore stored in the cuda_stmts.
3975 * Return the complete schedule, with the tilable bands aligned
3976 * at gen->tile_first and padded with zero, if needed.
3978 static __isl_give isl_union_map *select_outer_tilable_band(struct cuda_gen *gen,
3979 __isl_keep isl_schedule *schedule)
3981 isl_band_list *list;
3982 struct band_info info;
3984 gen->n_parallel = 0;
3985 gen->tile_len = -1;
3987 list = isl_schedule_get_band_forest(schedule);
3989 list_select_outer_band(gen, list, 0, &info);
3991 gen->tile_first = info.tile_first;
3992 info.suffix = align_range(info.suffix);
3994 return isl_union_map_flat_range_product(info.prefix, info.suffix);
3997 /* Set gen->untiled_len to the number of scheduling dimensions
3998 * for the schedule of the first domain.
3999 * We assume here that this number is the same for all domains.
4001 static int set_untiled_len(__isl_take isl_map *map, void *user)
4003 unsigned *untiled_len = user;
4005 *untiled_len = isl_map_dim(map, isl_dim_out);
4007 isl_map_free(map);
4008 return -1;
4011 /* Compute an appropriate schedule based on the accesses in
4012 * gen->read and gen->write.
4014 * We first compute dependences and then use those to compute
4015 * a schedule that has a parallel loop in each tilable band.
4016 * Finally, we select the outermost tilable band.
4018 static void compute_schedule(struct cuda_gen *gen,
4019 __isl_take isl_union_map *sched)
4021 isl_ctx *ctx = isl_union_map_get_ctx(sched);
4022 isl_union_set *domain;
4023 isl_union_map *empty;
4024 isl_union_map *dep_raw, *dep2, *dep3, *dep;
4025 isl_union_map *uninitialized;
4026 isl_schedule *schedule;
4028 empty = isl_union_map_empty(isl_union_map_get_space(sched));
4030 isl_union_map_compute_flow(isl_union_map_copy(gen->read),
4031 isl_union_map_copy(gen->write), empty,
4032 isl_union_map_copy(sched),
4033 &dep_raw, NULL, &uninitialized, NULL);
4034 isl_union_map_compute_flow(isl_union_map_copy(gen->write),
4035 isl_union_map_copy(gen->write),
4036 isl_union_map_copy(gen->read),
4037 isl_union_map_copy(sched),
4038 &dep2, &dep3, NULL, NULL);
4039 isl_union_map_free(sched);
4041 gen->copy_in = isl_union_map_range(uninitialized);
4043 dep = isl_union_map_union(dep2, dep3);
4044 dep = isl_union_map_union(dep, dep_raw);
4045 dep = isl_union_map_coalesce(dep);
4047 domain = extract_domain(gen);
4048 schedule = isl_union_set_compute_schedule(isl_union_set_copy(domain),
4049 isl_union_map_copy(dep), dep);
4051 sched = select_outer_tilable_band(gen, schedule);
4053 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
4054 sched = isl_union_map_intersect_domain(sched, domain);
4055 gen->sched = sched;
4057 isl_schedule_free(schedule);
4060 static struct cuda_stmt_access **expr_extract_access(struct pet_expr *expr,
4061 struct cuda_stmt_access **next_access)
4063 struct cuda_stmt_access *access;
4064 isl_ctx *ctx = isl_map_get_ctx(expr->acc.access);
4066 access = isl_alloc_type(ctx, struct cuda_stmt_access);
4067 assert(access);
4068 access->next = NULL;
4069 access->read = expr->acc.read;
4070 access->write = expr->acc.write;
4071 access->access = isl_map_copy(expr->acc.access);
4073 *next_access = access;
4074 next_access = &(*next_access)->next;
4075 return next_access;
4078 static struct cuda_stmt_access **expr_extract_accesses(struct pet_expr *expr,
4079 struct cuda_stmt_access **next_access)
4081 int i;
4083 for (i = 0; i < expr->n_arg; ++i)
4084 next_access = expr_extract_accesses(expr->args[i],
4085 next_access);
4087 if (expr->type == pet_expr_access)
4088 next_access = expr_extract_access(expr, next_access);
4090 return next_access;
4093 static void pet_stmt_extract_accesses(struct cuda_stmt *stmt)
4095 struct cuda_stmt_access **next_access = &stmt->accesses;
4097 stmt->accesses = NULL;
4098 expr_extract_accesses(stmt->body, next_access);
4101 /* Return an array of cuda_stmt representing the statements in "scop".
