canSynthesize: Remove unused argument LI. NFC.
[polly-mirror.git] / lib / CodeGen / BlockGenerators.cpp
blob0cf65eccd608ea6ae03973c0a5e30ab12b4b6f39
1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BlockGenerator and VectorBlockGenerator classes,
11 // which generate sequential code and vectorized code for a polyhedral
12 // statement, respectively.
14 //===----------------------------------------------------------------------===//
16 #include "polly/CodeGen/BlockGenerators.h"
17 #include "polly/CodeGen/CodeGeneration.h"
18 #include "polly/CodeGen/IslExprBuilder.h"
19 #include "polly/CodeGen/RuntimeDebugBuilder.h"
20 #include "polly/Options.h"
21 #include "polly/ScopInfo.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/SCEVValidator.h"
24 #include "polly/Support/ScopHelper.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/RegionInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "isl/aff.h"
33 #include "isl/ast.h"
34 #include "isl/ast_build.h"
35 #include "isl/set.h"
36 #include <deque>
38 using namespace llvm;
39 using namespace polly;
41 static cl::opt<bool> Aligned("enable-polly-aligned",
42 cl::desc("Assumed aligned memory accesses."),
43 cl::Hidden, cl::init(false), cl::ZeroOrMore,
44 cl::cat(PollyCategory));
46 static cl::opt<bool> DebugPrinting(
47 "polly-codegen-add-debug-printing",
48 cl::desc("Add printf calls that show the values loaded/stored."),
49 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
51 BlockGenerator::BlockGenerator(
52 PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT,
53 ScalarAllocaMapTy &ScalarMap, ScalarAllocaMapTy &PHIOpMap,
54 EscapeUsersAllocaMapTy &EscapeMap, ValueMapT &GlobalMap,
55 IslExprBuilder *ExprBuilder, BasicBlock *StartBlock)
56 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
57 EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap),
58 EscapeMap(EscapeMap), GlobalMap(GlobalMap), StartBlock(StartBlock) {}
60 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
61 ValueMapT &BBMap,
62 LoopToScevMapT &LTS,
63 Loop *L) const {
64 if (!SE.isSCEVable(Old->getType()))
65 return nullptr;
67 const SCEV *Scev = SE.getSCEVAtScope(Old, L);
68 if (!Scev)
69 return nullptr;
71 if (isa<SCEVCouldNotCompute>(Scev))
72 return nullptr;
74 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE);
75 ValueMapT VTV;
76 VTV.insert(BBMap.begin(), BBMap.end());
77 VTV.insert(GlobalMap.begin(), GlobalMap.end());
79 Scop &S = *Stmt.getParent();
80 const DataLayout &DL = S.getFunction().getParent()->getDataLayout();
81 auto IP = Builder.GetInsertPoint();
83 assert(IP != Builder.GetInsertBlock()->end() &&
84 "Only instructions can be insert points for SCEVExpander");
85 Value *Expanded =
86 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV,
87 StartBlock->getSinglePredecessor());
89 BBMap[Old] = Expanded;
90 return Expanded;
93 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
94 LoopToScevMapT &LTS, Loop *L) const {
95 // Constants that do not reference any named value can always remain
96 // unchanged. Handle them early to avoid expensive map lookups. We do not take
97 // the fast-path for external constants which are referenced through globals
98 // as these may need to be rewritten when distributing code accross different
99 // LLVM modules.
100 if (isa<Constant>(Old) && !isa<GlobalValue>(Old))
101 return Old;
103 // Inline asm is like a constant to us.
104 if (isa<InlineAsm>(Old))
105 return Old;
107 if (Value *New = GlobalMap.lookup(Old)) {
108 if (Value *NewRemapped = GlobalMap.lookup(New))
109 New = NewRemapped;
110 if (Old->getType()->getScalarSizeInBits() <
111 New->getType()->getScalarSizeInBits())
112 New = Builder.CreateTruncOrBitCast(New, Old->getType());
114 return New;
117 if (Value *New = BBMap.lookup(Old))
118 return New;
120 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L))
121 return New;
123 // A scop-constant value defined by a global or a function parameter.
124 if (isa<GlobalValue>(Old) || isa<Argument>(Old))
125 return Old;
127 // A scop-constant value defined by an instruction executed outside the scop.
128 if (const Instruction *Inst = dyn_cast<Instruction>(Old))
129 if (!Stmt.getParent()->contains(Inst->getParent()))
130 return Old;
132 // The scalar dependence is neither available nor SCEVCodegenable.
133 llvm_unreachable("Unexpected scalar dependence in region!");
134 return nullptr;
137 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
138 ValueMapT &BBMap, LoopToScevMapT &LTS) {
139 // We do not generate debug intrinsics as we did not investigate how to
140 // copy them correctly. At the current state, they just crash the code
141 // generation as the meta-data operands are not correctly copied.
142 if (isa<DbgInfoIntrinsic>(Inst))
143 return;
145 Instruction *NewInst = Inst->clone();
147 // Replace old operands with the new ones.
148 for (Value *OldOperand : Inst->operands()) {
149 Value *NewOperand =
150 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt));
152 if (!NewOperand) {
153 assert(!isa<StoreInst>(NewInst) &&
154 "Store instructions are always needed!");
155 delete NewInst;
156 return;
159 NewInst->replaceUsesOfWith(OldOperand, NewOperand);
162 Builder.Insert(NewInst);
163 BBMap[Inst] = NewInst;
165 if (!NewInst->getType()->isVoidTy())
166 NewInst->setName("p_" + Inst->getName());
169 Value *
170 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst,
171 ValueMapT &BBMap, LoopToScevMapT &LTS,
172 isl_id_to_ast_expr *NewAccesses) {
173 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst);
174 return generateLocationAccessed(
175 Stmt, getLoopForStmt(Stmt),
176 Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS,
177 NewAccesses, MA.getId(), MA.getAccessValue()->getType());
180 Value *BlockGenerator::generateLocationAccessed(
181 ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap,
182 LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id,
183 Type *ExpectedType) {
184 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id);
186 if (AccessExpr) {
187 AccessExpr = isl_ast_expr_address_of(AccessExpr);
188 auto Address = ExprBuilder->create(AccessExpr);
190 // Cast the address of this memory access to a pointer type that has the
191 // same element type as the original access, but uses the address space of
192 // the newly generated pointer.
