gpu_create_kernel: plug memory leak on error path
[ppcg.git] / gpu.c
blob1166ab18c67f63ee2d9cf86e9d3faf3390f6dd73
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * 91893 Orsay, France
11 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
14 #include <assert.h>
15 #include <stdlib.h>
16 #include <string.h>
18 #include <isl/polynomial.h>
19 #include <isl/union_set.h>
20 #include <isl/aff.h>
21 #include <isl/ilp.h>
22 #include <isl/flow.h>
23 #include <isl/schedule.h>
24 #include <isl/schedule_node.h>
25 #include <isl/options.h>
26 #include <isl/ast_build.h>
28 #include "cpu.h"
29 #include "gpu.h"
30 #include "gpu_array_tile.h"
31 #include "gpu_group.h"
32 #include "gpu_hybrid.h"
33 #include "gpu_tree.h"
34 #include "hybrid.h"
35 #include "schedule.h"
36 #include "ppcg_options.h"
37 #include "print.h"
38 #include "util.h"
40 struct gpu_array_info;
42 /* Return the name of the outer array (of structs) accessed by "access".
44 static const char *get_outer_array_name(__isl_keep isl_map *access)
46 isl_space *space;
47 const char *name;
49 space = isl_space_range(isl_map_get_space(access));
50 while (space && isl_space_is_wrapping(space))
51 space = isl_space_domain(isl_space_unwrap(space));
52 name = isl_space_get_tuple_name(space, isl_dim_set);
53 isl_space_free(space);
55 return name;
58 /* Collect all references to the given array and store pointers to them
59 * in array->refs.
61 static void collect_references(struct gpu_prog *prog,
62 struct gpu_array_info *array)
64 int i;
65 int n;
67 n = 0;
68 for (i = 0; i < prog->n_stmts; ++i) {
69 struct gpu_stmt *stmt = &prog->stmts[i];
70 struct gpu_stmt_access *access;
72 for (access = stmt->accesses; access; access = access->next) {
73 const char *name;
74 name = get_outer_array_name(access->access);
75 if (name && !strcmp(array->name, name))
76 n++;
80 array->n_ref = n;
81 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
82 assert(array->refs);
84 n = 0;
85 for (i = 0; i < prog->n_stmts; ++i) {
86 struct gpu_stmt *stmt = &prog->stmts[i];
87 struct gpu_stmt_access *access;
89 for (access = stmt->accesses; access; access = access->next) {
90 const char *name;
91 name = get_outer_array_name(access->access);
92 if (!name || strcmp(array->name, name))
93 continue;
95 array->refs[n++] = access;
100 /* Compute and return the extent of "array", taking into account the set of
101 * accessed elements.
103 * In particular, the extent in the outer dimension is taken
104 * from "accessed", while the extents in the remaining dimensions
105 * are taken from array->extent.
107 * The extent in the outer dimension cannot be taken from array->extent
108 * because that may be unbounded. Furthermore, even if it is bounded,
109 * it may be larger than the piece of the array that is being accessed.
111 static __isl_give isl_set *compute_extent(struct pet_array *array,
112 __isl_keep isl_set *accessed)
114 int n_index;
115 isl_id *id;
116 isl_set *outer;
117 isl_set *extent;
119 extent = isl_set_copy(array->extent);
121 n_index = isl_set_dim(accessed, isl_dim_set);
122 if (n_index == 0)
123 return extent;
125 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
126 outer = isl_set_copy(accessed);
127 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
128 extent = isl_set_flat_product(outer, extent);
129 id = isl_set_get_tuple_id(accessed);
130 extent = isl_set_set_tuple_id(extent, id);
132 return extent;
135 /* Is the array "array" being extracted a read-only scalar?
137 * That is, is "array" a scalar that is never possibly written to.
138 * An array containing structures is never considered to be a scalar.
140 static int is_read_only_scalar(struct gpu_array_info *array,
141 struct gpu_prog *prog)
143 isl_set *space;
144 isl_union_map *write;
145 int empty;
147 if (array->has_compound_element)
148 return 0;
149 if (array->n_index != 0)
150 return 0;
152 write = isl_union_map_copy(prog->may_write);
153 space = isl_set_universe(isl_space_copy(array->space));
154 write = isl_union_map_intersect_range(write,
155 isl_union_set_from_set(space));
156 empty = isl_union_map_is_empty(write);
157 isl_union_map_free(write);
159 return empty;
162 /* Is "array" only accessed as individual, fixed elements?
163 * That is, does each access to "array" access a single, fixed element?
165 static isl_bool only_fixed_element_accessed(struct gpu_array_info *array)
167 int i;
169 for (i = 0; i < array->n_ref; ++i)
170 if (!array->refs[i]->fixed_element)
171 return isl_bool_false;
173 return isl_bool_true;
176 /* Compute bounds on the host array "pa" based on the corresponding
177 * accessed elements in "arrays"
178 * and collect all references to the array.
179 * Store the results in "info".
181 * If the array is zero-dimensional and does not contain structures,
182 * i.e., if the array is a scalar, we check whether it is read-only.
183 * We also check whether the array is accessed at all.
185 static int extract_array_info(struct gpu_prog *prog,
186 struct gpu_array_info *info, struct pet_array *pa,
187 __isl_keep isl_union_set *arrays)
189 int empty;
190 const char *name;
191 int n_index;
192 isl_multi_pw_aff *bounds;
193 isl_set *accessed, *extent;
195 n_index = isl_set_dim(pa->extent, isl_dim_set);
196 name = isl_set_get_tuple_name(pa->extent);
198 info->space = isl_set_get_space(pa->extent);
199 info->name = strdup(name);
200 info->n_index = n_index;
201 info->linearize = prog->scop->options->linearize_device_arrays;
203 info->type = strdup(pa->element_type);
204 info->size = pa->element_size;
205 info->local = pa->declared && !pa->exposed;
206 info->has_compound_element = pa->element_is_record;
207 info->read_only_scalar = is_read_only_scalar(info, prog);
209 info->declared_extent = isl_set_copy(pa->extent);
210 accessed = isl_union_set_extract_set(arrays,
211 isl_space_copy(info->space));
212 empty = isl_set_is_empty(accessed);
213 extent = compute_extent(pa, accessed);
214 isl_set_free(accessed);
215 info->extent = extent;
216 if (empty < 0)
217 return -1;
218 info->accessed = !empty;
219 bounds = ppcg_size_from_extent(isl_set_copy(extent));
220 bounds = isl_multi_pw_aff_gist(bounds, isl_set_copy(prog->context));
221 if (!bounds)
222 return -1;
223 if (!isl_multi_pw_aff_is_cst(bounds))
224 info->linearize = 1;
225 info->bound = bounds;
227 collect_references(prog, info);
228 info->only_fixed_element = only_fixed_element_accessed(info);
230 return 0;
233 /* Remove independence from the order constraints "order" on array "array".
234 * Since the pairs of iterations in the filter relation of an independence
235 * are guaranteed to be completely independent by the user, there is
236 * no need to ensure that live ranges are ordered along those pairs.
237 * We make an exception for local variables, though, as the independence
238 * guarantee does not apply to those.
240 * The order constraints are used in two places.
241 * Those on scalars are used in check_scalar_live_ranges to check if
242 * we need to force the scalar to be private. Any non-local scalar
243 * should not be forced scalar if it only appears in independent loops.
244 * Those on non-scalars are added to the coincidence constraints
245 * in compute_schedule because we do not support any array expansion.
246 * Accesses to non-local arrays should not prevent a loop from being
247 * considered coincident so we should indeed remove those constraints
248 * from the order constraints.
250 static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
251 struct gpu_array_info *array, __isl_take isl_union_map *order)
253 int i;
255 for (i = 0; i < prog->scop->pet->n_independence; ++i) {
256 struct pet_independence *pi = prog->scop->pet->independences[i];
257 if (isl_union_set_contains(pi->local, array->space))
258 continue;
260 order = isl_union_map_subtract(order,
261 isl_union_map_copy(pi->filter));
264 return order;
267 /* For each array in "prog", store the (untagged) order dependences
268 * derived from the array in array->dep_order.
269 * In particular, consider all references that access the given array
270 * and take the order dependences that have one of these references
271 * as source. (Since an order dependence relates two references to
272 * the same array, the target of these order dependences will also
273 * be one of these references.)
274 * Additionally, store the union of these array->dep_order relations
275 * for all arrays that cannot be mapped to private memory in prog->array_order.
277 void collect_order_dependences(struct gpu_prog *prog)
279 int i;
280 isl_space *space;
281 isl_union_map *accesses;
283 space = isl_union_map_get_space(prog->read);
284 prog->array_order = isl_union_map_empty(space);
286 accesses = isl_union_map_copy(prog->scop->tagged_reads);
287 accesses = isl_union_map_union(accesses,
288 isl_union_map_copy(prog->scop->tagged_may_writes));
289 accesses = isl_union_map_universe(accesses);
290 accesses = isl_union_map_apply_range(accesses,
291 isl_union_map_copy(prog->to_outer));
293 for (i = 0; i < prog->n_array; ++i) {
294 struct gpu_array_info *array = &prog->array[i];
295 isl_set *set;
296 isl_union_set *uset;
297 isl_union_map *order;
299 set = isl_set_universe(isl_space_copy(array->space));
300 uset = isl_union_set_from_set(set);
301 uset = isl_union_map_domain(
302 isl_union_map_intersect_range(isl_union_map_copy(accesses),
303 uset));
304 order = isl_union_map_copy(prog->scop->tagged_dep_order);
305 order = isl_union_map_intersect_domain(order, uset);
306 order = isl_union_map_zip(order);
307 order = isl_union_set_unwrap(isl_union_map_domain(order));
308 order = remove_independences(prog, array, order);
309 array->dep_order = order;
311 if (gpu_array_can_be_private(array))
312 continue;
314 prog->array_order = isl_union_map_union(prog->array_order,
315 isl_union_map_copy(array->dep_order));
318 isl_union_map_free(accesses);
321 /* Construct a gpu_array_info for each array referenced by prog->scop and
322 * collect them in prog->array.
324 * The sizes are based on the extents and the set of possibly accessed
325 * elements by "prog".
326 * If there are any member accesses involved, then they are first mapped
327 * to the outer arrays of structs.
328 * Only extract gpu_array_info entries for these outer arrays.
330 * If we are allowing live range reordering, then also set
331 * the dep_order field. Otherwise leave it NULL.
333 static int collect_array_info(struct gpu_prog *prog)
335 int i;
336 int r = 0;
337 isl_union_set *arrays;
339 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
340 arrays = isl_union_set_union(arrays,
341 isl_union_map_range(isl_union_map_copy(prog->may_write)));
343 arrays = isl_union_set_apply(arrays,
344 isl_union_map_copy(prog->to_outer));
346 arrays = isl_union_set_coalesce(arrays);
348 prog->n_array = prog->scop->pet->n_array;
349 prog->array = isl_calloc_array(prog->ctx,
350 struct gpu_array_info, prog->n_array);
351 assert(prog->array);
352 prog->n_array = 0;
353 for (i = 0; i < prog->scop->pet->n_array; ++i) {
354 isl_bool field;
356 field = isl_set_is_wrapping(prog->scop->pet->arrays[i]->extent);
357 if (field < 0)
358 break;
359 if (field)
360 continue;
361 if (extract_array_info(prog, &prog->array[prog->n_array++],
362 prog->scop->pet->arrays[i], arrays) < 0)
363 r = -1;
365 if (i < prog->scop->pet->n_array)
366 r = -1;
368 isl_union_set_free(arrays);
370 if (prog->scop->options->live_range_reordering)
371 collect_order_dependences(prog);
373 return r;
376 static void free_array_info(struct gpu_prog *prog)
378 int i;
380 for (i = 0; i < prog->n_array; ++i) {
381 free(prog->array[i].type);
382 free(prog->array[i].name);
383 isl_multi_pw_aff_free(prog->array[i].bound);
384 isl_ast_expr_free(prog->array[i].bound_expr);
385 isl_space_free(prog->array[i].space);
386 isl_set_free(prog->array[i].declared_extent);
387 isl_set_free(prog->array[i].extent);
388 isl_ast_expr_free(prog->array[i].declared_size);
389 free(prog->array[i].refs);
390 isl_union_map_free(prog->array[i].dep_order);
392 free(prog->array);
395 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
396 * as an array or through a pointer reference, but as a single data element.
397 * At the moment, scalars are represented as zero-dimensional arrays.
398 * Note that the single data element may be an entire structure.
400 int gpu_array_is_scalar(struct gpu_array_info *array)
402 return array->n_index == 0;
405 /* Can "array" be mapped to private memory?
406 * That is, is it only accessed as individual elements with
407 * constant index expressions?
409 isl_bool gpu_array_can_be_private(struct gpu_array_info *array)
411 if (!array)
412 return isl_bool_error;
413 return array->only_fixed_element;
416 /* Is "array" a read-only scalar?
418 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
420 return array->read_only_scalar;
423 /* Does "array" need to be allocated on the device?
424 * If it is a read-only scalar, then it will be passed as an argument
425 * to the kernel and therefore does not require any allocation.
426 * If this device memory is not accessed at all, then it does not
427 * need to be allocated either.
429 int gpu_array_requires_device_allocation(struct gpu_array_info *array)
431 if (gpu_array_is_read_only_scalar(array))
432 return 0;
433 if (!array->global)
434 return 0;
435 return 1;
438 /* Return the set of parameter values for which the array has a positive
439 * size in all dimensions.
440 * If the sizes are only valid for some parameter values, then those
441 * constraints are also taken into account.
443 __isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
445 int i;
446 isl_space *space;
447 isl_set *guard;
449 if (!array)
450 return NULL;
452 space = isl_space_params(isl_space_copy(array->space));
453 guard = isl_set_universe(space);
455 for (i = 0; i < array->n_index; ++i) {
456 isl_pw_aff *bound;
457 isl_set *guard_i, *zero;
459 bound = isl_multi_pw_aff_get_pw_aff(array->bound, i);
460 guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
461 zero = isl_pw_aff_zero_set(bound);
462 guard_i = isl_set_subtract(guard_i, zero);
463 guard = isl_set_intersect(guard, guard_i);
466 return guard;
469 /* Internal data structure for extract_size_of_type.
470 * "type" specifies the name of the space that we want to extract.
471 * "res" is used to store the subset of that space.
473 struct ppcg_extract_size_data {
474 const char *type;
475 isl_set *res;
478 /* This function is called for each set in a union_set.
479 * If the name of the set matches data->type, we store the
480 * set in data->res.
482 static isl_stat extract_size_of_type(__isl_take isl_set *size, void *user)
484 struct ppcg_extract_size_data *data = user;
485 const char *name;
487 name = isl_set_get_tuple_name(size);
488 if (name && !strcmp(name, data->type)) {
489 data->res = size;
490 return isl_stat_error;
493 isl_set_free(size);
494 return isl_stat_ok;
497 /* Given a union map { kernel[i] -> *[...] },
498 * return the range in the space called "type" for the kernel with
499 * sequence number "id".
501 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
502 const char *type, int id)
504 isl_space *space;
505 isl_set *dom;
506 isl_union_set *local_sizes;
507 struct ppcg_extract_size_data data = { type, NULL };
509 if (!sizes)
510 return NULL;
512 space = isl_union_map_get_space(sizes);
513 space = isl_space_set_from_params(space);
514 space = isl_space_add_dims(space, isl_dim_set, 1);
515 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
516 dom = isl_set_universe(space);
517 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
519 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
520 isl_union_map_copy(sizes));
521 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
522 isl_union_set_free(local_sizes);
523 return data.res;
526 /* Given a singleton set, extract the first (at most *len) elements
527 * of the single integer tuple into *sizes and update *len if needed.
529 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
531 int i;
532 int dim;
534 if (!set)
535 return;
537 dim = isl_set_dim(set, isl_dim_set);
538 if (dim < *len)
539 *len = dim;
541 for (i = 0; i < *len; ++i) {
542 isl_val *v;
544 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
545 assert(v);
547 sizes[i] = isl_val_get_num_si(v);
548 isl_val_free(v);
551 isl_set_free(set);
554 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
555 * if the option debug->dump_sizes is set.
557 static void set_used_sizes(struct gpu_gen *gen, const char *type, int id,
558 int *sizes, int len)
560 int i;
561 isl_space *space;
562 isl_map *map;
564 if (!gen->options->debug->dump_sizes)
565 return;
567 space = isl_union_map_get_space(gen->used_sizes);
568 space = isl_space_set_from_params(space);
569 space = isl_space_add_dims(space, isl_dim_set, 1);
570 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
571 space = isl_space_from_domain(space);
572 space = isl_space_add_dims(space, isl_dim_out, len);
573 space = isl_space_set_tuple_name(space, isl_dim_out, type);
575 map = isl_map_universe(space);
576 map = isl_map_fix_si(map, isl_dim_in, 0, id);
577 for (i = 0; i < len; ++i)
578 map = isl_map_fix_si(map, isl_dim_out, i, sizes[i]);
580 gen->used_sizes = isl_union_map_add_map(gen->used_sizes, map);
583 /* Extract user specified "tile" sizes from the "sizes" command line option,
584 * defaulting to option->tile_size in each dimension.
585 * *tile_len contains the maximum number of tile sizes needed.
586 * Update *tile_len to the number of specified tile sizes, if any, and
587 * return a pointer to the tile sizes (or NULL on error).
588 * Add the effectively used sizes to gen->used_sizes.
590 static int *read_tile_sizes(struct gpu_gen *gen, int *tile_len)
592 int n;
593 int *tile_size;
594 isl_set *size;
596 tile_size = isl_alloc_array(gen->ctx, int, *tile_len);
597 if (!tile_size)
598 return NULL;
599 for (n = 0; n < *tile_len; ++n)
600 tile_size[n] = gen->options->tile_size;
602 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
603 read_sizes_from_set(size, tile_size, tile_len);
604 set_used_sizes(gen, "tile", gen->kernel_id, tile_size, *tile_len);
606 return tile_size;
609 /* Extract user specified "block" sizes from the "sizes" command line option,
610 * after filling in some potentially useful defaults.
612 static void read_block_sizes(struct ppcg_kernel *kernel,
613 __isl_keep isl_union_map *sizes)
615 isl_set *size;
617 if (kernel->n_block > 3)
618 kernel->n_block = 3;
619 switch (kernel->n_block) {
620 case 1:
621 kernel->block_dim[0] = 512;
622 break;
623 case 2:
624 kernel->block_dim[0] = 32;
625 kernel->block_dim[1] = 16;
626 break;
627 default:
628 kernel->block_dim[0] = 32;
629 kernel->block_dim[1] = 4;
630 kernel->block_dim[2] = 4;
631 break;
634 size = extract_sizes(sizes, "block", kernel->id);
635 read_sizes_from_set(size, kernel->block_dim, &kernel->n_block);
638 /* Extract user specified "grid" sizes from the "sizes" command line option,
639 * after filling in some potentially useful defaults.
641 static void read_grid_sizes(struct ppcg_kernel *kernel,
642 __isl_keep isl_union_map *sizes)
644 isl_set *size;
646 if (kernel->n_grid > 2)
647 kernel->n_grid = 2;
648 switch (kernel->n_grid) {
649 case 1:
650 kernel->grid_dim[0] = 32768;
651 break;
652 default:
653 kernel->grid_dim[0] = 256;
654 kernel->grid_dim[1] = 256;
655 break;
658 size = extract_sizes(sizes, "grid", kernel->id);
659 read_sizes_from_set(size, kernel->grid_dim, &kernel->n_grid);
662 /* Extract user specified grid and block sizes from the gen->sizes
663 * command line option after filling in some potentially useful defaults.
664 * Store the extracted sizes in "kernel".
665 * Add the effectively used sizes to gen->used_sizes.
667 static void read_grid_and_block_sizes(struct ppcg_kernel *kernel,
668 struct gpu_gen *gen)
670 read_block_sizes(kernel, gen->sizes);
671 read_grid_sizes(kernel, gen->sizes);
672 set_used_sizes(gen, "block", kernel->id,
673 kernel->block_dim, kernel->n_block);
674 set_used_sizes(gen, "grid", kernel->id,
675 kernel->grid_dim, kernel->n_grid);
678 static void *free_stmts(struct gpu_stmt *stmts, int n)
680 int i;
682 if (!stmts)
683 return NULL;
685 for (i = 0; i < n; ++i) {
686 struct gpu_stmt_access *access, *next;
688 for (access = stmts[i].accesses; access; access = next) {
689 next = access->next;
690 isl_id_free(access->ref_id);
691 isl_map_free(access->access);
692 isl_map_free(access->tagged_access);
693 free(access);
696 isl_id_free(stmts[i].id);
698 free(stmts);
700 return NULL;
703 /* Add parameters p[i] with identifiers "ids" to "set",
704 * with bounds to 0 <= p[i] < size[i].
706 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
707 int *size, __isl_keep isl_id_list *ids)
709 int i, len;
710 unsigned nparam;
712 len = isl_id_list_n_id(ids);
713 nparam = isl_set_dim(set, isl_dim_param);
714 set = isl_set_add_dims(set, isl_dim_param, len);
716 for (i = 0; i < len; ++i) {
717 isl_id *id;
719 id = isl_id_list_get_id(ids, i);
720 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
721 set = isl_set_lower_bound_si(set, isl_dim_param, nparam + i, 0);
722 set = isl_set_upper_bound_si(set, isl_dim_param,
723 nparam + i, size[i] - 1);
726 return set;
729 /* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
730 * with
732 * { : 0 <= p[i] < size[i] }
734 * or an overapproximation.
736 static __isl_give isl_set *add_bounded_parameters_dynamic(
737 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
738 __isl_keep isl_id_list *ids)
740 int i, len;
741 unsigned nparam;
742 isl_space *space;
743 isl_local_space *ls;
745 len = isl_multi_pw_aff_dim(size, isl_dim_out);
746 nparam = isl_set_dim(set, isl_dim_param);
747 set = isl_set_add_dims(set, isl_dim_param, len);
749 for (i = 0; i < len; ++i) {
750 isl_id *id;
752 id = isl_id_list_get_id(ids, i);
753 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
756 space = isl_space_params(isl_set_get_space(set));
757 ls = isl_local_space_from_space(space);
758 for (i = 0; i < len; ++i) {
759 isl_pw_aff *param, *size_i, *zero;
760 isl_set *bound;
762 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
763 isl_dim_param, nparam + i);
765 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
766 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
767 bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
768 set = isl_set_intersect_params(set, bound);
770 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
771 bound = isl_pw_aff_ge_set(param, zero);
772 set = isl_set_intersect_params(set, bound);
774 isl_local_space_free(ls);
776 return set;
779 /* Return the union of all tagged access relations in the group.
781 static __isl_give isl_union_map *group_tagged_access_relation(
782 struct gpu_array_ref_group *group)
784 int i;
785 isl_union_map *access;
787 access = isl_union_map_empty(isl_map_get_space(group->access));
788 for (i = 0; i < group->n_ref; ++i) {
789 isl_map *map_i;
791 map_i = isl_map_copy(group->refs[i]->tagged_access);
792 access = isl_union_map_union(access,
793 isl_union_map_from_map(map_i));
796 return access;
799 /* Return the extent of "array", recomputed from the bounds.
800 * The recomputed extent may be simpler than the original extent.
802 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
804 int i;
805 isl_id *id;
806 isl_space *space;
807 isl_local_space *ls;
808 isl_set *extent;
810 id = isl_set_get_tuple_id(array->extent);
811 space = isl_set_get_space(array->extent);
812 extent = isl_set_universe(isl_space_copy(space));
813 ls = isl_local_space_from_space(space);
814 for (i = 0; i < array->n_index; ++i) {
815 isl_pw_aff *bound;
816 isl_aff *aff;
817 isl_pw_aff *index;
818 isl_set *lt;
820 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
822 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
823 isl_dim_set, i);
824 index = isl_pw_aff_from_aff(aff);
825 bound = isl_multi_pw_aff_get_pw_aff(array->bound, i);
826 bound = isl_pw_aff_from_range(bound);
827 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
828 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
829 isl_id_copy(id));
830 lt = isl_pw_aff_lt_set(index, bound);
831 extent = isl_set_intersect(extent, lt);
833 isl_local_space_free(ls);
834 isl_id_free(id);
836 return extent;
839 /* Return a map from the first group->shared_tile->depth dimensions
840 * of the computed schedule to the array tile in
841 * global memory that corresponds to the shared memory copy.
843 * In particular, return a map
845 * { D[i] -> A[a] }
847 * with constraints
849 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
851 * and
853 * 0 <= a <= array_size - 1 (2)
855 * Note that if some stride has been detected (i.e., when
856 * group->shared_tile->bound[i].shift is set), then a in (1) refers
857 * to the shifted and scaled down version.
859 * Constraints (1) are obtained by mapping the size constraints on the
860 * shared/private memory tile back to the access relation.
861 * Constraints (2) are obtained from the (recomputed) extent.
