GPGPU: Bail out of scops with hoisted invariant loads
[polly-mirror.git] / lib / CodeGen / PPCGCodeGeneration.cpp
blob1621252ba102f85cde5d87e98d2544f2f6826ff9
1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg
11 // GPU mapping strategy.
13 //===----------------------------------------------------------------------===//
15 #include "polly/CodeGen/IslNodeBuilder.h"
16 #include "polly/CodeGen/Utils.h"
17 #include "polly/DependenceInfo.h"
18 #include "polly/LinkAllPasses.h"
19 #include "polly/Options.h"
20 #include "polly/ScopInfo.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
27 #include "isl/union_map.h"
29 extern "C" {
30 #include "ppcg/cuda.h"
31 #include "ppcg/gpu.h"
32 #include "ppcg/gpu_print.h"
33 #include "ppcg/ppcg.h"
34 #include "ppcg/schedule.h"
37 #include "llvm/Support/Debug.h"
39 using namespace polly;
40 using namespace llvm;
42 #define DEBUG_TYPE "polly-codegen-ppcg"
44 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule",
45 cl::desc("Dump the computed GPU Schedule"),
46 cl::Hidden, cl::init(false), cl::ZeroOrMore,
47 cl::cat(PollyCategory));
49 static cl::opt<bool>
50 DumpCode("polly-acc-dump-code",
51 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden,
52 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
54 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir",
55 cl::desc("Dump the kernel LLVM-IR"),
56 cl::Hidden, cl::init(false), cl::ZeroOrMore,
57 cl::cat(PollyCategory));
59 /// Create the ast expressions for a ScopStmt.
60 ///
61 /// This function is a callback for to generate the ast expressions for each
62 /// of the scheduled ScopStmts.
63 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt(
64 void *Stmt, isl_ast_build *Build,
65 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA,
66 isl_id *Id, void *User),
67 void *UserIndex,
68 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User),
69 void *User_expr) {
71 // TODO: Implement the AST expression generation. For now we just return a
72 // nullptr to ensure that we do not free uninitialized pointers.
74 return nullptr;
77 /// Generate code for a GPU specific isl AST.
78 ///
79 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which
80 /// generates code for general-prupose AST nodes, with special functionality
81 /// for generating GPU specific user nodes.
82 ///
83 /// @see GPUNodeBuilder::createUser
84 class GPUNodeBuilder : public IslNodeBuilder {
85 public:
86 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator, Pass *P,
87 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE,
88 DominatorTree &DT, Scop &S, gpu_prog *Prog)
89 : IslNodeBuilder(Builder, Annotator, P, DL, LI, SE, DT, S), Prog(Prog) {}
91 private:
92 /// A module containing GPU code.
93 ///
94 /// This pointer is only set in case we are currently generating GPU code.
95 std::unique_ptr<Module> GPUModule;
97 /// The GPU program we generate code for.
98 gpu_prog *Prog;
100 /// Class to free isl_ids.
101 class IslIdDeleter {
102 public:
103 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); };
106 /// A set containing all isl_ids allocated in a GPU kernel.
108 /// By releasing this set all isl_ids will be freed.
109 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs;
111 /// Create code for user-defined AST nodes.
113 /// These AST nodes can be of type:
115 /// - ScopStmt: A computational statement (TODO)
116 /// - Kernel: A GPU kernel call (TODO)
117 /// - Data-Transfer: A GPU <-> CPU data-transfer (TODO)
118 /// - In-kernel synchronization
119 /// - In-kernel memory copy statement
121 /// @param UserStmt The ast node to generate code for.
122 virtual void createUser(__isl_take isl_ast_node *UserStmt);
124 /// Create GPU kernel.
126 /// Code generate the kernel described by @p KernelStmt.
128 /// @param KernelStmt The ast node to generate kernel code for.
129 void createKernel(__isl_take isl_ast_node *KernelStmt);
131 /// Create kernel function.
133 /// Create a kernel function located in a newly created module that can serve
134 /// as target for device code generation. Set the Builder to point to the
135 /// start block of this newly created function.
137 /// @param Kernel The kernel to generate code for.
138 void createKernelFunction(ppcg_kernel *Kernel);
140 /// Create the declaration of a kernel function.
142 /// The kernel function takes as arguments:
144 /// - One i8 pointer for each external array reference used in the kernel.
145 /// - Host iterators
146 /// - Parameters
147 /// - Other LLVM Value references (TODO)
149 /// @param Kernel The kernel to generate the function declaration for.
150 /// @returns The newly declared function.
151 Function *createKernelFunctionDecl(ppcg_kernel *Kernel);
153 /// Insert intrinsic functions to obtain thread and block ids.
155 /// @param The kernel to generate the intrinsic functions for.
156 void insertKernelIntrinsics(ppcg_kernel *Kernel);
158 /// Create an in-kernel synchronization call.
159 void createKernelSync();
161 /// Finalize the generation of the kernel function.
163 /// Free the LLVM-IR module corresponding to the kernel and -- if requested --
164 /// dump its IR to stderr.
165 void finalizeKernelFunction();
168 /// Check if one string is a prefix of another.
170 /// @param String The string in which to look for the prefix.
171 /// @param Prefix The prefix to look for.
172 static bool isPrefix(std::string String, std::string Prefix) {
173 return String.find(Prefix) == 0;
176 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) {
177 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt);
178 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
179 isl_id *Id = isl_ast_expr_get_id(StmtExpr);
180 isl_id_free(Id);
181 isl_ast_expr_free(StmtExpr);
183 const char *Str = isl_id_get_name(Id);
184 if (!strcmp(Str, "kernel")) {
185 createKernel(UserStmt);
186 isl_ast_expr_free(Expr);
187 return;
190 if (isPrefix(Str, "to_device") || isPrefix(Str, "from_device")) {
191 // TODO: Insert memory copies
192 isl_ast_expr_free(Expr);
193 isl_ast_node_free(UserStmt);
194 return;
197 isl_id *Anno = isl_ast_node_get_annotation(UserStmt);
198 struct ppcg_kernel_stmt *KernelStmt =
199 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno);
200 isl_id_free(Anno);
202 switch (KernelStmt->type) {
203 case ppcg_kernel_domain:
204 // TODO Create kernel user stmt
205 isl_ast_expr_free(Expr);
206 isl_ast_node_free(UserStmt);
207 return;
208 case ppcg_kernel_copy:
209 // TODO: Create kernel copy stmt
210 isl_ast_expr_free(Expr);
211 isl_ast_node_free(UserStmt);
212 return;
213 case ppcg_kernel_sync:
214 createKernelSync();
215 isl_ast_expr_free(Expr);
216 isl_ast_node_free(UserStmt);
217 return;
220 isl_ast_expr_free(Expr);
221 isl_ast_node_free(UserStmt);
222 return;
225 void GPUNodeBuilder::createKernelSync() {
226 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
227 auto *Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0);
228 Builder.CreateCall(Sync, {});
231 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) {
232 isl_id *Id = isl_ast_node_get_annotation(KernelStmt);
233 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id);
234 isl_id_free(Id);
235 isl_ast_node_free(KernelStmt);
237 assert(Kernel->tree && "Device AST of kernel node is empty");
239 Instruction &HostInsertPoint = *Builder.GetInsertPoint();
240 IslExprBuilder::IDToValueTy HostIDs = IDToValue;
242 createKernelFunction(Kernel);
244 create(isl_ast_node_copy(Kernel->tree));
246 Builder.SetInsertPoint(&HostInsertPoint);
247 IDToValue = HostIDs;
249 finalizeKernelFunction();
252 /// Compute the DataLayout string for the NVPTX backend.
254 /// @param is64Bit Are we looking for a 64 bit architecture?
255 static std::string computeNVPTXDataLayout(bool is64Bit) {
256 std::string Ret = "e";
258 if (!is64Bit)
259 Ret += "-p:32:32";
261 Ret += "-i64:64-v16:16-v32:32-n16:32:64";
263 return Ret;
266 Function *GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel) {
267 std::vector<Type *> Args;
268 std::string Identifier = "kernel_" + std::to_string(Kernel->id);
270 for (long i = 0; i < Prog->n_array; i++) {
271 if (!ppcg_kernel_requires_array_argument(Kernel, i))
272 continue;
274 Args.push_back(Builder.getInt8PtrTy());
277 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
279 for (long i = 0; i < NumHostIters; i++)
280 Args.push_back(Builder.getInt64Ty());
282 int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
284 for (long i = 0; i < NumVars; i++)
285 Args.push_back(Builder.getInt64Ty());
287 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false);
288 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier,
289 GPUModule.get());
290 FN->setCallingConv(CallingConv::PTX_Kernel);
292 auto Arg = FN->arg_begin();
293 for (long i = 0; i < Kernel->n_array; i++) {
294 if (!ppcg_kernel_requires_array_argument(Kernel, i))
295 continue;
297 Arg->setName(Prog->array[i].name);
298 Arg++;
301 for (long i = 0; i < NumHostIters; i++) {
302 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
303 Arg->setName(isl_id_get_name(Id));
304 IDToValue[Id] = &*Arg;
305 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
306 Arg++;
309 for (long i = 0; i < NumVars; i++) {
310 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
311 Arg->setName(isl_id_get_name(Id));
312 IDToValue[Id] = &*Arg;
313 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
314 Arg++;
317 return FN;
320 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) {
321 Intrinsic::ID IntrinsicsBID[] = {Intrinsic::nvvm_read_ptx_sreg_ctaid_x,
322 Intrinsic::nvvm_read_ptx_sreg_ctaid_y};
324 Intrinsic::ID IntrinsicsTID[] = {Intrinsic::nvvm_read_ptx_sreg_tid_x,
325 Intrinsic::nvvm_read_ptx_sreg_tid_y,
326 Intrinsic::nvvm_read_ptx_sreg_tid_z};
328 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable {
329 std::string Name = isl_id_get_name(Id);
330 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
331 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr);
332 Value *Val = Builder.CreateCall(IntrinsicFn, {});
333 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
334 IDToValue[Id] = Val;
335 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
338 for (int i = 0; i < Kernel->n_grid; ++i) {
339 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i);
340 addId(Id, IntrinsicsBID[i]);
343 for (int i = 0; i < Kernel->n_block; ++i) {
344 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i);
345 addId(Id, IntrinsicsTID[i]);
349 void GPUNodeBuilder::createKernelFunction(ppcg_kernel *Kernel) {
351 std::string Identifier = "kernel_" + std::to_string(Kernel->id);
352 GPUModule.reset(new Module(Identifier, Builder.getContext()));
353 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
354 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */));
356 Function *FN = createKernelFunctionDecl(Kernel);
358 BasicBlock *PrevBlock = Builder.GetInsertBlock();
359 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN);
361 DominatorTree &DT = P->getAnalysis<DominatorTreeWrapperPass>().getDomTree();
362 DT.addNewBlock(EntryBlock, PrevBlock);
364 Builder.SetInsertPoint(EntryBlock);
365 Builder.CreateRetVoid();
366 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin());
368 insertKernelIntrinsics(Kernel);
371 void GPUNodeBuilder::finalizeKernelFunction() {
373 if (DumpKernelIR)
374 outs() << *GPUModule << "\n";
376 GPUModule.release();
377 KernelIDs.clear();
380 namespace {
381 class PPCGCodeGeneration : public ScopPass {
382 public:
383 static char ID;
385 /// The scop that is currently processed.
386 Scop *S;
388 LoopInfo *LI;
389 DominatorTree *DT;
390 ScalarEvolution *SE;
391 const DataLayout *DL;
392 RegionInfo *RI;
394 PPCGCodeGeneration() : ScopPass(ID) {}
396 /// Construct compilation options for PPCG.
398 /// @returns The compilation options.
399 ppcg_options *createPPCGOptions() {
400 auto DebugOptions =
401 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options));
402 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options));
404 DebugOptions->dump_schedule_constraints = false;
405 DebugOptions->dump_schedule = false;
406 DebugOptions->dump_final_schedule = false;
407 DebugOptions->dump_sizes = false;
409 Options->debug = DebugOptions;
411 Options->reschedule = true;
412 Options->scale_tile_loops = false;
413 Options->wrap = false;
415 Options->non_negative_parameters = false;
416 Options->ctx = nullptr;
417 Options->sizes = nullptr;
419 Options->tile_size = 32;
421 Options->use_private_memory = false;
422 Options->use_shared_memory = false;
423 Options->max_shared_memory = 0;
425 Options->target = PPCG_TARGET_CUDA;
426 Options->openmp = false;
427 Options->linearize_device_arrays = true;
428 Options->live_range_reordering = false;
430 Options->opencl_compiler_options = nullptr;
431 Options->opencl_use_gpu = false;
432 Options->opencl_n_include_file = 0;
433 Options->opencl_include_files = nullptr;
434 Options->opencl_print_kernel_types = false;
435 Options->opencl_embed_kernel_code = false;
437 Options->save_schedule_file = nullptr;
438 Options->load_schedule_file = nullptr;
440 return Options;
443 /// Get a tagged access relation containing all accesses of type @p AccessTy.
445 /// Instead of a normal access of the form:
447 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)]
449 /// a tagged access has the form
451 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)]
453 /// where 'id' is an additional space that references the memory access that
454 /// triggered the access.
456 /// @param AccessTy The type of the memory accesses to collect.
458 /// @return The relation describing all tagged memory accesses.
459 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) {
460 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace());
462 for (auto &Stmt : *S)
463 for (auto &Acc : Stmt)
464 if (Acc->getType() == AccessTy) {
465 isl_map *Relation = Acc->getAccessRelation();
466 Relation = isl_map_intersect_domain(Relation, Stmt.getDomain());
468 isl_space *Space = isl_map_get_space(Relation);
469 Space = isl_space_range(Space);
470 Space = isl_space_from_range(Space);
471 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId());
472 isl_map *Universe = isl_map_universe(Space);
473 Relation = isl_map_domain_product(Relation, Universe);
474 Accesses = isl_union_map_add_map(Accesses, Relation);
477 return Accesses;
480 /// Get the set of all read accesses, tagged with the access id.
482 /// @see getTaggedAccesses
483 isl_union_map *getTaggedReads() {
484 return getTaggedAccesses(MemoryAccess::READ);
487 /// Get the set of all may (and must) accesses, tagged with the access id.
489 /// @see getTaggedAccesses
490 isl_union_map *getTaggedMayWrites() {
491 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE),
492 getTaggedAccesses(MemoryAccess::MUST_WRITE));
495 /// Get the set of all must accesses, tagged with the access id.
497 /// @see getTaggedAccesses
498 isl_union_map *getTaggedMustWrites() {
499 return getTaggedAccesses(MemoryAccess::MUST_WRITE);
502 /// Collect parameter and array names as isl_ids.
504 /// To reason about the different parameters and arrays used, ppcg requires
505 /// a list of all isl_ids in use. As PPCG traditionally performs
506 /// source-to-source compilation each of these isl_ids is mapped to the
507 /// expression that represents it. As we do not have a corresponding
508 /// expression in Polly, we just map each id to a 'zero' expression to match
509 /// the data format that ppcg expects.
511 /// @returns Retun a map from collected ids to 'zero' ast expressions.
512 __isl_give isl_id_to_ast_expr *getNames() {
513 auto *Names = isl_id_to_ast_expr_alloc(
514 S->getIslCtx(),
515 S->getNumParams() + std::distance(S->array_begin(), S->array_end()));
516 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx()));
517 auto *Space = S->getParamSpace();
519 for (int I = 0, E = S->getNumParams(); I < E; ++I) {
520 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, I);
521 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
524 for (auto &Array : S->arrays()) {
525 auto Id = Array.second->getBasePtrId();
526 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
529 isl_space_free(Space);
530 isl_ast_expr_free(Zero);
532 return Names;
535 /// Create a new PPCG scop from the current scop.
537 /// The PPCG scop is initialized with data from the current polly::Scop. From
538 /// this initial data, the data-dependences in the PPCG scop are initialized.
539 /// We do not use Polly's dependence analysis for now, to ensure we match
540 /// the PPCG default behaviour more closely.
542 /// @returns A new ppcg scop.
543 ppcg_scop *createPPCGScop() {
544 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop));
546 PPCGScop->options = createPPCGOptions();
548 PPCGScop->start = 0;
549 PPCGScop->end = 0;
551 PPCGScop->context = S->getContext();
552 PPCGScop->domain = S->getDomains();
553 PPCGScop->call = nullptr;
554 PPCGScop->tagged_reads = getTaggedReads();
555 PPCGScop->reads = S->getReads();
556 PPCGScop->live_in = nullptr;
557 PPCGScop->tagged_may_writes = getTaggedMayWrites();
558 PPCGScop->may_writes = S->getWrites();
559 PPCGScop->tagged_must_writes = getTaggedMustWrites();
560 PPCGScop->must_writes = S->getMustWrites();
561 PPCGScop->live_out = nullptr;
562 PPCGScop->tagged_must_kills = isl_union_map_empty(S->getParamSpace());
563 PPCGScop->tagger = nullptr;
565 PPCGScop->independence = nullptr;
566 PPCGScop->dep_flow = nullptr;
567 PPCGScop->tagged_dep_flow = nullptr;
568 PPCGScop->dep_false = nullptr;
569 PPCGScop->dep_forced = nullptr;
570 PPCGScop->dep_order = nullptr;
571 PPCGScop->tagged_dep_order = nullptr;
573 PPCGScop->schedule = S->getScheduleTree();
574 PPCGScop->names = getNames();
576 PPCGScop->pet = nullptr;
578 compute_tagger(PPCGScop);
579 compute_dependences(PPCGScop);
581 return PPCGScop;
584 /// Collect the array acesses in a statement.
586 /// @param Stmt The statement for which to collect the accesses.
588 /// @returns A list of array accesses.
589 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) {
590 gpu_stmt_access *Accesses = nullptr;
592 for (MemoryAccess *Acc : Stmt) {
593 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access);
594 Access->read = Acc->isRead();
595 Access->write = Acc->isWrite();
596 Access->access = Acc->getAccessRelation();
597 isl_space *Space = isl_map_get_space(Access->access);
598 Space = isl_space_range(Space);
599 Space = isl_space_from_range(Space);
600 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId());
601 isl_map *Universe = isl_map_universe(Space);
602 Access->tagged_access =
603 isl_map_domain_product(Acc->getAccessRelation(), Universe);
604 Access->exact_write = Acc->isWrite();
605 Access->ref_id = Acc->getId();
606 Access->next = Accesses;
607 Accesses = Access;
610 return Accesses;
613 /// Collect the list of GPU statements.
615 /// Each statement has an id, a pointer to the underlying data structure,
616 /// as well as a list with all memory accesses.
618 /// TODO: Initialize the list of memory accesses.
620 /// @returns A linked-list of statements.
621 gpu_stmt *getStatements() {
622 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt,
623 std::distance(S->begin(), S->end()));
625 int i = 0;
626 for (auto &Stmt : *S) {
627 gpu_stmt *GPUStmt = &Stmts[i];
629 GPUStmt->id = Stmt.getDomainId();
631 // We use the pet stmt pointer to keep track of the Polly statements.
632 GPUStmt->stmt = (pet_stmt *)&Stmt;
633 GPUStmt->accesses = getStmtAccesses(Stmt);
634 i++;
637 return Stmts;
640 /// Derive the extent of an array.
642 /// The extent of an array is defined by the set of memory locations for
643 /// which a memory access in the iteration domain exists.
645 /// @param Array The array to derive the extent for.
647 /// @returns An isl_set describing the extent of the array.
648 __isl_give isl_set *getExtent(ScopArrayInfo *Array) {
649 isl_union_map *Accesses = S->getAccesses();
650 Accesses = isl_union_map_intersect_domain(Accesses, S->getDomains());
651 isl_union_set *AccessUSet = isl_union_map_range(Accesses);
652 isl_set *AccessSet =
653 isl_union_set_extract_set(AccessUSet, Array->getSpace());
654 isl_union_set_free(AccessUSet);
656 return AccessSet;
659 /// Derive the bounds of an array.
661 /// For the first dimension we derive the bound of the array from the extent
662 /// of this dimension. For inner dimensions we obtain their size directly from
663 /// ScopArrayInfo.
665 /// @param PPCGArray The array to compute bounds for.
666 /// @param Array The polly array from which to take the information.
667 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) {
668 if (PPCGArray.n_index > 0) {
669 isl_set *Dom = isl_set_copy(PPCGArray.extent);
670 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1);
671 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0);
672 isl_set_free(Dom);
673 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound));
674 isl_local_space *LS = isl_local_space_from_space(isl_set_get_space(Dom));
675 isl_aff *One = isl_aff_zero_on_domain(LS);
676 One = isl_aff_add_constant_si(One, 1);
677 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One));
678 Bound = isl_pw_aff_gist(Bound, S->getContext());
679 PPCGArray.bound[0] = Bound;
682 for (unsigned i = 1; i < PPCGArray.n_index; ++i) {
683 isl_pw_aff *Bound = Array->getDimensionSizePw(i);
684 auto LS = isl_pw_aff_get_domain_space(Bound);
685 auto Aff = isl_multi_aff_zero(LS);
686 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff);
687 PPCGArray.bound[i] = Bound;
691 /// Create the arrays for @p PPCGProg.
693 /// @param PPCGProg The program to compute the arrays for.
694 void createArrays(gpu_prog *PPCGProg) {
695 int i = 0;
696 for (auto &Element : S->arrays()) {
697 ScopArrayInfo *Array = Element.second.get();
699 std::string TypeName;
700 raw_string_ostream OS(TypeName);
702 OS << *Array->getElementType();
703 TypeName = OS.str();
705 gpu_array_info &PPCGArray = PPCGProg->array[i];
707 PPCGArray.space = Array->getSpace();
708 PPCGArray.type = strdup(TypeName.c_str());
709 PPCGArray.size = Array->getElementType()->getPrimitiveSizeInBits() / 8;
710 PPCGArray.name = strdup(Array->getName().c_str());
711 PPCGArray.extent = nullptr;
712 PPCGArray.n_index = Array->getNumberOfDimensions();
713 PPCGArray.bound =
714 isl_alloc_array(S->getIslCtx(), isl_pw_aff *, PPCGArray.n_index);
715 PPCGArray.extent = getExtent(Array);
716 PPCGArray.n_ref = 0;
717 PPCGArray.refs = nullptr;
718 PPCGArray.accessed = true;
719 PPCGArray.read_only_scalar = false;
720 PPCGArray.has_compound_element = false;
721 PPCGArray.local = false;
722 PPCGArray.declare_local = false;
723 PPCGArray.global = false;
724 PPCGArray.linearize = false;
725 PPCGArray.dep_order = nullptr;
727 setArrayBounds(PPCGArray, Array);
728 i++;
730 collect_references(PPCGProg, &PPCGArray);
734 /// Create an identity map between the arrays in the scop.
736 /// @returns An identity map between the arrays in the scop.
737 isl_union_map *getArrayIdentity() {
738 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace());
740 for (auto &Item : S->arrays()) {
741 ScopArrayInfo *Array = Item.second.get();
742 isl_space *Space = Array->getSpace();
743 Space = isl_space_map_from_set(Space);
744 isl_map *Identity = isl_map_identity(Space);
745 Maps = isl_union_map_add_map(Maps, Identity);
748 return Maps;
751 /// Create a default-initialized PPCG GPU program.
753 /// @returns A new gpu grogram description.
754 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) {
756 if (!PPCGScop)
757 return nullptr;
759 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog);
761 PPCGProg->ctx = S->getIslCtx();
762 PPCGProg->scop = PPCGScop;
763 PPCGProg->context = isl_set_copy(PPCGScop->context);
764 PPCGProg->read = isl_union_map_copy(PPCGScop->reads);
765 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes);
766 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes);
767 PPCGProg->tagged_must_kill =
768 isl_union_map_copy(PPCGScop->tagged_must_kills);
769 PPCGProg->to_inner = getArrayIdentity();
770 PPCGProg->to_outer = getArrayIdentity();
771 PPCGProg->may_persist = compute_may_persist(PPCGProg);
772 PPCGProg->any_to_outer = nullptr;
773 PPCGProg->array_order = nullptr;
774 PPCGProg->n_stmts = std::distance(S->begin(), S->end());
775 PPCGProg->stmts = getStatements();
776 PPCGProg->n_array = std::distance(S->array_begin(), S->array_end());
777 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info,
778 PPCGProg->n_array);
780 createArrays(PPCGProg);
782 return PPCGProg;
785 struct PrintGPUUserData {
786 struct cuda_info *CudaInfo;
787 struct gpu_prog *PPCGProg;
788 std::vector<ppcg_kernel *> Kernels;
791 /// Print a user statement node in the host code.
793 /// We use ppcg's printing facilities to print the actual statement and
794 /// additionally build up a list of all kernels that are encountered in the
795 /// host ast.
797 /// @param P The printer to print to
798 /// @param Options The printing options to use
799 /// @param Node The node to print
800 /// @param User A user pointer to carry additional data. This pointer is
801 /// expected to be of type PrintGPUUserData.
803 /// @returns A printer to which the output has been printed.
804 static __isl_give isl_printer *
805 printHostUser(__isl_take isl_printer *P,
806 __isl_take isl_ast_print_options *Options,
807 __isl_take isl_ast_node *Node, void *User) {
808 auto Data = (struct PrintGPUUserData *)User;
809 auto Id = isl_ast_node_get_annotation(Node);
811 if (Id) {
812 bool IsUser = !strcmp(isl_id_get_name(Id), "user");
814 // If this is a user statement, format it ourselves as ppcg would
815 // otherwise try to call pet functionality that is not available in
816 // Polly.
817 if (IsUser) {
818 P = isl_printer_start_line(P);
819 P = isl_printer_print_ast_node(P, Node);
820 P = isl_printer_end_line(P);
821 isl_id_free(Id);
822 isl_ast_print_options_free(Options);
823 return P;
826 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id);
827 isl_id_free(Id);
828 Data->Kernels.push_back(Kernel);
831 return print_host_user(P, Options, Node, User);
834 /// Print C code corresponding to the control flow in @p Kernel.
836 /// @param Kernel The kernel to print
837 void printKernel(ppcg_kernel *Kernel) {
838 auto *P = isl_printer_to_str(S->getIslCtx());
839 P = isl_printer_set_output_format(P, ISL_FORMAT_C);
840 auto *Options = isl_ast_print_options_alloc(S->getIslCtx());
841 P = isl_ast_node_print(Kernel->tree, P, Options);
842 char *String = isl_printer_get_str(P);
843 printf("%s\n", String);
844 free(String);
845 isl_printer_free(P);
848 /// Print C code corresponding to the GPU code described by @p Tree.
850 /// @param Tree An AST describing GPU code
851 /// @param PPCGProg The PPCG program from which @Tree has been constructed.
852 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) {
853 auto *P = isl_printer_to_str(S->getIslCtx());
854 P = isl_printer_set_output_format(P, ISL_FORMAT_C);
856 PrintGPUUserData Data;
857 Data.PPCGProg = PPCGProg;
859 auto *Options = isl_ast_print_options_alloc(S->getIslCtx());
860 Options =
861 isl_ast_print_options_set_print_user(Options, printHostUser, &Data);
862 P = isl_ast_node_print(Tree, P, Options);
863 char *String = isl_printer_get_str(P);
864 printf("# host\n");
865 printf("%s\n", String);
866 free(String);
867 isl_printer_free(P);
869 for (auto Kernel : Data.Kernels) {
870 printf("# kernel%d\n", Kernel->id);
871 printKernel(Kernel);
875 // Generate a GPU program using PPCG.
877 // GPU mapping consists of multiple steps:
879 // 1) Compute new schedule for the program.
880 // 2) Map schedule to GPU (TODO)
881 // 3) Generate code for new schedule (TODO)
883 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer
884 // is mostly CPU specific. Instead, we use PPCG's GPU code generation
885 // strategy directly from this pass.
886 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) {
888 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen);
890 PPCGGen->ctx = S->getIslCtx();
891 PPCGGen->options = PPCGScop->options;
892 PPCGGen->print = nullptr;
893 PPCGGen->print_user = nullptr;
894 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt;
895 PPCGGen->prog = PPCGProg;
896 PPCGGen->tree = nullptr;
897 PPCGGen->types.n = 0;
898 PPCGGen->types.name = nullptr;
899 PPCGGen->sizes = nullptr;
900 PPCGGen->used_sizes = nullptr;
901 PPCGGen->kernel_id = 0;
903 // Set scheduling strategy to same strategy PPCG is using.
904 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true);
905 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true);
906 isl_options_set_schedule_whole_component(PPCGGen->ctx, false);
908 isl_schedule *Schedule = get_schedule(PPCGGen);
910 int has_permutable = has_any_permutable_node(Schedule);
912 if (!has_permutable || has_permutable < 0) {
913 Schedule = isl_schedule_free(Schedule);
914 } else {
915 Schedule = map_to_device(PPCGGen, Schedule);
916 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule));
919 if (DumpSchedule) {
920 isl_printer *P = isl_printer_to_str(S->getIslCtx());
921 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
922 P = isl_printer_print_str(P, "Schedule\n");
923 P = isl_printer_print_str(P, "========\n");
924 if (Schedule)
925 P = isl_printer_print_schedule(P, Schedule);
926 else
927 P = isl_printer_print_str(P, "No schedule found\n");
929 printf("%s\n", isl_printer_get_str(P));
930 isl_printer_free(P);
933 if (DumpCode) {
934 printf("Code\n");
935 printf("====\n");
936 if (PPCGGen->tree)
937 printGPUTree(PPCGGen->tree, PPCGProg);
938 else
939 printf("No code generated\n");
942 isl_schedule_free(Schedule);
944 return PPCGGen;
947 /// Free gpu_gen structure.
949 /// @param PPCGGen The ppcg_gen object to free.
950 void freePPCGGen(gpu_gen *PPCGGen) {
951 isl_ast_node_free(PPCGGen->tree);
952 isl_union_map_free(PPCGGen->sizes);
953 isl_union_map_free(PPCGGen->used_sizes);
954 free(PPCGGen);
957 /// Free the options in the ppcg scop structure.
959 /// ppcg is not freeing these options for us. To avoid leaks we do this
960 /// ourselves.
962 /// @param PPCGScop The scop referencing the options to free.
963 void freeOptions(ppcg_scop *PPCGScop) {
964 free(PPCGScop->options->debug);
965 PPCGScop->options->debug = nullptr;
966 free(PPCGScop->options);
967 PPCGScop->options = nullptr;
970 /// Generate code for a given GPU AST described by @p Root.
972 /// @param Root An isl_ast_node pointing to the root of the GPU AST.
973 /// @param Prog The GPU Program to generate code for.
974 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) {
975 ScopAnnotator Annotator;
976 Annotator.buildAliasScopes(*S);
978 Region *R = &S->getRegion();
980 simplifyRegion(R, DT, LI, RI);
982 BasicBlock *EnteringBB = R->getEnteringBlock();
984 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator);
986 GPUNodeBuilder NodeBuilder(Builder, Annotator, this, *DL, *LI, *SE, *DT, *S,
987 Prog);
989 // Only build the run-time condition and parameters _after_ having
990 // introduced the conditional branch. This is important as the conditional
991 // branch will guard the original scop from new induction variables that
992 // the SCEVExpander may introduce while code generating the parameters and
993 // which may introduce scalar dependences that prevent us from correctly
994 // code generating this scop.
995 BasicBlock *StartBlock =
996 executeScopConditionally(*S, this, Builder.getTrue());
998 // TODO: Handle LICM
999 // TODO: Verify run-time checks
1000 auto SplitBlock = StartBlock->getSinglePredecessor();
1001 Builder.SetInsertPoint(SplitBlock->getTerminator());
1002 NodeBuilder.addParameters(S->getContext());
1003 Builder.SetInsertPoint(&*StartBlock->begin());
1004 NodeBuilder.create(Root);
1005 NodeBuilder.finalizeSCoP(*S);
1008 bool runOnScop(Scop &CurrentScop) override {
1009 S = &CurrentScop;
1010 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1011 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1012 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1013 DL = &S->getRegion().getEntry()->getParent()->getParent()->getDataLayout();
1014 RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
1016 // We currently do not support scops with invariant loads.
1017 if (S->hasInvariantAccesses())
1018 return false;
1020 auto PPCGScop = createPPCGScop();
1021 auto PPCGProg = createPPCGProg(PPCGScop);
1022 auto PPCGGen = generateGPU(PPCGScop, PPCGProg);
1024 if (PPCGGen->tree)
1025 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg);
1027 freeOptions(PPCGScop);
1028 freePPCGGen(PPCGGen);
1029 gpu_prog_free(PPCGProg);
1030 ppcg_scop_free(PPCGScop);
1032 return true;
1035 void printScop(raw_ostream &, Scop &) const override {}
1037 void getAnalysisUsage(AnalysisUsage &AU) const override {
1038 AU.addRequired<DominatorTreeWrapperPass>();
1039 AU.addRequired<RegionInfoPass>();
1040 AU.addRequired<ScalarEvolutionWrapperPass>();
1041 AU.addRequired<ScopDetection>();
1042 AU.addRequired<ScopInfoRegionPass>();
1043 AU.addRequired<LoopInfoWrapperPass>();
1045 AU.addPreserved<AAResultsWrapperPass>();
1046 AU.addPreserved<BasicAAWrapperPass>();
1047 AU.addPreserved<LoopInfoWrapperPass>();
1048 AU.addPreserved<DominatorTreeWrapperPass>();
1049 AU.addPreserved<GlobalsAAWrapperPass>();
1050 AU.addPreserved<PostDominatorTreeWrapperPass>();
1051 AU.addPreserved<ScopDetection>();
1052 AU.addPreserved<ScalarEvolutionWrapperPass>();
1053 AU.addPreserved<SCEVAAWrapperPass>();
1055 // FIXME: We do not yet add regions for the newly generated code to the
1056 // region tree.
1057 AU.addPreserved<RegionInfoPass>();
1058 AU.addPreserved<ScopInfoRegionPass>();
1063 char PPCGCodeGeneration::ID = 1;
1065 Pass *polly::createPPCGCodeGenerationPass() { return new PPCGCodeGeneration(); }
1067 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg",
1068 "Polly - Apply PPCG translation to SCOP", false, false)
1069 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
1070 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
1071 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
1072 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
1073 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
1074 INITIALIZE_PASS_DEPENDENCY(ScopDetection);
1075 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg",
1076 "Polly - Apply PPCG translation to SCOP", false, false)