193 auto OldPtrTy = ExpectedType->getPointerTo();
194 auto NewPtrTy = Address->getType();
195 OldPtrTy = PointerType::get(OldPtrTy->getElementType(),
196 NewPtrTy->getPointerAddressSpace());
198 if (OldPtrTy != NewPtrTy)
199 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
200 return Address;
202 assert(
203 Pointer &&
204 "If expression was not generated, must use the original pointer value");
205 return getNewValue(Stmt, Pointer, BBMap, LTS, L);
208 Value *
209 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L,
210 LoopToScevMapT &LTS, ValueMapT &BBMap,
211 __isl_keep isl_id_to_ast_expr *NewAccesses) {
212 if (Access.isLatestArrayKind())
213 return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap,
214 LTS, NewAccesses, Access.getId(),
215 Access.getAccessValue()->getType());
217 if (Access.isLatestValueKind() || Access.isLatestExitPHIKind())
218 return getOrCreateScalarAlloca(Access.getBaseAddr());
220 if (Access.isLatestPHIKind())
221 return getOrCreatePHIAlloca(Access.getBaseAddr());
223 llvm_unreachable("Unknown access type");
226 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const {
227 auto *StmtBB = Stmt.getEntryBlock();
228 return LI.getLoopFor(StmtBB);
231 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load,
232 ValueMapT &BBMap, LoopToScevMapT &LTS,
233 isl_id_to_ast_expr *NewAccesses) {
234 if (Value *PreloadLoad = GlobalMap.lookup(Load))
235 return PreloadLoad;
237 Value *NewPointer =
238 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses);
239 Value *ScalarLoad = Builder.CreateAlignedLoad(
240 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");
242 if (DebugPrinting)
243 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
244 ": ", ScalarLoad, "\n");
246 return ScalarLoad;
249 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store,
250 ValueMapT &BBMap, LoopToScevMapT &LTS,
251 isl_id_to_ast_expr *NewAccesses) {
252 Value *NewPointer =
253 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses);
254 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS,
255 getLoopForStmt(Stmt));
257 if (DebugPrinting)
258 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer,
259 ": ", ValueOperand, "\n");
261 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment());
264 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) {
265 Loop *L = getLoopForStmt(Stmt);
266 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
267 canSynthesize(Inst, *Stmt.getParent(), &SE, L);
270 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
271 ValueMapT &BBMap, LoopToScevMapT &LTS,
272 isl_id_to_ast_expr *NewAccesses) {
273 // Terminator instructions control the control flow. They are explicitly
274 // expressed in the clast and do not need to be copied.
275 if (Inst->isTerminator())
276 return;
278 // Synthesizable statements will be generated on-demand.
279 if (canSyntheziseInStmt(Stmt, Inst))
280 return;
282 if (auto *Load = dyn_cast<LoadInst>(Inst)) {
283 Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses);
284 // Compute NewLoad before its insertion in BBMap to make the insertion
285 // deterministic.
286 BBMap[Load] = NewLoad;
287 return;
290 if (auto *Store = dyn_cast<StoreInst>(Inst)) {
291 generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses);
292 return;
295 if (auto *PHI = dyn_cast<PHINode>(Inst)) {
296 copyPHIInstruction(Stmt, PHI, BBMap, LTS);
297 return;
300 // Skip some special intrinsics for which we do not adjust the semantics to
301 // the new schedule. All others are handled like every other instruction.
302 if (isIgnoredIntrinsic(Inst))
303 return;
305 copyInstScalar(Stmt, Inst, BBMap, LTS);
308 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) {
309 auto NewBB = Builder.GetInsertBlock();
310 for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) {
311 Instruction *NewInst = &*I;
313 if (!isInstructionTriviallyDead(NewInst))
314 continue;
316 for (auto Pair : BBMap)
317 if (Pair.second == NewInst) {
318 BBMap.erase(Pair.first);
321 NewInst->eraseFromParent();
322 I = NewBB->rbegin();
326 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
327 isl_id_to_ast_expr *NewAccesses) {
328 assert(Stmt.isBlockStmt() &&
329 "Only block statements can be copied by the block generator");
331 ValueMapT BBMap;
333 BasicBlock *BB = Stmt.getBasicBlock();
334 copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
335 removeDeadInstructions(BB, BBMap);
338 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
339 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
340 &*Builder.GetInsertPoint(), &DT, &LI);
341 CopyBB->setName("polly.stmt." + BB->getName());
342 return CopyBB;
345 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
346 ValueMapT &BBMap, LoopToScevMapT &LTS,
347 isl_id_to_ast_expr *NewAccesses) {
348 BasicBlock *CopyBB = splitBB(BB);
349 Builder.SetInsertPoint(&CopyBB->front());
350 generateScalarLoads(Stmt, LTS, BBMap, NewAccesses);
352 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
354 // After a basic block was copied store all scalars that escape this block in
355 // their alloca.
356 generateScalarStores(Stmt, LTS, BBMap, NewAccesses);
357 return CopyBB;
360 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
361 ValueMapT &BBMap, LoopToScevMapT &LTS,
362 isl_id_to_ast_expr *NewAccesses) {
363 EntryBB = &CopyBB->getParent()->getEntryBlock();
365 for (Instruction &Inst : *BB)
366 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
369 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase,
370 ScalarAllocaMapTy &Map,
371 const char *NameExt) {
372 // If no alloca was found create one and insert it in the entry block.
