Fix Polly
[polly-mirror.git] / lib / Transform / ScheduleOptimizer.cpp
blobd2d8ca37472ebf349799914aaf5ea57cae474928
1 //===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass generates an entirely new schedule tree from the data dependences
10 // and iteration domains. The new schedule tree is computed in two steps:
12 // 1) The isl scheduling optimizer is run
14 // The isl scheduling optimizer creates a new schedule tree that maximizes
15 // parallelism and tileability and minimizes data-dependence distances. The
16 // algorithm used is a modified version of the ``Pluto'' algorithm:
18 // U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
19 // A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
20 // In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
21 // Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
23 // 2) A set of post-scheduling transformations is applied on the schedule tree.
25 // These optimizations include:
27 // - Tiling of the innermost tilable bands
28 // - Prevectorization - The choice of a possible outer loop that is strip-mined
29 // to the innermost level to enable inner-loop
30 // vectorization.
31 // - Some optimizations for spatial locality are also planned.
33 // For a detailed description of the schedule tree itself please see section 6
34 // of:
36 // Polyhedral AST generation is more than scanning polyhedra
37 // Tobias Grosser, Sven Verdoolaege, Albert Cohen
38 // ACM Transactions on Programming Languages and Systems (TOPLAS),
39 // 37(4), July 2015
40 // http://www.grosser.es/#pub-polyhedral-AST-generation
42 // This publication also contains a detailed discussion of the different options
43 // for polyhedral loop unrolling, full/partial tile separation and other uses
44 // of the schedule tree.
46 //===----------------------------------------------------------------------===//
48 #include "polly/ScheduleOptimizer.h"
49 #include "polly/CodeGen/CodeGeneration.h"
50 #include "polly/DependenceInfo.h"
51 #include "polly/LinkAllPasses.h"
52 #include "polly/Options.h"
53 #include "polly/ScheduleTreeTransform.h"
54 #include "polly/ScopInfo.h"
55 #include "polly/ScopPass.h"
56 #include "polly/Simplify.h"
57 #include "polly/Support/ISLOStream.h"
58 #include "llvm/ADT/Statistic.h"
59 #include "llvm/Analysis/TargetTransformInfo.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "isl/ctx.h"
65 #include "isl/options.h"
66 #include "isl/printer.h"
67 #include "isl/schedule.h"
68 #include "isl/schedule_node.h"
69 #include "isl/union_map.h"
70 #include "isl/union_set.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cmath>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <string>
77 #include <vector>
79 using namespace llvm;
80 using namespace polly;
82 #define DEBUG_TYPE "polly-opt-isl"
84 static cl::opt<std::string>
85 OptimizeDeps("polly-opt-optimize-only",
86 cl::desc("Only a certain kind of dependences (all/raw)"),
87 cl::Hidden, cl::init("all"), cl::ZeroOrMore,
88 cl::cat(PollyCategory));
90 static cl::opt<std::string>
91 SimplifyDeps("polly-opt-simplify-deps",
92 cl::desc("Dependences should be simplified (yes/no)"),
93 cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
94 cl::cat(PollyCategory));
96 static cl::opt<int> MaxConstantTerm(
97 "polly-opt-max-constant-term",
98 cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
99 cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
101 static cl::opt<int> MaxCoefficient(
102 "polly-opt-max-coefficient",
103 cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
104 cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
106 static cl::opt<std::string> FusionStrategy(
107 "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
108 cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
110 static cl::opt<std::string>
111 MaximizeBandDepth("polly-opt-maximize-bands",
112 cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
113 cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
115 static cl::opt<std::string> OuterCoincidence(
116 "polly-opt-outer-coincidence",
117 cl::desc("Try to construct schedules where the outer member of each band "
118 "satisfies the coincidence constraints (yes/no)"),
119 cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));
121 static cl::opt<int> PrevectorWidth(
122 "polly-prevect-width",
123 cl::desc(
124 "The number of loop iterations to strip-mine for pre-vectorization"),
125 cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));
127 static cl::opt<bool> FirstLevelTiling("polly-tiling",
128 cl::desc("Enable loop tiling"),
129 cl::init(true), cl::ZeroOrMore,
130 cl::cat(PollyCategory));
132 static cl::opt<int> LatencyVectorFma(
133 "polly-target-latency-vector-fma",
134 cl::desc("The minimal number of cycles between issuing two "
135 "dependent consecutive vector fused multiply-add "
136 "instructions."),
137 cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
139 static cl::opt<int> ThroughputVectorFma(
140 "polly-target-throughput-vector-fma",
141 cl::desc("A throughput of the processor floating-point arithmetic units "
142 "expressed in the number of vector fused multiply-add "
143 "instructions per clock cycle."),
144 cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory));
146 // This option, along with --polly-target-2nd-cache-level-associativity,
147 // --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
148 // represent the parameters of the target cache, which do not have typical
149 // values that can be used by default. However, to apply the pattern matching
150 // optimizations, we use the values of the parameters of Intel Core i7-3820
151 // SandyBridge in case the parameters are not specified or not provided by the
152 // TargetTransformInfo.
153 static cl::opt<int> FirstCacheLevelAssociativity(
154 "polly-target-1st-cache-level-associativity",
155 cl::desc("The associativity of the first cache level."), cl::Hidden,
156 cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
158 static cl::opt<int> FirstCacheLevelDefaultAssociativity(
159 "polly-target-1st-cache-level-default-associativity",
160 cl::desc("The default associativity of the first cache level"
161 " (if not enough were provided by the TargetTransformInfo)."),
162 cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
164 static cl::opt<int> SecondCacheLevelAssociativity(
165 "polly-target-2nd-cache-level-associativity",
166 cl::desc("The associativity of the second cache level."), cl::Hidden,
167 cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
169 static cl::opt<int> SecondCacheLevelDefaultAssociativity(
170 "polly-target-2nd-cache-level-default-associativity",
171 cl::desc("The default associativity of the second cache level"
172 " (if not enough were provided by the TargetTransformInfo)."),
173 cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
175 static cl::opt<int> FirstCacheLevelSize(
176 "polly-target-1st-cache-level-size",
177 cl::desc("The size of the first cache level specified in bytes."),
178 cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
180 static cl::opt<int> FirstCacheLevelDefaultSize(
181 "polly-target-1st-cache-level-default-size",
182 cl::desc("The default size of the first cache level specified in bytes"
183 " (if not enough were provided by the TargetTransformInfo)."),
184 cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory));
186 static cl::opt<int> SecondCacheLevelSize(
187 "polly-target-2nd-cache-level-size",
188 cl::desc("The size of the second level specified in bytes."), cl::Hidden,
189 cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
191 static cl::opt<int> SecondCacheLevelDefaultSize(
192 "polly-target-2nd-cache-level-default-size",
193 cl::desc("The default size of the second cache level specified in bytes"
194 " (if not enough were provided by the TargetTransformInfo)."),
195 cl::Hidden, cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory));
197 static cl::opt<int> VectorRegisterBitwidth(
198 "polly-target-vector-register-bitwidth",
199 cl::desc("The size in bits of a vector register (if not set, this "
200 "information is taken from LLVM's target information."),
201 cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
203 static cl::opt<int> FirstLevelDefaultTileSize(
204 "polly-default-tile-size",
205 cl::desc("The default tile size (if not enough were provided by"
206 " --polly-tile-sizes)"),
207 cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
209 static cl::list<int>
210 FirstLevelTileSizes("polly-tile-sizes",
211 cl::desc("A tile size for each loop dimension, filled "
212 "with --polly-default-tile-size"),
213 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
214 cl::cat(PollyCategory));
216 static cl::opt<bool>
217 SecondLevelTiling("polly-2nd-level-tiling",
218 cl::desc("Enable a 2nd level loop of loop tiling"),
219 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
221 static cl::opt<int> SecondLevelDefaultTileSize(
222 "polly-2nd-level-default-tile-size",
223 cl::desc("The default 2nd-level tile size (if not enough were provided by"