863 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
865 int i;
866 int n_index = group->array->n_index;
867 isl_map *tile;
868 isl_space *space;
869 isl_set *local;
870 isl_set *extent;
872 space = isl_multi_aff_get_space(group->shared_tile->tiling);
873 space = isl_space_range(space);
874 local = isl_set_universe(space);
875 for (i = 0; i < n_index; ++i) {
876 isl_val *bound;
878 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
879 bound = isl_val_copy(group->shared_tile->bound[i].size);
880 bound = isl_val_sub_ui(bound, 1);
881 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
883 local = isl_set_preimage_multi_aff(local,
884 isl_multi_aff_copy(group->shared_tile->tiling));
885 tile = isl_set_unwrap(local);
886 extent = array_extent(group->array);
887 tile = isl_map_intersect_range(tile, extent);
889 return tile;
892 /* Given a mapping "iterator_map" from the AST schedule to a domain,
893 * return the corresponding mapping from the AST schedule to
894 * to the outer kernel->copy_schedule_dim dimensions of
895 * the schedule computed by PPCG for this kernel.
897 * Note that kernel->copy_schedule_dim is at least as large as
898 * the largest depth of any array reference group associated to the kernel.
899 * This is needed as the returned schedule is used to extract a mapping
900 * to the outer tile->depth dimensions in transform_index.
902 static __isl_give isl_pw_multi_aff *compute_sched_to_copy(
903 struct ppcg_kernel *kernel, __isl_take isl_pw_multi_aff *iterator_map)
905 isl_union_pw_multi_aff *upma;
906 isl_pw_multi_aff *pma;
907 isl_space *space;
909 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
910 space = isl_space_from_domain(space);
911 space = isl_space_add_dims(space, isl_dim_out,
912 kernel->copy_schedule_dim);
914 upma = isl_union_pw_multi_aff_copy(kernel->copy_schedule);
915 pma = isl_union_pw_multi_aff_extract_pw_multi_aff(upma, space);
916 isl_union_pw_multi_aff_free(upma);
918 return isl_pw_multi_aff_pullback_pw_multi_aff(pma, iterator_map);
921 /* If max_shared_memory is not set to infinity (-1), then make
922 * sure that the total amount of shared memory required by the
923 * array reference groups mapped to shared memory by "kernel"
924 * is no larger than this maximum.
926 * We apply a greedy approach and discard (keep in global memory)
927 * those groups that would result in a total memory size that
928 * is larger than the maximum.
930 * This function should be called after any function that may
931 * affect the decision on whether to place a reference group
932 * in private, shared or global memory.
934 static void check_shared_memory_bound(struct ppcg_kernel *kernel)
936 int i, j;
937 isl_val *left, *size;
939 if (kernel->options->max_shared_memory < 0)
940 return;
942 left = isl_val_int_from_si(kernel->ctx,
943 kernel->options->max_shared_memory);
945 for (i = 0; i < kernel->n_array; ++i) {
946 struct gpu_local_array_info *local = &kernel->array[i];
948 for (j = 0; j < local->n_group; ++j) {
949 struct gpu_array_ref_group *group;
950 enum ppcg_group_access_type type;
952 group = local->groups[j];
953 type = gpu_array_ref_group_type(group);
954 if (type != ppcg_access_shared)
955 continue;
957 size = gpu_array_tile_size(group->shared_tile);
958 size = isl_val_mul_ui(size, local->array->size);
960 if (isl_val_le(size, left)) {
961 left = isl_val_sub(left, size);
962 continue;
964 isl_val_free(size);
966 group->shared_tile =
967 gpu_array_tile_free(group->shared_tile);
971 isl_val_free(left);
974 /* Mark all arrays of "kernel" that have an array reference group
975 * that is not mapped to private or shared memory as
976 * accessing the corresponding global device memory.
978 static void mark_global_arrays(struct ppcg_kernel *kernel)
980 int i, j;
982 for (i = 0; i < kernel->n_array; ++i) {
983 struct gpu_local_array_info *local = &kernel->array[i];
985 if (local->global)
986 continue;
987 for (j = 0; j < local->n_group; ++j) {
988 if (gpu_array_ref_group_tile(local->groups[j]))
989 continue;
991 local->global = 1;
992 local->array->global = 1;
993 break;
998 /* Compute a tiling for all the array reference groups in "kernel".
1000 static void compute_group_tilings(struct ppcg_kernel *kernel)
1002 int i, j;
1004 for (i = 0; i < kernel->n_array; ++i) {
1005 struct gpu_local_array_info *array = &kernel->array[i];
1007 for (j = 0; j < array->n_group; ++j)
1008 gpu_array_ref_group_compute_tiling(array->groups[j]);
1012 /* Compute the effective grid size as a list of the sizes in each dimension.
1014 * The grid size specified by the user or set by default
1015 * in read_grid_sizes() and applied by the block filter,
1016 * may be too large for the given code in the sense that
1017 * it may contain blocks that don't need to execute anything.
1018 * We therefore don't return this grid size, but instead the
1019 * smallest grid size that ensures that all blocks that actually
1020 * execute code are included in the grid.
1022 * We first extract a description of the grid, i.e., the possible values
1023 * of the block ids, from the domain elements in "domain" and
1024 * kernel->block_filter.
1025 * The block ids are parameters in kernel->block_filter.
1026 * We simply need to change them into set dimensions.
1028 * Then, for each block dimension, we compute the maximal value of the block id
1029 * and add one.
1031 static __isl_give isl_multi_pw_aff *extract_grid_size(
1032 struct ppcg_kernel *kernel, __isl_take isl_union_set *domain)
1034 int i;
1035 isl_set *grid;
1036 isl_set *context;
1037 isl_multi_pw_aff *size;
1039 domain = isl_union_set_intersect(domain,
1040 isl_union_set_copy(kernel->block_filter));
1041 grid = isl_union_set_params(domain);
1042 grid = isl_set_from_params(grid);
1043 grid = isl_set_add_dims(grid, isl_dim_set, kernel->n_grid);
1044 for (i = 0; i < kernel->n_grid; ++i) {
1045 int pos;
1046 isl_id *id;
1048 id = isl_id_list_get_id(kernel->block_ids, i);
1049 pos = isl_set_find_dim_by_id(grid, isl_dim_param, id);
1050 isl_id_free(id);
1051 assert(pos >= 0);
1052 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
1053 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
1056 grid = isl_set_coalesce(grid);
1057 size = ppcg_size_from_extent(grid);
1058 context = isl_set_params(isl_set_copy(kernel->context));
1059 return isl_multi_pw_aff_gist(size, context);
1062 /* Compute the size of a fixed bounding box around the origin and "set",
1063 * where "set" is assumed to contain only non-negative elements,
1064 * and store the results in "size".
1065 * In particular, compute the maximal value of "set" in each direction
1066 * and add one.
1068 static void extract_fixed_size(__isl_take isl_set *set, int *size)
1070 int i, n;
1071 isl_local_space *ls;
1072 isl_aff *obj;
1074 n = isl_set_dim(set, isl_dim_set);
1075 ls = isl_local_space_from_space(isl_set_get_space(set));
1076 obj = isl_aff_zero_on_domain(ls);
1077 for (i = 0; i < n; ++i) {
1078 isl_val *max;
1080 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
1081 max = isl_set_max_val(set, obj);
1082 size[i] = isl_val_get_num_si(max) + 1;
1083 isl_val_free(max);
1084 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
1086 isl_aff_free(obj);
1087 isl_set_free(set);
1090 /* Compute the effective block size as a list of the sizes in each dimension
1091 * and store the sizes in kernel->block_dim.
1093 * The block size specified by the user or set by default
1094 * in read_block_sizes() and applied by the thread filter,
1095 * may be too large for the given code in the sense that
1096 * it may contain threads that don't need to execute anything.
1097 * We therefore update this block size in kernel->block_dim
1098 * to the smallest block size that ensures that all threads
1099 * that actually execute code are included in the block.
1101 * The set of possible values of the thread ids is obtained from
1102 * the domain elements "domain" and kernel->thread_filter.
1103 * The current implementation eliminates all parameters, ensuring
1104 * that the size is a fixed constant in each dimension.
1105 * In principle we could also compute parametric sizes.
1106 * We would have to make sure to project out all b%d and t%d parameters,
1107 * however.
1109 static isl_stat extract_block_size(struct ppcg_kernel *kernel,
1110 __isl_take isl_union_set *domain)
1112 int i;
1113 int nparam;
1114 isl_set *block;
1116 domain = isl_union_set_intersect(domain,
1117 isl_union_set_copy(kernel->thread_filter));
1118 block = isl_union_set_params(domain);
1119 block = isl_set_from_params(block);
1120 block = isl_set_add_dims(block, isl_dim_set, kernel->n_block);
1121 for (i = 0; i < kernel->n_block; ++i) {
1122 int pos;
1123 isl_id *id;
1125 if (!block)
1126 return isl_stat_error;
1128 id = isl_id_list_get_id(kernel->thread_ids, i);
1129 pos = isl_set_find_dim_by_id(block, isl_dim_param, id);
1130 isl_id_free(id);
1131 if (pos < 0)
1132 isl_die(isl_set_get_ctx(block), isl_error_internal,
1133 "missing constraints on thread identifier",
1134 block = isl_set_free(block));
1135 block = isl_set_equate(block, isl_dim_param, pos,
1136 isl_dim_set, i);
1138 nparam = isl_set_dim(block, isl_dim_param);
1139 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
1141 if (!block)
1142 return isl_stat_error;
1144 extract_fixed_size(block, kernel->block_dim);
1146 return isl_stat_ok;
1149 struct ppcg_kernel *ppcg_kernel_free(struct ppcg_kernel *kernel)
1151 int i, j;
1153 if (!kernel)
1154 return NULL;
1156 isl_id_list_free(kernel->block_ids);
1157 isl_id_list_free(kernel->thread_ids);
1158 isl_multi_pw_aff_free(kernel->grid_size);
1159 isl_ast_expr_free(kernel->grid_size_expr);
1160 isl_set_free(kernel->context);
1161 isl_union_set_free(kernel->core);
1162 isl_union_set_free(kernel->arrays);
1163 isl_union_pw_multi_aff_free(kernel->contraction);
1164 isl_union_set_free(kernel->expanded_domain);
1165 isl_space_free(kernel->space);
1166 isl_ast_node_free(kernel->tree);
1167 isl_union_set_free(kernel->block_filter);
1168 isl_union_set_free(kernel->thread_filter);
1169 isl_union_pw_multi_aff_free(kernel->copy_schedule);
1170 isl_union_set_free(kernel->sync_writes);
1172 for (i = 0; i < kernel->n_array; ++i) {
1173 struct gpu_local_array_info *array = &kernel->array[i];
1175 for (j = 0; j < array->n_group; ++j)
1176 gpu_array_ref_group_free(array->groups[j]);
1177 free(array->groups);
1179 isl_multi_pw_aff_free(array->bound);
1180 isl_ast_expr_free(array->bound_expr);
1182 free(kernel->array);
1184 for (i = 0; i < kernel->n_var; ++i) {
1185 free(kernel->var[i].name);
1186 isl_vec_free(kernel->var[i].size);
1188 free(kernel->var);
1190 free(kernel);
1192 return NULL;
1195 /* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
1197 static void ppcg_kernel_free_wrap(void *user)
1199 struct ppcg_kernel *kernel = user;
1201 ppcg_kernel_free(kernel);
1204 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
1205 struct ppcg_kernel_var *var)
1207 int j;
1208 struct gpu_array_tile *tile;
1209 isl_printer *p;
1211 var->array = group->array;
1213 var->type = gpu_array_ref_group_type(group);
1214 tile = gpu_array_ref_group_tile(group);
1216 p = isl_printer_to_str(ctx);
1217 p = gpu_array_ref_group_print_name(group, p);
1218 var->name = isl_printer_get_str(p);
1219 isl_printer_free(p);
1221 var->size = isl_vec_alloc(ctx, group->array->n_index);
1223 for (j = 0; j < group->array->n_index; ++j)
1224 var->size = isl_vec_set_element_val(var->size, j,
1225 isl_val_copy(tile->bound[j].size));
1228 static isl_stat create_kernel_vars(struct ppcg_kernel *kernel)
1230 int i, j, n;
1232 n = 0;
1233 for (i = 0; i < kernel->n_array; ++i) {
1234 struct gpu_local_array_info *array = &kernel->array[i];
1236 for (j = 0; j < array->n_group; ++j) {
1237 struct gpu_array_ref_group *group = array->groups[j];
1238 enum ppcg_group_access_type type;
1240 type = gpu_array_ref_group_type(group);
1241 if (type != ppcg_access_global)
1242 ++n;
1246 kernel->var = isl_calloc_array(kernel->ctx, struct ppcg_kernel_var, n);
1247 if (!kernel->var)
1248 return isl_stat_error;
1249 kernel->n_var = n;
1251 n = 0;
1252 for (i = 0; i < kernel->n_array; ++i) {
1253 struct gpu_local_array_info *array = &kernel->array[i];
1255 for (j = 0; j < array->n_group; ++j) {
1256 struct gpu_array_ref_group *group = array->groups[j];
1257 enum ppcg_group_access_type type;
1259 type = gpu_array_ref_group_type(group);
1260 if (type == ppcg_access_global)
1261 continue;
1262 create_kernel_var(kernel->ctx, group, &kernel->var[n]);
1263 ++n;
1267 return isl_stat_ok;
1270 /* Replace "pa" by the zero function defined over the universe domain
1271 * in the space of "pa".
1273 static __isl_give isl_pw_aff *set_universally_zero(__isl_take isl_pw_aff *pa)
1275 isl_space *space;
1276 isl_aff *zero;
1278 space = isl_space_domain(isl_pw_aff_get_space(pa));
1279 isl_pw_aff_free(pa);
1280 zero = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1282 return isl_pw_aff_from_aff(zero);
1285 /* The sizes of the arrays on the host that have been computed by
1286 * extract_array_info may depend on the parameters. Use the extra
1287 * constraints on the parameters that are valid at "host_domain"
1288 * to simplify these expressions and store the results in kernel->array.
1290 * We only need these localized bounds for arrays that are accessed
1291 * by the current kernel. If we have found at least one reference group
1292 * then the array is accessed by the kernel.
1294 * The resulting sizes may be functions that are nowhere defined
1295 * in case the access function cannot possibly access anything inside
1296 * the kernel for some reason. If so, they are replaced by the zero
1297 * function. Since the access function cannot actually access anything,
1298 * there is no harm in printing the array sizes as zero.
1300 static void localize_bounds(struct ppcg_kernel *kernel,
1301 __isl_keep isl_set *host_domain)
1303 int i, j;
1304 isl_set *context;
1306 context = isl_set_copy(host_domain);
1307 context = isl_set_params(context);
1309 for (i = 0; i < kernel->n_array; ++i) {
1310 struct gpu_local_array_info *local = &kernel->array[i];
1311 isl_multi_pw_aff *bound;
1312 int n_index;
1314 if (local->n_group == 0)
1315 continue;
1317 n_index = local->array->n_index;
1318 bound = isl_multi_pw_aff_copy(local->array->bound);
1320 for (j = 0; j < n_index; ++j) {
1321 isl_pw_aff *pwaff;
1322 int empty;
1324 pwaff = isl_multi_pw_aff_get_pw_aff(bound, j);
1325 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
1326 empty = isl_pw_aff_is_empty(pwaff);
1327 if (empty < 0)
1328 pwaff = isl_pw_aff_free(pwaff);
1329 else if (empty)
1330 pwaff = set_universally_zero(pwaff);
1331 bound = isl_multi_pw_aff_set_pw_aff(bound, j, pwaff);
1334 local->n_index = n_index;
1335 local->bound = bound;
1337 isl_set_free(context);
1340 /* Create the array of gpu_local_array_info structures "array"
1341 * inside "kernel". The number of elements in this array is
1342 * the same as the number of arrays in "prog".
1343 * Initialize the "array" field of each local array to point
1344 * to the corresponding array in "prog".
1346 static struct ppcg_kernel *ppcg_kernel_create_local_arrays(
1347 struct ppcg_kernel *kernel, struct gpu_prog *prog)
1349 int i;
1350 isl_ctx *ctx;
1352 if (!kernel)
1353 return NULL;
1355 ctx = isl_set_get_ctx(prog->context);
1356 kernel->array = isl_calloc_array(ctx,
1357 struct gpu_local_array_info, prog->n_array);
1358 if (!kernel->array)
1359 return ppcg_kernel_free(kernel);
1360 kernel->n_array = prog->n_array;
1362 for (i = 0; i < prog->n_array; ++i)
1363 kernel->array[i].array = &prog->array[i];
1365 return kernel;
1368 /* Does "kernel" need to be passed an argument corresponding to array "i"?
1370 * The argument is only needed if the kernel accesses this device memory.
1372 int ppcg_kernel_requires_array_argument(struct ppcg_kernel *kernel, int i)
1374 return kernel->array[i].global;
1377 /* Find the element in gen->stmt that has the given "id".
1378 * Return NULL if no such gpu_stmt can be found.
1380 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
1382 int i;
1384 for (i = 0; i < prog->n_stmts; ++i) {
1385 if (id == prog->stmts[i].id)
1386 break;
1389 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
1392 void ppcg_kernel_stmt_free(void *user)
1394 struct ppcg_kernel_stmt *stmt = user;
1396 if (!stmt)
1397 return;
1399 switch (stmt->type) {
1400 case ppcg_kernel_copy:
1401 isl_ast_expr_free(stmt->u.c.index);
1402 isl_ast_expr_free(stmt->u.c.local_index);
1403 break;
1404 case ppcg_kernel_domain:
1405 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
1406 break;
1407 case ppcg_kernel_sync:
1408 break;
1411 free(stmt);
1414 /* Return the gpu_stmt_access in the list "accesses" that corresponds
1415 * to "ref_id".
1417 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
1418 __isl_keep isl_id *ref_id)
1420 struct gpu_stmt_access *access;
1422 for (access = accesses; access; access = access->next)
1423 if (access->ref_id == ref_id)
1424 return access;
1426 return NULL;
1429 /* Return the index of the array called "name" in the list of arrays.
1431 static int find_array_index(struct ppcg_kernel *kernel, const char *name)
1433 int i;
1435 for (i = 0; i < kernel->n_array; ++i)
1436 if (!strcmp(name, kernel->array[i].array->name))
1437 return i;
1439 return -1;
1442 /* Internal data structure for the index and AST expression transformation
1443 * callbacks for pet_stmt_build_ast_exprs.
1445 * "kernel" is the kernel for which are computing AST expressions and
1446 * may be NULL if we are not inside a kernel.
1447 * "accesses" is the list of gpu_stmt_access in the statement.
1448 * "iterator_map" expresses the statement iterators in terms of
1449 * the AST loop iterators.
1450 * "sched2copy" expresses the outer copy_schedule_dim dimensions of
1451 * the kernel schedule in terms of the AST loop iterators and
1452 * may be NULL if we are not inside a kernel.
1454 * The following fields are set in transform_index and used in transform_expr.
1455 * "array" is the array that is being accessed.
1456 * "global" is set if the global array is accessed (rather than
1457 * shared/private memory).
1458 * "local_array" refers to information on the array specialized
1459 * to the current kernel.
1461 struct ppcg_transform_data {
1462 struct ppcg_kernel *kernel;
1463 struct gpu_stmt_access *accesses;
1464 isl_pw_multi_aff *iterator_map;
1465 isl_pw_multi_aff *sched2copy;
1467 struct gpu_array_info *array;
1468 int global;
1469 struct gpu_local_array_info *local_array;
1472 /* Return a pointer to the gpu_array_ref_group in "local"
1473 * that contains the reference "access".
1474 * Return NULL if no such group can be found.
1476 static struct gpu_array_ref_group *find_ref_group(
1477 struct gpu_local_array_info *local, struct gpu_stmt_access *access)
1479 int i, j;
1481 for (i = 0; i < local->n_group; ++i) {
1482 struct gpu_array_ref_group *group = local->groups[i];
1484 for (j = 0; j < group->n_ref; ++j)
1485 if (group->refs[j] == access)
1486 return group;
1489 return NULL;
1492 /* Given an index expression "index" of the form
1494 * L -> F(A),
1496 * with F(A) either A or some subfield of A and L the AST loop iterators,
1497 * and a tiling "tiling" of the form
1499 * [L -> A] -> T
1501 * apply the tiling to the outer array in the index expression to obtain
1503 * L -> T(A)
1505 * If F(A) is some subfield of A, then separate the member access
1506 * into the base index expression and the field index expression,
1507 * apply the tiling to the base index expression and combine the result
1508 * with the field index expression.
1510 * If F(A) is A, then modify index to keep track of the iterators
1512 * L -> [L -> A]
1514 * and combine the result with the tiling to obtain a tiled index expression
1515 * in terms of the AST loop iterators
1517 * L -> T
1519 static __isl_give isl_multi_pw_aff *tile_outer(
1520 __isl_take isl_multi_pw_aff *index, __isl_take isl_multi_pw_aff *tiling)
1522 isl_bool is_wrapping;
1523 isl_space *space;
1524 isl_multi_pw_aff *mpa;
1526 is_wrapping = isl_multi_pw_aff_range_is_wrapping(index);
1527 if (is_wrapping < 0)
1528 goto error;
1529 if (is_wrapping) {
1530 isl_multi_pw_aff *field;
1532 field = isl_multi_pw_aff_copy(index);
1533 field = isl_multi_pw_aff_range_factor_range(field);
1534 index = isl_multi_pw_aff_range_factor_domain(index);
1535 index = tile_outer(index, tiling);
1536 return isl_multi_pw_aff_range_product(index, field);
1539 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
1540 space = isl_space_map_from_set(space);
1541 mpa = isl_multi_pw_aff_identity(space);
1542 index = isl_multi_pw_aff_range_product(mpa, index);
1543 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
1545 return index;
1546 error:
1547 isl_multi_pw_aff_free(index);
1548 isl_multi_pw_aff_free(tiling);
1549 return NULL;
1552 /* Index transformation callback for pet_stmt_build_ast_exprs.
1554 * "index" expresses the array indices in terms of statement iterators
1556 * We first reformulate "index" in terms of the AST loop iterators.
1557 * Then we check if we are accessing the global array or
1558 * a shared/private copy. In particular, if we are not inside a kernel
1559 * then we must be accessing a global array.
1560 * In the former case, we simply return
1561 * the updated index. If "index" is an affine expression rather
1562 * than an array access, then we also return the updated index here.
1564 * If no reference groups have been computed for the array,
1565 * then we can only be accessing the global array.
1567 * Otherwise, we apply the tiling to the index.
1568 * This tiling is of the form
1570 * [D -> A] -> T
1572 * where D corresponds to the outer tile->depth dimensions of
1573 * the kernel schedule.
1574 * The index is of the form
1576 * L -> A
1578 * We update the tiling to refer to the AST loop iterators
1580 * [L -> A] -> T
1582 * and combine it with the index to obtain a tiled index expression in terms
1583 * of the AST loop iterators
1585 * L -> T
1587 * Note that while the tiling applies directly to an outer array.
1588 * the index may refer to some subfield of this outer array.
1589 * In such cases, the result will refer to the same subfield of the tile.
1590 * That is, an index expression of the form L -> F(A) will be transformed
1591 * into an index expression of the form L -> F(T).
1593 static __isl_give isl_multi_pw_aff *transform_index(
1594 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
1595 void *user)
1597 struct ppcg_transform_data *data = user;
1598 struct gpu_stmt_access *access;
1599 struct gpu_array_ref_group *group;
1600 struct gpu_array_tile *tile;
1601 isl_pw_multi_aff *iterator_map;
1602 int i;
1603 int dim;
1604 const char *name;
1605 isl_space *space;
1606 isl_multi_pw_aff *tiling;
1607 isl_pw_multi_aff *pma;
1608 isl_pw_multi_aff *sched2depth;
1610 data->array = NULL;
1612 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
1613 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
1615 if (!data->kernel)
1616 return index;
1618 access = find_access(data->accesses, ref_id);
1619 if (!access)
1620 return index;
1621 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
1622 return index;
1624 name = get_outer_array_name(access->access);
1625 if (!name)
1626 return isl_multi_pw_aff_free(index);
1627 i = find_array_index(data->kernel, name);
1628 if (i < 0)
1629 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
1630 "cannot find array",
1631 return isl_multi_pw_aff_free(index));
1632 data->local_array = &data->kernel->array[i];
1633 data->array = data->local_array->array;
1635 group = find_ref_group(data->local_array, access);
1636 if (!group) {
1637 data->global = 1;
1638 return index;
1641 tile = gpu_array_ref_group_tile(group);
1642 data->global = !tile;
1643 if (!tile)
1644 return index;
1646 space = isl_space_domain(isl_multi_aff_get_space(tile->tiling));
1647 space = isl_space_range(isl_space_unwrap(space));
1648 space = isl_space_map_from_set(space);
1649 pma = isl_pw_multi_aff_identity(space);
1650 sched2depth = isl_pw_multi_aff_copy(data->sched2copy);
1651 dim = isl_pw_multi_aff_dim(sched2depth, isl_dim_out);
1652 sched2depth = isl_pw_multi_aff_drop_dims(sched2depth, isl_dim_out,
1653 tile->depth, dim - tile->depth);
1654 pma = isl_pw_multi_aff_product(sched2depth, pma);
1655 tiling = isl_multi_pw_aff_from_multi_aff(
1656 isl_multi_aff_copy(tile->tiling));
1657 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
1659 index = tile_outer(index, tiling);
1661 return index;
1664 /* Dereference "expr" by adding an index [0].
1665 * The original "expr" is assumed not to have any indices.
1667 * If "expr" is a member access, then the dereferencing needs
1668 * to be applied to the structure argument of this member access.