373 if (!Map.count(ScalarBase)) {
374 auto *Ty = ScalarBase->getType();
375 auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt);
376 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
377 NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt());
378 Map[ScalarBase] = NewAddr;
381 auto Addr = Map[ScalarBase];
383 if (auto NewAddr = GlobalMap.lookup(Addr))
384 return NewAddr;
386 return Addr;
389 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) {
390 assert(!Access.isArrayKind() && "Trying to get alloca for array kind");
392 if (Access.isPHIKind())
393 return getOrCreatePHIAlloca(Access.getBaseAddr());
394 else
395 return getOrCreateScalarAlloca(Access.getBaseAddr());
398 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
399 assert(!Array->isArrayKind() && "Trying to get alloca for array kind");
401 if (Array->isPHIKind())
402 return getOrCreatePHIAlloca(Array->getBasePtr());
403 else
404 return getOrCreateScalarAlloca(Array->getBasePtr());
407 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) {
408 return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a");
411 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) {
412 return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops");
415 void BlockGenerator::handleOutsideUsers(const Scop &S, Instruction *Inst) {
416 // If there are escape users we get the alloca for this instruction and put it
417 // in the EscapeMap for later finalization. Lastly, if the instruction was
418 // copied multiple times we already did this and can exit.
419 if (EscapeMap.count(Inst))
420 return;
422 EscapeUserVectorTy EscapeUsers;
423 for (User *U : Inst->users()) {
425 // Non-instruction user will never escape.
426 Instruction *UI = dyn_cast<Instruction>(U);
427 if (!UI)
428 continue;
430 if (S.contains(UI))
431 continue;
433 EscapeUsers.push_back(UI);
436 // Exit if no escape uses were found.
437 if (EscapeUsers.empty())
438 return;
440 // Get or create an escape alloca for this instruction.
441 auto *ScalarAddr = getOrCreateScalarAlloca(Inst);
443 // Remember that this instruction has escape uses and the escape alloca.
444 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
447 void BlockGenerator::generateScalarLoads(
448 ScopStmt &Stmt, LoopToScevMapT &LTS, ValueMapT &BBMap,
449 __isl_keep isl_id_to_ast_expr *NewAccesses) {
450 for (MemoryAccess *MA : Stmt) {
451 if (MA->isOriginalArrayKind() || MA->isWrite())
452 continue;
454 #ifndef NDEBUG
455 auto *StmtDom = Stmt.getDomain();
456 auto *AccDom = isl_map_domain(MA->getAccessRelation());
457 assert(isl_set_is_subset(StmtDom, AccDom) &&
458 "Scalar must be loaded in all statement instances");
459 isl_set_free(StmtDom);
460 isl_set_free(AccDom);
461 #endif
463 auto *Address =
464 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses);
465 assert((!isa<Instruction>(Address) ||
466 DT.dominates(cast<Instruction>(Address)->getParent(),
467 Builder.GetInsertBlock())) &&
468 "Domination violation");
469 BBMap[MA->getBaseAddr()] =
470 Builder.CreateLoad(Address, Address->getName() + ".reload");
474 void BlockGenerator::generateScalarStores(
475 ScopStmt &Stmt, LoopToScevMapT &LTS, ValueMapT &BBMap,
476 __isl_keep isl_id_to_ast_expr *NewAccesses) {
477 Loop *L = LI.getLoopFor(Stmt.getBasicBlock());
479 assert(Stmt.isBlockStmt() && "Region statements need to use the "
480 "generateScalarStores() function in the "
481 "RegionGenerator");
483 for (MemoryAccess *MA : Stmt) {
484 if (MA->isOriginalArrayKind() || MA->isRead())
485 continue;
487 #ifndef NDEBUG
488 auto *StmtDom = Stmt.getDomain();
489 auto *AccDom = isl_map_domain(MA->getAccessRelation());
490 assert(isl_set_is_subset(StmtDom, AccDom) &&
491 "Scalar must be stored in all statement instances");
492 isl_set_free(StmtDom);
493 isl_set_free(AccDom);
494 #endif
496 Value *Val = MA->getAccessValue();
497 if (MA->isAnyPHIKind()) {
498 assert(MA->getIncoming().size() >= 1 &&
499 "Block statements have exactly one exiting block, or multiple but "
500 "with same incoming block and value");
501 assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(),
502 [&](std::pair<BasicBlock *, Value *> p) -> bool {
503 return p.first == Stmt.getBasicBlock();
504 }) &&
505 "Incoming block must be statement's block");
506 Val = MA->getIncoming()[0].second;
508 auto Address =
509 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses);
511 Val = getNewValue(Stmt, Val, BBMap, LTS, L);
512 assert((!isa<Instruction>(Val) ||
513 DT.dominates(cast<Instruction>(Val)->getParent(),
514 Builder.GetInsertBlock())) &&
515 "Domination violation");
516 assert((!isa<Instruction>(Address) ||
517 DT.dominates(cast<Instruction>(Address)->getParent(),
518 Builder.GetInsertBlock())) &&
519 "Domination violation");
520 Builder.CreateStore(Val, Address);
524 void BlockGenerator::createScalarInitialization(Scop &S) {
525 BasicBlock *ExitBB = S.getExit();
526 BasicBlock *PreEntryBB = S.getEnteringBlock();
528 Builder.SetInsertPoint(&*StartBlock->begin());
530 for (auto &Array : S.arrays()) {
531 if (Array->getNumberOfDimensions() != 0)
532 continue;
533 if (Array->isPHIKind()) {
534 // For PHI nodes, the only values we need to store are the ones that
535 // reach the PHI node from outside the region. In general there should
536 // only be one such incoming edge and this edge should enter through
537 // 'PreEntryBB'.