4103 static struct cuda_stmt *extract_stmts(isl_ctx *ctx, struct pet_scop *scop,
4104 __isl_keep isl_set *context)
4106 int i;
4107 struct cuda_stmt *stmts;
4109 stmts = isl_calloc_array(ctx, struct cuda_stmt, scop->n_stmt);
4110 assert(stmts);
4112 for (i = 0; i < scop->n_stmt; ++i) {
4113 struct cuda_stmt *s = &stmts[i];
4115 s->domain = isl_set_copy(scop->stmts[i]->domain);
4116 s->domain = isl_set_intersect_params(s->domain,
4117 isl_set_copy(context));
4118 s->body = scop->stmts[i]->body;
4119 pet_stmt_extract_accesses(s);
4122 return stmts;
4125 /* Replace the scop in the "input" file by equivalent code
4126 * that uses the GPU. "scop" is assumed to correspond to this scop.
4128 * We first compute a schedule that respects the dependences
4129 * of the original program and select the outermost band
4130 * of tilable dimensions that has at least one parallel loop.
4131 * We then have three blocks of dimensions
4133 * H B G
4135 * The tilable band "B" is first tiled according to "tile.sizes", resulting
4136 * in
4138 * H T P G
4140 * For each iteration of the T loop and for each array, we compute
4141 * the array elements accessed by that iteration, construct a rectangular
4142 * box around it and shift it to the origin. The result is used
4143 * as shared memory for the array.
4145 * We then split off at most 2 parallel loops from the T loops and
4146 * at most 3 parallel loops from the P loops
4148 * H T1 T2 P1 P2 G
4150 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
4151 * according to "grid.sizes"/"block.sizes".
4153 * H T1T T1P T2 P1T P1P P2 G
4155 * Finally, the T1P and P1P iterators are equated to the block and
4156 * thread dimensions respectively and so are effectively removed.
4157 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
4158 * are run on the GPU.
4160 * Code is generated in three stages. We first generate code for the
4161 * host (the H loops), with iterators h%d. Then, for each leaf node
4162 * of the resulting AST, we generate code for the shared loops (up to
4163 * and including T2), with iterators g%d and after equating the H loops
4164 * to h%d parameters and the T1P loops to the block dimensions.
4165 * Finally, we generate code for the remaining loops in a similar fashion.
4167 int cuda_pet(isl_ctx *ctx, struct pet_scop *scop, struct ppcg_options *options,
4168 const char *input)
4170 isl_union_map *sched;
4171 struct cuda_gen gen;
4173 if (!scop)
4174 return -1;
4176 scop = pet_scop_align_params(scop);
4178 gen.ctx = ctx;
4179 gen.context = isl_set_copy(scop->context);
4180 gen.context = add_context_from_str(gen.context, options->ctx);
4181 gen.n_stmts = scop->n_stmt;
4182 gen.stmts = extract_stmts(ctx, scop, gen.context);
4183 gen.read = pet_scop_collect_reads(scop);
4184 gen.write = pet_scop_collect_writes(scop);
4185 gen.options = options;
4186 gen.state = cloog_isl_state_malloc(gen.ctx);
4187 gen.scop = scop;
4189 cuda_open_files(&gen.cuda, input);
4191 collect_array_info(&gen);
4193 sched = pet_scop_collect_schedule(scop);
4195 compute_schedule(&gen, sched);
4197 print_host_code(&gen);
4199 cloog_state_free(gen.state);
4200 clear_cuda_gen(&gen);
4202 cuda_close_files(&gen.cuda);
4204 return 0;