polybench_test.sh.in: break early if execution fails
[ppcg.git] / hybrid.c
blob5bfa0a2e3798bf35f837fe2ecb6db642bec5cae8
1 /*
2 * Copyright 2013 Ecole Normale Superieure
3 * Copyright 2015 Sven Verdoolaege
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
9 */
11 #include <string.h>
13 #include <isl/space.h>
14 #include <isl/constraint.h>
15 #include <isl/val.h>
16 #include <isl/aff.h>
17 #include <isl/set.h>
18 #include <isl/map.h>
19 #include <isl/union_set.h>
20 #include <isl/union_map.h>
22 #include "hybrid.h"
23 #include "schedule.h"
25 /* The hybrid tiling implemented in this file is based on
26 * Grosser et al., "Hybrid Hexagonal/Classical Tiling for GPUs".
29 /* Bounds on relative dependence distances in input to hybrid tiling.
30 * upper is an upper bound on the relative dependence distances
31 * in the first space dimension
32 * -lower is a lower bound on the relative dependence distances
33 * in all space dimensions.
35 * In particular,
37 * d_i >= -lower_i d_0
38 * and
39 * d_1 <= upper d_0
41 * for each dependence distance vector d, where d_1 is the component
42 * corresponding to the first space dimension.
44 * upper and lower are always non-negative.
45 * Some of the values may be NaN if no bound could be found.
47 struct ppcg_ht_bounds {
48 isl_val *upper;
49 isl_multi_val *lower;
52 /* Free "bounds" along with all its fields.
54 __isl_null ppcg_ht_bounds *ppcg_ht_bounds_free(
55 __isl_take ppcg_ht_bounds *bounds)
57 if (!bounds)
58 return NULL;
59 isl_val_free(bounds->upper);
60 isl_multi_val_free(bounds->lower);
61 free(bounds);
63 return NULL;
66 /* Create a ppcg_ht_bounds object for a band living in "space".
67 * The bounds are initialized to NaN.
69 __isl_give ppcg_ht_bounds *ppcg_ht_bounds_alloc(__isl_take isl_space *space)
71 int i, n;
72 isl_ctx *ctx;
73 ppcg_ht_bounds *bounds;
75 if (!space)
76 return NULL;
78 ctx = isl_space_get_ctx(space);
79 bounds = isl_alloc_type(ctx, struct ppcg_ht_bounds);
80 if (!bounds)
81 goto error;
82 bounds->upper = isl_val_nan(ctx);
83 bounds->lower = isl_multi_val_zero(space);
84 n = isl_multi_val_dim(bounds->lower, isl_dim_set);
85 for (i = 0; i < n; ++i) {
86 isl_val *v = isl_val_copy(bounds->upper);
87 bounds->lower = isl_multi_val_set_val(bounds->lower, i, v);
90 if (!bounds->lower || !bounds->upper)
91 return ppcg_ht_bounds_free(bounds);
93 return bounds;
94 error:
95 isl_space_free(space);
96 return NULL;
99 void ppcg_ht_bounds_dump(__isl_keep ppcg_ht_bounds *bounds)
101 if (!bounds)
102 return;
104 fprintf(stderr, "lower: ");
105 isl_multi_val_dump(bounds->lower);
106 fprintf(stderr, "upper: ");
107 isl_val_dump(bounds->upper);
110 /* Return the upper bound on the relative dependence distances
111 * in the first space dimension.
113 __isl_give isl_val *ppcg_ht_bounds_get_upper(__isl_keep ppcg_ht_bounds *bounds)
115 if (!bounds)
116 return NULL;
117 return isl_val_copy(bounds->upper);
120 /* Replace the upper bound on the relative dependence distances
121 * in the first space dimension by "upper".
123 __isl_give ppcg_ht_bounds *ppcg_ht_bounds_set_upper(
124 __isl_take ppcg_ht_bounds *bounds, __isl_take isl_val *upper)
126 if (!bounds || !upper)
127 goto error;
128 isl_val_free(bounds->upper);
129 bounds->upper = upper;
130 return bounds;
131 error:
132 ppcg_ht_bounds_free(bounds);
133 isl_val_free(upper);
134 return NULL;
137 /* Return the lower bound on the relative dependence distances
138 * in space dimension "pos".
140 __isl_give isl_val *ppcg_ht_bounds_get_lower(__isl_keep ppcg_ht_bounds *bounds,
141 int pos)
143 if (!bounds)
144 return NULL;
145 return isl_multi_val_get_val(bounds->lower, pos);
148 /* Replace the lower bound on the relative dependence distances
149 * in space dimension "pos" by "lower".
151 __isl_give ppcg_ht_bounds *ppcg_ht_bounds_set_lower(
152 __isl_take ppcg_ht_bounds *bounds, int pos, __isl_take isl_val *lower)
154 if (!bounds || !lower)
155 goto error;
156 bounds->lower = isl_multi_val_set_val(bounds->lower, pos, lower);
157 if (!bounds->lower)
158 return ppcg_ht_bounds_free(bounds);
159 return bounds;
160 error:
161 ppcg_ht_bounds_free(bounds);
162 isl_val_free(lower);
163 return NULL;
166 /* Can the bounds on relative dependence distances recorded in "bounds"
167 * be used to perform hybrid tiling?
168 * In particular, have appropriate lower and upper bounds been found?
169 * Any NaN indicates that no corresponding bound was found.
171 isl_bool ppcg_ht_bounds_is_valid(__isl_keep ppcg_ht_bounds *bounds)
173 isl_bool is_nan;
174 int i, n;
176 if (!bounds)
177 return isl_bool_error;
178 is_nan = isl_val_is_nan(bounds->upper);
179 if (is_nan < 0)
180 return isl_bool_error;
181 if (is_nan)
182 return isl_bool_false;
184 n = isl_multi_val_dim(bounds->lower, isl_dim_set);
185 for (i = 0; i < n; ++i) {
186 isl_val *v;
188 v = isl_multi_val_get_val(bounds->lower, i);
189 is_nan = isl_val_is_nan(v);
190 if (is_nan < 0)
191 return isl_bool_error;
192 if (is_nan)
193 return isl_bool_false;
194 isl_val_free(v);
197 return isl_bool_true;
200 /* Structure that represents the basic hexagonal tiling,
201 * along with information that is needed to perform the hybrid tiling.
203 * "bounds" are the bounds on the dependence distances that
204 * define the hexagonal shape and the required skewing in the remaining
205 * space dimensions.
207 * "input_node" points to the input pair of band nodes.
208 * "input_schedule" is the partial schedule of this input pair of band nodes.
209 * The space of this schedule is [P -> C], where P is the space
210 * of the parent node and C is the space of the child node.
212 * "space_sizes" represent the total size of a tile for the space
213 * dimensions, i.e., those corresponding to the child node.
214 * The space of "space_sizes" is C.
215 * If S_0 is the original tile size in the first space dimension,
216 * then the first entry of "space_sizes" is equal to
217 * W = 2*S_0 + floor(d_l h) + floor(d_u h).
218 * The remaining entries are the same as in the original tile sizes.
220 * The basic hexagonal tiling "hex" is defined
221 * in a "ts" (time-space) space and corresponds to the phase-1 tiles.
222 * "time_tile" maps the "ts" space to outer time tile.
223 * Is is equal to ts[t, s] -> floor(t/(2 * S_t)), with S_t the original tile
224 * size corresponding to the parent node.
225 * "local_time" maps the "ts" space to the time dimension inside each tile.
226 * It is equal to ts[t, s] -> t mod (2 S_t), with S_t the original tile
227 * size corresponding to the parent node.
228 * "shift_space" shifts the tiles at time tile T = floor(t/(2 S_t))
229 * in the space dimension such that they align to a multiple of W.
230 * It is equal to ts[t, s] -> s + (-(2 * shift_s)*T) % W,
231 * with shift_s = S_0 + floor(d_u h).
232 * "shift_phase" is the shift taken to go from phase 0 to phase 1
233 * It is equal to ts[t, s] -> ts[t + S_t, s + shift_s],
234 * with shift_s = S_0 + floor(d_u h).
236 * "project_ts" projects the space of the input schedule to the ts-space.
237 * It is equal to [P[t] -> C[s_0, ...]] -> ts[t, s_0].
239 struct ppcg_ht_tiling {
240 int ref;
242 ppcg_ht_bounds *bounds;
243 isl_schedule_node *input_node;
244 isl_multi_union_pw_aff *input_schedule;
246 isl_multi_val *space_sizes;
248 isl_aff *time_tile;
249 isl_aff *local_time;
250 isl_aff *shift_space;
251 isl_multi_aff *shift_phase;
252 isl_set *hex;
254 isl_multi_aff *project_ts;
256 typedef struct ppcg_ht_tiling ppcg_ht_tiling;
258 /* Return the space of the pair of band nodes that form the input
259 * to the hybrid tiling.
260 * In particular, return the space [P -> C], where P is the space
261 * of the parent node and C is the space of the child node.
263 __isl_give isl_space *ppcg_ht_tiling_get_input_space(
264 __isl_keep ppcg_ht_tiling *tile)
266 if (!tile)
267 return NULL;
269 return isl_multi_union_pw_aff_get_space(tile->input_schedule);
272 /* Remove a reference to "tile" and free "tile" along with all its fields
273 * as soon as the reference count drops to zero.
275 static __isl_null ppcg_ht_tiling *ppcg_ht_tiling_free(
276 __isl_take ppcg_ht_tiling *tiling)
278 if (!tiling)
279 return NULL;
280 if (--tiling->ref > 0)
281 return NULL;
283 ppcg_ht_bounds_free(tiling->bounds);
284 isl_schedule_node_free(tiling->input_node);
285 isl_multi_union_pw_aff_free(tiling->input_schedule);
286 isl_multi_val_free(tiling->space_sizes);
287 isl_aff_free(tiling->time_tile);
288 isl_aff_free(tiling->local_time);
289 isl_aff_free(tiling->shift_space);
290 isl_multi_aff_free(tiling->shift_phase);
291 isl_set_free(tiling->hex);
292 isl_multi_aff_free(tiling->project_ts);
293 free(tiling);
295 return NULL;
298 /* Return a new reference to "tiling".
300 __isl_give ppcg_ht_tiling *ppcg_ht_tiling_copy(
301 __isl_keep ppcg_ht_tiling *tiling)
303 if (!tiling)
304 return NULL;
306 tiling->ref++;
307 return tiling;
310 /* Return the isl_ctx to which "tiling" belongs.
312 isl_ctx *ppcg_ht_tiling_get_ctx(__isl_keep ppcg_ht_tiling *tiling)
314 if (!tiling)
315 return NULL;
317 return isl_multi_union_pw_aff_get_ctx(tiling->input_schedule);
320 /* Representation of one of the two phases of hybrid tiling.
322 * "tiling" points to the shared tiling data.
324 * "time_tile", "local_time" and "shift_space" are equal to the corresponding
325 * fields of "tiling", pulled back to the input space.
326 * In case of phase 0, these expressions have also been moved
327 * from phase 1 to phase 0.
329 * "domain" contains the hexagonal tiling of this phase.
331 * "space_shift" is the shift that should be added to the space band
332 * in order to be able to apply rectangular tiling to the space.
333 * For phase 1, it is equal to
335 * [P[t] -> C[s_0, s_i]] -> C[(-(2 * shift_s)*T) % W, dl_i * u]
337 * with shift_s = S_0 + floor(d_u h),
338 * T equal to "time_tile" and u equal to "local_time".
339 * For phase 0, it is equal to
341 * [P[t] -> C[s_0, s_i]] -> C[shift_s + (-(2 * shift_s)*T) % W, dl_i * u]
343 * "space_tile" is the space tiling. It is equal to
345 * [P[t] -> C[s]] -> C[floor((s + space_shift)/space_size]
347 struct ppcg_ht_phase {
348 ppcg_ht_tiling *tiling;
350 isl_aff *time_tile;
351 isl_aff *local_time;
352 isl_aff *shift_space;
353 isl_set *domain;
355 isl_multi_aff *space_shift;
356 isl_multi_aff *space_tile;
359 /* Free "phase" along with all its fields.
361 static __isl_null ppcg_ht_phase *ppcg_ht_phase_free(
362 __isl_take ppcg_ht_phase *phase)
364 if (!phase)
365 return NULL;
367 ppcg_ht_tiling_free(phase->tiling);
368 isl_aff_free(phase->time_tile);
369 isl_aff_free(phase->local_time);
370 isl_aff_free(phase->shift_space);
371 isl_set_free(phase->domain);
372 isl_multi_aff_free(phase->space_shift);
373 isl_multi_aff_free(phase->space_tile);
374 free(phase);
376 return NULL;
379 /* Wrapper around ppcg_ht_phase_free for use as an argument
380 * to isl_id_set_free_user.
382 static void ppcg_ht_phase_free_wrap(void *user)
384 ppcg_ht_phase *phase = user;
386 ppcg_ht_phase_free(phase);
389 /* Return the domain of hybrid tiling phase "phase".
391 static __isl_give isl_set *ppcg_ht_phase_get_domain(ppcg_ht_phase *phase)
393 if (!phase)
394 return NULL;
396 return isl_set_copy(phase->domain);
399 /* Return the space of the pair of band nodes that form the input
400 * to the hybrid tiling of which "phase" is a phase.
401 * In particular, return the space [P -> C], where P is the space
402 * of the parent node and C is the space of the child node.
404 static __isl_give isl_space *ppcg_ht_phase_get_input_space(
405 __isl_keep ppcg_ht_phase *phase)
407 if (!phase)
408 return NULL;
410 return ppcg_ht_tiling_get_input_space(phase->tiling);
413 /* Construct the lower left constraint of the hexagonal tile, i.e.,
415 * du a - b <= (2h+1) du - duh
416 * -du a + b + (2h+1) du - duh >= 0
418 * where duh = floor(du * h).
420 * This constraint corresponds to (6) in
421 * "Hybrid Hexagonal/Classical Tiling for GPUs".
423 static __isl_give isl_constraint *hex_lower_left(__isl_take isl_local_space *ls,
424 __isl_keep isl_val *h, __isl_keep isl_val *du, __isl_keep isl_val *duh)
426 isl_val *v;
427 isl_aff *aff;
429 v = isl_val_add_ui(isl_val_mul_ui(isl_val_copy(h), 2), 1);
430 v = isl_val_mul(v, isl_val_copy(du));
431 v = isl_val_sub(v, isl_val_copy(duh));
432 aff = isl_aff_val_on_domain(ls, v);
433 v = isl_val_neg(isl_val_copy(du));
434 aff = isl_aff_set_coefficient_val(aff, isl_dim_in, 0, v);
435 aff = isl_aff_set_coefficient_si(aff, isl_dim_in, 1, 1);
437 return isl_inequality_from_aff(aff);
440 /* Construct the lower constraint of the hexagonal tile, i.e.,
442 * a <= 2h+1
443 * -a + 2h+1 >= 0
445 * This constraint corresponds to (7) in
446 * "Hybrid Hexagonal/Classical Tiling for GPUs".
448 static __isl_give isl_constraint *hex_lower(__isl_take isl_local_space *ls,
449 __isl_keep isl_val *h)
451 isl_val *v;
452 isl_aff *aff;
454 v = isl_val_add_ui(isl_val_mul_ui(isl_val_copy(h), 2), 1);
455 aff = isl_aff_val_on_domain(ls, v);
456 aff = isl_aff_set_coefficient_si(aff, isl_dim_in, 0, -1);
458 return isl_inequality_from_aff(aff);
461 /* Construct the lower right constraint of the hexagonal tile, i.e.,
463 * dl a + b <= (2h+1) dl + duh + (s0-1)
464 * -dl a - b + (2h+1) dl + duh + (s0-1) >= 0
466 * where duh = floor(du * h).
468 * This constraint corresponds to (8) in
469 * "Hybrid Hexagonal/Classical Tiling for GPUs".
471 static __isl_give isl_constraint *hex_lower_right(
472 __isl_take isl_local_space *ls, __isl_keep isl_val *h,
473 __isl_keep isl_val *s0, __isl_keep isl_val *dl, __isl_keep isl_val *duh)
475 isl_val *v;
476 isl_aff *aff;
478 v = isl_val_add_ui(isl_val_mul_ui(isl_val_copy(h), 2), 1);
479 v = isl_val_mul(v, isl_val_copy(dl));
480 v = isl_val_add(v, isl_val_copy(duh));
481 v = isl_val_add(v, isl_val_copy(s0));
482 v = isl_val_sub_ui(v, 1);
483 aff = isl_aff_val_on_domain(ls, v);
484 v = isl_val_neg(isl_val_copy(dl));
485 aff = isl_aff_set_coefficient_val(aff, isl_dim_in, 0, v);
486 aff = isl_aff_set_coefficient_si(aff, isl_dim_in, 1, -1);
488 return isl_inequality_from_aff(aff);
491 /* Construct the upper left constraint of the hexagonal tile, i.e.,
493 * dl a + b >= h dl - (d - 1)/d with d = den(dl)
494 * dl a + b - h dl + (d - 1)/d >= 0
496 * This constraint corresponds to (10) in
497 * "Hybrid Hexagonal/Classical Tiling for GPUs".
499 static __isl_give isl_constraint *hex_upper_left(__isl_take isl_local_space *ls,
500 __isl_keep isl_val *h, __isl_keep isl_val *dl)
502 isl_val *v, *d;
503 isl_aff *aff;
505 d = isl_val_get_den_val(dl);
506 v = isl_val_sub_ui(isl_val_copy(d), 1);
507 v = isl_val_div(v, d);
508 v = isl_val_sub(v, isl_val_mul(isl_val_copy(h), isl_val_copy(dl)));
509 aff = isl_aff_val_on_domain(ls, v);
510 aff = isl_aff_set_coefficient_val(aff, isl_dim_in, 0, isl_val_copy(dl));
511 aff = isl_aff_set_coefficient_si(aff, isl_dim_in, 1, 1);
513 return isl_inequality_from_aff(aff);
516 /* Construct the upper right constraint of the hexagonal tile, i.e.,
518 * du a - b >= du h - duh - (s0-1) - dlh - (d - 1)/d with d = den(du)
519 * du a - b - du h + duh + (s0-1) + dlh + (d - 1)/d >= 0
521 * where dlh = floor(dl * h) and duh = floor(du * h).
523 * This constraint corresponds to (12) in
524 * "Hybrid Hexagonal/Classical Tiling for GPUs".
526 static __isl_give isl_constraint *hex_upper_right(
527 __isl_take isl_local_space *ls, __isl_keep isl_val *h,
528 __isl_keep isl_val *s0, __isl_keep isl_val *du,
529 __isl_keep isl_val *dlh, __isl_keep isl_val *duh)
531 isl_val *v, *d;
532 isl_aff *aff;
534 d = isl_val_get_den_val(du);
535 v = isl_val_sub_ui(isl_val_copy(d), 1);
536 v = isl_val_div(v, d);
537 v = isl_val_sub(v, isl_val_mul(isl_val_copy(h), isl_val_copy(du)));
538 v = isl_val_add(v, isl_val_copy(duh));
539 v = isl_val_add(v, isl_val_copy(dlh));
540 v = isl_val_add(v, isl_val_copy(s0));
541 v = isl_val_sub_ui(v, 1);
542 aff = isl_aff_val_on_domain(ls, v);
543 aff = isl_aff_set_coefficient_val(aff, isl_dim_in, 0, isl_val_copy(du));
544 aff = isl_aff_set_coefficient_si(aff, isl_dim_in, 1, -1);
546 return isl_inequality_from_aff(aff);
549 /* Construct the uppper constraint of the hexagonal tile, i.e.,
551 * a >= 0
553 * This constraint corresponds to (13) in
554 * "Hybrid Hexagonal/Classical Tiling for GPUs".
556 static __isl_give isl_constraint *hex_upper(__isl_take isl_local_space *ls)
558 isl_aff *aff;
560 aff = isl_aff_var_on_domain(ls, isl_dim_set, 0);
562 return isl_inequality_from_aff(aff);
565 /* Construct the basic hexagonal tile shape.
566 * "space" is the 2D space in which the hexagon should be constructed.
567 * h is st-1, with st the tile size in the time dimension
568 * s0 is the tile size in the space dimension
569 * dl is a bound on the negative relative dependence distances, i.e.,
571 * d_s >= -dl d_t
573 * du is a bound on the positive relative dependence distances, i.e.,
575 * d_s <= du d_t
577 * with (d_t,d_s) any dependence distance vector.
578 * dlh = floor(dl * h)
579 * duh = floor(du * h)
581 * The shape of the hexagon is as follows:
583 * 0 dlh dlh+s0-1
584 * ______ __
585 * 0 / \_ /
586 * / \_ /
587 * h / \ ______ /
588 * h+1 \_ // \\_
589 * \_ // \\_
590 * 2h+1 \______// \\
591 * 0 duh duh+s0-1
592 * duh+s0-1+dlh
593 * duh+s0-1+dlh+1+s0+1
595 * The next hexagon is shifted by duh + dlh + 2 * s0.
597 * The slope of the "/" constraints is dl.
598 * The slope of the "\_" constraints is du.
600 static __isl_give isl_set *compute_hexagon(__isl_take isl_space *space,
601 __isl_keep isl_val *h, __isl_keep isl_val *s0,
602 __isl_keep isl_val *dl, __isl_keep isl_val *du,
603 __isl_keep isl_val *dlh, __isl_keep isl_val *duh)
605 isl_local_space *ls;
606 isl_constraint *c;
607 isl_basic_set *bset;
609 ls = isl_local_space_from_space(space);
611 c = hex_lower_left(isl_local_space_copy(ls), h, du, duh);
612 bset = isl_basic_set_from_constraint(c);
614 c = hex_lower(isl_local_space_copy(ls), h);
615 bset = isl_basic_set_add_constraint(bset, c);
617 c = hex_lower_right(isl_local_space_copy(ls), h, s0, dl, duh);
618 bset = isl_basic_set_add_constraint(bset, c);
620 c = hex_upper_left(isl_local_space_copy(ls), h, dl);
621 bset = isl_basic_set_add_constraint(bset, c);
623 c = hex_upper_right(isl_local_space_copy(ls), h, s0, du, dlh, duh);
624 bset = isl_basic_set_add_constraint(bset, c);
626 c = hex_upper(ls);
627 bset = isl_basic_set_add_constraint(bset, c);
629 return isl_set_from_basic_set(bset);
632 /* Name of the ts-space.
634 static const char *ts_space_name = "ts";
636 /* Construct and return the space ts[t, s].
638 static __isl_give isl_space *construct_ts_space(isl_ctx *ctx)
640 isl_space *s;
642 s = isl_space_set_alloc(ctx, 0, 2);
643 s = isl_space_set_tuple_name(s, isl_dim_set, ts_space_name);
645 return s;
648 /* Name of the local ts-space.
650 static const char *local_ts_space_name = "local_ts";
652 /* Construct and return the space local_ts[t, s].
654 static __isl_give isl_space *construct_local_ts_space(isl_ctx *ctx)
656 isl_space *s;
658 s = isl_space_set_alloc(ctx, 0, 2);
659 s = isl_space_set_tuple_name(s, isl_dim_set, local_ts_space_name);
661 return s;
664 /* Compute the total size of a tile for the space dimensions,
665 * i.e., those corresponding to the child node
666 * of the input pattern.
667 * If S_0 is the original tile size in the first space dimension,
668 * then the first entry of "space_sizes" is equal to
669 * W = 2*S_0 + floor(d_l h) + floor(d_u h).
670 * The remaining entries are the same as in the original tile sizes.
671 * "tile_sizes" contains the original tile sizes, including
672 * the tile size corresponding to the parent node.
673 * "dlh" is equal to floor(d_l h).
674 * "duh" is equal to floor(d_u h).
676 static __isl_give isl_multi_val *compute_space_sizes(
677 __isl_keep isl_multi_val *tile_sizes,
678 __isl_keep isl_val *dlh, __isl_keep isl_val *duh)
680 isl_val *size;
681 isl_multi_val *space_sizes;
683 space_sizes = isl_multi_val_copy(tile_sizes);
684 space_sizes = isl_multi_val_factor_range(space_sizes);
685 size = isl_multi_val_get_val(space_sizes, 0);
686 size = isl_val_mul_ui(size, 2);
687 size = isl_val_add(size, isl_val_copy(duh));
688 size = isl_val_add(size, isl_val_copy(dlh));
689 space_sizes = isl_multi_val_set_val(space_sizes, 0, size);
691 return space_sizes;
694 /* Compute the offset of phase 1 with respect to phase 0
695 * in the ts-space ("space").
696 * In particular, return
698 * ts[st, s0 + duh]
700 static __isl_give isl_multi_val *compute_phase_shift(
701 __isl_keep isl_space *space, __isl_keep isl_val *st,
702 __isl_keep isl_val *s0, __isl_keep isl_val *duh)
704 isl_val *v;
705 isl_multi_val *phase_shift;
707 phase_shift = isl_multi_val_zero(isl_space_copy(space));
708 phase_shift = isl_multi_val_set_val(phase_shift, 0, isl_val_copy(st));
709 v = isl_val_add(isl_val_copy(duh), isl_val_copy(s0));
710 phase_shift = isl_multi_val_set_val(phase_shift, 1, v);
712 return phase_shift;
715 /* Return the function
717 * ts[t, s] -> floor(t/(2 * st))
719 * representing the time tile.
720 * "space" is the space ts[t, s].
722 static __isl_give isl_aff *compute_time_tile(__isl_keep isl_space *space,
723 __isl_keep isl_val *st)
725 isl_val *v;
726 isl_aff *t;
727 isl_local_space *ls;
729 ls = isl_local_space_from_space(isl_space_copy(space));
730 t = isl_aff_var_on_domain(ls, isl_dim_set, 0);
731 v = isl_val_mul_ui(isl_val_copy(st), 2);
732 t = isl_aff_floor(isl_aff_scale_down_val(t, v));
734 return t;
737 /* Compute a shift in the space dimension for tiles
738 * at time tile T = floor(t/(2 * S_t))
739 * such that they align to a multiple of the total space tile dimension W.
740 * In particular, compute
742 * ts[t, s] -> s + (-(2 * shift_s)*T) % W
744 * where shift_s is the shift of phase 1 with respect to phase 0
745 * in the space dimension (the first element of "phase_shift").
746 * W is stored in the first element of "space_sizes".
747 * "time_tile" is the function
749 * ts[t, s] -> floor(t/(2 * S_T))
751 * Since phase 1 is shifted by shift_s with respect to phase 0,
752 * the next line of phase 0 (at T+1) is shifted by 2*shift_s
753 * with respect to the previous line (at T).
754 * A shift of -(2 * shift_s)*T therefore allows the basic pattern
755 * (which starts at 0) to be applied.
756 * However, this shift will be used to obtain the tile coordinate
757 * in the first space dimension and if the original values
758 * in the space dimension are non-negative, then the shift should
759 * not make them negative. Moreover, the shift should be as minimal
760 * as possible.
761 * Since the pattern repeats itself with a period of W in the space
762 * dimension, the shift can be replaced by (-(2 * shift_s)*T) % W.
764 static __isl_give isl_aff *compute_shift_space(__isl_keep isl_aff *time_tile,
765 __isl_keep isl_multi_val *space_sizes,
766 __isl_keep isl_multi_val *phase_shift)
768 isl_val *v;
769 isl_aff *s, *t;
770 isl_local_space *ls;
772 ls = isl_local_space_from_space(isl_aff_get_domain_space(time_tile));
773 t = isl_aff_copy(time_tile);
774 v = isl_val_mul_ui(isl_multi_val_get_val(phase_shift, 1), 2);
775 v = isl_val_neg(v);
776 t = isl_aff_scale_val(t, v);
777 v = isl_multi_val_get_val(space_sizes, 0);
778 t = isl_aff_mod_val(t, v);
779 s = isl_aff_var_on_domain(ls, isl_dim_set, 1);
780 s = isl_aff_add(s, t);
782 return s;
785 /* Give the phase_shift ts[S_t, S_0 + floor(d_u h)],
786 * compute a function that applies the shift, i.e.,
788 * ts[t, s] -> ts[t + S_t, s + S_0 + floor(d_u h)],
790 static __isl_give isl_multi_aff *compute_shift_phase(
791 __isl_keep isl_multi_val *phase_shift)
793 isl_space *space;
794 isl_multi_aff *shift;
796 space = isl_multi_val_get_space(phase_shift);
797 shift = isl_multi_aff_multi_val_on_space(space,
798 isl_multi_val_copy(phase_shift));
799 space = isl_multi_aff_get_space(shift);
800 shift = isl_multi_aff_add(shift, isl_multi_aff_identity(space));
802 return shift;
805 /* Compute a mapping from the ts-space to the local coordinates
806 * within each tile. In particular, compute
808 * ts[t, s] -> local_ts[t % (2 S_t), (s + (-(2 * shift_s)*T) % W) % W]
810 * "ts" is the space ts[t, s]
811 * "local_ts" is the space local_ts[t, s]
812 * "shift_space" is equal to ts[t, s] -> s + (-(2 * shift_s)*T) % W
813 * "st" is the tile size in the time dimension S_t.
814 * The first element of "space_sizes" is equal to W.
816 static __isl_give isl_multi_aff *compute_localize(
817 __isl_keep isl_space *local_ts, __isl_keep isl_aff *shift_space,
818 __isl_keep isl_val *st, __isl_keep isl_multi_val *space_sizes)
820 isl_val *v;
821 isl_space *space;
822 isl_aff *s, *t;
823 isl_multi_aff *localize;
825 space = isl_aff_get_domain_space(shift_space);
826 local_ts = isl_space_copy(local_ts);
827 space = isl_space_map_from_domain_and_range(space, local_ts);
828 localize = isl_multi_aff_identity(space);
829 t = isl_multi_aff_get_aff(localize, 0);
830 v = isl_val_mul_ui(isl_val_copy(st), 2);
831 t = isl_aff_mod_val(t, v);
832 localize = isl_multi_aff_set_aff(localize, 0, t);
833 s = isl_aff_copy(shift_space);
834 v = isl_multi_val_get_val(space_sizes, 0);
835 s = isl_aff_mod_val(s, v);
836 localize = isl_multi_aff_set_aff(localize, 1, s);
838 return localize;
841 /* Set the project_ts field of "tiling".
843 * This field projects the space of the input schedule to the ts-space.
844 * It is equal to [P[t] -> C[s_0, ...]] -> ts[t, s_0].
846 static __isl_give ppcg_ht_tiling *ppcg_ht_tiling_set_project_ts(
847 __isl_take ppcg_ht_tiling *tiling)
849 int n;
850 isl_space *space;
851 isl_multi_aff *project;
853 if (!tiling)
854 return NULL;
856 space = ppcg_ht_tiling_get_input_space(tiling);
857 n = isl_space_dim(space, isl_dim_set);
858 project = isl_multi_aff_project_out_map(space, isl_dim_set, 2, n - 2);
859 project = isl_multi_aff_set_tuple_name(project,
860 isl_dim_out, ts_space_name);
861 if (!project)
862 return ppcg_ht_tiling_free(tiling);
864 tiling->project_ts = project;
866 return tiling;
869 /* Construct a hybrid tiling description from bounds on the dependence
870 * distances "bounds".
871 * "input_node" points to the original parent node.
872 * "input_schedule" is the combined schedule of the parent and child
873 * node in the input.
874 * "tile_sizes" are the original, user specified tile sizes.
876 static __isl_give ppcg_ht_tiling *ppcg_ht_bounds_construct_tiling(
877 __isl_take ppcg_ht_bounds *bounds,
878 __isl_keep isl_schedule_node *input_node,
879 __isl_keep isl_multi_union_pw_aff *input_schedule,
880 __isl_keep isl_multi_val *tile_sizes)
882 isl_ctx *ctx;
883 ppcg_ht_tiling *tiling;
884 isl_multi_val *space_sizes, *phase_shift;
885 isl_aff *time_tile, *shift_space;
886 isl_multi_aff *localize;
887 isl_val *h, *duh, *dlh;
888 isl_val *st, *s0, *du, *dl;
889 isl_space *ts, *local_ts;
891 if (!bounds || !input_node || !input_schedule || !tile_sizes)
892 goto error;
894 ctx = isl_multi_union_pw_aff_get_ctx(input_schedule);
895 tiling = isl_calloc_type(ctx, struct ppcg_ht_tiling);
896 if (!tiling)
897 goto error;
898 tiling->ref = 1;
900 st = isl_multi_val_get_val(tile_sizes, 0);
901 h = isl_val_sub_ui(isl_val_copy(st), 1);
902 s0 = isl_multi_val_get_val(tile_sizes, 1);
903 du = ppcg_ht_bounds_get_upper(bounds);
904 dl = ppcg_ht_bounds_get_lower(bounds, 0);
906 duh = isl_val_floor(isl_val_mul(isl_val_copy(du), isl_val_copy(h)));
907 dlh = isl_val_floor(isl_val_mul(isl_val_copy(dl), isl_val_copy(h)));
909 ts = construct_ts_space(ctx);
910 local_ts = construct_local_ts_space(ctx);
912 space_sizes = compute_space_sizes(tile_sizes, dlh, duh);
913 phase_shift = compute_phase_shift(ts, st, s0, duh);
914 time_tile = compute_time_tile(ts, st);
915 shift_space = compute_shift_space(time_tile, space_sizes, phase_shift);
916 localize = compute_localize(local_ts, shift_space, st, space_sizes);
917 isl_space_free(ts);
919 tiling->input_node = isl_schedule_node_copy(input_node);
920 tiling->input_schedule = isl_multi_union_pw_aff_copy(input_schedule);
921 tiling->space_sizes = space_sizes;
922 tiling->bounds = bounds;
923 tiling->local_time = isl_multi_aff_get_aff(localize, 0);
924 tiling->hex = compute_hexagon(local_ts, h, s0, dl, du, dlh, duh);
925 tiling->hex = isl_set_preimage_multi_aff(tiling->hex, localize);
926 tiling->time_tile = time_tile;
927 tiling->shift_space = shift_space;
928 tiling->shift_phase = compute_shift_phase(phase_shift);
929 isl_multi_val_free(phase_shift);
931 isl_val_free(duh);
932 isl_val_free(dlh);
933 isl_val_free(du);
934 isl_val_free(dl);
935 isl_val_free(s0);
936 isl_val_free(st);
937 isl_val_free(h);
939 if (!tiling->input_schedule || !tiling->local_time || !tiling->hex ||
940 !tiling->shift_space || !tiling->shift_phase)
941 return ppcg_ht_tiling_free(tiling);
943 tiling = ppcg_ht_tiling_set_project_ts(tiling);
945 return tiling;
946 error:
947 ppcg_ht_bounds_free(bounds);
948 return NULL;
951 /* Are all members of the band node "node" coincident?
953 static isl_bool all_coincident(__isl_keep isl_schedule_node *node)
955 int i, n;
957 n = isl_schedule_node_band_n_member(node);
958 for (i = 0; i < n; ++i) {
959 isl_bool c;
961 c = isl_schedule_node_band_member_get_coincident(node, i);
962 if (c < 0 || !c)
963 return c;
966 return isl_bool_true;
969 /* Does "node" satisfy the properties of the inner node in the input
970 * pattern for hybrid tiling?
971 * That is, is it a band node with only coincident members, of which
972 * there is at least one?
974 static isl_bool has_child_properties(__isl_keep isl_schedule_node *node)
976 if (!node)
977 return isl_bool_error;
978 if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
979 return isl_bool_false;
980 if (isl_schedule_node_band_n_member(node) < 1)
981 return isl_bool_false;
982 return all_coincident(node);
985 /* Does "node" satisfy the properties of the outer node in the input
986 * pattern for hybrid tiling?
987 * That is, is it a band node with a single member?
989 static isl_bool has_parent_properties(__isl_keep isl_schedule_node *node)
991 if (!node)
992 return isl_bool_error;
993 if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
994 return isl_bool_false;
995 if (isl_schedule_node_band_n_member(node) != 1)
996 return isl_bool_false;
997 return isl_bool_true;
1000 /* Does the parent of "node" satisfy the input patttern for hybrid tiling?
1001 * That is, does "node" satisfy the properties of the inner node and
1002 * does the parent of "node" satisfy the properties of the outer node?
1004 isl_bool ppcg_ht_parent_has_input_pattern(__isl_keep isl_schedule_node *node)
1006 isl_bool has_pattern;
1008 has_pattern = has_child_properties(node);
1009 if (has_pattern < 0 || !has_pattern)
1010 return has_pattern;
1012 node = isl_schedule_node_copy(node);
1013 node = isl_schedule_node_parent(node);
1014 has_pattern = has_parent_properties(node);
1015 isl_schedule_node_free(node);
1017 return has_pattern;
1020 /* Does "node" satisfy the input patttern for hybrid tiling?
1021 * That is, does "node" satisfy the properties of the outer node and
1022 * does the child of "node" satisfy the properties of the inner node?
1024 isl_bool ppcg_ht_has_input_pattern(__isl_keep isl_schedule_node *node)
1026 isl_bool has_pattern;
1028 has_pattern = has_parent_properties(node);
1029 if (has_pattern < 0 || !has_pattern)
1030 return has_pattern;
1032 node = isl_schedule_node_get_child(node, 0);
1033 has_pattern = has_child_properties(node);
1034 isl_schedule_node_free(node);
1036 return has_pattern;
1039 /* Check that "node" satisfies the input pattern for hybrid tiling.
1040 * Error out if it does not.
1042 static isl_stat check_input_pattern(__isl_keep isl_schedule_node *node)
1044 isl_bool has_pattern;
1046 has_pattern = ppcg_ht_has_input_pattern(node);
1047 if (has_pattern < 0)
1048 return isl_stat_error;
1049 if (!has_pattern)
1050 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
1051 "invalid input pattern for hybrid tiling",
1052 return isl_stat_error);
1054 return isl_stat_ok;
1057 /* Extract the input schedule from "node", i.e., the product
1058 * of the partial schedules of the parent and child nodes
1059 * in the input pattern.
1061 static __isl_give isl_multi_union_pw_aff *extract_input_schedule(
1062 __isl_keep isl_schedule_node *node)
1064 isl_multi_union_pw_aff *partial, *partial2;
1066 partial = isl_schedule_node_band_get_partial_schedule(node);
1067 node = isl_schedule_node_get_child(node, 0);
1068 partial2 = isl_schedule_node_band_get_partial_schedule(node);
1069 isl_schedule_node_free(node);
1071 return isl_multi_union_pw_aff_range_product(partial, partial2);
1074 /* Collect all dependences from "scop" that are relevant for performing
1075 * hybrid tiling on "node" and its child and map them to the schedule
1076 * space of this pair of nodes.
1078 * In case live range reordering is not used,
1079 * the flow and the false dependences are collected.
1080 * In case live range reordering is used,
1081 * the flow and the forced dependences are collected, as well
1082 * as the order dependences that are adjacent to non-local
1083 * flow dependences.
1085 * In all cases, only dependences that map to the same instance
1086 * of the outer part of the schedule are considered.
1088 static __isl_give isl_map *collect_deps(struct ppcg_scop *scop,
1089 __isl_keep isl_schedule_node *node)
1091 isl_space *space;
1092 isl_multi_union_pw_aff *prefix, *partial;
1093 isl_union_map *flow, *other, *dep, *umap;
1094 isl_map *map;
1096 prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
1097 partial = extract_input_schedule(node);
1098 space = isl_multi_union_pw_aff_get_space(partial);
1100 flow = isl_union_map_copy(scop->dep_flow);
1101 flow = isl_union_map_eq_at_multi_union_pw_aff(flow,
1102 isl_multi_union_pw_aff_copy(prefix));
1103 if (!scop->options->live_range_reordering) {
1104 other = isl_union_map_copy(scop->dep_false);
1105 other = isl_union_map_eq_at_multi_union_pw_aff(other, prefix);
1106 } else {
1107 isl_union_map *local, *non_local, *order, *adj;
1108 isl_union_set *domain, *range;
1110 other = isl_union_map_copy(scop->dep_forced);
1111 other = isl_union_map_eq_at_multi_union_pw_aff(other,
1112 isl_multi_union_pw_aff_copy(prefix));
1113 local = isl_union_map_copy(flow);
1114 local = isl_union_map_eq_at_multi_union_pw_aff(local,
1115 isl_multi_union_pw_aff_copy(partial));
1116 non_local = isl_union_map_copy(flow);
1117 non_local = isl_union_map_subtract(non_local, local);
1119 order = isl_union_map_copy(scop->dep_order);
1120 order = isl_union_map_eq_at_multi_union_pw_aff(order, prefix);
1121 adj = isl_union_map_copy(order);
1122 domain = isl_union_map_domain(isl_union_map_copy(non_local));
1123 domain = isl_union_set_coalesce(domain);
1124 adj = isl_union_map_intersect_range(adj, domain);
1125 other = isl_union_map_union(other, adj);
1127 adj = order;
1128 range = isl_union_map_range(non_local);
1129 range = isl_union_set_coalesce(range);
1130 adj = isl_union_map_intersect_domain(adj, range);
1131 other = isl_union_map_union(other, adj);
1133 dep = isl_union_map_union(flow, other);
1135 umap = isl_union_map_from_multi_union_pw_aff(partial);
1136 dep = isl_union_map_apply_domain(dep, isl_union_map_copy(umap));
1137 dep = isl_union_map_apply_range(dep, umap);
1139 space = isl_space_map_from_set(space);
1140 map = isl_union_map_extract_map(dep, space);
1141 isl_union_map_free(dep);
1143 map = isl_map_coalesce(map);
1145 return map;
1148 /* Given a constraint of the form
1150 * a i_0 + b i_1 >= 0
1151 * or
1152 * a i_0 + b i_1 = 0
1154 * use it to update one or both of the non-negative bounds
1155 * in "list" = (min, max) such that
1157 * i_1 >= -min i_0
1158 * and
1159 * i_1 <= max i_0
1161 * If b = 0, then the constraint cannot be used.
1162 * Otherwise, the constraint is equivalent to
1164 * sgn(b) i_1 >= - a/abs(b) i_0
1165 * i.e.,
1166 * i_1 >= - a/abs(b) i_0
1167 * or
1168 * i_1 <= a/abs(b) i_0
1170 * Set the first or second element of "list" to max(0, a/abs(b)),
1171 * according to the sign of "b". Or set both in case the constraint
1172 * is an equality, taking into account the sign change.
1174 static __isl_give isl_val_list *list_set_min_max(__isl_take isl_val_list *list,
1175 __isl_keep isl_constraint *c)
1177 isl_val *a, *b;
1178 int sign;
1179 int pos;
1180 isl_bool eq, is_zero, is_neg;
1182 eq = isl_constraint_is_equality(c);
1183 if (eq < 0)
1184 return isl_val_list_free(list);
1186 b = isl_constraint_get_coefficient_val(c, isl_dim_set, 1);
1187 is_zero = isl_val_is_zero(b);
1188 if (is_zero == isl_bool_true) {
1189 isl_val_free(b);
1190 return list;
1192 a = isl_constraint_get_coefficient_val(c, isl_dim_set, 0);
1193 sign = isl_val_sgn(b);
1194 b = isl_val_abs(b);
1195 a = isl_val_div(a, b);
1197 if (eq)
1198 b = isl_val_copy(a);
1200 pos = sign > 0 ? 0 : 1;
1201 is_neg = isl_val_is_neg(a);
1202 if (is_neg == isl_bool_true)
1203 a = isl_val_set_si(a, 0);
1204 list = isl_val_list_set_val(list, pos, a);
1206 if (!eq)
1207 return is_neg < 0 ? isl_val_list_free(list) : list;
1209 pos = 1 - pos;
1210 a = isl_val_neg(b);
1211 is_neg = isl_val_is_neg(a);
1212 if (is_neg == isl_bool_true)
1213 a = isl_val_set_si(a, 0);
1214 list = isl_val_list_set_val(list, pos, a);
1216 return is_neg < 0 ? isl_val_list_free(list) : list;
1219 /* If constraint "c" passes through the origin, then try and use it
1220 * to update the non-negative bounds in "list" = (min, max) such that
1222 * i_1 >= -min i_0
1223 * and
1224 * i_1 <= max i_0
1226 static isl_stat set_min_max(__isl_take isl_constraint *c, void *user)
1228 isl_val *v;
1229 isl_val_list **list = user;
1230 isl_bool is_zero;
1232 v = isl_constraint_get_constant_val(c);
1233 is_zero = isl_val_is_zero(v);
1234 isl_val_free(v);
1236 if (is_zero == isl_bool_true)
1237 *list = list_set_min_max(*list, c);
1239 isl_constraint_free(c);
1240 return is_zero < 0 ? isl_stat_error : isl_stat_ok;
1243 /* Given a set of dependence distance vectors "dist", compute
1244 * pair of non-negative bounds min and max such that
1246 * d_pos >= -min d_0
1247 * and
1248 * d_pos <= max d_0
1250 * and return the pair (min, max).
1251 * If no bound can be found in either direction, then the bound
1252 * is replaced by NaN.
1254 * The dependence distances are first projected onto the (d_0, d_pos).
1255 * Then the zero dependence distance is added and the convex hull is computed.
1256 * Finally, the bounds are extracted from the constraints of the convex hull
1257 * that pass through the origin.
1259 static __isl_give isl_val_list *min_max_dist(__isl_keep isl_set *dist, int pos)
1261 isl_space *space;
1262 isl_basic_set *hull;
1263 int dim;
1264 isl_ctx *ctx;
1265 isl_val *nan;
1266 isl_val_list *list;
1268 ctx = isl_set_get_ctx(dist);
1269 nan = isl_val_nan(ctx);
1270 list = isl_val_list_alloc(ctx, 2);
1271 list = isl_val_list_add(list, isl_val_copy(nan));
1272 list = isl_val_list_add(list, nan);
1274 dist = isl_set_copy(dist);
1275 dim = isl_set_dim(dist, isl_dim_set);
1276 if (dist && pos >= dim)
1277 isl_die(ctx, isl_error_internal, "position out of bounds",
1278 dist = isl_set_free(dist));
1279 dist = isl_set_project_out(dist, isl_dim_set, pos + 1, dim - (pos + 1));
1280 dist = isl_set_project_out(dist, isl_dim_set, 1, pos - 1);
1282 space = isl_set_get_space(dist);
1283 dist = isl_set_union(dist, isl_set_from_point(isl_point_zero(space)));
1284 dist = isl_set_remove_divs(dist);
1285 hull = isl_set_convex_hull(dist);
1287 if (isl_basic_set_foreach_constraint(hull, &set_min_max, &list) < 0)
1288 list = isl_val_list_free(list);
1289 isl_basic_set_free(hull);
1291 return list;
1294 /* Given a schedule node "node" that, together with its child,
1295 * satisfies the input pattern for hybrid tiling, compute bounds
1296 * on the relative dependence distances of the child node with
1297 * respect to the parent node. These bounds are needed to
1298 * construct a hybrid tiling.
1300 * First all relevant dependences are collected and mapped
1301 * to the schedule space of the pair of nodes. Then, the
1302 * dependence distances are computed in this space.
1304 * These dependence distances are then projected onto a two-dimensional
1305 * space consisting of the single schedule dimension of the outer node
1306 * and one of the schedule dimensions of the inner node.
1307 * The maximal and minimal relative dependence distances are extracted
1308 * from these projections.
1309 * This process is repeated for each of the schedule dimensions
1310 * of the inner node. For the first dimension, both minimal and
1311 * maximal relative dependence distances are stored in the result.
1312 * For the other dimensions, only the minimal relative dependence
1313 * distance is stored.
1315 __isl_give ppcg_ht_bounds *ppcg_ht_compute_bounds(struct ppcg_scop *scop,
1316 __isl_keep isl_schedule_node *node)
1318 ppcg_ht_bounds *bnd;
1319 isl_space *space;
1320 isl_map *map;
1321 isl_set *dist;
1322 isl_val_list *pair;
1323 isl_schedule_node *child;
1324 int n;
1325 int i, dim;
1327 if (!scop || !node || check_input_pattern(node) < 0)
1328 return NULL;
1330 child = isl_schedule_node_get_child(node, 0);
1331 space = isl_schedule_node_band_get_space(child);
1332 dim = isl_schedule_node_band_n_member(child);
1333 isl_schedule_node_free(child);
1334 bnd = ppcg_ht_bounds_alloc(space);
1335 if (!bnd)
1336 return NULL;
1338 map = collect_deps(scop, node);
1340 dist = isl_map_deltas(map);
1341 n = isl_set_dim(dist, isl_dim_param);
1342 dist = isl_set_project_out(dist, isl_dim_param, 0, n);
1344 pair = min_max_dist(dist, 1);
1345 bnd = ppcg_ht_bounds_set_lower(bnd, 0, isl_val_list_get_val(pair, 0));
1346 bnd = ppcg_ht_bounds_set_upper(bnd, isl_val_list_get_val(pair, 1));
1347 isl_val_list_free(pair);
1349 for (i = 1; i < dim; ++i) {
1350 pair = min_max_dist(dist, 1 + i);
1351 bnd = ppcg_ht_bounds_set_lower(bnd, i,
1352 isl_val_list_get_val(pair, 0));
1353 isl_val_list_free(pair);
1356 isl_set_free(dist);
1358 return bnd;
1361 /* Check if all the fields of "phase" are valid, freeing "phase"
1362 * if they are not.
1364 static __isl_give ppcg_ht_phase *check_phase(__isl_take ppcg_ht_phase *phase)
1366 if (!phase)
1367 return NULL;
1369 if (!phase->tiling || !phase->local_time ||
1370 !phase->shift_space || !phase->domain)
1371 return ppcg_ht_phase_free(phase);
1373 return phase;
1376 /* Construct a ppcg_ht_phase object, that simply copies
1377 * information from "tiling".
1378 * That is, the result is defined over the "ts" space and
1379 * corresponds to phase 1.
1381 static __isl_give ppcg_ht_phase *construct_phase(
1382 __isl_keep ppcg_ht_tiling *tiling)
1384 isl_ctx *ctx;
1385 ppcg_ht_phase *phase;
1387 if (!tiling)
1388 return NULL;
1390 ctx = ppcg_ht_tiling_get_ctx(tiling);
1391 phase = isl_calloc_type(ctx, struct ppcg_ht_phase);
1392 if (!phase)
1393 return NULL;
1394 phase->tiling = ppcg_ht_tiling_copy(tiling);
1395 phase->time_tile = isl_aff_copy(tiling->time_tile);
1396 phase->local_time = isl_aff_copy(tiling->local_time);
1397 phase->shift_space = isl_aff_copy(tiling->shift_space);
1398 phase->domain = isl_set_copy(tiling->hex);
1400 return check_phase(phase);
1403 /* Align the parameters of the elements of "phase" to those of "space".
1405 static __isl_give ppcg_ht_phase *phase_align_params(
1406 __isl_take ppcg_ht_phase *phase, __isl_take isl_space *space)
1408 if (!phase)
1409 goto error;
1411 phase->time_tile = isl_aff_align_params(phase->time_tile,
1412 isl_space_copy(space));
1413 phase->local_time = isl_aff_align_params(phase->local_time,
1414 isl_space_copy(space));
1415 phase->shift_space = isl_aff_align_params(phase->shift_space,
1416 isl_space_copy(space));
1417 phase->domain = isl_set_align_params(phase->domain, space);
1419 return check_phase(phase);
1420 error:
1421 isl_space_free(space);
1422 return NULL;
1425 /* Pull back "phase" over "ma".
1426 * That is, take a phase defined over the range of "ma" and
1427 * turn it into a phase defined over the domain of "ma".
1429 static __isl_give ppcg_ht_phase *pullback_phase(__isl_take ppcg_ht_phase *phase,
1430 __isl_take isl_multi_aff *ma)
1432 phase = phase_align_params(phase, isl_multi_aff_get_space(ma));
1433 if (!phase)
1434 goto error;
1436 phase->time_tile = isl_aff_pullback_multi_aff(phase->time_tile,
1437 isl_multi_aff_copy(ma));
1438 phase->local_time = isl_aff_pullback_multi_aff(phase->local_time,
1439 isl_multi_aff_copy(ma));
1440 phase->shift_space = isl_aff_pullback_multi_aff(phase->shift_space,
1441 isl_multi_aff_copy(ma));
1442 phase->domain = isl_set_preimage_multi_aff(phase->domain, ma);
1444 return check_phase(phase);
1445 error:
1446 isl_multi_aff_free(ma);
1447 return NULL;
1450 /* Pullback "phase" over phase->tiling->shift_phase, which shifts
1451 * phase 0 to phase 1. The pullback therefore takes a phase 1
1452 * description and turns it into a phase 0 description.
1454 static __isl_give ppcg_ht_phase *shift_phase(__isl_take ppcg_ht_phase *phase)
1456 ppcg_ht_tiling *tiling;
1458 if (!phase)
1459 return NULL;
1461 tiling = phase->tiling;
1462 return pullback_phase(phase, isl_multi_aff_copy(tiling->shift_phase));
1465 /* Take a "phase" defined over the ts-space and plug in the projection
1466 * from the input schedule space to the ts-space.
1467 * The result is then defined over this input schedule space.
1469 static __isl_give ppcg_ht_phase *lift_phase(__isl_take ppcg_ht_phase *phase)
1471 ppcg_ht_tiling *tiling;
1473 if (!phase)
1474 return NULL;
1476 tiling = phase->tiling;
1477 return pullback_phase(phase, isl_multi_aff_copy(tiling->project_ts));
1480 /* Compute the shift that should be added to the space band
1481 * in order to be able to apply rectangular tiling to the space.
1482 * Store the shift in phase->space_shift.
1484 * In the first dimension, it is equal to shift_space - s.
1485 * For phase 1, this results in
1487 * (-(2 * shift_s)*T) % W
1489 * In phase 0, the "s" in shift_space has been replaced by "s + shift_s",
1490 * so the result is
1492 * shift_s + (-(2 * shift_s)*T) % W
1494 * In the other dimensions, the shift is equal to
1496 * dl_i * local_time.
1498 static __isl_give ppcg_ht_phase *compute_space_shift(
1499 __isl_take ppcg_ht_phase *phase)
1501 int i, n;
1502 isl_space *space;
1503 isl_local_space *ls;
1504 isl_aff *aff, *s;
1505 isl_multi_aff *space_shift;
1507 if (!phase)
1508 return NULL;
1510 space = ppcg_ht_phase_get_input_space(phase);
1511 space = isl_space_unwrap(space);
1512 space = isl_space_range_map(space);
1514 space_shift = isl_multi_aff_zero(space);
1515 aff = isl_aff_copy(phase->shift_space);
1516 ls = isl_local_space_from_space(isl_aff_get_domain_space(aff));
1517 s = isl_aff_var_on_domain(ls, isl_dim_set, 1);
1518 aff = isl_aff_sub(aff, s);
1519 space_shift = isl_multi_aff_set_aff(space_shift, 0, aff);
1521 n = isl_multi_aff_dim(space_shift, isl_dim_out);
1522 for (i = 1; i < n; ++i) {
1523 isl_val *v;
1524 isl_aff *time;
1526 v = ppcg_ht_bounds_get_lower(phase->tiling->bounds, i);
1527 time = isl_aff_copy(phase->local_time);
1528 time = isl_aff_scale_val(time, v);
1529 space_shift = isl_multi_aff_set_aff(space_shift, i, time);
1532 if (!space_shift)
1533 return ppcg_ht_phase_free(phase);
1534 phase->space_shift = space_shift;
1535 return phase;
1538 /* Compute the space tiling and store the result in phase->space_tile.
1539 * The space tiling is of the form
1541 * [P[t] -> C[s]] -> C[floor((s + space_shift)/space_size]
1543 static __isl_give ppcg_ht_phase *compute_space_tile(
1544 __isl_take ppcg_ht_phase *phase)
1546 isl_space *space;
1547 isl_multi_val *space_sizes;
1548 isl_multi_aff *space_shift;
1549 isl_multi_aff *tile;
1551 if (!phase)
1552 return NULL;
1554 space = ppcg_ht_phase_get_input_space(phase);
1555 space = isl_space_unwrap(space);
1556 tile = isl_multi_aff_range_map(space);
1557 space_shift = isl_multi_aff_copy(phase->space_shift);
1558 tile = isl_multi_aff_add(space_shift, tile);
1559 space_sizes = isl_multi_val_copy(phase->tiling->space_sizes);
1560 tile = isl_multi_aff_scale_down_multi_val(tile, space_sizes);
1561 tile = isl_multi_aff_floor(tile);
1563 if (!tile)
1564 return ppcg_ht_phase_free(phase);
1565 phase->space_tile = tile;
1566 return phase;
1569 /* Construct a representation for one of the two phase for hybrid tiling
1570 * "tiling". If "shift" is not set, then the phase is constructed
1571 * directly from the hexagonal tile shape in "tiling", which represents
1572 * the phase-1 tiles. If "shift" is set, then this tile shape is shifted
1573 * back over tiling->shift_phase to obtain the phase-0 tiles.
1575 * First copy data from "tiling", then optionally shift the phase and
1576 * finally move the tiling from the "ts" space of "tiling" to
1577 * the space of the input pattern.
1579 * After the basic phase has been computed, also compute
1580 * the corresponding space shift.
1582 static __isl_give ppcg_ht_phase *ppcg_ht_tiling_compute_phase(
1583 __isl_keep ppcg_ht_tiling *tiling, int shift)
1585 ppcg_ht_phase *phase;
1587 phase = construct_phase(tiling);
1588 if (shift)
1589 phase = shift_phase(phase);
1590 phase = lift_phase(phase);
1592 phase = compute_space_shift(phase);
1593 phase = compute_space_tile(phase);
1595 return phase;
1598 /* Consruct a function that is equal to the time tile of "phase0"
1599 * on the domain of "phase0" and equal to the time tile of "phase1"
1600 * on the domain of "phase1".
1601 * The two domains are assumed to form a partition of the input
1602 * schedule space.
1604 static __isl_give isl_pw_multi_aff *combine_time_tile(
1605 __isl_keep ppcg_ht_phase *phase0, __isl_keep ppcg_ht_phase *phase1)
1607 isl_aff *T;
1608 isl_pw_aff *time, *time1;
1610 if (!phase0 || !phase1)
1611 return NULL;
1613 T = isl_aff_copy(phase0->time_tile);
1614 time = isl_pw_aff_alloc(ppcg_ht_phase_get_domain(phase0), T);
1616 T = isl_aff_copy(phase1->time_tile);
1617 time1 = isl_pw_aff_alloc(ppcg_ht_phase_get_domain(phase1), T);
1619 time = isl_pw_aff_union_add(time, time1);
1621 return isl_pw_multi_aff_from_pw_aff(time);
1624 /* Name used in mark nodes that contain a pointer to a ppcg_ht_phase.
1626 static char *ppcg_phase_name = "phase";
1628 /* Does "id" contain a pointer to a ppcg_ht_phase?
1629 * That is, is it called "phase"?
1631 static isl_bool is_phase_id(__isl_keep isl_id *id)
1633 const char *name;
1635 name = isl_id_get_name(id);
1636 if (!name)
1637 return isl_bool_error;
1639 return !strcmp(name, ppcg_phase_name);
1642 /* Given a mark node with an identifier that points to a ppcg_ht_phase,
1643 * extract this ppcg_ht_phase pointer.
1645 __isl_keep ppcg_ht_phase *ppcg_ht_phase_extract_from_mark(
1646 __isl_keep isl_schedule_node *node)
1648 isl_bool is_phase;
1649 isl_id *id;
1650 void *p;
1652 if (!node)
1653 return NULL;
1654 if (isl_schedule_node_get_type(node) != isl_schedule_node_mark)
1655 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
1656 "not a phase mark", return NULL);
1658 id = isl_schedule_node_mark_get_id(node);
1659 is_phase = is_phase_id(id);
1660 p = isl_id_get_user(id);
1661 isl_id_free(id);
1663 if (is_phase < 0)
1664 return NULL;
1665 if (!is_phase)
1666 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
1667 "not a phase mark", return NULL);
1669 return p;
1672 /* Insert a mark node at "node" holding a pointer to "phase".
1674 static __isl_give isl_schedule_node *insert_phase(
1675 __isl_take isl_schedule_node *node, __isl_take ppcg_ht_phase *phase)
1677 isl_ctx *ctx;
1678 isl_id *id;
1680 if (!node)
1681 goto error;
1682 ctx = isl_schedule_node_get_ctx(node);
1683 id = isl_id_alloc(ctx, ppcg_phase_name, phase);
1684 if (!id)
1685 goto error;
1686 id = isl_id_set_free_user(id, &ppcg_ht_phase_free_wrap);
1687 node = isl_schedule_node_insert_mark(node, id);
1689 return node;
1690 error:
1691 ppcg_ht_phase_free(phase);
1692 isl_schedule_node_free(node);
1693 return NULL;
1696 /* Construct a mapping from the elements of the original pair of bands
1697 * to which tiling was applied that belong to a tile of "phase"
1698 * to that tile, preserving the values for the outer bands.
1700 * The mapping is of the form
1702 * [[outer] -> [P -> C]] -> [[outer] -> [tile]]
1704 * where tile is defined by a concatenation of the time_tile and
1705 * the space_tile.
1707 static __isl_give isl_map *construct_tile_map(__isl_keep ppcg_ht_phase *phase)
1709 int depth;
1710 isl_space *space;
1711 isl_multi_aff *ma;
1712 isl_multi_aff *tiling;
1713 isl_map *el2tile;
1715 depth = isl_schedule_node_get_schedule_depth(
1716 phase->tiling->input_node);
1717 space = isl_aff_get_space(phase->time_tile);
1718 space = isl_space_params(space);
1719 space = isl_space_set_from_params(space);
1720 space = isl_space_add_dims(space, isl_dim_set, depth);
1721 space = isl_space_map_from_set(space);
1722 ma = isl_multi_aff_identity(space);
1724 tiling = isl_multi_aff_flat_range_product(
1725 isl_multi_aff_from_aff(isl_aff_copy(phase->time_tile)),
1726 isl_multi_aff_copy(phase->space_tile));
1727 el2tile = isl_map_from_multi_aff(tiling);
1728 el2tile = isl_map_intersect_domain(el2tile,
1729 isl_set_copy(phase->domain));
1730 el2tile = isl_map_product(isl_map_from_multi_aff(ma), el2tile);
1732 return el2tile;
1735 /* Return a description of the full tiles of "phase" at the point
1736 * in the original schedule tree where the tiling was applied.
1738 * First construct a mapping from the input schedule dimensions
1739 * up to and including the original pair of bands to which hybrid tiling
1740 * was applied to schedule dimensions in which this original pair
1741 * has been replaced by the tiles.
1742 * This mapping is of the form
1744 * [[outer] -> [P -> C]] -> [[outer] -> [tile]]
1746 * Apply this mapping to the set of all values for the input
1747 * schedule dimensions and then apply its inverse.
1748 * The result is the set of values for the input schedule dimensions
1749 * that would map to any of the tiles. Subtracting from this set
1750 * the set of values that are actually executed produces the set
1751 * of values that belong to a tile but that are not executed.
1752 * Mapping these back to the tiles produces a description of
1753 * the partial tiles. Subtracting these from the set of all tiles
1754 * produces a description of the full tiles in the form
1756 * [[outer] -> [tile]]
1758 static __isl_give isl_set *compute_full_tile(__isl_keep ppcg_ht_phase *phase)
1760 isl_schedule_node *node;
1761 isl_union_set *domain;
1762 isl_union_map *prefix, *schedule;
1763 isl_set *all, *partial, *all_el;
1764 isl_map *tile2el, *el2tile;
1765 isl_multi_union_pw_aff *mupa;
1767 el2tile = construct_tile_map(phase);
1768 tile2el = isl_map_reverse(isl_map_copy(el2tile));
1770 node = phase->tiling->input_node;
1771 prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
1772 domain = isl_schedule_node_get_domain(node);
1773 mupa = isl_multi_union_pw_aff_copy(phase->tiling->input_schedule);
1774 schedule = isl_union_map_from_multi_union_pw_aff(mupa);
1775 schedule = isl_union_map_range_product(prefix, schedule);
1776 all_el = isl_set_from_union_set(isl_union_set_apply(domain, schedule));
1777 all_el = isl_set_coalesce(all_el);
1779 all = isl_set_apply(isl_set_copy(all_el), isl_map_copy(el2tile));
1781 partial = isl_set_copy(all);
1782 partial = isl_set_apply(partial, tile2el);
1783 partial = isl_set_subtract(partial, all_el);
1784 partial = isl_set_apply(partial, el2tile);
1786 return isl_set_subtract(all, partial);
1789 /* Copy the AST loop types of the non-isolated part to those
1790 * of the isolated part.
1792 static __isl_give isl_schedule_node *set_isolate_loop_type(
1793 __isl_take isl_schedule_node *node)
1795 int i, n;
1797 n = isl_schedule_node_band_n_member(node);
1798 for (i = 0; i < n; ++i) {
1799 enum isl_ast_loop_type type;
1801 type = isl_schedule_node_band_member_get_ast_loop_type(node, i);
1802 node = isl_schedule_node_band_member_set_isolate_ast_loop_type(
1803 node, i, type);
1806 return node;
1809 /* If options->isolate_full_tiles is set, then mark the full tiles
1810 * in "node" for isolation. The full tiles are derived from "phase".
1811 * "node" may point to a part of the tiling, e.g., the space tiling.
1813 * The full tiles are originally computed in the form
1815 * [[outer] -> [tile]]
1817 * However, the band that "node" points to may only contain
1818 * subset of the tile dimensions.
1819 * The description above is therefore treated as
1821 * [[outer] -> [before; this; after]]
1823 * before is of size "pos"; this is of size "dim"; and
1824 * after is of size "out - pos - dim".
1825 * The after part is first project out. Then the range is split
1826 * into a before and this part and finally the before part is moved
1827 * to the domain, resulting in
1829 * [[outer; before] -> [this]]
1831 * This description is then used as the isolate option.
1833 * The AST loop type for the isolated part is set to be the same
1834 * as that of the non-isolated part.
1836 static __isl_give isl_schedule_node *ppcg_ht_phase_isolate_full_tile_node(
1837 __isl_keep ppcg_ht_phase *phase, __isl_take isl_schedule_node *node,
1838 struct ppcg_options *options)
1840 int in, out, pos, depth, dim;
1841 isl_space *space;
1842 isl_multi_aff *ma1, *ma2;
1843 isl_set *tile;
1844 isl_map *map;
1845 isl_set *set;
1846 isl_union_set *opt;
1848 if (!options->isolate_full_tiles)
1849 return node;
1851 depth = isl_schedule_node_get_schedule_depth(node);
1852 dim = isl_schedule_node_band_n_member(node);
1854 tile = compute_full_tile(phase);
1855 map = isl_set_unwrap(tile);
1856 in = isl_map_dim(map, isl_dim_in);
1857 out = isl_map_dim(map, isl_dim_out);
1858 pos = depth - in;
1859 map = isl_map_project_out(map, isl_dim_out, pos + dim,
1860 out - (pos + dim));
1861 space = isl_space_range(isl_map_get_space(map));
1862 ma1 = isl_multi_aff_project_out_map(isl_space_copy(space),
1863 isl_dim_set, pos, dim);
1864 ma2 = isl_multi_aff_project_out_map(space, isl_dim_set, 0, pos);
1865 ma1 = isl_multi_aff_range_product(ma1, ma2);
1866 map = isl_map_apply_range(map, isl_map_from_multi_aff(ma1));
1867 map = isl_map_uncurry(map);
1868 map = isl_map_flatten_domain(map);
1869 set = isl_map_wrap(map);
1870 set = isl_set_set_tuple_name(set, "isolate");
1872 opt = isl_schedule_node_band_get_ast_build_options(node);
1873 opt = isl_union_set_add_set(opt, set);
1874 node = isl_schedule_node_band_set_ast_build_options(node, opt);
1875 node = set_isolate_loop_type(node);
1877 return node;
1880 /* Insert a band node for performing the space tiling for "phase" at "node".
1881 * In particular, insert a band node with partial schedule
1883 * [P[t] -> C[s]] -> C[floor((s + space_shift)/space_size)]
1885 * pulled back over the input schedule.
1886 * "options" determines whether full tiles should be separated
1887 * from partial tiles.
1889 * The first tile dimension iterates over the hexagons in the same
1890 * phase, which are independent by construction. The first dimension
1891 * is therefore marked coincident.
1892 * All dimensions are also marked for being generated as atomic loops
1893 * because separation is usually not desirable on tile loops.
1895 static __isl_give isl_schedule_node *insert_space_tiling(
1896 __isl_keep ppcg_ht_phase *phase, __isl_take isl_schedule_node *node,
1897 struct ppcg_options *options)
1899 isl_multi_aff *space_tile;
1900 isl_multi_union_pw_aff *mupa;
1902 if (!phase)
1903 return isl_schedule_node_free(node);
1905 space_tile = isl_multi_aff_copy(phase->space_tile);
1906 mupa = isl_multi_union_pw_aff_copy(phase->tiling->input_schedule);
1907 mupa = isl_multi_union_pw_aff_apply_multi_aff(mupa, space_tile);
1908 node = isl_schedule_node_insert_partial_schedule(node, mupa);
1909 node = ppcg_set_schedule_node_type(node, isl_ast_loop_atomic);
1910 node = ppcg_ht_phase_isolate_full_tile_node(phase, node, options);
1911 node = isl_schedule_node_band_member_set_coincident(node, 0, 1);
1913 return node;
1916 /* Given a pointer "node" to (a copy of) the original child node
1917 * in the input pattern, adjust its partial schedule such that
1918 * it starts at zero within each tile.
1920 * That is, replace "s" by (s + space_shift) % space_sizes.
1922 __isl_give isl_schedule_node *ppcg_ht_phase_shift_space_point(
1923 __isl_keep ppcg_ht_phase *phase, __isl_take isl_schedule_node *node)
1925 isl_multi_val *space_sizes;
1926 isl_multi_aff *space_shift;
1927 isl_multi_union_pw_aff *mupa;
1929 space_shift = isl_multi_aff_copy(phase->space_shift);
1930 mupa = isl_multi_union_pw_aff_copy(phase->tiling->input_schedule);
1931 mupa = isl_multi_union_pw_aff_apply_multi_aff(mupa, space_shift);
1932 node = isl_schedule_node_band_shift(node, mupa);
1933 space_sizes = isl_multi_val_copy(phase->tiling->space_sizes);
1934 node = isl_schedule_node_band_mod(node, space_sizes);
1936 return node;
1939 /* Does
1941 * s0 > delta + 2 * {delta * h} - 1
1943 * hold?
1945 static isl_bool wide_enough(__isl_keep isl_val *s0, __isl_keep isl_val *delta,
1946 __isl_keep isl_val *h)
1948 isl_val *v, *v2;
1949 isl_bool ok;
1951 v = isl_val_mul(isl_val_copy(delta), isl_val_copy(h));
1952 v2 = isl_val_floor(isl_val_copy(v));
1953 v = isl_val_sub(v, v2);
1954 v = isl_val_mul_ui(v, 2);
1955 v = isl_val_add(v, isl_val_copy(delta));
1956 v = isl_val_sub_ui(v, 1);
1957 ok = isl_val_gt(s0, v);
1958 isl_val_free(v);
1960 return ok;
1963 /* Is the tile size specified by "sizes" wide enough in the first space
1964 * dimension, i.e., the base of the hexagon? This ensures that,
1965 * after hybrid tiling using "bounds" and these sizes,
1966 * neighboring hexagons in the same phase are far enough apart
1967 * that they do not depend on each other.
1968 * The test is only meaningful if the bounds are valid.
1970 * Let st be (half) the size in the time dimension and s0 the base
1971 * size in the first space dimension. Let delta be the dependence
1972 * distance in either positive or negative direction. In principle,
1973 * it should be enough to have s0 + 1 > delta, i.e., s0 >= delta.
1974 * However, in case of fractional delta, the tile is not extended
1975 * with delta * (st - 1), but instead with floor(delta * (st - 1)).
1976 * The condition therefore needs to be adjusted to
1978 * s0 + 1 > delta + 2 {delta * (st - 1)}
1980 * (with {} the fractional part) to account for the two slanted sides.
1981 * The condition in the paper "Hybrid Hexagonal/Classical Tiling for GPUs"
1982 * translates to
1984 * s0 >= delta + {delta * (st - 1)}
1986 * Since 1 > frac(delta * (st - 1)), this condition implies
1987 * the condition above.
1989 * The condition is checked for both directions.
1991 isl_bool ppcg_ht_bounds_supports_sizes(__isl_keep ppcg_ht_bounds *bounds,
1992 __isl_keep isl_multi_val *sizes)
1994 isl_val *s0, *h;
1995 isl_val *delta;
1996 isl_bool ok;
1998 ok = ppcg_ht_bounds_is_valid(bounds);
1999 if (ok < 0 || !ok)
2000 return ok;
2002 h = isl_val_sub_ui(isl_multi_val_get_val(sizes, 0), 1);
2003 s0 = isl_multi_val_get_val(sizes, 1);
2005 delta = ppcg_ht_bounds_get_lower(bounds, 0);
2006 ok = wide_enough(s0, delta, h);
2007 isl_val_free(delta);
2009 delta = ppcg_ht_bounds_get_upper(bounds);
2010 if (ok == isl_bool_true)
2011 ok = wide_enough(s0, delta, h);
2012 isl_val_free(delta);
2014 isl_val_free(s0);
2015 isl_val_free(h);
2017 return ok;
2020 /* Check that the tile will be wide enough in the first space
2021 * dimension, i.e., the base of the hexagon. This ensures that
2022 * neighboring hexagons in the same phase are far enough apart
2023 * that they do not depend on each other.
2025 * Error out if the condition fails to hold.
2027 static isl_stat check_width(__isl_keep ppcg_ht_bounds *bounds,
2028 __isl_keep isl_multi_val *sizes)
2030 isl_bool ok;
2032 ok = ppcg_ht_bounds_supports_sizes(bounds, sizes);
2034 if (ok < 0)
2035 return isl_stat_error;
2036 if (!ok)
2037 isl_die(isl_multi_val_get_ctx(sizes), isl_error_invalid,
2038 "base of hybrid tiling hexagon not sufficiently wide",
2039 return isl_stat_error);
2041 return isl_stat_ok;
2044 /* Given valid bounds on the relative dependence distances for
2045 * the pair of nested nodes that "node" point to, as well as sufficiently
2046 * wide tile sizes "sizes", insert the corresponding time and space tiling
2047 * at "node", along with a pair of phase nodes that can be used
2048 * to make further changes.
2049 * The space of "sizes" should be the product of the spaces
2050 * of the schedules of the pair of parent and child nodes.
2051 * "options" determines whether full tiles should be separated
2052 * from partial tiles.
2054 * In particular, given an input of the form
2056 * P - C - ...
2058 * the output has the form
2060 * /- F0 - M0 - CT0 - P - C - ...
2061 * PT - seq
2062 * \- F1 - M1 - CT1 - P - C - ...
2064 * PT is the global time tiling. Within each of these tiles,
2065 * two phases are executed in order. Within each phase, the schedule
2066 * space is further subdivided into tiles through CT0 and CT1.
2067 * The first dimension of each of these iterates over the hexagons
2068 * within a phase and these are independent by construction.
2069 * The F0 and F1 filters filter the statement instances that belong
2070 * to the corresponding phase. The M0 and M1 marks contain a pointer
2071 * to a ppcg_ht_phase object that can be used to perform further changes.
2073 * After checking that input satisfies the requirements,
2074 * a data structure is constructed that represents the tiling and
2075 * two additional data structures are constructed for the two phases
2076 * of the tiling. These are then used to define the filters F0 and F1 and
2077 * combined to construct the time tiling PT.
2078 * Then the time tiling node PT is inserted, followed by
2079 * the sequence with the two filters, the CT space tiling nodes and
2080 * the phase markers M.
2082 __isl_give isl_schedule_node *ppcg_ht_bounds_insert_tiling(
2083 __isl_take ppcg_ht_bounds *bounds, __isl_take isl_multi_val *sizes,
2084 __isl_take isl_schedule_node *node, struct ppcg_options *options)
2086 isl_ctx *ctx;
2087 isl_union_set *phase0;
2088 isl_union_set *phase1;
2089 isl_multi_union_pw_aff *input, *dom_time;
2090 isl_union_pw_multi_aff *upma;
2091 isl_pw_multi_aff *time;
2092 isl_union_set_list *phases;
2093 ppcg_ht_tiling *tiling;
2094 ppcg_ht_phase *phase_0;
2095 ppcg_ht_phase *phase_1;
2097 if (!node || !sizes || !bounds)
2098 goto error;
2099 if (check_input_pattern(node) < 0 || check_width(bounds, sizes) < 0)
2100 goto error;
2102 ctx = isl_schedule_node_get_ctx(node);
2104 input = extract_input_schedule(node);
2106 tiling = ppcg_ht_bounds_construct_tiling(bounds, node, input, sizes);
2107 phase_0 = ppcg_ht_tiling_compute_phase(tiling, 1);
2108 phase_1 = ppcg_ht_tiling_compute_phase(tiling, 0);
2109 time = combine_time_tile(phase_0, phase_1);
2110 ppcg_ht_tiling_free(tiling);
2112 upma = isl_union_pw_multi_aff_from_multi_union_pw_aff(
2113 isl_multi_union_pw_aff_copy(input));
2114 phase0 = isl_union_set_from_set(ppcg_ht_phase_get_domain(phase_0));
2115 phase0 = isl_union_set_preimage_union_pw_multi_aff(phase0,
2116 isl_union_pw_multi_aff_copy(upma));
2117 phase1 = isl_union_set_from_set(ppcg_ht_phase_get_domain(phase_1));
2118 phase1 = isl_union_set_preimage_union_pw_multi_aff(phase1, upma);
2120 phases = isl_union_set_list_alloc(ctx, 2);
2121 phases = isl_union_set_list_add(phases, phase0);
2122 phases = isl_union_set_list_add(phases, phase1);
2124 dom_time = isl_multi_union_pw_aff_apply_pw_multi_aff(input, time);
2125 node = isl_schedule_node_insert_partial_schedule(node, dom_time);
2127 node = isl_schedule_node_child(node, 0);
2129 node = isl_schedule_node_insert_sequence(node, phases);
2130 node = isl_schedule_node_child(node, 0);
2131 node = isl_schedule_node_child(node, 0);
2132 node = insert_space_tiling(phase_0, node, options);
2133 node = insert_phase(node, phase_0);
2134 node = isl_schedule_node_parent(node);
2135 node = isl_schedule_node_next_sibling(node);
2136 node = isl_schedule_node_child(node, 0);
2137 node = insert_space_tiling(phase_1, node, options);
2138 node = insert_phase(node, phase_1);
2139 node = isl_schedule_node_parent(node);
2140 node = isl_schedule_node_parent(node);
2142 node = isl_schedule_node_parent(node);
2144 isl_multi_val_free(sizes);
2145 return node;
2146 error:
2147 isl_multi_val_free(sizes);
2148 isl_schedule_node_free(node);
2149 ppcg_ht_bounds_free(bounds);
2150 return NULL;
2153 /* Given a branch "node" that contains a sequence node with two phases
2154 * of hybrid tiling as input, call "fn" on each of the two phase marker
2155 * nodes.
2157 * That is, the input is as follows
2159 * /- F0 - M0 - ...
2160 * ... - seq
2161 * \- F1 - M1 - ...
2163 * and "fn" is called on M0 and on M1.
2165 __isl_give isl_schedule_node *hybrid_tile_foreach_phase(
2166 __isl_take isl_schedule_node *node,
2167 __isl_give isl_schedule_node *(*fn)(__isl_take isl_schedule_node *node,
2168 void *user), void *user)
2170 int depth0, depth;
2172 depth0 = isl_schedule_node_get_tree_depth(node);
2174 while (node &&
2175 isl_schedule_node_get_type(node) != isl_schedule_node_sequence)
2176 node = isl_schedule_node_child(node, 0);
2178 node = isl_schedule_node_child(node, 0);
2179 node = isl_schedule_node_child(node, 0);
2180 if (!node)
2181 return NULL;
2182 node = fn(node, user);
2183 node = isl_schedule_node_parent(node);
2184 node = isl_schedule_node_next_sibling(node);
2185 node = isl_schedule_node_child(node, 0);
2186 if (!node)
2187 return NULL;
2188 node = fn(node, user);
2189 node = isl_schedule_node_parent(node);
2190 node = isl_schedule_node_parent(node);
2192 depth = isl_schedule_node_get_tree_depth(node);
2193 node = isl_schedule_node_ancestor(node, depth - depth0);
2195 return node;
2198 /* This function is called on each of the two phase marks
2199 * in a hybrid tiling tree.
2200 * Drop the phase mark at "node".
2202 static __isl_give isl_schedule_node *drop_phase_mark(
2203 __isl_take isl_schedule_node *node, void *user)
2205 isl_id *id;
2206 isl_bool is_phase;
2208 if (isl_schedule_node_get_type(node) != isl_schedule_node_mark)
2209 return node;
2211 id = isl_schedule_node_mark_get_id(node);
2212 is_phase = is_phase_id(id);
2213 isl_id_free(id);
2215 if (is_phase < 0)
2216 return isl_schedule_node_free(node);
2217 if (is_phase)
2218 node = isl_schedule_node_delete(node);
2220 return node;
2223 /* Given a branch "node" that contains a sequence node with two phases
2224 * of hybrid tiling as input, remove the two phase marker nodes.
2226 * That is, the input is as follows
2228 * /- F0 - M0 - ...
2229 * ... - seq
2230 * \- F1 - M1 - ...
2232 * and the output is
2234 * /- F0 - ...
2235 * ... - seq
2236 * \- F1 - ...
2238 __isl_give isl_schedule_node *hybrid_tile_drop_phase_marks(
2239 __isl_take isl_schedule_node *node)
2241 return hybrid_tile_foreach_phase(node, &drop_phase_mark, NULL);