538 auto PHI = cast<PHINode>(Array->getBasePtr());
540 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
541 if (!S.contains(*BI) && *BI != PreEntryBB)
542 llvm_unreachable("Incoming edges from outside the scop should always "
543 "come from PreEntryBB");
545 int Idx = PHI->getBasicBlockIndex(PreEntryBB);
546 if (Idx < 0)
547 continue;
549 Value *ScalarValue = PHI->getIncomingValue(Idx);
551 Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI));
552 continue;
555 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
557 if (Inst && S.contains(Inst))
558 continue;
560 // PHI nodes that are not marked as such in their SAI object are either exit
561 // PHI nodes we model as common scalars but without initialization, or
562 // incoming phi nodes that need to be initialized. Check if the first is the
563 // case for Inst and do not create and initialize memory if so.
564 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst))
565 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0)
566 continue;
568 Builder.CreateStore(Array->getBasePtr(),
569 getOrCreateScalarAlloca(Array->getBasePtr()));
573 void BlockGenerator::createScalarFinalization(Scop &S) {
574 // The exit block of the __unoptimized__ region.
575 BasicBlock *ExitBB = S.getExitingBlock();
576 // The merge block __just after__ the region and the optimized region.
577 BasicBlock *MergeBB = S.getExit();
579 // The exit block of the __optimized__ region.
580 BasicBlock *OptExitBB = *(pred_begin(MergeBB));
581 if (OptExitBB == ExitBB)
582 OptExitBB = *(++pred_begin(MergeBB));
584 Builder.SetInsertPoint(OptExitBB->getTerminator());
585 for (const auto &EscapeMapping : EscapeMap) {
586 // Extract the escaping instruction and the escaping users as well as the
587 // alloca the instruction was demoted to.
588 Instruction *EscapeInst = EscapeMapping.first;
589 const auto &EscapeMappingValue = EscapeMapping.second;
590 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
591 Value *ScalarAddr = EscapeMappingValue.first;
593 // Reload the demoted instruction in the optimized version of the SCoP.
594 Value *EscapeInstReload =
595 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload");
596 EscapeInstReload =
597 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());
599 // Create the merge PHI that merges the optimized and unoptimized version.
600 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
601 EscapeInst->getName() + ".merge");
602 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
604 // Add the respective values to the merge PHI.
605 MergePHI->addIncoming(EscapeInstReload, OptExitBB);
606 MergePHI->addIncoming(EscapeInst, ExitBB);
608 // The information of scalar evolution about the escaping instruction needs
609 // to be revoked so the new merged instruction will be used.
610 if (SE.isSCEVable(EscapeInst->getType()))
611 SE.forgetValue(EscapeInst);
613 // Replace all uses of the demoted instruction with the merge PHI.
614 for (Instruction *EUser : EscapeUsers)
615 EUser->replaceUsesOfWith(EscapeInst, MergePHI);
619 void BlockGenerator::findOutsideUsers(Scop &S) {
620 for (auto &Array : S.arrays()) {
622 if (Array->getNumberOfDimensions() != 0)
623 continue;
625 if (Array->isPHIKind())
626 continue;
628 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
630 if (!Inst)
631 continue;
633 // Scop invariant hoisting moves some of the base pointers out of the scop.
634 // We can ignore these, as the invariant load hoisting already registers the
635 // relevant outside users.
636 if (!S.contains(Inst))
637 continue;
639 handleOutsideUsers(S, Inst);
643 void BlockGenerator::createExitPHINodeMerges(Scop &S) {
644 if (S.hasSingleExitEdge())
645 return;
647 auto *ExitBB = S.getExitingBlock();
648 auto *MergeBB = S.getExit();
649 auto *AfterMergeBB = MergeBB->getSingleSuccessor();
650 BasicBlock *OptExitBB = *(pred_begin(MergeBB));
651 if (OptExitBB == ExitBB)
652 OptExitBB = *(++pred_begin(MergeBB));
654 Builder.SetInsertPoint(OptExitBB->getTerminator());
656 for (auto &SAI : S.arrays()) {
657 auto *Val = SAI->getBasePtr();
659 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either
660 // the original PHI's value or the reloaded incoming values from the
661 // generated code. An llvm::Value is merged between the original code's
662 // value or the generated one.