1670 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
1672 isl_ctx *ctx;
1673 isl_ast_expr *arg0, *res;
1674 isl_ast_expr_list *list;
1676 arg0 = isl_ast_expr_get_op_arg(expr, 0);
1677 if (!arg0)
1678 return isl_ast_expr_free(expr);
1679 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
1680 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
1681 isl_ast_expr *arg;
1683 arg = isl_ast_expr_get_op_arg(arg0, 0);
1684 arg = dereference(arg);
1685 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
1686 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
1688 return expr;
1690 isl_ast_expr_free(arg0);
1692 ctx = isl_ast_expr_get_ctx(expr);
1693 res = isl_ast_expr_from_val(isl_val_zero(ctx));
1694 list = isl_ast_expr_list_from_ast_expr(res);
1695 res = isl_ast_expr_get_op_arg(expr, 0);
1696 res = isl_ast_expr_access(res, list);
1697 isl_ast_expr_free(expr);
1699 return res;
1702 /* Linearize the index expression "expr" based on the array bounds
1703 * of "array".
1705 * That is, transform expression
1707 * A[i_0][i_1]...[i_n]
1709 * to
1711 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
1713 * where b_0, b_1, ..., b_n are the bounds on the array.
1715 * If the base of "expr" is a member access, then the linearization needs
1716 * to be applied to the structure argument of this member access.
1718 * In the base case, if "expr" has no arguments (other than the name of
1719 * the array), then we are passing an entire array to a function.
1720 * In this case, there is nothing to linearize.
1721 * Note that at this point an expression with no arguments can
1722 * only be an entire array because the scalar case and
1723 * the case of single struct are handled by the caller.
1725 * If the number of specified index expressions in "expr"
1726 * is smaller than the dimension of the accessed array,
1727 * then the missing i_j also do not appear in the linearized expression.
1728 * Furthermore, since such an expression does not refer to a single
1729 * element while the default linearized expression would refer to
1730 * a single element, we return the expression
1732 * A + (..((i_0 * b_1 + i_1) ... ) * b_l + i_l)
1734 * instead. Note that because of the special case handling above,
1735 * we can assume here that there is at least one index expression.
1737 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
1738 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
1740 int i, n;
1741 isl_ast_expr *arg0;
1742 isl_ast_expr *res;
1743 isl_ast_expr_list *list;
1745 arg0 = isl_ast_expr_get_op_arg(expr, 0);
1746 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
1747 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
1748 isl_ast_expr *arg;
1750 arg = isl_ast_expr_get_op_arg(arg0, 0);
1751 arg = gpu_local_array_info_linearize_index(array, arg);
1752 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
1753 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
1755 return expr;
1757 isl_ast_expr_free(arg0);
1759 if (isl_ast_expr_get_op_n_arg(expr) == 1)
1760 return expr;
1762 n = isl_ast_expr_get_op_n_arg(expr);
1763 res = isl_ast_expr_get_op_arg(expr, 1);
1764 for (i = 1; i < array->n_index; ++i) {
1765 isl_ast_expr *expr_i;
1767 expr_i = isl_ast_expr_get_op_arg(array->bound_expr, 1 + i);
1768 res = isl_ast_expr_mul(res, expr_i);
1770 if (i + 1 >= n)
1771 continue;
1772 expr_i = isl_ast_expr_get_op_arg(expr, i + 1);
1773 res = isl_ast_expr_add(res, expr_i);
1776 if (1 + array->n_index > n) {
1777 res = isl_ast_expr_add(isl_ast_expr_get_op_arg(expr, 0), res);
1778 } else {
1779 list = isl_ast_expr_list_from_ast_expr(res);
1780 res = isl_ast_expr_get_op_arg(expr, 0);
1781 res = isl_ast_expr_access(res, list);
1784 isl_ast_expr_free(expr);
1786 return res;
1789 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
1791 * If the AST expression refers to an array that is not accessed
1792 * at all, then this means the value of the expression is not used,
1793 * so we might as well print zero (NULL pointer) instead.
1795 * If the AST expression refers to a global scalar that is not
1796 * a read-only scalar, then its address was passed to the kernel and
1797 * we need to dereference it.
1799 * If the AST expression refers to an access to a global array,
1800 * then we linearize the access exploiting the bounds in data->local_array.
1802 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
1803 __isl_keep isl_id *id, void *user)
1805 struct ppcg_transform_data *data = user;
1807 if (!data->array)
1808 return expr;
1809 if (!data->array->accessed) {
1810 isl_ctx *ctx;
1812 ctx = isl_ast_expr_get_ctx(expr);
1813 isl_ast_expr_free(expr);
1814 return isl_ast_expr_from_val(isl_val_zero(ctx));
1816 if (gpu_array_is_read_only_scalar(data->array))
1817 return expr;
1818 if (!data->global)
1819 return expr;
1820 if (data->array->n_index == 0)
1821 return dereference(expr);
1822 if (!data->array->linearize)
1823 return expr;
1825 return gpu_local_array_info_linearize_index(data->local_array, expr);
1828 /* This function is called for each instance of a user statement
1829 * in the kernel "kernel", identified by "gpu_stmt".
1830 * "kernel" may be NULL if we are not inside a kernel.
1832 * We attach a struct ppcg_kernel_stmt to the "node", containing
1833 * a computed AST expression for each access, through an annotation
1834 * with name "user".
1835 * These AST expressions are computed from iterator_map,
1836 * which expresses the domain
1837 * elements in terms of the generated loops, and sched2copy,
1838 * which expresses the outer copy_schedule_dim dimensions of
1839 * the kernel schedule computed by PPCG in terms of the generated loops.
1841 static __isl_give isl_ast_node *create_domain_leaf(
1842 struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
1843 __isl_keep isl_ast_build *build, struct gpu_stmt *gpu_stmt)
1845 struct ppcg_transform_data data;
1846 struct ppcg_kernel_stmt *stmt;
1847 isl_ctx *ctx;
1848 isl_id *id;
1849 isl_pw_multi_aff *sched2copy;
1850 isl_map *map;
1851 isl_pw_multi_aff *iterator_map;
1852 isl_union_map *schedule;
1854 if (!node)
1855 return NULL;
1856 ctx = isl_ast_node_get_ctx(node);
1858 stmt = isl_calloc_type(ctx, struct ppcg_kernel_stmt);
1859 if (!stmt)
1860 return isl_ast_node_free(node);
1862 schedule = isl_ast_build_get_schedule(build);
1863 map = isl_map_reverse(isl_map_from_union_map(schedule));
1864 iterator_map = isl_pw_multi_aff_from_map(map);
1865 if (kernel)
1866 sched2copy = compute_sched_to_copy(kernel,
1867 isl_pw_multi_aff_copy(iterator_map));
1868 else
1869 sched2copy = NULL;
1871 stmt->type = ppcg_kernel_domain;
1872 stmt->u.d.stmt = gpu_stmt;
1874 data.kernel = kernel;
1875 data.accesses = stmt->u.d.stmt->accesses;
1876 data.iterator_map = iterator_map;
1877 data.sched2copy = sched2copy;
1878 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
1879 build, &transform_index, &data,
1880 &transform_expr, &data);
1882 isl_pw_multi_aff_free(iterator_map);
1883 isl_pw_multi_aff_free(sched2copy);
1885 id = isl_id_alloc(ctx, "user", stmt);
1886 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1887 return isl_ast_node_set_annotation(node, id);
1890 /* This function is called for each statement node in the AST
1891 * for copying to or from shared/private memory.
1892 * Attach a pointer to a ppcg_kernel_stmt representing the copy
1893 * statement to the node.
1894 * The statement name is "read" or "write", depending on whether we are
1895 * reading from global memory or writing to global memory.
1897 * The schedule is of the form
1899 * type[D -> A] -> L
1901 * where D corresponds to the outer tile->depth dimensions of
1902 * the kernel schedule, A to the global array and L to the outer
1903 * generated AST schedule.
1904 * We compute the inverse and strip off the type, resulting in
1906 * L -> [D -> A]
1908 * We combine this mapping with on the one hand the projection
1910 * [D -> A] -> A
1912 * and on the other hand the group tiling
1914 * [D -> A] -> T
1916 * resulting in
1918 * L -> A and L -> T
1920 * and store the corresponding expressions in stmt->index and stmt->local_index,
1921 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
1922 * stmt->index is linearized if the global memory array is linearized.
1924 static __isl_give isl_ast_node *create_access_leaf(struct ppcg_kernel *kernel,
1925 struct gpu_array_ref_group *group, __isl_take isl_ast_node *node,
1926 __isl_keep isl_ast_build *build)
1928 struct ppcg_kernel_stmt *stmt;
1929 struct gpu_array_tile *tile;
1930 isl_id *id;
1931 isl_ast_expr *expr;
1932 isl_space *space;
1933 isl_map *access;
1934 isl_pw_multi_aff *pma, *pma2;
1935 const char *type;
1937 stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
1938 if (!stmt)
1939 return isl_ast_node_free(node);
1941 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
1942 type = isl_map_get_tuple_name(access, isl_dim_in);
1943 stmt->u.c.read = type && !strcmp(type, "read");
1944 access = isl_map_reverse(access);
1945 pma = isl_pw_multi_aff_from_map(access);
1946 pma = isl_pw_multi_aff_reset_tuple_id(pma, isl_dim_out);
1948 space = isl_space_range(isl_pw_multi_aff_get_space(pma));
1949 space = isl_space_unwrap(space);
1950 pma2 = isl_pw_multi_aff_range_map(space);
1951 pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2,
1952 isl_pw_multi_aff_copy(pma));
1953 expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
1954 if (group->array->linearize)
1955 expr = gpu_local_array_info_linearize_index(group->local_array,
1956 expr);
1957 stmt->u.c.index = expr;
1959 tile = gpu_array_ref_group_tile(group);
1960 pma2 = isl_pw_multi_aff_from_multi_aff(
1961 isl_multi_aff_copy(tile->tiling));
1962 pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2, pma);
1963 expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
1964 stmt->u.c.local_index = expr;
1966 stmt->u.c.array = group->array;
1967 stmt->u.c.local_array = group->local_array;
1968 stmt->type = ppcg_kernel_copy;
1970 id = isl_id_alloc(kernel->ctx, "copy", stmt);
1971 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1972 return isl_ast_node_set_annotation(node, id);
1975 /* Create a synchronization ppcg_kernel_stmt and
1976 * attach it to the node "node" representing the synchronization.
1978 static __isl_give isl_ast_node *create_sync_leaf(
1979 struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
1980 __isl_keep isl_ast_build *build)
1982 struct ppcg_kernel_stmt *stmt;
1983 isl_id *id;
1985 stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
1986 if (!stmt)
1987 return isl_ast_node_free(node);
1989 stmt->type = ppcg_kernel_sync;
1990 id = isl_id_alloc(kernel->ctx, "sync", stmt);
1991 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1992 return isl_ast_node_set_annotation(node, id);
1995 /* Build AST expressions for the device array sizes of all arrays in "prog"
1996 * that require allocation on the device using "build", as well as
1997 * for the original array sizes of all arrays that need to be declared
1998 * on the host.
1999 * "node" is freed in case of error.
2001 static __isl_give isl_ast_node *build_array_bounds(
2002 __isl_take isl_ast_node *node, struct gpu_prog *prog,
2003 __isl_keep isl_ast_build *build)
2005 int i;
2007 for (i = 0; i < prog->n_array; ++i) {
2008 struct gpu_array_info *array = &prog->array[i];
2009 isl_multi_pw_aff *size;
2010 isl_ast_expr *expr;
2012 if (!gpu_array_requires_device_allocation(array))
2013 continue;
2015 size = isl_multi_pw_aff_copy(array->bound);
2016 expr = ppcg_build_size_expr(size, build);
2017 array->bound_expr = expr;
2018 if (!expr)
2019 return isl_ast_node_free(node);
2022 for (i = 0; i < prog->n_array; ++i) {
2023 struct gpu_array_info *array = &prog->array[i];
2024 isl_set *extent;
2025 isl_multi_pw_aff *size;
2026 isl_ast_expr *expr;
2028 if (!array->declare_local)
2029 continue;
2030 extent = isl_set_copy(array->declared_extent);
2031 size = ppcg_size_from_extent(extent);
2032 expr = ppcg_build_size_expr(size, build);
2033 array->declared_size = expr;
2034 if (!expr)
2035 return isl_ast_node_free(node);
2038 return node;
2041 /* Internal data structure for at_domain.
2043 * "prog" represents the entire scop.
2044 * "kernel" points to the kernel to which the current schedule node
2045 * belongs. It is set by before_mark and reset by after_mark.
2046 * It may be NULL if we are outside any kernel.
2048 struct ppcg_at_domain_data {
2049 struct gpu_prog *prog;
2050 struct ppcg_kernel *kernel;
2053 /* This function is called for each instance of a user statement
2054 * in the kernel. This may be one of the original user statements
2055 * or a statement introduced by PPCG.
2057 * We first check if the statement id corresponds to a gpu statement,
2058 * which indicates the statement is an original user statement. Any statement
2059 * that is not an original user statement has been introduced by PPCG and
2060 * requires special handling.
2062 * If the user statement is one of the original user statements, then we call
2063 * create_domain_leaf. If it is "init_device", then we call
2064 * build_array_bounds. Otherwise, we check if it is a copy or synchronization
2065 * statement and call the appropriate functions. Statements that copy an array
2066 * to/from the device do not need any further treatment.
2067 * Neither does "clear_device".
2069 static __isl_give isl_ast_node *at_domain(__isl_take isl_ast_node *node,
2070 __isl_keep isl_ast_build *build, void *user)
2072 struct ppcg_at_domain_data *data = user;
2073 struct gpu_stmt *gpu_stmt;
2074 isl_ast_expr *expr, *arg;
2075 isl_id *id;
2076 int is_sync;
2077 const char *name;
2078 void *p;
2080 expr = isl_ast_node_user_get_expr(node);
2081 arg = isl_ast_expr_get_op_arg(expr, 0);
2082 id = isl_ast_expr_get_id(arg);
2083 name = isl_id_get_name(id);
2084 p = isl_id_get_user(id);
2085 isl_ast_expr_free(expr);
2086 isl_ast_expr_free(arg);
2088 gpu_stmt = find_stmt(data->prog, id);
2089 is_sync = gpu_tree_id_is_sync(id, data->kernel);
2090 isl_id_free(id);
2092 if (gpu_stmt)
2093 return create_domain_leaf(data->kernel, node, build, gpu_stmt);
2095 if (!prefixcmp(name, "to_device_") || !prefixcmp(name, "from_device_"))
2096 return node;
2097 if (!strcmp(name, "init_device"))
2098 return build_array_bounds(node, data->prog, build);
2099 if (!strcmp(name, "clear_device"))
2100 return node;
2101 if (is_sync < 0)
2102 return isl_ast_node_free(node);
2103 if (!strcmp(name, "read") || !strcmp(name, "write")) {
2104 struct gpu_array_ref_group *group = p;
2105 return create_access_leaf(data->kernel, group, node, build);
2107 if (!is_sync)
2108 isl_die(data->prog->ctx, isl_error_internal,
2109 "unknown statement type",
2110 return isl_ast_node_free(node));
2111 return create_sync_leaf(data->kernel, node, build);
2114 /* Given a set of wrapped references "ref", return the corresponding
2115 * access relations based on the tagged access relations "tagged".
2117 * The elements of "ref" are of the form
2119 * [D -> R]
2121 * with D an iteration domains and R a reference.
2122 * The elements of "tagged" are of the form
2124 * [D -> R] -> A
2126 * with A an array.
2128 * Extend "tagged" to include the iteration domain in the range, i.e.,
2130 * [D -> R] -> [D -> A]
2132 * apply the result to "ref" and then unwrap the resulting set
2133 * to obtain relations of the form
2135 * D -> A
2137 static __isl_give isl_union_map *wrapped_reference_to_access(
2138 __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
2140 isl_union_map *tag2access;
2142 tag2access = isl_union_map_copy(tagged);
2143 tag2access = isl_union_map_universe(tag2access);
2144 tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
2145 tag2access = isl_union_map_domain_map(tag2access);
2146 tag2access = isl_union_map_range_product(tag2access, tagged);
2148 ref = isl_union_set_coalesce(ref);
2149 ref = isl_union_set_apply(ref, tag2access);
2151 return isl_union_set_unwrap(ref);
2154 /* Given an access relation "access" from one or more array reference groups,
2155 * remove those reads if ("read" is 1) or writes (if "read" is 0)
2156 * that are only needed to communicate data within
2157 * the same iteration of "sched".
2158 * The domain of "sched" corresponds to the original statement instances,
2159 * i.e., those that appear in the domains of the access relations.
2160 * "tagged" contains all tagged access relations to all
2161 * the array reference groups accessed by "access" from statement
2162 * instances scheduled by "sched".
2164 * If the access is a read then it is either an element of
2166 * live_in union (range flow)
2168 * where live_in and flow may be overapproximations, or
2169 * it reads an uninitialized value (that is not live-in because
2170 * there is an intermediate kill) or it reads a value that was
2171 * written within the same (compound) statement instance.
2172 * If the access is a write then it is either an element of
2174 * live_out union (domain flow)
2176 * or it writes a value that is never read (and is not live-out
2177 * because of an intermediate kill) or only
2178 * within the same (compound) statement instance.
2179 * In both cases, the access relation is also a subset of
2180 * the group access relation.
2182 * The cases where an uninitialized value is read or a value is written
2183 * that is never read or where the dataflow occurs within a statement
2184 * instance are also considered local and may also be removed.
2186 * Essentially, we compute the intersection of "access" with either
2188 * live_in union (range non-local-flow)
2190 * or
2192 * live_out union (domain non-local-flow)
2194 * We first construct a relation "local"
2196 * [[D -> R] -> [D' -> R']]
2198 * of pairs of domain iterations accessing the reference group
2199 * and references in the group that are coscheduled by "sched".
2201 * If this relation does not intersect the dataflow dependences,
2202 * then there is nothing we can possibly remove, unless the dataflow
2203 * dependences themselves only relate a subset of the accesses.
2204 * In particular, the accesses may not be involved in any dataflow
2205 * dependences, either because they are uninitialized reads/dead writes
2206 * or because the dataflow occurs inside a statement instance.
2208 * Since the computation below may break up the access relation
2209 * into smaller pieces, we only perform the intersection with
2210 * the non-local dependent accesses if the local pairs
2211 * intersect the dataflow dependences. Otherwise, we intersect
2212 * with the universe of the non-local dependent accesses.
2213 * This should at least remove accesses from statements that
2214 * do not participate in any dependences.
2216 * In particular, we remove the "local" dataflow dependences from
2217 * the set of all dataflow dependences, or at least those
2218 * that may contribute to a domain/range that intersects
2219 * the domain of "access".
2220 * Note that if the potential dataflow dependences are an overapproximation
2221 * of the actual dataflow dependences, then the result remains an
2222 * overapproximation of the non-local dataflow dependences.
2223 * Copying to/from global memory is only needed for the references
2224 * in the domain/range of the result or for accesses that are live out/in
2225 * for the entire scop.
2227 * We therefore map the domain/range of the "external" relation
2228 * to the corresponding access relation and take the union with
2229 * the live out/in relation.
2231 static __isl_give isl_union_map *remove_local_accesses(
2232 struct gpu_prog *prog, __isl_take isl_union_map *tagged,
2233 __isl_take isl_union_map *access, __isl_take isl_union_map *sched,
2234 int read)
2236 int empty;
2237 isl_union_pw_multi_aff *tagger;
2238 isl_union_set *domain, *access_domain;
2239 isl_union_map *local, *external, *universe;
2240 isl_union_set *tag_set;
2242 if (isl_union_map_is_empty(access)) {
2243 isl_union_map_free(sched);
2244 isl_union_map_free(tagged);
2245 return access;
2248 tagger = isl_union_pw_multi_aff_copy(prog->scop->tagger);
2249 domain = isl_union_map_domain(isl_union_map_copy(tagged));
2250 tagger = isl_union_pw_multi_aff_intersect_domain(tagger,
2251 isl_union_set_copy(domain));
2252 sched = isl_union_map_preimage_domain_union_pw_multi_aff(sched, tagger);
2254 local = isl_union_map_apply_range(sched,
2255 isl_union_map_reverse(isl_union_map_copy(sched)));
2256 local = isl_union_map_intersect(local,
2257 isl_union_map_copy(prog->scop->tagged_dep_flow));
2259 empty = isl_union_map_is_empty(local);
2261 external = isl_union_map_copy(prog->scop->tagged_dep_flow);
2262 universe = isl_union_map_universe(isl_union_map_copy(access));
2263 access_domain = isl_union_map_domain(universe);
2264 domain = isl_union_set_universe(domain);
2265 universe = isl_union_set_unwrap(domain);
2266 universe = isl_union_map_intersect_domain(universe, access_domain);
2267 domain = isl_union_map_wrap(universe);
2268 if (read)
2269 external = isl_union_map_intersect_range(external, domain);
2270 else
2271 external = isl_union_map_intersect_domain(external, domain);
2272 external = isl_union_map_intersect_params(external,
2273 isl_set_copy(prog->scop->context));
2274 external = isl_union_map_subtract(external, local);
2276 if (read) {
2277 tag_set = isl_union_map_range(external);
2278 external = wrapped_reference_to_access(tag_set, tagged);
2279 external = isl_union_map_union(external,
2280 isl_union_map_copy(prog->scop->live_in));
2281 } else {
2282 tag_set = isl_union_map_domain(external);
2283 external = wrapped_reference_to_access(tag_set, tagged);
2284 external = isl_union_map_union(external,
2285 isl_union_map_copy(prog->scop->live_out));
2288 if (empty < 0)
2289 external = isl_union_map_free(external);
2290 else if (empty)
2291 external = isl_union_map_universe(external);
2293 access = isl_union_map_intersect(access, external);
2295 return access;
2298 /* Given an access relation "access" from "group", remove those reads
2299 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
2300 * communicate data within the same iteration of the schedule "prefix"
2301 * at the position where the copying of the group is inserted.
2302 * That is, the output dimension of "prefix"
2303 * is equal to tile->depth.
2304 * The domain of "prefix" corresponds to the original statement instances,
2305 * i.e., those that appear in the domains of the access relations.
2307 * Extract the tagged access relation of "group" and
2308 * then call remove_local_accesses.
2310 static __isl_give isl_union_map *remove_local_accesses_group(
2311 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
2312 __isl_take isl_union_map *access, __isl_keep isl_union_map *prefix,
2313 int read)
2315 isl_union_map *sched, *tagged;
2317 if (isl_union_map_is_empty(access))
2318 return access;
2320 tagged = group_tagged_access_relation(group);
2321 sched = isl_union_map_copy(prefix);
2323 return remove_local_accesses(kernel->prog, tagged, access, sched, read);
2326 /* Build an access AST expression for the effective grid size using "build".
2327 * Store the result in kernel->grid_size_expr.
2329 static isl_stat build_grid_size(struct ppcg_kernel *kernel,
2330 __isl_keep isl_ast_build *build)
2332 isl_multi_pw_aff *size;
2334 size = isl_multi_pw_aff_copy(kernel->grid_size);
2335 size = isl_multi_pw_aff_set_tuple_name(size, isl_dim_out, "grid");
2336 kernel->grid_size_expr = ppcg_build_size_expr(size, build);
2338 if (!kernel->grid_size_expr)
2339 return isl_stat_error;
2340 return isl_stat_ok;
2343 /* Build access AST expressions for the localized array sizes using "build".
2344 * Store the result in local->bound_expr.
2345 * Only do this for arrays for which localized bounds have been computed.
2347 static isl_stat build_local_array_sizes(struct ppcg_kernel *kernel,
2348 __isl_keep isl_ast_build *build)
2350 int i;
2352 for (i = 0; i < kernel->n_array; ++i) {
2353 struct gpu_local_array_info *local = &kernel->array[i];
2354 isl_multi_pw_aff *size;
2356 if (local->n_group == 0)
2357 continue;
2358 size = isl_multi_pw_aff_copy(local->bound);
2359 local->bound_expr = ppcg_build_size_expr(size, build);
2360 if (!local->bound_expr)
2361 return isl_stat_error;
2364 return isl_stat_ok;
2367 /* Build access AST expressions for the effective grid size and
2368 * the localized array sizes using "build".
2370 static isl_stat build_grid_and_local_array_sizes(struct ppcg_kernel *kernel,
2371 __isl_keep isl_ast_build *build)
2373 if (build_grid_size(kernel, build) < 0)
2374 return isl_stat_error;
2375 if (build_local_array_sizes(kernel, build) < 0)
2376 return isl_stat_error;
2377 return isl_stat_ok;
2380 /* This function is called before the AST generator starts traversing
2381 * the schedule subtree of a node with mark "mark".
2383 * If the mark is called "kernel", store the kernel pointer in data->kernel
2384 * for use in at_domain and build AST expressions for the grid size and
2385 * the localized array sizes.
2387 static isl_stat before_mark(__isl_keep isl_id *mark,
2388 __isl_keep isl_ast_build *build, void *user)
2390 struct ppcg_at_domain_data *data = user;
2392 if (!mark)
2393 return isl_stat_error;
2394 if (!strcmp(isl_id_get_name(mark), "kernel")) {
2395 data->kernel = isl_id_get_user(mark);
2396 if (build_grid_and_local_array_sizes(data->kernel, build) < 0)
2397 return isl_stat_error;
2399 return isl_stat_ok;
2402 /* This function is called after the AST generator has finished traversing
2403 * the schedule subtree of a mark node. "node" points to the corresponding
2404 * mark AST node.