224 " --polly-2nd-level-tile-sizes)"),
225 cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));
227 static cl::list<int>
228 SecondLevelTileSizes("polly-2nd-level-tile-sizes",
229 cl::desc("A tile size for each loop dimension, filled "
230 "with --polly-default-tile-size"),
231 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
232 cl::cat(PollyCategory));
234 static cl::opt<bool> RegisterTiling("polly-register-tiling",
235 cl::desc("Enable register tiling"),
236 cl::init(false), cl::ZeroOrMore,
237 cl::cat(PollyCategory));
239 static cl::opt<int> RegisterDefaultTileSize(
240 "polly-register-tiling-default-tile-size",
241 cl::desc("The default register tile size (if not enough were provided by"
242 " --polly-register-tile-sizes)"),
243 cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));
245 static cl::opt<int> PollyPatternMatchingNcQuotient(
246 "polly-pattern-matching-nc-quotient",
247 cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
248 "macro-kernel, by Nr, the parameter of the micro-kernel"),
249 cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory));
251 static cl::list<int>
252 RegisterTileSizes("polly-register-tile-sizes",
253 cl::desc("A tile size for each loop dimension, filled "
254 "with --polly-register-tile-size"),
255 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
256 cl::cat(PollyCategory));
258 static cl::opt<bool>
259 PMBasedOpts("polly-pattern-matching-based-opts",
260 cl::desc("Perform optimizations based on pattern matching"),
261 cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
263 static cl::opt<bool> OptimizedScops(
264 "polly-optimized-scops",
265 cl::desc("Polly - Dump polyhedral description of Scops optimized with "
266 "the isl scheduling optimizer and the set of post-scheduling "
267 "transformations is applied on the schedule tree"),
268 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
270 STATISTIC(ScopsProcessed, "Number of scops processed");
271 STATISTIC(ScopsRescheduled, "Number of scops rescheduled");
272 STATISTIC(ScopsOptimized, "Number of scops optimized");
274 STATISTIC(NumAffineLoopsOptimized, "Number of affine loops optimized");
275 STATISTIC(NumBoxedLoopsOptimized, "Number of boxed loops optimized");
277 #define THREE_STATISTICS(VARNAME, DESC) \
278 static Statistic VARNAME[3] = { \
279 {DEBUG_TYPE, #VARNAME "0", DESC " (original)"}, \
280 {DEBUG_TYPE, #VARNAME "1", DESC " (after scheduler)"}, \
281 {DEBUG_TYPE, #VARNAME "2", DESC " (after optimizer)"}}
283 THREE_STATISTICS(NumBands, "Number of bands");
284 THREE_STATISTICS(NumBandMembers, "Number of band members");
285 THREE_STATISTICS(NumCoincident, "Number of coincident band members");
286 THREE_STATISTICS(NumPermutable, "Number of permutable bands");
287 THREE_STATISTICS(NumFilters, "Number of filter nodes");
288 THREE_STATISTICS(NumExtension, "Number of extension nodes");
290 STATISTIC(FirstLevelTileOpts, "Number of first level tiling applied");
291 STATISTIC(SecondLevelTileOpts, "Number of second level tiling applied");
292 STATISTIC(RegisterTileOpts, "Number of register tiling applied");
293 STATISTIC(PrevectOpts, "Number of strip-mining for prevectorization applied");
294 STATISTIC(MatMulOpts,
295 "Number of matrix multiplication patterns detected and optimized");
297 /// Create an isl::union_set, which describes the isolate option based on
298 /// IsolateDomain.
300 /// @param IsolateDomain An isl::set whose @p OutDimsNum last dimensions should
301 /// belong to the current band node.
302 /// @param OutDimsNum A number of dimensions that should belong to
303 /// the current band node.
304 static isl::union_set getIsolateOptions(isl::set IsolateDomain,
305 unsigned OutDimsNum) {
306 unsigned Dims = IsolateDomain.dim(isl::dim::set);
307 assert(OutDimsNum <= Dims &&
308 "The isl::set IsolateDomain is used to describe the range of schedule "
309 "dimensions values, which should be isolated. Consequently, the "
310 "number of its dimensions should be greater than or equal to the "
311 "number of the schedule dimensions.");
312 isl::map IsolateRelation = isl::map::from_domain(IsolateDomain);
313 IsolateRelation = IsolateRelation.move_dims(isl::dim::out, 0, isl::dim::in,
314 Dims - OutDimsNum, OutDimsNum);
315 isl::set IsolateOption = IsolateRelation.wrap();
316 isl::id Id = isl::id::alloc(IsolateOption.get_ctx(), "isolate", nullptr);
317 IsolateOption = IsolateOption.set_tuple_id(Id);
318 return isl::union_set(IsolateOption);
321 namespace {
322 /// Create an isl::union_set, which describes the specified option for the
323 /// dimension of the current node.
325 /// @param Ctx An isl::ctx, which is used to create the isl::union_set.
326 /// @param Option The name of the option.
327 isl::union_set getDimOptions(isl::ctx Ctx, const char *Option) {
328 isl::space Space(Ctx, 0, 1);
329 auto DimOption = isl::set::universe(Space);
330 auto Id = isl::id::alloc(Ctx, Option, nullptr);
331 DimOption = DimOption.set_tuple_id(Id);
332 return isl::union_set(DimOption);
334 } // namespace
336 /// Create an isl::union_set, which describes the option of the form
337 /// [isolate[] -> unroll[x]].
339 /// @param Ctx An isl::ctx, which is used to create the isl::union_set.
340 static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) {
341 isl::space Space = isl::space(Ctx, 0, 0, 1);
342 isl::map UnrollIsolatedSetOption = isl::map::universe(Space);
343 isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr);
344 isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr);
345 UnrollIsolatedSetOption =
346 UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId);
347 UnrollIsolatedSetOption =
348 UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId);
349 return UnrollIsolatedSetOption.wrap();
352 /// Make the last dimension of Set to take values from 0 to VectorWidth - 1.
354 /// @param Set A set, which should be modified.
355 /// @param VectorWidth A parameter, which determines the constraint.
356 static isl::set addExtentConstraints(isl::set Set, int VectorWidth) {
357 unsigned Dims = Set.dim(isl::dim::set);
358 isl::space Space = Set.get_space();
359 isl::local_space LocalSpace = isl::local_space(Space);
360 isl::constraint ExtConstr = isl::constraint::alloc_inequality(LocalSpace);
361 ExtConstr = ExtConstr.set_constant_si(0);
362 ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, 1);
363 Set = Set.add_constraint(ExtConstr);
364 ExtConstr = isl::constraint::alloc_inequality(LocalSpace);
365 ExtConstr = ExtConstr.set_constant_si(VectorWidth - 1);
366 ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, -1);
367 return Set.add_constraint(ExtConstr);
370 isl::set getPartialTilePrefixes(isl::set ScheduleRange, int VectorWidth) {
371 unsigned Dims = ScheduleRange.dim(isl::dim::set);
372 isl::set LoopPrefixes =
373 ScheduleRange.drop_constraints_involving_dims(isl::dim::set, Dims - 1, 1);
374 auto ExtentPrefixes = addExtentConstraints(LoopPrefixes, VectorWidth);
375 isl::set BadPrefixes = ExtentPrefixes.subtract(ScheduleRange);
376 BadPrefixes = BadPrefixes.project_out(isl::dim::set, Dims - 1, 1);
377 LoopPrefixes = LoopPrefixes.project_out(isl::dim::set, Dims - 1, 1);
378 return LoopPrefixes.subtract(BadPrefixes);
381 isl::schedule_node
382 ScheduleTreeOptimizer::isolateFullPartialTiles(isl::schedule_node Node,
383 int VectorWidth) {
384 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
385 Node = Node.child(0).child(0);
386 isl::union_map SchedRelUMap = Node.get_prefix_schedule_relation();
387 isl::map ScheduleRelation = isl::map::from_union_map(SchedRelUMap);
388 isl::set ScheduleRange = ScheduleRelation.range();
389 isl::set IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
390 auto AtomicOption = getDimOptions(IsolateDomain.get_ctx(), "atomic");
391 isl::union_set IsolateOption = getIsolateOptions(IsolateDomain, 1);
392 Node = Node.parent().parent();
393 isl::union_set Options = IsolateOption.unite(AtomicOption);
394 Node = Node.band_set_ast_build_options(Options);
395 return Node;
398 isl::schedule_node ScheduleTreeOptimizer::prevectSchedBand(
399 isl::schedule_node Node, unsigned DimToVectorize, int VectorWidth) {
400 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
402 auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
403 auto ScheduleDimensions = Space.dim(isl::dim::set);
404 assert(DimToVectorize < ScheduleDimensions);
406 if (DimToVectorize > 0) {
407 Node = isl::manage(
408 isl_schedule_node_band_split(Node.release(), DimToVectorize));
409 Node = Node.child(0);
411 if (DimToVectorize < ScheduleDimensions - 1)
412 Node = isl::manage(isl_schedule_node_band_split(Node.release(), 1));
413 Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
414 auto Sizes = isl::multi_val::zero(Space);
415 Sizes = Sizes.set_val(0, isl::val(Node.get_ctx(), VectorWidth));
416 Node =
417 isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
418 Node = isolateFullPartialTiles(Node, VectorWidth);
419 Node = Node.child(0);
420 // Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
421 // we will have troubles to match it in the backend.