663 if (!SAI->isExitPHIKind())
664 continue;
666 PHINode *PHI = dyn_cast<PHINode>(Val);
667 if (!PHI)
668 continue;
670 if (PHI->getParent() != AfterMergeBB)
671 continue;
673 std::string Name = PHI->getName();
674 Value *ScalarAddr = getOrCreateScalarAlloca(PHI);
675 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload");
676 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType());
677 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB);
678 assert((!isa<Instruction>(OriginalValue) ||
679 cast<Instruction>(OriginalValue)->getParent() != MergeBB) &&
680 "Original value must no be one we just generated.");
681 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge");
682 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
683 MergePHI->addIncoming(Reload, OptExitBB);
684 MergePHI->addIncoming(OriginalValue, ExitBB);
685 int Idx = PHI->getBasicBlockIndex(MergeBB);
686 PHI->setIncomingValue(Idx, MergePHI);
690 void BlockGenerator::invalidateScalarEvolution(Scop &S) {
691 for (auto &Stmt : S)
692 if (Stmt.isCopyStmt())
693 continue;
694 else if (Stmt.isBlockStmt())
695 for (auto &Inst : *Stmt.getBasicBlock())
696 SE.forgetValue(&Inst);
697 else if (Stmt.isRegionStmt())
698 for (auto *BB : Stmt.getRegion()->blocks())
699 for (auto &Inst : *BB)
700 SE.forgetValue(&Inst);
701 else
702 llvm_unreachable("Unexpected statement type found");
705 void BlockGenerator::finalizeSCoP(Scop &S) {
706 findOutsideUsers(S);
707 createScalarInitialization(S);
708 createExitPHINodeMerges(S);
709 createScalarFinalization(S);
710 invalidateScalarEvolution(S);
713 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
714 std::vector<LoopToScevMapT> &VLTS,
715 isl_map *Schedule)
716 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
717 assert(Schedule && "No statement domain provided");
720 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old,
721 ValueMapT &VectorMap,
722 VectorValueMapT &ScalarMaps,
723 Loop *L) {
724 if (Value *NewValue = VectorMap.lookup(Old))
725 return NewValue;
727 int Width = getVectorWidth();
729 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
731 for (int Lane = 0; Lane < Width; Lane++)
732 Vector = Builder.CreateInsertElement(
733 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
734 Builder.getInt32(Lane));
736 VectorMap[Old] = Vector;
738 return Vector;
741 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
742 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
743 assert(PointerTy && "PointerType expected");
745 Type *ScalarType = PointerTy->getElementType();
746 VectorType *VectorType = VectorType::get(ScalarType, Width);
748 return PointerType::getUnqual(VectorType);
751 Value *VectorBlockGenerator::generateStrideOneLoad(
752 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
753 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
754 unsigned VectorWidth = getVectorWidth();
755 auto *Pointer = Load->getPointerOperand();
756 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
757 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
759 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset],
760 VLTS[Offset], NewAccesses);
761 Value *VectorPtr =
762 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
763 LoadInst *VecLoad =
764 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
765 if (!Aligned)
766 VecLoad->setAlignment(8);
768 if (NegativeStride) {
769 SmallVector<Constant *, 16> Indices;
770 for (int i = VectorWidth - 1; i >= 0; i--)
771 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
772 Constant *SV = llvm::ConstantVector::get(Indices);
773 Value *RevVecLoad = Builder.CreateShuffleVector(
774 VecLoad, VecLoad, SV, Load->getName() + "_reverse");
775 return RevVecLoad;
778 return VecLoad;
781 Value *VectorBlockGenerator::generateStrideZeroLoad(
782 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap,
783 __isl_keep isl_id_to_ast_expr *NewAccesses) {
784 auto *Pointer = Load->getPointerOperand();
785 Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
786 Value *NewPointer =
787 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses);
788 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
789 Load->getName() + "_p_vec_p");
790 LoadInst *ScalarLoad =
791 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
793 if (!Aligned)
794 ScalarLoad->setAlignment(8);
796 Constant *SplatVector = Constant::getNullValue(
797 VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
799 Value *VectorLoad = Builder.CreateShuffleVector(
800 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
801 return VectorLoad;
804 Value *VectorBlockGenerator::generateUnknownStrideLoad(
805 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
806 __isl_keep isl_id_to_ast_expr *NewAccesses) {
807 int VectorWidth = getVectorWidth();
808 auto *Pointer = Load->getPointerOperand();
809 VectorType *VectorType = VectorType::get(
810 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
812 Value *Vector = UndefValue::get(VectorType);
814 for (int i = 0; i < VectorWidth; i++) {
815 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i],
816 VLTS[i], NewAccesses);
817 Value *ScalarLoad =
818 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
819 Vector = Builder.CreateInsertElement(
820 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
823 return Vector;
826 void VectorBlockGenerator::generateLoad(
827 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
828 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
829 if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
830 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
831 Load->getName() + "_p");
832 return;
835 if (!VectorType::isValidElementType(Load->getType())) {
836 for (int i = 0; i < getVectorWidth(); i++)
837 ScalarMaps[i][Load] =
838 generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
839 return;
842 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load);
844 // Make sure we have scalar values available to access the pointer to
845 // the data location.
846 extractScalarValues(Load, VectorMap, ScalarMaps);
848 Value *NewLoad;
849 if (Access.isStrideZero(isl_map_copy(Schedule)))
850 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
851 else if (Access.isStrideOne(isl_map_copy(Schedule)))
852 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
853 else if (Access.isStrideX(isl_map_copy(Schedule), -1))
854 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
855 else
856 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
858 VectorMap[Load] = NewLoad;
861 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
862 ValueMapT &VectorMap,
863 VectorValueMapT &ScalarMaps) {
864 int VectorWidth = getVectorWidth();
865 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
866 ScalarMaps, getLoopForStmt(Stmt));
868 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
870 const CastInst *Cast = dyn_cast<CastInst>(Inst);
871 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
872 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
875 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
876 ValueMapT &VectorMap,
877 VectorValueMapT &ScalarMaps) {
878 Loop *L = getLoopForStmt(Stmt);
879 Value *OpZero = Inst->getOperand(0);
880 Value *OpOne = Inst->getOperand(1);
882 Value *NewOpZero, *NewOpOne;
883 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
884 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
886 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
887 Inst->getName() + "p_vec");
888 VectorMap[Inst] = NewInst;
891 void VectorBlockGenerator::copyStore(
892 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
893 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
894 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store);
896 auto *Pointer = Store->getPointerOperand();
897 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
898 ScalarMaps, getLoopForStmt(Stmt));
900 // Make sure we have scalar values available to access the pointer to
901 // the data location.
