[ScopInfo] Remove usage of isl_set_n_basic_set()
[polly-mirror.git] / lib / Analysis / ScopInfo.cpp
blobe92b79ca67a140e06e6dd3460fb3e64206c7f0c0
1 //===- ScopInfo.cpp -------------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Create a polyhedral description for a static control flow region.
12 // The pass creates a polyhedral description of the Scops detected by the Scop
13 // detection derived from their LLVM-IR code.
15 // This representation is shared among several tools in the polyhedral
16 // community, which are e.g. Cloog, Pluto, Loopo, Graphite.
18 //===----------------------------------------------------------------------===//
20 #include "polly/ScopInfo.h"
21 #include "polly/LinkAllPasses.h"
22 #include "polly/Options.h"
23 #include "polly/ScopBuilder.h"
24 #include "polly/ScopDetection.h"
25 #include "polly/Support/GICHelper.h"
26 #include "polly/Support/ISLOStream.h"
27 #include "polly/Support/ISLTools.h"
28 #include "polly/Support/SCEVAffinator.h"
29 #include "polly/Support/SCEVValidator.h"
30 #include "polly/Support/ScopHelper.h"
31 #include "llvm/ADT/APInt.h"
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/PostOrderIterator.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/StringExtras.h"
43 #include "llvm/ADT/StringMap.h"
44 #include "llvm/Analysis/AliasAnalysis.h"
45 #include "llvm/Analysis/AliasSetTracker.h"
46 #include "llvm/Analysis/AssumptionCache.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/LoopInfo.h"
49 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
50 #include "llvm/Analysis/RegionInfo.h"
51 #include "llvm/Analysis/RegionIterator.h"
52 #include "llvm/Analysis/ScalarEvolution.h"
53 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
54 #include "llvm/IR/Argument.h"
55 #include "llvm/IR/BasicBlock.h"
56 #include "llvm/IR/CFG.h"
57 #include "llvm/IR/ConstantRange.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugLoc.h"
61 #include "llvm/IR/DerivedTypes.h"
62 #include "llvm/IR/DiagnosticInfo.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/InstrTypes.h"
66 #include "llvm/IR/Instruction.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/IntrinsicInst.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/PassManager.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/User.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/MathExtras.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "isl/aff.h"
84 #include "isl/constraint.h"
85 #include "isl/local_space.h"
86 #include "isl/map.h"
87 #include "isl/options.h"
88 #include "isl/printer.h"
89 #include "isl/schedule.h"
90 #include "isl/schedule_node.h"
91 #include "isl/set.h"
92 #include "isl/union_map.h"
93 #include "isl/union_set.h"
94 #include "isl/val.h"
95 #include <algorithm>
96 #include <cassert>
97 #include <cstdlib>
98 #include <cstring>
99 #include <deque>
100 #include <iterator>
101 #include <memory>
102 #include <string>
103 #include <tuple>
104 #include <utility>
105 #include <vector>
107 using namespace llvm;
108 using namespace polly;
110 #define DEBUG_TYPE "polly-scops"
112 STATISTIC(AssumptionsAliasing, "Number of aliasing assumptions taken.");
113 STATISTIC(AssumptionsInbounds, "Number of inbounds assumptions taken.");
114 STATISTIC(AssumptionsWrapping, "Number of wrapping assumptions taken.");
115 STATISTIC(AssumptionsUnsigned, "Number of unsigned assumptions taken.");
116 STATISTIC(AssumptionsComplexity, "Number of too complex SCoPs.");
117 STATISTIC(AssumptionsUnprofitable, "Number of unprofitable SCoPs.");
118 STATISTIC(AssumptionsErrorBlock, "Number of error block assumptions taken.");
119 STATISTIC(AssumptionsInfiniteLoop, "Number of bounded loop assumptions taken.");
120 STATISTIC(AssumptionsInvariantLoad,
121 "Number of invariant loads assumptions taken.");
122 STATISTIC(AssumptionsDelinearization,
123 "Number of delinearization assumptions taken.");
125 STATISTIC(NumScops, "Number of feasible SCoPs after ScopInfo");
126 STATISTIC(NumLoopsInScop, "Number of loops in scops");
127 STATISTIC(NumBoxedLoops, "Number of boxed loops in SCoPs after ScopInfo");
128 STATISTIC(NumAffineLoops, "Number of affine loops in SCoPs after ScopInfo");
130 STATISTIC(NumScopsDepthZero, "Number of scops with maximal loop depth 0");
131 STATISTIC(NumScopsDepthOne, "Number of scops with maximal loop depth 1");
132 STATISTIC(NumScopsDepthTwo, "Number of scops with maximal loop depth 2");
133 STATISTIC(NumScopsDepthThree, "Number of scops with maximal loop depth 3");
134 STATISTIC(NumScopsDepthFour, "Number of scops with maximal loop depth 4");
135 STATISTIC(NumScopsDepthFive, "Number of scops with maximal loop depth 5");
136 STATISTIC(NumScopsDepthLarger,
137 "Number of scops with maximal loop depth 6 and larger");
138 STATISTIC(MaxNumLoopsInScop, "Maximal number of loops in scops");
140 STATISTIC(NumValueWrites, "Number of scalar value writes after ScopInfo");
141 STATISTIC(
142 NumValueWritesInLoops,
143 "Number of scalar value writes nested in affine loops after ScopInfo");
144 STATISTIC(NumPHIWrites, "Number of scalar phi writes after ScopInfo");
145 STATISTIC(NumPHIWritesInLoops,
146 "Number of scalar phi writes nested in affine loops after ScopInfo");
147 STATISTIC(NumSingletonWrites, "Number of singleton writes after ScopInfo");
148 STATISTIC(NumSingletonWritesInLoops,
149 "Number of singleton writes nested in affine loops after ScopInfo");
151 // The maximal number of basic sets we allow during domain construction to
152 // be created. More complex scops will result in very high compile time and
153 // are also unlikely to result in good code
154 static int const MaxDisjunctsInDomain = 20;
156 // The number of disjunct in the context after which we stop to add more
157 // disjuncts. This parameter is there to avoid exponential growth in the
158 // number of disjunct when adding non-convex sets to the context.
159 static int const MaxDisjunctsInContext = 4;
161 // The maximal number of dimensions we allow during invariant load construction.
162 // More complex access ranges will result in very high compile time and are also
163 // unlikely to result in good code. This value is very high and should only
164 // trigger for corner cases (e.g., the "dct_luma" function in h264, SPEC2006).
165 static int const MaxDimensionsInAccessRange = 9;
167 static cl::opt<int>
168 OptComputeOut("polly-analysis-computeout",
169 cl::desc("Bound the scop analysis by a maximal amount of "
170 "computational steps (0 means no bound)"),
171 cl::Hidden, cl::init(800000), cl::ZeroOrMore,
172 cl::cat(PollyCategory));
174 static cl::opt<bool> PollyRemarksMinimal(
175 "polly-remarks-minimal",
176 cl::desc("Do not emit remarks about assumptions that are known"),
177 cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::cat(PollyCategory));
179 static cl::opt<int> RunTimeChecksMaxAccessDisjuncts(
180 "polly-rtc-max-array-disjuncts",
181 cl::desc("The maximal number of disjunts allowed in memory accesses to "
182 "to build RTCs."),
183 cl::Hidden, cl::ZeroOrMore, cl::init(8), cl::cat(PollyCategory));
185 static cl::opt<unsigned> RunTimeChecksMaxParameters(
186 "polly-rtc-max-parameters",
187 cl::desc("The maximal number of parameters allowed in RTCs."), cl::Hidden,
188 cl::ZeroOrMore, cl::init(8), cl::cat(PollyCategory));
190 static cl::opt<unsigned> RunTimeChecksMaxArraysPerGroup(
191 "polly-rtc-max-arrays-per-group",
192 cl::desc("The maximal number of arrays to compare in each alias group."),
193 cl::Hidden, cl::ZeroOrMore, cl::init(20), cl::cat(PollyCategory));
195 static cl::opt<std::string> UserContextStr(
196 "polly-context", cl::value_desc("isl parameter set"),
197 cl::desc("Provide additional constraints on the context parameters"),
198 cl::init(""), cl::cat(PollyCategory));
200 static cl::opt<bool>
201 IslOnErrorAbort("polly-on-isl-error-abort",
202 cl::desc("Abort if an isl error is encountered"),
203 cl::init(true), cl::cat(PollyCategory));
205 static cl::opt<bool> PollyPreciseInbounds(
206 "polly-precise-inbounds",
207 cl::desc("Take more precise inbounds assumptions (do not scale well)"),
208 cl::Hidden, cl::init(false), cl::cat(PollyCategory));
210 static cl::opt<bool>
211 PollyIgnoreInbounds("polly-ignore-inbounds",
212 cl::desc("Do not take inbounds assumptions at all"),
213 cl::Hidden, cl::init(false), cl::cat(PollyCategory));
215 static cl::opt<bool> PollyIgnoreParamBounds(
216 "polly-ignore-parameter-bounds",
217 cl::desc(
218 "Do not add parameter bounds and do no gist simplify sets accordingly"),
219 cl::Hidden, cl::init(false), cl::cat(PollyCategory));
221 static cl::opt<bool> PollyAllowDereferenceOfAllFunctionParams(
222 "polly-allow-dereference-of-all-function-parameters",
223 cl::desc(
224 "Treat all parameters to functions that are pointers as dereferencible."
225 " This is useful for invariant load hoisting, since we can generate"
226 " less runtime checks. This is only valid if all pointers to functions"
227 " are always initialized, so that Polly can choose to hoist"
228 " their loads. "),
229 cl::Hidden, cl::init(false), cl::cat(PollyCategory));
231 static cl::opt<bool> PollyPreciseFoldAccesses(
232 "polly-precise-fold-accesses",
233 cl::desc("Fold memory accesses to model more possible delinearizations "
234 "(does not scale well)"),
235 cl::Hidden, cl::init(false), cl::cat(PollyCategory));
237 bool polly::UseInstructionNames;
239 static cl::opt<bool, true> XUseInstructionNames(
240 "polly-use-llvm-names",
241 cl::desc("Use LLVM-IR names when deriving statement names"),
242 cl::location(UseInstructionNames), cl::Hidden, cl::init(false),
243 cl::ZeroOrMore, cl::cat(PollyCategory));
245 static cl::opt<bool> PollyPrintInstructions(
246 "polly-print-instructions", cl::desc("Output instructions per ScopStmt"),
247 cl::Hidden, cl::Optional, cl::init(false), cl::cat(PollyCategory));
249 //===----------------------------------------------------------------------===//
251 // Create a sequence of two schedules. Either argument may be null and is
252 // interpreted as the empty schedule. Can also return null if both schedules are
253 // empty.
254 static isl::schedule combineInSequence(isl::schedule Prev, isl::schedule Succ) {
255 if (!Prev)
256 return Succ;
257 if (!Succ)
258 return Prev;
260 return Prev.sequence(Succ);
263 static isl::set addRangeBoundsToSet(isl::set S, const ConstantRange &Range,
264 int dim, isl::dim type) {
265 isl::val V;
266 isl::ctx Ctx = S.get_ctx();
268 // The upper and lower bound for a parameter value is derived either from
269 // the data type of the parameter or from the - possibly more restrictive -
270 // range metadata.
271 V = valFromAPInt(Ctx.get(), Range.getSignedMin(), true);
272 S = S.lower_bound_val(type, dim, V);
273 V = valFromAPInt(Ctx.get(), Range.getSignedMax(), true);
274 S = S.upper_bound_val(type, dim, V);
276 if (Range.isFullSet())
277 return S;
279 if (S.n_basic_set() > MaxDisjunctsInContext)
280 return S;
282 // In case of signed wrapping, we can refine the set of valid values by
283 // excluding the part not covered by the wrapping range.
284 if (Range.isSignWrappedSet()) {
285 V = valFromAPInt(Ctx.get(), Range.getLower(), true);
286 isl::set SLB = S.lower_bound_val(type, dim, V);
288 V = valFromAPInt(Ctx.get(), Range.getUpper(), true);
289 V = V.sub_ui(1);
290 isl::set SUB = S.upper_bound_val(type, dim, V);
291 S = SLB.unite(SUB);
294 return S;
297 static const ScopArrayInfo *identifyBasePtrOriginSAI(Scop *S, Value *BasePtr) {
298 LoadInst *BasePtrLI = dyn_cast<LoadInst>(BasePtr);
299 if (!BasePtrLI)
300 return nullptr;
302 if (!S->contains(BasePtrLI))
303 return nullptr;
305 ScalarEvolution &SE = *S->getSE();
307 auto *OriginBaseSCEV =
308 SE.getPointerBase(SE.getSCEV(BasePtrLI->getPointerOperand()));
309 if (!OriginBaseSCEV)
310 return nullptr;
312 auto *OriginBaseSCEVUnknown = dyn_cast<SCEVUnknown>(OriginBaseSCEV);
313 if (!OriginBaseSCEVUnknown)
314 return nullptr;
316 return S->getScopArrayInfo(OriginBaseSCEVUnknown->getValue(),
317 MemoryKind::Array);
320 ScopArrayInfo::ScopArrayInfo(Value *BasePtr, Type *ElementType, isl::ctx Ctx,
321 ArrayRef<const SCEV *> Sizes, MemoryKind Kind,
322 const DataLayout &DL, Scop *S,
323 const char *BaseName)
324 : BasePtr(BasePtr), ElementType(ElementType), Kind(Kind), DL(DL), S(*S) {
325 std::string BasePtrName =
326 BaseName ? BaseName
327 : getIslCompatibleName("MemRef", BasePtr, S->getNextArrayIdx(),
328 Kind == MemoryKind::PHI ? "__phi" : "",
329 UseInstructionNames);
330 Id = isl::id::alloc(Ctx, BasePtrName, this);
332 updateSizes(Sizes);
334 if (!BasePtr || Kind != MemoryKind::Array) {
335 BasePtrOriginSAI = nullptr;
336 return;
339 BasePtrOriginSAI = identifyBasePtrOriginSAI(S, BasePtr);
340 if (BasePtrOriginSAI)
341 const_cast<ScopArrayInfo *>(BasePtrOriginSAI)->addDerivedSAI(this);
344 ScopArrayInfo::~ScopArrayInfo() = default;
346 isl::space ScopArrayInfo::getSpace() const {
347 auto Space = isl::space(Id.get_ctx(), 0, getNumberOfDimensions());
348 Space = Space.set_tuple_id(isl::dim::set, Id);
349 return Space;
352 bool ScopArrayInfo::isReadOnly() {
353 isl::union_set WriteSet = S.getWrites().range();
354 isl::space Space = getSpace();
355 WriteSet = WriteSet.extract_set(Space);
357 return bool(WriteSet.is_empty());
360 bool ScopArrayInfo::isCompatibleWith(const ScopArrayInfo *Array) const {
361 if (Array->getElementType() != getElementType())
362 return false;
364 if (Array->getNumberOfDimensions() != getNumberOfDimensions())
365 return false;
367 for (unsigned i = 0; i < getNumberOfDimensions(); i++)
368 if (Array->getDimensionSize(i) != getDimensionSize(i))
369 return false;
371 return true;
374 void ScopArrayInfo::updateElementType(Type *NewElementType) {
375 if (NewElementType == ElementType)
376 return;
378 auto OldElementSize = DL.getTypeAllocSizeInBits(ElementType);
379 auto NewElementSize = DL.getTypeAllocSizeInBits(NewElementType);
381 if (NewElementSize == OldElementSize || NewElementSize == 0)
382 return;
384 if (NewElementSize % OldElementSize == 0 && NewElementSize < OldElementSize) {
385 ElementType = NewElementType;
386 } else {
387 auto GCD = GreatestCommonDivisor64(NewElementSize, OldElementSize);
388 ElementType = IntegerType::get(ElementType->getContext(), GCD);
392 /// Make the ScopArrayInfo model a Fortran Array
393 void ScopArrayInfo::applyAndSetFAD(Value *FAD) {
394 assert(FAD && "got invalid Fortran array descriptor");
395 if (this->FAD) {
396 assert(this->FAD == FAD &&
397 "receiving different array descriptors for same array");
398 return;
401 assert(DimensionSizesPw.size() > 0 && !DimensionSizesPw[0]);
402 assert(!this->FAD);
403 this->FAD = FAD;
405 isl::space Space(S.getIslCtx(), 1, 0);
407 std::string param_name = getName();
408 param_name += "_fortranarr_size";
409 isl::id IdPwAff = isl::id::alloc(S.getIslCtx(), param_name, this);
411 Space = Space.set_dim_id(isl::dim::param, 0, IdPwAff);
412 isl::pw_aff PwAff =
413 isl::aff::var_on_domain(isl::local_space(Space), isl::dim::param, 0);
415 DimensionSizesPw[0] = PwAff;
418 bool ScopArrayInfo::updateSizes(ArrayRef<const SCEV *> NewSizes,
419 bool CheckConsistency) {
420 int SharedDims = std::min(NewSizes.size(), DimensionSizes.size());
421 int ExtraDimsNew = NewSizes.size() - SharedDims;
422 int ExtraDimsOld = DimensionSizes.size() - SharedDims;
424 if (CheckConsistency) {
425 for (int i = 0; i < SharedDims; i++) {
426 auto *NewSize = NewSizes[i + ExtraDimsNew];
427 auto *KnownSize = DimensionSizes[i + ExtraDimsOld];
428 if (NewSize && KnownSize && NewSize != KnownSize)
429 return false;
432 if (DimensionSizes.size() >= NewSizes.size())
433 return true;
436 DimensionSizes.clear();
437 DimensionSizes.insert(DimensionSizes.begin(), NewSizes.begin(),
438 NewSizes.end());
439 DimensionSizesPw.clear();
440 for (const SCEV *Expr : DimensionSizes) {
441 if (!Expr) {
442 DimensionSizesPw.push_back(nullptr);
443 continue;
445 isl::pw_aff Size = S.getPwAffOnly(Expr);
446 DimensionSizesPw.push_back(Size);
448 return true;
451 std::string ScopArrayInfo::getName() const { return Id.get_name(); }
453 int ScopArrayInfo::getElemSizeInBytes() const {
454 return DL.getTypeAllocSize(ElementType);
457 isl::id ScopArrayInfo::getBasePtrId() const { return Id; }
459 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
460 LLVM_DUMP_METHOD void ScopArrayInfo::dump() const { print(errs()); }
461 #endif
463 void ScopArrayInfo::print(raw_ostream &OS, bool SizeAsPwAff) const {
464 OS.indent(8) << *getElementType() << " " << getName();
465 unsigned u = 0;
466 // If this is a Fortran array, then we can print the outermost dimension
467 // as a isl_pw_aff even though there is no SCEV information.
468 bool IsOutermostSizeKnown = SizeAsPwAff && FAD;
470 if (!IsOutermostSizeKnown && getNumberOfDimensions() > 0 &&
471 !getDimensionSize(0)) {
472 OS << "[*]";
473 u++;
475 for (; u < getNumberOfDimensions(); u++) {
476 OS << "[";
478 if (SizeAsPwAff) {
479 isl::pw_aff Size = getDimensionSizePw(u);
480 OS << " " << Size << " ";
481 } else {
482 OS << *getDimensionSize(u);
485 OS << "]";
488 OS << ";";
490 if (BasePtrOriginSAI)
491 OS << " [BasePtrOrigin: " << BasePtrOriginSAI->getName() << "]";
493 OS << " // Element size " << getElemSizeInBytes() << "\n";
496 const ScopArrayInfo *
497 ScopArrayInfo::getFromAccessFunction(isl::pw_multi_aff PMA) {
498 isl::id Id = PMA.get_tuple_id(isl::dim::out);
499 assert(!Id.is_null() && "Output dimension didn't have an ID");
500 return getFromId(Id);
503 const ScopArrayInfo *ScopArrayInfo::getFromId(isl::id Id) {
504 void *User = Id.get_user();
505 const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
506 return SAI;
509 void MemoryAccess::wrapConstantDimensions() {
510 auto *SAI = getScopArrayInfo();
511 isl::space ArraySpace = SAI->getSpace();
512 isl::ctx Ctx = ArraySpace.get_ctx();
513 unsigned DimsArray = SAI->getNumberOfDimensions();
515 isl::multi_aff DivModAff = isl::multi_aff::identity(
516 ArraySpace.map_from_domain_and_range(ArraySpace));
517 isl::local_space LArraySpace = isl::local_space(ArraySpace);
519 // Begin with last dimension, to iteratively carry into higher dimensions.
520 for (int i = DimsArray - 1; i > 0; i--) {
521 auto *DimSize = SAI->getDimensionSize(i);
522 auto *DimSizeCst = dyn_cast<SCEVConstant>(DimSize);
524 // This transformation is not applicable to dimensions with dynamic size.
525 if (!DimSizeCst)
526 continue;
528 // This transformation is not applicable to dimensions of size zero.
529 if (DimSize->isZero())
530 continue;
532 isl::val DimSizeVal =
533 valFromAPInt(Ctx.get(), DimSizeCst->getAPInt(), false);
534 isl::aff Var = isl::aff::var_on_domain(LArraySpace, isl::dim::set, i);
535 isl::aff PrevVar =
536 isl::aff::var_on_domain(LArraySpace, isl::dim::set, i - 1);
538 // Compute: index % size
539 // Modulo must apply in the divide of the previous iteration, if any.
540 isl::aff Modulo = Var.mod(DimSizeVal);
541 Modulo = Modulo.pullback(DivModAff);
543 // Compute: floor(index / size)
544 isl::aff Divide = Var.div(isl::aff(LArraySpace, DimSizeVal));
545 Divide = Divide.floor();
546 Divide = Divide.add(PrevVar);
547 Divide = Divide.pullback(DivModAff);
549 // Apply Modulo and Divide.
550 DivModAff = DivModAff.set_aff(i, Modulo);
551 DivModAff = DivModAff.set_aff(i - 1, Divide);
554 // Apply all modulo/divides on the accesses.
555 isl::map Relation = AccessRelation;
556 Relation = Relation.apply_range(isl::map::from_multi_aff(DivModAff));
557 Relation = Relation.detect_equalities();
558 AccessRelation = Relation;
561 void MemoryAccess::updateDimensionality() {
562 auto *SAI = getScopArrayInfo();
563 isl::space ArraySpace = SAI->getSpace();
564 isl::space AccessSpace = AccessRelation.get_space().range();
565 isl::ctx Ctx = ArraySpace.get_ctx();
567 auto DimsArray = ArraySpace.dim(isl::dim::set);
568 auto DimsAccess = AccessSpace.dim(isl::dim::set);
569 auto DimsMissing = DimsArray - DimsAccess;
571 auto *BB = getStatement()->getEntryBlock();
572 auto &DL = BB->getModule()->getDataLayout();
573 unsigned ArrayElemSize = SAI->getElemSizeInBytes();
574 unsigned ElemBytes = DL.getTypeAllocSize(getElementType());
576 isl::map Map = isl::map::from_domain_and_range(
577 isl::set::universe(AccessSpace), isl::set::universe(ArraySpace));
579 for (unsigned i = 0; i < DimsMissing; i++)
580 Map = Map.fix_si(isl::dim::out, i, 0);
582 for (unsigned i = DimsMissing; i < DimsArray; i++)
583 Map = Map.equate(isl::dim::in, i - DimsMissing, isl::dim::out, i);
585 AccessRelation = AccessRelation.apply_range(Map);
587 // For the non delinearized arrays, divide the access function of the last
588 // subscript by the size of the elements in the array.
590 // A stride one array access in C expressed as A[i] is expressed in
591 // LLVM-IR as something like A[i * elementsize]. This hides the fact that
592 // two subsequent values of 'i' index two values that are stored next to
593 // each other in memory. By this division we make this characteristic
594 // obvious again. If the base pointer was accessed with offsets not divisible
595 // by the accesses element size, we will have chosen a smaller ArrayElemSize
596 // that divides the offsets of all accesses to this base pointer.
597 if (DimsAccess == 1) {
598 isl::val V = isl::val(Ctx, ArrayElemSize);
599 AccessRelation = AccessRelation.floordiv_val(V);
602 // We currently do this only if we added at least one dimension, which means
603 // some dimension's indices have not been specified, an indicator that some
604 // index values have been added together.
605 // TODO: Investigate general usefulness; Effect on unit tests is to make index
606 // expressions more complicated.
607 if (DimsMissing)
608 wrapConstantDimensions();
610 if (!isAffine())
611 computeBoundsOnAccessRelation(ArrayElemSize);
613 // Introduce multi-element accesses in case the type loaded by this memory
614 // access is larger than the canonical element type of the array.
616 // An access ((float *)A)[i] to an array char *A is modeled as
617 // {[i] -> A[o] : 4 i <= o <= 4 i + 3
618 if (ElemBytes > ArrayElemSize) {
619 assert(ElemBytes % ArrayElemSize == 0 &&
620 "Loaded element size should be multiple of canonical element size");
621 isl::map Map = isl::map::from_domain_and_range(
622 isl::set::universe(ArraySpace), isl::set::universe(ArraySpace));
623 for (unsigned i = 0; i < DimsArray - 1; i++)
624 Map = Map.equate(isl::dim::in, i, isl::dim::out, i);
626 isl::constraint C;
627 isl::local_space LS;
629 LS = isl::local_space(Map.get_space());
630 int Num = ElemBytes / getScopArrayInfo()->getElemSizeInBytes();
632 C = isl::constraint::alloc_inequality(LS);
633 C = C.set_constant_val(isl::val(Ctx, Num - 1));
634 C = C.set_coefficient_si(isl::dim::in, DimsArray - 1, 1);
635 C = C.set_coefficient_si(isl::dim::out, DimsArray - 1, -1);
636 Map = Map.add_constraint(C);
638 C = isl::constraint::alloc_inequality(LS);
639 C = C.set_coefficient_si(isl::dim::in, DimsArray - 1, -1);
640 C = C.set_coefficient_si(isl::dim::out, DimsArray - 1, 1);
641 C = C.set_constant_val(isl::val(Ctx, 0));
642 Map = Map.add_constraint(C);
643 AccessRelation = AccessRelation.apply_range(Map);
647 const std::string
648 MemoryAccess::getReductionOperatorStr(MemoryAccess::ReductionType RT) {
649 switch (RT) {
650 case MemoryAccess::RT_NONE:
651 llvm_unreachable("Requested a reduction operator string for a memory "
652 "access which isn't a reduction");
653 case MemoryAccess::RT_ADD:
654 return "+";
655 case MemoryAccess::RT_MUL:
656 return "*";
657 case MemoryAccess::RT_BOR:
658 return "|";
659 case MemoryAccess::RT_BXOR:
660 return "^";
661 case MemoryAccess::RT_BAND:
662 return "&";
664 llvm_unreachable("Unknown reduction type");
667 const ScopArrayInfo *MemoryAccess::getOriginalScopArrayInfo() const {
668 isl::id ArrayId = getArrayId();
669 void *User = ArrayId.get_user();
670 const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
671 return SAI;
674 const ScopArrayInfo *MemoryAccess::getLatestScopArrayInfo() const {
675 isl::id ArrayId = getLatestArrayId();
676 void *User = ArrayId.get_user();
677 const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
678 return SAI;
681 isl::id MemoryAccess::getOriginalArrayId() const {
682 return AccessRelation.get_tuple_id(isl::dim::out);
685 isl::id MemoryAccess::getLatestArrayId() const {
686 if (!hasNewAccessRelation())
687 return getOriginalArrayId();
688 return NewAccessRelation.get_tuple_id(isl::dim::out);
691 isl::map MemoryAccess::getAddressFunction() const {
692 return getAccessRelation().lexmin();
695 isl::pw_multi_aff
696 MemoryAccess::applyScheduleToAccessRelation(isl::union_map USchedule) const {
697 isl::map Schedule, ScheduledAccRel;
698 isl::union_set UDomain;
700 UDomain = getStatement()->getDomain();
701 USchedule = USchedule.intersect_domain(UDomain);
702 Schedule = isl::map::from_union_map(USchedule);
703 ScheduledAccRel = getAddressFunction().apply_domain(Schedule);
704 return isl::pw_multi_aff::from_map(ScheduledAccRel);
707 isl::map MemoryAccess::getOriginalAccessRelation() const {
708 return AccessRelation;
711 std::string MemoryAccess::getOriginalAccessRelationStr() const {
712 return AccessRelation.to_str();
715 isl::space MemoryAccess::getOriginalAccessRelationSpace() const {
716 return AccessRelation.get_space();
719 isl::map MemoryAccess::getNewAccessRelation() const {
720 return NewAccessRelation;
723 std::string MemoryAccess::getNewAccessRelationStr() const {
724 return NewAccessRelation.to_str();
727 std::string MemoryAccess::getAccessRelationStr() const {
728 return getAccessRelation().to_str();
731 isl::basic_map MemoryAccess::createBasicAccessMap(ScopStmt *Statement) {
732 isl::space Space = isl::space(Statement->getIslCtx(), 0, 1);
733 Space = Space.align_params(Statement->getDomainSpace());
735 return isl::basic_map::from_domain_and_range(
736 isl::basic_set::universe(Statement->getDomainSpace()),
737 isl::basic_set::universe(Space));
740 // Formalize no out-of-bound access assumption
742 // When delinearizing array accesses we optimistically assume that the
743 // delinearized accesses do not access out of bound locations (the subscript
744 // expression of each array evaluates for each statement instance that is
745 // executed to a value that is larger than zero and strictly smaller than the
746 // size of the corresponding dimension). The only exception is the outermost
747 // dimension for which we do not need to assume any upper bound. At this point
748 // we formalize this assumption to ensure that at code generation time the
749 // relevant run-time checks can be generated.
751 // To find the set of constraints necessary to avoid out of bound accesses, we
752 // first build the set of data locations that are not within array bounds. We
753 // then apply the reverse access relation to obtain the set of iterations that
754 // may contain invalid accesses and reduce this set of iterations to the ones
755 // that are actually executed by intersecting them with the domain of the
756 // statement. If we now project out all loop dimensions, we obtain a set of
757 // parameters that may cause statement instances to be executed that may
758 // possibly yield out of bound memory accesses. The complement of these
759 // constraints is the set of constraints that needs to be assumed to ensure such
760 // statement instances are never executed.
761 void MemoryAccess::assumeNoOutOfBound() {
762 if (PollyIgnoreInbounds)
763 return;
764 auto *SAI = getScopArrayInfo();
765 isl::space Space = getOriginalAccessRelationSpace().range();
766 isl::set Outside = isl::set::empty(Space);
767 for (int i = 1, Size = Space.dim(isl::dim::set); i < Size; ++i) {
768 isl::local_space LS(Space);
769 isl::pw_aff Var = isl::pw_aff::var_on_domain(LS, isl::dim::set, i);
770 isl::pw_aff Zero = isl::pw_aff(LS);
772 isl::set DimOutside = Var.lt_set(Zero);
773 isl::pw_aff SizeE = SAI->getDimensionSizePw(i);
774 SizeE = SizeE.add_dims(isl::dim::in, Space.dim(isl::dim::set));
775 SizeE = SizeE.set_tuple_id(isl::dim::in, Space.get_tuple_id(isl::dim::set));
776 DimOutside = DimOutside.unite(SizeE.le_set(Var));
778 Outside = Outside.unite(DimOutside);
781 Outside = Outside.apply(getAccessRelation().reverse());
782 Outside = Outside.intersect(Statement->getDomain());
783 Outside = Outside.params();
785 // Remove divs to avoid the construction of overly complicated assumptions.
786 // Doing so increases the set of parameter combinations that are assumed to
787 // not appear. This is always save, but may make the resulting run-time check
788 // bail out more often than strictly necessary.
789 Outside = Outside.remove_divs();
790 Outside = Outside.complement();
791 const auto &Loc = getAccessInstruction()
792 ? getAccessInstruction()->getDebugLoc()
793 : DebugLoc();
794 if (!PollyPreciseInbounds)
795 Outside = Outside.gist_params(Statement->getDomain().params());
796 Statement->getParent()->recordAssumption(INBOUNDS, Outside, Loc,
797 AS_ASSUMPTION);
800 void MemoryAccess::buildMemIntrinsicAccessRelation() {
801 assert(isMemoryIntrinsic());
802 assert(Subscripts.size() == 2 && Sizes.size() == 1);
804 isl::pw_aff SubscriptPWA = getPwAff(Subscripts[0]);
805 isl::map SubscriptMap = isl::map::from_pw_aff(SubscriptPWA);
807 isl::map LengthMap;
808 if (Subscripts[1] == nullptr) {
809 LengthMap = isl::map::universe(SubscriptMap.get_space());
810 } else {
811 isl::pw_aff LengthPWA = getPwAff(Subscripts[1]);
812 LengthMap = isl::map::from_pw_aff(LengthPWA);
813 isl::space RangeSpace = LengthMap.get_space().range();
814 LengthMap = LengthMap.apply_range(isl::map::lex_gt(RangeSpace));
816 LengthMap = LengthMap.lower_bound_si(isl::dim::out, 0, 0);
817 LengthMap = LengthMap.align_params(SubscriptMap.get_space());
818 SubscriptMap = SubscriptMap.align_params(LengthMap.get_space());
819 LengthMap = LengthMap.sum(SubscriptMap);
820 AccessRelation =
821 LengthMap.set_tuple_id(isl::dim::in, getStatement()->getDomainId());
824 void MemoryAccess::computeBoundsOnAccessRelation(unsigned ElementSize) {
825 ScalarEvolution *SE = Statement->getParent()->getSE();
827 auto MAI = MemAccInst(getAccessInstruction());
828 if (isa<MemIntrinsic>(MAI))
829 return;
831 Value *Ptr = MAI.getPointerOperand();
832 if (!Ptr || !SE->isSCEVable(Ptr->getType()))
833 return;
835 auto *PtrSCEV = SE->getSCEV(Ptr);
836 if (isa<SCEVCouldNotCompute>(PtrSCEV))
837 return;
839 auto *BasePtrSCEV = SE->getPointerBase(PtrSCEV);
840 if (BasePtrSCEV && !isa<SCEVCouldNotCompute>(BasePtrSCEV))
841 PtrSCEV = SE->getMinusSCEV(PtrSCEV, BasePtrSCEV);
843 const ConstantRange &Range = SE->getSignedRange(PtrSCEV);
844 if (Range.isFullSet())
845 return;
847 if (Range.isWrappedSet() || Range.isSignWrappedSet())
848 return;
850 bool isWrapping = Range.isSignWrappedSet();
852 unsigned BW = Range.getBitWidth();
853 const auto One = APInt(BW, 1);
854 const auto LB = isWrapping ? Range.getLower() : Range.getSignedMin();
855 const auto UB = isWrapping ? (Range.getUpper() - One) : Range.getSignedMax();
857 auto Min = LB.sdiv(APInt(BW, ElementSize));
858 auto Max = UB.sdiv(APInt(BW, ElementSize)) + One;
860 assert(Min.sle(Max) && "Minimum expected to be less or equal than max");
862 isl::map Relation = AccessRelation;
863 isl::set AccessRange = Relation.range();
864 AccessRange = addRangeBoundsToSet(AccessRange, ConstantRange(Min, Max), 0,
865 isl::dim::set);
866 AccessRelation = Relation.intersect_range(AccessRange);
869 void MemoryAccess::foldAccessRelation() {
870 if (Sizes.size() < 2 || isa<SCEVConstant>(Sizes[1]))
871 return;
873 int Size = Subscripts.size();
875 isl::map NewAccessRelation = AccessRelation;
877 for (int i = Size - 2; i >= 0; --i) {
878 isl::space Space;
879 isl::map MapOne, MapTwo;
880 isl::pw_aff DimSize = getPwAff(Sizes[i + 1]);
882 isl::space SpaceSize = DimSize.get_space();
883 isl::id ParamId = SpaceSize.get_dim_id(isl::dim::param, 0);
885 Space = AccessRelation.get_space();
886 Space = Space.range().map_from_set();
887 Space = Space.align_params(SpaceSize);
889 int ParamLocation = Space.find_dim_by_id(isl::dim::param, ParamId);
891 MapOne = isl::map::universe(Space);
892 for (int j = 0; j < Size; ++j)
893 MapOne = MapOne.equate(isl::dim::in, j, isl::dim::out, j);
894 MapOne = MapOne.lower_bound_si(isl::dim::in, i + 1, 0);
896 MapTwo = isl::map::universe(Space);
897 for (int j = 0; j < Size; ++j)
898 if (j < i || j > i + 1)
899 MapTwo = MapTwo.equate(isl::dim::in, j, isl::dim::out, j);
901 isl::local_space LS(Space);
902 isl::constraint C;
903 C = isl::constraint::alloc_equality(LS);
904 C = C.set_constant_si(-1);
905 C = C.set_coefficient_si(isl::dim::in, i, 1);
906 C = C.set_coefficient_si(isl::dim::out, i, -1);
907 MapTwo = MapTwo.add_constraint(C);
908 C = isl::constraint::alloc_equality(LS);
909 C = C.set_coefficient_si(isl::dim::in, i + 1, 1);
910 C = C.set_coefficient_si(isl::dim::out, i + 1, -1);
911 C = C.set_coefficient_si(isl::dim::param, ParamLocation, 1);
912 MapTwo = MapTwo.add_constraint(C);
913 MapTwo = MapTwo.upper_bound_si(isl::dim::in, i + 1, -1);
915 MapOne = MapOne.unite(MapTwo);
916 NewAccessRelation = NewAccessRelation.apply_range(MapOne);
919 isl::id BaseAddrId = getScopArrayInfo()->getBasePtrId();
920 isl::space Space = Statement->getDomainSpace();
921 NewAccessRelation = NewAccessRelation.set_tuple_id(
922 isl::dim::in, Space.get_tuple_id(isl::dim::set));
923 NewAccessRelation = NewAccessRelation.set_tuple_id(isl::dim::out, BaseAddrId);
924 NewAccessRelation = NewAccessRelation.gist_domain(Statement->getDomain());
926 // Access dimension folding might in certain cases increase the number of
927 // disjuncts in the memory access, which can possibly complicate the generated
928 // run-time checks and can lead to costly compilation.
929 if (!PollyPreciseFoldAccesses &&
930 isl_map_n_basic_map(NewAccessRelation.get()) >
931 isl_map_n_basic_map(AccessRelation.get())) {
932 } else {
933 AccessRelation = NewAccessRelation;
937 /// Check if @p Expr is divisible by @p Size.
938 static bool isDivisible(const SCEV *Expr, unsigned Size, ScalarEvolution &SE) {
939 assert(Size != 0);
940 if (Size == 1)
941 return true;
943 // Only one factor needs to be divisible.
944 if (auto *MulExpr = dyn_cast<SCEVMulExpr>(Expr)) {
945 for (auto *FactorExpr : MulExpr->operands())
946 if (isDivisible(FactorExpr, Size, SE))
947 return true;
948 return false;
951 // For other n-ary expressions (Add, AddRec, Max,...) all operands need
952 // to be divisible.
953 if (auto *NAryExpr = dyn_cast<SCEVNAryExpr>(Expr)) {
954 for (auto *OpExpr : NAryExpr->operands())
955 if (!isDivisible(OpExpr, Size, SE))
956 return false;
957 return true;
960 auto *SizeSCEV = SE.getConstant(Expr->getType(), Size);
961 auto *UDivSCEV = SE.getUDivExpr(Expr, SizeSCEV);
962 auto *MulSCEV = SE.getMulExpr(UDivSCEV, SizeSCEV);
963 return MulSCEV == Expr;
966 void MemoryAccess::buildAccessRelation(const ScopArrayInfo *SAI) {
967 assert(AccessRelation.is_null() && "AccessRelation already built");
969 // Initialize the invalid domain which describes all iterations for which the
970 // access relation is not modeled correctly.
971 isl::set StmtInvalidDomain = getStatement()->getInvalidDomain();
972 InvalidDomain = isl::set::empty(StmtInvalidDomain.get_space());
974 isl::ctx Ctx = Id.get_ctx();
975 isl::id BaseAddrId = SAI->getBasePtrId();
977 if (getAccessInstruction() && isa<MemIntrinsic>(getAccessInstruction())) {
978 buildMemIntrinsicAccessRelation();
979 AccessRelation = AccessRelation.set_tuple_id(isl::dim::out, BaseAddrId);
980 return;
983 if (!isAffine()) {
984 // We overapproximate non-affine accesses with a possible access to the
985 // whole array. For read accesses it does not make a difference, if an
986 // access must or may happen. However, for write accesses it is important to
987 // differentiate between writes that must happen and writes that may happen.
988 if (AccessRelation.is_null())
989 AccessRelation = createBasicAccessMap(Statement);
991 AccessRelation = AccessRelation.set_tuple_id(isl::dim::out, BaseAddrId);
992 return;
995 isl::space Space = isl::space(Ctx, 0, Statement->getNumIterators(), 0);
996 AccessRelation = isl::map::universe(Space);
998 for (int i = 0, Size = Subscripts.size(); i < Size; ++i) {
999 isl::pw_aff Affine = getPwAff(Subscripts[i]);
1000 isl::map SubscriptMap = isl::map::from_pw_aff(Affine);
1001 AccessRelation = AccessRelation.flat_range_product(SubscriptMap);
1004 Space = Statement->getDomainSpace();
1005 AccessRelation = AccessRelation.set_tuple_id(
1006 isl::dim::in, Space.get_tuple_id(isl::dim::set));
1007 AccessRelation = AccessRelation.set_tuple_id(isl::dim::out, BaseAddrId);
1009 AccessRelation = AccessRelation.gist_domain(Statement->getDomain());
1012 MemoryAccess::MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst,
1013 AccessType AccType, Value *BaseAddress,
1014 Type *ElementType, bool Affine,
1015 ArrayRef<const SCEV *> Subscripts,
1016 ArrayRef<const SCEV *> Sizes, Value *AccessValue,
1017 MemoryKind Kind)
1018 : Kind(Kind), AccType(AccType), Statement(Stmt), InvalidDomain(nullptr),
1019 BaseAddr(BaseAddress), ElementType(ElementType),
1020 Sizes(Sizes.begin(), Sizes.end()), AccessInstruction(AccessInst),
1021 AccessValue(AccessValue), IsAffine(Affine),
1022 Subscripts(Subscripts.begin(), Subscripts.end()), AccessRelation(nullptr),
1023 NewAccessRelation(nullptr), FAD(nullptr) {
1024 static const std::string TypeStrings[] = {"", "_Read", "_Write", "_MayWrite"};
1025 const std::string Access = TypeStrings[AccType] + utostr(Stmt->size());
1027 std::string IdName = Stmt->getBaseName() + Access;
1028 Id = isl::id::alloc(Stmt->getParent()->getIslCtx(), IdName, this);
1031 MemoryAccess::MemoryAccess(ScopStmt *Stmt, AccessType AccType, isl::map AccRel)
1032 : Kind(MemoryKind::Array), AccType(AccType), Statement(Stmt),
1033 InvalidDomain(nullptr), AccessRelation(nullptr),
1034 NewAccessRelation(AccRel), FAD(nullptr) {
1035 isl::id ArrayInfoId = NewAccessRelation.get_tuple_id(isl::dim::out);
1036 auto *SAI = ScopArrayInfo::getFromId(ArrayInfoId);
1037 Sizes.push_back(nullptr);
1038 for (unsigned i = 1; i < SAI->getNumberOfDimensions(); i++)
1039 Sizes.push_back(SAI->getDimensionSize(i));
1040 ElementType = SAI->getElementType();
1041 BaseAddr = SAI->getBasePtr();
1042 static const std::string TypeStrings[] = {"", "_Read", "_Write", "_MayWrite"};
1043 const std::string Access = TypeStrings[AccType] + utostr(Stmt->size());
1045 std::string IdName = Stmt->getBaseName() + Access;
1046 Id = isl::id::alloc(Stmt->getParent()->getIslCtx(), IdName, this);
1049 MemoryAccess::~MemoryAccess() = default;
1051 void MemoryAccess::realignParams() {
1052 isl::set Ctx = Statement->getParent()->getContext();
1053 InvalidDomain = InvalidDomain.gist_params(Ctx);
1054 AccessRelation = AccessRelation.gist_params(Ctx);
1057 const std::string MemoryAccess::getReductionOperatorStr() const {
1058 return MemoryAccess::getReductionOperatorStr(getReductionType());
1061 isl::id MemoryAccess::getId() const { return Id; }
1063 raw_ostream &polly::operator<<(raw_ostream &OS,
1064 MemoryAccess::ReductionType RT) {
1065 if (RT == MemoryAccess::RT_NONE)
1066 OS << "NONE";
1067 else
1068 OS << MemoryAccess::getReductionOperatorStr(RT);
1069 return OS;
1072 void MemoryAccess::setFortranArrayDescriptor(Value *FAD) { this->FAD = FAD; }
1074 void MemoryAccess::print(raw_ostream &OS) const {
1075 switch (AccType) {
1076 case READ:
1077 OS.indent(12) << "ReadAccess :=\t";
1078 break;
1079 case MUST_WRITE:
1080 OS.indent(12) << "MustWriteAccess :=\t";
1081 break;
1082 case MAY_WRITE:
1083 OS.indent(12) << "MayWriteAccess :=\t";
1084 break;
1087 OS << "[Reduction Type: " << getReductionType() << "] ";
1089 if (FAD) {
1090 OS << "[Fortran array descriptor: " << FAD->getName();
1091 OS << "] ";
1094 OS << "[Scalar: " << isScalarKind() << "]\n";
1095 OS.indent(16) << getOriginalAccessRelationStr() << ";\n";
1096 if (hasNewAccessRelation())
1097 OS.indent(11) << "new: " << getNewAccessRelationStr() << ";\n";
1100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1101 LLVM_DUMP_METHOD void MemoryAccess::dump() const { print(errs()); }
1102 #endif
1104 isl::pw_aff MemoryAccess::getPwAff(const SCEV *E) {
1105 auto *Stmt = getStatement();
1106 PWACtx PWAC = Stmt->getParent()->getPwAff(E, Stmt->getEntryBlock());
1107 isl::set StmtDom = getStatement()->getDomain();
1108 StmtDom = StmtDom.reset_tuple_id();
1109 isl::set NewInvalidDom = StmtDom.intersect(PWAC.second);
1110 InvalidDomain = InvalidDomain.unite(NewInvalidDom);
1111 return PWAC.first;
1114 // Create a map in the size of the provided set domain, that maps from the
1115 // one element of the provided set domain to another element of the provided
1116 // set domain.
1117 // The mapping is limited to all points that are equal in all but the last
1118 // dimension and for which the last dimension of the input is strict smaller
1119 // than the last dimension of the output.
1121 // getEqualAndLarger(set[i0, i1, ..., iX]):
1123 // set[i0, i1, ..., iX] -> set[o0, o1, ..., oX]
1124 // : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX
1126 static isl::map getEqualAndLarger(isl::space SetDomain) {
1127 isl::space Space = SetDomain.map_from_set();
1128 isl::map Map = isl::map::universe(Space);
1129 unsigned lastDimension = Map.dim(isl::dim::in) - 1;
1131 // Set all but the last dimension to be equal for the input and output
1133 // input[i0, i1, ..., iX] -> output[o0, o1, ..., oX]
1134 // : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1)
1135 for (unsigned i = 0; i < lastDimension; ++i)
1136 Map = Map.equate(isl::dim::in, i, isl::dim::out, i);
1138 // Set the last dimension of the input to be strict smaller than the
1139 // last dimension of the output.
1141 // input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX
1142 Map = Map.order_lt(isl::dim::in, lastDimension, isl::dim::out, lastDimension);
1143 return Map;
1146 isl::set MemoryAccess::getStride(isl::map Schedule) const {
1147 isl::map AccessRelation = getAccessRelation();
1148 isl::space Space = Schedule.get_space().range();
1149 isl::map NextScatt = getEqualAndLarger(Space);
1151 Schedule = Schedule.reverse();
1152 NextScatt = NextScatt.lexmin();
1154 NextScatt = NextScatt.apply_range(Schedule);
1155 NextScatt = NextScatt.apply_range(AccessRelation);
1156 NextScatt = NextScatt.apply_domain(Schedule);
1157 NextScatt = NextScatt.apply_domain(AccessRelation);
1159 isl::set Deltas = NextScatt.deltas();
1160 return Deltas;
1163 bool MemoryAccess::isStrideX(isl::map Schedule, int StrideWidth) const {
1164 isl::set Stride, StrideX;
1165 bool IsStrideX;
1167 Stride = getStride(Schedule);
1168 StrideX = isl::set::universe(Stride.get_space());
1169 for (unsigned i = 0; i < StrideX.dim(isl::dim::set) - 1; i++)
1170 StrideX = StrideX.fix_si(isl::dim::set, i, 0);
1171 StrideX = StrideX.fix_si(isl::dim::set, StrideX.dim(isl::dim::set) - 1,
1172 StrideWidth);
1173 IsStrideX = Stride.is_subset(StrideX);
1175 return IsStrideX;
1178 bool MemoryAccess::isStrideZero(isl::map Schedule) const {
1179 return isStrideX(Schedule, 0);
1182 bool MemoryAccess::isStrideOne(isl::map Schedule) const {
1183 return isStrideX(Schedule, 1);
1186 void MemoryAccess::setAccessRelation(isl::map NewAccess) {
1187 AccessRelation = NewAccess;
1190 void MemoryAccess::setNewAccessRelation(isl::map NewAccess) {
1191 assert(NewAccess);
1193 #ifndef NDEBUG
1194 // Check domain space compatibility.
1195 isl::space NewSpace = NewAccess.get_space();
1196 isl::space NewDomainSpace = NewSpace.domain();
1197 isl::space OriginalDomainSpace = getStatement()->getDomainSpace();
1198 assert(OriginalDomainSpace.has_equal_tuples(NewDomainSpace));
1200 // Reads must be executed unconditionally. Writes might be executed in a
1201 // subdomain only.
1202 if (isRead()) {
1203 // Check whether there is an access for every statement instance.
1204 isl::set StmtDomain = getStatement()->getDomain();
1205 StmtDomain =
1206 StmtDomain.intersect_params(getStatement()->getParent()->getContext());
1207 isl::set NewDomain = NewAccess.domain();
1208 assert(StmtDomain.is_subset(NewDomain) &&
1209 "Partial READ accesses not supported");
1212 isl::space NewAccessSpace = NewAccess.get_space();
1213 assert(NewAccessSpace.has_tuple_id(isl::dim::set) &&
1214 "Must specify the array that is accessed");
1215 isl::id NewArrayId = NewAccessSpace.get_tuple_id(isl::dim::set);
1216 auto *SAI = static_cast<ScopArrayInfo *>(NewArrayId.get_user());
1217 assert(SAI && "Must set a ScopArrayInfo");
1219 if (SAI->isArrayKind() && SAI->getBasePtrOriginSAI()) {
1220 InvariantEquivClassTy *EqClass =
1221 getStatement()->getParent()->lookupInvariantEquivClass(
1222 SAI->getBasePtr());
1223 assert(EqClass &&
1224 "Access functions to indirect arrays must have an invariant and "
1225 "hoisted base pointer");
1228 // Check whether access dimensions correspond to number of dimensions of the
1229 // accesses array.
1230 auto Dims = SAI->getNumberOfDimensions();
1231 assert(NewAccessSpace.dim(isl::dim::set) == Dims &&
1232 "Access dims must match array dims");
1233 #endif
1235 NewAccess = NewAccess.gist_domain(getStatement()->getDomain());
1236 NewAccessRelation = NewAccess;
1239 bool MemoryAccess::isLatestPartialAccess() const {
1240 isl::set StmtDom = getStatement()->getDomain();
1241 isl::set AccDom = getLatestAccessRelation().domain();
1243 return !StmtDom.is_subset(AccDom);
1246 //===----------------------------------------------------------------------===//
1248 isl::map ScopStmt::getSchedule() const {
1249 isl::set Domain = getDomain();
1250 if (Domain.is_empty())
1251 return isl::map::from_aff(isl::aff(isl::local_space(getDomainSpace())));
1252 auto Schedule = getParent()->getSchedule();
1253 if (!Schedule)
1254 return nullptr;
1255 Schedule = Schedule.intersect_domain(isl::union_set(Domain));
1256 if (Schedule.is_empty())
1257 return isl::map::from_aff(isl::aff(isl::local_space(getDomainSpace())));
1258 isl::map M = M.from_union_map(Schedule);
1259 M = M.coalesce();
1260 M = M.gist_domain(Domain);
1261 M = M.coalesce();
1262 return M;
1265 void ScopStmt::restrictDomain(isl::set NewDomain) {
1266 assert(NewDomain.is_subset(Domain) &&
1267 "New domain is not a subset of old domain!");
1268 Domain = NewDomain;
1271 void ScopStmt::addAccess(MemoryAccess *Access, bool Prepend) {
1272 Instruction *AccessInst = Access->getAccessInstruction();
1274 if (Access->isArrayKind()) {
1275 MemoryAccessList &MAL = InstructionToAccess[AccessInst];
1276 MAL.emplace_front(Access);
1277 } else if (Access->isValueKind() && Access->isWrite()) {
1278 Instruction *AccessVal = cast<Instruction>(Access->getAccessValue());
1279 assert(!ValueWrites.lookup(AccessVal));
1281 ValueWrites[AccessVal] = Access;
1282 } else if (Access->isValueKind() && Access->isRead()) {
1283 Value *AccessVal = Access->getAccessValue();
1284 assert(!ValueReads.lookup(AccessVal));
1286 ValueReads[AccessVal] = Access;
1287 } else if (Access->isAnyPHIKind() && Access->isWrite()) {
1288 PHINode *PHI = cast<PHINode>(Access->getAccessValue());
1289 assert(!PHIWrites.lookup(PHI));
1291 PHIWrites[PHI] = Access;
1292 } else if (Access->isAnyPHIKind() && Access->isRead()) {
1293 PHINode *PHI = cast<PHINode>(Access->getAccessValue());
1294 assert(!PHIReads.lookup(PHI));
1296 PHIReads[PHI] = Access;
1299 if (Prepend) {
1300 MemAccs.insert(MemAccs.begin(), Access);
1301 return;
1303 MemAccs.push_back(Access);
1306 void ScopStmt::realignParams() {
1307 for (MemoryAccess *MA : *this)
1308 MA->realignParams();
1310 isl::set Ctx = Parent.getContext();
1311 InvalidDomain = InvalidDomain.gist_params(Ctx);
1312 Domain = Domain.gist_params(Ctx);
1315 /// Add @p BSet to the set @p User if @p BSet is bounded.