422 Node = Node.band_set_ast_build_options(
423 isl::union_set(Node.get_ctx(), "{ unroll[x]: 1 = 0 }"));
424 Node = isl::manage(isl_schedule_node_band_sink(Node.release()));
425 Node = Node.child(0);
426 if (isl_schedule_node_get_type(Node.get()) == isl_schedule_node_leaf)
427 Node = Node.parent();
428 auto LoopMarker = isl::id::alloc(Node.get_ctx(), "SIMD", nullptr);
429 PrevectOpts++;
430 return Node.insert_mark(LoopMarker);
433 isl::schedule_node ScheduleTreeOptimizer::tileNode(isl::schedule_node Node,
434 const char *Identifier,
435 ArrayRef<int> TileSizes,
436 int DefaultTileSize) {
437 auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
438 auto Dims = Space.dim(isl::dim::set);
439 auto Sizes = isl::multi_val::zero(Space);
440 std::string IdentifierString(Identifier);
441 for (unsigned i = 0; i < Dims; i++) {
442 auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize;
443 Sizes = Sizes.set_val(i, isl::val(Node.get_ctx(), tileSize));
445 auto TileLoopMarkerStr = IdentifierString + " - Tiles";
446 auto TileLoopMarker =
447 isl::id::alloc(Node.get_ctx(), TileLoopMarkerStr, nullptr);
448 Node = Node.insert_mark(TileLoopMarker);
449 Node = Node.child(0);
450 Node =
451 isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
452 Node = Node.child(0);
453 auto PointLoopMarkerStr = IdentifierString + " - Points";
454 auto PointLoopMarker =
455 isl::id::alloc(Node.get_ctx(), PointLoopMarkerStr, nullptr);
456 Node = Node.insert_mark(PointLoopMarker);
457 return Node.child(0);
460 isl::schedule_node ScheduleTreeOptimizer::applyRegisterTiling(
461 isl::schedule_node Node, ArrayRef<int> TileSizes, int DefaultTileSize) {
462 Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize);
463 auto Ctx = Node.get_ctx();
464 return Node.band_set_ast_build_options(isl::union_set(Ctx, "{unroll[x]}"));
467 static bool isSimpleInnermostBand(const isl::schedule_node &Node) {
468 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
469 assert(isl_schedule_node_n_children(Node.get()) == 1);
471 auto ChildType = isl_schedule_node_get_type(Node.child(0).get());
473 if (ChildType == isl_schedule_node_leaf)
474 return true;
476 if (ChildType != isl_schedule_node_sequence)
477 return false;
479 auto Sequence = Node.child(0);
481 for (int c = 0, nc = isl_schedule_node_n_children(Sequence.get()); c < nc;
482 ++c) {
483 auto Child = Sequence.child(c);
484 if (isl_schedule_node_get_type(Child.get()) != isl_schedule_node_filter)
485 return false;
486 if (isl_schedule_node_get_type(Child.child(0).get()) !=
487 isl_schedule_node_leaf)
488 return false;
490 return true;
493 bool ScheduleTreeOptimizer::isTileableBandNode(isl::schedule_node Node) {
494 if (isl_schedule_node_get_type(Node.get()) != isl_schedule_node_band)
495 return false;
497 if (isl_schedule_node_n_children(Node.get()) != 1)
498 return false;
500 if (!isl_schedule_node_band_get_permutable(Node.get()))
501 return false;
503 auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
504 auto Dims = Space.dim(isl::dim::set);
506 if (Dims <= 1)
507 return false;
509 return isSimpleInnermostBand(Node);
512 __isl_give isl::schedule_node
513 ScheduleTreeOptimizer::standardBandOpts(isl::schedule_node Node, void *User) {
514 if (FirstLevelTiling) {
515 Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
516 FirstLevelDefaultTileSize);
517 FirstLevelTileOpts++;
520 if (SecondLevelTiling) {
521 Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
522 SecondLevelDefaultTileSize);
523 SecondLevelTileOpts++;
526 if (RegisterTiling) {
527 Node =
528 applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
529 RegisterTileOpts++;
532 if (PollyVectorizerChoice == VECTORIZER_NONE)
533 return Node;
535 auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
536 auto Dims = Space.dim(isl::dim::set);
538 for (int i = Dims - 1; i >= 0; i--)
539 if (Node.band_member_get_coincident(i)) {
540 Node = prevectSchedBand(Node, i, PrevectorWidth);
541 break;
544 return Node;
547 /// Permute the two dimensions of the isl map.
549 /// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that
550 /// have type @p DimType.
552 /// @param Map The isl map to be modified.
553 /// @param DimType The type of the dimensions.
554 /// @param DstPos The first dimension.
555 /// @param SrcPos The second dimension.
556 /// @return The modified map.
557 isl::map permuteDimensions(isl::map Map, isl::dim DimType, unsigned DstPos,
558 unsigned SrcPos) {
559 assert(DstPos < Map.dim(DimType) && SrcPos < Map.dim(DimType));
560 if (DstPos == SrcPos)
561 return Map;
562 isl::id DimId;
563 if (Map.has_tuple_id(DimType))
564 DimId = Map.get_tuple_id(DimType);
565 auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in;
566 isl::id FreeDimId;
567 if (Map.has_tuple_id(FreeDim))
568 FreeDimId = Map.get_tuple_id(FreeDim);
569 auto MaxDim = std::max(DstPos, SrcPos);
570 auto MinDim = std::min(DstPos, SrcPos);
571 Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1);
572 Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1);
573 Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1);
574 Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1);
575 if (DimId)
576 Map = Map.set_tuple_id(DimType, DimId);
577 if (FreeDimId)
578 Map = Map.set_tuple_id(FreeDim, FreeDimId);
579 return Map;
582 /// Check the form of the access relation.
584 /// Check that the access relation @p AccMap has the form M[i][j], where i
585 /// is a @p FirstPos and j is a @p SecondPos.
587 /// @param AccMap The access relation to be checked.
588 /// @param FirstPos The index of the input dimension that is mapped to
589 /// the first output dimension.
590 /// @param SecondPos The index of the input dimension that is mapped to the
591 /// second output dimension.
592 /// @return True in case @p AccMap has the expected form and false,
593 /// otherwise.
594 static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos,
595 int &SecondPos) {
596 isl::space Space = AccMap.get_space();
597 isl::map Universe = isl::map::universe(Space);
599 if (Space.dim(isl::dim::out) != 2)
600 return false;
602 // MatMul has the form:
603 // for (i = 0; i < N; i++)
604 // for (j = 0; j < M; j++)
605 // for (k = 0; k < P; k++)
606 // C[i, j] += A[i, k] * B[k, j]
608 // Permutation of three outer loops: 3! = 6 possibilities.
609 int FirstDims[] = {0, 0, 1, 1, 2, 2};
610 int SecondDims[] = {1, 2, 2, 0, 0, 1};
611 for (int i = 0; i < 6; i += 1) {
612 auto PossibleMatMul =
613 Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0)
614 .equate(isl::dim::in, SecondDims[i], isl::dim::out, 1);
616 AccMap = AccMap.intersect_domain(Domain);
617 PossibleMatMul = PossibleMatMul.intersect_domain(Domain);
619 // If AccMap spans entire domain (Non-partial write),
620 // compute FirstPos and SecondPos.
621 // If AccMap != PossibleMatMul here (the two maps have been gisted at
622 // this point), it means that the writes are not complete, or in other
623 // words, it is a Partial write and Partial writes must be rejected.
624 if (AccMap.is_equal(PossibleMatMul)) {
625 if (FirstPos != -1 && FirstPos != FirstDims[i])
626 continue;
627 FirstPos = FirstDims[i];
628 if (SecondPos != -1 && SecondPos != SecondDims[i])
629 continue;
630 SecondPos = SecondDims[i];
631 return true;
635 return false;
638 /// Does the memory access represent a non-scalar operand of the matrix
639 /// multiplication.
641 /// Check that the memory access @p MemAccess is the read access to a non-scalar
642 /// operand of the matrix multiplication or its result.
644 /// @param MemAccess The memory access to be checked.
645 /// @param MMI Parameters of the matrix multiplication operands.
646 /// @return True in case the memory access represents the read access
647 /// to a non-scalar operand of the matrix multiplication and
648 /// false, otherwise.
649 static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess,
650 MatMulInfoTy &MMI) {
651 if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead())
652 return false;
653 auto AccMap = MemAccess->getLatestAccessRelation();
654 isl::set StmtDomain = MemAccess->getStatement()->getDomain();
655 if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) {
656 MMI.ReadFromC = MemAccess;
657 return true;
659 if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) {
660 MMI.A = MemAccess;
661 return true;
663 if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) {
664 MMI.B = MemAccess;
665 return true;
667 return false;
670 /// Check accesses to operands of the matrix multiplication.
672 /// Check that accesses of the SCoP statement, which corresponds to
673 /// the partial schedule @p PartialSchedule, are scalar in terms of loops
674 /// containing the matrix multiplication, in case they do not represent
675 /// accesses to the non-scalar operands of the matrix multiplication or
676 /// its result.
678 /// @param PartialSchedule The partial schedule of the SCoP statement.
679 /// @param MMI Parameters of the matrix multiplication operands.
680 /// @return True in case the corresponding SCoP statement
681 /// represents matrix multiplication and false,
682 /// otherwise.
683 static bool containsOnlyMatrMultAcc(isl::map PartialSchedule,
684 MatMulInfoTy &MMI) {
685 auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in);
686 auto *Stmt = static_cast<ScopStmt *>(InputDimId.get_user());
687 unsigned OutDimNum = PartialSchedule.dim(isl::dim::out);
688 assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest "
689 "and, consequently, the corresponding scheduling "
690 "functions have at least three dimensions.");
691 auto MapI =
692 permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1);
693 auto MapJ =
694 permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1);
695 auto MapK =
696 permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1);
698 auto Accesses = getAccessesInOrder(*Stmt);
699 for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) {
700 auto *MemAccessPtr = *MemA;
701 if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC &&
702 !isMatMulNonScalarReadAccess(MemAccessPtr, MMI) &&
703 !(MemAccessPtr->isStrideZero(MapI)) &&
704 MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK))
705 return false;
707 return true;
710 /// Check for dependencies corresponding to the matrix multiplication.
712 /// Check that there is only true dependence of the form
713 /// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement
714 /// represented by @p Schedule and k is @p Pos. Such a dependence corresponds
715 /// to the dependency produced by the matrix multiplication.
717 /// @param Schedule The schedule of the SCoP statement.
718 /// @param D The SCoP dependencies.
719 /// @param Pos The parameter to describe an acceptable true dependence.
720 /// In case it has a negative value, try to determine its
721 /// acceptable value.
722 /// @return True in case dependencies correspond to the matrix multiplication
723 /// and false, otherwise.
724 static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D,
725 int &Pos) {
726 isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW);
727 isl::union_map Red = D->getDependences(Dependences::TYPE_RED);
728 if (Red)
729 Dep = Dep.unite(Red);
730 auto DomainSpace = Schedule.get_space().domain();
731 auto Space = DomainSpace.map_from_domain_and_range(DomainSpace);
732 auto Deltas = Dep.extract_map(Space).deltas();
733 int DeltasDimNum = Deltas.dim(isl::dim::set);
734 for (int i = 0; i < DeltasDimNum; i++) {
735 auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i);
736 Pos = Pos < 0 && Val.is_one() ? i : Pos;
737 if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one())))
738 return false;
740 if (DeltasDimNum == 0 || Pos < 0)
741 return false;
742 return true;
745 /// Check if the SCoP statement could probably be optimized with analytical
746 /// modeling.
748 /// containsMatrMult tries to determine whether the following conditions
749 /// are true:
750 /// 1. The last memory access modeling an array, MA1, represents writing to
751 /// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or
752 /// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement
753 /// under consideration.
754 /// 2. There is only one loop-carried true dependency, and it has the
755 /// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no
756 /// loop-carried or anti dependencies.
757 /// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent
758 /// reading from memory and have the form S(..., i3, ...) -> M(i1, i3),
759 /// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively,
760 /// and all memory accesses of the SCoP that are different from MA1, MA2,
761 /// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any
762 /// of loops i1, i2 and i3.
764 /// @param PartialSchedule The PartialSchedule that contains a SCoP statement
765 /// to check.
766 /// @D The SCoP dependencies.
767 /// @MMI Parameters of the matrix multiplication operands.
768 static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D,
769 MatMulInfoTy &MMI) {
770 auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in);
771 auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
772 if (Stmt->size() <= 1)
773 return false;
775 auto Accesses = getAccessesInOrder(*Stmt);
776 for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) {
777 auto *MemAccessPtr = *MemA;
778 if (!MemAccessPtr->isLatestArrayKind())
779 continue;
780 if (!MemAccessPtr->isWrite())
781 return false;
782 auto AccMap = MemAccessPtr->getLatestAccessRelation();
783 if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j))
784 return false;
785 MMI.WriteToC = MemAccessPtr;
786 break;
789 if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k))
790 return false;
792 if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI))
793 return false;
795 if (!MMI.A || !MMI.B || !MMI.ReadFromC)
796 return false;
797 return true;
800 /// Permute two dimensions of the band node.
802 /// Permute FirstDim and SecondDim dimensions of the Node.
804 /// @param Node The band node to be modified.
805 /// @param FirstDim The first dimension to be permuted.
806 /// @param SecondDim The second dimension to be permuted.
807 static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node,
808 unsigned FirstDim,
809 unsigned SecondDim) {
810 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band &&
811 isl_schedule_node_band_n_member(Node.get()) >
812 std::max(FirstDim, SecondDim));
813 auto PartialSchedule =
814 isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get()));
815 auto PartialScheduleFirstDim = PartialSchedule.get_union_pw_aff(FirstDim);
816 auto PartialScheduleSecondDim = PartialSchedule.get_union_pw_aff(SecondDim);
817 PartialSchedule =
818 PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim);
819 PartialSchedule =
820 PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim);
821 Node = isl::manage(isl_schedule_node_delete(Node.release()));
822 return Node.insert_partial_schedule(PartialSchedule);
825 isl::schedule_node ScheduleTreeOptimizer::createMicroKernel(
826 isl::schedule_node Node, MicroKernelParamsTy MicroKernelParams) {
827 Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr},
829 Node = Node.parent().parent();
830 return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0);
833 isl::schedule_node ScheduleTreeOptimizer::createMacroKernel(
834 isl::schedule_node Node, MacroKernelParamsTy MacroKernelParams) {
835 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
836 if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
837 MacroKernelParams.Kc == 1)
838 return Node;
839 int DimOutNum = isl_schedule_node_band_n_member(Node.get());
840 std::vector<int> TileSizes(DimOutNum, 1);
841 TileSizes[DimOutNum - 3] = MacroKernelParams.Mc;
842 TileSizes[DimOutNum - 2] = MacroKernelParams.Nc;
843 TileSizes[DimOutNum - 1] = MacroKernelParams.Kc;
844 Node = tileNode(Node, "1st level tiling", TileSizes, 1);
845 Node = Node.parent().parent();
846 Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1);
847 Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1);
849 // Mark the outermost loop as parallelizable.
850 Node = Node.band_member_set_coincident(0, true);
852 return Node.child(0).child(0);
855 /// Get the size of the widest type of the matrix multiplication operands
856 /// in bytes, including alignment padding.
858 /// @param MMI Parameters of the matrix multiplication operands.
859 /// @return The size of the widest type of the matrix multiplication operands
860 /// in bytes, including alignment padding.
861 static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) {
862 auto *S = MMI.A->getStatement()->getParent();
863 auto &DL = S->getFunction().getParent()->getDataLayout();
864 auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType());
865 auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType());
866 auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType());
867 return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
870 /// Get the size of the widest type of the matrix multiplication operands
871 /// in bits.
873 /// @param MMI Parameters of the matrix multiplication operands.
874 /// @return The size of the widest type of the matrix multiplication operands
875 /// in bits.
876 static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) {
877 auto *S = MMI.A->getStatement()->getParent();
878 auto &DL = S->getFunction().getParent()->getDataLayout();
879 auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType());
880 auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType());
881 auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType());
882 return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
885 /// Get parameters of the BLIS micro kernel.
887 /// We choose the Mr and Nr parameters of the micro kernel to be large enough
888 /// such that no stalls caused by the combination of latencies and dependencies
889 /// are introduced during the updates of the resulting matrix of the matrix
890 /// multiplication. However, they should also be as small as possible to
891 /// release more registers for entries of multiplied matrices.
893 /// @param TTI Target Transform Info.
894 /// @param MMI Parameters of the matrix multiplication operands.
895 /// @return The structure of type MicroKernelParamsTy.
896 /// @see MicroKernelParamsTy
897 static struct MicroKernelParamsTy
898 getMicroKernelParams(const TargetTransformInfo *TTI, MatMulInfoTy MMI) {
899 assert(TTI && "The target transform info should be provided.");
901 // Nvec - Number of double-precision floating-point numbers that can be hold
902 // by a vector register. Use 2 by default.
903 long RegisterBitwidth = VectorRegisterBitwidth;
905 if (RegisterBitwidth == -1)
906 RegisterBitwidth = TTI->getRegisterBitWidth(true);
907 auto ElementSize = getMatMulTypeSize(MMI);
908 assert(ElementSize > 0 && "The element size of the matrix multiplication "
909 "operands should be greater than zero.");
910 auto Nvec = RegisterBitwidth / ElementSize;
911 if (Nvec == 0)
912 Nvec = 2;
913 int Nr = ceil(sqrt((double)(Nvec * LatencyVectorFma * ThroughputVectorFma)) /
914 Nvec) *
915 Nvec;
916 int Mr = ceil((double)(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr));
917 return {Mr, Nr};
920 namespace {
921 /// Determine parameters of the target cache.
923 /// @param TTI Target Transform Info.
924 void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) {
925 auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D;
926 auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D;
927 if (FirstCacheLevelSize == -1) {
928 if (TTI->getCacheSize(L1DCache).hasValue())
929 FirstCacheLevelSize = TTI->getCacheSize(L1DCache).getValue();
930 else
931 FirstCacheLevelSize = static_cast<int>(FirstCacheLevelDefaultSize);
933 if (SecondCacheLevelSize == -1) {
934 if (TTI->getCacheSize(L2DCache).hasValue())
935 SecondCacheLevelSize = TTI->getCacheSize(L2DCache).getValue();
936 else
937 SecondCacheLevelSize = static_cast<int>(SecondCacheLevelDefaultSize);
939 if (FirstCacheLevelAssociativity == -1) {
940 if (TTI->getCacheAssociativity(L1DCache).hasValue())
941 FirstCacheLevelAssociativity =
942 TTI->getCacheAssociativity(L1DCache).getValue();
943 else
944 FirstCacheLevelAssociativity =
945 static_cast<int>(FirstCacheLevelDefaultAssociativity);
947 if (SecondCacheLevelAssociativity == -1) {
948 if (TTI->getCacheAssociativity(L2DCache).hasValue())
949 SecondCacheLevelAssociativity =
950 TTI->getCacheAssociativity(L2DCache).getValue();
951 else
952 SecondCacheLevelAssociativity =
953 static_cast<int>(SecondCacheLevelDefaultAssociativity);
956 } // namespace
958 /// Get parameters of the BLIS macro kernel.
960 /// During the computation of matrix multiplication, blocks of partitioned
961 /// matrices are mapped to different layers of the memory hierarchy.
962 /// To optimize data reuse, blocks should be ideally kept in cache between
963 /// iterations. Since parameters of the macro kernel determine sizes of these
964 /// blocks, there are upper and lower bounds on these parameters.
966 /// @param TTI Target Transform Info.
967 /// @param MicroKernelParams Parameters of the micro-kernel
968 /// to be taken into account.
969 /// @param MMI Parameters of the matrix multiplication operands.
970 /// @return The structure of type MacroKernelParamsTy.
971 /// @see MacroKernelParamsTy
972 /// @see MicroKernelParamsTy
973 static struct MacroKernelParamsTy
974 getMacroKernelParams(const llvm::TargetTransformInfo *TTI,
975 const MicroKernelParamsTy &MicroKernelParams,
976 MatMulInfoTy MMI) {
977 getTargetCacheParameters(TTI);
978 // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
979 // it requires information about the first two levels of a cache to determine
980 // all the parameters of a macro-kernel. It also checks that an associativity
981 // degree of a cache level is greater than two. Otherwise, another algorithm
982 // for determination of the parameters should be used.
983 if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
984 FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
985 FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
986 return {1, 1, 1};
987 // The quotient should be greater than zero.
988 if (PollyPatternMatchingNcQuotient <= 0)
989 return {1, 1, 1};
990 int Car = floor(
991 (FirstCacheLevelAssociativity - 1) /
992 (1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));
994 // Car can be computed to be zero since it is floor to int.
995 // On Mac OS, division by 0 does not raise a signal. This causes negative
996 // tile sizes to be computed. Prevent division by Cac==0 by early returning
997 // if this happens.
998 if (Car == 0)
999 return {1, 1, 1};
1001 auto ElementSize = getMatMulAlignTypeSize(MMI);
1002 assert(ElementSize > 0 && "The element size of the matrix multiplication "
1003 "operands should be greater than zero.");
1004 int Kc = (Car * FirstCacheLevelSize) /
1005 (MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize);
1006 double Cac =
1007 static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) /
1008 SecondCacheLevelSize;
1009 int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
1010 int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;
1012 assert(Mc > 0 && Nc > 0 && Kc > 0 &&
1013 "Matrix block sizes should be greater than zero");
1014 return {Mc, Nc, Kc};
1017 /// Create an access relation that is specific to
1018 /// the matrix multiplication pattern.
1020 /// Create an access relation of the following form:
1021 /// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
1022 /// where I is @p FirstDim, J is @p SecondDim.
1024 /// It can be used, for example, to create relations that helps to consequently
1025 /// access elements of operands of a matrix multiplication after creation of
1026 /// the BLIS micro and macro kernels.
1028 /// @see ScheduleTreeOptimizer::createMicroKernel
1029 /// @see ScheduleTreeOptimizer::createMacroKernel
1031 /// Subsequently, the described access relation is applied to the range of
1032 /// @p MapOldIndVar, that is used to map original induction variables to
1033 /// the ones, which are produced by schedule transformations. It helps to
1034 /// define relations using a new space and, at the same time, keep them
1035 /// in the original one.
1037 /// @param MapOldIndVar The relation, which maps original induction variables
1038 /// to the ones, which are produced by schedule
1039 /// transformations.
1040 /// @param FirstDim, SecondDim The input dimensions that are used to define
1041 /// the specified access relation.
1042 /// @return The specified access relation.
1043 isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim,
1044 unsigned SecondDim) {
1045 auto AccessRelSpace = isl::space(MapOldIndVar.get_ctx(), 0, 9, 3);
1046 auto AccessRel = isl::map::universe(AccessRelSpace);
1047 AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0);
1048 AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1);
1049 AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2);
1050 return MapOldIndVar.apply_range(AccessRel);
1053 isl::schedule_node createExtensionNode(isl::schedule_node Node,
1054 isl::map ExtensionMap) {
1055 auto Extension = isl::union_map(ExtensionMap);
1056 auto NewNode = isl::schedule_node::from_extension(Extension);
1057 return Node.graft_before(NewNode);
1060 /// Apply the packing transformation.
1062 /// The packing transformation can be described as a data-layout
1063 /// transformation that requires to introduce a new array, copy data
1064 /// to the array, and change memory access locations to reference the array.
1065 /// It can be used to ensure that elements of the new array are read in-stride
1066 /// access, aligned to cache lines boundaries, and preloaded into certain cache
1067 /// levels.
1069 /// As an example let us consider the packing of the array A that would help
1070 /// to read its elements with in-stride access. An access to the array A
1071 /// is represented by an access relation that has the form
1072 /// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
1073 /// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
1074 /// k mod Kc, j mod Nr, i mod Mr].
1076 /// To ensure that elements of the array A are read in-stride access, we add
1077 /// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
1078 /// Scop::createScopArrayInfo, change the access relation
1079 /// S[i, j, k] -> A[i, k] to
1080 /// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
1081 /// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
1082 /// the copy statement created by Scop::addScopStmt.
1084 /// @param Node The schedule node to be optimized.
1085 /// @param MapOldIndVar The relation, which maps original induction variables
1086 /// to the ones, which are produced by schedule
1087 /// transformations.
1088 /// @param MicroParams, MacroParams Parameters of the BLIS kernel
1089 /// to be taken into account.
1090 /// @param MMI Parameters of the matrix multiplication operands.
1091 /// @return The optimized schedule node.
1092 static isl::schedule_node
1093 optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar,
1094 MicroKernelParamsTy MicroParams,
1095 MacroKernelParamsTy MacroParams,
1096 MatMulInfoTy &MMI) {
1097 auto InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
1098 auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
1100 // Create a copy statement that corresponds to the memory access to the
1101 // matrix B, the second operand of the matrix multiplication.
1102 Node = Node.parent().parent().parent().parent().parent().parent();
1103 Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2)).child(0);
1104 auto AccRel = getMatMulAccRel(MapOldIndVar, 3, 7);
1105 unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
1106 unsigned SecondDimSize = MacroParams.Kc;
1107 unsigned ThirdDimSize = MicroParams.Nr;
1108 auto *SAI = Stmt->getParent()->createScopArrayInfo(
1109 MMI.B->getElementType(), "Packed_B",
1110 {FirstDimSize, SecondDimSize, ThirdDimSize});
1111 AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId());
1112 auto OldAcc = MMI.B->getLatestAccessRelation();
1113 MMI.B->setNewAccessRelation(AccRel);
1114 auto ExtMap = MapOldIndVar.project_out(isl::dim::out, 2,
1115 MapOldIndVar.dim(isl::dim::out) - 2);
1116 ExtMap = ExtMap.reverse();
1117 ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0);
1118 auto Domain = Stmt->getDomain();
1120 // Restrict the domains of the copy statements to only execute when also its
1121 // originating statement is executed.
1122 auto DomainId = Domain.get_tuple_id();
1123 auto *NewStmt = Stmt->getParent()->addScopStmt(
1124 OldAcc, MMI.B->getLatestAccessRelation(), Domain);
1125 ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId);
1126 ExtMap = ExtMap.intersect_range(Domain);
1127 ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId());
1128 Node = createExtensionNode(Node, ExtMap);
1130 // Create a copy statement that corresponds to the memory access
1131 // to the matrix A, the first operand of the matrix multiplication.
1132 Node = Node.child(0);
1133 AccRel = getMatMulAccRel(MapOldIndVar, 4, 6);
1134 FirstDimSize = MacroParams.Mc / MicroParams.Mr;
1135 ThirdDimSize = MicroParams.Mr;
1136 SAI = Stmt->getParent()->createScopArrayInfo(
1137 MMI.A->getElementType(), "Packed_A",
1138 {FirstDimSize, SecondDimSize, ThirdDimSize});
1139 AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId());
1140 OldAcc = MMI.A->getLatestAccessRelation();
1141 MMI.A->setNewAccessRelation(AccRel);
1142 ExtMap = MapOldIndVar.project_out(isl::dim::out, 3,
1143 MapOldIndVar.dim(isl::dim::out) - 3);
1144 ExtMap = ExtMap.reverse();
1145 ExtMap = ExtMap.fix_si(isl::dim::out, MMI.j, 0);
1146 NewStmt = Stmt->getParent()->addScopStmt(
1147 OldAcc, MMI.A->getLatestAccessRelation(), Domain);
1149 // Restrict the domains of the copy statements to only execute when also its
1150 // originating statement is executed.
1151 ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId);
1152 ExtMap = ExtMap.intersect_range(Domain);
1153 ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId());
1154 Node = createExtensionNode(Node, ExtMap);
1155 return Node.child(0).child(0).child(0).child(0).child(0);
1158 /// Get a relation mapping induction variables produced by schedule
1159 /// transformations to the original ones.
1161 /// @param Node The schedule node produced as the result of creation
1162 /// of the BLIS kernels.
1163 /// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
1164 /// to be taken into account.
1165 /// @return The relation mapping original induction variables to the ones
1166 /// produced by schedule transformation.
1167 /// @see ScheduleTreeOptimizer::createMicroKernel
1168 /// @see ScheduleTreeOptimizer::createMacroKernel
1169 /// @see getMacroKernelParams
1170 isl::map
1171 getInductionVariablesSubstitution(isl::schedule_node Node,
1172 MicroKernelParamsTy MicroKernelParams,
1173 MacroKernelParamsTy MacroKernelParams) {
1174 auto Child = Node.child(0);
1175 auto UnMapOldIndVar = Child.get_prefix_schedule_union_map();
1176 auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar);
1177 if (MapOldIndVar.dim(isl::dim::out) > 9)
1178 return MapOldIndVar.project_out(isl::dim::out, 0,
1179 MapOldIndVar.dim(isl::dim::out) - 9);
1180 return MapOldIndVar;
1183 /// Isolate a set of partial tile prefixes and unroll the isolated part.
1185 /// The set should ensure that it contains only partial tile prefixes that have
1186 /// exactly Mr x Nr iterations of the two innermost loops produced by
1187 /// the optimization of the matrix multiplication. Mr and Nr are parameters of
1188 /// the micro-kernel.
1190 /// In case of parametric bounds, this helps to auto-vectorize the unrolled
1191 /// innermost loops, using the SLP vectorizer.
1193 /// @param Node The schedule node to be modified.
1194 /// @param MicroKernelParams Parameters of the micro-kernel
1195 /// to be taken into account.
1196 /// @return The modified isl_schedule_node.
1197 static isl::schedule_node
1198 isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node,
1199 struct MicroKernelParamsTy MicroKernelParams) {
1200 isl::schedule_node Child = Node.get_child(0);
1201 isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation();
1202 isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range();
1203 unsigned Dims = Prefix.dim(isl::dim::set);
1204 Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1);
1205 Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr);
1206 Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr);
1208 isl::union_set IsolateOption =
1209 getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3);
1210 isl::ctx Ctx = Node.get_ctx();
1211 auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll"));
1212 Options = Options.unite(getUnrollIsolatedSetOptions(Ctx));
1213 Node = Node.band_set_ast_build_options(Options);
1214 Node = Node.parent().parent().parent();
1215 IsolateOption = getIsolateOptions(Prefix, 3);
1216 Options = IsolateOption.unite(getDimOptions(Ctx, "separate"));
1217 Node = Node.band_set_ast_build_options(Options);
1218 Node = Node.child(0).child(0).child(0);
1219 return Node;
1222 /// Mark @p BasePtr with "Inter iteration alias-free" mark node.
1224 /// @param Node The child of the mark node to be inserted.
1225 /// @param BasePtr The pointer to be marked.
1226 /// @return The modified isl_schedule_node.
1227 static isl::schedule_node markInterIterationAliasFree(isl::schedule_node Node,
1228 Value *BasePtr) {
1229 if (!BasePtr)
1230 return Node;
1232 auto Id =
1233 isl::id::alloc(Node.get_ctx(), "Inter iteration alias-free", BasePtr);
1234 return Node.insert_mark(Id).child(0);
1237 /// Insert "Loop Vectorizer Disabled" mark node.
1239 /// @param Node The child of the mark node to be inserted.
1240 /// @return The modified isl_schedule_node.
1241 static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) {
1242 auto Id = isl::id::alloc(Node.get_ctx(), "Loop Vectorizer Disabled", nullptr);
1243 return Node.insert_mark(Id).child(0);
1246 /// Restore the initial ordering of dimensions of the band node
1248 /// In case the band node represents all the dimensions of the iteration
1249 /// domain, recreate the band node to restore the initial ordering of the
1250 /// dimensions.
1252 /// @param Node The band node to be modified.
1253 /// @return The modified schedule node.
1254 static isl::schedule_node
1255 getBandNodeWithOriginDimOrder(isl::schedule_node Node) {
1256 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
1257 if (isl_schedule_node_get_type(Node.child(0).get()) != isl_schedule_node_leaf)
1258 return Node;
1259 auto Domain = Node.get_universe_domain();
1260 assert(isl_union_set_n_set(Domain.get()) == 1);
1261 if (Node.get_schedule_depth() != 0 ||
1262 (isl::set(Domain).dim(isl::dim::set) !=
1263 isl_schedule_node_band_n_member(Node.get())))
1264 return Node;
1265 Node = isl::manage(isl_schedule_node_delete(Node.copy()));
1266 auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff();
1267 auto PartialScheduleMultiPwAff =
1268 isl::multi_union_pw_aff(PartialSchedulePwAff);
1269 PartialScheduleMultiPwAff =
1270 PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set);
1271 return Node.insert_partial_schedule(PartialScheduleMultiPwAff);
1274 isl::schedule_node
1275 ScheduleTreeOptimizer::optimizeMatMulPattern(isl::schedule_node Node,
1276 const TargetTransformInfo *TTI,
1277 MatMulInfoTy &MMI) {
1278 assert(TTI && "The target transform info should be provided.");
1279 Node = markInterIterationAliasFree(
1280 Node, MMI.WriteToC->getLatestScopArrayInfo()->getBasePtr());
1281 int DimOutNum = isl_schedule_node_band_n_member(Node.get());
1282 assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest "
1283 "and, consequently, the corresponding scheduling "
1284 "functions have at least three dimensions.");
1285 Node = getBandNodeWithOriginDimOrder(Node);
1286 Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3);
1287 int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j;
1288 int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k;
1289 Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2);
1290 NewK = NewK == DimOutNum - 2 ? NewJ : NewK;
1291 Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1);
1292 auto MicroKernelParams = getMicroKernelParams(TTI, MMI);
1293 auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI);
1294 Node = createMacroKernel(Node, MacroKernelParams);
1295 Node = createMicroKernel(Node, MicroKernelParams);
1296 if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
1297 MacroKernelParams.Kc == 1)
1298 return Node;
1299 auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams,
1300 MacroKernelParams);
1301 if (!MapOldIndVar)
1302 return Node;
1303 Node = markLoopVectorizerDisabled(Node.parent()).child(0);
1304 Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams);
1305 return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
1306 MacroKernelParams, MMI);
1309 bool ScheduleTreeOptimizer::isMatrMultPattern(isl::schedule_node Node,
1310 const Dependences *D,
1311 MatMulInfoTy &MMI) {
1312 auto PartialSchedule = isl::manage(
1313 isl_schedule_node_band_get_partial_schedule_union_map(Node.get()));
1314 Node = Node.child(0);
1315 auto LeafType = isl_schedule_node_get_type(Node.get());
1316 Node = Node.parent();
1317 if (LeafType != isl_schedule_node_leaf ||
1318 isl_schedule_node_band_n_member(Node.get()) < 3 ||
1319 Node.get_schedule_depth() != 0 ||
1320 isl_union_map_n_map(PartialSchedule.get()) != 1)
1321 return false;
1322 auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule);
1323 if (containsMatrMult(NewPartialSchedule, D, MMI))
1324 return true;
1325 return false;
1328 __isl_give isl_schedule_node *
1329 ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
1330 void *User) {
1331 if (!isTileableBandNode(isl::manage_copy(Node)))
1332 return Node;
1334 const OptimizerAdditionalInfoTy *OAI =
1335 static_cast<const OptimizerAdditionalInfoTy *>(User);
1337 MatMulInfoTy MMI;
1338 if (PMBasedOpts && User &&
1339 isMatrMultPattern(isl::manage_copy(Node), OAI->D, MMI)) {
1340 LLVM_DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
1341 MatMulOpts++;
1342 return optimizeMatMulPattern(isl::manage(Node), OAI->TTI, MMI).release();
1345 return standardBandOpts(isl::manage(Node), User).release();
1348 isl::schedule
1349 ScheduleTreeOptimizer::optimizeSchedule(isl::schedule Schedule,
1350 const OptimizerAdditionalInfoTy *OAI) {
1351 auto Root = Schedule.get_root();
1352 Root = optimizeScheduleNode(Root, OAI);
1353 return Root.get_schedule();
1356 isl::schedule_node ScheduleTreeOptimizer::optimizeScheduleNode(
1357 isl::schedule_node Node, const OptimizerAdditionalInfoTy *OAI) {
1358 Node = isl::manage(isl_schedule_node_map_descendant_bottom_up(
1359 Node.release(), optimizeBand,
1360 const_cast<void *>(static_cast<const void *>(OAI))));
1361 return Node;
1364 bool ScheduleTreeOptimizer::isProfitableSchedule(Scop &S,
1365 isl::schedule NewSchedule) {
1366 // To understand if the schedule has been optimized we check if the schedule
1367 // has changed at all.
1368 // TODO: We can improve this by tracking if any necessarily beneficial
1369 // transformations have been performed. This can e.g. be tiling, loop
1370 // interchange, or ...) We can track this either at the place where the
1371 // transformation has been performed or, in case of automatic ILP based
1372 // optimizations, by comparing (yet to be defined) performance metrics
1373 // before/after the scheduling optimizer
1374 // (e.g., #stride-one accesses)
1375 auto NewScheduleMap = NewSchedule.get_map();
1376 auto OldSchedule = S.getSchedule();
1377 assert(OldSchedule && "Only IslScheduleOptimizer can insert extension nodes "
1378 "that make Scop::getSchedule() return nullptr.");
1379 bool changed = !OldSchedule.is_equal(NewScheduleMap);
1380 return changed;
1383 namespace {
1385 class IslScheduleOptimizer : public ScopPass {
1386 public:
1387 static char ID;
1389 explicit IslScheduleOptimizer() : ScopPass(ID) {}
1391 ~IslScheduleOptimizer() override { isl_schedule_free(LastSchedule); }
1393 /// Optimize the schedule of the SCoP @p S.
1394 bool runOnScop(Scop &S) override;
1396 /// Print the new schedule for the SCoP @p S.
1397 void printScop(raw_ostream &OS, Scop &S) const override;
1399 /// Register all analyses and transformation required.
1400 void getAnalysisUsage(AnalysisUsage &AU) const override;
1402 /// Release the internal memory.
1403 void releaseMemory() override {
1404 isl_schedule_free(LastSchedule);
1405 LastSchedule = nullptr;
1408 private:
1409 isl_schedule *LastSchedule = nullptr;
1411 } // namespace
1413 char IslScheduleOptimizer::ID = 0;
1415 /// Collect statistics for the schedule tree.
1417 /// @param Schedule The schedule tree to analyze. If not a schedule tree it is
1418 /// ignored.
1419 /// @param Version The version of the schedule tree that is analyzed.
1420 /// 0 for the original schedule tree before any transformation.
1421 /// 1 for the schedule tree after isl's rescheduling.
1422 /// 2 for the schedule tree after optimizations are applied
1423 /// (tiling, pattern matching)
1424 static void walkScheduleTreeForStatistics(isl::schedule Schedule, int Version) {
1425 auto Root = Schedule.get_root();
1426 if (!Root)
1427 return;
1429 isl_schedule_node_foreach_descendant_top_down(
1430 Root.get(),
1431 [](__isl_keep isl_schedule_node *nodeptr, void *user) -> isl_bool {
1432 isl::schedule_node Node = isl::manage_copy(nodeptr);
1433 int Version = *static_cast<int *>(user);
1435 switch (isl_schedule_node_get_type(Node.get())) {
1436 case isl_schedule_node_band: {
1437 NumBands[Version]++;
1438 if (isl_schedule_node_band_get_permutable(Node.get()) ==
1439 isl_bool_true)
1440 NumPermutable[Version]++;
1442 int CountMembers = isl_schedule_node_band_n_member(Node.get());
1443 NumBandMembers[Version] += CountMembers;
1444 for (int i = 0; i < CountMembers; i += 1) {
1445 if (Node.band_member_get_coincident(i))
1446 NumCoincident[Version]++;
1448 break;
1451 case isl_schedule_node_filter:
1452 NumFilters[Version]++;
1453 break;
1455 case isl_schedule_node_extension:
1456 NumExtension[Version]++;
1457 break;
1459 default:
1460 break;
1463 return isl_bool_true;
1465 &Version);
1468 bool IslScheduleOptimizer::runOnScop(Scop &S) {
1469 // Skip SCoPs in case they're already optimised by PPCGCodeGeneration
1470 if (S.isToBeSkipped())
1471 return false;
1473 // Skip empty SCoPs but still allow code generation as it will delete the
1474 // loops present but not needed.
1475 if (S.getSize() == 0) {
1476 S.markAsOptimized();
1477 return false;
1480 const Dependences &D =
1481 getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement);
1483 if (D.getSharedIslCtx() != S.getSharedIslCtx()) {
1484 LLVM_DEBUG(dbgs() << "DependenceInfo for another SCoP/isl_ctx\n");
1485 return false;
1488 if (!D.hasValidDependences())
1489 return false;
1491 isl_schedule_free(LastSchedule);
1492 LastSchedule = nullptr;
1494 // Build input data.
1495 int ValidityKinds =
1496 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
1497 int ProximityKinds;
1499 if (OptimizeDeps == "all")
1500 ProximityKinds =
1501 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
1502 else if (OptimizeDeps == "raw")
1503 ProximityKinds = Dependences::TYPE_RAW;
1504 else {
1505 errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
1506 << " Falling back to optimizing all dependences.\n";
1507 ProximityKinds =
1508 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
1511 isl::union_set Domain = S.getDomains();
1513 if (!Domain)
1514 return false;
1516 ScopsProcessed++;
1517 walkScheduleTreeForStatistics(S.getScheduleTree(), 0);
1519 isl::union_map Validity = D.getDependences(ValidityKinds);
1520 isl::union_map Proximity = D.getDependences(ProximityKinds);
1522 // Simplify the dependences by removing the constraints introduced by the
1523 // domains. This can speed up the scheduling time significantly, as large
1524 // constant coefficients will be removed from the dependences. The
1525 // introduction of some additional dependences reduces the possible
1526 // transformations, but in most cases, such transformation do not seem to be
1527 // interesting anyway. In some cases this option may stop the scheduler to
1528 // find any schedule.
1529 if (SimplifyDeps == "yes") {
1530 Validity = Validity.gist_domain(Domain);
1531 Validity = Validity.gist_range(Domain);
1532 Proximity = Proximity.gist_domain(Domain);
1533 Proximity = Proximity.gist_range(Domain);
1534 } else if (SimplifyDeps != "no") {
1535 errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
1536 "or 'no'. Falling back to default: 'yes'\n";
1539 LLVM_DEBUG(dbgs() << "\n\nCompute schedule from: ");
1540 LLVM_DEBUG(dbgs() << "Domain := " << Domain << ";\n");
1541 LLVM_DEBUG(dbgs() << "Proximity := " << Proximity << ";\n");
1542 LLVM_DEBUG(dbgs() << "Validity := " << Validity << ";\n");
1544 unsigned IslSerializeSCCs;
1546 if (FusionStrategy == "max") {
1547 IslSerializeSCCs = 0;
1548 } else if (FusionStrategy == "min") {
1549 IslSerializeSCCs = 1;
1550 } else {
1551 errs() << "warning: Unknown fusion strategy. Falling back to maximal "
1552 "fusion.\n";
1553 IslSerializeSCCs = 0;
1556 int IslMaximizeBands;
1558 if (MaximizeBandDepth == "yes") {
1559 IslMaximizeBands = 1;
1560 } else if (MaximizeBandDepth == "no") {
1561 IslMaximizeBands = 0;
1562 } else {
1563 errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
1564 " or 'no'. Falling back to default: 'yes'\n";
1565 IslMaximizeBands = 1;
1568 int IslOuterCoincidence;
1570 if (OuterCoincidence == "yes") {
1571 IslOuterCoincidence = 1;
1572 } else if (OuterCoincidence == "no") {
1573 IslOuterCoincidence = 0;
1574 } else {
1575 errs() << "warning: Option -polly-opt-outer-coincidence should either be "
1576 "'yes' or 'no'. Falling back to default: 'no'\n";
1577 IslOuterCoincidence = 0;
1580 isl_ctx *Ctx = S.getIslCtx().get();
1582 isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
1583 isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs);
1584 isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
1585 isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
1586 isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
1587 isl_options_set_tile_scale_tile_loops(Ctx, 0);
1589 auto OnErrorStatus = isl_options_get_on_error(Ctx);
1590 isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
1592 auto SC = isl::schedule_constraints::on_domain(Domain);
1593 SC = SC.set_proximity(Proximity);
1594 SC = SC.set_validity(Validity);
1595 SC = SC.set_coincidence(Validity);
1596 auto Schedule = SC.compute_schedule();
1597 isl_options_set_on_error(Ctx, OnErrorStatus);
1599 walkScheduleTreeForStatistics(Schedule, 1);
1601 // In cases the scheduler is not able to optimize the code, we just do not
1602 // touch the schedule.
1603 if (!Schedule)
1604 return false;
1606 ScopsRescheduled++;
1608 LLVM_DEBUG({
1609 auto *P = isl_printer_to_str(Ctx);
1610 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
1611 P = isl_printer_print_schedule(P, Schedule.get());
1612 auto *str = isl_printer_get_str(P);
1613 dbgs() << "NewScheduleTree: \n" << str << "\n";
1614 free(str);
1615 isl_printer_free(P);
1618 Function &F = S.getFunction();
1619 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1620 const OptimizerAdditionalInfoTy OAI = {TTI, const_cast<Dependences *>(&D)};
1621 auto NewSchedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI);
1622 NewSchedule = hoistExtensionNodes(NewSchedule);
1623 walkScheduleTreeForStatistics(NewSchedule, 2);
1625 if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewSchedule))
1626 return false;
1628 auto ScopStats = S.getStatistics();
1629 ScopsOptimized++;
1630 NumAffineLoopsOptimized += ScopStats.NumAffineLoops;
1631 NumBoxedLoopsOptimized += ScopStats.NumBoxedLoops;
1633 S.setScheduleTree(NewSchedule);
1634 S.markAsOptimized();
1636 if (OptimizedScops)
1637 errs() << S;
1639 return false;
1642 void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
1643 isl_printer *p;
1644 char *ScheduleStr;
1646 OS << "Calculated schedule:\n";
1648 if (!LastSchedule) {
1649 OS << "n/a\n";
1650 return;
1653 p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
1654 p = isl_printer_print_schedule(p, LastSchedule);
1655 ScheduleStr = isl_printer_get_str(p);
1656 isl_printer_free(p);
1658 OS << ScheduleStr << "\n";
1661 void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
1662 ScopPass::getAnalysisUsage(AU);
1663 AU.addRequired<DependenceInfo>();
1664 AU.addRequired<TargetTransformInfoWrapperPass>();
1666 AU.addPreserved<DependenceInfo>();
1669 Pass *polly::createIslScheduleOptimizerPass() {
1670 return new IslScheduleOptimizer();
1673 INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
1674 "Polly - Optimize schedule of SCoP", false, false);
1675 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
1676 INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
1677 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
1678 INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
1679 "Polly - Optimize schedule of SCoP", false, false)