902 extractScalarValues(Store, VectorMap, ScalarMaps);
904 if (Access.isStrideOne(isl_map_copy(Schedule))) {
905 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
906 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0],
907 VLTS[0], NewAccesses);
909 Value *VectorPtr =
910 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
911 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
913 if (!Aligned)
914 Store->setAlignment(8);
915 } else {
916 for (unsigned i = 0; i < ScalarMaps.size(); i++) {
917 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
918 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i],
919 VLTS[i], NewAccesses);
920 Builder.CreateStore(Scalar, NewPointer);
925 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
926 ValueMapT &VectorMap) {
927 for (Value *Operand : Inst->operands())
928 if (VectorMap.count(Operand))
929 return true;
930 return false;
933 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
934 ValueMapT &VectorMap,
935 VectorValueMapT &ScalarMaps) {
936 bool HasVectorOperand = false;
937 int VectorWidth = getVectorWidth();
939 for (Value *Operand : Inst->operands()) {
940 ValueMapT::iterator VecOp = VectorMap.find(Operand);
942 if (VecOp == VectorMap.end())
943 continue;
945 HasVectorOperand = true;
946 Value *NewVector = VecOp->second;
948 for (int i = 0; i < VectorWidth; ++i) {
949 ValueMapT &SM = ScalarMaps[i];
951 // If there is one scalar extracted, all scalar elements should have
952 // already been extracted by the code here. So no need to check for the
953 // existence of all of them.
954 if (SM.count(Operand))
955 break;
957 SM[Operand] =
958 Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
962 return HasVectorOperand;
965 void VectorBlockGenerator::copyInstScalarized(
966 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
967 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
968 bool HasVectorOperand;
969 int VectorWidth = getVectorWidth();
971 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
973 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
974 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
975 VLTS[VectorLane], NewAccesses);
977 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
978 return;
980 // Make the result available as vector value.
981 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
982 Value *Vector = UndefValue::get(VectorType);
984 for (int i = 0; i < VectorWidth; i++)
985 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
986 Builder.getInt32(i));
988 VectorMap[Inst] = Vector;
991 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
993 void VectorBlockGenerator::copyInstruction(
994 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
995 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
996 // Terminator instructions control the control flow. They are explicitly
997 // expressed in the clast and do not need to be copied.
998 if (Inst->isTerminator())
999 return;
1001 if (canSyntheziseInStmt(Stmt, Inst))
1002 return;
1004 if (auto *Load = dyn_cast<LoadInst>(Inst)) {
1005 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
1006 return;
1009 if (hasVectorOperands(Inst, VectorMap)) {
1010 if (auto *Store = dyn_cast<StoreInst>(Inst)) {
1011 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
1012 return;
1015 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) {
1016 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
1017 return;
1020 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) {
1021 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
1022 return;
1025 // Falltrough: We generate scalar instructions, if we don't know how to
1026 // generate vector code.
1029 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
1032 void VectorBlockGenerator::generateScalarVectorLoads(
1033 ScopStmt &Stmt, ValueMapT &VectorBlockMap) {
1034 for (MemoryAccess *MA : Stmt) {
1035 if (MA->isArrayKind() || MA->isWrite())
1036 continue;
1038 auto *Address = getOrCreateAlloca(*MA);
1039 Type *VectorPtrType = getVectorPtrTy(Address, 1);
1040 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType,
1041 Address->getName() + "_p_vec_p");
1042 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload");
1043 Constant *SplatVector = Constant::getNullValue(
1044 VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
1046 Value *VectorVal = Builder.CreateShuffleVector(
1047 Val, Val, SplatVector, Address->getName() + "_p_splat");
1048 VectorBlockMap[MA->getBaseAddr()] = VectorVal;
1052 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) {
1053 for (MemoryAccess *MA : Stmt) {
1054 if (MA->isArrayKind() || MA->isRead())
1055 continue;
1057 llvm_unreachable("Scalar stores not expected in vector loop");
1061 void VectorBlockGenerator::copyStmt(
1062 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
1063 assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by "
1064 "the vector block generator");
1066 BasicBlock *BB = Stmt.getBasicBlock();
1067 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
1068 &*Builder.GetInsertPoint(), &DT, &LI);
1069 CopyBB->setName("polly.stmt." + BB->getName());
1070 Builder.SetInsertPoint(&CopyBB->front());
1072 // Create two maps that store the mapping from the original instructions of
1073 // the old basic block to their copies in the new basic block. Those maps
1074 // are basic block local.
1076 // As vector code generation is supported there is one map for scalar values
1077 // and one for vector values.
1079 // In case we just do scalar code generation, the vectorMap is not used and
1080 // the scalarMap has just one dimension, which contains the mapping.
1082 // In case vector code generation is done, an instruction may either appear
1083 // in the vector map once (as it is calculating >vectorwidth< values at a
1084 // time. Or (if the values are calculated using scalar operations), it
1085 // appears once in every dimension of the scalarMap.
1086 VectorValueMapT ScalarBlockMap(getVectorWidth());
1087 ValueMapT VectorBlockMap;
1089 generateScalarVectorLoads(Stmt, VectorBlockMap);
1091 for (Instruction &Inst : *BB)
1092 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
1094 verifyNoScalarStores(Stmt);
1097 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
1098 BasicBlock *BBCopy) {
1100 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
1101 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom);
1103 if (BBCopyIDom)
1104 DT.changeImmediateDominator(BBCopy, BBCopyIDom);
1106 return BBCopyIDom;
1109 // This is to determine whether an llvm::Value (defined in @p BB) is usable when
1110 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock())
1111 // does not work in cases where the exit block has edges from outside the
1112 // region. In that case the llvm::Value would never be usable in in the exit
1113 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy')
1114 // for the subregion's exiting edges only. We need to determine whether an
1115 // llvm::Value is usable in there. We do this by checking whether it dominates
1116 // all exiting blocks individually.
1117 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R,
1118 BasicBlock *BB) {
1119 for (auto ExitingBB : predecessors(R->getExit())) {
1120 // Check for non-subregion incoming edges.
1121 if (!R->contains(ExitingBB))
1122 continue;
1124 if (!DT.dominates(BB, ExitingBB))
1125 return false;
1128 return true;
1131 // Find the direct dominator of the subregion's exit block if the subregion was
1132 // simplified.