1316 static isl_stat collectBoundedParts(__isl_take isl_basic_set *BSet,
1317 void *User) {
1318 isl_set **BoundedParts = static_cast<isl_set **>(User);
1319 if (isl_basic_set_is_bounded(BSet))
1320 *BoundedParts = isl_set_union(*BoundedParts, isl_set_from_basic_set(BSet));
1321 else
1322 isl_basic_set_free(BSet);
1323 return isl_stat_ok;
1326 /// Return the bounded parts of @p S.
1327 static __isl_give isl_set *collectBoundedParts(__isl_take isl_set *S) {
1328 isl_set *BoundedParts = isl_set_empty(isl_set_get_space(S));
1329 isl_set_foreach_basic_set(S, collectBoundedParts, &BoundedParts);
1330 isl_set_free(S);
1331 return BoundedParts;
1334 /// Compute the (un)bounded parts of @p S wrt. to dimension @p Dim.
1336 /// @returns A separation of @p S into first an unbounded then a bounded subset,
1337 /// both with regards to the dimension @p Dim.
1338 static std::pair<__isl_give isl_set *, __isl_give isl_set *>
1339 partitionSetParts(__isl_take isl_set *S, unsigned Dim) {
1340 for (unsigned u = 0, e = isl_set_n_dim(S); u < e; u++)
1341 S = isl_set_lower_bound_si(S, isl_dim_set, u, 0);
1343 unsigned NumDimsS = isl_set_n_dim(S);
1344 isl_set *OnlyDimS = isl_set_copy(S);
1346 // Remove dimensions that are greater than Dim as they are not interesting.
1347 assert(NumDimsS >= Dim + 1);
1348 OnlyDimS =
1349 isl_set_project_out(OnlyDimS, isl_dim_set, Dim + 1, NumDimsS - Dim - 1);
1351 // Create artificial parametric upper bounds for dimensions smaller than Dim
1352 // as we are not interested in them.
1353 OnlyDimS = isl_set_insert_dims(OnlyDimS, isl_dim_param, 0, Dim);
1354 for (unsigned u = 0; u < Dim; u++) {
1355 isl_constraint *C = isl_inequality_alloc(
1356 isl_local_space_from_space(isl_set_get_space(OnlyDimS)));
1357 C = isl_constraint_set_coefficient_si(C, isl_dim_param, u, 1);
1358 C = isl_constraint_set_coefficient_si(C, isl_dim_set, u, -1);
1359 OnlyDimS = isl_set_add_constraint(OnlyDimS, C);
1362 // Collect all bounded parts of OnlyDimS.
1363 isl_set *BoundedParts = collectBoundedParts(OnlyDimS);
1365 // Create the dimensions greater than Dim again.
1366 BoundedParts = isl_set_insert_dims(BoundedParts, isl_dim_set, Dim + 1,
1367 NumDimsS - Dim - 1);
1369 // Remove the artificial upper bound parameters again.
1370 BoundedParts = isl_set_remove_dims(BoundedParts, isl_dim_param, 0, Dim);
1372 isl_set *UnboundedParts = isl_set_subtract(S, isl_set_copy(BoundedParts));
1373 return std::make_pair(UnboundedParts, BoundedParts);
1376 /// Create the conditions under which @p L @p Pred @p R is true.
1377 static __isl_give isl_set *buildConditionSet(ICmpInst::Predicate Pred,
1378 __isl_take isl_pw_aff *L,
1379 __isl_take isl_pw_aff *R) {
1380 switch (Pred) {
1381 case ICmpInst::ICMP_EQ:
1382 return isl_pw_aff_eq_set(L, R);
1383 case ICmpInst::ICMP_NE:
1384 return isl_pw_aff_ne_set(L, R);
1385 case ICmpInst::ICMP_SLT:
1386 return isl_pw_aff_lt_set(L, R);
1387 case ICmpInst::ICMP_SLE:
1388 return isl_pw_aff_le_set(L, R);
1389 case ICmpInst::ICMP_SGT:
1390 return isl_pw_aff_gt_set(L, R);
1391 case ICmpInst::ICMP_SGE:
1392 return isl_pw_aff_ge_set(L, R);
1393 case ICmpInst::ICMP_ULT:
1394 return isl_pw_aff_lt_set(L, R);
1395 case ICmpInst::ICMP_UGT:
1396 return isl_pw_aff_gt_set(L, R);
1397 case ICmpInst::ICMP_ULE:
1398 return isl_pw_aff_le_set(L, R);
1399 case ICmpInst::ICMP_UGE:
1400 return isl_pw_aff_ge_set(L, R);
1401 default:
1402 llvm_unreachable("Non integer predicate not supported");
1406 /// Compute the isl representation for the SCEV @p E in this BB.
1408 /// @param S The Scop in which @p BB resides in.
1409 /// @param BB The BB for which isl representation is to be
1410 /// computed.
1411 /// @param InvalidDomainMap A map of BB to their invalid domains.
1412 /// @param E The SCEV that should be translated.
1413 /// @param NonNegative Flag to indicate the @p E has to be non-negative.
1415 /// Note that this function will also adjust the invalid context accordingly.
1417 __isl_give isl_pw_aff *
1418 getPwAff(Scop &S, BasicBlock *BB,
1419 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap, const SCEV *E,
1420 bool NonNegative = false) {
1421 PWACtx PWAC = S.getPwAff(E, BB, NonNegative);
1422 InvalidDomainMap[BB] = InvalidDomainMap[BB].unite(PWAC.second);
1423 return PWAC.first.release();
1426 /// Build the conditions sets for the switch @p SI in the @p Domain.
1428 /// This will fill @p ConditionSets with the conditions under which control
1429 /// will be moved from @p SI to its successors. Hence, @p ConditionSets will
1430 /// have as many elements as @p SI has successors.
1431 bool buildConditionSets(Scop &S, BasicBlock *BB, SwitchInst *SI, Loop *L,
1432 __isl_keep isl_set *Domain,
1433 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
1434 SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
1435 Value *Condition = getConditionFromTerminator(SI);
1436 assert(Condition && "No condition for switch");
1438 ScalarEvolution &SE = *S.getSE();
1439 isl_pw_aff *LHS, *RHS;
1440 LHS = getPwAff(S, BB, InvalidDomainMap, SE.getSCEVAtScope(Condition, L));
1442 unsigned NumSuccessors = SI->getNumSuccessors();
1443 ConditionSets.resize(NumSuccessors);
1444 for (auto &Case : SI->cases()) {
1445 unsigned Idx = Case.getSuccessorIndex();
1446 ConstantInt *CaseValue = Case.getCaseValue();
1448 RHS = getPwAff(S, BB, InvalidDomainMap, SE.getSCEV(CaseValue));
1449 isl_set *CaseConditionSet =
1450 buildConditionSet(ICmpInst::ICMP_EQ, isl_pw_aff_copy(LHS), RHS);
1451 ConditionSets[Idx] = isl_set_coalesce(
1452 isl_set_intersect(CaseConditionSet, isl_set_copy(Domain)));
1455 assert(ConditionSets[0] == nullptr && "Default condition set was set");
1456 isl_set *ConditionSetUnion = isl_set_copy(ConditionSets[1]);
1457 for (unsigned u = 2; u < NumSuccessors; u++)
1458 ConditionSetUnion =
1459 isl_set_union(ConditionSetUnion, isl_set_copy(ConditionSets[u]));
1460 ConditionSets[0] = isl_set_subtract(isl_set_copy(Domain), ConditionSetUnion);
1462 isl_pw_aff_free(LHS);
1464 return true;
1467 /// Build condition sets for unsigned ICmpInst(s).
1468 /// Special handling is required for unsigned operands to ensure that if
1469 /// MSB (aka the Sign bit) is set for an operands in an unsigned ICmpInst
1470 /// it should wrap around.
1472 /// @param IsStrictUpperBound holds information on the predicate relation
1473 /// between TestVal and UpperBound, i.e,
1474 /// TestVal < UpperBound OR TestVal <= UpperBound
1475 __isl_give isl_set *
1476 buildUnsignedConditionSets(Scop &S, BasicBlock *BB, Value *Condition,
1477 __isl_keep isl_set *Domain, const SCEV *SCEV_TestVal,
1478 const SCEV *SCEV_UpperBound,
1479 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
1480 bool IsStrictUpperBound) {
1481 // Do not take NonNeg assumption on TestVal
1482 // as it might have MSB (Sign bit) set.
1483 isl_pw_aff *TestVal = getPwAff(S, BB, InvalidDomainMap, SCEV_TestVal, false);
1484 // Take NonNeg assumption on UpperBound.
1485 isl_pw_aff *UpperBound =
1486 getPwAff(S, BB, InvalidDomainMap, SCEV_UpperBound, true);
1488 // 0 <= TestVal
1489 isl_set *First =
1490 isl_pw_aff_le_set(isl_pw_aff_zero_on_domain(isl_local_space_from_space(
1491 isl_pw_aff_get_domain_space(TestVal))),
1492 isl_pw_aff_copy(TestVal));
1494 isl_set *Second;
1495 if (IsStrictUpperBound)
1496 // TestVal < UpperBound
1497 Second = isl_pw_aff_lt_set(TestVal, UpperBound);
1498 else
1499 // TestVal <= UpperBound
1500 Second = isl_pw_aff_le_set(TestVal, UpperBound);
1502 isl_set *ConsequenceCondSet = isl_set_intersect(First, Second);
1503 return ConsequenceCondSet;
1506 /// Build the conditions sets for the branch condition @p Condition in
1507 /// the @p Domain.
1509 /// This will fill @p ConditionSets with the conditions under which control
1510 /// will be moved from @p TI to its successors. Hence, @p ConditionSets will
1511 /// have as many elements as @p TI has successors. If @p TI is nullptr the
1512 /// context under which @p Condition is true/false will be returned as the
1513 /// new elements of @p ConditionSets.
1514 bool buildConditionSets(Scop &S, BasicBlock *BB, Value *Condition,
1515 TerminatorInst *TI, Loop *L, __isl_keep isl_set *Domain,
1516 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
1517 SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
1518 ScalarEvolution &SE = *S.getSE();
1519 isl_set *ConsequenceCondSet = nullptr;
1521 if (auto Load = dyn_cast<LoadInst>(Condition)) {
1522 const SCEV *LHSSCEV = SE.getSCEVAtScope(Load, L);
1523 const SCEV *RHSSCEV = SE.getZero(LHSSCEV->getType());
1524 bool NonNeg = false;
1525 isl_pw_aff *LHS = getPwAff(S, BB, InvalidDomainMap, LHSSCEV, NonNeg);
1526 isl_pw_aff *RHS = getPwAff(S, BB, InvalidDomainMap, RHSSCEV, NonNeg);
1527 ConsequenceCondSet = buildConditionSet(ICmpInst::ICMP_SLE, LHS, RHS);
1528 } else if (auto *PHI = dyn_cast<PHINode>(Condition)) {
1529 auto *Unique = dyn_cast<ConstantInt>(
1530 getUniqueNonErrorValue(PHI, &S.getRegion(), *S.getLI(), *S.getDT()));
1532 if (Unique->isZero())
1533 ConsequenceCondSet = isl_set_empty(isl_set_get_space(Domain));
1534 else
1535 ConsequenceCondSet = isl_set_universe(isl_set_get_space(Domain));
1536 } else if (auto *CCond = dyn_cast<ConstantInt>(Condition)) {
1537 if (CCond->isZero())
1538 ConsequenceCondSet = isl_set_empty(isl_set_get_space(Domain));
1539 else
1540 ConsequenceCondSet = isl_set_universe(isl_set_get_space(Domain));
1541 } else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
1542 auto Opcode = BinOp->getOpcode();
1543 assert(Opcode == Instruction::And || Opcode == Instruction::Or);
1545 bool Valid = buildConditionSets(S, BB, BinOp->getOperand(0), TI, L, Domain,
1546 InvalidDomainMap, ConditionSets) &&
1547 buildConditionSets(S, BB, BinOp->getOperand(1), TI, L, Domain,
1548 InvalidDomainMap, ConditionSets);
1549 if (!Valid) {
1550 while (!ConditionSets.empty())
1551 isl_set_free(ConditionSets.pop_back_val());
1552 return false;
1555 isl_set_free(ConditionSets.pop_back_val());
1556 isl_set *ConsCondPart0 = ConditionSets.pop_back_val();
1557 isl_set_free(ConditionSets.pop_back_val());
1558 isl_set *ConsCondPart1 = ConditionSets.pop_back_val();
1560 if (Opcode == Instruction::And)
1561 ConsequenceCondSet = isl_set_intersect(ConsCondPart0, ConsCondPart1);
1562 else
1563 ConsequenceCondSet = isl_set_union(ConsCondPart0, ConsCondPart1);
1564 } else {
1565 auto *ICond = dyn_cast<ICmpInst>(Condition);
1566 assert(ICond &&
1567 "Condition of exiting branch was neither constant nor ICmp!");
1569 LoopInfo &LI = *S.getLI();
1570 DominatorTree &DT = *S.getDT();
1571 Region &R = S.getRegion();
1573 isl_pw_aff *LHS, *RHS;
1574 // For unsigned comparisons we assumed the signed bit of neither operand
1575 // to be set. The comparison is equal to a signed comparison under this
1576 // assumption.
1577 bool NonNeg = ICond->isUnsigned();
1578 const SCEV *LeftOperand = SE.getSCEVAtScope(ICond->getOperand(0), L),
1579 *RightOperand = SE.getSCEVAtScope(ICond->getOperand(1), L);
1581 LeftOperand = tryForwardThroughPHI(LeftOperand, R, SE, LI, DT);
1582 RightOperand = tryForwardThroughPHI(RightOperand, R, SE, LI, DT);
1584 switch (ICond->getPredicate()) {
1585 case ICmpInst::ICMP_ULT:
1586 ConsequenceCondSet =
1587 buildUnsignedConditionSets(S, BB, Condition, Domain, LeftOperand,
1588 RightOperand, InvalidDomainMap, true);
1589 break;
1590 case ICmpInst::ICMP_ULE:
1591 ConsequenceCondSet =
1592 buildUnsignedConditionSets(S, BB, Condition, Domain, LeftOperand,
1593 RightOperand, InvalidDomainMap, false);
1594 break;
1595 case ICmpInst::ICMP_UGT:
1596 ConsequenceCondSet =
1597 buildUnsignedConditionSets(S, BB, Condition, Domain, RightOperand,
1598 LeftOperand, InvalidDomainMap, true);
1599 break;
1600 case ICmpInst::ICMP_UGE:
1601 ConsequenceCondSet =
1602 buildUnsignedConditionSets(S, BB, Condition, Domain, RightOperand,
1603 LeftOperand, InvalidDomainMap, false);
1604 break;
1605 default:
1606 LHS = getPwAff(S, BB, InvalidDomainMap, LeftOperand, NonNeg);
1607 RHS = getPwAff(S, BB, InvalidDomainMap, RightOperand, NonNeg);
1608 ConsequenceCondSet = buildConditionSet(ICond->getPredicate(), LHS, RHS);
1609 break;
1613 // If no terminator was given we are only looking for parameter constraints
1614 // under which @p Condition is true/false.
1615 if (!TI)
1616 ConsequenceCondSet = isl_set_params(ConsequenceCondSet);
1617 assert(ConsequenceCondSet);
1618 ConsequenceCondSet = isl_set_coalesce(
1619 isl_set_intersect(ConsequenceCondSet, isl_set_copy(Domain)));
1621 isl_set *AlternativeCondSet = nullptr;
1622 bool TooComplex =
1623 isl_set_n_basic_set(ConsequenceCondSet) >= MaxDisjunctsInDomain;
1625 if (!TooComplex) {
1626 AlternativeCondSet = isl_set_subtract(isl_set_copy(Domain),
1627 isl_set_copy(ConsequenceCondSet));
1628 TooComplex =
1629 isl_set_n_basic_set(AlternativeCondSet) >= MaxDisjunctsInDomain;
1632 if (TooComplex) {
1633 S.invalidate(COMPLEXITY, TI ? TI->getDebugLoc() : DebugLoc(),
1634 TI ? TI->getParent() : nullptr /* BasicBlock */);
1635 isl_set_free(AlternativeCondSet);
1636 isl_set_free(ConsequenceCondSet);
1637 return false;
1640 ConditionSets.push_back(ConsequenceCondSet);
1641 ConditionSets.push_back(isl_set_coalesce(AlternativeCondSet));
1643 return true;
1646 /// Build the conditions sets for the terminator @p TI in the @p Domain.
1648 /// This will fill @p ConditionSets with the conditions under which control
1649 /// will be moved from @p TI to its successors. Hence, @p ConditionSets will
1650 /// have as many elements as @p TI has successors.
1651 bool buildConditionSets(Scop &S, BasicBlock *BB, TerminatorInst *TI, Loop *L,
1652 __isl_keep isl_set *Domain,
1653 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
1654 SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
1655 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
1656 return buildConditionSets(S, BB, SI, L, Domain, InvalidDomainMap,
1657 ConditionSets);
1659 assert(isa<BranchInst>(TI) && "Terminator was neither branch nor switch.");
1661 if (TI->getNumSuccessors() == 1) {
1662 ConditionSets.push_back(isl_set_copy(Domain));
1663 return true;
1666 Value *Condition = getConditionFromTerminator(TI);
1667 assert(Condition && "No condition for Terminator");
1669 return buildConditionSets(S, BB, Condition, TI, L, Domain, InvalidDomainMap,
1670 ConditionSets);
1673 ScopStmt::ScopStmt(Scop &parent, Region &R, StringRef Name,
1674 Loop *SurroundingLoop,
1675 std::vector<Instruction *> EntryBlockInstructions)
1676 : Parent(parent), InvalidDomain(nullptr), Domain(nullptr), R(&R),
1677 Build(nullptr), BaseName(Name), SurroundingLoop(SurroundingLoop),
1678 Instructions(EntryBlockInstructions) {}
1680 ScopStmt::ScopStmt(Scop &parent, BasicBlock &bb, StringRef Name,
1681 Loop *SurroundingLoop,
1682 std::vector<Instruction *> Instructions)
1683 : Parent(parent), InvalidDomain(nullptr), Domain(nullptr), BB(&bb),
1684 Build(nullptr), BaseName(Name), SurroundingLoop(SurroundingLoop),
1685 Instructions(Instructions) {}
1687 ScopStmt::ScopStmt(Scop &parent, isl::map SourceRel, isl::map TargetRel,
1688 isl::set NewDomain)
1689 : Parent(parent), InvalidDomain(nullptr), Domain(NewDomain),
1690 Build(nullptr) {
1691 BaseName = getIslCompatibleName("CopyStmt_", "",
1692 std::to_string(parent.getCopyStmtsNum()));
1693 isl::id Id = isl::id::alloc(getIslCtx(), getBaseName(), this);
1694 Domain = Domain.set_tuple_id(Id);
1695 TargetRel = TargetRel.set_tuple_id(isl::dim::in, Id);
1696 auto *Access =
1697 new MemoryAccess(this, MemoryAccess::AccessType::MUST_WRITE, TargetRel);
1698 parent.addAccessFunction(Access);
1699 addAccess(Access);
1700 SourceRel = SourceRel.set_tuple_id(isl::dim::in, Id);
1701 Access = new MemoryAccess(this, MemoryAccess::AccessType::READ, SourceRel);
1702 parent.addAccessFunction(Access);
1703 addAccess(Access);
1706 ScopStmt::~ScopStmt() = default;
1708 std::string ScopStmt::getDomainStr() const { return Domain.to_str(); }
1710 std::string ScopStmt::getScheduleStr() const {
1711 auto *S = getSchedule().release();
1712 if (!S)
1713 return {};
1714 auto Str = stringFromIslObj(S);
1715 isl_map_free(S);
1716 return Str;
1719 void ScopStmt::setInvalidDomain(isl::set ID) { InvalidDomain = ID; }
1721 BasicBlock *ScopStmt::getEntryBlock() const {
1722 if (isBlockStmt())
1723 return getBasicBlock();
1724 return getRegion()->getEntry();
1727 unsigned ScopStmt::getNumIterators() const { return NestLoops.size(); }
1729 const char *ScopStmt::getBaseName() const { return BaseName.c_str(); }
1731 Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const {
1732 return NestLoops[Dimension];
1735 isl::ctx ScopStmt::getIslCtx() const { return Parent.getIslCtx(); }
1737 isl::set ScopStmt::getDomain() const { return Domain; }
1739 isl::space ScopStmt::getDomainSpace() const { return Domain.get_space(); }
1741 isl::id ScopStmt::getDomainId() const { return Domain.get_tuple_id(); }
1743 void ScopStmt::printInstructions(raw_ostream &OS) const {
1744 OS << "Instructions {\n";
1746 for (Instruction *Inst : Instructions)
1747 OS.indent(16) << *Inst << "\n";
1749 OS.indent(12) << "}\n";
1752 void ScopStmt::print(raw_ostream &OS, bool PrintInstructions) const {
1753 OS << "\t" << getBaseName() << "\n";
1754 OS.indent(12) << "Domain :=\n";
1756 if (Domain) {
1757 OS.indent(16) << getDomainStr() << ";\n";
1758 } else
1759 OS.indent(16) << "n/a\n";
1761 OS.indent(12) << "Schedule :=\n";
1763 if (Domain) {
1764 OS.indent(16) << getScheduleStr() << ";\n";
1765 } else
1766 OS.indent(16) << "n/a\n";
1768 for (MemoryAccess *Access : MemAccs)
1769 Access->print(OS);
1771 if (PrintInstructions)
1772 printInstructions(OS.indent(12));
1775 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1776 LLVM_DUMP_METHOD void ScopStmt::dump() const { print(dbgs(), true); }
1777 #endif
1779 void ScopStmt::removeAccessData(MemoryAccess *MA) {
1780 if (MA->isRead() && MA->isOriginalValueKind()) {
1781 bool Found = ValueReads.erase(MA->getAccessValue());
1782 (void)Found;
1783 assert(Found && "Expected access data not found");
1785 if (MA->isWrite() && MA->isOriginalValueKind()) {
1786 bool Found = ValueWrites.erase(cast<Instruction>(MA->getAccessValue()));
1787 (void)Found;
1788 assert(Found && "Expected access data not found");
1790 if (MA->isWrite() && MA->isOriginalAnyPHIKind()) {
1791 bool Found = PHIWrites.erase(cast<PHINode>(MA->getAccessInstruction()));
1792 (void)Found;
1793 assert(Found && "Expected access data not found");
1795 if (MA->isRead() && MA->isOriginalAnyPHIKind()) {
1796 bool Found = PHIReads.erase(cast<PHINode>(MA->getAccessInstruction()));
1797 (void)Found;
1798 assert(Found && "Expected access data not found");
1802 void ScopStmt::removeMemoryAccess(MemoryAccess *MA) {
1803 // Remove the memory accesses from this statement together with all scalar
1804 // accesses that were caused by it. MemoryKind::Value READs have no access
1805 // instruction, hence would not be removed by this function. However, it is
1806 // only used for invariant LoadInst accesses, its arguments are always affine,
1807 // hence synthesizable, and therefore there are no MemoryKind::Value READ
1808 // accesses to be removed.
1809 auto Predicate = [&](MemoryAccess *Acc) {
1810 return Acc->getAccessInstruction() == MA->getAccessInstruction();
1812 for (auto *MA : MemAccs) {
1813 if (Predicate(MA)) {
1814 removeAccessData(MA);
1815 Parent.removeAccessData(MA);
1818 MemAccs.erase(std::remove_if(MemAccs.begin(), MemAccs.end(), Predicate),
1819 MemAccs.end());
1820 InstructionToAccess.erase(MA->getAccessInstruction());
1823 void ScopStmt::removeSingleMemoryAccess(MemoryAccess *MA, bool AfterHoisting) {
1824 if (AfterHoisting) {
1825 auto MAIt = std::find(MemAccs.begin(), MemAccs.end(), MA);
1826 assert(MAIt != MemAccs.end());
1827 MemAccs.erase(MAIt);
1829 removeAccessData(MA);
1830 Parent.removeAccessData(MA);
1833 auto It = InstructionToAccess.find(MA->getAccessInstruction());
1834 if (It != InstructionToAccess.end()) {
1835 It->second.remove(MA);
1836 if (It->second.empty())
1837 InstructionToAccess.erase(MA->getAccessInstruction());
1841 MemoryAccess *ScopStmt::ensureValueRead(Value *V) {
1842 MemoryAccess *Access = lookupInputAccessOf(V);
1843 if (Access)
1844 return Access;
1846 ScopArrayInfo *SAI =
1847 Parent.getOrCreateScopArrayInfo(V, V->getType(), {}, MemoryKind::Value);
1848 Access = new MemoryAccess(this, nullptr, MemoryAccess::READ, V, V->getType(),
1849 true, {}, {}, V, MemoryKind::Value);
1850 Parent.addAccessFunction(Access);
1851 Access->buildAccessRelation(SAI);
1852 addAccess(Access);
1853 Parent.addAccessData(Access);
1854 return Access;
1857 raw_ostream &polly::operator<<(raw_ostream &OS, const ScopStmt &S) {
1858 S.print(OS, PollyPrintInstructions);
1859 return OS;
1862 //===----------------------------------------------------------------------===//
1863 /// Scop class implement
1865 void Scop::setContext(isl::set NewContext) {
1866 Context = NewContext.align_params(Context.get_space());
1869 namespace {
1871 /// Remap parameter values but keep AddRecs valid wrt. invariant loads.
1872 struct SCEVSensitiveParameterRewriter
1873 : public SCEVRewriteVisitor<SCEVSensitiveParameterRewriter> {
1874 const ValueToValueMap &VMap;
1876 public:
1877 SCEVSensitiveParameterRewriter(const ValueToValueMap &VMap,
1878 ScalarEvolution &SE)
1879 : SCEVRewriteVisitor(SE), VMap(VMap) {}
1881 static const SCEV *rewrite(const SCEV *E, ScalarEvolution &SE,
1882 const ValueToValueMap &VMap) {
1883 SCEVSensitiveParameterRewriter SSPR(VMap, SE);
1884 return SSPR.visit(E);
1887 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
1888 auto *Start = visit(E->getStart());
1889 auto *AddRec = SE.getAddRecExpr(SE.getConstant(E->getType(), 0),
1890 visit(E->getStepRecurrence(SE)),
1891 E->getLoop(), SCEV::FlagAnyWrap);
1892 return SE.getAddExpr(Start, AddRec);
1895 const SCEV *visitUnknown(const SCEVUnknown *E) {
1896 if (auto *NewValue = VMap.lookup(E->getValue()))
1897 return SE.getUnknown(NewValue);
1898 return E;
1902 /// Check whether we should remap a SCEV expression.
1903 struct SCEVFindInsideScop : public SCEVTraversal<SCEVFindInsideScop> {
1904 const ValueToValueMap &VMap;
1905 bool FoundInside = false;
1906 const Scop *S;
1908 public:
1909 SCEVFindInsideScop(const ValueToValueMap &VMap, ScalarEvolution &SE,
1910 const Scop *S)
1911 : SCEVTraversal(*this), VMap(VMap), S(S) {}
1913 static bool hasVariant(const SCEV *E, ScalarEvolution &SE,
1914 const ValueToValueMap &VMap, const Scop *S) {
1915 SCEVFindInsideScop SFIS(VMap, SE, S);
1916 SFIS.visitAll(E);
1917 return SFIS.FoundInside;
1920 bool follow(const SCEV *E) {
1921 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(E)) {
1922 FoundInside |= S->getRegion().contains(AddRec->getLoop());
1923 } else if (auto *Unknown = dyn_cast<SCEVUnknown>(E)) {
1924 if (Instruction *I = dyn_cast<Instruction>(Unknown->getValue()))
1925 FoundInside |= S->getRegion().contains(I) && !VMap.count(I);
1927 return !FoundInside;
1930 bool isDone() { return FoundInside; }
1932 } // end anonymous namespace
1934 const SCEV *Scop::getRepresentingInvariantLoadSCEV(const SCEV *E) const {
1935 // Check whether it makes sense to rewrite the SCEV. (ScalarEvolution
1936 // doesn't like addition between an AddRec and an expression that
1937 // doesn't have a dominance relationship with it.)
1938 if (SCEVFindInsideScop::hasVariant(E, *SE, InvEquivClassVMap, this))
1939 return E;
1941 // Rewrite SCEV.
1942 return SCEVSensitiveParameterRewriter::rewrite(E, *SE, InvEquivClassVMap);
1945 // This table of function names is used to translate parameter names in more
1946 // human-readable names. This makes it easier to interpret Polly analysis
1947 // results.
1948 StringMap<std::string> KnownNames = {
1949 {"_Z13get_global_idj", "global_id"},
1950 {"_Z12get_local_idj", "local_id"},
1951 {"_Z15get_global_sizej", "global_size"},
1952 {"_Z14get_local_sizej", "local_size"},
1953 {"_Z12get_work_dimv", "work_dim"},
1954 {"_Z17get_global_offsetj", "global_offset"},
1955 {"_Z12get_group_idj", "group_id"},
1956 {"_Z14get_num_groupsj", "num_groups"},
1959 static std::string getCallParamName(CallInst *Call) {
1960 std::string Result;
1961 raw_string_ostream OS(Result);
1962 std::string Name = Call->getCalledFunction()->getName();
1964 auto Iterator = KnownNames.find(Name);
1965 if (Iterator != KnownNames.end())
1966 Name = "__" + Iterator->getValue();
1967 OS << Name;
1968 for (auto &Operand : Call->arg_operands()) {
1969 ConstantInt *Op = cast<ConstantInt>(&Operand);
1970 OS << "_" << Op->getValue();
1972 OS.flush();
1973 return Result;
1976 void Scop::createParameterId(const SCEV *Parameter) {
1977 assert(Parameters.count(Parameter));
1978 assert(!ParameterIds.count(Parameter));
1980 std::string ParameterName = "p_" + std::to_string(getNumParams() - 1);
1982 if (const SCEVUnknown *ValueParameter = dyn_cast<SCEVUnknown>(Parameter)) {
1983 Value *Val = ValueParameter->getValue();
1984 CallInst *Call = dyn_cast<CallInst>(Val);
1986 if (Call && isConstCall(Call)) {
1987 ParameterName = getCallParamName(Call);
1988 } else if (UseInstructionNames) {
1989 // If this parameter references a specific Value and this value has a name
1990 // we use this name as it is likely to be unique and more useful than just
1991 // a number.
1992 if (Val->hasName())
1993 ParameterName = Val->getName();
1994 else if (LoadInst *LI = dyn_cast<LoadInst>(Val)) {
1995 auto *LoadOrigin = LI->getPointerOperand()->stripInBoundsOffsets();
1996 if (LoadOrigin->hasName()) {
1997 ParameterName += "_loaded_from_";
1998 ParameterName +=
1999 LI->getPointerOperand()->stripInBoundsOffsets()->getName();
2004 ParameterName = getIslCompatibleName("", ParameterName, "");
2007 isl::id Id = isl::id::alloc(getIslCtx(), ParameterName,
2008 const_cast<void *>((const void *)Parameter));
2009 ParameterIds[Parameter] = Id;
2012 void Scop::addParams(const ParameterSetTy &NewParameters) {
2013 for (const SCEV *Parameter : NewParameters) {
2014 // Normalize the SCEV to get the representing element for an invariant load.
2015 Parameter = extractConstantFactor(Parameter, *SE).second;
2016 Parameter = getRepresentingInvariantLoadSCEV(Parameter);
2018 if (Parameters.insert(Parameter))
2019 createParameterId(Parameter);
2023 isl::id Scop::getIdForParam(const SCEV *Parameter) const {
2024 // Normalize the SCEV to get the representing element for an invariant load.
2025 Parameter = getRepresentingInvariantLoadSCEV(Parameter);
2026 return ParameterIds.lookup(Parameter);
2029 isl::set Scop::addNonEmptyDomainConstraints(isl::set C) const {
2030 isl_set *DomainContext = isl_union_set_params(getDomains().release());
2031 return isl::manage(isl_set_intersect_params(C.release(), DomainContext));
2034 bool Scop::isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const {
2035 return DT.dominates(BB, getEntry());
2038 void Scop::addUserAssumptions(
2039 AssumptionCache &AC, DominatorTree &DT, LoopInfo &LI,
2040 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
2041 for (auto &Assumption : AC.assumptions()) {
2042 auto *CI = dyn_cast_or_null<CallInst>(Assumption);
2043 if (!CI || CI->getNumArgOperands() != 1)
2044 continue;
2046 bool InScop = contains(CI);
2047 if (!InScop && !isDominatedBy(DT, CI->getParent()))
2048 continue;
2050 auto *L = LI.getLoopFor(CI->getParent());
2051 auto *Val = CI->getArgOperand(0);
2052 ParameterSetTy DetectedParams;
2053 if (!isAffineConstraint(Val, &R, L, *SE, DetectedParams)) {
2054 ORE.emit(
2055 OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreUserAssumption", CI)
2056 << "Non-affine user assumption ignored.");
2057 continue;
2060 // Collect all newly introduced parameters.
2061 ParameterSetTy NewParams;
2062 for (auto *Param : DetectedParams) {
2063 Param = extractConstantFactor(Param, *SE).second;
2064 Param = getRepresentingInvariantLoadSCEV(Param);
2065 if (Parameters.count(Param))
2066 continue;
2067 NewParams.insert(Param);
2070 SmallVector<isl_set *, 2> ConditionSets;
2071 auto *TI = InScop ? CI->getParent()->getTerminator() : nullptr;
2072 BasicBlock *BB = InScop ? CI->getParent() : getRegion().getEntry();
2073 auto *Dom = InScop ? DomainMap[BB].copy() : Context.copy();
2074 assert(Dom && "Cannot propagate a nullptr.");
2075 bool Valid = buildConditionSets(*this, BB, Val, TI, L, Dom,
2076 InvalidDomainMap, ConditionSets);
2077 isl_set_free(Dom);
2079 if (!Valid)
2080 continue;
2082 isl_set *AssumptionCtx = nullptr;
2083 if (InScop) {
2084 AssumptionCtx = isl_set_complement(isl_set_params(ConditionSets[1]));
2085 isl_set_free(ConditionSets[0]);
2086 } else {
2087 AssumptionCtx = isl_set_complement(ConditionSets[1]);
2088 AssumptionCtx = isl_set_intersect(AssumptionCtx, ConditionSets[0]);
2091 // Project out newly introduced parameters as they are not otherwise useful.
2092 if (!NewParams.empty()) {
2093 for (unsigned u = 0; u < isl_set_n_param(AssumptionCtx); u++) {
2094 auto *Id = isl_set_get_dim_id(AssumptionCtx, isl_dim_param, u);
2095 auto *Param = static_cast<const SCEV *>(isl_id_get_user(Id));
2096 isl_id_free(Id);
2098 if (!NewParams.count(Param))
2099 continue;
2101 AssumptionCtx =
2102 isl_set_project_out(AssumptionCtx, isl_dim_param, u--, 1);
2105 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "UserAssumption", CI)
2106 << "Use user assumption: " << stringFromIslObj(AssumptionCtx));
2107 Context = Context.intersect(isl::manage(AssumptionCtx));
2111 void Scop::addUserContext() {
2112 if (UserContextStr.empty())
2113 return;
2115 isl_set *UserContext =
2116 isl_set_read_from_str(getIslCtx().get(), UserContextStr.c_str());
2117 isl_space *Space = getParamSpace().release();
2118 if (isl_space_dim(Space, isl_dim_param) !=
2119 isl_set_dim(UserContext, isl_dim_param)) {
2120 auto SpaceStr = isl_space_to_str(Space);
2121 errs() << "Error: the context provided in -polly-context has not the same "
2122 << "number of dimensions than the computed context. Due to this "
2123 << "mismatch, the -polly-context option is ignored. Please provide "
2124 << "the context in the parameter space: " << SpaceStr << ".\n";
2125 free(SpaceStr);
2126 isl_set_free(UserContext);
2127 isl_space_free(Space);
2128 return;
2131 for (unsigned i = 0; i < isl_space_dim(Space, isl_dim_param); i++) {
2132 std::string NameContext = Context.get_dim_name(isl::dim::param, i);
2133 std::string NameUserContext =
2134 isl_set_get_dim_name(UserContext, isl_dim_param, i);
2136 if (NameContext != NameUserContext) {
2137 auto SpaceStr = isl_space_to_str(Space);
2138 errs() << "Error: the name of dimension " << i
2139 << " provided in -polly-context "
2140 << "is '" << NameUserContext << "', but the name in the computed "
2141 << "context is '" << NameContext
2142 << "'. Due to this name mismatch, "
2143 << "the -polly-context option is ignored. Please provide "
2144 << "the context in the parameter space: " << SpaceStr << ".\n";
2145 free(SpaceStr);
2146 isl_set_free(UserContext);
2147 isl_space_free(Space);
2148 return;
2151 UserContext =
2152 isl_set_set_dim_id(UserContext, isl_dim_param, i,
2153 isl_space_get_dim_id(Space, isl_dim_param, i));
2156 Context = Context.intersect(isl::manage(UserContext));
2157 isl_space_free(Space);
2160 void Scop::buildInvariantEquivalenceClasses() {
2161 DenseMap<std::pair<const SCEV *, Type *>, LoadInst *> EquivClasses;
2163 const InvariantLoadsSetTy &RIL = getRequiredInvariantLoads();
2164 for (LoadInst *LInst : RIL) {
2165 const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
2167 Type *Ty = LInst->getType();
2168 LoadInst *&ClassRep = EquivClasses[std::make_pair(PointerSCEV, Ty)];
2169 if (ClassRep) {
2170 InvEquivClassVMap[LInst] = ClassRep;
2171 continue;
2174 ClassRep = LInst;
2175 InvariantEquivClasses.emplace_back(
2176 InvariantEquivClassTy{PointerSCEV, MemoryAccessList(), nullptr, Ty});
2180 void Scop::buildContext() {
2181 isl::space Space = isl::space::params_alloc(getIslCtx(), 0);
2182 Context = isl::set::universe(Space);
2183 InvalidContext = isl::set::empty(Space);
2184 AssumedContext = isl::set::universe(Space);
2187 void Scop::addParameterBounds() {
2188 unsigned PDim = 0;
2189 for (auto *Parameter : Parameters) {
2190 ConstantRange SRange = SE->getSignedRange(Parameter);
2191 Context = addRangeBoundsToSet(Context, SRange, PDim++, isl::dim::param);
2195 static std::vector<isl::id> getFortranArrayIds(Scop::array_range Arrays) {
2196 std::vector<isl::id> OutermostSizeIds;
2197 for (auto Array : Arrays) {
2198 // To check if an array is a Fortran array, we check if it has a isl_pw_aff
2199 // for its outermost dimension. Fortran arrays will have this since the
2200 // outermost dimension size can be picked up from their runtime description.
2201 // TODO: actually need to check if it has a FAD, but for now this works.
2202 if (Array->getNumberOfDimensions() > 0) {
2203 isl::pw_aff PwAff = Array->getDimensionSizePw(0);
2204 if (!PwAff)
2205 continue;
2207 isl::id Id =
2208 isl::manage(isl_pw_aff_get_dim_id(PwAff.get(), isl_dim_param, 0));
2209 assert(!Id.is_null() &&
2210 "Invalid Id for PwAff expression in Fortran array");
2211 Id.dump();
2212 OutermostSizeIds.push_back(Id);
2215 return OutermostSizeIds;
2218 // The FORTRAN array size parameters are known to be non-negative.
2219 static isl::set boundFortranArrayParams(isl::set Context,
2220 Scop::array_range Arrays) {
2221 std::vector<isl::id> OutermostSizeIds;
2222 OutermostSizeIds = getFortranArrayIds(Arrays);
2224 for (isl::id Id : OutermostSizeIds) {
2225 int dim = Context.find_dim_by_id(isl::dim::param, Id);
2226 Context = Context.lower_bound_si(isl::dim::param, dim, 0);
2229 return Context;
2232 void Scop::realignParams() {
2233 if (PollyIgnoreParamBounds)
2234 return;
2236 // Add all parameters into a common model.
2237 isl::space Space = getFullParamSpace();
2239 // Align the parameters of all data structures to the model.
2240 Context = Context.align_params(Space);
2242 // Bound the size of the fortran array dimensions.
2243 Context = boundFortranArrayParams(Context, arrays());
2245 // As all parameters are known add bounds to them.
2246 addParameterBounds();
2248 for (ScopStmt &Stmt : *this)
2249 Stmt.realignParams();
2250 // Simplify the schedule according to the context too.
2251 Schedule = Schedule.gist_domain_params(getContext());
2254 static isl::set simplifyAssumptionContext(isl::set AssumptionContext,
2255 const Scop &S) {
2256 // If we have modeled all blocks in the SCoP that have side effects we can
2257 // simplify the context with the constraints that are needed for anything to
2258 // be executed at all. However, if we have error blocks in the SCoP we already
2259 // assumed some parameter combinations cannot occur and removed them from the
2260 // domains, thus we cannot use the remaining domain to simplify the
2261 // assumptions.
2262 if (!S.hasErrorBlock()) {
2263 auto DomainParameters = S.getDomains().params();
2264 AssumptionContext = AssumptionContext.gist_params(DomainParameters);
2267 AssumptionContext = AssumptionContext.gist_params(S.getContext());
2268 return AssumptionContext;
2271 void Scop::simplifyContexts() {
2272 // The parameter constraints of the iteration domains give us a set of
2273 // constraints that need to hold for all cases where at least a single
2274 // statement iteration is executed in the whole scop. We now simplify the
2275 // assumed context under the assumption that such constraints hold and at
2276 // least a single statement iteration is executed. For cases where no
2277 // statement instances are executed, the assumptions we have taken about
2278 // the executed code do not matter and can be changed.
2280 // WARNING: This only holds if the assumptions we have taken do not reduce
2281 // the set of statement instances that are executed. Otherwise we
2282 // may run into a case where the iteration domains suggest that
2283 // for a certain set of parameter constraints no code is executed,
2284 // but in the original program some computation would have been
2285 // performed. In such a case, modifying the run-time conditions and
2286 // possibly influencing the run-time check may cause certain scops
2287 // to not be executed.
2289 // Example:
2291 // When delinearizing the following code:
2293 // for (long i = 0; i < 100; i++)
2294 // for (long j = 0; j < m; j++)
2295 // A[i+p][j] = 1.0;
2297 // we assume that the condition m <= 0 or (m >= 1 and p >= 0) holds as
2298 // otherwise we would access out of bound data. Now, knowing that code is
2299 // only executed for the case m >= 0, it is sufficient to assume p >= 0.
2300 AssumedContext = simplifyAssumptionContext(AssumedContext, *this);
2301 InvalidContext = InvalidContext.align_params(getParamSpace());
2304 /// Add the minimal/maximal access in @p Set to @p User.
2305 static isl::stat
2306 buildMinMaxAccess(isl::set Set, Scop::MinMaxVectorTy &MinMaxAccesses, Scop &S) {
2307 isl::pw_multi_aff MinPMA, MaxPMA;
2308 isl::pw_aff LastDimAff;
2309 isl::aff OneAff;
2310 unsigned Pos;
2312 Set = Set.remove_divs();
2313 polly::simplify(Set);
2315 if (Set.n_basic_set() > RunTimeChecksMaxAccessDisjuncts)
2316 Set = Set.simple_hull();
2318 // Restrict the number of parameters involved in the access as the lexmin/
2319 // lexmax computation will take too long if this number is high.
2321 // Experiments with a simple test case using an i7 4800MQ:
2323 // #Parameters involved | Time (in sec)
2324 // 6 | 0.01
2325 // 7 | 0.04
2326 // 8 | 0.12
2327 // 9 | 0.40
2328 // 10 | 1.54
2329 // 11 | 6.78
2330 // 12 | 30.38
2332 if (isl_set_n_param(Set.get()) > RunTimeChecksMaxParameters) {
2333 unsigned InvolvedParams = 0;
2334 for (unsigned u = 0, e = isl_set_n_param(Set.get()); u < e; u++)
2335 if (Set.involves_dims(isl::dim::param, u, 1))
2336 InvolvedParams++;
2338 if (InvolvedParams > RunTimeChecksMaxParameters)
2339 return isl::stat::error;
2342 MinPMA = Set.lexmin_pw_multi_aff();
2343 MaxPMA = Set.lexmax_pw_multi_aff();
2345 MinPMA = MinPMA.coalesce();
2346 MaxPMA = MaxPMA.coalesce();
2348 // Adjust the last dimension of the maximal access by one as we want to
2349 // enclose the accessed memory region by MinPMA and MaxPMA. The pointer
2350 // we test during code generation might now point after the end of the
2351 // allocated array but we will never dereference it anyway.
2352 assert((!MaxPMA || MaxPMA.dim(isl::dim::out)) &&
2353 "Assumed at least one output dimension");
2355 Pos = MaxPMA.dim(isl::dim::out) - 1;
2356 LastDimAff = MaxPMA.get_pw_aff(Pos);
2357 OneAff = isl::aff(isl::local_space(LastDimAff.get_domain_space()));
2358 OneAff = OneAff.add_constant_si(1);
2359 LastDimAff = LastDimAff.add(OneAff);
2360 MaxPMA = MaxPMA.set_pw_aff(Pos, LastDimAff);
2362 if (!MinPMA || !MaxPMA)
2363 return isl::stat::error;
2365 MinMaxAccesses.push_back(std::make_pair(MinPMA, MaxPMA));
2367 return isl::stat::ok;
2370 static __isl_give isl_set *getAccessDomain(MemoryAccess *MA) {
2371 isl_set *Domain = MA->getStatement()->getDomain().release();
2372 Domain = isl_set_project_out(Domain, isl_dim_set, 0, isl_set_n_dim(Domain));
2373 return isl_set_reset_tuple_id(Domain);
2376 /// Wrapper function to calculate minimal/maximal accesses to each array.
2377 static bool calculateMinMaxAccess(Scop::AliasGroupTy AliasGroup, Scop &S,
2378 Scop::MinMaxVectorTy &MinMaxAccesses) {
2379 MinMaxAccesses.reserve(AliasGroup.size());
2381 isl::union_set Domains = S.getDomains();
2382 isl::union_map Accesses = isl::union_map::empty(S.getParamSpace());
2384 for (MemoryAccess *MA : AliasGroup)
2385 Accesses = Accesses.add_map(MA->getAccessRelation());
2387 Accesses = Accesses.intersect_domain(Domains);
2388 isl::union_set Locations = Accesses.range();
2390 auto Lambda = [&MinMaxAccesses, &S](isl::set Set) -> isl::stat {
2391 return buildMinMaxAccess(Set, MinMaxAccesses, S);
2393 return Locations.foreach_set(Lambda) == isl::stat::ok;
2396 /// Helper to treat non-affine regions and basic blocks the same.
2398 ///{
2400 /// Return the block that is the representing block for @p RN.
2401 static inline BasicBlock *getRegionNodeBasicBlock(RegionNode *RN) {
2402 return RN->isSubRegion() ? RN->getNodeAs<Region>()->getEntry()
2403 : RN->getNodeAs<BasicBlock>();
2406 /// Return the @p idx'th block that is executed after @p RN.
2407 static inline BasicBlock *
2408 getRegionNodeSuccessor(RegionNode *RN, TerminatorInst *TI, unsigned idx) {
2409 if (RN->isSubRegion()) {
2410 assert(idx == 0);
2411 return RN->getNodeAs<Region>()->getExit();
2413 return TI->getSuccessor(idx);
2416 /// Return the smallest loop surrounding @p RN.
2417 static inline Loop *getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) {
2418 if (!RN->isSubRegion()) {
2419 BasicBlock *BB = RN->getNodeAs<BasicBlock>();
2420 Loop *L = LI.getLoopFor(BB);
2422 // Unreachable statements are not considered to belong to a LLVM loop, as
2423 // they are not part of an actual loop in the control flow graph.
2424 // Nevertheless, we handle certain unreachable statements that are common
2425 // when modeling run-time bounds checks as being part of the loop to be
2426 // able to model them and to later eliminate the run-time bounds checks.
2428 // Specifically, for basic blocks that terminate in an unreachable and
2429 // where the immediate predecessor is part of a loop, we assume these
2430 // basic blocks belong to the loop the predecessor belongs to. This
2431 // allows us to model the following code.
2433 // for (i = 0; i < N; i++) {
2434 // if (i > 1024)
2435 // abort(); <- this abort might be translated to an
2436 // unreachable
2438 // A[i] = ...
2439 // }
2440 if (!L && isa<UnreachableInst>(BB->getTerminator()) && BB->getPrevNode())
2441 L = LI.getLoopFor(BB->getPrevNode());
2442 return L;
2445 Region *NonAffineSubRegion = RN->getNodeAs<Region>();
2446 Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry());
2447 while (L && NonAffineSubRegion->contains(L))
2448 L = L->getParentLoop();
2449 return L;
2452 /// Get the number of blocks in @p L.
2454 /// The number of blocks in a loop are the number of basic blocks actually
2455 /// belonging to the loop, as well as all single basic blocks that the loop
2456 /// exits to and which terminate in an unreachable instruction. We do not
2457 /// allow such basic blocks in the exit of a scop, hence they belong to the
2458 /// scop and represent run-time conditions which we want to model and
2459 /// subsequently speculate away.
2461 /// @see getRegionNodeLoop for additional details.
2462 unsigned getNumBlocksInLoop(Loop *L) {
2463 unsigned NumBlocks = L->getNumBlocks();
2464 SmallVector<BasicBlock *, 4> ExitBlocks;
2465 L->getExitBlocks(ExitBlocks);
2467 for (auto ExitBlock : ExitBlocks) {
2468 if (isa<UnreachableInst>(ExitBlock->getTerminator()))
2469 NumBlocks++;
2471 return NumBlocks;
2474 static inline unsigned getNumBlocksInRegionNode(RegionNode *RN) {
2475 if (!RN->isSubRegion())
2476 return 1;
2478 Region *R = RN->getNodeAs<Region>();
2479 return std::distance(R->block_begin(), R->block_end());
2482 static bool containsErrorBlock(RegionNode *RN, const Region &R, LoopInfo &LI,
2483 const DominatorTree &DT) {
2484 if (!RN->isSubRegion())
2485 return isErrorBlock(*RN->getNodeAs<BasicBlock>(), R, LI, DT);
2486 for (BasicBlock *BB : RN->getNodeAs<Region>()->blocks())
2487 if (isErrorBlock(*BB, R, LI, DT))
2488 return true;
2489 return false;
2492 ///}
2494 isl::set Scop::getDomainConditions(const ScopStmt *Stmt) const {
2495 return getDomainConditions(Stmt->getEntryBlock());
2498 isl::set Scop::getDomainConditions(BasicBlock *BB) const {
2499 auto DIt = DomainMap.find(BB);
2500 if (DIt != DomainMap.end())
2501 return DIt->getSecond();
2503 auto &RI = *R.getRegionInfo();
2504 auto *BBR = RI.getRegionFor(BB);
2505 while (BBR->getEntry() == BB)
2506 BBR = BBR->getParent();
2507 return getDomainConditions(BBR->getEntry());
2510 bool Scop::buildDomains(Region *R, DominatorTree &DT, LoopInfo &LI,
2511 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
2512 bool IsOnlyNonAffineRegion = isNonAffineSubRegion(R);
2513 auto *EntryBB = R->getEntry();
2514 auto *L = IsOnlyNonAffineRegion ? nullptr : LI.getLoopFor(EntryBB);
2515 int LD = getRelativeLoopDepth(L);
2516 auto *S = isl_set_universe(isl_space_set_alloc(getIslCtx().get(), 0, LD + 1));
2518 while (LD-- >= 0) {
2519 L = L->getParentLoop();
2522 InvalidDomainMap[EntryBB] = isl::manage(isl_set_empty(isl_set_get_space(S)));
2523 DomainMap[EntryBB] = isl::manage(S);
2525 if (IsOnlyNonAffineRegion)
2526 return !containsErrorBlock(R->getNode(), *R, LI, DT);
2528 if (!buildDomainsWithBranchConstraints(R, DT, LI, InvalidDomainMap))
2529 return false;
2531 if (!propagateDomainConstraints(R, DT, LI, InvalidDomainMap))
2532 return false;
2534 // Error blocks and blocks dominated by them have been assumed to never be
2535 // executed. Representing them in the Scop does not add any value. In fact,
2536 // it is likely to cause issues during construction of the ScopStmts. The
2537 // contents of error blocks have not been verified to be expressible and
2538 // will cause problems when building up a ScopStmt for them.
2539 // Furthermore, basic blocks dominated by error blocks may reference
2540 // instructions in the error block which, if the error block is not modeled,
2541 // can themselves not be constructed properly. To this end we will replace
2542 // the domains of error blocks and those only reachable via error blocks
2543 // with an empty set. Additionally, we will record for each block under which
2544 // parameter combination it would be reached via an error block in its
2545 // InvalidDomain. This information is needed during load hoisting.
2546 if (!propagateInvalidStmtDomains(R, DT, LI, InvalidDomainMap))
2547 return false;
2549 return true;
2552 /// Adjust the dimensions of @p Dom that was constructed for @p OldL
2553 /// to be compatible to domains constructed for loop @p NewL.
2555 /// This function assumes @p NewL and @p OldL are equal or there is a CFG
2556 /// edge from @p OldL to @p NewL.
2557 static __isl_give isl_set *adjustDomainDimensions(Scop &S,
2558 __isl_take isl_set *Dom,
2559 Loop *OldL, Loop *NewL) {
2560 // If the loops are the same there is nothing to do.
2561 if (NewL == OldL)
2562 return Dom;
2564 int OldDepth = S.getRelativeLoopDepth(OldL);
2565 int NewDepth = S.getRelativeLoopDepth(NewL);
2566 // If both loops are non-affine loops there is nothing to do.
2567 if (OldDepth == -1 && NewDepth == -1)
2568 return Dom;
2570 // Distinguish three cases:
2571 // 1) The depth is the same but the loops are not.
2572 // => One loop was left one was entered.
2573 // 2) The depth increased from OldL to NewL.
2574 // => One loop was entered, none was left.
2575 // 3) The depth decreased from OldL to NewL.
2576 // => Loops were left were difference of the depths defines how many.
2577 if (OldDepth == NewDepth) {
2578 assert(OldL->getParentLoop() == NewL->getParentLoop());
2579 Dom = isl_set_project_out(Dom, isl_dim_set, NewDepth, 1);
2580 Dom = isl_set_add_dims(Dom, isl_dim_set, 1);
2581 } else if (OldDepth < NewDepth) {
2582 assert(OldDepth + 1 == NewDepth);
2583 auto &R = S.getRegion();
2584 (void)R;
2585 assert(NewL->getParentLoop() == OldL ||
2586 ((!OldL || !R.contains(OldL)) && R.contains(NewL)));
2587 Dom = isl_set_add_dims(Dom, isl_dim_set, 1);
2588 } else {
2589 assert(OldDepth > NewDepth);
2590 int Diff = OldDepth - NewDepth;
2591 int NumDim = isl_set_n_dim(Dom);
2592 assert(NumDim >= Diff);
2593 Dom = isl_set_project_out(Dom, isl_dim_set, NumDim - Diff, Diff);
2596 return Dom;
2599 bool Scop::propagateInvalidStmtDomains(
2600 Region *R, DominatorTree &DT, LoopInfo &LI,
2601 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
2602 ReversePostOrderTraversal<Region *> RTraversal(R);
2603 for (auto *RN : RTraversal) {
2605 // Recurse for affine subregions but go on for basic blocks and non-affine
2606 // subregions.
2607 if (RN->isSubRegion()) {
2608 Region *SubRegion = RN->getNodeAs<Region>();
2609 if (!isNonAffineSubRegion(SubRegion)) {
2610 propagateInvalidStmtDomains(SubRegion, DT, LI, InvalidDomainMap);
2611 continue;
2615 bool ContainsErrorBlock = containsErrorBlock(RN, getRegion(), LI, DT);
2616 BasicBlock *BB = getRegionNodeBasicBlock(RN);
2617 isl::set &Domain = DomainMap[BB];
2618 assert(Domain && "Cannot propagate a nullptr");
2620 isl::set InvalidDomain = InvalidDomainMap[BB];
2622 bool IsInvalidBlock = ContainsErrorBlock || Domain.is_subset(InvalidDomain);
2624 if (!IsInvalidBlock) {
2625 InvalidDomain = InvalidDomain.intersect(Domain);
2626 } else {
2627 InvalidDomain = Domain;
2628 isl::set DomPar = Domain.params();
2629 recordAssumption(ERRORBLOCK, DomPar, BB->getTerminator()->getDebugLoc(),
2630 AS_RESTRICTION);
2631 Domain = nullptr;
2634 if (InvalidDomain.is_empty()) {
2635 InvalidDomainMap[BB] = InvalidDomain;
2636 continue;
2639 auto *BBLoop = getRegionNodeLoop(RN, LI);
2640 auto *TI = BB->getTerminator();
2641 unsigned NumSuccs = RN->isSubRegion() ? 1 : TI->getNumSuccessors();
2642 for (unsigned u = 0; u < NumSuccs; u++) {
2643 auto *SuccBB = getRegionNodeSuccessor(RN, TI, u);
2645 // Skip successors outside the SCoP.
2646 if (!contains(SuccBB))
2647 continue;
2649 // Skip backedges.
2650 if (DT.dominates(SuccBB, BB))
2651 continue;
2653 Loop *SuccBBLoop = getFirstNonBoxedLoopFor(SuccBB, LI, getBoxedLoops());
2655 auto AdjustedInvalidDomain = isl::manage(adjustDomainDimensions(
2656 *this, InvalidDomain.copy(), BBLoop, SuccBBLoop));
2658 isl::set SuccInvalidDomain = InvalidDomainMap[SuccBB];
2659 SuccInvalidDomain = SuccInvalidDomain.unite(AdjustedInvalidDomain);
2660 SuccInvalidDomain = SuccInvalidDomain.coalesce();
2661 unsigned NumConjucts = SuccInvalidDomain.n_basic_set();
2663 InvalidDomainMap[SuccBB] = SuccInvalidDomain;
2665 // Check if the maximal number of domain disjunctions was reached.
2666 // In case this happens we will bail.
2667 if (NumConjucts < MaxDisjunctsInDomain)
2668 continue;
2670 InvalidDomainMap.erase(BB);
2671 invalidate(COMPLEXITY, TI->getDebugLoc(), TI->getParent());
2672 return false;
2675 InvalidDomainMap[BB] = InvalidDomain;
2678 return true;
2681 void Scop::propagateDomainConstraintsToRegionExit(
2682 BasicBlock *BB, Loop *BBLoop,
2683 SmallPtrSetImpl<BasicBlock *> &FinishedExitBlocks, LoopInfo &LI,
2684 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
2685 // Check if the block @p BB is the entry of a region. If so we propagate it's
2686 // domain to the exit block of the region. Otherwise we are done.
2687 auto *RI = R.getRegionInfo();
2688 auto *BBReg = RI ? RI->getRegionFor(BB) : nullptr;
2689 auto *ExitBB = BBReg ? BBReg->getExit() : nullptr;
2690 if (!BBReg || BBReg->getEntry() != BB || !contains(ExitBB))
2691 return;
2693 // Do not propagate the domain if there is a loop backedge inside the region
2694 // that would prevent the exit block from being executed.
2695 auto *L = BBLoop;
2696 while (L && contains(L)) {
2697 SmallVector<BasicBlock *, 4> LatchBBs;
2698 BBLoop->getLoopLatches(LatchBBs);
2699 for (auto *LatchBB : LatchBBs)
2700 if (BB != LatchBB && BBReg->contains(LatchBB))
2701 return;
2702 L = L->getParentLoop();
2705 isl::set Domain = DomainMap[BB];
2706 assert(Domain && "Cannot propagate a nullptr");
2708 Loop *ExitBBLoop = getFirstNonBoxedLoopFor(ExitBB, LI, getBoxedLoops());
2710 // Since the dimensions of @p BB and @p ExitBB might be different we have to
2711 // adjust the domain before we can propagate it.
2712 isl::set AdjustedDomain = isl::manage(
2713 adjustDomainDimensions(*this, Domain.copy(), BBLoop, ExitBBLoop));
2714 isl::set &ExitDomain = DomainMap[ExitBB];
2716 // If the exit domain is not yet created we set it otherwise we "add" the
2717 // current domain.
2718 ExitDomain = ExitDomain ? AdjustedDomain.unite(ExitDomain) : AdjustedDomain;
2720 // Initialize the invalid domain.
2721 InvalidDomainMap[ExitBB] = ExitDomain.empty(ExitDomain.get_space());
2723 FinishedExitBlocks.insert(ExitBB);
2726 bool Scop::buildDomainsWithBranchConstraints(
2727 Region *R, DominatorTree &DT, LoopInfo &LI,
2728 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
2729 // To create the domain for each block in R we iterate over all blocks and
2730 // subregions in R and propagate the conditions under which the current region
2731 // element is executed. To this end we iterate in reverse post order over R as
2732 // it ensures that we first visit all predecessors of a region node (either a
2733 // basic block or a subregion) before we visit the region node itself.
2734 // Initially, only the domain for the SCoP region entry block is set and from
2735 // there we propagate the current domain to all successors, however we add the
2736 // condition that the successor is actually executed next.
2737 // As we are only interested in non-loop carried constraints here we can
2738 // simply skip loop back edges.
2740 SmallPtrSet<BasicBlock *, 8> FinishedExitBlocks;
2741 ReversePostOrderTraversal<Region *> RTraversal(R);
2742 for (auto *RN : RTraversal) {
2743 // Recurse for affine subregions but go on for basic blocks and non-affine
2744 // subregions.
2745 if (RN->isSubRegion()) {
2746 Region *SubRegion = RN->getNodeAs<Region>();
2747 if (!isNonAffineSubRegion(SubRegion)) {
2748 if (!buildDomainsWithBranchConstraints(SubRegion, DT, LI,
2749 InvalidDomainMap))
2750 return false;
2751 continue;
2755 if (containsErrorBlock(RN, getRegion(), LI, DT))
2756 HasErrorBlock = true;
2758 BasicBlock *BB = getRegionNodeBasicBlock(RN);
2759 TerminatorInst *TI = BB->getTerminator();
2761 if (isa<UnreachableInst>(TI))
2762 continue;
2764 isl::set Domain = DomainMap.lookup(BB);
2765 if (!Domain)
2766 continue;
2767 MaxLoopDepth = std::max(MaxLoopDepth, isl_set_n_dim(Domain.get()));
2769 auto *BBLoop = getRegionNodeLoop(RN, LI);
2770 // Propagate the domain from BB directly to blocks that have a superset
2771 // domain, at the moment only region exit nodes of regions that start in BB.
2772 propagateDomainConstraintsToRegionExit(BB, BBLoop, FinishedExitBlocks, LI,
2773 InvalidDomainMap);
2775 // If all successors of BB have been set a domain through the propagation
2776 // above we do not need to build condition sets but can just skip this
2777 // block. However, it is important to note that this is a local property
2778 // with regards to the region @p R. To this end FinishedExitBlocks is a
2779 // local variable.
2780 auto IsFinishedRegionExit = [&FinishedExitBlocks](BasicBlock *SuccBB) {
2781 return FinishedExitBlocks.count(SuccBB);
2783 if (std::all_of(succ_begin(BB), succ_end(BB), IsFinishedRegionExit))
2784 continue;
2786 // Build the condition sets for the successor nodes of the current region
2787 // node. If it is a non-affine subregion we will always execute the single
2788 // exit node, hence the single entry node domain is the condition set. For
2789 // basic blocks we use the helper function buildConditionSets.
2790 SmallVector<isl_set *, 8> ConditionSets;
2791 if (RN->isSubRegion())
2792 ConditionSets.push_back(Domain.copy());
2793 else if (!buildConditionSets(*this, BB, TI, BBLoop, Domain.get(),
2794 InvalidDomainMap, ConditionSets))
2795 return false;
2797 // Now iterate over the successors and set their initial domain based on
2798 // their condition set. We skip back edges here and have to be careful when
2799 // we leave a loop not to keep constraints over a dimension that doesn't
2800 // exist anymore.
2801 assert(RN->isSubRegion() || TI->getNumSuccessors() == ConditionSets.size());
2802 for (unsigned u = 0, e = ConditionSets.size(); u < e; u++) {
2803 isl::set CondSet = isl::manage(ConditionSets[u]);
2804 BasicBlock *SuccBB = getRegionNodeSuccessor(RN, TI, u);
2806 // Skip blocks outside the region.
2807 if (!contains(SuccBB))
2808 continue;
2810 // If we propagate the domain of some block to "SuccBB" we do not have to
2811 // adjust the domain.
2812 if (FinishedExitBlocks.count(SuccBB))
2813 continue;
2815 // Skip back edges.
2816 if (DT.dominates(SuccBB, BB))
2817 continue;
2819 Loop *SuccBBLoop = getFirstNonBoxedLoopFor(SuccBB, LI, getBoxedLoops());
2821 CondSet = isl::manage(
2822 adjustDomainDimensions(*this, CondSet.copy(), BBLoop, SuccBBLoop));
2824 // Set the domain for the successor or merge it with an existing domain in
2825 // case there are multiple paths (without loop back edges) to the
2826 // successor block.
2827 isl::set &SuccDomain = DomainMap[SuccBB];
2829 if (SuccDomain) {
2830 SuccDomain = SuccDomain.unite(CondSet).coalesce();
2831 } else {
2832 // Initialize the invalid domain.
2833 InvalidDomainMap[SuccBB] = CondSet.empty(CondSet.get_space());
2834 SuccDomain = CondSet;
2837 SuccDomain = SuccDomain.detect_equalities();
2839 // Check if the maximal number of domain disjunctions was reached.
2840 // In case this happens we will clean up and bail.
2841 if (SuccDomain.n_basic_set() < MaxDisjunctsInDomain)
2842 continue;
2844 invalidate(COMPLEXITY, DebugLoc());
2845 while (++u < ConditionSets.size())
2846 isl_set_free(ConditionSets[u]);
2847 return false;
2851 return true;
2854 isl::set Scop::getPredecessorDomainConstraints(BasicBlock *BB, isl::set Domain,
2855 DominatorTree &DT,
2856 LoopInfo &LI) {
2857 // If @p BB is the ScopEntry we are done
2858 if (R.getEntry() == BB)
2859 return isl::set::universe(Domain.get_space());
2861 // The region info of this function.
2862 auto &RI = *R.getRegionInfo();
2864 Loop *BBLoop = getFirstNonBoxedLoopFor(BB, LI, getBoxedLoops());
2866 // A domain to collect all predecessor domains, thus all conditions under
2867 // which the block is executed. To this end we start with the empty domain.
2868 isl::set PredDom = isl::set::empty(Domain.get_space());
2870 // Set of regions of which the entry block domain has been propagated to BB.
2871 // all predecessors inside any of the regions can be skipped.
2872 SmallSet<Region *, 8> PropagatedRegions;
2874 for (auto *PredBB : predecessors(BB)) {
2875 // Skip backedges.
2876 if (DT.dominates(BB, PredBB))
2877 continue;
2879 // If the predecessor is in a region we used for propagation we can skip it.
2880 auto PredBBInRegion = [PredBB](Region *PR) { return PR->contains(PredBB); };
2881 if (std::any_of(PropagatedRegions.begin(), PropagatedRegions.end(),
2882 PredBBInRegion)) {
2883 continue;
2886 // Check if there is a valid region we can use for propagation, thus look
2887 // for a region that contains the predecessor and has @p BB as exit block.
2888 auto *PredR = RI.getRegionFor(PredBB);
2889 while (PredR->getExit() != BB && !PredR->contains(BB))
2890 PredR->getParent();
2892 // If a valid region for propagation was found use the entry of that region
2893 // for propagation, otherwise the PredBB directly.
2894 if (PredR->getExit() == BB) {
2895 PredBB = PredR->getEntry();
2896 PropagatedRegions.insert(PredR);
2899 auto *PredBBDom = getDomainConditions(PredBB).release();
2900 Loop *PredBBLoop = getFirstNonBoxedLoopFor(PredBB, LI, getBoxedLoops());
2902 PredBBDom = adjustDomainDimensions(*this, PredBBDom, PredBBLoop, BBLoop);
2904 PredDom = PredDom.unite(isl::manage(PredBBDom));
2907 return PredDom;
2910 bool Scop::propagateDomainConstraints(
2911 Region *R, DominatorTree &DT, LoopInfo &LI,
2912 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
2913 // Iterate over the region R and propagate the domain constrains from the
2914 // predecessors to the current node. In contrast to the
2915 // buildDomainsWithBranchConstraints function, this one will pull the domain
2916 // information from the predecessors instead of pushing it to the successors.
2917 // Additionally, we assume the domains to be already present in the domain
2918 // map here. However, we iterate again in reverse post order so we know all
2919 // predecessors have been visited before a block or non-affine subregion is
2920 // visited.
2922 ReversePostOrderTraversal<Region *> RTraversal(R);
2923 for (auto *RN : RTraversal) {
2924 // Recurse for affine subregions but go on for basic blocks and non-affine
2925 // subregions.
2926 if (RN->isSubRegion()) {
2927 Region *SubRegion = RN->getNodeAs<Region>();
2928 if (!isNonAffineSubRegion(SubRegion)) {
2929 if (!propagateDomainConstraints(SubRegion, DT, LI, InvalidDomainMap))
2930 return false;
2931 continue;
2935 BasicBlock *BB = getRegionNodeBasicBlock(RN);
2936 isl::set &Domain = DomainMap[BB];
2937 assert(Domain);
2939 // Under the union of all predecessor conditions we can reach this block.
2940 isl::set PredDom = getPredecessorDomainConstraints(BB, Domain, DT, LI);
2941 Domain = Domain.intersect(PredDom).coalesce();
2942 Domain = Domain.align_params(getParamSpace());
2944 Loop *BBLoop = getRegionNodeLoop(RN, LI);
2945 if (BBLoop && BBLoop->getHeader() == BB && contains(BBLoop))
2946 if (!addLoopBoundsToHeaderDomain(BBLoop, LI, InvalidDomainMap))
2947 return false;
2950 return true;
2953 /// Create a map to map from a given iteration to a subsequent iteration.
2955 /// This map maps from SetSpace -> SetSpace where the dimensions @p Dim
2956 /// is incremented by one and all other dimensions are equal, e.g.,
2957 /// [i0, i1, i2, i3] -> [i0, i1, i2 + 1, i3]
2959 /// if @p Dim is 2 and @p SetSpace has 4 dimensions.
2960 static __isl_give isl_map *
2961 createNextIterationMap(__isl_take isl_space *SetSpace, unsigned Dim) {
2962 auto *MapSpace = isl_space_map_from_set(SetSpace);
2963 auto *NextIterationMap = isl_map_universe(isl_space_copy(MapSpace));
2964 for (unsigned u = 0; u < isl_map_dim(NextIterationMap, isl_dim_in); u++)
2965 if (u != Dim)
2966 NextIterationMap =
2967 isl_map_equate(NextIterationMap, isl_dim_in, u, isl_dim_out, u);
2968 auto *C = isl_constraint_alloc_equality(isl_local_space_from_space(MapSpace));
2969 C = isl_constraint_set_constant_si(C, 1);
2970 C = isl_constraint_set_coefficient_si(C, isl_dim_in, Dim, 1);
2971 C = isl_constraint_set_coefficient_si(C, isl_dim_out, Dim, -1);
2972 NextIterationMap = isl_map_add_constraint(NextIterationMap, C);
2973 return NextIterationMap;
2976 bool Scop::addLoopBoundsToHeaderDomain(
2977 Loop *L, LoopInfo &LI, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
2978 int LoopDepth = getRelativeLoopDepth(L);
2979 assert(LoopDepth >= 0 && "Loop in region should have at least depth one");
2981 BasicBlock *HeaderBB = L->getHeader();
2982 assert(DomainMap.count(HeaderBB));
2983 isl::set &HeaderBBDom = DomainMap[HeaderBB];
2985 isl::map NextIterationMap = isl::manage(
2986 createNextIterationMap(HeaderBBDom.get_space().release(), LoopDepth));
2988 isl::set UnionBackedgeCondition = HeaderBBDom.empty(HeaderBBDom.get_space());
2990 SmallVector<BasicBlock *, 4> LatchBlocks;
2991 L->getLoopLatches(LatchBlocks);
2993 for (BasicBlock *LatchBB : LatchBlocks) {
2994 // If the latch is only reachable via error statements we skip it.
2995 isl::set LatchBBDom = DomainMap.lookup(LatchBB);
2996 if (!LatchBBDom)
2997 continue;
2999 isl::set BackedgeCondition = nullptr;
3001 TerminatorInst *TI = LatchBB->getTerminator();
3002 BranchInst *BI = dyn_cast<BranchInst>(TI);
3003 assert(BI && "Only branch instructions allowed in loop latches");
3005 if (BI->isUnconditional())
3006 BackedgeCondition = LatchBBDom;
3007 else {
3008 SmallVector<isl_set *, 8> ConditionSets;
3009 int idx = BI->getSuccessor(0) != HeaderBB;
3010 if (!buildConditionSets(*this, LatchBB, TI, L, LatchBBDom.get(),
3011 InvalidDomainMap, ConditionSets))
3012 return false;
3014 // Free the non back edge condition set as we do not need it.
3015 isl_set_free(ConditionSets[1 - idx]);
3017 BackedgeCondition = isl::manage(ConditionSets[idx]);
3020 int LatchLoopDepth = getRelativeLoopDepth(LI.getLoopFor(LatchBB));
3021 assert(LatchLoopDepth >= LoopDepth);
3022 BackedgeCondition = BackedgeCondition.project_out(
3023 isl::dim::set, LoopDepth + 1, LatchLoopDepth - LoopDepth);
3024 UnionBackedgeCondition = UnionBackedgeCondition.unite(BackedgeCondition);
3027 isl::map ForwardMap = ForwardMap.lex_le(HeaderBBDom.get_space());
3028 for (int i = 0; i < LoopDepth; i++)
3029 ForwardMap = ForwardMap.equate(isl::dim::in, i, isl::dim::out, i);
3031 isl::set UnionBackedgeConditionComplement =
3032 UnionBackedgeCondition.complement();
3033 UnionBackedgeConditionComplement =
3034 UnionBackedgeConditionComplement.lower_bound_si(isl::dim::set, LoopDepth,
3036 UnionBackedgeConditionComplement =
3037 UnionBackedgeConditionComplement.apply(ForwardMap);
3038 HeaderBBDom = HeaderBBDom.subtract(UnionBackedgeConditionComplement);
3039 HeaderBBDom = HeaderBBDom.apply(NextIterationMap);
3041 auto Parts = partitionSetParts(HeaderBBDom.copy(), LoopDepth);
3042 HeaderBBDom = isl::manage(Parts.second);
3044 // Check if there is a <nsw> tagged AddRec for this loop and if so do not add
3045 // the bounded assumptions to the context as they are already implied by the
3046 // <nsw> tag.
3047 if (Affinator.hasNSWAddRecForLoop(L)) {
3048 isl_set_free(Parts.first);
3049 return true;
3052 isl::set UnboundedCtx = isl::manage(Parts.first).params();
3053 recordAssumption(INFINITELOOP, UnboundedCtx,
3054 HeaderBB->getTerminator()->getDebugLoc(), AS_RESTRICTION);
3055 return true;
3058 MemoryAccess *Scop::lookupBasePtrAccess(MemoryAccess *MA) {
3059 Value *PointerBase = MA->getOriginalBaseAddr();
3061 auto *PointerBaseInst = dyn_cast<Instruction>(PointerBase);
3062 if (!PointerBaseInst)
3063 return nullptr;
3065 auto *BasePtrStmt = getStmtFor(PointerBaseInst);
3066 if (!BasePtrStmt)
3067 return nullptr;
3069 return BasePtrStmt->getArrayAccessOrNULLFor(PointerBaseInst);
3072 bool Scop::hasNonHoistableBasePtrInScop(MemoryAccess *MA,
3073 isl::union_map Writes) {
3074 if (auto *BasePtrMA = lookupBasePtrAccess(MA)) {
3075 return getNonHoistableCtx(BasePtrMA, Writes).is_null();
3078 Value *BaseAddr = MA->getOriginalBaseAddr();
3079 if (auto *BasePtrInst = dyn_cast<Instruction>(BaseAddr))
3080 if (!isa<LoadInst>(BasePtrInst))
3081 return contains(BasePtrInst);
3083 return false;
3086 bool Scop::buildAliasChecks(AliasAnalysis &AA) {
3087 if (!PollyUseRuntimeAliasChecks)
3088 return true;
3090 if (buildAliasGroups(AA)) {
3091 // Aliasing assumptions do not go through addAssumption but we still want to
3092 // collect statistics so we do it here explicitly.
3093 if (MinMaxAliasGroups.size())
3094 AssumptionsAliasing++;
3095 return true;
3098 // If a problem occurs while building the alias groups we need to delete
3099 // this SCoP and pretend it wasn't valid in the first place. To this end
3100 // we make the assumed context infeasible.
3101 invalidate(ALIASING, DebugLoc());
3103 LLVM_DEBUG(
3104 dbgs() << "\n\nNOTE: Run time checks for " << getNameStr()
3105 << " could not be created as the number of parameters involved "
3106 "is too high. The SCoP will be "
3107 "dismissed.\nUse:\n\t--polly-rtc-max-parameters=X\nto adjust "
3108 "the maximal number of parameters but be advised that the "
3109 "compile time might increase exponentially.\n\n");
3110 return false;
3113 std::tuple<Scop::AliasGroupVectorTy, DenseSet<const ScopArrayInfo *>>
3114 Scop::buildAliasGroupsForAccesses(AliasAnalysis &AA) {
3115 AliasSetTracker AST(AA);
3117 DenseMap<Value *, MemoryAccess *> PtrToAcc;
3118 DenseSet<const ScopArrayInfo *> HasWriteAccess;
3119 for (ScopStmt &Stmt : *this) {
3121 isl_set *StmtDomain = Stmt.getDomain().release();
3122 bool StmtDomainEmpty = isl_set_is_empty(StmtDomain);
3123 isl_set_free(StmtDomain);
3125 // Statements with an empty domain will never be executed.
3126 if (StmtDomainEmpty)
3127 continue;
3129 for (MemoryAccess *MA : Stmt) {
3130 if (MA->isScalarKind())
3131 continue;
3132 if (!MA->isRead())
3133 HasWriteAccess.insert(MA->getScopArrayInfo());
3134 MemAccInst Acc(MA->getAccessInstruction());
3135 if (MA->isRead() && isa<MemTransferInst>(Acc))
3136 PtrToAcc[cast<MemTransferInst>(Acc)->getRawSource()] = MA;
3137 else
3138 PtrToAcc[Acc.getPointerOperand()] = MA;
3139 AST.add(Acc);
3143 AliasGroupVectorTy AliasGroups;
3144 for (AliasSet &AS : AST) {
3145 if (AS.isMustAlias() || AS.isForwardingAliasSet())
3146 continue;
3147 AliasGroupTy AG;
3148 for (auto &PR : AS)
3149 AG.push_back(PtrToAcc[PR.getValue()]);
3150 if (AG.size() < 2)
3151 continue;
3152 AliasGroups.push_back(std::move(AG));
3155 return std::make_tuple(AliasGroups, HasWriteAccess);
3158 void Scop::splitAliasGroupsByDomain(AliasGroupVectorTy &AliasGroups) {
3159 for (unsigned u = 0; u < AliasGroups.size(); u++) {
3160 AliasGroupTy NewAG;
3161 AliasGroupTy &AG = AliasGroups[u];
3162 AliasGroupTy::iterator AGI = AG.begin();
3163 isl_set *AGDomain = getAccessDomain(*AGI);
3164 while (AGI != AG.end()) {
3165 MemoryAccess *MA = *AGI;
3166 isl_set *MADomain = getAccessDomain(MA);
3167 if (isl_set_is_disjoint(AGDomain, MADomain)) {
3168 NewAG.push_back(MA);
3169 AGI = AG.erase(AGI);
3170 isl_set_free(MADomain);
3171 } else {
3172 AGDomain = isl_set_union(AGDomain, MADomain);
3173 AGI++;
3176 if (NewAG.size() > 1)
3177 AliasGroups.push_back(std::move(NewAG));
3178 isl_set_free(AGDomain);
3182 bool Scop::buildAliasGroups(AliasAnalysis &AA) {
3183 // To create sound alias checks we perform the following steps:
3184 // o) We partition each group into read only and non read only accesses.
3185 // o) For each group with more than one base pointer we then compute minimal
3186 // and maximal accesses to each array of a group in read only and non
3187 // read only partitions separately.
3188 AliasGroupVectorTy AliasGroups;
3189 DenseSet<const ScopArrayInfo *> HasWriteAccess;
3191 std::tie(AliasGroups, HasWriteAccess) = buildAliasGroupsForAccesses(AA);
3193 splitAliasGroupsByDomain(AliasGroups);
3195 for (AliasGroupTy &AG : AliasGroups) {
3196 if (!hasFeasibleRuntimeContext())
3197 return false;
3200 IslMaxOperationsGuard MaxOpGuard(getIslCtx().get(), OptComputeOut);
3201 bool Valid = buildAliasGroup(AG, HasWriteAccess);
3202 if (!Valid)
3203 return false;
3205 if (isl_ctx_last_error(getIslCtx().get()) == isl_error_quota) {
3206 invalidate(COMPLEXITY, DebugLoc());
3207 return false;
3211 return true;
3214 bool Scop::buildAliasGroup(Scop::AliasGroupTy &AliasGroup,
3215 DenseSet<const ScopArrayInfo *> HasWriteAccess) {
3216 AliasGroupTy ReadOnlyAccesses;
3217 AliasGroupTy ReadWriteAccesses;
3218 SmallPtrSet<const ScopArrayInfo *, 4> ReadWriteArrays;
3219 SmallPtrSet<const ScopArrayInfo *, 4> ReadOnlyArrays;
3221 if (AliasGroup.size() < 2)
3222 return true;
3224 for (MemoryAccess *Access : AliasGroup) {
3225 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "PossibleAlias",
3226 Access->getAccessInstruction())
3227 << "Possibly aliasing pointer, use restrict keyword.");
3228 const ScopArrayInfo *Array = Access->getScopArrayInfo();
3229 if (HasWriteAccess.count(Array)) {
3230 ReadWriteArrays.insert(Array);
3231 ReadWriteAccesses.push_back(Access);
3232 } else {
3233 ReadOnlyArrays.insert(Array);
3234 ReadOnlyAccesses.push_back(Access);
3238 // If there are no read-only pointers, and less than two read-write pointers,
3239 // no alias check is needed.
3240 if (ReadOnlyAccesses.empty() && ReadWriteArrays.size() <= 1)
3241 return true;
3243 // If there is no read-write pointer, no alias check is needed.
3244 if (ReadWriteArrays.empty())
3245 return true;
3247 // For non-affine accesses, no alias check can be generated as we cannot
3248 // compute a sufficiently tight lower and upper bound: bail out.
3249 for (MemoryAccess *MA : AliasGroup) {
3250 if (!MA->isAffine()) {
3251 invalidate(ALIASING, MA->getAccessInstruction()->getDebugLoc(),
3252 MA->getAccessInstruction()->getParent());
3253 return false;
3257 // Ensure that for all memory accesses for which we generate alias checks,
3258 // their base pointers are available.
3259 for (MemoryAccess *MA : AliasGroup) {
3260 if (MemoryAccess *BasePtrMA = lookupBasePtrAccess(MA))
3261 addRequiredInvariantLoad(
3262 cast<LoadInst>(BasePtrMA->getAccessInstruction()));
3265 MinMaxAliasGroups.emplace_back();
3266 MinMaxVectorPairTy &pair = MinMaxAliasGroups.back();
3267 MinMaxVectorTy &MinMaxAccessesReadWrite = pair.first;
3268 MinMaxVectorTy &MinMaxAccessesReadOnly = pair.second;
3270 bool Valid;
3272 Valid =
3273 calculateMinMaxAccess(ReadWriteAccesses, *this, MinMaxAccessesReadWrite);
3275 if (!Valid)
3276 return false;
3278 // Bail out if the number of values we need to compare is too large.
3279 // This is important as the number of comparisons grows quadratically with
3280 // the number of values we need to compare.
3281 if (MinMaxAccessesReadWrite.size() + ReadOnlyArrays.size() >
3282 RunTimeChecksMaxArraysPerGroup)
3283 return false;
3285 Valid =
3286 calculateMinMaxAccess(ReadOnlyAccesses, *this, MinMaxAccessesReadOnly);
3288 if (!Valid)
3289 return false;
3291 return true;
3294 /// Get the smallest loop that contains @p S but is not in @p S.
3295 static Loop *getLoopSurroundingScop(Scop &S, LoopInfo &LI) {
3296 // Start with the smallest loop containing the entry and expand that
3297 // loop until it contains all blocks in the region. If there is a loop
3298 // containing all blocks in the region check if it is itself contained
3299 // and if so take the parent loop as it will be the smallest containing
3300 // the region but not contained by it.
3301 Loop *L = LI.getLoopFor(S.getEntry());
3302 while (L) {
3303 bool AllContained = true;
3304 for (auto *BB : S.blocks())
3305 AllContained &= L->contains(BB);
3306 if (AllContained)
3307 break;
3308 L = L->getParentLoop();
3311 return L ? (S.contains(L) ? L->getParentLoop() : L) : nullptr;
3314 int Scop::NextScopID = 0;
3316 std::string Scop::CurrentFunc;
3318 int Scop::getNextID(std::string ParentFunc) {
3319 if (ParentFunc != CurrentFunc) {
3320 CurrentFunc = ParentFunc;
3321 NextScopID = 0;
3323 return NextScopID++;
3326 Scop::Scop(Region &R, ScalarEvolution &ScalarEvolution, LoopInfo &LI,
3327 DominatorTree &DT, ScopDetection::DetectionContext &DC,
3328 OptimizationRemarkEmitter &ORE)
3329 : IslCtx(isl_ctx_alloc(), isl_ctx_free), SE(&ScalarEvolution), DT(&DT),
3330 R(R), name(None), HasSingleExitEdge(R.getExitingBlock()), DC(DC),
3331 ORE(ORE), Affinator(this, LI),
3332 ID(getNextID((*R.getEntry()->getParent()).getName().str())) {
3333 if (IslOnErrorAbort)
3334 isl_options_set_on_error(getIslCtx().get(), ISL_ON_ERROR_ABORT);
3335 buildContext();
3338 Scop::~Scop() = default;
3340 void Scop::foldSizeConstantsToRight() {
3341 isl_union_set *Accessed = isl_union_map_range(getAccesses().release());
3343 for (auto Array : arrays()) {
3344 if (Array->getNumberOfDimensions() <= 1)
3345 continue;
3347 isl_space *Space = Array->getSpace().release();
3349 Space = isl_space_align_params(Space, isl_union_set_get_space(Accessed));
3351 if (!isl_union_set_contains(Accessed, Space)) {
3352 isl_space_free(Space);
3353 continue;
3356 isl_set *Elements = isl_union_set_extract_set(Accessed, Space);
3358 isl_map *Transform =
3359 isl_map_universe(isl_space_map_from_set(Array->getSpace().release()));
3361 std::vector<int> Int;
3363 int Dims = isl_set_dim(Elements, isl_dim_set);
3364 for (int i = 0; i < Dims; i++) {
3365 isl_set *DimOnly =
3366 isl_set_project_out(isl_set_copy(Elements), isl_dim_set, 0, i);
3367 DimOnly = isl_set_project_out(DimOnly, isl_dim_set, 1, Dims - i - 1);
3368 DimOnly = isl_set_lower_bound_si(DimOnly, isl_dim_set, 0, 0);
3370 isl_basic_set *DimHull = isl_set_affine_hull(DimOnly);
3372 if (i == Dims - 1) {
3373 Int.push_back(1);
3374 Transform = isl_map_equate(Transform, isl_dim_in, i, isl_dim_out, i);
3375 isl_basic_set_free(DimHull);
3376 continue;
3379 if (isl_basic_set_dim(DimHull, isl_dim_div) == 1) {
3380 isl_aff *Diff = isl_basic_set_get_div(DimHull, 0);
3381 isl_val *Val = isl_aff_get_denominator_val(Diff);
3382 isl_aff_free(Diff);
3384 int ValInt = 1;
3386 if (isl_val_is_int(Val)) {
3387 auto ValAPInt = APIntFromVal(Val);
3388 if (ValAPInt.isSignedIntN(32))
3389 ValInt = ValAPInt.getSExtValue();
3390 } else {
3391 isl_val_free(Val);
3394 Int.push_back(ValInt);
3396 isl_constraint *C = isl_constraint_alloc_equality(
3397 isl_local_space_from_space(isl_map_get_space(Transform)));
3398 C = isl_constraint_set_coefficient_si(C, isl_dim_out, i, ValInt);
3399 C = isl_constraint_set_coefficient_si(C, isl_dim_in, i, -1);
3400 Transform = isl_map_add_constraint(Transform, C);
3401 isl_basic_set_free(DimHull);
3402 continue;
3405 isl_basic_set *ZeroSet = isl_basic_set_copy(DimHull);
3406 ZeroSet = isl_basic_set_fix_si(ZeroSet, isl_dim_set, 0, 0);
3408 int ValInt = 1;
3409 if (isl_basic_set_is_equal(ZeroSet, DimHull)) {
3410 ValInt = 0;
3413 Int.push_back(ValInt);
3414 Transform = isl_map_equate(Transform, isl_dim_in, i, isl_dim_out, i);
3415 isl_basic_set_free(DimHull);
3416 isl_basic_set_free(ZeroSet);
3419 isl_set *MappedElements = isl_map_domain(isl_map_copy(Transform));
3421 if (!isl_set_is_subset(Elements, MappedElements)) {
3422 isl_set_free(Elements);
3423 isl_set_free(MappedElements);
3424 isl_map_free(Transform);
3425 continue;
3428 isl_set_free(MappedElements);
3430 bool CanFold = true;
3432 if (Int[0] <= 1)
3433 CanFold = false;
3435 unsigned NumDims = Array->getNumberOfDimensions();
3436 for (unsigned i = 1; i < NumDims - 1; i++)
3437 if (Int[0] != Int[i] && Int[i])
3438 CanFold = false;
3440 if (!CanFold) {
3441 isl_set_free(Elements);
3442 isl_map_free(Transform);
3443 continue;
3446 for (auto &Access : AccessFunctions)
3447 if (Access->getScopArrayInfo() == Array)
3448 Access->setAccessRelation(Access->getAccessRelation().apply_range(
3449 isl::manage_copy(Transform)));
3451 isl_map_free(Transform);
3453 std::vector<const SCEV *> Sizes;
3454 for (unsigned i = 0; i < NumDims; i++) {
3455 auto Size = Array->getDimensionSize(i);
3457 if (i == NumDims - 1)
3458 Size = SE->getMulExpr(Size, SE->getConstant(Size->getType(), Int[0]));
3459 Sizes.push_back(Size);
3462 Array->updateSizes(Sizes, false /* CheckConsistency */);
3464 isl_set_free(Elements);
3466 isl_union_set_free(Accessed);
3469 void Scop::markFortranArrays() {
3470 for (ScopStmt &Stmt : Stmts) {
3471 for (MemoryAccess *MemAcc : Stmt) {
3472 Value *FAD = MemAcc->getFortranArrayDescriptor();
3473 if (!FAD)
3474 continue;
3476 // TODO: const_cast-ing to edit
3477 ScopArrayInfo *SAI =
3478 const_cast<ScopArrayInfo *>(MemAcc->getLatestScopArrayInfo());
3479 assert(SAI && "memory access into a Fortran array does not "
3480 "have an associated ScopArrayInfo");
3481 SAI->applyAndSetFAD(FAD);
3486 void Scop::finalizeAccesses() {
3487 updateAccessDimensionality();
3488 foldSizeConstantsToRight();
3489 foldAccessRelations();
3490 assumeNoOutOfBounds();
3491 markFortranArrays();
3494 void Scop::updateAccessDimensionality() {
3495 // Check all array accesses for each base pointer and find a (virtual) element
3496 // size for the base pointer that divides all access functions.
3497 for (ScopStmt &Stmt : *this)
3498 for (MemoryAccess *Access : Stmt) {
3499 if (!Access->isArrayKind())
3500 continue;
3501 ScopArrayInfo *Array =
3502 const_cast<ScopArrayInfo *>(Access->getScopArrayInfo());
3504 if (Array->getNumberOfDimensions() != 1)
3505 continue;
3506 unsigned DivisibleSize = Array->getElemSizeInBytes();
3507 const SCEV *Subscript = Access->getSubscript(0);
3508 while (!isDivisible(Subscript, DivisibleSize, *SE))
3509 DivisibleSize /= 2;
3510 auto *Ty = IntegerType::get(SE->getContext(), DivisibleSize * 8);
3511 Array->updateElementType(Ty);
3514 for (auto &Stmt : *this)
3515 for (auto &Access : Stmt)
3516 Access->updateDimensionality();
3519 void Scop::foldAccessRelations() {
3520 for (auto &Stmt : *this)
3521 for (auto &Access : Stmt)
3522 Access->foldAccessRelation();
3525 void Scop::assumeNoOutOfBounds() {
3526 for (auto &Stmt : *this)
3527 for (auto &Access : Stmt)
3528 Access->assumeNoOutOfBound();
3531 void Scop::removeFromStmtMap(ScopStmt &Stmt) {
3532 for (Instruction *Inst : Stmt.getInstructions())
3533 InstStmtMap.erase(Inst);
3535 if (Stmt.isRegionStmt()) {
3536 for (BasicBlock *BB : Stmt.getRegion()->blocks()) {
3537 StmtMap.erase(BB);
3538 // Skip entry basic block, as its instructions are already deleted as
3539 // part of the statement's instruction list.
3540 if (BB == Stmt.getEntryBlock())
3541 continue;
3542 for (Instruction &Inst : *BB)
3543 InstStmtMap.erase(&Inst);
3545 } else {
3546 auto StmtMapIt = StmtMap.find(Stmt.getBasicBlock());
3547 if (StmtMapIt != StmtMap.end())
3548 StmtMapIt->second.erase(std::remove(StmtMapIt->second.begin(),
3549 StmtMapIt->second.end(), &Stmt),
3550 StmtMapIt->second.end());
3551 for (Instruction *Inst : Stmt.getInstructions())
3552 InstStmtMap.erase(Inst);
3556 void Scop::removeStmts(std::function<bool(ScopStmt &)> ShouldDelete,
3557 bool AfterHoisting) {
3558 for (auto StmtIt = Stmts.begin(), StmtEnd = Stmts.end(); StmtIt != StmtEnd;) {
3559 if (!ShouldDelete(*StmtIt)) {
3560 StmtIt++;
3561 continue;
3564 // Start with removing all of the statement's accesses including erasing it
3565 // from all maps that are pointing to them.
3566 // Make a temporary copy because removing MAs invalidates the iterator.
3567 SmallVector<MemoryAccess *, 16> MAList(StmtIt->begin(), StmtIt->end());
3568 for (MemoryAccess *MA : MAList)
3569 StmtIt->removeSingleMemoryAccess(MA, AfterHoisting);
3571 removeFromStmtMap(*StmtIt);
3572 StmtIt = Stmts.erase(StmtIt);
3576 void Scop::removeStmtNotInDomainMap() {
3577 auto ShouldDelete = [this](ScopStmt &Stmt) -> bool {
3578 return !this->DomainMap.lookup(Stmt.getEntryBlock());
3580 removeStmts(ShouldDelete, false);
3583 void Scop::simplifySCoP(bool AfterHoisting) {
3584 auto ShouldDelete = [AfterHoisting](ScopStmt &Stmt) -> bool {
3585 // Never delete statements that contain calls to debug functions.
3586 if (hasDebugCall(&Stmt))
3587 return false;
3589 bool RemoveStmt = Stmt.isEmpty();
3591 // Remove read only statements only after invariant load hoisting.
3592 if (!RemoveStmt && AfterHoisting) {
3593 bool OnlyRead = true;
3594 for (MemoryAccess *MA : Stmt) {
3595 if (MA->isRead())
3596 continue;
3598 OnlyRead = false;
3599 break;
3602 RemoveStmt = OnlyRead;
3604 return RemoveStmt;
3607 removeStmts(ShouldDelete, AfterHoisting);
3610 InvariantEquivClassTy *Scop::lookupInvariantEquivClass(Value *Val) {
3611 LoadInst *LInst = dyn_cast<LoadInst>(Val);
3612 if (!LInst)
3613 return nullptr;
3615 if (Value *Rep = InvEquivClassVMap.lookup(LInst))
3616 LInst = cast<LoadInst>(Rep);
3618 Type *Ty = LInst->getType();
3619 const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
3620 for (auto &IAClass : InvariantEquivClasses) {
3621 if (PointerSCEV != IAClass.IdentifyingPointer || Ty != IAClass.AccessType)
3622 continue;
3624 auto &MAs = IAClass.InvariantAccesses;
3625 for (auto *MA : MAs)
3626 if (MA->getAccessInstruction() == Val)
3627 return &IAClass;
3630 return nullptr;
3633 bool isAParameter(llvm::Value *maybeParam, const Function &F) {
3634 for (const llvm::Argument &Arg : F.args())
3635 if (&Arg == maybeParam)
3636 return true;
3638 return false;
3641 bool Scop::canAlwaysBeHoisted(MemoryAccess *MA, bool StmtInvalidCtxIsEmpty,
3642 bool MAInvalidCtxIsEmpty,
3643 bool NonHoistableCtxIsEmpty) {
3644 LoadInst *LInst = cast<LoadInst>(MA->getAccessInstruction());
3645 const DataLayout &DL = LInst->getParent()->getModule()->getDataLayout();
3646 if (PollyAllowDereferenceOfAllFunctionParams &&
3647 isAParameter(LInst->getPointerOperand(), getFunction()))
3648 return true;
3650 // TODO: We can provide more information for better but more expensive
3651 // results.
3652 if (!isDereferenceableAndAlignedPointer(LInst->getPointerOperand(),
3653 LInst->getAlignment(), DL))
3654 return false;
3656 // If the location might be overwritten we do not hoist it unconditionally.
3658 // TODO: This is probably too conservative.
3659 if (!NonHoistableCtxIsEmpty)
3660 return false;
3662 // If a dereferenceable load is in a statement that is modeled precisely we
3663 // can hoist it.
3664 if (StmtInvalidCtxIsEmpty && MAInvalidCtxIsEmpty)
3665 return true;
3667 // Even if the statement is not modeled precisely we can hoist the load if it
3668 // does not involve any parameters that might have been specialized by the
3669 // statement domain.
3670 for (unsigned u = 0, e = MA->getNumSubscripts(); u < e; u++)
3671 if (!isa<SCEVConstant>(MA->getSubscript(u)))
3672 return false;
3673 return true;
3676 void Scop::addInvariantLoads(ScopStmt &Stmt, InvariantAccessesTy &InvMAs) {
3677 if (InvMAs.empty())
3678 return;
3680 isl::set StmtInvalidCtx = Stmt.getInvalidContext();
3681 bool StmtInvalidCtxIsEmpty = StmtInvalidCtx.is_empty();
3683 // Get the context under which the statement is executed but remove the error
3684 // context under which this statement is reached.
3685 isl::set DomainCtx = Stmt.getDomain().params();
3686 DomainCtx = DomainCtx.subtract(StmtInvalidCtx);
3688 if (DomainCtx.n_basic_set() >= MaxDisjunctsInDomain) {
3689 auto *AccInst = InvMAs.front().MA->getAccessInstruction();
3690 invalidate(COMPLEXITY, AccInst->getDebugLoc(), AccInst->getParent());
3691 return;
3694 // Project out all parameters that relate to loads in the statement. Otherwise
3695 // we could have cyclic dependences on the constraints under which the
3696 // hoisted loads are executed and we could not determine an order in which to
3697 // pre-load them. This happens because not only lower bounds are part of the
3698 // domain but also upper bounds.
3699 for (auto &InvMA : InvMAs) {
3700 auto *MA = InvMA.MA;
3701 Instruction *AccInst = MA->getAccessInstruction();
3702 if (SE->isSCEVable(AccInst->getType())) {
3703 SetVector<Value *> Values;
3704 for (const SCEV *Parameter : Parameters) {
3705 Values.clear();
3706 findValues(Parameter, *SE, Values);
3707 if (!Values.count(AccInst))
3708 continue;
3710 if (isl::id ParamId = getIdForParam(Parameter)) {
3711 int Dim = DomainCtx.find_dim_by_id(isl::dim::param, ParamId);
3712 if (Dim >= 0)
3713 DomainCtx = DomainCtx.eliminate(isl::dim::param, Dim, 1);
3719 for (auto &InvMA : InvMAs) {
3720 auto *MA = InvMA.MA;
3721 isl::set NHCtx = InvMA.NonHoistableCtx;
3723 // Check for another invariant access that accesses the same location as
3724 // MA and if found consolidate them. Otherwise create a new equivalence
3725 // class at the end of InvariantEquivClasses.
3726 LoadInst *LInst = cast<LoadInst>(MA->getAccessInstruction());
3727 Type *Ty = LInst->getType();
3728 const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
3730 isl::set MAInvalidCtx = MA->getInvalidContext();
3731 bool NonHoistableCtxIsEmpty = NHCtx.is_empty();
3732 bool MAInvalidCtxIsEmpty = MAInvalidCtx.is_empty();
3734 isl::set MACtx;
3735 // Check if we know that this pointer can be speculatively accessed.
3736 if (canAlwaysBeHoisted(MA, StmtInvalidCtxIsEmpty, MAInvalidCtxIsEmpty,
3737 NonHoistableCtxIsEmpty)) {
3738 MACtx = isl::set::universe(DomainCtx.get_space());
3739 } else {
3740 MACtx = DomainCtx;
3741 MACtx = MACtx.subtract(MAInvalidCtx.unite(NHCtx));
3742 MACtx = MACtx.gist_params(getContext());
3745 bool Consolidated = false;
3746 for (auto &IAClass : InvariantEquivClasses) {
3747 if (PointerSCEV != IAClass.IdentifyingPointer || Ty != IAClass.AccessType)
3748 continue;
3750 // If the pointer and the type is equal check if the access function wrt.
3751 // to the domain is equal too. It can happen that the domain fixes
3752 // parameter values and these can be different for distinct part of the
3753 // SCoP. If this happens we cannot consolidate the loads but need to
3754 // create a new invariant load equivalence class.
3755 auto &MAs = IAClass.InvariantAccesses;
3756 if (!MAs.empty()) {
3757 auto *LastMA = MAs.front();
3759 isl::set AR = MA->getAccessRelation().range();
3760 isl::set LastAR = LastMA->getAccessRelation().range();
3761 bool SameAR = AR.is_equal(LastAR);
3763 if (!SameAR)
3764 continue;
3767 // Add MA to the list of accesses that are in this class.
3768 MAs.push_front(MA);
3770 Consolidated = true;
3772 // Unify the execution context of the class and this statement.
3773 isl::set IAClassDomainCtx = IAClass.ExecutionContext;
3774 if (IAClassDomainCtx)
3775 IAClassDomainCtx = IAClassDomainCtx.unite(MACtx).coalesce();
3776 else
3777 IAClassDomainCtx = MACtx;
3778 IAClass.ExecutionContext = IAClassDomainCtx;
3779 break;
3782 if (Consolidated)
3783 continue;
3785 // If we did not consolidate MA, thus did not find an equivalence class
3786 // for it, we create a new one.
3787 InvariantEquivClasses.emplace_back(
3788 InvariantEquivClassTy{PointerSCEV, MemoryAccessList{MA}, MACtx, Ty});
3792 /// Check if an access range is too complex.
3794 /// An access range is too complex, if it contains either many disjuncts or
3795 /// very complex expressions. As a simple heuristic, we assume if a set to
3796 /// be too complex if the sum of existentially quantified dimensions and
3797 /// set dimensions is larger than a threshold. This reliably detects both
3798 /// sets with many disjuncts as well as sets with many divisions as they
3799 /// arise in h264.
3801 /// @param AccessRange The range to check for complexity.
3803 /// @returns True if the access range is too complex.
3804 static bool isAccessRangeTooComplex(isl::set AccessRange) {
3805 unsigned NumTotalDims = 0;
3807 auto CountDimensions = [&NumTotalDims](isl::basic_set BSet) -> isl::stat {
3808 NumTotalDims += BSet.dim(isl::dim::div);
3809 NumTotalDims += BSet.dim(isl::dim::set);
3810 return isl::stat::ok;
3813 AccessRange.foreach_basic_set(CountDimensions);
3815 if (NumTotalDims > MaxDimensionsInAccessRange)
3816 return true;
3818 return false;
3821 isl::set Scop::getNonHoistableCtx(MemoryAccess *Access, isl::union_map Writes) {
3822 // TODO: Loads that are not loop carried, hence are in a statement with
3823 // zero iterators, are by construction invariant, though we
3824 // currently "hoist" them anyway. This is necessary because we allow
3825 // them to be treated as parameters (e.g., in conditions) and our code
3826 // generation would otherwise use the old value.
3828 auto &Stmt = *Access->getStatement();
3829 BasicBlock *BB = Stmt.getEntryBlock();
3831 if (Access->isScalarKind() || Access->isWrite() || !Access->isAffine() ||
3832 Access->isMemoryIntrinsic())
3833 return nullptr;
3835 // Skip accesses that have an invariant base pointer which is defined but
3836 // not loaded inside the SCoP. This can happened e.g., if a readnone call
3837 // returns a pointer that is used as a base address. However, as we want
3838 // to hoist indirect pointers, we allow the base pointer to be defined in
3839 // the region if it is also a memory access. Each ScopArrayInfo object
3840 // that has a base pointer origin has a base pointer that is loaded and
3841 // that it is invariant, thus it will be hoisted too. However, if there is
3842 // no base pointer origin we check that the base pointer is defined
3843 // outside the region.
3844 auto *LI = cast<LoadInst>(Access->getAccessInstruction());
3845 if (hasNonHoistableBasePtrInScop(Access, Writes))
3846 return nullptr;
3848 isl::map AccessRelation = Access->getAccessRelation();
3849 assert(!AccessRelation.is_empty());
3851 if (AccessRelation.involves_dims(isl::dim::in, 0, Stmt.getNumIterators()))
3852 return nullptr;
3854 AccessRelation = AccessRelation.intersect_domain(Stmt.getDomain());
3855 isl::set SafeToLoad;
3857 auto &DL = getFunction().getParent()->getDataLayout();
3858 if (isSafeToLoadUnconditionally(LI->getPointerOperand(), LI->getAlignment(),
3859 DL)) {
3860 SafeToLoad = isl::set::universe(AccessRelation.get_space().range());
3861 } else if (BB != LI->getParent()) {
3862 // Skip accesses in non-affine subregions as they might not be executed
3863 // under the same condition as the entry of the non-affine subregion.
3864 return nullptr;
3865 } else {
3866 SafeToLoad = AccessRelation.range();
3869 if (isAccessRangeTooComplex(AccessRelation.range()))
3870 return nullptr;
3872 isl::union_map Written = Writes.intersect_range(SafeToLoad);
3873 isl::set WrittenCtx = Written.params();
3874 bool IsWritten = !WrittenCtx.is_empty();
3876 if (!IsWritten)
3877 return WrittenCtx;
3879 WrittenCtx = WrittenCtx.remove_divs();
3880 bool TooComplex = WrittenCtx.n_basic_set() >= MaxDisjunctsInDomain;
3881 if (TooComplex || !isRequiredInvariantLoad(LI))
3882 return nullptr;
3884 addAssumption(INVARIANTLOAD, WrittenCtx, LI->getDebugLoc(), AS_RESTRICTION,
3885 LI->getParent());
3886 return WrittenCtx;
3889 void Scop::verifyInvariantLoads() {
3890 auto &RIL = getRequiredInvariantLoads();
3891 for (LoadInst *LI : RIL) {
3892 assert(LI && contains(LI));
3893 // If there exists a statement in the scop which has a memory access for
3894 // @p LI, then mark this scop as infeasible for optimization.
3895 for (ScopStmt &Stmt : Stmts)
3896 if (Stmt.getArrayAccessOrNULLFor(LI)) {
3897 invalidate(INVARIANTLOAD, LI->getDebugLoc(), LI->getParent());
3898 return;
3903 void Scop::hoistInvariantLoads() {
3904 if (!PollyInvariantLoadHoisting)
3905 return;
3907 isl::union_map Writes = getWrites();
3908 for (ScopStmt &Stmt : *this) {
3909 InvariantAccessesTy InvariantAccesses;
3911 for (MemoryAccess *Access : Stmt)
3912 if (isl::set NHCtx = getNonHoistableCtx(Access, Writes))
3913 InvariantAccesses.push_back({Access, NHCtx});
3915 // Transfer the memory access from the statement to the SCoP.
3916 for (auto InvMA : InvariantAccesses)
3917 Stmt.removeMemoryAccess(InvMA.MA);
3918 addInvariantLoads(Stmt, InvariantAccesses);
3922 /// Find the canonical scop array info object for a set of invariant load
3923 /// hoisted loads. The canonical array is the one that corresponds to the
3924 /// first load in the list of accesses which is used as base pointer of a
3925 /// scop array.
3926 static const ScopArrayInfo *findCanonicalArray(Scop *S,
3927 MemoryAccessList &Accesses) {
3928 for (MemoryAccess *Access : Accesses) {
3929 const ScopArrayInfo *CanonicalArray = S->getScopArrayInfoOrNull(
3930 Access->getAccessInstruction(), MemoryKind::Array);
3931 if (CanonicalArray)
3932 return CanonicalArray;
3934 return nullptr;
3937 /// Check if @p Array severs as base array in an invariant load.
3938 static bool isUsedForIndirectHoistedLoad(Scop *S, const ScopArrayInfo *Array) {
3939 for (InvariantEquivClassTy &EqClass2 : S->getInvariantAccesses())
3940 for (MemoryAccess *Access2 : EqClass2.InvariantAccesses)
3941 if (Access2->getScopArrayInfo() == Array)
3942 return true;
3943 return false;
3946 /// Replace the base pointer arrays in all memory accesses referencing @p Old,
3947 /// with a reference to @p New.
3948 static void replaceBasePtrArrays(Scop *S, const ScopArrayInfo *Old,
3949 const ScopArrayInfo *New) {
3950 for (ScopStmt &Stmt : *S)
3951 for (MemoryAccess *Access : Stmt) {
3952 if (Access->getLatestScopArrayInfo() != Old)
3953 continue;
3955 isl::id Id = New->getBasePtrId();
3956 isl::map Map = Access->getAccessRelation();
3957 Map = Map.set_tuple_id(isl::dim::out, Id);
3958 Access->setAccessRelation(Map);
3962 void Scop::canonicalizeDynamicBasePtrs() {
3963 for (InvariantEquivClassTy &EqClass : InvariantEquivClasses) {
3964 MemoryAccessList &BasePtrAccesses = EqClass.InvariantAccesses;
3966 const ScopArrayInfo *CanonicalBasePtrSAI =
3967 findCanonicalArray(this, BasePtrAccesses);
3969 if (!CanonicalBasePtrSAI)
3970 continue;
3972 for (MemoryAccess *BasePtrAccess : BasePtrAccesses) {
3973 const ScopArrayInfo *BasePtrSAI = getScopArrayInfoOrNull(
3974 BasePtrAccess->getAccessInstruction(), MemoryKind::Array);
3975 if (!BasePtrSAI || BasePtrSAI == CanonicalBasePtrSAI ||
3976 !BasePtrSAI->isCompatibleWith(CanonicalBasePtrSAI))
3977 continue;
3979 // we currently do not canonicalize arrays where some accesses are
3980 // hoisted as invariant loads. If we would, we need to update the access
3981 // function of the invariant loads as well. However, as this is not a
3982 // very common situation, we leave this for now to avoid further
3983 // complexity increases.
3984 if (isUsedForIndirectHoistedLoad(this, BasePtrSAI))
3985 continue;
3987 replaceBasePtrArrays(this, BasePtrSAI, CanonicalBasePtrSAI);
3992 ScopArrayInfo *Scop::getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType,
3993 ArrayRef<const SCEV *> Sizes,
3994 MemoryKind Kind,
3995 const char *BaseName) {
3996 assert((BasePtr || BaseName) &&
3997 "BasePtr and BaseName can not be nullptr at the same time.");
3998 assert(!(BasePtr && BaseName) && "BaseName is redundant.");
3999 auto &SAI = BasePtr ? ScopArrayInfoMap[std::make_pair(BasePtr, Kind)]
4000 : ScopArrayNameMap[BaseName];
4001 if (!SAI) {
4002 auto &DL = getFunction().getParent()->getDataLayout();
4003 SAI.reset(new ScopArrayInfo(BasePtr, ElementType, getIslCtx(), Sizes, Kind,
4004 DL, this, BaseName));
4005 ScopArrayInfoSet.insert(SAI.get());
4006 } else {
4007 SAI->updateElementType(ElementType);
4008 // In case of mismatching array sizes, we bail out by setting the run-time
4009 // context to false.
4010 if (!SAI->updateSizes(Sizes))
4011 invalidate(DELINEARIZATION, DebugLoc());
4013 return SAI.get();
4016 ScopArrayInfo *Scop::createScopArrayInfo(Type *ElementType,
4017 const std::string &BaseName,
4018 const std::vector<unsigned> &Sizes) {
4019 auto *DimSizeType = Type::getInt64Ty(getSE()->getContext());
4020 std::vector<const SCEV *> SCEVSizes;
4022 for (auto size : Sizes)
4023 if (size)
4024 SCEVSizes.push_back(getSE()->getConstant(DimSizeType, size, false));
4025 else
4026 SCEVSizes.push_back(nullptr);
4028 auto *SAI = getOrCreateScopArrayInfo(nullptr, ElementType, SCEVSizes,
4029 MemoryKind::Array, BaseName.c_str());
4030 return SAI;
4033 const ScopArrayInfo *Scop::getScopArrayInfoOrNull(Value *BasePtr,
4034 MemoryKind Kind) {
4035 auto *SAI = ScopArrayInfoMap[std::make_pair(BasePtr, Kind)].get();
4036 return SAI;
4039 const ScopArrayInfo *Scop::getScopArrayInfo(Value *BasePtr, MemoryKind Kind) {
4040 auto *SAI = getScopArrayInfoOrNull(BasePtr, Kind);
4041 assert(SAI && "No ScopArrayInfo available for this base pointer");
4042 return SAI;
4045 std::string Scop::getContextStr() const { return getContext().to_str(); }
4047 std::string Scop::getAssumedContextStr() const {
4048 assert(AssumedContext && "Assumed context not yet built");
4049 return AssumedContext.to_str();
4052 std::string Scop::getInvalidContextStr() const {
4053 return InvalidContext.to_str();
4056 std::string Scop::getNameStr() const {
4057 std::string ExitName, EntryName;
4058 std::tie(EntryName, ExitName) = getEntryExitStr();
4059 return EntryName + "---" + ExitName;
4062 std::pair<std::string, std::string> Scop::getEntryExitStr() const {
4063 std::string ExitName, EntryName;
4064 raw_string_ostream ExitStr(ExitName);
4065 raw_string_ostream EntryStr(EntryName);
4067 R.getEntry()->printAsOperand(EntryStr, false);
4068 EntryStr.str();
4070 if (R.getExit()) {
4071 R.getExit()->printAsOperand(ExitStr, false);
4072 ExitStr.str();
4073 } else
4074 ExitName = "FunctionExit";
4076 return std::make_pair(EntryName, ExitName);
4079 isl::set Scop::getContext() const { return Context; }
4080 isl::space Scop::getParamSpace() const { return getContext().get_space(); }
4082 isl::space Scop::getFullParamSpace() const {
4083 std::vector<isl::id> FortranIDs;
4084 FortranIDs = getFortranArrayIds(arrays());
4086 isl::space Space = isl::space::params_alloc(
4087 getIslCtx(), ParameterIds.size() + FortranIDs.size());
4089 unsigned PDim = 0;
4090 for (const SCEV *Parameter : Parameters) {
4091 isl::id Id = getIdForParam(Parameter);
4092 Space = Space.set_dim_id(isl::dim::param, PDim++, Id);
4095 for (isl::id Id : FortranIDs)
4096 Space = Space.set_dim_id(isl::dim::param, PDim++, Id);
4098 return Space;
4101 isl::set Scop::getAssumedContext() const {
4102 assert(AssumedContext && "Assumed context not yet built");
4103 return AssumedContext;
4106 bool Scop::isProfitable(bool ScalarsAreUnprofitable) const {
4107 if (PollyProcessUnprofitable)
4108 return true;
4110 if (isEmpty())
4111 return false;
4113 unsigned OptimizableStmtsOrLoops = 0;
4114 for (auto &Stmt : *this) {
4115 if (Stmt.getNumIterators() == 0)
4116 continue;
4118 bool ContainsArrayAccs = false;
4119 bool ContainsScalarAccs = false;
4120 for (auto *MA : Stmt) {
4121 if (MA->isRead())
4122 continue;
4123 ContainsArrayAccs |= MA->isLatestArrayKind();
4124 ContainsScalarAccs |= MA->isLatestScalarKind();
4127 if (!ScalarsAreUnprofitable || (ContainsArrayAccs && !ContainsScalarAccs))
4128 OptimizableStmtsOrLoops += Stmt.getNumIterators();
4131 return OptimizableStmtsOrLoops > 1;
4134 bool Scop::hasFeasibleRuntimeContext() const {
4135 auto PositiveContext = getAssumedContext();
4136 auto NegativeContext = getInvalidContext();
4137 PositiveContext = addNonEmptyDomainConstraints(PositiveContext);
4138 // addNonEmptyDomainConstraints returns null if ScopStmts have a null domain
4139 if (!PositiveContext)
4140 return false;
4142 bool IsFeasible = !(PositiveContext.is_empty() ||
4143 PositiveContext.is_subset(NegativeContext));
4144 if (!IsFeasible)
4145 return false;
4147 auto DomainContext = getDomains().params();
4148 IsFeasible = !DomainContext.is_subset(NegativeContext);
4149 IsFeasible &= !Context.is_subset(NegativeContext);
4151 return IsFeasible;
4154 static std::string toString(AssumptionKind Kind) {
4155 switch (Kind) {
4156 case ALIASING:
4157 return "No-aliasing";
4158 case INBOUNDS:
4159 return "Inbounds";
4160 case WRAPPING:
4161 return "No-overflows";
4162 case UNSIGNED:
4163 return "Signed-unsigned";
4164 case COMPLEXITY:
4165 return "Low complexity";
4166 case PROFITABLE:
4167 return "Profitable";
4168 case ERRORBLOCK:
4169 return "No-error";
4170 case INFINITELOOP:
4171 return "Finite loop";
4172 case INVARIANTLOAD:
4173 return "Invariant load";
4174 case DELINEARIZATION:
4175 return "Delinearization";
4177 llvm_unreachable("Unknown AssumptionKind!");
4180 bool Scop::isEffectiveAssumption(isl::set Set, AssumptionSign Sign) {
4181 if (Sign == AS_ASSUMPTION) {
4182 if (Context.is_subset(Set))
4183 return false;
4185 if (AssumedContext.is_subset(Set))
4186 return false;
4187 } else {
4188 if (Set.is_disjoint(Context))
4189 return false;
4191 if (Set.is_subset(InvalidContext))
4192 return false;
4194 return true;
4197 bool Scop::trackAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
4198 AssumptionSign Sign, BasicBlock *BB) {
4199 if (PollyRemarksMinimal && !isEffectiveAssumption(Set, Sign))
4200 return false;
4202 // Do never emit trivial assumptions as they only clutter the output.
4203 if (!PollyRemarksMinimal) {
4204 isl::set Univ;
4205 if (Sign == AS_ASSUMPTION)
4206 Univ = isl::set::universe(Set.get_space());
4208 bool IsTrivial = (Sign == AS_RESTRICTION && Set.is_empty()) ||
4209 (Sign == AS_ASSUMPTION && Univ.is_equal(Set));
4211 if (IsTrivial)
4212 return false;
4215 switch (Kind) {
4216 case ALIASING:
4217 AssumptionsAliasing++;
4218 break;
4219 case INBOUNDS:
4220 AssumptionsInbounds++;
4221 break;
4222 case WRAPPING:
4223 AssumptionsWrapping++;
4224 break;
4225 case UNSIGNED:
4226 AssumptionsUnsigned++;
4227 break;
4228 case COMPLEXITY:
4229 AssumptionsComplexity++;
4230 break;
4231 case PROFITABLE:
4232 AssumptionsUnprofitable++;
4233 break;
4234 case ERRORBLOCK:
4235 AssumptionsErrorBlock++;
4236 break;
4237 case INFINITELOOP:
4238 AssumptionsInfiniteLoop++;
4239 break;
4240 case INVARIANTLOAD:
4241 AssumptionsInvariantLoad++;
4242 break;
4243 case DELINEARIZATION:
4244 AssumptionsDelinearization++;
4245 break;
4248 auto Suffix = Sign == AS_ASSUMPTION ? " assumption:\t" : " restriction:\t";
4249 std::string Msg = toString(Kind) + Suffix + Set.to_str();
4250 if (BB)
4251 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AssumpRestrict", Loc, BB)
4252 << Msg);
4253 else
4254 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AssumpRestrict", Loc,
4255 R.getEntry())
4256 << Msg);
4257 return true;
4260 void Scop::addAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
4261 AssumptionSign Sign, BasicBlock *BB) {
4262 // Simplify the assumptions/restrictions first.
4263 Set = Set.gist_params(getContext());
4265 if (!trackAssumption(Kind, Set, Loc, Sign, BB))
4266 return;
4268 if (Sign == AS_ASSUMPTION)
4269 AssumedContext = AssumedContext.intersect(Set).coalesce();
4270 else
4271 InvalidContext = InvalidContext.unite(Set).coalesce();
4274 void Scop::recordAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
4275 AssumptionSign Sign, BasicBlock *BB) {
4276 assert((Set.is_params() || BB) &&
4277 "Assumptions without a basic block must be parameter sets");
4278 RecordedAssumptions.push_back({Kind, Sign, Set, Loc, BB});
4281 void Scop::addRecordedAssumptions() {
4282 while (!RecordedAssumptions.empty()) {
4283 Assumption AS = RecordedAssumptions.pop_back_val();
4285 if (!AS.BB) {
4286 addAssumption(AS.Kind, AS.Set, AS.Loc, AS.Sign, nullptr /* BasicBlock */);
4287 continue;
4290 // If the domain was deleted the assumptions are void.
4291 isl_set *Dom = getDomainConditions(AS.BB).release();
4292 if (!Dom)
4293 continue;
4295 // If a basic block was given use its domain to simplify the assumption.
4296 // In case of restrictions we know they only have to hold on the domain,
4297 // thus we can intersect them with the domain of the block. However, for
4298 // assumptions the domain has to imply them, thus:
4299 // _ _____
4300 // Dom => S <==> A v B <==> A - B
4302 // To avoid the complement we will register A - B as a restriction not an
4303 // assumption.
4304 isl_set *S = AS.Set.copy();
4305 if (AS.Sign == AS_RESTRICTION)
4306 S = isl_set_params(isl_set_intersect(S, Dom));
4307 else /* (AS.Sign == AS_ASSUMPTION) */
4308 S = isl_set_params(isl_set_subtract(Dom, S));
4310 addAssumption(AS.Kind, isl::manage(S), AS.Loc, AS_RESTRICTION, AS.BB);
4314 void Scop::invalidate(AssumptionKind Kind, DebugLoc Loc, BasicBlock *BB) {
4315 LLVM_DEBUG(dbgs() << "Invalidate SCoP because of reason " << Kind << "\n");
4316 addAssumption(Kind, isl::set::empty(getParamSpace()), Loc, AS_ASSUMPTION, BB);
4319 isl::set Scop::getInvalidContext() const { return InvalidContext; }
4321 void Scop::printContext(raw_ostream &OS) const {
4322 OS << "Context:\n";
4323 OS.indent(4) << Context << "\n";
4325 OS.indent(4) << "Assumed Context:\n";
4326 OS.indent(4) << AssumedContext << "\n";
4328 OS.indent(4) << "Invalid Context:\n";
4329 OS.indent(4) << InvalidContext << "\n";
4331 unsigned Dim = 0;
4332 for (const SCEV *Parameter : Parameters)
4333 OS.indent(4) << "p" << Dim++ << ": " << *Parameter << "\n";
4336 void Scop::printAliasAssumptions(raw_ostream &OS) const {
4337 int noOfGroups = 0;
4338 for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) {
4339 if (Pair.second.size() == 0)
4340 noOfGroups += 1;
4341 else
4342 noOfGroups += Pair.second.size();
4345 OS.indent(4) << "Alias Groups (" << noOfGroups << "):\n";
4346 if (MinMaxAliasGroups.empty()) {
4347 OS.indent(8) << "n/a\n";
4348 return;
4351 for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) {
4353 // If the group has no read only accesses print the write accesses.
4354 if (Pair.second.empty()) {
4355 OS.indent(8) << "[[";
4356 for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) {
4357 OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second
4358 << ">";
4360 OS << " ]]\n";
4363 for (const MinMaxAccessTy &MMAReadOnly : Pair.second) {
4364 OS.indent(8) << "[[";
4365 OS << " <" << MMAReadOnly.first << ", " << MMAReadOnly.second << ">";
4366 for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) {
4367 OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second
4368 << ">";
4370 OS << " ]]\n";
4375 void Scop::printStatements(raw_ostream &OS, bool PrintInstructions) const {
4376 OS << "Statements {\n";
4378 for (const ScopStmt &Stmt : *this) {
4379 OS.indent(4);
4380 Stmt.print(OS, PrintInstructions);
4383 OS.indent(4) << "}\n";
4386 void Scop::printArrayInfo(raw_ostream &OS) const {
4387 OS << "Arrays {\n";
4389 for (auto &Array : arrays())
4390 Array->print(OS);
4392 OS.indent(4) << "}\n";
4394 OS.indent(4) << "Arrays (Bounds as pw_affs) {\n";
4396 for (auto &Array : arrays())
4397 Array->print(OS, /* SizeAsPwAff */ true);
4399 OS.indent(4) << "}\n";
4402 void Scop::print(raw_ostream &OS, bool PrintInstructions) const {
4403 OS.indent(4) << "Function: " << getFunction().getName() << "\n";
4404 OS.indent(4) << "Region: " << getNameStr() << "\n";
4405 OS.indent(4) << "Max Loop Depth: " << getMaxLoopDepth() << "\n";
4406 OS.indent(4) << "Invariant Accesses: {\n";
4407 for (const auto &IAClass : InvariantEquivClasses) {
4408 const auto &MAs = IAClass.InvariantAccesses;
4409 if (MAs.empty()) {
4410 OS.indent(12) << "Class Pointer: " << *IAClass.IdentifyingPointer << "\n";
4411 } else {
4412 MAs.front()->print(OS);
4413 OS.indent(12) << "Execution Context: " << IAClass.ExecutionContext
4414 << "\n";
4417 OS.indent(4) << "}\n";
4418 printContext(OS.indent(4));
4419 printArrayInfo(OS.indent(4));
4420 printAliasAssumptions(OS);
4421 printStatements(OS.indent(4), PrintInstructions);
4424 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4425 LLVM_DUMP_METHOD void Scop::dump() const { print(dbgs(), true); }
4426 #endif
4428 isl::ctx Scop::getIslCtx() const { return IslCtx.get(); }
4430 __isl_give PWACtx Scop::getPwAff(const SCEV *E, BasicBlock *BB,
4431 bool NonNegative) {
4432 // First try to use the SCEVAffinator to generate a piecewise defined
4433 // affine function from @p E in the context of @p BB. If that tasks becomes to
4434 // complex the affinator might return a nullptr. In such a case we invalidate
4435 // the SCoP and return a dummy value. This way we do not need to add error
4436 // handling code to all users of this function.
4437 auto PWAC = Affinator.getPwAff(E, BB);
4438 if (PWAC.first) {
4439 // TODO: We could use a heuristic and either use:
4440 // SCEVAffinator::takeNonNegativeAssumption
4441 // or
4442 // SCEVAffinator::interpretAsUnsigned
4443 // to deal with unsigned or "NonNegative" SCEVs.
4444 if (NonNegative)
4445 Affinator.takeNonNegativeAssumption(PWAC);
4446 return PWAC;
4449 auto DL = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
4450 invalidate(COMPLEXITY, DL, BB);
4451 return Affinator.getPwAff(SE->getZero(E->getType()), BB);
4454 isl::union_set Scop::getDomains() const {
4455 isl_space *EmptySpace = isl_space_params_alloc(getIslCtx().get(), 0);
4456 isl_union_set *Domain = isl_union_set_empty(EmptySpace);
4458 for (const ScopStmt &Stmt : *this)
4459 Domain = isl_union_set_add_set(Domain, Stmt.getDomain().release());
4461 return isl::manage(Domain);
4464 isl::pw_aff Scop::getPwAffOnly(const SCEV *E, BasicBlock *BB) {
4465 PWACtx PWAC = getPwAff(E, BB);
4466 return PWAC.first;
4469 isl::union_map
4470 Scop::getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate) {
4471 isl::union_map Accesses = isl::union_map::empty(getParamSpace());
4473 for (ScopStmt &Stmt : *this) {
4474 for (MemoryAccess *MA : Stmt) {
4475 if (!Predicate(*MA))
4476 continue;
4478 isl::set Domain = Stmt.getDomain();
4479 isl::map AccessDomain = MA->getAccessRelation();
4480 AccessDomain = AccessDomain.intersect_domain(Domain);
4481 Accesses = Accesses.add_map(AccessDomain);
4485 return Accesses.coalesce();
4488 isl::union_map Scop::getMustWrites() {
4489 return getAccessesOfType([](MemoryAccess &MA) { return MA.isMustWrite(); });
4492 isl::union_map Scop::getMayWrites() {
4493 return getAccessesOfType([](MemoryAccess &MA) { return MA.isMayWrite(); });
4496 isl::union_map Scop::getWrites() {
4497 return getAccessesOfType([](MemoryAccess &MA) { return MA.isWrite(); });
4500 isl::union_map Scop::getReads() {
4501 return getAccessesOfType([](MemoryAccess &MA) { return MA.isRead(); });
4504 isl::union_map Scop::getAccesses() {
4505 return getAccessesOfType([](MemoryAccess &MA) { return true; });
4508 isl::union_map Scop::getAccesses(ScopArrayInfo *Array) {
4509 return getAccessesOfType(
4510 [Array](MemoryAccess &MA) { return MA.getScopArrayInfo() == Array; });
4513 // Check whether @p Node is an extension node.
4515 // @return true if @p Node is an extension node.
4516 isl_bool isNotExtNode(__isl_keep isl_schedule_node *Node, void *User) {
4517 if (isl_schedule_node_get_type(Node) == isl_schedule_node_extension)
4518 return isl_bool_error;
4519 else
4520 return isl_bool_true;
4523 bool Scop::containsExtensionNode(isl::schedule Schedule) {
4524 return isl_schedule_foreach_schedule_node_top_down(
4525 Schedule.get(), isNotExtNode, nullptr) == isl_stat_error;
4528 isl::union_map Scop::getSchedule() const {
4529 auto Tree = getScheduleTree();
4530 if (containsExtensionNode(Tree))
4531 return nullptr;
4533 return Tree.get_map();
4536 isl::schedule Scop::getScheduleTree() const {
4537 return Schedule.intersect_domain(getDomains());
4540 void Scop::setSchedule(isl::union_map NewSchedule) {
4541 auto S = isl::schedule::from_domain(getDomains());
4542 Schedule = S.insert_partial_schedule(
4543 isl::multi_union_pw_aff::from_union_map(NewSchedule));
4546 void Scop::setScheduleTree(isl::schedule NewSchedule) {
4547 Schedule = NewSchedule;
4550 bool Scop::restrictDomains(isl::union_set Domain) {
4551 bool Changed = false;
4552 for (ScopStmt &Stmt : *this) {
4553 isl::union_set StmtDomain = isl::union_set(Stmt.getDomain());
4554 isl::union_set NewStmtDomain = StmtDomain.intersect(Domain);
4556 if (StmtDomain.is_subset(NewStmtDomain))
4557 continue;
4559 Changed = true;
4561 NewStmtDomain = NewStmtDomain.coalesce();
4563 if (NewStmtDomain.is_empty())
4564 Stmt.restrictDomain(isl::set::empty(Stmt.getDomainSpace()));
4565 else
4566 Stmt.restrictDomain(isl::set(NewStmtDomain));
4568 return Changed;
4571 ScalarEvolution *Scop::getSE() const { return SE; }
4573 // Create an isl_multi_union_aff that defines an identity mapping from the
4574 // elements of USet to their N-th dimension.
4576 // # Example:
4578 // Domain: { A[i,j]; B[i,j,k] }
4579 // N: 1
4581 // Resulting Mapping: { {A[i,j] -> [(j)]; B[i,j,k] -> [(j)] }
4583 // @param USet A union set describing the elements for which to generate a
4584 // mapping.
4585 // @param N The dimension to map to.
4586 // @returns A mapping from USet to its N-th dimension.
4587 static isl::multi_union_pw_aff mapToDimension(isl::union_set USet, int N) {
4588 assert(N >= 0);
4589 assert(USet);
4590 assert(!USet.is_empty());
4592 auto Result = isl::union_pw_multi_aff::empty(USet.get_space());
4594 auto Lambda = [&Result, N](isl::set S) -> isl::stat {
4595 int Dim = S.dim(isl::dim::set);
4596 auto PMA = isl::pw_multi_aff::project_out_map(S.get_space(), isl::dim::set,
4597 N, Dim - N);
4598 if (N > 1)
4599 PMA = PMA.drop_dims(isl::dim::out, 0, N - 1);
4601 Result = Result.add_pw_multi_aff(PMA);
4602 return isl::stat::ok;
4605 isl::stat Res = USet.foreach_set(Lambda);
4606 (void)Res;
4608 assert(Res == isl::stat::ok);
4610 return isl::multi_union_pw_aff(isl::union_pw_multi_aff(Result));
4613 void Scop::addScopStmt(BasicBlock *BB, StringRef Name, Loop *SurroundingLoop,
4614 std::vector<Instruction *> Instructions) {
4615 assert(BB && "Unexpected nullptr!");
4616 Stmts.emplace_back(*this, *BB, Name, SurroundingLoop, Instructions);
4617 auto *Stmt = &Stmts.back();
4618 StmtMap[BB].push_back(Stmt);
4619 for (Instruction *Inst : Instructions) {
4620 assert(!InstStmtMap.count(Inst) &&
4621 "Unexpected statement corresponding to the instruction.");
4622 InstStmtMap[Inst] = Stmt;
4626 void Scop::addScopStmt(Region *R, StringRef Name, Loop *SurroundingLoop,
4627 std::vector<Instruction *> Instructions) {
4628 assert(R && "Unexpected nullptr!");
4629 Stmts.emplace_back(*this, *R, Name, SurroundingLoop, Instructions);
4630 auto *Stmt = &Stmts.back();
4632 for (Instruction *Inst : Instructions) {
4633 assert(!InstStmtMap.count(Inst) &&
4634 "Unexpected statement corresponding to the instruction.");
4635 InstStmtMap[Inst] = Stmt;
4638 for (BasicBlock *BB : R->blocks()) {
4639 StmtMap[BB].push_back(Stmt);
4640 if (BB == R->getEntry())
4641 continue;
4642 for (Instruction &Inst : *BB) {
4643 assert(!InstStmtMap.count(&Inst) &&
4644 "Unexpected statement corresponding to the instruction.");
4645 InstStmtMap[&Inst] = Stmt;
4650 ScopStmt *Scop::addScopStmt(isl::map SourceRel, isl::map TargetRel,
4651 isl::set Domain) {
4652 #ifndef NDEBUG
4653 isl::set SourceDomain = SourceRel.domain();
4654 isl::set TargetDomain = TargetRel.domain();
4655 assert(Domain.is_subset(TargetDomain) &&
4656 "Target access not defined for complete statement domain");
4657 assert(Domain.is_subset(SourceDomain) &&
4658 "Source access not defined for complete statement domain");
4659 #endif
4660 Stmts.emplace_back(*this, SourceRel, TargetRel, Domain);
4661 CopyStmtsNum++;
4662 return &(Stmts.back());
4665 void Scop::buildSchedule(LoopInfo &LI) {
4666 Loop *L = getLoopSurroundingScop(*this, LI);
4667 LoopStackTy LoopStack({LoopStackElementTy(L, nullptr, 0)});
4668 buildSchedule(getRegion().getNode(), LoopStack, LI);
4669 assert(LoopStack.size() == 1 && LoopStack.back().L == L);
4670 Schedule = LoopStack[0].Schedule;
4673 /// To generate a schedule for the elements in a Region we traverse the Region
4674 /// in reverse-post-order and add the contained RegionNodes in traversal order
4675 /// to the schedule of the loop that is currently at the top of the LoopStack.
4676 /// For loop-free codes, this results in a correct sequential ordering.
4678 /// Example:
4679 /// bb1(0)
4680 /// / \.
4681 /// bb2(1) bb3(2)
4682 /// \ / \.
4683 /// bb4(3) bb5(4)
4684 /// \ /
4685 /// bb6(5)
4687 /// Including loops requires additional processing. Whenever a loop header is
4688 /// encountered, the corresponding loop is added to the @p LoopStack. Starting
4689 /// from an empty schedule, we first process all RegionNodes that are within
4690 /// this loop and complete the sequential schedule at this loop-level before
4691 /// processing about any other nodes. To implement this
4692 /// loop-nodes-first-processing, the reverse post-order traversal is
4693 /// insufficient. Hence, we additionally check if the traversal yields
4694 /// sub-regions or blocks that are outside the last loop on the @p LoopStack.
4695 /// These region-nodes are then queue and only traverse after the all nodes
4696 /// within the current loop have been processed.
4697 void Scop::buildSchedule(Region *R, LoopStackTy &LoopStack, LoopInfo &LI) {
4698 Loop *OuterScopLoop = getLoopSurroundingScop(*this, LI);
4700 ReversePostOrderTraversal<Region *> RTraversal(R);
4701 std::deque<RegionNode *> WorkList(RTraversal.begin(), RTraversal.end());
4702 std::deque<RegionNode *> DelayList;
4703 bool LastRNWaiting = false;
4705 // Iterate over the region @p R in reverse post-order but queue
4706 // sub-regions/blocks iff they are not part of the last encountered but not
4707 // completely traversed loop. The variable LastRNWaiting is a flag to indicate
4708 // that we queued the last sub-region/block from the reverse post-order
4709 // iterator. If it is set we have to explore the next sub-region/block from
4710 // the iterator (if any) to guarantee progress. If it is not set we first try
4711 // the next queued sub-region/blocks.
4712 while (!WorkList.empty() || !DelayList.empty()) {
4713 RegionNode *RN;
4715 if ((LastRNWaiting && !WorkList.empty()) || DelayList.empty()) {
4716 RN = WorkList.front();
4717 WorkList.pop_front();
4718 LastRNWaiting = false;
4719 } else {
4720 RN = DelayList.front();
4721 DelayList.pop_front();
4724 Loop *L = getRegionNodeLoop(RN, LI);
4725 if (!contains(L))
4726 L = OuterScopLoop;
4728 Loop *LastLoop = LoopStack.back().L;
4729 if (LastLoop != L) {
4730 if (LastLoop && !LastLoop->contains(L)) {
4731 LastRNWaiting = true;
4732 DelayList.push_back(RN);
4733 continue;
4735 LoopStack.push_back({L, nullptr, 0});
4737 buildSchedule(RN, LoopStack, LI);
4741 void Scop::buildSchedule(RegionNode *RN, LoopStackTy &LoopStack, LoopInfo &LI) {
4742 if (RN->isSubRegion()) {
4743 auto *LocalRegion = RN->getNodeAs<Region>();
4744 if (!isNonAffineSubRegion(LocalRegion)) {
4745 buildSchedule(LocalRegion, LoopStack, LI);
4746 return;
4750 assert(LoopStack.rbegin() != LoopStack.rend());
4751 auto LoopData = LoopStack.rbegin();
4752 LoopData->NumBlocksProcessed += getNumBlocksInRegionNode(RN);
4754 for (auto *Stmt : getStmtListFor(RN)) {
4755 isl::union_set UDomain{Stmt->getDomain()};
4756 auto StmtSchedule = isl::schedule::from_domain(UDomain);
4757 LoopData->Schedule = combineInSequence(LoopData->Schedule, StmtSchedule);
4760 // Check if we just processed the last node in this loop. If we did, finalize
4761 // the loop by:
4763 // - adding new schedule dimensions
4764 // - folding the resulting schedule into the parent loop schedule
4765 // - dropping the loop schedule from the LoopStack.
4767 // Then continue to check surrounding loops, which might also have been
4768 // completed by this node.
4769 size_t Dimension = LoopStack.size();
4770 while (LoopData->L &&
4771 LoopData->NumBlocksProcessed == getNumBlocksInLoop(LoopData->L)) {
4772 isl::schedule Schedule = LoopData->Schedule;
4773 auto NumBlocksProcessed = LoopData->NumBlocksProcessed;
4775 assert(std::next(LoopData) != LoopStack.rend());
4776 ++LoopData;
4777 --Dimension;
4779 if (Schedule) {
4780 isl::union_set Domain = Schedule.get_domain();
4781 isl::multi_union_pw_aff MUPA = mapToDimension(Domain, Dimension);
4782 Schedule = Schedule.insert_partial_schedule(MUPA);
4783 LoopData->Schedule = combineInSequence(LoopData->Schedule, Schedule);
4786 LoopData->NumBlocksProcessed += NumBlocksProcessed;
4788 // Now pop all loops processed up there from the LoopStack
4789 LoopStack.erase(LoopStack.begin() + Dimension, LoopStack.end());
4792 ArrayRef<ScopStmt *> Scop::getStmtListFor(BasicBlock *BB) const {
4793 auto StmtMapIt = StmtMap.find(BB);
4794 if (StmtMapIt == StmtMap.end())
4795 return {};
4796 return StmtMapIt->second;
4799 ScopStmt *Scop::getIncomingStmtFor(const Use &U) const {
4800 auto *PHI = cast<PHINode>(U.getUser());
4801 BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
4803 // If the value is a non-synthesizable from the incoming block, use the
4804 // statement that contains it as user statement.
4805 if (auto *IncomingInst = dyn_cast<Instruction>(U.get())) {
4806 if (IncomingInst->getParent() == IncomingBB) {
4807 if (ScopStmt *IncomingStmt = getStmtFor(IncomingInst))
4808 return IncomingStmt;
4812 // Otherwise, use the epilogue/last statement.
4813 return getLastStmtFor(IncomingBB);
4816 ScopStmt *Scop::getLastStmtFor(BasicBlock *BB) const {
4817 ArrayRef<ScopStmt *> StmtList = getStmtListFor(BB);
4818 if (!StmtList.empty())
4819 return StmtList.back();
4820 return nullptr;
4823 ArrayRef<ScopStmt *> Scop::getStmtListFor(RegionNode *RN) const {
4824 if (RN->isSubRegion())
4825 return getStmtListFor(RN->getNodeAs<Region>());
4826 return getStmtListFor(RN->getNodeAs<BasicBlock>());
4829 ArrayRef<ScopStmt *> Scop::getStmtListFor(Region *R) const {
4830 return getStmtListFor(R->getEntry());
4833 int Scop::getRelativeLoopDepth(const Loop *L) const {
4834 if (!L || !R.contains(L))
4835 return -1;
4836 // outermostLoopInRegion always returns nullptr for top level regions
4837 if (R.isTopLevelRegion()) {
4838 // LoopInfo's depths start at 1, we start at 0
4839 return L->getLoopDepth() - 1;
4840 } else {
4841 Loop *OuterLoop = R.outermostLoopInRegion(const_cast<Loop *>(L));
4842 assert(OuterLoop);
4843 return L->getLoopDepth() - OuterLoop->getLoopDepth();
4847 ScopArrayInfo *Scop::getArrayInfoByName(const std::string BaseName) {
4848 for (auto &SAI : arrays()) {
4849 if (SAI->getName() == BaseName)
4850 return SAI;
4852 return nullptr;
4855 void Scop::addAccessData(MemoryAccess *Access) {
4856 const ScopArrayInfo *SAI = Access->getOriginalScopArrayInfo();
4857 assert(SAI && "can only use after access relations have been constructed");
4859 if (Access->isOriginalValueKind() && Access->isRead())
4860 ValueUseAccs[SAI].push_back(Access);
4861 else if (Access->isOriginalAnyPHIKind() && Access->isWrite())
4862 PHIIncomingAccs[SAI].push_back(Access);
4865 void Scop::removeAccessData(MemoryAccess *Access) {
4866 if (Access->isOriginalValueKind() && Access->isWrite()) {
4867 ValueDefAccs.erase(Access->getAccessValue());
4868 } else if (Access->isOriginalValueKind() && Access->isRead()) {
4869 auto &Uses = ValueUseAccs[Access->getScopArrayInfo()];
4870 auto NewEnd = std::remove(Uses.begin(), Uses.end(), Access);
4871 Uses.erase(NewEnd, Uses.end());
4872 } else if (Access->isOriginalPHIKind() && Access->isRead()) {
4873 PHINode *PHI = cast<PHINode>(Access->getAccessInstruction());
4874 PHIReadAccs.erase(PHI);
4875 } else if (Access->isOriginalAnyPHIKind() && Access->isWrite()) {
4876 auto &Incomings = PHIIncomingAccs[Access->getScopArrayInfo()];
4877 auto NewEnd = std::remove(Incomings.begin(), Incomings.end(), Access);
4878 Incomings.erase(NewEnd, Incomings.end());
4882 MemoryAccess *Scop::getValueDef(const ScopArrayInfo *SAI) const {
4883 assert(SAI->isValueKind());
4885 Instruction *Val = dyn_cast<Instruction>(SAI->getBasePtr());
4886 if (!Val)
4887 return nullptr;
4889 return ValueDefAccs.lookup(Val);
4892 ArrayRef<MemoryAccess *> Scop::getValueUses(const ScopArrayInfo *SAI) const {
4893 assert(SAI->isValueKind());
4894 auto It = ValueUseAccs.find(SAI);
4895 if (It == ValueUseAccs.end())
4896 return {};
4897 return It->second;
4900 MemoryAccess *Scop::getPHIRead(const ScopArrayInfo *SAI) const {
4901 assert(SAI->isPHIKind() || SAI->isExitPHIKind());
4903 if (SAI->isExitPHIKind())
4904 return nullptr;
4906 PHINode *PHI = cast<PHINode>(SAI->getBasePtr());
4907 return PHIReadAccs.lookup(PHI);
4910 ArrayRef<MemoryAccess *> Scop::getPHIIncomings(const ScopArrayInfo *SAI) const {
4911 assert(SAI->isPHIKind() || SAI->isExitPHIKind());
4912 auto It = PHIIncomingAccs.find(SAI);
4913 if (It == PHIIncomingAccs.end())
4914 return {};
4915 return It->second;
4918 bool Scop::isEscaping(Instruction *Inst) {
4919 assert(contains(Inst) && "The concept of escaping makes only sense for "
4920 "values defined inside the SCoP");
4922 for (Use &Use : Inst->uses()) {
4923 BasicBlock *UserBB = getUseBlock(Use);
4924 if (!contains(UserBB))
4925 return true;
4927 // When the SCoP region exit needs to be simplified, PHIs in the region exit
4928 // move to a new basic block such that its incoming blocks are not in the
4929 // SCoP anymore.
4930 if (hasSingleExitEdge() && isa<PHINode>(Use.getUser()) &&
4931 isExit(cast<PHINode>(Use.getUser())->getParent()))
4932 return true;
4934 return false;
4937 Scop::ScopStatistics Scop::getStatistics() const {
4938 ScopStatistics Result;
4939 #if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
4940 auto LoopStat = ScopDetection::countBeneficialLoops(&R, *SE, *getLI(), 0);
4942 int NumTotalLoops = LoopStat.NumLoops;
4943 Result.NumBoxedLoops = getBoxedLoops().size();
4944 Result.NumAffineLoops = NumTotalLoops - Result.NumBoxedLoops;
4946 for (const ScopStmt &Stmt : *this) {
4947 isl::set Domain = Stmt.getDomain().intersect_params(getContext());
4948 bool IsInLoop = Stmt.getNumIterators() >= 1;
4949 for (MemoryAccess *MA : Stmt) {
4950 if (!MA->isWrite())
4951 continue;
4953 if (MA->isLatestValueKind()) {
4954 Result.NumValueWrites += 1;
4955 if (IsInLoop)
4956 Result.NumValueWritesInLoops += 1;
4959 if (MA->isLatestAnyPHIKind()) {
4960 Result.NumPHIWrites += 1;
4961 if (IsInLoop)
4962 Result.NumPHIWritesInLoops += 1;
4965 isl::set AccSet =
4966 MA->getAccessRelation().intersect_domain(Domain).range();
4967 if (AccSet.is_singleton()) {
4968 Result.NumSingletonWrites += 1;
4969 if (IsInLoop)
4970 Result.NumSingletonWritesInLoops += 1;
4974 #endif
4975 return Result;
4978 raw_ostream &polly::operator<<(raw_ostream &OS, const Scop &scop) {
4979 scop.print(OS, PollyPrintInstructions);
4980 return OS;
4983 //===----------------------------------------------------------------------===//
4984 void ScopInfoRegionPass::getAnalysisUsage(AnalysisUsage &AU) const {
4985 AU.addRequired<LoopInfoWrapperPass>();
4986 AU.addRequired<RegionInfoPass>();
4987 AU.addRequired<DominatorTreeWrapperPass>();
4988 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
4989 AU.addRequiredTransitive<ScopDetectionWrapperPass>();
4990 AU.addRequired<AAResultsWrapperPass>();
4991 AU.addRequired<AssumptionCacheTracker>();
4992 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4993 AU.setPreservesAll();
4996 void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
4997 Scop::ScopStatistics ScopStats) {
4998 assert(Stats.NumLoops == ScopStats.NumAffineLoops + ScopStats.NumBoxedLoops);
5000 NumScops++;
5001 NumLoopsInScop += Stats.NumLoops;
5002 MaxNumLoopsInScop =
5003 std::max(MaxNumLoopsInScop.getValue(), (unsigned)Stats.NumLoops);
5005 if (Stats.MaxDepth == 0)
5006 NumScopsDepthZero++;
5007 else if (Stats.MaxDepth == 1)
5008 NumScopsDepthOne++;
5009 else if (Stats.MaxDepth == 2)
5010 NumScopsDepthTwo++;
5011 else if (Stats.MaxDepth == 3)
5012 NumScopsDepthThree++;
5013 else if (Stats.MaxDepth == 4)
5014 NumScopsDepthFour++;
5015 else if (Stats.MaxDepth == 5)
5016 NumScopsDepthFive++;
5017 else
5018 NumScopsDepthLarger++;
5020 NumAffineLoops += ScopStats.NumAffineLoops;
5021 NumBoxedLoops += ScopStats.NumBoxedLoops;
5023 NumValueWrites += ScopStats.NumValueWrites;
5024 NumValueWritesInLoops += ScopStats.NumValueWritesInLoops;
5025 NumPHIWrites += ScopStats.NumPHIWrites;
5026 NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops;
5027 NumSingletonWrites += ScopStats.NumSingletonWrites;
5028 NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops;
5031 bool ScopInfoRegionPass::runOnRegion(Region *R, RGPassManager &RGM) {
5032 auto &SD = getAnalysis<ScopDetectionWrapperPass>().getSD();
5034 if (!SD.isMaxRegionInScop(*R))
5035 return false;
5037 Function *F = R->getEntry()->getParent();
5038 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5039 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5040 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
5041 auto const &DL = F->getParent()->getDataLayout();
5042 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5043 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F);
5044 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5046 ScopBuilder SB(R, AC, AA, DL, DT, LI, SD, SE, ORE);
5047 S = SB.getScop(); // take ownership of scop object
5049 #if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
5050 if (S) {
5051 ScopDetection::LoopStats Stats =
5052 ScopDetection::countBeneficialLoops(&S->getRegion(), SE, LI, 0);
5053 updateLoopCountStatistic(Stats, S->getStatistics());
5055 #endif
5057 return false;
5060 void ScopInfoRegionPass::print(raw_ostream &OS, const Module *) const {
5061 if (S)
5062 S->print(OS, PollyPrintInstructions);
5063 else
5064 OS << "Invalid Scop!\n";
5067 char ScopInfoRegionPass::ID = 0;
5069 Pass *polly::createScopInfoRegionPassPass() { return new ScopInfoRegionPass(); }
5071 INITIALIZE_PASS_BEGIN(ScopInfoRegionPass, "polly-scops",
5072 "Polly - Create polyhedral description of Scops", false,
5073 false);
5074 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
5075 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
5076 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
5077 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
5078 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
5079 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
5080 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
5081 INITIALIZE_PASS_END(ScopInfoRegionPass, "polly-scops",
5082 "Polly - Create polyhedral description of Scops", false,
5083 false)
5085 //===----------------------------------------------------------------------===//
5086 ScopInfo::ScopInfo(const DataLayout &DL, ScopDetection &SD, ScalarEvolution &SE,
5087 LoopInfo &LI, AliasAnalysis &AA, DominatorTree &DT,
5088 AssumptionCache &AC, OptimizationRemarkEmitter &ORE)
5089 : DL(DL), SD(SD), SE(SE), LI(LI), AA(AA), DT(DT), AC(AC), ORE(ORE) {
5090 recompute();
5093 void ScopInfo::recompute() {
5094 RegionToScopMap.clear();
5095 /// Create polyhedral description of scops for all the valid regions of a
5096 /// function.
5097 for (auto &It : SD) {
5098 Region *R = const_cast<Region *>(It);
5099 if (!SD.isMaxRegionInScop(*R))
5100 continue;
5102 ScopBuilder SB(R, AC, AA, DL, DT, LI, SD, SE, ORE);
5103 std::unique_ptr<Scop> S = SB.getScop();
5104 if (!S)
5105 continue;
5106 #if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS)
5107 ScopDetection::LoopStats Stats =
5108 ScopDetection::countBeneficialLoops(&S->getRegion(), SE, LI, 0);
5109 updateLoopCountStatistic(Stats, S->getStatistics());
5110 #endif
5111 bool Inserted = RegionToScopMap.insert({R, std::move(S)}).second;
5112 assert(Inserted && "Building Scop for the same region twice!");
5113 (void)Inserted;
5117 bool ScopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
5118 FunctionAnalysisManager::Invalidator &Inv) {
5119 // Check whether the analysis, all analyses on functions have been preserved
5120 // or anything we're holding references to is being invalidated
5121 auto PAC = PA.getChecker<ScopInfoAnalysis>();
5122 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
5123 Inv.invalidate<ScopAnalysis>(F, PA) ||
5124 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
5125 Inv.invalidate<LoopAnalysis>(F, PA) ||
5126 Inv.invalidate<AAManager>(F, PA) ||
5127 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
5128 Inv.invalidate<AssumptionAnalysis>(F, PA);
5131 AnalysisKey ScopInfoAnalysis::Key;
5133 ScopInfoAnalysis::Result ScopInfoAnalysis::run(Function &F,
5134 FunctionAnalysisManager &FAM) {
5135 auto &SD = FAM.getResult<ScopAnalysis>(F);
5136 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
5137 auto &LI = FAM.getResult<LoopAnalysis>(F);
5138 auto &AA = FAM.getResult<AAManager>(F);
5139 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
5140 auto &AC = FAM.getResult<AssumptionAnalysis>(F);
5141 auto &DL = F.getParent()->getDataLayout();
5142 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
5143 return {DL, SD, SE, LI, AA, DT, AC, ORE};
5146 PreservedAnalyses ScopInfoPrinterPass::run(Function &F,
5147 FunctionAnalysisManager &FAM) {
5148 auto &SI = FAM.getResult<ScopInfoAnalysis>(F);
5149 // Since the legacy PM processes Scops in bottom up, we print them in reverse
5150 // order here to keep the output persistent
5151 for (auto &It : reverse(SI)) {
5152 if (It.second)
5153 It.second->print(Stream, PollyPrintInstructions);
5154 else
5155 Stream << "Invalid Scop!\n";
5157 return PreservedAnalyses::all();
5160 void ScopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
5161 AU.addRequired<LoopInfoWrapperPass>();
5162 AU.addRequired<RegionInfoPass>();
5163 AU.addRequired<DominatorTreeWrapperPass>();
5164 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
5165 AU.addRequiredTransitive<ScopDetectionWrapperPass>();
5166 AU.addRequired<AAResultsWrapperPass>();
5167 AU.addRequired<AssumptionCacheTracker>();
5168 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
5169 AU.setPreservesAll();
5172 bool ScopInfoWrapperPass::runOnFunction(Function &F) {
5173 auto &SD = getAnalysis<ScopDetectionWrapperPass>().getSD();
5174 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5175 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5176 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
5177 auto const &DL = F.getParent()->getDataLayout();
5178 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5179 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5180 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5182 Result.reset(new ScopInfo{DL, SD, SE, LI, AA, DT, AC, ORE});
5183 return false;
5186 void ScopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
5187 for (auto &It : *Result) {
5188 if (It.second)
5189 It.second->print(OS, PollyPrintInstructions);
5190 else
5191 OS << "Invalid Scop!\n";
5195 char ScopInfoWrapperPass::ID = 0;
5197 Pass *polly::createScopInfoWrapperPassPass() {
5198 return new ScopInfoWrapperPass();
5201 INITIALIZE_PASS_BEGIN(
5202 ScopInfoWrapperPass, "polly-function-scops",
5203 "Polly - Create polyhedral description of all Scops of a function", false,
5204 false);
5205 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
5206 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
5207 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
5208 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
5209 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
5210 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
5211 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
5212 INITIALIZE_PASS_END(
5213 ScopInfoWrapperPass, "polly-function-scops",
5214 "Polly - Create polyhedral description of all Scops of a function", false,
5215 false)