2406 * If the mark is called "kernel", then replace "node" by a user node
2407 * that "calls" the kernel, representing the launch of the kernel.
2408 * The original "node" is stored inside the kernel object so that
2409 * it can be used to print the device code.
2410 * Note that this assumes that a kernel is only launched once.
2411 * Also clear data->kernel.
2413 static __isl_give isl_ast_node *after_mark(__isl_take isl_ast_node *node,
2414 __isl_keep isl_ast_build *build, void *user)
2416 isl_ctx *ctx;
2417 isl_id *id;
2418 isl_ast_expr *expr;
2419 isl_ast_expr_list *list;
2420 struct ppcg_kernel *kernel;
2421 struct ppcg_at_domain_data *data = user;
2423 ctx = isl_ast_node_get_ctx(node);
2424 id = isl_ast_node_mark_get_id(node);
2425 if (!id)
2426 return isl_ast_node_free(node);
2427 if (strcmp(isl_id_get_name(id), "kernel") || !data->kernel) {
2428 isl_id_free(id);
2429 return node;
2431 kernel = data->kernel;
2432 data->kernel = NULL;
2433 kernel->space = isl_ast_build_get_schedule_space(build);
2434 kernel->tree = isl_ast_node_mark_get_node(node);
2435 isl_ast_node_free(node);
2437 expr = isl_ast_expr_from_id(isl_id_copy(id));
2438 list = isl_ast_expr_list_alloc(ctx, 0);
2439 expr = isl_ast_expr_call(expr, list);
2440 node = isl_ast_node_alloc_user(expr);
2441 node = isl_ast_node_set_annotation(node, id);
2443 return node;
2446 static isl_bool update_depth(__isl_keep isl_schedule_node *node, void *user)
2448 int *depth = user;
2449 int node_depth;
2451 if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
2452 return isl_bool_true;
2453 node_depth = isl_schedule_node_get_schedule_depth(node);
2454 if (node_depth > *depth)
2455 *depth = node_depth;
2457 return isl_bool_false;
2460 /* Use isl to generate code for both the host and the device
2461 * from "schedule".
2462 * The device code is marked by "kernel" mark nodes in the schedule tree,
2463 * containing a pointer to a ppcg_kernel object.
2464 * The returned AST only contains the AST for the host code.
2465 * The ASTs for the device code are embedded in ppcg_kernel objects
2466 * attached to the leaf nodes that call "kernel".
2468 static __isl_give isl_ast_node *generate_code(struct gpu_gen *gen,
2469 __isl_take isl_schedule *schedule)
2471 struct ppcg_at_domain_data data;
2472 isl_ast_build *build;
2473 isl_ast_node *tree;
2474 isl_id_list *iterators;
2475 int depth;
2477 data.prog = gen->prog;
2478 data.kernel = NULL;
2480 depth = 0;
2481 if (isl_schedule_foreach_schedule_node_top_down(schedule, &update_depth,
2482 &depth) < 0)
2483 return NULL;
2484 build = isl_ast_build_alloc(gen->prog->ctx);
2485 iterators = ppcg_scop_generate_names(gen->prog->scop, depth, "c");
2486 build = isl_ast_build_set_iterators(build, iterators);
2487 build = isl_ast_build_set_at_each_domain(build, &at_domain, &data);
2488 build = isl_ast_build_set_before_each_mark(build, &before_mark, &data);
2489 build = isl_ast_build_set_after_each_mark(build, &after_mark, &data);
2490 if (gen->prog->scop->options->debug->dump_final_schedule)
2491 isl_schedule_dump(schedule);
2492 tree = isl_ast_build_node_from_schedule(build, schedule);
2493 isl_ast_build_free(build);
2495 return tree;
2498 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
2500 if (!str)
2501 return NULL;
2502 return isl_union_map_read_from_str(ctx, str);
2505 /* Can "node" be tiled and then mapped to block and thread identifiers?
2506 * That is, is it permutable with at least one coincident dimension?
2508 static isl_bool is_permutable(__isl_keep isl_schedule_node *node)
2510 if (!node)
2511 return isl_bool_error;
2513 if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
2514 return isl_bool_false;
2515 if (!isl_schedule_node_band_get_permutable(node))
2516 return isl_bool_false;
2517 if (isl_schedule_node_band_n_member(node) < 1)
2518 return isl_bool_false;
2519 if (!isl_schedule_node_band_member_get_coincident(node, 0))
2520 return isl_bool_false;
2522 return isl_bool_true;
2525 /* Is "node" not a suitably permutable band?
2527 static isl_bool not_permutable(__isl_keep isl_schedule_node *node, void *user)
2529 return isl_bool_not(is_permutable(node));
2532 /* Does the subtree rooted at "node" have any suitably permutable band nodes?
2533 * That is, does it have any nodes that are permutable and that
2534 * have a least one coincident dimension?
2536 static isl_bool subtree_has_permutable_bands(__isl_keep isl_schedule_node *node)
2538 isl_bool all_non_permutable;
2540 all_non_permutable = isl_schedule_node_every_descendant(node,
2541 &not_permutable, NULL);
2542 return isl_bool_not(all_non_permutable);
2545 /* Does "schedule" contain any permutable band with at least one coincident
2546 * member?
2548 static isl_bool has_any_permutable_node(__isl_keep isl_schedule *schedule)
2550 isl_schedule_node *root;
2551 isl_bool any_permutable;
2553 root = isl_schedule_get_root(schedule);
2554 any_permutable = subtree_has_permutable_bands(root);
2555 isl_schedule_node_free(root);
2557 return any_permutable;
2560 /* Is "node" a candidate for mapping to block and thread identifiers?
2561 * In particular, is it permutable with at least one coincident dimension?
2562 * Alternatively, does the subtree rooted at "node" not contain
2563 * any such permutable node? Filter nodes are skipped in this case,
2564 * because a band node will be inserted in front of the returned
2565 * node and this is not possible for filter nodes that are children
2566 * of set or sequence nodes.
2568 static int is_candidate(__isl_keep isl_schedule_node *node)
2570 isl_bool permutable;
2572 if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf)
2573 return 1;
2574 permutable = is_permutable(node);
2575 if (permutable < 0 || permutable)
2576 return permutable;
2577 if (isl_schedule_node_get_type(node) == isl_schedule_node_filter)
2578 return 0;
2579 permutable = subtree_has_permutable_bands(node);
2580 if (permutable < 0)
2581 return -1;
2582 return !permutable;
2585 /* Is "node" the outermost node in its branch that can be tiled
2586 * and then mapped to block and thread identifiers?
2587 * If there are no such nodes in the subtree at "node" and
2588 * if "node" is not a filter node, then it is accepted too.
2590 static int is_outer_tilable(__isl_keep isl_schedule_node *node)
2592 int tilable;
2593 isl_schedule_node *ancestor;
2595 tilable = is_candidate(node);
2596 if (tilable < 0)
2597 return -1;
2598 if (!tilable)
2599 return 0;
2601 tilable = 0;
2602 ancestor = isl_schedule_node_copy(node);
2603 while (isl_schedule_node_has_parent(ancestor)) {
2604 ancestor = isl_schedule_node_parent(ancestor);
2606 tilable = is_candidate(ancestor);
2607 if (tilable < 0 || tilable)
2608 break;
2611 isl_schedule_node_free(ancestor);
2612 return tilable < 0 ? -1 : !tilable;
2615 /* Collect the references to all writes in "group".
2616 * Each reference is represented by a universe set in a space
2618 * [S[i,j] -> R[]]
2620 * with S[i,j] the statement instance space and R[] the array reference.
2622 static __isl_give isl_union_set *group_tagged_writes(
2623 struct gpu_array_ref_group *group)
2625 int i;
2626 isl_space *space;
2627 isl_union_set *writes;
2629 space = isl_map_get_space(group->access);
2630 writes = isl_union_set_empty(space);
2631 for (i = 0; i < group->n_ref; ++i) {
2632 isl_space *space;
2633 isl_set *writes_i;
2635 if (!group->refs[i]->write)
2636 continue;
2638 space = isl_map_get_space(group->refs[i]->tagged_access);
2639 space = isl_space_domain(space);
2640 writes_i = isl_set_universe(space);
2641 writes = isl_union_set_add_set(writes, writes_i);
2644 return writes;
2647 /* Is there any write access in "group" that requires synchronization
2648 * on a write to global memory?
2649 * We currently take into account all writes that would require
2650 * synchronization at the thread level depth, but if the copying
2651 * for this group is performed at an outer level, then we do not
2652 * actually need to take into account dependences at intermediate levels.
2654 static int any_sync_writes_in_group(struct ppcg_kernel *kernel,
2655 struct gpu_array_ref_group *group)
2657 isl_union_set *writes;
2658 int empty, disjoint;
2660 empty = isl_union_set_is_empty(kernel->sync_writes);
2661 if (empty < 0)
2662 return -1;
2663 if (empty)
2664 return 0;
2666 writes = group_tagged_writes(group);
2667 disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
2668 isl_union_set_free(writes);
2670 return disjoint < 0 ? -1 : !disjoint;
2673 /* Collect the references to all writes in "kernel" that write directly
2674 * to global or shared memory, i.e., that are not mapped to private memory.
2675 * Each reference is represented by a universe set in a space
2677 * [S[i,j] -> R[]]
2679 * with S[i,j] the statement instance space and R[] the array reference.
2681 static __isl_give isl_union_set *collect_non_private_tagged_writes(
2682 struct ppcg_kernel *kernel)
2684 isl_union_set *writes;
2685 int i, j;
2687 writes = isl_union_set_empty(isl_union_set_get_space(kernel->arrays));
2689 for (i = 0; i < kernel->n_array; ++i) {
2690 struct gpu_local_array_info *array = &kernel->array[i];
2692 for (j = 0; j < array->n_group; ++j) {
2693 struct gpu_array_ref_group *group = array->groups[j];
2694 enum ppcg_group_access_type type;
2695 isl_union_set *writes_ij;
2697 if (!group->write)
2698 continue;
2699 type = gpu_array_ref_group_type(group);
2700 if (type == ppcg_access_private)
2701 continue;
2702 writes_ij = group_tagged_writes(group);
2703 writes = isl_union_set_union(writes, writes_ij);
2707 return writes;
2710 /* Are there any direct writes to global memory that require
2711 * synchronization?
2713 static int any_global_or_shared_sync_writes(struct ppcg_kernel *kernel)
2715 isl_union_set *writes;
2716 int empty, disjoint;
2718 empty = isl_union_set_is_empty(kernel->sync_writes);
2719 if (empty < 0)
2720 return -1;
2721 if (empty)
2722 return 0;
2724 writes = collect_non_private_tagged_writes(kernel);
2725 disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
2726 isl_union_set_free(writes);
2728 return disjoint < 0 ? -1 : !disjoint;
2731 /* Construct an isl_multi_val for use as tile sizes for tiling "node"
2732 * from the elements in "tile_size".
2734 static __isl_give isl_multi_val *construct_band_tiles_sizes(
2735 __isl_keep isl_schedule_node *node, int *tile_size)
2737 isl_space *space;
2739 if (!node)
2740 return NULL;
2742 space = isl_schedule_node_band_get_space(node);
2743 return ppcg_multi_val_from_int_list(space, tile_size);
2746 /* Replace the partial schedule S of the band node "node" by
2748 * floor(S/f)
2750 * or
2752 * f * floor(S/f)
2754 * if scale_tile_loops is set, with f the integers in "factor".
2755 * The list that "factor" points to is assumed to contain at least
2756 * as many elements as the number of members in the band.
2758 static __isl_give isl_schedule_node *snap_band_to_sizes(
2759 __isl_take isl_schedule_node *node, int *factor,
2760 struct ppcg_options *options)
2762 isl_multi_val *mv;
2764 mv = construct_band_tiles_sizes(node, factor);
2765 node = isl_schedule_node_band_scale_down(node, isl_multi_val_copy(mv));
2766 if (options->scale_tile_loops)
2767 node = isl_schedule_node_band_scale(node,
2768 isl_multi_val_copy(mv));
2769 isl_multi_val_free(mv);
2771 return node;
2774 /* Tile "band" with tile size specified by "sizes".
2776 * Since the tile loops will be mapped to block ids, we forcibly
2777 * turn off tile loop scaling. We may want to enable tile loop scaling
2778 * at some later point, but then we would have to support the detection
2779 * of strides during the mapping to block ids.
2780 * Similarly, since the point loops will be mapped to thread ids,
2781 * we forcibly shift the point loops so that they start at zero.
2783 static __isl_give isl_schedule_node *tile_band(
2784 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
2786 isl_ctx *ctx = isl_schedule_node_get_ctx(node);
2787 int scale_tile;
2788 int shift_point;
2790 scale_tile = isl_options_get_tile_scale_tile_loops(ctx);
2791 isl_options_set_tile_scale_tile_loops(ctx, 0);
2792 shift_point = isl_options_get_tile_shift_point_loops(ctx);
2793 isl_options_set_tile_shift_point_loops(ctx, 1);
2795 node = isl_schedule_node_band_tile(node, sizes);
2797 isl_options_set_tile_scale_tile_loops(ctx, scale_tile);
2798 isl_options_set_tile_shift_point_loops(ctx, shift_point);
2800 return node;
2803 /* Extract the set of parameter values and outer schedule dimensions
2804 * for which any statement instance
2805 * in the kernel inserted at "node" needs to be executed.
2806 * Intersect the set of parameter values derived from the host schedule
2807 * relation with the context of "prog".
2809 static __isl_give isl_set *extract_context(__isl_keep isl_schedule_node *node,
2810 struct gpu_prog *prog)
2812 isl_union_map *schedule;
2813 isl_union_set *schedule_domain;
2814 isl_set *context;
2815 int empty;
2817 schedule = isl_schedule_node_get_prefix_schedule_relation(node);
2818 schedule_domain = isl_union_map_range(schedule);
2819 empty = isl_union_set_is_empty(schedule_domain);
2820 if (empty < 0) {
2821 isl_union_set_free(schedule_domain);
2822 return NULL;
2824 if (empty) {
2825 int depth;
2826 isl_space *space;
2828 space = isl_union_set_get_space(schedule_domain);
2829 isl_union_set_free(schedule_domain);
2830 space = isl_space_set_from_params(space);
2831 depth = isl_schedule_node_get_schedule_depth(node);
2832 space = isl_space_add_dims(space, isl_dim_set, depth);
2833 context = isl_set_empty(space);
2834 } else {
2835 context = isl_set_from_union_set(schedule_domain);
2837 context = isl_set_intersect_params(context,
2838 isl_set_copy(prog->context));
2840 return context;
2843 /* Return the set of outer array elements accessed by
2844 * by the statement instances in "domain" in "prog".
2845 * The instances in "domain" are those that appear
2846 * in the domains of the access relations in "prog".
2848 static __isl_give isl_union_set *accessed_by_domain(
2849 __isl_take isl_union_set *domain, struct gpu_prog *prog)
2851 isl_union_map *access;
2852 isl_union_set *arrays;
2854 access = isl_union_map_union(isl_union_map_copy(prog->read),
2855 isl_union_map_copy(prog->may_write));
2856 access = isl_union_map_intersect_domain(access, domain);
2857 arrays = isl_union_map_range(access);
2858 arrays = isl_union_set_apply(arrays,
2859 isl_union_map_copy(prog->to_outer));
2861 return arrays;
2864 /* Return the number of outer band members of the band node "node"
2865 * that are marked coincident.
2867 static int n_outer_coincidence(__isl_keep isl_schedule_node *node)
2869 int i, n;
2871 n = isl_schedule_node_band_n_member(node);
2873 for (i = 0; i < n; ++i)
2874 if (!isl_schedule_node_band_member_get_coincident(node, i))
2875 break;
2877 return i;
2880 /* If the band node "node" has more than "n" members, then split off
2881 * the first "n" of them.
2883 static __isl_give isl_schedule_node *split_band(
2884 __isl_take isl_schedule_node *node, int n)
2886 int dim;
2888 dim = isl_schedule_node_band_n_member(node);
2889 if (n < dim)
2890 node = isl_schedule_node_band_split(node, n);
2892 return node;
2895 /* Scale a band node that may have been split by split_band.
2896 * "sizes" are the scaling factors for the original node.
2897 * "node" either points to the original band node, or the outer
2898 * of the two pieces after splitting.
2900 * If the number of elements in "node" is smaller than the number of
2901 * elements in "sizes", then some splitting has occurred and we split
2902 * "sizes" in the same way.
2904 static __isl_give isl_schedule_node *scale_band(
2905 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
2907 int n, dim;
2909 n = isl_multi_val_dim(sizes, isl_dim_set);
2910 dim = isl_schedule_node_band_n_member(node);
2911 if (n > dim) {
2912 isl_multi_val *sizes2;
2914 sizes2 = isl_multi_val_copy(sizes);
2915 sizes = isl_multi_val_drop_dims(sizes,
2916 isl_dim_set, dim, n - dim);
2917 sizes2 = isl_multi_val_drop_dims(sizes2, isl_dim_set, 0, dim);
2918 node = isl_schedule_node_child(node, 0);
2919 node = isl_schedule_node_band_scale(node, sizes2);
2920 node = isl_schedule_node_parent(node);
2923 return isl_schedule_node_band_scale(node, sizes);
2926 /* Return an isl_multi_aff, with as elements the parameters in "space"
2927 * that have the names specified by the elements in "names".
2928 * If (some of) these parameters do not already appear in "space",
2929 * then they are added first.
2931 static __isl_give isl_multi_aff *parameter_vector(__isl_take isl_space *space,
2932 __isl_keep isl_id_list *names)
2934 int i, n;
2935 isl_local_space *ls;
2936 isl_multi_aff *ma;
2938 if (!names)
2939 space = isl_space_free(space);
2941 n = isl_id_list_n_id(names);
2942 for (i = 0; i < n; ++i) {
2943 int pos;
2944 isl_id *id;
2946 id = isl_id_list_get_id(names, i);
2947 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
2948 if (pos >= 0) {
2949 isl_id_free(id);
2950 continue;
2952 pos = isl_space_dim(space, isl_dim_param);
2953 space = isl_space_add_dims(space, isl_dim_param, 1);
2954 space = isl_space_set_dim_id(space, isl_dim_param, pos, id);
2956 ma = isl_multi_aff_zero(isl_space_copy(space));
2957 ls = isl_local_space_from_space(isl_space_domain(space));
2958 for (i = 0; i < n; ++i) {
2959 int pos;
2960 isl_id *id;
2961 isl_aff *aff;
2963 id = isl_id_list_get_id(names, i);
2964 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
2965 isl_id_free(id);
2966 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
2967 isl_dim_param, pos);
2968 ma = isl_multi_aff_set_aff(ma, i, aff);
2970 isl_local_space_free(ls);
2972 return ma;
2975 /* Return constraints on the domain elements that equate a sequence of
2976 * parameters called "names", to the partial schedule
2977 * of "node" modulo the integers in "size".
2978 * The number of elements in the array "size" should be equal
2979 * to the number of elements in "names".
2980 * The number of members of the band node "node" should be smaller
2981 * than or equal to this number. If it is smaller, then the first
2982 * elements of "names" are equated to zero.
2984 static __isl_give isl_union_set *set_schedule_modulo(
2985 __isl_keep isl_schedule_node *node, __isl_keep isl_id_list *names,
2986 int *size)
2988 int n, n_zero;
2989 isl_space *space;
2990 isl_multi_aff *ma;
2991 isl_multi_union_pw_aff *mupa, *mupa2;
2992 isl_multi_val *mv;
2993 isl_union_set *domain;
2995 if (!node)
2996 return NULL;
2997 n = isl_id_list_n_id(names);
2998 if (n == 0)
2999 return isl_schedule_node_get_universe_domain(node);
3000 n_zero = n - isl_schedule_node_band_n_member(node);
3002 mupa = isl_schedule_node_band_get_partial_schedule(node);
3003 mv = construct_band_tiles_sizes(node, size + n_zero);
3004 mupa = isl_multi_union_pw_aff_mod_multi_val(mupa, mv);
3006 space = isl_multi_union_pw_aff_get_space(mupa);
3007 space = isl_space_params(space);
3008 space = isl_space_set_from_params(space);
3009 space = isl_space_add_dims(space, isl_dim_set, n_zero);
3010 ma = isl_multi_aff_zero(space);
3012 domain = isl_schedule_node_get_universe_domain(node);
3013 mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(
3014 isl_union_set_copy(domain), ma);
3015 mupa = isl_multi_union_pw_aff_range_product(mupa2, mupa);
3017 space = isl_multi_union_pw_aff_get_space(mupa);
3018 ma = parameter_vector(space, names);
3020 mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(domain, ma);
3021 mupa = isl_multi_union_pw_aff_sub(mupa, mupa2);
3023 return isl_multi_union_pw_aff_zero_union_set(mupa);
3026 /* Insert a context node at "node" introducing the block and thread
3027 * identifiers along with their bounds, which are stored in kernel->grid_size
3028 * and kernel->block_dim.
3029 * Note that the bounds on the block identifiers may implicitly impose
3030 * constraints on the parameters. A guard needs to be inserted
3031 * in the schedule tree to ensure that those bounds hold at "node".
3032 * This guard is inserted in insert_guard.
3034 static __isl_give isl_schedule_node *insert_context(struct ppcg_kernel *kernel,
3035 __isl_take isl_schedule_node *node)
3037 isl_set *context;
3039 context = isl_set_universe(isl_set_get_space(kernel->context));
3041 context = add_bounded_parameters_dynamic(context,
3042 kernel->grid_size, kernel->block_ids);
3043 context = add_bounded_parameters(context,
3044 kernel->block_dim, kernel->thread_ids);
3046 node = isl_schedule_node_insert_context(node, context);
3048 return node;
3051 /* Insert a guard that eliminates kernel launches where the kernel
3052 * obviously does not have any work to do.
3054 * In particular, eliminate kernel launches where there are obviously
3055 * zero blocks.
3056 * Use the same block size constraints that are used to create the context
3057 * to ensure that all constraints implicit in the constructed context
3058 * are imposed by the guard.
3060 * Additionally, add other constraints that are valid
3061 * for each executed instance ("context"), as long as this does not result
3062 * in a disjunction.
3064 static __isl_give isl_schedule_node *insert_guard(
3065 __isl_take isl_schedule_node *node, __isl_keep isl_set *context,
3066 __isl_keep isl_multi_pw_aff *size, struct ppcg_scop *scop)
3068 unsigned nparam, n;
3069 isl_set *guard;
3070 isl_id_list *ids;
3072 guard = isl_set_copy(context);
3073 guard = isl_set_compute_divs(guard);
3074 guard = isl_set_from_basic_set(isl_set_simple_hull(guard));
3076 nparam = isl_set_dim(guard, isl_dim_param);
3077 n = isl_multi_pw_aff_dim(size, isl_dim_out);
3078 ids = ppcg_scop_generate_names(scop, n, "__ppcg_tmp");
3079 guard = add_bounded_parameters_dynamic(guard, size, ids);
3080 isl_id_list_free(ids);
3081 guard = isl_set_project_out(guard, isl_dim_param, nparam, n);
3083 node = isl_schedule_node_insert_guard(node, guard);
3085 return node;
3088 /* Does any array reference group mapping require the band that is mapped
3089 * to threads to be unrolled?
3091 static int kernel_requires_unroll(struct ppcg_kernel *kernel)
3093 int i, j;
3095 for (i = 0; i < kernel->n_array; ++i) {
3096 struct gpu_local_array_info *array = &kernel->array[i];
3098 for (j = 0; j < array->n_group; ++j) {
3099 struct gpu_array_ref_group *group = array->groups[j];
3100 if (gpu_array_ref_group_requires_unroll(group))
3101 return 1;
3105 return 0;
3108 /* Mark the given band node "node" for unrolling by the AST generator and
3109 * then sink it to the leaves of the schedule tree.
3110 * All dimensions of "node" are assumed to be coincident, such that this
3111 * sinking is a valid operation.
3113 static __isl_give isl_schedule_node *unroll(__isl_take isl_schedule_node *node)
3115 node = ppcg_set_schedule_node_type(node, isl_ast_loop_unroll);
3117 node = isl_schedule_node_band_sink(node);
3119 return node;
3122 /* Insert a synchronization node in the schedule tree of "node"
3123 * after the core computation of "kernel" at the level of the band
3124 * that is mapped to threads, except if that level is equal to
3125 * that of the band that is mapped to blocks or if there are no writes
3126 * to global or shared memory in the core computation that require
3127 * synchronization.
3128 * If there are any writes to shared memory and the shared memory
3129 * copying is performed at the same level, then synchronization
3130 * is needed between the core and the copying anyway, so we might
3131 * as well add it here. If the copying is performed at a higher
3132 * level, then different iterations of intermediate schedule dimensions
3133 * may have a different mapping from between shared memory elements and
3134 * threads, such that synchronization is required after the core.
3135 * "node" is assumed to point to the kernel node.
3137 * If the shared and the thread mark point to the same node, then make
3138 * sure the synchronization is inserted outside of the shared mark.
3140 static __isl_give isl_schedule_node *add_sync(struct ppcg_kernel *kernel,
3141 __isl_take isl_schedule_node *node)
3143 int depth;
3144 int need_sync;
3146 need_sync = any_global_or_shared_sync_writes(kernel);
3147 if (need_sync < 0)
3148 return isl_schedule_node_free(node);
3149 if (!need_sync)
3150 return node;
3152 node = gpu_tree_move_down_to_thread(node, kernel->core);
3153 depth = isl_schedule_node_get_schedule_depth(node);
3154 node = gpu_tree_move_up_to_kernel(node);
3155 if (depth == isl_schedule_node_get_schedule_depth(node))
3156 return node;
3158 node = gpu_tree_move_down_to_depth(node, depth, kernel->core);
3159 node = gpu_tree_ensure_following_sync(node, kernel);
3161 node = gpu_tree_move_up_to_kernel(node);
3163 return node;
3166 /* Return a read ("read" is 1) or write access relation for "group"
3167 * with those accesses removed that are only needed to communicate data
3168 * within the subtree of the schedule rooted at "node".
3169 * Furthermore, include the prefix schedule at "node".
3170 * That is, return a relation of the form
3172 * S -> [D -> A]
3174 * with D the outer schedule dimensions at "node".
3176 static __isl_give isl_union_map *anchored_non_local_accesses(
3177 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3178 __isl_take isl_schedule_node *node, int read)
3180 isl_union_map *access;
3181 isl_union_map *prefix;
3183 prefix = isl_schedule_node_get_prefix_schedule_relation(node);
3184 prefix = isl_union_map_preimage_domain_union_pw_multi_aff(prefix,
3185 isl_union_pw_multi_aff_copy(kernel->contraction));
3186 access = gpu_array_ref_group_access_relation(group, read, !read);
3187 access = remove_local_accesses_group(kernel, group, access, prefix,
3188 read);
3189 access = isl_union_map_range_product(prefix, access);
3191 return access;
3194 /* Given an array reference group "group", create a mapping
3196 * read[D -> A] -> [D -> A]
3198 * if "read" is set or
3200 * write[D -> A] -> [D -> A]
3202 * if "read" is not set.
3203 * D corresponds to the outer tile->depth dimensions of
3204 * the kernel schedule.
3206 static __isl_give isl_multi_aff *create_from_access(isl_ctx *ctx,
3207 struct gpu_array_ref_group *group, int read)
3209 struct gpu_array_tile *tile;
3210 isl_space *space;
3211 isl_id *id;
3213 tile = gpu_array_ref_group_tile(group);
3214 space = isl_space_copy(group->array->space);
3215 space = isl_space_from_range(space);
3216 space = isl_space_add_dims(space, isl_dim_in, tile->depth);
3217 space = isl_space_wrap(space);
3218 space = isl_space_map_from_set(space);
3220 id = isl_id_alloc(ctx, read ? "read" : "write", group);
3221 space = isl_space_set_tuple_id(space, isl_dim_in, id);
3223 return isl_multi_aff_identity(space);
3226 /* If any writes in "group" require synchronization, then make sure
3227 * that there is a synchronization node for "kernel" after the node
3228 * following "node" in a sequence.
3230 * If "shared" is set and no synchronization is needed for
3231 * the writes to global memory, then add synchronization before
3232 * the kernel to protect shared memory from being overwritten
3233 * by the next iteration of the core computation.
3234 * No additional synchronization is needed to protect against
3235 * the next copy into shared memory because each element of
3236 * the shared memory tile is always copied by the same thread.
3238 static __isl_give isl_schedule_node *add_group_write_sync(
3239 __isl_take isl_schedule_node *node, struct ppcg_kernel *kernel,
3240 struct gpu_array_ref_group *group, int shared)
3242 int need_sync;
3244 need_sync = any_sync_writes_in_group(kernel, group);
3245 if (need_sync < 0)
3246 return isl_schedule_node_free(node);
3247 if (need_sync) {
3248 node = isl_schedule_node_parent(node);
3249 node = isl_schedule_node_next_sibling(node);
3250 node = isl_schedule_node_child(node, 0);
3251 node = gpu_tree_ensure_following_sync(node, kernel);
3252 } else if (shared) {
3253 struct gpu_array_tile *tile;
3255 tile = gpu_array_ref_group_tile(group);
3256 node = isl_schedule_node_parent(node);
3257 node = isl_schedule_node_parent(node);
3258 node = gpu_tree_move_down_to_depth(node, tile->depth,
3259 kernel->core);
3260 node = gpu_tree_move_left_to_sync(node, kernel);
3263 return node;
3266 /* Add copy statements to the schedule tree of "node"
3267 * for reading from global memory to private memory (if "read" is set) or
3268 * for writing back from private memory to global memory
3269 * (if "read" is not set) for the array reference group "group" that
3270 * is mapped to private memory.
3271 * On input, "node" points to the kernel node, and it is moved
3272 * back there on output.
3274 * The copies are performed in the order of the array elements.
3275 * The copy statement instances include a reference to the outer
3276 * tile->depth dimensions of the kernel schedule for ease of
3277 * combining them with the group tiling.
3279 * That is, the extra schedule is of the form
3281 * type[D -> A] -> A
3283 * where D corresponds to the outer tile->depth dimensions of
3284 * the kernel schedule and A to the global array.
3285 * This schedule is unrolled because registers are not addressable.
3287 * The copying is inserted in the schedule tree through an extension
3288 * of the form
3290 * D -> type[D -> A]
3292 * where the extra domain elements type[D -> A] are those accessed
3293 * by the group.
3294 * A filter is inserted on type[D -> A] to ensure that the element
3295 * is read/written by the same thread that needs the element.
3296 * This filter is obtained by applying
3298 * S -> type[D -> A]
3300 * to the thread filter for the core statements.
3302 * The extension is inserted before the core computation in case of a read
3303 * and after the core computation in case of a write.
3304 * In the latter case, we also make sure that there is a synchronization
3305 * node after the write to global memory, unless this write is performed
3306 * at the outer level of the kernel.
3307 * In principle, this synchronization could be inserted higher
3308 * in the schedule tree depending on where the corresponding reads
3309 * from global memory are performed.
3311 static __isl_give isl_schedule_node *add_copies_group_private(
3312 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3313 __isl_take isl_schedule_node *node, int read)
3315 struct gpu_array_tile *tile;
3316 isl_union_map *access;
3317 isl_union_set *domain;
3318 isl_space *space;
3319 isl_multi_aff *from_access;
3320 isl_multi_pw_aff *mpa;
3321 isl_multi_union_pw_aff *mupa;
3322 isl_union_pw_multi_aff *contraction;
3323 isl_schedule_node *graft;
3324 isl_union_set *filter;
3325 int kernel_depth;
3326 int empty;
3328 kernel_depth = isl_schedule_node_get_schedule_depth(node);
3329 tile = gpu_array_ref_group_tile(group);
3330 node = gpu_tree_move_down_to_depth(node, tile->depth, kernel->core);
3332 access = anchored_non_local_accesses(kernel, group, node, read);
3333 empty = isl_union_map_is_empty(access);
3334 if (empty < 0 || empty) {
3335 isl_union_map_free(access);
3336 if (empty < 0)
3337 return isl_schedule_node_free(node);
3338 return gpu_tree_move_up_to_kernel(node);
3341 group->array->global = 1;
3342 group->local_array->global = 1;
3344 from_access = create_from_access(kernel->ctx, group, read);
3345 space = isl_space_domain(isl_multi_aff_get_space(from_access));
3346 access = isl_union_map_preimage_range_multi_aff(access, from_access);
3348 filter = isl_union_set_copy(kernel->thread_filter);
3349 contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
3350 filter = isl_union_set_preimage_union_pw_multi_aff(filter, contraction);
3351 filter = isl_union_set_apply(filter, isl_union_map_copy(access));
3352 filter = isl_union_set_detect_equalities(filter);
3353 filter = isl_union_set_coalesce(filter);
3355 domain = isl_union_map_range(access);
3356 access = isl_union_set_wrapped_domain_map(domain);
3357 access = isl_union_map_reverse(access);
3358 access = isl_union_map_coalesce(access);
3359 graft = isl_schedule_node_from_extension(access);
3361 space = isl_space_map_from_set(space);
3362 mpa = isl_multi_pw_aff_identity(space);
3363 mpa = isl_multi_pw_aff_range_factor_range(mpa);
3364 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3366 graft = isl_schedule_node_child(graft, 0);
3367 graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
3368 graft = unroll(graft);
3370 graft = isl_schedule_node_insert_filter(graft, filter);
3372 graft = isl_schedule_node_parent(graft);
3374 if (read)
3375 node = isl_schedule_node_graft_before(node, graft);
3376 else {
3377 node = isl_schedule_node_graft_after(node, graft);
3378 if (kernel_depth < tile->depth)
3379 node = add_group_write_sync(node, kernel, group, 0);
3382 node = gpu_tree_move_up_to_kernel(node);
3384 return node;
3387 /* Add copy statements to the schedule tree of "node"
3388 * for reading from global memory to shared memory (if "read" is set) or
3389 * for writing back from shared memory to global memory
3390 * (if "read" is not set) for the array reference group "group" that
3391 * is mapped to shared memory.
3392 * On input, "node" points to the kernel node, and it is moved
3393 * back there on output.
3395 * The copies are performed in the order of the corresponding shared
3396 * memory tile.
3397 * The copy statement instances include a reference to the outer
3398 * tile->depth dimensions of the kernel schedule for ease of
3399 * combining them with the group tiling.
3401 * If we are performing a read from global memory to shared memory and
3402 * if the array involved is not a scalar, then we copy
3403 * the entire tile to shared memory. This may result in some extra
3404 * elements getting copied, but it should lead to simpler code
3405 * (which means that fewer registers may be needed) and less divergence.
3407 * Otherwise, we only copy the elements that will be read or have been written
3408 * in the kernel.
3410 * That is, the extra schedule is of the form
3412 * type[D -> A] -> T
3414 * where D corresponds to the outer tile->depth dimensions of
3415 * the kernel schedule, A to the global array and T is the corresponding
3416 * shared memory tile.
3418 * The copying is inserted in the schedule tree through an extension
3419 * of the form
3421 * D -> type[D -> A]
3423 * where the extra domain elements type[D -> A] are those accessed
3424 * by the group. In the case of read from a non-scalar, this set
3425 * is replaced by the entire shared memory tile.
3427 * If the "unroll_copy_shared" option is set, then the AST generator
3428 * is instructed to unroll the copying code.
3430 * A filter is inserted on type[D -> A] to map the copy instances
3431 * to the threads. In particular, the thread identifiers are
3432 * equated to the position inside the shared memory tile (T)
3433 * modulo the block size.
3434 * We try to align the innermost tile dimension with the innermost
3435 * thread identifier (x) as a heuristic to improve coalescing.
3436 * In particular, if the dimension of the tile is greater than
3437 * the dimension of the block, then the schedule mapping to the tile
3438 * is broken up into two pieces and the filter is applied to the inner part.
3439 * If, on the other hand, the dimension of the tile is smaller than
3440 * the dimension of the block, then the initial thread identifiers
3441 * are equated to zero and the remaining thread identifiers are
3442 * matched to the memory tile.
3444 * The extension is inserted before the core computation in case of a read
3445 * and after the core computation in case of a write.
3446 * In the case of a read, we first need to make sure there is some
3447 * synchronization before the core computation such that we can put the read
3448 * from global memory to shared memory before that synchronization.
3449 * This ensures that all threads have finished copying into shared memory
3450 * before the shared memory is used.
3451 * We also need to make sure that there is a synchronization node after
3452 * the core computation to ensure that the next load into shared memory
3453 * only happens after all data has been used. There is no need for
3454 * this synchronization if we are at the outer level since then there
3455 * won't be a next load.
3456 * In the case of a write, we need to make sure there is some synchronization
3457 * after the core computation such that we can put the write from shared
3458 * memory to global memory after that synchronization.
3459 * Unless we are at the outer level, we also need a synchronization node
3460 * after the write to ensure the data is saved to global memory
3461 * before the next iteration writes to the same shared memory.
3462 * It also makes sure the data has arrived in global memory before
3463 * it is read in a subsequent iteration.
3465 static __isl_give isl_schedule_node *add_copies_group_shared(
3466 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3467 __isl_take isl_schedule_node *node, int read)
3469 struct gpu_array_tile *tile;
3470 isl_union_map *access;
3471 isl_union_set *domain;
3472 isl_multi_aff *ma;
3473 isl_multi_aff *from_access;
3474 isl_multi_pw_aff *mpa;
3475 isl_multi_union_pw_aff *mupa;
3476 isl_schedule_node *graft;
3477 isl_union_set *filter;
3478 int skip;
3479 int kernel_depth;
3480 int empty;
3482 tile = gpu_array_ref_group_tile(group);
3483 kernel_depth = isl_schedule_node_get_schedule_depth(node);
3484 node = gpu_tree_move_down_to_depth(node, tile->depth, kernel->core);
3486 access = anchored_non_local_accesses(kernel, group, node, read);
3487 empty = isl_union_map_is_empty(access);
3488 if (empty < 0 || empty) {
3489 isl_union_map_free(access);
3490 if (empty < 0)
3491 return isl_schedule_node_free(node);
3492 return gpu_tree_move_up_to_kernel(node);
3495 group->array->global = 1;
3496 group->local_array->global = 1;
3498 from_access = create_from_access(kernel->ctx, group, read);
3500 ma = isl_multi_aff_copy(tile->tiling);
3501 ma = isl_multi_aff_pullback_multi_aff(ma,
3502 isl_multi_aff_copy(from_access));
3503 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3504 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3506 domain = isl_union_map_range(access);
3508 if (read && !gpu_array_is_scalar(group->array)) {
3509 isl_map *map;
3510 isl_union_set_free(domain);
3511 map = group_tile(group);
3512 domain = isl_union_set_from_set(isl_map_wrap(map));
3515 domain = isl_union_set_preimage_multi_aff(domain, from_access);
3516 access = isl_union_set_wrapped_domain_map(domain);
3517 access = isl_union_map_reverse(access);
3518 access = isl_union_map_coalesce(access);
3519 graft = isl_schedule_node_from_extension(access);
3521 graft = isl_schedule_node_child(graft, 0);
3523 graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
3524 if (kernel->options->unroll_copy_shared)
3525 graft = ppcg_set_schedule_node_type(graft, isl_ast_loop_unroll);
3527 if (tile->n > kernel->n_block && kernel->n_block > 0) {
3528 graft = isl_schedule_node_band_split(graft,
3529 tile->n - kernel->n_block);
3530 graft = isl_schedule_node_child(graft, 0);
3532 if (tile->n < kernel->n_block)
3533 skip = kernel->n_block - tile->n;
3534 else
3535 skip = 0;
3536 filter = set_schedule_modulo(graft, kernel->thread_ids,
3537 kernel->block_dim);
3538 if (!kernel->options->wrap)
3539 graft = snap_band_to_sizes(graft, kernel->block_dim + skip,
3540 kernel->options);
3541 if (tile->n > kernel->n_block && kernel->n_block > 0)
3542 graft = isl_schedule_node_parent(graft);
3543 graft = isl_schedule_node_insert_filter(graft, filter);
3545 while (graft && isl_schedule_node_has_parent(graft))
3546 graft = isl_schedule_node_parent(graft);
3548 if (read) {
3549 if (kernel_depth < tile->depth)
3550 node = gpu_tree_ensure_sync_after_core(node, kernel);
3551 node = gpu_tree_move_left_to_sync(node, kernel);
3552 node = isl_schedule_node_graft_before(node, graft);
3553 } else {
3554 node = gpu_tree_move_right_to_sync(node, kernel);
3555 node = isl_schedule_node_graft_after(node, graft);
3556 if (kernel_depth < tile->depth)
3557 node = add_group_write_sync(node, kernel, group, 1);
3560 node = gpu_tree_move_up_to_kernel(node);
3562 return node;
3565 /* Check whether the array reference group "group" is mapped to
3566 * private or shared memory and, if so,
3567 * add copy statements to the schedule tree of "node"
3568 * for reading from global memory to private or shared memory
3569 * (if "read" is set) or for writing back from private or shared memory
3570 * to global memory (if "read" is not set) for this group.
3571 * On input, "node" points to the kernel node, and it is moved
3572 * back there on output.
3574 static __isl_give isl_schedule_node *add_copies_group(
3575 struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3576 __isl_take isl_schedule_node *node, int read)
3578 enum ppcg_group_access_type type;
3580 type = gpu_array_ref_group_type(group);
3581 if (type == ppcg_access_private)
3582 return add_copies_group_private(kernel, group, node, read);
3583 if (type == ppcg_access_shared)
3584 return add_copies_group_shared(kernel, group, node, read);
3585 return node;
3588 /* For each array reference group that is mapped to private or shared memory,
3589 * add copy statements to the schedule tree of "node"
3590 * for reading from global memory to private or shared memory
3591 * and for writing back.
3592 * On input, "node" points to the kernel node, and it is moved
3593 * back there on output.
3595 static __isl_give isl_schedule_node *add_copies(struct ppcg_kernel *kernel,
3596 __isl_take isl_schedule_node *node)
3598 int i, j;
3600 for (i = 0; i < kernel->n_array; ++i) {
3601 struct gpu_local_array_info *array = &kernel->array[i];
3603 for (j = 0; j < array->n_group; ++j) {
3604 struct gpu_array_ref_group *group = array->groups[j];
3606 node = add_copies_group(kernel, group, node, 1);
3607 if (!node)
3608 return NULL;
3609 node = add_copies_group(kernel, group, node, 0);
3610 if (!node)
3611 return NULL;
3615 return node;
3618 /* Mark all dimensions in the current band node atomic.
3620 static __isl_give isl_schedule_node *atomic(__isl_take isl_schedule_node *node)
3622 return ppcg_set_schedule_node_type(node, isl_ast_loop_atomic);
3625 /* Mark "node" atomic, if it is a band node.
3626 * Do the same for all ancestors.
3627 * Return a pointer to "node" (in the updated schedule tree).
3629 static __isl_give isl_schedule_node *atomic_ancestors(
3630 __isl_take isl_schedule_node *node)
3632 int pos;
3634 if (!node)
3635 return NULL;
3636 if (!isl_schedule_node_has_parent(node))
3637 return node;
3639 pos = isl_schedule_node_get_child_position(node);
3640 node = isl_schedule_node_parent(node);
3641 if (isl_schedule_node_get_type(node) == isl_schedule_node_band)
3642 node = atomic(node);
3643 node = atomic_ancestors(node);
3644 node = isl_schedule_node_child(node, pos);
3646 return node;
3649 /* Collect all write references that require synchronization.
3650 * "node" is assumed to point to the kernel node.
3651 * Each reference is represented by a universe set in a space
3653 * [S[i,j] -> R[]]
3655 * with S[i,j] the statement instance space and R[] the array reference.
3657 * This function should be called before block and thread filters are added.
3659 * Synchronization is needed after a write if there is a subsequent read
3660 * within the same block that may not be performed by the same thread.
3661 * There should not be any dependences between different blocks,
3662 * so we start with the flow dependences within the same kernel invocation
3663 * and we subtract from these those dependences that are mapped
3664 * to the same iteration of the bands where synchronization is inserted.
3665 * We do not remove pairs of instances that are known to map to
3666 * the same thread across different iterations of the intermediate
3667 * bands because the read may be performed by a different thread
3668 * than the one that needs the value if shared memory is involved.
3670 * We also consider all pairs of possible writes that access the same
3671 * memory location and that may be mapped to the same block but not
3672 * to the same iteration of the intermediate bands.
3673 * In theory, it would be possible for one thread to still be in
3674 * a previous iteration of a loop in these bands.
3675 * A write to global memory in this delayed thread could then overwrite
3676 * a write from another thread that has already moved on to
3677 * the next iteration.
3679 * After computing the above writes paired off with reads or writes
3680 * that depend on them, we project onto the domain writes.
3681 * Sychronization is needed after writes to global memory
3682 * through these references.
3684 static __isl_give isl_union_set *compute_sync_writes(
3685 struct ppcg_kernel *kernel, __isl_keep isl_schedule_node *node)
3687 isl_union_map *local;
3688 isl_union_map *may_writes, *shared_access;
3689 isl_union_map *kernel_prefix, *thread_prefix;
3690 isl_union_map *equal;
3691 isl_union_set *wrap;
3692 isl_union_set *domain;
3693 isl_union_pw_multi_aff *contraction;
3695 kernel_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
3696 node = isl_schedule_node_copy(node);
3697 node = gpu_tree_move_down_to_thread(node, kernel->core);
3698 thread_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
3699 isl_schedule_node_free(node);
3701 contraction = kernel->contraction;
3702 kernel_prefix = isl_union_map_preimage_domain_union_pw_multi_aff(
3703 kernel_prefix, isl_union_pw_multi_aff_copy(contraction));
3704 thread_prefix = isl_union_map_preimage_domain_union_pw_multi_aff(
3705 thread_prefix, isl_union_pw_multi_aff_copy(contraction));
3706 domain = isl_union_set_copy(kernel->expanded_domain);
3707 domain = isl_union_set_universe(domain);
3709 may_writes = isl_union_map_copy(kernel->prog->scop->tagged_may_writes);
3710 may_writes = isl_union_map_curry(may_writes);
3711 may_writes = isl_union_map_intersect_domain(may_writes, domain);
3712 may_writes = isl_union_map_uncurry(may_writes);
3713 shared_access = isl_union_map_copy(may_writes);
3714 shared_access = isl_union_map_apply_range(shared_access,
3715 isl_union_map_reverse(may_writes));
3717 local = isl_union_map_copy(kernel->prog->scop->tagged_dep_flow);
3718 local = isl_union_map_union(local, shared_access);
3719 local = isl_union_map_zip(local);
3721 equal = isl_union_map_apply_range(kernel_prefix,
3722 isl_union_map_reverse(isl_union_map_copy(kernel_prefix)));
3723 wrap = isl_union_map_wrap(equal);
3724 local = isl_union_map_intersect_domain(local, wrap);
3725 equal = isl_union_map_apply_range(thread_prefix,
3726 isl_union_map_reverse(isl_union_map_copy(thread_prefix)));
3727 wrap = isl_union_map_wrap(equal);
3728 local = isl_union_map_subtract_domain(local, wrap);
3730 local = isl_union_map_zip(local);
3731 local = isl_union_map_universe(local);
3733 return isl_union_map_domain(local);
3736 /* Group the domain elements into a single space, named kernelX,
3737 * with X the kernel sequence number "kernel_id".
3739 static __isl_give isl_schedule_node *group_statements(
3740 __isl_take isl_schedule_node *node, int kernel_id)
3742 char buffer[20];
3743 isl_id *id;
3745 if (!node)
3746 return NULL;
3748 snprintf(buffer, sizeof(buffer), "kernel%d", kernel_id);
3749 id = isl_id_alloc(isl_schedule_node_get_ctx(node), buffer, NULL);
3750 return isl_schedule_node_group(node, id);
3753 /* Create a ppcg_kernel representing the domain instances that reach "node"
3754 * and insert a mark node pointing to the ppcg_kernel before "node".
3755 * The band that "node" points to is the band that needs to be mapped
3756 * to block identifiers. The band that needs to be mapped to thread
3757 * identifiers should be marked by a "thread" mark by the caller.
3758 * The linear branch between the current node and the "thread" mark
3759 * may also have a "shared" mark. If present, the mapping to shared
3760 * memory is computed at that point.
3761 * Both marks are removed by this function.
3762 * If "scale" is set, then the band that "node" points to is scaled
3763 * by "sizes".
3765 * Mark all outer band nodes as atomic to ensure each kernel is only
3766 * scheduled once.
3767 * If the domain elements that reach "node" live in more than one space,
3768 * then group the domain elements into a single space, named kernelX,
3769 * with X the kernel sequence number.
3771 * Insert a guard node governing the kernel node to ensure that
3772 * no kernels with zero blocks are launched.
3774 * Insert a context node describing the block and thread
3775 * identifiers inside the kernel mark.
3776 * The context node needs to be inserted after the effective block size
3777 * has been determined such that the bounds on the thread identifiers
3778 * would reflect the effective block size.
3779 * Insert a filter node inside the context node mapping the statement
3780 * instances to block identifiers. In particular, the block identifiers
3781 * are equated to the partial schedule of band that was marked for mapping
3782 * to blocks modulo the grid size.
3783 * Insert a filter node inside the "thread" mark mapping the statement
3784 * instances to thread identifiers. In particular, the thread identifiers
3785 * are equated to the partial schedule of band that was marked for mapping
3786 * to threads modulo the block size.
3788 * Compute array reference groups for all arrays, set the local
3789 * array bounds based on the set of domain instances that reach
3790 * the kernel node, check the total amount of shared memory used
3791 * and compute all group tilings.
3792 * The array reference groups are computed after the block filter
3793 * has been inserted because it affects the mapping to shared or
3794 * private memory. This computation also requires the thread filter
3795 * (in the ppcg_kernel object), but this thread filter should not
3796 * have been added to the schedule tree yet since the computation
3797 * requires the schedule of the band that needs to be mapped to
3798 * threads before the privatization is applied.
3800 * If any array reference group requires the band mapped to threads
3801 * to be unrolled, then we perform the required unrolling.
3803 * We save a copy of the schedule that may influence the mappings
3804 * to shared or private memory in kernel->copy_schedule.
3806 * Finally, we add synchronization and copy statements to the schedule tree,
3807 * remove the "thread" mark and create representations for the local
3808 * variables in the kernel.
3810 * We keep a copy of the isl_id that points to the kernel to ensure
3811 * that the kernel does not get destroyed if the schedule node
3812 * is freed due to some error condition.
3814 __isl_give isl_schedule_node *gpu_create_kernel(struct gpu_gen *gen,
3815 __isl_take isl_schedule_node *node, int scale,
3816 __isl_keep isl_multi_val *sizes)
3818 struct ppcg_kernel *kernel;
3819 isl_id *id;
3820 isl_schedule_node *node_thread;
3821 isl_union_map *host_schedule;
3822 isl_union_pw_multi_aff *contraction;
3823 isl_set *host_domain;
3824 isl_union_set *domain, *expanded;
3825 int single_statement;
3827 node = gpu_tree_insert_shared_before_thread(node);
3828 if (!node)
3829 return NULL;
3831 kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
3832 kernel = ppcg_kernel_create_local_arrays(kernel, gen->prog);
3833 if (!kernel)
3834 return isl_schedule_node_free(node);
3836 domain = isl_schedule_node_get_domain(node);
3837 single_statement = isl_union_set_n_set(domain) == 1;
3839 kernel->ctx = gen->ctx;
3840 kernel->prog = gen->prog;
3841 kernel->options = gen->options;
3842 kernel->context = extract_context(node, gen->prog);
3843 kernel->core = isl_union_set_universe(isl_union_set_copy(domain));
3844 contraction = isl_schedule_node_get_subtree_contraction(node);
3845 kernel->contraction = isl_union_pw_multi_aff_copy(contraction);
3846 expanded = isl_union_set_copy(domain);
3847 expanded = isl_union_set_preimage_union_pw_multi_aff(expanded,
3848 contraction);
3849 kernel->expanded_domain = isl_union_set_copy(expanded);
3850 kernel->arrays = accessed_by_domain(expanded, gen->prog);
3851 kernel->n_grid = n_outer_coincidence(node);
3852 node_thread = isl_schedule_node_copy(node);
3853 node_thread = gpu_tree_move_down_to_thread(node_thread, kernel->core);
3854 node_thread = isl_schedule_node_child(node_thread, 0);
3855 kernel->n_block = n_outer_coincidence(node_thread);
3856 isl_schedule_node_free(node_thread);
3857 kernel->id = gen->kernel_id++;
3858 read_grid_and_block_sizes(kernel, gen);
3860 kernel->sync_writes = compute_sync_writes(kernel, node);
3862 host_schedule = isl_schedule_node_get_prefix_schedule_union_map(node);
3863 host_domain = isl_set_from_union_set(isl_union_map_range(
3864 host_schedule));
3866 node = atomic_ancestors(node);
3868 id = isl_id_alloc(gen->ctx, "kernel", kernel);
3869 id = isl_id_set_free_user(id, &ppcg_kernel_free_wrap);
3870 node = isl_schedule_node_insert_mark(node, isl_id_copy(id));
3872 if (!single_statement)
3873 node = group_statements(node, kernel->id);
3875 node = isl_schedule_node_child(node, 0);
3876 node = split_band(node, kernel->n_grid);
3877 kernel->block_ids = ppcg_scop_generate_names(gen->prog->scop,
3878 kernel->n_grid, "b");
3879 kernel->block_filter = set_schedule_modulo(node, kernel->block_ids,
3880 kernel->grid_dim);
3881 kernel->grid_size = extract_grid_size(kernel,
3882 isl_union_set_copy(domain));
3883 if (!kernel->options->wrap)
3884 node = snap_band_to_sizes(node, kernel->grid_dim,
3885 kernel->options);
3886 if (scale)
3887 node = scale_band(node, isl_multi_val_copy(sizes));
3888 node = isl_schedule_node_parent(node);
3889 if (!single_statement)
3890 node = isl_schedule_node_parent(node);
3891 node = insert_guard(node, kernel->context, kernel->grid_size,
3892 gen->prog->scop);
3893 node = gpu_tree_move_down_to_thread(node, kernel->core);
3894 node = isl_schedule_node_child(node, 0);
3895 node = split_band(node, kernel->n_block);
3896 kernel->thread_ids = ppcg_scop_generate_names(gen->prog->scop,
3897 kernel->n_block, "t");
3898 kernel->thread_filter = set_schedule_modulo(node, kernel->thread_ids,
3899 kernel->block_dim);
3900 if (extract_block_size(kernel, domain) < 0)
3901 node = isl_schedule_node_free(node);
3903 node = gpu_tree_move_up_to_kernel(node);
3904 node = isl_schedule_node_child(node, 0);
3905 node = insert_context(kernel, node);
3906 node = isl_schedule_node_child(node, 0);
3907 node = isl_schedule_node_insert_filter(node,
3908 isl_union_set_copy(kernel->block_filter));
3910 node = gpu_tree_move_up_to_kernel(node);
3912 if (gpu_group_references(kernel, node) < 0)
3913 node = isl_schedule_node_free(node);
3914 localize_bounds(kernel, host_domain);
3915 isl_set_free(host_domain);
3917 check_shared_memory_bound(kernel);
3918 mark_global_arrays(kernel);
3919 compute_group_tilings(kernel);
3921 node = gpu_tree_move_down_to_thread(node, kernel->core);
3922 node = isl_schedule_node_child(node, 0);
3923 if (!kernel->options->wrap)
3924 node = snap_band_to_sizes(node, kernel->block_dim,
3925 kernel->options);
3926 node = isl_schedule_node_insert_filter(node,
3927 isl_union_set_copy(kernel->thread_filter));
3928 if (kernel_requires_unroll(kernel)) {
3929 node = isl_schedule_node_child(node, 0);
3930 node = unroll(node);
3933 node = gpu_tree_move_up_to_thread(node);
3934 kernel->copy_schedule_dim = isl_schedule_node_get_schedule_depth(node);
3935 kernel->copy_schedule =
3936 isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node);
3937 contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
3938 kernel->copy_schedule =
3939 isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
3940 kernel->copy_schedule, contraction);
3942 node = gpu_tree_move_up_to_kernel(node);
3944 node = add_sync(kernel, node);
3945 node = add_copies(kernel, node);
3947 node = gpu_tree_move_down_to_shared(node, kernel->core);
3948 node = isl_schedule_node_delete(node);
3950 node = gpu_tree_move_down_to_thread(node, kernel->core);
3951 node = isl_schedule_node_delete(node);
3953 node = gpu_tree_move_up_to_kernel(node);
3955 if (create_kernel_vars(kernel) < 0)
3956 node = isl_schedule_node_free(node);
3958 if (!single_statement)
3959 node = isl_schedule_node_parent(node);
3960 node = isl_schedule_node_parent(node);
3962 isl_id_free(id);
3963 if (!id)
3964 ppcg_kernel_free(kernel);
3965 return node;
3968 /* Insert a zero-dimensional permutable band at "node".
3970 static __isl_give isl_schedule_node *insert_empty_permutable_band(
3971 __isl_take isl_schedule_node *node)
3973 isl_space *space;
3974 isl_schedule *schedule;
3975 isl_union_set *domain;
3976 isl_multi_union_pw_aff *mupa;
3978 schedule = isl_schedule_node_get_schedule(node);
3979 domain = isl_schedule_get_domain(schedule);
3980 space = isl_union_set_get_space(domain);
3981 isl_union_set_free(domain);
3982 isl_schedule_free(schedule);
3984 space = isl_space_set_from_params(space);
3985 mupa = isl_multi_union_pw_aff_zero(space);
3986 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3987 node = isl_schedule_node_band_set_permutable(node, 1);
3989 return node;
3992 /* See if hybrid tiling can be performed on "node" and its parent.
3993 * If so, apply hybrid tiling and return the updated schedule tree.
3994 * If not, return the original schedule tree.
3995 * Return NULL on error.
3997 * First check if "node", together with its parent, meets
3998 * the basic requirements for hybrid tiling.
3999 * If so, compute the relative dependence distances of "node"
4000 * with respect to its parent and check if they are sufficiently bounded.
4001 * If so, apply hybrid tiling using user specified tile sizes.
4003 * The tile sizes are read before the dependence distance bounds are
4004 * computed, because the user may have specified fewer dimensions
4005 * than are available. In this case, the remaining schedule dimensions
4006 * are split off and the dependence distances should be computed
4007 * after these dimensions have been split off.
4009 static __isl_give isl_schedule_node *try_hybrid_tile(struct gpu_gen *gen,
4010 __isl_take isl_schedule_node *node)
4012 int tile_len;
4013 int *tile_size;
4014 isl_bool ok;
4015 isl_schedule_node *orig = node;
4016 ppcg_ht_bounds *bounds;
4018 ok = ppcg_ht_parent_has_input_pattern(node);
4019 if (ok < 0)
4020 return isl_schedule_node_free(node);
4021 if (!ok)
4022 return orig;
4024 tile_len = 1 + isl_schedule_node_band_n_member(node);
4025 tile_size = read_tile_sizes(gen, &tile_len);
4026 if (!tile_size)
4027 return isl_schedule_node_free(node);
4029 node = isl_schedule_node_copy(node);
4030 node = split_band(node, tile_len - 1);
4031 node = isl_schedule_node_parent(node);
4032 bounds = ppcg_ht_compute_bounds(gen->prog->scop, node);
4033 node = isl_schedule_node_child(node, 0);
4035 ok = ppcg_ht_bounds_is_valid(bounds);
4036 if (ok >= 0 && ok)
4037 node = gpu_hybrid_tile(gen, node, bounds, tile_size);
4038 else
4039 ppcg_ht_bounds_free(bounds);
4040 free(tile_size);
4042 if (ok >= 0 && !ok) {
4043 isl_schedule_node_free(node);
4044 return orig;
4046 isl_schedule_node_free(orig);
4047 if (ok < 0)
4048 return isl_schedule_node_free(node);
4049 return node;
4052 /* If "node" is the outermost permutable band that can be mapped to block and
4053 * thread identifiers in its branch (or the root of a subtree with
4054 * no such outer bands),
4055 * then mark the band as such, attaching a ppcg_kernel to the mark.
4057 * If hybrid tiling is allowed, then first try and apply it
4058 * to "node" and its parent.
4060 * If "node" is the root of a subtree without permutable bands,
4061 * then insert a zero-dimensional permutable band such that
4062 * we can assume that "node" always points to a band node.
4063 * This includes the case where "node" already points to a band node,
4064 * but one without any coincident dimension. In this case,
4065 * the extra node ensures that this original node does not get tiled.
4067 * Tile "node" using user specified tile sizes, after splitting the band
4068 * if the number of specified tile sizes is smaller than the dimension
4069 * of the band. Mark the point band of this tiling as the band that
4070 * needs to be mapped to threads and instruct the AST generator to unroll
4071 * the band if the "unroll_gpu_tile" option is set.
4072 * Create a kernel representing the domain instances that reach "node" and
4073 * insert a mark node pointing to the ppcg_kernel before the band node.
4075 static __isl_give isl_schedule_node *mark_outer_permutable(
4076 __isl_take isl_schedule_node *node, void *user)
4078 struct gpu_gen *gen = user;
4079 int outer;
4080 int scale;
4081 int tile_len;
4082 int *tile_size;
4083 isl_id *id;
4084 isl_multi_val *sizes;
4086 outer = is_outer_tilable(node);
4087 if (outer < 0)
4088 return isl_schedule_node_free(node);
4089 if (!outer)
4090 return node;
4092 if (gen->options->hybrid) {
4093 isl_schedule_node *saved = isl_schedule_node_copy(node);
4094 node = try_hybrid_tile(gen, node);
4095 isl_schedule_node_free(saved);
4096 if (node != saved)
4097 return node;
4100 if (isl_schedule_node_get_type(node) != isl_schedule_node_band ||
4101 !isl_schedule_node_band_member_get_coincident(node, 0))
4102 node = insert_empty_permutable_band(node);
4104 tile_len = isl_schedule_node_band_n_member(node);
4105 tile_size = read_tile_sizes(gen, &tile_len);
4106 if (!tile_size)
4107 return isl_schedule_node_free(node);
4108 if (tile_len < isl_schedule_node_band_n_member(node))
4109 node = isl_schedule_node_band_split(node, tile_len);
4110 sizes = construct_band_tiles_sizes(node, tile_size);
4111 node = tile_band(node, isl_multi_val_copy(sizes));
4112 node = isl_schedule_node_child(node, 0);
4113 if (gen->options->unroll_gpu_tile)
4114 node = ppcg_set_schedule_node_type(node, isl_ast_loop_unroll);
4115 id = isl_id_alloc(gen->ctx, "thread", NULL);
4116 node = isl_schedule_node_insert_mark(node, id);
4117 node = isl_schedule_node_parent(node);
4119 scale = gen->options->scale_tile_loops;
4120 node = gpu_create_kernel(gen, node, scale, sizes);
4121 isl_multi_val_free(sizes);
4122 free(tile_size);
4124 return node;
4127 /* Given a set or sequence node, return the union the filters of either all
4128 * (if "only_initial" is not set) or the initial (if "only_initial" is set)
4129 * direct subtrees that do not contain any suitably permutable bands
4130 * (according to subtree_has_permutable_bands).
4132 static __isl_give isl_union_set *get_non_parallel_subtree_filters(
4133 __isl_keep isl_schedule_node *node, int only_initial)
4135 isl_space *space;
4136 isl_union_set *filter;
4137 int i, n;
4139 n = isl_schedule_node_n_children(node);
4140 if (n < 0)
4141 return NULL;
4143 node = isl_schedule_node_copy(node);
4144 node = isl_schedule_node_child(node, 0);
4145 filter = isl_schedule_node_filter_get_filter(node);
4146 node = isl_schedule_node_parent(node);
4147 space = isl_union_set_get_space(filter);
4148 isl_union_set_free(filter);
4149 filter = isl_union_set_empty(space);
4151 for (i = 0; i < n; ++i) {
4152 int parallelism;
4154 node = isl_schedule_node_child(node, i);
4155 parallelism = subtree_has_permutable_bands(node);
4156 if (parallelism < 0) {
4157 filter = isl_union_set_free(filter);
4158 } else if (!parallelism) {
4159 isl_union_set *filter_i;
4160 filter_i = isl_schedule_node_filter_get_filter(node);
4161 filter = isl_union_set_union(filter, filter_i);
4162 } else if (only_initial)
4163 break;
4164 node = isl_schedule_node_parent(node);
4167 isl_schedule_node_free(node);
4169 return filter;
4172 /* Given a set or sequence node, return the union of the filters of
4173 * the direct subtrees that do not contain any suitably permutable bands
4174 * (according to subtree_has_permutable_bands).
4176 static __isl_give isl_union_set *get_all_non_parallel_subtree_filters(
4177 __isl_keep isl_schedule_node *node)
4179 return get_non_parallel_subtree_filters(node, 0);
4182 /* Given a set or sequence node, return the union of the filters of
4183 * the initial direct subtrees that do not contain any suitably permutable
4184 * bands (according to subtree_has_permutable_bands).
4186 static __isl_give isl_union_set *get_initial_non_parallel_subtree_filters(
4187 __isl_keep isl_schedule_node *node)
4189 return get_non_parallel_subtree_filters(node, 1);
4192 /* Mark all variables that are accessed by the statement instances in "domain"
4193 * and that are local to "prog" as requiring a declaration in the host code.
4194 * The statement instances in "domain" correspond to (a subset of)
4195 * the active instances at "node".
4196 * "node" is not modified by this function, except that NULL is returned
4197 * in case of error.
4199 static __isl_give isl_schedule_node *declare_accessed_local_variables(
4200 __isl_take isl_schedule_node *node, struct gpu_prog *prog,
4201 __isl_keep isl_union_set *domain)
4203 isl_union_pw_multi_aff *contraction;
4204 isl_union_set *arrays;
4205 int i;
4207 if (!ppcg_scop_any_hidden_declarations(prog->scop))
4208 return node;
4209 contraction = isl_schedule_node_get_subtree_contraction(node);
4210 domain = isl_union_set_copy(domain);
4211 domain = isl_union_set_preimage_union_pw_multi_aff(domain, contraction);
4212 arrays = accessed_by_domain(domain, prog);
4214 for (i = 0; i < prog->n_array; ++i) {
4215 isl_space *space;
4216 isl_set *set;
4217 int empty;
4219 if (!prog->array[i].local)
4220 continue;
4221 space = isl_set_get_space(prog->array[i].extent);
4222 set = isl_union_set_extract_set(arrays, space);
4223 empty = isl_set_plain_is_empty(set);
4224 isl_set_free(set);
4225 if (empty < 0)
4226 goto error;
4227 if (!empty)
4228 prog->array[i].declare_local = 1;
4231 isl_union_set_free(arrays);
4232 return node;
4233 error:
4234 isl_union_set_free(arrays);
4235 return isl_schedule_node_free(node);
4238 /* If "node" points to a set node, then separate its children
4239 * into subtrees that have suitably permutable bands and
4240 * those that do not.
4241 * Adjust the schedule tree in order to execute the second group
4242 * after the first group and return a pointer to the first group,
4243 * assuming there are any such subtrees.
4244 * If "node" points to a sequence node, then separate the initial
4245 * children that do not have suitably permutable bands and
4246 * return a pointer to the subsequence of children that do have such bands,
4247 * assuming there are any such subtrees.
4249 * In both cases, mark all local variables in "prog" that are accessed by
4250 * the group without permutable bands as requiring a declaration on the host.
4252 static __isl_give isl_schedule_node *isolate_permutable_subtrees(
4253 __isl_take isl_schedule_node *node, struct gpu_prog *prog)
4255 isl_union_set *filter;
4256 enum isl_schedule_node_type type;
4258 if (!node)
4259 return NULL;
4260 type = isl_schedule_node_get_type(node);
4261 if (type == isl_schedule_node_set) {
4262 filter = get_all_non_parallel_subtree_filters(node);
4263 node = declare_accessed_local_variables(node, prog, filter);
4264 node = isl_schedule_node_order_after(node, filter);
4265 } else if (type == isl_schedule_node_sequence) {
4266 filter = get_initial_non_parallel_subtree_filters(node);
4267 node = declare_accessed_local_variables(node, prog, filter);
4268 node = isl_schedule_node_order_before(node, filter);
4271 return node;
4274 /* Replace any reference to an array element in the range of "copy"
4275 * by a reference to all array elements (defined by the extent of the array).
4277 static __isl_give isl_union_map *approximate_copy_out(
4278 __isl_take isl_union_map *copy, struct gpu_prog *prog)
4280 int i;
4281 isl_union_map *res;
4283 res = isl_union_map_empty(isl_union_map_get_space(copy));
4285 for (i = 0; i < prog->n_array; ++i) {
4286 isl_space *space;
4287 isl_set *set;
4288 isl_union_map *copy_i;
4289 isl_union_set *extent, *domain;
4291 space = isl_space_copy(prog->array[i].space);
4292 extent = isl_union_set_from_set(isl_set_universe(space));
4293 copy_i = isl_union_map_copy(copy);
4294 copy_i = isl_union_map_intersect_range(copy_i, extent);
4295 set = isl_set_copy(prog->array[i].extent);
4296 extent = isl_union_set_from_set(set);
4297 domain = isl_union_map_domain(copy_i);
4298 copy_i = isl_union_map_from_domain_and_range(domain, extent);
4299 res = isl_union_map_union(res, copy_i);
4302 isl_union_map_free(copy);
4304 return res;
4307 /* Insert "kernel" marks that point to a ppcg_kernel structure
4308 * in front of all outermost tilable band that (by construction)
4309 * have at least one parallel loop.
4311 static __isl_give isl_schedule_node *mark_kernels(struct gpu_gen *gen,
4312 __isl_take isl_schedule_node *node)
4314 return isl_schedule_node_map_descendant_bottom_up(node,
4315 &mark_outer_permutable, gen);
4318 /* Construct schedule constraints from the dependences in prog->scop and
4319 * the array order dependences in prog->array_order.
4321 * If live range reordering is allowed, then we need to make sure
4322 * that live ranges on arrays are not run in parallel since doing
4323 * so would require array expansion. We therefore add the array
4324 * order dependences to the coincidence dependences. Non-zero array
4325 * order dependences will then prevent a schedule dimension from being
4326 * considered parallel.
4327 * Live ranges derived from scalars are allowed to be run in parallel
4328 * since we force the scalars to be mapped to private memory in
4329 * check_scalar_live_ranges.
4330 * If live range reordering is allowed, then the false dependences
4331 * are not added to the validity constraints as that would prevent
4332 * reordering. Instead, the external false dependences that enforce that reads
4333 * from potentially live-in data precede any later write and
4334 * that writes of potentially live-out data follow any other earlier write
4335 * are added to the validity and the coincidence constraints.
4336 * The false dependences are still added to the proximity constraints
4337 * for consistency with the case where live range reordering is not allowed.
4338 * The coincidence constraints then consist of flow dependences,
4339 * external false dependences and array order dependences.
4340 * The independences can be filtered out from the first two sets.
4341 * They have already been filtered out from the array order dependences
4342 * on a per array basis in collect_order_dependences.
4343 * There is no need for a per array handling of the other two sets
4344 * as there should be no flow or external false dependence on local
4345 * variables that can be filtered out.
4347 static __isl_give isl_schedule_constraints *construct_schedule_constraints(
4348 struct gpu_prog *prog)
4350 isl_union_set *domain;
4351 isl_union_map *dep_raw, *dep;
4352 isl_union_map *validity, *proximity, *coincidence;
4353 isl_schedule_constraints *sc;
4355 domain = isl_union_set_copy(prog->scop->domain);
4356 sc = isl_schedule_constraints_on_domain(domain);
4357 sc = isl_schedule_constraints_set_context(sc,
4358 isl_set_copy(prog->scop->context));
4359 if (prog->scop->options->live_range_reordering) {
4360 sc = isl_schedule_constraints_set_conditional_validity(sc,
4361 isl_union_map_copy(prog->scop->tagged_dep_flow),
4362 isl_union_map_copy(prog->scop->tagged_dep_order));
4363 proximity = isl_union_map_copy(prog->scop->dep_flow);
4364 validity = isl_union_map_copy(proximity);
4365 validity = isl_union_map_union(validity,
4366 isl_union_map_copy(prog->scop->dep_forced));
4367 proximity = isl_union_map_union(proximity,
4368 isl_union_map_copy(prog->scop->dep_false));
4369 coincidence = isl_union_map_copy(validity);
4370 coincidence = isl_union_map_subtract(coincidence,
4371 isl_union_map_copy(prog->scop->independence));
4372 coincidence = isl_union_map_union(coincidence,
4373 isl_union_map_copy(prog->array_order));
4374 } else {
4375 dep_raw = isl_union_map_copy(prog->scop->dep_flow);
4376 dep = isl_union_map_copy(prog->scop->dep_false);
4377 dep = isl_union_map_union(dep, dep_raw);
4378 dep = isl_union_map_coalesce(dep);
4379 proximity = isl_union_map_copy(dep);
4380 coincidence = isl_union_map_copy(dep);
4381 validity = dep;
4383 sc = isl_schedule_constraints_set_validity(sc, validity);
4384 sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
4385 sc = isl_schedule_constraints_set_proximity(sc, proximity);
4387 return sc;
4390 /* Compute an appropriate schedule based on the accesses in
4391 * gen->read and gen->write.
4393 * We derive schedule constraints from the dependences in gen->prog->scop
4394 * and then use isl to compute a schedule that has a parallel loop
4395 * in each tilable band.
4396 * During the schedule construction, some statement instances
4397 * may be grouped first based on the input schedule.
4399 static __isl_give isl_schedule *compute_schedule(struct gpu_gen *gen)
4401 isl_schedule_constraints *sc;
4402 isl_schedule *schedule;
4404 sc = construct_schedule_constraints(gen->prog);
4405 schedule = gen->prog->scop->schedule;
4406 schedule = ppcg_compute_schedule(sc, schedule, gen->options);
4408 return schedule;
4411 /* If the band node "node" has exactly one member then mark it permutable.
4413 static __isl_give isl_schedule_node *band_set_permutable(
4414 __isl_take isl_schedule_node *node,
4415 __isl_keep isl_schedule_constraints *sc)
4417 if (isl_schedule_node_band_n_member(node) == 1)
4418 node = isl_schedule_node_band_set_permutable(node, 1);
4420 return node;
4423 /* Return the coincidence constraints between pairs of instances
4424 * that are scheduled together by the ancestors of "node".
4425 * That is, select those coincidence constraints that relate
4426 * pairs of instances that have the same value for the prefix schedule.
4427 * If the schedule depth is zero, then the prefix schedule does not
4428 * contain any information, so we intersect domain and range
4429 * of the schedule constraints with the reaching domain elements instead.
4431 static __isl_give isl_union_map *get_local_coincidence(
4432 __isl_keep isl_schedule_node *node,
4433 __isl_keep isl_schedule_constraints *sc)
4435 isl_union_map *coincidence;
4436 isl_multi_union_pw_aff *prefix;
4437 isl_union_pw_multi_aff *contraction;
4439 coincidence = isl_schedule_constraints_get_coincidence(sc);
4440 contraction = isl_schedule_node_get_subtree_contraction(node);
4441 if (isl_schedule_node_get_schedule_depth(node) == 0) {
4442 isl_union_set *domain;
4444 domain = isl_schedule_node_get_domain(node);
4445 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4446 contraction);
4447 coincidence = isl_union_map_intersect_domain(coincidence,
4448 isl_union_set_copy(domain));
4449 coincidence = isl_union_map_intersect_range(coincidence,
4450 domain);
4451 return coincidence;
4454 prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
4455 prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix,
4456 contraction);
4457 return isl_union_map_eq_at_multi_union_pw_aff(coincidence, prefix);
4460 /* For each member in the band node "node", determine whether
4461 * it is coincident with respect to the outer nodes and mark
4462 * it accordingly.
4464 * That is, for each coincidence constraint between pairs
4465 * of instances that are scheduled together by the outer nodes,
4466 * check that domain and range are assigned the same value
4467 * by the band member. This test is performed by checking
4468 * that imposing the same value for the band member does not
4469 * remove any elements from the set of coincidence constraints.
4471 static __isl_give isl_schedule_node *band_set_coincident(
4472 __isl_take isl_schedule_node *node,
4473 __isl_keep isl_schedule_constraints *sc)
4475 isl_union_map *coincidence;
4476 isl_union_pw_multi_aff *contraction;
4477 isl_multi_union_pw_aff *partial;
4478 int i, n;
4480 coincidence = get_local_coincidence(node, sc);
4482 partial = isl_schedule_node_band_get_partial_schedule(node);
4483 contraction = isl_schedule_node_get_subtree_contraction(node);
4484 partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4485 contraction);
4486 n = isl_schedule_node_band_n_member(node);
4487 for (i = 0; i < n; ++i) {
4488 isl_union_map *coincidence_i;
4489 isl_union_pw_aff *upa;
4490 isl_multi_union_pw_aff *partial_i;
4491 int subset;
4493 upa = isl_multi_union_pw_aff_get_union_pw_aff(partial, i);
4494 partial_i = isl_multi_union_pw_aff_from_union_pw_aff(upa);
4495 coincidence_i = isl_union_map_copy(coincidence);
4496 coincidence_i = isl_union_map_eq_at_multi_union_pw_aff(
4497 coincidence_i, partial_i);
4498 subset = isl_union_map_is_subset(coincidence, coincidence_i);
4499 isl_union_map_free(coincidence_i);
4501 if (subset < 0)
4502 break;
4503 node = isl_schedule_node_band_member_set_coincident(node, i,
4504 subset);
4506 if (i < n)
4507 node = isl_schedule_node_free(node);
4508 isl_multi_union_pw_aff_free(partial);
4509 isl_union_map_free(coincidence);
4511 return node;
4514 /* If "node" is a band, then set its properties.
4516 * In particular, if the band has exactly one member, then mark it permutable.
4517 * Mark the band members coincident based on the coincidence constraints
4518 * of "sc".
4520 static __isl_give isl_schedule_node *set_band_properties(
4521 __isl_take isl_schedule_node *node, void *user)
4523 isl_schedule_constraints *sc = user;
4525 if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
4526 return node;
4527 if (isl_schedule_node_band_n_member(node) == 0)
4528 return node;
4530 node = band_set_permutable(node, sc);
4531 node = band_set_coincident(node, sc);
4533 return node;
4536 /* Return the original schedule with all bands marked permutable and
4537 * all band members marked coincident based on the coincidence constraints.
4538 * The bands are explicitly marked permutable so that they will be considered
4539 * by mark_outer_permutable.
4541 static __isl_give isl_schedule *determine_properties_original_schedule(
4542 struct gpu_gen *gen)
4544 isl_schedule *schedule;
4545 isl_schedule_constraints *sc;
4547 schedule = isl_schedule_copy(gen->prog->scop->schedule);
4548 sc = construct_schedule_constraints(gen->prog);
4549 schedule = isl_schedule_map_schedule_node_bottom_up(schedule,
4550 &set_band_properties, sc);
4551 isl_schedule_constraints_free(sc);
4553 return schedule;
4556 /* Compute a schedule or determine the properties of the original schedule
4557 * depending on the value of the "reschedule" option.
4559 static __isl_give isl_schedule *compute_or_set_properties(void *user)
4561 struct gpu_gen *gen = user;
4563 if (gen->options->reschedule)
4564 return compute_schedule(gen);
4565 else
4566 return determine_properties_original_schedule(gen);
4569 /* Obtain a schedule for the scop, by reading it from
4570 * a file, by computing one or by determining the properties
4571 * of the original schedule.
4573 static __isl_give isl_schedule *get_schedule(struct gpu_gen *gen)
4575 return ppcg_get_schedule(gen->ctx, gen->options,
4576 &compute_or_set_properties, gen);
4579 /* Construct the string "<a>_<b>".
4581 static char *concat(isl_ctx *ctx, const char *a, const char *b)
4583 isl_printer *p;
4584 char *s;
4586 p = isl_printer_to_str(ctx);
4587 p = isl_printer_print_str(p, a);
4588 p = isl_printer_print_str(p, "_");
4589 p = isl_printer_print_str(p, b);
4590 s = isl_printer_get_str(p);
4591 isl_printer_free(p);
4593 return s;
4596 /* For each array in "prog" of which an element appears in "accessed" and
4597 * that is not a read only scalar, create a zero-dimensional universe set
4598 * of which the tuple id has name "<prefix>_<name of array>" and a user
4599 * pointer pointing to the array (gpu_array_info).
4601 * If the array is local to "prog", then make sure it will be declared
4602 * in the host code.
4604 * Return the list of these universe sets.
4606 static __isl_give isl_union_set_list *create_copy_filters(struct gpu_prog *prog,
4607 const char *prefix, __isl_take isl_union_set *accessed)
4609 int i;
4610 isl_ctx *ctx;
4611 isl_union_set_list *filters;
4613 ctx = prog->ctx;
4614 filters = isl_union_set_list_alloc(ctx, 0);
4615 for (i = 0; i < prog->n_array; ++i) {
4616 struct gpu_array_info *array = &prog->array[i];
4617 isl_space *space;
4618 isl_set *accessed_i;
4619 int empty;
4620 char *name;
4621 isl_id *id;
4622 isl_union_set *uset;
4624 if (gpu_array_is_read_only_scalar(array))
4625 continue;
4627 space = isl_space_copy(array->space);
4628 accessed_i = isl_union_set_extract_set(accessed, space);
4629 empty = isl_set_plain_is_empty(accessed_i);
4630 isl_set_free(accessed_i);
4631 if (empty < 0) {
4632 filters = isl_union_set_list_free(filters);
4633 break;
4635 if (empty)
4636 continue;
4638 array->global = 1;
4639 if (array->local)
4640 array->declare_local = 1;
4642 name = concat(ctx, prefix, array->name);
4643 id = name ? isl_id_alloc(ctx, name, array) : NULL;
4644 free(name);
4645 space = isl_space_set_alloc(ctx, 0, 0);
4646 space = isl_space_set_tuple_id(space, isl_dim_set, id);
4647 uset = isl_union_set_from_set(isl_set_universe(space));
4649 filters = isl_union_set_list_add(filters, uset);
4651 isl_union_set_free(accessed);
4653 return filters;
4656 /* Make sure that code for the statements in "filters" that
4657 * copy arrays to or from the device is only generated when
4658 * the size of the corresponding array is positive.
4659 * That is, add a set node underneath "graft" with "filters" as children
4660 * and for each child add a guard that the selects the parameter
4661 * values for which the corresponding array has a positive size.
4662 * The array is available in the user pointer of the statement identifier.
4663 * "depth" is the schedule depth of the position where "graft"
4664 * will be added.
4666 static __isl_give isl_schedule_node *insert_positive_size_guards(
4667 __isl_take isl_schedule_node *graft,
4668 __isl_take isl_union_set_list *filters, int depth)
4670 int i, n;
4672 graft = isl_schedule_node_child(graft, 0);
4673 graft = isl_schedule_node_insert_set(graft, filters);
4674 n = isl_schedule_node_n_children(graft);
4675 for (i = 0; i < n; ++i) {
4676 isl_union_set *filter;
4677 isl_set *domain, *guard;
4678 isl_id *id;
4679 struct gpu_array_info *array;
4681 graft = isl_schedule_node_child(graft, i);
4682 filter = isl_schedule_node_filter_get_filter(graft);
4683 domain = isl_set_from_union_set(filter);
4684 id = isl_set_get_tuple_id(domain);
4685 array = isl_id_get_user(id);
4686 isl_id_free(id);
4687 isl_set_free(domain);
4688 guard = gpu_array_positive_size_guard(array);
4689 guard = isl_set_from_params(guard);
4690 guard = isl_set_add_dims(guard, isl_dim_set, depth);
4691 graft = isl_schedule_node_child(graft, 0);
4692 graft = isl_schedule_node_insert_guard(graft, guard);
4693 graft = isl_schedule_node_parent(graft);
4694 graft = isl_schedule_node_parent(graft);
4696 graft = isl_schedule_node_parent(graft);
4698 return graft;
4701 /* Create a graft for copying arrays to or from the device,
4702 * whenever the size of the array is strictly positive.
4703 * Each statement is called "<prefix>_<name of array>" and
4704 * the identifier has a user pointer pointing to the array.
4705 * The graft will be added at the position specified by "node".
4706 * "copy" contains the array elements that need to be copied.
4707 * Only arrays of which some elements need to be copied
4708 * will have a corresponding statement in the graph.
4709 * Note though that each such statement will copy the entire array.
4711 static __isl_give isl_schedule_node *create_copy_device(struct gpu_prog *prog,
4712 __isl_keep isl_schedule_node *node, const char *prefix,
4713 __isl_take isl_union_set *copy)
4715 int depth;
4716 isl_ctx *ctx;
4717 isl_space *space;
4718 isl_union_set *all, *domain;
4719 isl_union_set_list *filters;
4720 isl_union_map *extension;
4721 isl_schedule_node *graft;
4723 ctx = prog->ctx;
4724 depth = isl_schedule_node_get_schedule_depth(node);
4725 filters = create_copy_filters(prog, prefix, copy);
4726 all = isl_union_set_list_union(isl_union_set_list_copy(filters));
4728 space = depth < 0 ? NULL : isl_space_set_alloc(ctx, 0, depth);
4729 domain = isl_union_set_from_set(isl_set_universe(space));
4730 extension = isl_union_map_from_domain_and_range(domain, all);
4731 graft = isl_schedule_node_from_extension(extension);
4733 if (!filters)
4734 return isl_schedule_node_free(graft);
4735 if (isl_union_set_list_n_union_set(filters) == 0) {
4736 isl_union_set_list_free(filters);
4737 return graft;
4740 return insert_positive_size_guards(graft, filters, depth);
4743 /* Return (the universe spaces of) the arrays that are declared
4744 * inside the scop corresponding to "prog" and for which all
4745 * potential writes inside the scop form a subset of "domain".
4747 static __isl_give isl_union_set *extract_local_accesses(struct gpu_prog *prog,
4748 __isl_keep isl_union_set *domain)
4750 int i;
4751 isl_union_set *local;
4753 local = isl_union_set_empty(isl_union_set_get_space(domain));
4755 for (i = 0; i < prog->n_array; ++i) {
4756 isl_set *set;
4757 isl_union_map *to_outer;
4758 isl_union_map *may_write;
4759 isl_union_set *write_domain;
4760 isl_union_set *fields;
4761 int subset;
4763 if (!prog->array[i].local)
4764 continue;
4766 set = isl_set_universe(isl_space_copy(prog->array[i].space));
4767 to_outer = isl_union_map_copy(prog->to_outer);
4768 to_outer = isl_union_map_intersect_range(to_outer,
4769 isl_union_set_from_set(isl_set_copy(set)));
4770 fields = isl_union_map_domain(to_outer);
4771 may_write = isl_union_map_copy(prog->may_write);
4772 may_write = isl_union_map_intersect_range(may_write, fields);
4773 write_domain = isl_union_map_domain(may_write);
4774 subset = isl_union_set_is_subset(write_domain, domain);
4775 isl_union_set_free(write_domain);
4777 if (subset < 0) {
4778 isl_set_free(set);
4779 return isl_union_set_free(local);
4780 } else if (subset) {
4781 local = isl_union_set_add_set(local, set);
4782 } else {
4783 isl_set_free(set);
4787 return local;
4790 /* Internal data structure for node_may_persist.
4792 * "tagger" maps tagged iteration domains to the corresponding untagged
4793 * iteration domain.
4795 * "may_persist_flow" is the set of all tagged dataflow dependences
4796 * with those dependences removed that either precede or follow
4797 * the kernel launch in a sequence.
4798 * "inner_band_flow" is the set of all tagged dataflow dependences
4799 * that are local to a given iteration of the outer band nodes
4800 * with respect to the current node.
4801 * "local_flow" is equal to "inner_band_flow", except that the domain
4802 * and the range have been intersected with intermediate filters
4803 * on children of sets or sequences.
4805 struct ppcg_may_persist_data {
4806 isl_union_pw_multi_aff *tagger;
4808 isl_union_map *local_flow;
4809 isl_union_map *inner_band_flow;
4810 isl_union_map *may_persist_flow;
4813 /* Update the information in "data" based on the band ancestor "node".
4815 * In particular, we restrict the dependences in data->local_flow
4816 * to those dependence where the source and the sink occur in
4817 * the same iteration of the given band node.
4818 * We also update data->inner_band_flow to the new value of
4819 * data->local_flow.
4821 static int update_may_persist_at_band(__isl_keep isl_schedule_node *node,
4822 struct ppcg_may_persist_data *data)
4824 isl_multi_union_pw_aff *partial;
4825 isl_union_pw_multi_aff *contraction;
4826 isl_union_map *flow;
4828 if (isl_schedule_node_band_n_member(node) == 0)
4829 return 0;
4831 partial = isl_schedule_node_band_get_partial_schedule(node);
4832 contraction = isl_schedule_node_get_subtree_contraction(node);
4833 partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4834 contraction);
4835 partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4836 isl_union_pw_multi_aff_copy(data->tagger));
4838 flow = data->local_flow;
4839 flow = isl_union_map_eq_at_multi_union_pw_aff(flow, partial);
4840 data->local_flow = flow;
4842 isl_union_map_free(data->inner_band_flow);
4843 data->inner_band_flow = isl_union_map_copy(data->local_flow);
4845 return 0;
4848 /* Given a set of local reaching domain elements "domain",
4849 * expand them to the corresponding leaf domain elements using "contraction"
4850 * and insert the array references tags using data->tagger.
4852 static __isl_give isl_union_set *expand_and_tag(
4853 __isl_take isl_union_set *domain,
4854 __isl_take isl_union_pw_multi_aff *contraction,
4855 struct ppcg_may_persist_data *data)
4857 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4858 contraction);
4859 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4860 isl_union_pw_multi_aff_copy(data->tagger));
4861 return domain;
4864 /* Given a filter node that is the child of a set or sequence node,
4865 * restrict data->local_flow to refer only to those elements
4866 * in the filter of the node.
4867 * "contraction" maps the leaf domain elements of the schedule tree
4868 * to the corresponding domain elements at (the parent of) "node".
4870 static int filter_flow(__isl_keep isl_schedule_node *node,
4871 struct ppcg_may_persist_data *data,
4872 __isl_take isl_union_pw_multi_aff *contraction)
4874 isl_union_set *filter;
4875 isl_union_map *flow;
4877 flow = data->local_flow;
4878 filter = isl_schedule_node_filter_get_filter(node);
4879 filter = expand_and_tag(filter, contraction, data);
4880 flow = isl_union_map_intersect_domain(flow, isl_union_set_copy(filter));
4881 flow = isl_union_map_intersect_range(flow, filter);
4882 data->local_flow = flow;
4884 return 0;
4887 /* Given a filter node "node", collect the filters on all preceding siblings
4888 * (which are also filter nodes), add them to "filters" and return the result.
4890 static __isl_give isl_union_set *add_previous_filters(
4891 __isl_take isl_union_set *filters, __isl_keep isl_schedule_node *node)
4893 isl_schedule_node *sibling;
4895 sibling = isl_schedule_node_copy(node);
4896 while (sibling && isl_schedule_node_has_previous_sibling(sibling)) {
4897 isl_union_set *filter;
4899 sibling = isl_schedule_node_previous_sibling(sibling);
4900 filter = isl_schedule_node_filter_get_filter(sibling);
4901 filters = isl_union_set_union(filters, filter);
4903 isl_schedule_node_free(sibling);
4904 if (!sibling)
4905 return isl_union_set_free(filters);
4907 return filters;
4910 /* Given a filter node "node", collect the filters on all following siblings
4911 * (which are also filter nodes), add them to "filters" and return the result.
4913 static __isl_give isl_union_set *add_next_filters(
4914 __isl_take isl_union_set *filters, __isl_keep isl_schedule_node *node)
4916 isl_schedule_node *sibling;
4918 sibling = isl_schedule_node_copy(node);
4919 while (sibling && isl_schedule_node_has_next_sibling(sibling)) {
4920 isl_union_set *filter;
4922 sibling = isl_schedule_node_next_sibling(sibling);
4923 filter = isl_schedule_node_filter_get_filter(sibling);
4924 filters = isl_union_set_union(filters, filter);
4926 isl_schedule_node_free(sibling);
4927 if (!sibling)
4928 return isl_union_set_free(filters);
4930 return filters;
4933 /* Remove those flow dependences from data->may_persist_flow
4934 * that flow between elements of "domain" within the same iteration
4935 * of all outer band nodes.
4936 * "contraction" maps the leaf domain elements of the schedule tree
4937 * to the corresponding elements "domain".
4939 static void remove_external_flow(struct ppcg_may_persist_data *data,
4940 __isl_take isl_union_set *domain,
4941 __isl_keep isl_union_pw_multi_aff *contraction)
4943 isl_union_map *flow;
4945 contraction = isl_union_pw_multi_aff_copy(contraction);
4946 domain = expand_and_tag(domain, contraction, data);
4947 flow = isl_union_map_copy(data->local_flow);
4948 flow = isl_union_map_intersect_domain(flow, isl_union_set_copy(domain));
4949 flow = isl_union_map_intersect_range(flow, domain);
4951 data->may_persist_flow = isl_union_map_subtract(data->may_persist_flow,
4952 flow);
4955 /* Update the information in "data" based on the filter ancestor "node".
4956 * We only need to modify anything if the filter is the child
4957 * of a set or sequence node.
4959 * In the case of a sequence, we remove the dependences between
4960 * statement instances that are both executed either before or
4961 * after the subtree that will be mapped to a kernel, within
4962 * the same iteration of outer bands.
4964 * In both cases, we restrict data->local_flow to the current child.
4966 static int update_may_persist_at_filter(__isl_keep isl_schedule_node *node,
4967 struct ppcg_may_persist_data *data)
4969 enum isl_schedule_node_type type;
4970 isl_schedule_node *parent;
4971 isl_space *space;
4972 isl_union_pw_multi_aff *contraction;
4973 isl_union_set *before, *after, *filter;
4975 type = isl_schedule_node_get_parent_type(node);
4976 if (type != isl_schedule_node_sequence && type != isl_schedule_node_set)
4977 return 0;
4979 parent = isl_schedule_node_copy(node);
4980 parent = isl_schedule_node_parent(parent);
4981 contraction = isl_schedule_node_get_subtree_contraction(parent);
4982 isl_schedule_node_free(parent);
4984 if (type == isl_schedule_node_set)
4985 return filter_flow(node, data, contraction);
4987 filter = isl_schedule_node_filter_get_filter(node);
4988 space = isl_union_set_get_space(filter);
4989 isl_union_set_free(filter);
4990 before = isl_union_set_empty(space);
4991 after = isl_union_set_copy(before);
4992 before = add_previous_filters(before, node);
4993 after = add_next_filters(after, node);
4995 remove_external_flow(data, before, contraction);
4996 remove_external_flow(data, after, contraction);
4998 return filter_flow(node, data, contraction);
5001 /* Update the information in "data" based on the ancestor "node".
5003 static isl_stat update_may_persist_at(__isl_keep isl_schedule_node *node,
5004 void *user)
5006 struct ppcg_may_persist_data *data = user;
5008 switch (isl_schedule_node_get_type(node)) {
5009 case isl_schedule_node_error:
5010 return isl_stat_error;
5011 case isl_schedule_node_context:
5012 case isl_schedule_node_domain:
5013 case isl_schedule_node_expansion:
5014 case isl_schedule_node_extension:
5015 case isl_schedule_node_guard:
5016 case isl_schedule_node_leaf:
5017 case isl_schedule_node_mark:
5018 case isl_schedule_node_sequence:
5019 case isl_schedule_node_set:
5020 break;
5021 case isl_schedule_node_band:
5022 if (update_may_persist_at_band(node, data) < 0)
5023 return isl_stat_error;
5024 break;
5025 case isl_schedule_node_filter:
5026 if (update_may_persist_at_filter(node, data) < 0)
5027 return isl_stat_error;
5028 break;
5031 return isl_stat_ok;
5034 /* Determine the set of array elements that may need to be perserved
5035 * by a kernel constructed from the subtree at "node".
5036 * This includes the set of array elements that may need to be preserved
5037 * by the entire scop (prog->may_persist) and the elements for which
5038 * there is a potential flow dependence that may cross a kernel launch.
5040 * To determine the second set, we start from all flow dependences.
5041 * From this set of dependences, we remove those that cannot possibly
5042 * require data to be preserved by a kernel launch.
5043 * In particular, we consider the following sets of dependences.
5044 * - dependences of which the write occurs inside the kernel.
5045 * If the data is needed outside the kernel, then it will
5046 * be copied out immediately after the kernel launch, so there
5047 * is no need for any special care.
5048 * - dependences of which the read occurs inside the kernel and the
5049 * corresponding write occurs inside the same iteration of the
5050 * outer band nodes. This means that the data is needed in
5051 * the first kernel launch after the write, which is already
5052 * taken care of by the standard copy-in. That is, the data
5053 * do not need to be preserved by any intermediate call to
5054 * the same kernel.
5055 * - dependences of which the write and the read either both occur
5056 * before the kernel launch or both occur after the kernel launch,
5057 * within the same iteration of the outer band nodes with respect
5058 * to the sequence that determines the ordering of the dependence
5059 * and the kernel launch. Such flow dependences cannot cross
5060 * any kernel launch.
5062 * For the remaining (tagged) dependences, we take the domain
5063 * (i.e., the tagged writes) and apply the tagged access relation
5064 * to obtain the accessed data elements.
5065 * These are then combined with the elements that may need to be
5066 * preserved by the entire scop.
5068 static __isl_give isl_union_set *node_may_persist(
5069 __isl_keep isl_schedule_node *node, struct gpu_prog *prog)
5071 struct ppcg_may_persist_data data;
5072 isl_union_pw_multi_aff *contraction;
5073 isl_union_set *domain;
5074 isl_union_set *persist;
5075 isl_union_map *flow, *local_flow;
5077 data.tagger = prog->scop->tagger;
5079 flow = isl_union_map_copy(prog->scop->tagged_dep_flow);
5080 data.local_flow = isl_union_map_copy(flow);
5081 data.inner_band_flow = isl_union_map_copy(flow);
5082 data.may_persist_flow = flow;
5083 if (isl_schedule_node_foreach_ancestor_top_down(node,
5084 &update_may_persist_at, &data) < 0)
5085 data.may_persist_flow =
5086 isl_union_map_free(data.may_persist_flow);
5087 flow = data.may_persist_flow;
5088 isl_union_map_free(data.local_flow);
5090 domain = isl_schedule_node_get_domain(node);
5091 contraction = isl_schedule_node_get_subtree_contraction(node);
5092 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
5093 contraction);
5094 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
5095 isl_union_pw_multi_aff_copy(data.tagger));
5096 flow = isl_union_map_subtract_domain(flow, isl_union_set_copy(domain));
5097 local_flow = data.inner_band_flow;
5098 local_flow = isl_union_map_intersect_range(local_flow, domain);
5099 flow = isl_union_map_subtract(flow, local_flow);
5101 persist = isl_union_map_domain(flow);
5102 persist = isl_union_set_apply(persist,
5103 isl_union_map_copy(prog->scop->tagged_may_writes));
5104 persist = isl_union_set_union(persist,
5105 isl_union_set_copy(prog->may_persist));
5107 return persist;
5110 /* Add nodes for copying outer arrays in and out of the device
5111 * before and after the subtree "node", which contains one or more kernels.
5112 * "domain" contains the original statement instances, i.e.,
5113 * those that correspond to the domains of the access relations in "prog".
5114 * In particular, the domain has not been contracted in any way.
5115 * "prefix" contains the prefix schedule at that point, in terms
5116 * of the same original statement instances.
5118 * We first compute the sets of outer array elements that need
5119 * to be copied in and out and then graft in the nodes for
5120 * performing this copying.
5122 * In particular, for each array that is possibly written anywhere in
5123 * the subtree "node" and that may be used after "node"
5124 * or that may be visible outside the corresponding scop,
5125 * we copy out its entire extent.
5127 * Any array elements that is read without first being written inside
5128 * the subtree "node" needs to be copied in.
5129 * Furthermore, if there are any array elements that
5130 * are copied out, but that may not be written inside "node, then
5131 * they also need to be copied in to ensure that the value after execution
5132 * is the same as the value before execution, at least for those array
5133 * elements that may have their values preserved by the scop or that
5134 * may be written before "node" and read after "node".
5135 * In case the array elements are structures, we need to take into
5136 * account that all members of the structures need to be written
5137 * by "node" before we can avoid copying the data structure in.
5139 * Note that the may_write relation is intersected with the domain,
5140 * which has been intersected with the context.
5141 * This helps in those cases where the arrays are declared with a fixed size,
5142 * while the accesses are parametric and the context assigns a fixed value
5143 * to the parameters.
5145 * If an element from a local array is read without first being written,
5146 * then there is no point in copying it in since it cannot have been
5147 * written prior to the scop. Warn about the uninitialized read instead.
5149 static __isl_give isl_schedule_node *add_to_from_device(
5150 __isl_take isl_schedule_node *node, __isl_take isl_union_set *domain,
5151 __isl_take isl_union_map *prefix, struct gpu_prog *prog)
5153 isl_union_set *local;
5154 isl_union_set *may_persist;
5155 isl_union_map *may_write, *must_write, *copy_out, *not_written;
5156 isl_union_map *read, *copy_in;
5157 isl_union_map *tagged;
5158 isl_union_map *local_uninitialized;
5159 isl_schedule_node *graft;
5161 tagged = isl_union_map_copy(prog->scop->tagged_reads);
5162 tagged = isl_union_map_union(tagged,
5163 isl_union_map_copy(prog->scop->tagged_may_writes));
5165 may_write = isl_union_map_copy(prog->may_write);
5166 may_write = isl_union_map_intersect_domain(may_write,
5167 isl_union_set_copy(domain));
5168 may_write = remove_local_accesses(prog,
5169 isl_union_map_copy(tagged), may_write,
5170 isl_union_map_copy(prefix), 0);
5171 may_write = isl_union_map_apply_range(may_write,
5172 isl_union_map_copy(prog->to_outer));
5173 may_write = isl_union_map_apply_domain(may_write,
5174 isl_union_map_copy(prefix));
5175 may_write = approximate_copy_out(may_write, prog);
5176 copy_out = isl_union_map_copy(may_write);
5177 may_write = isl_union_map_apply_range(may_write,
5178 isl_union_map_copy(prog->to_inner));
5179 must_write = isl_union_map_copy(prog->must_write);
5180 must_write = isl_union_map_apply_domain(must_write,
5181 isl_union_map_copy(prefix));
5182 may_persist = node_may_persist(node, prog);
5183 may_write = isl_union_map_intersect_range(may_write, may_persist);
5184 not_written = isl_union_map_subtract(may_write, must_write);
5186 local = extract_local_accesses(prog, domain);
5187 read = isl_union_map_copy(prog->read);
5188 read = isl_union_map_intersect_domain(read, domain);
5189 read = remove_local_accesses(prog, tagged, read,
5190 isl_union_map_copy(prefix), 1);
5191 local = isl_union_set_apply(local, isl_union_map_copy(prog->to_inner));
5192 local_uninitialized = isl_union_map_copy(prog->scop->live_in);
5193 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
5194 local);
5195 local_uninitialized = isl_union_map_intersect(local_uninitialized,
5196 isl_union_map_copy(read));
5197 if (!isl_union_map_is_empty(local_uninitialized)) {
5198 fprintf(stderr,
5199 "possibly uninitialized reads (not copied in):\n");
5200 isl_union_map_dump(local_uninitialized);
5202 read = isl_union_map_subtract(read, local_uninitialized);
5203 read = isl_union_map_apply_domain(read, prefix);
5204 copy_in = isl_union_map_union(read, not_written);
5205 copy_in = isl_union_map_apply_range(copy_in,
5206 isl_union_map_copy(prog->to_outer));
5208 graft = create_copy_device(prog, node, "to_device",
5209 isl_union_map_range(copy_in));
5210 node = isl_schedule_node_graft_before(node, graft);
5211 graft = create_copy_device(prog, node, "from_device",
5212 isl_union_map_range(copy_out));
5213 node = isl_schedule_node_graft_after(node, graft);
5215 return node;
5218 /* Add nodes for initializing ("init_device") and clearing ("clear_device")
5219 * the device before and after "node".
5221 static __isl_give isl_schedule_node *add_init_clear_device(
5222 __isl_take isl_schedule_node *node)
5224 isl_ctx *ctx;
5225 isl_space *space;
5226 isl_union_set *domain;
5227 isl_schedule_node *graft;
5229 ctx = isl_schedule_node_get_ctx(node);
5231 space = isl_space_set_alloc(ctx, 0, 0);
5232 space = isl_space_set_tuple_name(space, isl_dim_set, "init_device");
5233 domain = isl_union_set_from_set(isl_set_universe(space));
5234 graft = isl_schedule_node_from_domain(domain);
5236 node = isl_schedule_node_graft_before(node, graft);
5238 space = isl_space_set_alloc(ctx, 0, 0);
5239 space = isl_space_set_tuple_name(space, isl_dim_set, "clear_device");
5240 domain = isl_union_set_from_set(isl_set_universe(space));
5241 graft = isl_schedule_node_from_domain(domain);
5243 node = isl_schedule_node_graft_after(node, graft);
5245 return node;
5248 /* Update "schedule" for mapping to a GPU device.
5250 * In particular, insert a context node, create kernels for
5251 * each outermost tilable band and introduce nodes for copying arrays
5252 * in and out of the device and for initializing and clearing the device.
5253 * If the child of the initial root points to a set node,
5254 * then children of this node that do not contain any tilable bands
5255 * are separated from the other children and are not mapped to
5256 * the device.
5258 * The GPU code is generated in a context where at least one
5259 * statement instance is executed. The corresponding guard is inserted
5260 * around the entire schedule.
5262 static __isl_give isl_schedule *map_to_device(struct gpu_gen *gen,
5263 __isl_take isl_schedule *schedule)
5265 isl_schedule_node *node;
5266 isl_set *context;
5267 isl_set *guard;
5268 isl_union_set *domain;
5269 isl_union_map *prefix;
5270 isl_union_pw_multi_aff *contraction;
5271 struct gpu_prog *prog;
5273 context = isl_set_copy(gen->prog->context);
5274 context = isl_set_from_params(context);
5275 schedule = isl_schedule_insert_context(schedule, context);
5277 prog = gen->prog;
5278 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
5279 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
5280 guard = isl_set_from_params(guard);
5282 node = isl_schedule_get_root(schedule);
5283 isl_schedule_free(schedule);
5284 node = isl_schedule_node_child(node, 0);
5285 node = isl_schedule_node_child(node, 0);
5286 node = isolate_permutable_subtrees(node, gen->prog);
5287 domain = isl_schedule_node_get_domain(node);
5288 contraction = isl_schedule_node_get_subtree_contraction(node);
5289 domain = isl_union_set_preimage_union_pw_multi_aff(domain,
5290 isl_union_pw_multi_aff_copy(contraction));
5291 prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
5292 prefix = isl_union_map_preimage_domain_union_pw_multi_aff(prefix,
5293 contraction);
5294 node = mark_kernels(gen, node);
5295 node = add_to_from_device(node, domain, prefix, gen->prog);
5296 node = isl_schedule_node_root(node);
5297 node = isl_schedule_node_child(node, 0);
5298 node = isl_schedule_node_child(node, 0);
5299 node = isl_schedule_node_insert_guard(node, guard);
5300 node = isl_schedule_node_child(node, 0);
5301 node = add_init_clear_device(node);
5302 schedule = isl_schedule_node_get_schedule(node);
5303 isl_schedule_node_free(node);
5305 return schedule;
5308 /* Internal data structure for extract_access.
5309 * "next_access" points to the end of a linked list that is extended
5310 * by extract_access.
5311 * "single_expression" is set if the access expressions belong to
5312 * an expression statement (i.e., a statement without internal control).
5313 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5315 struct ppcg_extract_access_data {
5316 struct gpu_stmt_access **next_access;
5317 int single_expression;
5318 isl_union_map *any_to_outer;
5321 /* Given a tagged access relation to a single array "tagged", extract it
5322 * as a map, taking into account that the input may be empty.
5323 * If the access relation is empty, then it does not contain
5324 * any space information, so we try to recover it from the index
5325 * expression.
5326 * The space of the index expression is of the form I -> A,
5327 * with I the statement instances and A the array, or [I -> F] -> A,
5328 * with F the filters corresponding to arguments.
5329 * We first drop F, if present, obtaining I -> A.
5330 * Then we construct I -> R, with R the reference tag,
5331 * combine the two into I -> [R -> A] and uncurry to obtain
5332 * the final result [I -> R] -> A.
5333 * Note that the index expression may have a lower dimension
5334 * than that of the array, but this dimension is not used
5335 * if the access relation is empty.
5337 static __isl_give isl_map *extract_single_tagged_access(
5338 __isl_take isl_union_map *tagged, __isl_keep pet_expr *expr)
5340 int empty;
5341 isl_id *id;
5342 isl_space *space, *space2;
5343 isl_multi_pw_aff *index;
5345 empty = isl_union_map_is_empty(tagged);
5346 if (empty < 0)
5347 goto error;
5348 if (!empty)
5349 return isl_map_from_union_map(tagged);
5350 isl_union_map_free(tagged);
5352 index = pet_expr_access_get_index(expr);
5353 space = isl_multi_pw_aff_get_space(index);
5354 isl_multi_pw_aff_free(index);
5355 if (isl_space_domain_is_wrapping(space))
5356 space = isl_space_domain_factor_domain(space);
5357 space2 = isl_space_copy(space);
5358 space2 = isl_space_from_domain(isl_space_domain(space));
5359 id = pet_expr_access_get_ref_id(expr);
5360 space2 = isl_space_set_tuple_id(space2, isl_dim_out, id);
5361 space = isl_space_range_product(space2, space);
5362 space = isl_space_uncurry(space);
5364 return isl_map_empty(space);
5365 error:
5366 isl_union_map_free(tagged);
5367 return NULL;
5370 /* Does the index expression "index" of "expr" represent an access
5371 * to a single element?
5372 * That is, is "index" completely specified?
5374 * If "expr" accesses elements from different spaces (i.e., fields
5375 * of a structure), then it does not access a single element.
5376 * Otherwise, if the single space of the access matches the space
5377 * of "index", then the index expression is completely specified
5378 * (no pointer to a lower-dimensional slice of the accessed array)
5379 * and a single element is being accessed.
5381 static isl_bool complete_index(__isl_keep pet_expr *expr,
5382 __isl_keep isl_multi_pw_aff *index)
5384 isl_union_map *read, *write, *all;
5385 isl_map *map;
5386 isl_space *space1, *space2;
5387 isl_bool complete;
5389 read = pet_expr_access_get_may_read(expr);
5390 write = pet_expr_access_get_may_write(expr);
5391 all = isl_union_map_union(read, write);
5392 if (!all)
5393 return isl_bool_error;
5394 if (isl_union_map_n_map(all) != 1) {
5395 isl_union_map_free(all);
5396 return isl_bool_false;
5398 map = isl_map_from_union_map(all);
5399 space1 = isl_map_get_space(map);
5400 isl_map_free(map);
5401 space2 = isl_multi_pw_aff_get_space(index);
5402 complete = isl_space_tuple_is_equal(space1, isl_dim_out,
5403 space2, isl_dim_out);
5404 isl_space_free(space1);
5405 isl_space_free(space2);
5407 return complete;
5410 /* Does "expr" access a single, fixed element (independently of the statement
5411 * instance)?
5412 * That is, does it have a completely specified constant index expression?
5414 * Note that it is not sufficient for the index expression to be
5415 * piecewise constant. isl_multi_pw_aff_is_cst can therefore not be used.
5417 static isl_bool accesses_fixed_element(__isl_keep pet_expr *expr)
5419 int i, n;
5420 isl_multi_pw_aff *index;
5421 isl_bool fixed = isl_bool_true;
5423 index = pet_expr_access_get_index(expr);
5424 if (index < 0)
5425 return isl_bool_error;
5426 n = isl_multi_pw_aff_dim(index, isl_dim_out);
5427 for (i = 0; i < n; ++i) {
5428 isl_pw_aff *pa;
5430 pa = isl_multi_pw_aff_get_pw_aff(index, 0);
5431 fixed = isl_pw_aff_n_piece(pa) == 1;
5432 if (fixed)
5433 fixed = isl_pw_aff_is_cst(pa);
5434 isl_pw_aff_free(pa);
5435 if (fixed < 0 || !fixed)
5436 break;
5438 if (fixed >= 0 && fixed)
5439 fixed = complete_index(expr, index);
5440 isl_multi_pw_aff_free(index);
5442 return fixed;
5445 /* Extract a gpu_stmt_access from "expr", append it to the list
5446 * that ends in *data->next_access and update the end of the list.
5447 * If the access expression performs a write, then it is considered
5448 * exact only if it appears in a single expression statement and
5449 * if its may access relation is equal to its must access relation.
5451 * The combined set of may accesses may be a union if member accesses
5452 * are involved, but the entire set is derived from a single reference and
5453 * therefore from a single index expression. These accesses therefore
5454 * all map to the same outer array.
5456 static int extract_access(__isl_keep pet_expr *expr, void *user)
5458 struct ppcg_extract_access_data *data = user;
5459 isl_union_map *tagged;
5460 struct gpu_stmt_access *access;
5461 isl_ctx *ctx = pet_expr_get_ctx(expr);
5462 isl_multi_pw_aff *index;
5464 access = isl_alloc_type(ctx, struct gpu_stmt_access);
5465 assert(access);
5466 access->next = NULL;
5467 access->read = pet_expr_access_is_read(expr);
5468 access->write = pet_expr_access_is_write(expr);
5469 tagged = pet_expr_access_get_tagged_may_read(expr);
5470 tagged = isl_union_map_union(tagged,
5471 pet_expr_access_get_tagged_may_write(expr));
5472 tagged = isl_union_map_apply_range(tagged,
5473 isl_union_map_copy(data->any_to_outer));
5474 if (!access->write) {
5475 access->exact_write = 1;
5476 } else if (!data->single_expression) {
5477 access->exact_write = 0;
5478 } else {
5479 isl_union_map *must, *may;
5480 may = isl_union_map_copy(tagged);
5481 may = isl_union_map_domain_factor_domain(may);
5482 must = pet_expr_access_get_must_write(expr);
5483 access->exact_write = isl_union_map_is_equal(must, may);
5484 isl_union_map_free(must);
5485 isl_union_map_free(may);
5487 index = pet_expr_access_get_index(expr);
5488 access->n_index = isl_multi_pw_aff_dim(index, isl_dim_out);
5489 isl_multi_pw_aff_free(index);
5490 access->ref_id = pet_expr_access_get_ref_id(expr);
5491 access->tagged_access = extract_single_tagged_access(tagged, expr);
5492 access->access = isl_map_copy(access->tagged_access);
5493 access->access = isl_map_domain_factor_domain(access->access);
5494 access->fixed_element = accesses_fixed_element(expr);
5496 *data->next_access = access;
5497 data->next_access = &(*data->next_access)->next;
5499 if (!access->access || access->fixed_element < 0)
5500 return -1;
5502 return 0;
5505 /* Construct a linked list of gpu_stmt_access objects,
5506 * one for each access expression in the statement body.
5507 * "any_to_outer" maps all intermediate arrays to their outer arrays.
5509 static int pet_stmt_extract_accesses(struct gpu_stmt *stmt,
5510 __isl_keep isl_union_map *any_to_outer)
5512 struct ppcg_extract_access_data data;
5514 stmt->accesses = NULL;
5515 data.next_access = &stmt->accesses;
5516 data.single_expression =
5517 pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
5518 data.any_to_outer = any_to_outer;
5519 return pet_tree_foreach_access_expr(stmt->stmt->body,
5520 &extract_access, &data);
5523 /* Has statement "stmt" been killed from "scop"?
5524 * That is, is the instance set of "scop" free from any
5525 * instances of "stmt"?
5527 static isl_bool is_stmt_killed(struct ppcg_scop *scop, struct pet_stmt *stmt)
5529 isl_space *space;
5530 isl_set *left;
5531 isl_bool empty;
5533 if (!scop || !stmt)
5534 return isl_bool_error;
5535 space = isl_set_get_space(stmt->domain);
5536 left = isl_union_set_extract_set(scop->domain, space);
5537 empty = isl_set_plain_is_empty(left);
5538 isl_set_free(left);
5540 return empty;
5543 /* Return an array of gpu_stmt representing the statements in "scop".
5544 * Do not collect array accesses for statements that have been killed.
5546 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
5547 __isl_keep isl_union_map *any_to_outer)
5549 int i;
5550 struct gpu_stmt *stmts;
5552 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->pet->n_stmt);
5553 if (!stmts)
5554 return NULL;
5556 for (i = 0; i < scop->pet->n_stmt; ++i) {
5557 struct gpu_stmt *s = &stmts[i];
5558 isl_bool killed;
5560 s->id = isl_set_get_tuple_id(scop->pet->stmts[i]->domain);
5561 s->stmt = scop->pet->stmts[i];
5562 killed = is_stmt_killed(scop, scop->pet->stmts[i]);
5563 if (killed < 0)
5564 return free_stmts(stmts, i + 1);
5565 if (killed)
5566 continue;
5567 if (pet_stmt_extract_accesses(s, any_to_outer) < 0)
5568 return free_stmts(stmts, i + 1);
5571 return stmts;
5574 /* Generate CUDA code for "scop" and print it to "p".
5575 * After generating an AST for the transformed scop as explained below,
5576 * we call "gen->print" to print the AST in the desired output format
5577 * to "p".
5579 * If it turns out that it does not make sense to generate GPU code,
5580 * then we generate CPU code instead.
5582 * The declarations of the arrays that are visible outside of the scop
5583 * are printed outside of the code generated from the schedule,
5584 * because the generated code may involve a guard around the entire code.
5586 * We first compute a schedule that respects the dependences
5587 * of the original program and select the outermost bands
5588 * of tilable dimensions that have at least one parallel loop.
5589 * If the --load-schedule is specified, then the loaded schedule
5590 * is used instead of a computed schedule.
5592 * Each of these bands B is then tiled according to "tile" sizes, resulting
5593 * in two nested bands, with a kernel marker on top
5601 * We then split off at most 2 parallel dimensions from the T band and
5602 * at most 3 parallel dimension from the P band
5607 * T1
5609 * T2
5611 * P1
5613 * P2
5615 * A filter is introduced in front of T1 that maps the domain instances
5616 * to block identifiers. Similarly, a filter is introduced in front of P1
5617 * that maps the domain instances to thread identifiers.
5619 * For each iteration of the T2 band and for each array, we compute
5620 * the array elements accessed by that iteration, construct a rectangular
5621 * box around it and shift it to the origin. The result is used
5622 * as shared memory for the array.
5624 * Copying and synchronization statements are added to this schedule tree.
5625 * In principle, these are added in front of the P1 band, but some of
5626 * them may get hoisted up to higher levels.
5628 * The entire AST is then generated from the single resulting schedule tree.
5629 * During the generation the subtrees at kernel nodes (K) are saved
5630 * aside and replaced by kernel calls. The result is printed as host code
5631 * while the saved subtrees are printed as device code.
5633 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
5634 struct gpu_gen *gen, struct ppcg_scop *scop,
5635 struct ppcg_options *options)
5637 struct gpu_prog *prog;
5638 isl_ctx *ctx;
5639 isl_schedule *schedule;
5640 isl_bool any_permutable;
5642 if (!scop)
5643 return isl_printer_free(p);
5645 ctx = isl_printer_get_ctx(p);
5646 prog = gpu_prog_alloc(ctx, scop);
5647 if (!prog)
5648 return isl_printer_free(p);
5650 gen->prog = prog;
5651 schedule = get_schedule(gen);
5653 any_permutable = has_any_permutable_node(schedule);
5654 if (any_permutable < 0 || !any_permutable) {
5655 if (any_permutable < 0)
5656 p = isl_printer_free(p);
5657 else
5658 p = print_cpu(p, scop, options);
5659 isl_schedule_free(schedule);
5660 } else {
5661 schedule = map_to_device(gen, schedule);
5662 gen->tree = generate_code(gen, schedule);
5663 p = ppcg_set_macro_names(p);
5664 p = ppcg_print_exposed_declarations(p, prog->scop);
5665 p = gen->print(p, gen->prog, gen->tree, &gen->types,
5666 gen->print_user);
5667 isl_ast_node_free(gen->tree);
5670 gpu_prog_free(prog);
5672 return p;
5675 /* Wrapper around generate for use as a ppcg_transform callback.
5677 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
5678 struct ppcg_scop *scop, void *user)
5680 struct gpu_gen *gen = user;
5682 return generate(p, gen, scop, gen->options);
5685 /* Transform the code in the file called "input" by replacing
5686 * all scops by corresponding GPU code and write the results to "out".
5688 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
5689 struct ppcg_options *options,
5690 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
5691 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
5692 struct gpu_types *types, void *user), void *user)
5694 struct gpu_gen gen;
5695 int r;
5696 int i;
5698 gen.ctx = ctx;
5699 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
5700 gen.options = options;
5701 gen.kernel_id = 0;
5702 gen.print = print;
5703 gen.print_user = user;
5704 gen.types.n = 0;
5705 gen.types.name = NULL;
5707 if (options->debug->dump_sizes) {
5708 isl_space *space = isl_space_params_alloc(ctx, 0);
5709 gen.used_sizes = isl_union_map_empty(space);
5712 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
5714 if (options->debug->dump_sizes) {
5715 isl_union_map_dump(gen.used_sizes);
5716 isl_union_map_free(gen.used_sizes);
5719 isl_union_map_free(gen.sizes);
5720 for (i = 0; i < gen.types.n; ++i)
5721 free(gen.types.name[i]);
5722 free(gen.types.name);
5724 return r;
5727 /* Compute the set of inner array elements that may have their values
5728 * preserved by "prog". In particular, collect the array elements of
5729 * arrays that are not local to "prog" and remove those elements that
5730 * are definitely killed or definitely written by "prog".
5732 static __isl_give isl_union_set *compute_may_persist(struct gpu_prog *prog)
5734 int i;
5735 isl_union_set *may_persist, *killed;
5736 isl_union_map *must_kill;
5738 may_persist = isl_union_set_empty(isl_set_get_space(prog->context));
5739 for (i = 0; i < prog->n_array; ++i) {
5740 isl_set *extent;
5742 if (prog->array[i].local)
5743 continue;
5745 extent = isl_set_copy(prog->array[i].extent);
5746 may_persist = isl_union_set_add_set(may_persist, extent);
5749 may_persist = isl_union_set_intersect_params(may_persist,
5750 isl_set_copy(prog->context));
5751 may_persist = isl_union_set_apply(may_persist,
5752 isl_union_map_copy(prog->to_inner));
5753 must_kill = isl_union_map_copy(prog->tagged_must_kill);
5754 killed = isl_union_map_range(must_kill);
5755 must_kill = isl_union_map_copy(prog->must_write);
5756 killed = isl_union_set_union(killed, isl_union_map_range(must_kill));
5758 may_persist = isl_union_set_subtract(may_persist, killed);
5759 return may_persist;
5762 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
5764 struct gpu_prog *prog;
5765 isl_space *space;
5766 isl_map *id;
5768 if (!scop)
5769 return NULL;
5771 prog = isl_calloc_type(ctx, struct gpu_prog);
5772 assert(prog);
5774 prog->ctx = ctx;
5775 prog->scop = scop;
5776 prog->context = isl_set_copy(scop->context);
5777 prog->n_stmts = scop->pet->n_stmt;
5778 prog->any_to_outer = pet_scop_compute_outer_to_any(scop->pet);
5779 prog->any_to_outer = isl_union_map_reverse(prog->any_to_outer);
5780 space = isl_union_map_get_space(prog->any_to_outer);
5781 space = isl_space_set_from_params(space);
5782 space = isl_space_add_dims(space, isl_dim_set, 1);
5783 space = isl_space_map_from_set(space);
5784 id = isl_map_identity(space);
5785 prog->any_to_outer = isl_union_map_add_map(prog->any_to_outer, id);
5786 prog->stmts = extract_stmts(ctx, scop, prog->any_to_outer);
5787 prog->read = isl_union_map_copy(scop->reads);
5788 prog->may_write = isl_union_map_copy(scop->may_writes);
5789 prog->must_write = isl_union_map_copy(scop->must_writes);
5790 prog->tagged_must_kill = isl_union_map_copy(scop->tagged_must_kills);
5791 prog->to_inner = pet_scop_compute_outer_to_inner(scop->pet);
5792 prog->to_outer = isl_union_map_copy(prog->to_inner);
5793 prog->to_outer = isl_union_map_reverse(prog->to_outer);
5795 if (!prog->stmts)
5796 return gpu_prog_free(prog);
5798 if (collect_array_info(prog) < 0)
5799 return gpu_prog_free(prog);
5800 prog->may_persist = compute_may_persist(prog);
5802 return prog;
5805 void *gpu_prog_free(struct gpu_prog *prog)
5807 if (!prog)
5808 return NULL;
5809 free_array_info(prog);
5810 free_stmts(prog->stmts, prog->n_stmts);
5811 isl_union_map_free(prog->any_to_outer);
5812 isl_union_map_free(prog->to_outer);
5813 isl_union_map_free(prog->to_inner);
5814 isl_union_map_free(prog->read);
5815 isl_union_map_free(prog->may_write);
5816 isl_union_map_free(prog->must_write);
5817 isl_union_map_free(prog->tagged_must_kill);
5818 isl_union_map_free(prog->array_order);
5819 isl_union_set_free(prog->may_persist);
5820 isl_set_free(prog->context);
5821 free(prog);
5822 return NULL;