1133 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) {
1134 BasicBlock *Common = nullptr;
1135 for (auto ExitingBB : predecessors(R->getExit())) {
1136 // Check for non-subregion incoming edges.
1137 if (!R->contains(ExitingBB))
1138 continue;
1140 // First exiting edge.
1141 if (!Common) {
1142 Common = ExitingBB;
1143 continue;
1146 Common = DT.findNearestCommonDominator(Common, ExitingBB);
1149 assert(Common && R->contains(Common));
1150 return Common;
1153 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
1154 isl_id_to_ast_expr *IdToAstExp) {
1155 assert(Stmt.isRegionStmt() &&
1156 "Only region statements can be copied by the region generator");
1158 // Forget all old mappings.
1159 BlockMap.clear();
1160 RegionMaps.clear();
1161 IncompletePHINodeMap.clear();
1163 // Collection of all values related to this subregion.
1164 ValueMapT ValueMap;
1166 // The region represented by the statement.
1167 Region *R = Stmt.getRegion();
1169 // Create a dedicated entry for the region where we can reload all demoted
1170 // inputs.
1171 BasicBlock *EntryBB = R->getEntry();
1172 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(),
1173 &*Builder.GetInsertPoint(), &DT, &LI);
1174 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
1175 Builder.SetInsertPoint(&EntryBBCopy->front());
1177 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy];
1178 generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp);
1180 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
1181 if (!R->contains(*PI))
1182 BlockMap[*PI] = EntryBBCopy;
1184 // Iterate over all blocks in the region in a breadth-first search.
1185 std::deque<BasicBlock *> Blocks;
1186 SmallSetVector<BasicBlock *, 8> SeenBlocks;
1187 Blocks.push_back(EntryBB);
1188 SeenBlocks.insert(EntryBB);
1190 while (!Blocks.empty()) {
1191 BasicBlock *BB = Blocks.front();
1192 Blocks.pop_front();
1194 // First split the block and update dominance information.
1195 BasicBlock *BBCopy = splitBB(BB);
1196 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
1198 // Get the mapping for this block and initialize it with either the scalar
1199 // loads from the generated entering block (which dominates all blocks of
1200 // this subregion) or the maps of the immediate dominator, if part of the
1201 // subregion. The latter necessarily includes the former.
1202 ValueMapT *InitBBMap;
1203 if (BBCopyIDom) {
1204 assert(RegionMaps.count(BBCopyIDom));
1205 InitBBMap = &RegionMaps[BBCopyIDom];
1206 } else
1207 InitBBMap = &EntryBBMap;
1208 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap));
1209 ValueMapT &RegionMap = Inserted.first->second;
1211 // Copy the block with the BlockGenerator.
1212 Builder.SetInsertPoint(&BBCopy->front());
1213 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
1215 // In order to remap PHI nodes we store also basic block mappings.
1216 BlockMap[BB] = BBCopy;
1218 // Add values to incomplete PHI nodes waiting for this block to be copied.
1219 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
1220 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
1221 IncompletePHINodeMap[BB].clear();
1223 // And continue with new successors inside the region.
1224 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
1225 if (R->contains(*SI) && SeenBlocks.insert(*SI))
1226 Blocks.push_back(*SI);
1228 // Remember value in case it is visible after this subregion.
1229 if (isDominatingSubregionExit(DT, R, BB))
1230 ValueMap.insert(RegionMap.begin(), RegionMap.end());
1233 // Now create a new dedicated region exit block and add it to the region map.
1234 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(),
1235 &*Builder.GetInsertPoint(), &DT, &LI);
1236 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
1237 BlockMap[R->getExit()] = ExitBBCopy;
1239 BasicBlock *ExitDomBBCopy = BlockMap.lookup(findExitDominator(DT, R));
1240 assert(ExitDomBBCopy && "Common exit dominator must be within region; at "
1241 "least the entry node must match");
1242 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy);
1244 // As the block generator doesn't handle control flow we need to add the
1245 // region control flow by hand after all blocks have been copied.
1246 for (BasicBlock *BB : SeenBlocks) {
1248 BasicBlock *BBCopy = BlockMap[BB];
1249 TerminatorInst *TI = BB->getTerminator();
1250 if (isa<UnreachableInst>(TI)) {
1251 while (!BBCopy->empty())
1252 BBCopy->begin()->eraseFromParent();
1253 new UnreachableInst(BBCopy->getContext(), BBCopy);
1254 continue;
1257 Instruction *BICopy = BBCopy->getTerminator();
1259 ValueMapT &RegionMap = RegionMaps[BBCopy];
1260 RegionMap.insert(BlockMap.begin(), BlockMap.end());
1262 Builder.SetInsertPoint(BICopy);
1263 copyInstScalar(Stmt, TI, RegionMap, LTS);
1264 BICopy->eraseFromParent();
1267 // Add counting PHI nodes to all loops in the region that can be used as
1268 // replacement for SCEVs refering to the old loop.
1269 for (BasicBlock *BB : SeenBlocks) {
1270 Loop *L = LI.getLoopFor(BB);
1271 if (L == nullptr || L->getHeader() != BB || !R->contains(L))
1272 continue;
1274 BasicBlock *BBCopy = BlockMap[BB];
1275 Value *NullVal = Builder.getInt32(0);
1276 PHINode *LoopPHI =
1277 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
1278 Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
1279 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
1280 LoopPHI->insertBefore(&BBCopy->front());
1281 LoopPHIInc->insertBefore(BBCopy->getTerminator());
1283 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
1284 if (!R->contains(PredBB))
1285 continue;
1286 if (L->contains(PredBB))
1287 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]);
1288 else
1289 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]);
1292 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
1293 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
1294 LoopPHI->addIncoming(NullVal, PredBBCopy);
1296 LTS[L] = SE.getUnknown(LoopPHI);
1299 // Continue generating code in the exit block.
1300 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt());
1302 // Write values visible to other statements.
1303 generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp);
1304 BlockMap.clear();
1305 RegionMaps.clear();
1306 IncompletePHINodeMap.clear();
1309 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT &LTS,
1310 ValueMapT &BBMap, Loop *L) {
1311 ScopStmt *Stmt = MA->getStatement();
1312 Region *SubR = Stmt->getRegion();
1313 auto Incoming = MA->getIncoming();
1315 PollyIRBuilder::InsertPointGuard IPGuard(Builder);
1316 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction());
1317 BasicBlock *NewSubregionExit = Builder.GetInsertBlock();
1319 // This can happen if the subregion is simplified after the ScopStmts
1320 // have been created; simplification happens as part of CodeGeneration.
1321 if (OrigPHI->getParent() != SubR->getExit()) {
1322 BasicBlock *FormerExit = SubR->getExitingBlock();
1323 if (FormerExit)
1324 NewSubregionExit = BlockMap.lookup(FormerExit);
1327 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(),
1328 "polly." + OrigPHI->getName(),
1329 NewSubregionExit->getFirstNonPHI());
1331 // Add the incoming values to the PHI.
1332 for (auto &Pair : Incoming) {
1333 BasicBlock *OrigIncomingBlock = Pair.first;
1334 BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock);
1335 Builder.SetInsertPoint(NewIncomingBlock->getTerminator());
1336 assert(RegionMaps.count(NewIncomingBlock));
1337 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock];
1339 Value *OrigIncomingValue = Pair.second;
1340 Value *NewIncomingValue =
1341 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L);
1342 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock);
1345 return NewPHI;
1348 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT &LTS,
1349 ValueMapT &BBMap) {
1350 ScopStmt *Stmt = MA->getStatement();
1352 // TODO: Add some test cases that ensure this is really the right choice.
1353 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit());
1355 if (MA->isAnyPHIKind()) {
1356 auto Incoming = MA->getIncoming();
1357 assert(!Incoming.empty() &&
1358 "PHI WRITEs must have originate from at least one incoming block");
1360 // If there is only one incoming value, we do not need to create a PHI.
1361 if (Incoming.size() == 1) {
1362 Value *OldVal = Incoming[0].second;
1363 return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1366 return buildExitPHI(MA, LTS, BBMap, L);
1369 // MK_Value accesses leaving the subregion must dominate the exit block; just
1370 // pass the copied value
1371 Value *OldVal = MA->getAccessValue();
1372 return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1375 void RegionGenerator::generateScalarStores(
1376 ScopStmt &Stmt, LoopToScevMapT &LTS, ValueMapT &BBMap,
1377 __isl_keep isl_id_to_ast_expr *NewAccesses) {
1378 assert(Stmt.getRegion() &&
1379 "Block statements need to use the generateScalarStores() "
1380 "function in the BlockGenerator");
1382 for (MemoryAccess *MA : Stmt) {
1383 if (MA->isOriginalArrayKind() || MA->isRead())
1384 continue;
1386 Value *NewVal = getExitScalar(MA, LTS, BBMap);
1387 Value *Address =
1388 getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses);
1389 assert((!isa<Instruction>(NewVal) ||
1390 DT.dominates(cast<Instruction>(NewVal)->getParent(),
1391 Builder.GetInsertBlock())) &&
1392 "Domination violation");
1393 assert((!isa<Instruction>(Address) ||
1394 DT.dominates(cast<Instruction>(Address)->getParent(),
1395 Builder.GetInsertBlock())) &&
1396 "Domination violation");
1397 Builder.CreateStore(NewVal, Address);
1401 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI,
1402 PHINode *PHICopy, BasicBlock *IncomingBB,
1403 LoopToScevMapT &LTS) {
1404 Region *StmtR = Stmt.getRegion();
1406 // If the incoming block was not yet copied mark this PHI as incomplete.
1407 // Once the block will be copied the incoming value will be added.
1408 BasicBlock *BBCopy = BlockMap[IncomingBB];
1409 if (!BBCopy) {
1410 assert(StmtR->contains(IncomingBB) &&
1411 "Bad incoming block for PHI in non-affine region");
1412 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
1413 return;
1416 Value *OpCopy = nullptr;
1417 if (StmtR->contains(IncomingBB)) {
1418 assert(RegionMaps.count(BBCopy) &&
1419 "Incoming PHI block did not have a BBMap");
1420 ValueMapT &BBCopyMap = RegionMaps[BBCopy];
1422 Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
1424 // If the current insert block is different from the PHIs incoming block
1425 // change it, otherwise do not.
1426 auto IP = Builder.GetInsertPoint();
1427 if (IP->getParent() != BBCopy)
1428 Builder.SetInsertPoint(BBCopy->getTerminator());
1429 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt));
1430 if (IP->getParent() != BBCopy)
1431 Builder.SetInsertPoint(&*IP);
1432 } else {
1434 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0)
1435 return;
1437 Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI));
1438 OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload",
1439 BlockMap[IncomingBB]->getTerminator());
1442 assert(OpCopy && "Incoming PHI value was not copied properly");
1443 assert(BBCopy && "Incoming PHI block was not copied properly");
1444 PHICopy->addIncoming(OpCopy, BBCopy);
1447 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
1448 ValueMapT &BBMap,
1449 LoopToScevMapT &LTS) {
1450 unsigned NumIncoming = PHI->getNumIncomingValues();
1451 PHINode *PHICopy =
1452 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
1453 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
1454 BBMap[PHI] = PHICopy;
1456 for (unsigned u = 0; u < NumIncoming; u++)
1457 addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS);