[GPGPU] Make the ast_build available to block generator
[polly-mirror.git] / lib / CodeGen / PPCGCodeGeneration.cpp
blobfc1a5ca7d8e9e7db5e9d1d91f2a7313f84653ce9
1 //===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Take a scop created by ScopInfo and map it to GPU code using the ppcg
11 // GPU mapping strategy.
13 //===----------------------------------------------------------------------===//
15 #include "polly/CodeGen/PPCGCodeGeneration.h"
16 #include "polly/CodeGen/CodeGeneration.h"
17 #include "polly/CodeGen/IslAst.h"
18 #include "polly/CodeGen/IslNodeBuilder.h"
19 #include "polly/CodeGen/Utils.h"
20 #include "polly/DependenceInfo.h"
21 #include "polly/LinkAllPasses.h"
22 #include "polly/Options.h"
23 #include "polly/ScopDetection.h"
24 #include "polly/ScopInfo.h"
25 #include "polly/Support/SCEVValidator.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/GlobalsModRef.h"
30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/IR/LegacyPassManager.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/IRReader/IRReader.h"
36 #include "llvm/Linker/Linker.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/TargetSelect.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "isl/union_map.h"
45 extern "C" {
46 #include "ppcg/cuda.h"
47 #include "ppcg/gpu.h"
48 #include "ppcg/gpu_print.h"
49 #include "ppcg/ppcg.h"
50 #include "ppcg/schedule.h"
53 #include "llvm/Support/Debug.h"
55 using namespace polly;
56 using namespace llvm;
58 #define DEBUG_TYPE "polly-codegen-ppcg"
60 static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule",
61 cl::desc("Dump the computed GPU Schedule"),
62 cl::Hidden, cl::init(false), cl::ZeroOrMore,
63 cl::cat(PollyCategory));
65 static cl::opt<bool>
66 DumpCode("polly-acc-dump-code",
67 cl::desc("Dump C code describing the GPU mapping"), cl::Hidden,
68 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
70 static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir",
71 cl::desc("Dump the kernel LLVM-IR"),
72 cl::Hidden, cl::init(false), cl::ZeroOrMore,
73 cl::cat(PollyCategory));
75 static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm",
76 cl::desc("Dump the kernel assembly code"),
77 cl::Hidden, cl::init(false), cl::ZeroOrMore,
78 cl::cat(PollyCategory));
80 static cl::opt<bool> FastMath("polly-acc-fastmath",
81 cl::desc("Allow unsafe math optimizations"),
82 cl::Hidden, cl::init(false), cl::ZeroOrMore,
83 cl::cat(PollyCategory));
84 static cl::opt<bool> SharedMemory("polly-acc-use-shared",
85 cl::desc("Use shared memory"), cl::Hidden,
86 cl::init(false), cl::ZeroOrMore,
87 cl::cat(PollyCategory));
88 static cl::opt<bool> PrivateMemory("polly-acc-use-private",
89 cl::desc("Use private memory"), cl::Hidden,
90 cl::init(false), cl::ZeroOrMore,
91 cl::cat(PollyCategory));
93 bool polly::PollyManagedMemory;
94 static cl::opt<bool, true>
95 XManagedMemory("polly-acc-codegen-managed-memory",
96 cl::desc("Generate Host kernel code assuming"
97 " that all memory has been"
98 " declared as managed memory"),
99 cl::location(PollyManagedMemory), cl::Hidden,
100 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
102 static cl::opt<bool>
103 FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure",
104 cl::desc("Fail and generate a backtrace if"
105 " verifyModule fails on the GPU "
106 " kernel module."),
107 cl::Hidden, cl::init(false), cl::ZeroOrMore,
108 cl::cat(PollyCategory));
110 static cl::opt<std::string> CUDALibDevice(
111 "polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden,
112 cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"),
113 cl::ZeroOrMore, cl::cat(PollyCategory));
115 static cl::opt<std::string>
116 CudaVersion("polly-acc-cuda-version",
117 cl::desc("The CUDA version to compile for"), cl::Hidden,
118 cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory));
120 static cl::opt<int>
121 MinCompute("polly-acc-mincompute",
122 cl::desc("Minimal number of compute statements to run on GPU."),
123 cl::Hidden, cl::init(10 * 512 * 512));
125 /// Return a unique name for a Scop, which is the scop region with the
126 /// function name.
127 std::string getUniqueScopName(const Scop *S) {
128 return "Scop Region: " + S->getNameStr() +
129 " | Function: " + std::string(S->getFunction().getName());
132 /// Used to store information PPCG wants for kills. This information is
133 /// used by live range reordering.
135 /// @see computeLiveRangeReordering
136 /// @see GPUNodeBuilder::createPPCGScop
137 /// @see GPUNodeBuilder::createPPCGProg
138 struct MustKillsInfo {
139 /// Collection of all kill statements that will be sequenced at the end of
140 /// PPCGScop->schedule.
142 /// The nodes in `KillsSchedule` will be merged using `isl_schedule_set`
143 /// which merges schedules in *arbitrary* order.
144 /// (we don't care about the order of the kills anyway).
145 isl::schedule KillsSchedule;
146 /// Map from kill statement instances to scalars that need to be
147 /// killed.
149 /// We currently derive kill information for:
150 /// 1. phi nodes. PHI nodes are not alive outside the scop and can
151 /// consequently all be killed.
152 /// 2. Scalar arrays that are not used outside the Scop. This is
153 /// checked by `isScalarUsesContainedInScop`.
154 /// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
155 isl::union_map TaggedMustKills;
157 /// Tagged must kills stripped of the tags.
158 /// [params] -> { Stmt_phantom[] -> scalar_to_kill[] }
159 isl::union_map MustKills;
161 MustKillsInfo() : KillsSchedule(nullptr) {}
164 /// Check if SAI's uses are entirely contained within Scop S.
165 /// If a scalar is used only with a Scop, we are free to kill it, as no data
166 /// can flow in/out of the value any more.
167 /// @see computeMustKillsInfo
168 static bool isScalarUsesContainedInScop(const Scop &S,
169 const ScopArrayInfo *SAI) {
170 assert(SAI->isValueKind() && "this function only deals with scalars."
171 " Dealing with arrays required alias analysis");
173 const Region &R = S.getRegion();
174 for (User *U : SAI->getBasePtr()->users()) {
175 Instruction *I = dyn_cast<Instruction>(U);
176 assert(I && "invalid user of scop array info");
177 if (!R.contains(I))
178 return false;
180 return true;
183 /// Compute must-kills needed to enable live range reordering with PPCG.
185 /// @params S The Scop to compute live range reordering information
186 /// @returns live range reordering information that can be used to setup
187 /// PPCG.
188 static MustKillsInfo computeMustKillsInfo(const Scop &S) {
189 const isl::space ParamSpace = S.getParamSpace();
190 MustKillsInfo Info;
192 // 1. Collect all ScopArrayInfo that satisfy *any* of the criteria:
193 // 1.1 phi nodes in scop.
194 // 1.2 scalars that are only used within the scop
195 SmallVector<isl::id, 4> KillMemIds;
196 for (ScopArrayInfo *SAI : S.arrays()) {
197 if (SAI->isPHIKind() ||
198 (SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI)))
199 KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release()));
202 Info.TaggedMustKills = isl::union_map::empty(ParamSpace);
203 Info.MustKills = isl::union_map::empty(ParamSpace);
205 // Initialising KillsSchedule to `isl_set_empty` creates an empty node in the
206 // schedule:
207 // - filter: "[control] -> { }"
208 // So, we choose to not create this to keep the output a little nicer,
209 // at the cost of some code complexity.
210 Info.KillsSchedule = nullptr;
212 for (isl::id &ToKillId : KillMemIds) {
213 isl::id KillStmtId = isl::id::alloc(
214 S.getIslCtx(),
215 std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr);
217 // NOTE: construction of tagged_must_kill:
218 // 2. We need to construct a map:
219 // [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
220 // To construct this, we use `isl_map_domain_product` on 2 maps`:
221 // 2a. StmtToScalar:
222 // [param] -> { Stmt_phantom[] -> scalar_to_kill[] }
223 // 2b. PhantomRefToScalar:
224 // [param] -> { ref_phantom[] -> scalar_to_kill[] }
226 // Combining these with `isl_map_domain_product` gives us
227 // TaggedMustKill:
228 // [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
230 // 2a. [param] -> { Stmt[] -> scalar_to_kill[] }
231 isl::map StmtToScalar = isl::map::universe(ParamSpace);
232 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId));
233 StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId));
235 isl::id PhantomRefId = isl::id::alloc(
236 S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(),
237 nullptr);
239 // 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] }
240 isl::map PhantomRefToScalar = isl::map::universe(ParamSpace);
241 PhantomRefToScalar =
242 PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId);
243 PhantomRefToScalar =
244 PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId);
246 // 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
247 isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar);
248 Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill);
250 // 2. [param] -> { Stmt[] -> scalar_to_kill[] }
251 Info.MustKills = Info.TaggedMustKills.domain_factor_domain();
253 // 3. Create the kill schedule of the form:
254 // "[param] -> { Stmt_phantom[] }"
255 // Then add this to Info.KillsSchedule.
256 isl::space KillStmtSpace = ParamSpace;
257 KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId);
258 isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace);
260 isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain);
261 if (Info.KillsSchedule)
262 Info.KillsSchedule = Info.KillsSchedule.set(KillSchedule);
263 else
264 Info.KillsSchedule = KillSchedule;
267 return Info;
270 /// Create the ast expressions for a ScopStmt.
272 /// This function is a callback for to generate the ast expressions for each
273 /// of the scheduled ScopStmts.
274 static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt(
275 void *StmtT, __isl_take isl_ast_build *Build_C,
276 isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA,
277 isl_id *Id, void *User),
278 void *UserIndex,
279 isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User),
280 void *UserExpr) {
282 ScopStmt *Stmt = (ScopStmt *)StmtT;
284 if (!Stmt || !Build_C)
285 return NULL;
287 isl::ast_build Build = isl::manage(isl_ast_build_copy(Build_C));
288 isl::ctx Ctx = Build.get_ctx();
289 isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0);
291 Stmt->setAstBuild(Build);
293 for (MemoryAccess *Acc : *Stmt) {
294 isl::map AddrFunc = Acc->getAddressFunction();
295 AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain());
297 isl::id RefId = Acc->getId();
298 isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc);
300 isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA);
301 MPA = MPA.coalesce();
302 MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex));
304 isl::ast_expr Access = Build.access_from(MPA);
305 Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr));
306 RefToExpr = RefToExpr.set(RefId, Access);
309 return RefToExpr.release();
312 /// Given a LLVM Type, compute its size in bytes,
313 static int computeSizeInBytes(const Type *T) {
314 int bytes = T->getPrimitiveSizeInBits() / 8;
315 if (bytes == 0)
316 bytes = T->getScalarSizeInBits() / 8;
317 return bytes;
320 /// Generate code for a GPU specific isl AST.
322 /// The GPUNodeBuilder augments the general existing IslNodeBuilder, which
323 /// generates code for general-purpose AST nodes, with special functionality
324 /// for generating GPU specific user nodes.
326 /// @see GPUNodeBuilder::createUser
327 class GPUNodeBuilder : public IslNodeBuilder {
328 public:
329 GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator,
330 const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE,
331 DominatorTree &DT, Scop &S, BasicBlock *StartBlock,
332 gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch)
333 : IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock),
334 Prog(Prog), Runtime(Runtime), Arch(Arch) {
335 getExprBuilder().setIDToSAI(&IDToSAI);
338 /// Create after-run-time-check initialization code.
339 void initializeAfterRTH();
341 /// Finalize the generated scop.
342 virtual void finalize();
344 /// Track if the full build process was successful.
346 /// This value is set to false, if throughout the build process an error
347 /// occurred which prevents us from generating valid GPU code.
348 bool BuildSuccessful = true;
350 /// The maximal number of loops surrounding a sequential kernel.
351 unsigned DeepestSequential = 0;
353 /// The maximal number of loops surrounding a parallel kernel.
354 unsigned DeepestParallel = 0;
356 /// Return the name to set for the ptx_kernel.
357 std::string getKernelFuncName(int Kernel_id);
359 private:
360 /// A vector of array base pointers for which a new ScopArrayInfo was created.
362 /// This vector is used to delete the ScopArrayInfo when it is not needed any
363 /// more.
364 std::vector<Value *> LocalArrays;
366 /// A map from ScopArrays to their corresponding device allocations.
367 std::map<ScopArrayInfo *, Value *> DeviceAllocations;
369 /// The current GPU context.
370 Value *GPUContext;
372 /// The set of isl_ids allocated in the kernel
373 std::vector<isl_id *> KernelIds;
375 /// A module containing GPU code.
377 /// This pointer is only set in case we are currently generating GPU code.
378 std::unique_ptr<Module> GPUModule;
380 /// The GPU program we generate code for.
381 gpu_prog *Prog;
383 /// The GPU Runtime implementation to use (OpenCL or CUDA).
384 GPURuntime Runtime;
386 /// The GPU Architecture to target.
387 GPUArch Arch;
389 /// Class to free isl_ids.
390 class IslIdDeleter {
391 public:
392 void operator()(__isl_take isl_id *Id) { isl_id_free(Id); };
395 /// A set containing all isl_ids allocated in a GPU kernel.
397 /// By releasing this set all isl_ids will be freed.
398 std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs;
400 IslExprBuilder::IDToScopArrayInfoTy IDToSAI;
402 /// Create code for user-defined AST nodes.
404 /// These AST nodes can be of type:
406 /// - ScopStmt: A computational statement (TODO)
407 /// - Kernel: A GPU kernel call (TODO)
408 /// - Data-Transfer: A GPU <-> CPU data-transfer
409 /// - In-kernel synchronization
410 /// - In-kernel memory copy statement
412 /// @param UserStmt The ast node to generate code for.
413 virtual void createUser(__isl_take isl_ast_node *UserStmt);
415 enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST };
417 /// Create code for a data transfer statement
419 /// @param TransferStmt The data transfer statement.
420 /// @param Direction The direction in which to transfer data.
421 void createDataTransfer(__isl_take isl_ast_node *TransferStmt,
422 enum DataDirection Direction);
424 /// Find llvm::Values referenced in GPU kernel.
426 /// @param Kernel The kernel to scan for llvm::Values
428 /// @returns A tuple, whose:
429 /// - First element contains the set of values referenced by the
430 /// kernel
431 /// - Second element contains the set of functions referenced by the
432 /// kernel. All functions in the set satisfy
433 /// `isValidFunctionInKernel`.
434 /// - Third element contains loops that have induction variables
435 /// which are used in the kernel, *and* these loops are *neither*
436 /// in the scop, nor do they immediately surroung the Scop.
437 /// See [Code generation of induction variables of loops outside
438 /// Scops]
439 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>>
440 getReferencesInKernel(ppcg_kernel *Kernel);
442 /// Compute the sizes of the execution grid for a given kernel.
444 /// @param Kernel The kernel to compute grid sizes for.
446 /// @returns A tuple with grid sizes for X and Y dimension
447 std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel);
449 /// Get the managed array pointer for sending host pointers to the device.
450 /// \note
451 /// This is to be used only with managed memory
452 Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo);
454 /// Compute the sizes of the thread blocks for a given kernel.
456 /// @param Kernel The kernel to compute thread block sizes for.
458 /// @returns A tuple with thread block sizes for X, Y, and Z dimensions.
459 std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel);
461 /// Store a specific kernel launch parameter in the array of kernel launch
462 /// parameters.
464 /// @param Parameters The list of parameters in which to store.
465 /// @param Param The kernel launch parameter to store.
466 /// @param Index The index in the parameter list, at which to store the
467 /// parameter.
468 void insertStoreParameter(Instruction *Parameters, Instruction *Param,
469 int Index);
471 /// Create kernel launch parameters.
473 /// @param Kernel The kernel to create parameters for.
474 /// @param F The kernel function that has been created.
475 /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
477 /// @returns A stack allocated array with pointers to the parameter
478 /// values that are passed to the kernel.
479 Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F,
480 SetVector<Value *> SubtreeValues);
482 /// Create declarations for kernel variable.
484 /// This includes shared memory declarations.
486 /// @param Kernel The kernel definition to create variables for.
487 /// @param FN The function into which to generate the variables.
488 void createKernelVariables(ppcg_kernel *Kernel, Function *FN);
490 /// Add CUDA annotations to module.
492 /// Add a set of CUDA annotations that declares the maximal block dimensions
493 /// that will be used to execute the CUDA kernel. This allows the NVIDIA
494 /// PTX compiler to bound the number of allocated registers to ensure the
495 /// resulting kernel is known to run with up to as many block dimensions
496 /// as specified here.
498 /// @param M The module to add the annotations to.
499 /// @param BlockDimX The size of block dimension X.
500 /// @param BlockDimY The size of block dimension Y.
501 /// @param BlockDimZ The size of block dimension Z.
502 void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY,
503 Value *BlockDimZ);
505 /// Create GPU kernel.
507 /// Code generate the kernel described by @p KernelStmt.
509 /// @param KernelStmt The ast node to generate kernel code for.
510 void createKernel(__isl_take isl_ast_node *KernelStmt);
512 /// Generate code that computes the size of an array.
514 /// @param Array The array for which to compute a size.
515 Value *getArraySize(gpu_array_info *Array);
517 /// Generate code to compute the minimal offset at which an array is accessed.
519 /// The offset of an array is the minimal array location accessed in a scop.
521 /// Example:
523 /// for (long i = 0; i < 100; i++)
524 /// A[i + 42] += ...
526 /// getArrayOffset(A) results in 42.
528 /// @param Array The array for which to compute the offset.
529 /// @returns An llvm::Value that contains the offset of the array.
530 Value *getArrayOffset(gpu_array_info *Array);
532 /// Prepare the kernel arguments for kernel code generation
534 /// @param Kernel The kernel to generate code for.
535 /// @param FN The function created for the kernel.
536 void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN);
538 /// Create kernel function.
540 /// Create a kernel function located in a newly created module that can serve
541 /// as target for device code generation. Set the Builder to point to the
542 /// start block of this newly created function.
544 /// @param Kernel The kernel to generate code for.
545 /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
546 /// @param SubtreeFunctions The set of llvm::Functions referenced by this
547 /// kernel.
548 void createKernelFunction(ppcg_kernel *Kernel,
549 SetVector<Value *> &SubtreeValues,
550 SetVector<Function *> &SubtreeFunctions);
552 /// Create the declaration of a kernel function.
554 /// The kernel function takes as arguments:
556 /// - One i8 pointer for each external array reference used in the kernel.
557 /// - Host iterators
558 /// - Parameters
559 /// - Other LLVM Value references (TODO)
561 /// @param Kernel The kernel to generate the function declaration for.
562 /// @param SubtreeValues The set of llvm::Values referenced by this kernel.
564 /// @returns The newly declared function.
565 Function *createKernelFunctionDecl(ppcg_kernel *Kernel,
566 SetVector<Value *> &SubtreeValues);
568 /// Insert intrinsic functions to obtain thread and block ids.
570 /// @param The kernel to generate the intrinsic functions for.
571 void insertKernelIntrinsics(ppcg_kernel *Kernel);
573 /// Insert function calls to retrieve the SPIR group/local ids.
575 /// @param The kernel to generate the function calls for.
576 void insertKernelCallsSPIR(ppcg_kernel *Kernel);
578 /// Setup the creation of functions referenced by the GPU kernel.
580 /// 1. Create new function declarations in GPUModule which are the same as
581 /// SubtreeFunctions.
583 /// 2. Populate IslNodeBuilder::ValueMap with mappings from
584 /// old functions (that come from the original module) to new functions
585 /// (that are created within GPUModule). That way, we generate references
586 /// to the correct function (in GPUModule) in BlockGenerator.
588 /// @see IslNodeBuilder::ValueMap
589 /// @see BlockGenerator::GlobalMap
590 /// @see BlockGenerator::getNewValue
591 /// @see GPUNodeBuilder::getReferencesInKernel.
593 /// @param SubtreeFunctions The set of llvm::Functions referenced by
594 /// this kernel.
595 void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions);
597 /// Create a global-to-shared or shared-to-global copy statement.
599 /// @param CopyStmt The copy statement to generate code for
600 void createKernelCopy(ppcg_kernel_stmt *CopyStmt);
602 /// Create code for a ScopStmt called in @p Expr.
604 /// @param Expr The expression containing the call.
605 /// @param KernelStmt The kernel statement referenced in the call.
606 void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt);
608 /// Create an in-kernel synchronization call.
609 void createKernelSync();
611 /// Create a PTX assembly string for the current GPU kernel.
613 /// @returns A string containing the corresponding PTX assembly code.
614 std::string createKernelASM();
616 /// Remove references from the dominator tree to the kernel function @p F.
618 /// @param F The function to remove references to.
619 void clearDominators(Function *F);
621 /// Remove references from scalar evolution to the kernel function @p F.
623 /// @param F The function to remove references to.
624 void clearScalarEvolution(Function *F);
626 /// Remove references from loop info to the kernel function @p F.
628 /// @param F The function to remove references to.
629 void clearLoops(Function *F);
631 /// Check if the scop requires to be linked with CUDA's libdevice.
632 bool requiresCUDALibDevice();
634 /// Link with the NVIDIA libdevice library (if needed and available).
635 void addCUDALibDevice();
637 /// Finalize the generation of the kernel function.
639 /// Free the LLVM-IR module corresponding to the kernel and -- if requested --
640 /// dump its IR to stderr.
642 /// @returns The Assembly string of the kernel.
643 std::string finalizeKernelFunction();
645 /// Finalize the generation of the kernel arguments.
647 /// This function ensures that not-read-only scalars used in a kernel are
648 /// stored back to the global memory location they are backed with before
649 /// the kernel terminates.
651 /// @params Kernel The kernel to finalize kernel arguments for.
652 void finalizeKernelArguments(ppcg_kernel *Kernel);
654 /// Create code that allocates memory to store arrays on device.
655 void allocateDeviceArrays();
657 /// Create code to prepare the managed device pointers.
658 void prepareManagedDeviceArrays();
660 /// Free all allocated device arrays.
661 void freeDeviceArrays();
663 /// Create a call to initialize the GPU context.
665 /// @returns A pointer to the newly initialized context.
666 Value *createCallInitContext();
668 /// Create a call to get the device pointer for a kernel allocation.
670 /// @param Allocation The Polly GPU allocation
672 /// @returns The device parameter corresponding to this allocation.
673 Value *createCallGetDevicePtr(Value *Allocation);
675 /// Create a call to free the GPU context.
677 /// @param Context A pointer to an initialized GPU context.
678 void createCallFreeContext(Value *Context);
680 /// Create a call to allocate memory on the device.
682 /// @param Size The size of memory to allocate
684 /// @returns A pointer that identifies this allocation.
685 Value *createCallAllocateMemoryForDevice(Value *Size);
687 /// Create a call to free a device array.
689 /// @param Array The device array to free.
690 void createCallFreeDeviceMemory(Value *Array);
692 /// Create a call to copy data from host to device.
694 /// @param HostPtr A pointer to the host data that should be copied.
695 /// @param DevicePtr A device pointer specifying the location to copy to.
696 void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr,
697 Value *Size);
699 /// Create a call to copy data from device to host.
701 /// @param DevicePtr A pointer to the device data that should be copied.
702 /// @param HostPtr A host pointer specifying the location to copy to.
703 void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr,
704 Value *Size);
706 /// Create a call to synchronize Host & Device.
707 /// \note
708 /// This is to be used only with managed memory.
709 void createCallSynchronizeDevice();
711 /// Create a call to get a kernel from an assembly string.
713 /// @param Buffer The string describing the kernel.
714 /// @param Entry The name of the kernel function to call.
716 /// @returns A pointer to a kernel object
717 Value *createCallGetKernel(Value *Buffer, Value *Entry);
719 /// Create a call to free a GPU kernel.
721 /// @param GPUKernel THe kernel to free.
722 void createCallFreeKernel(Value *GPUKernel);
724 /// Create a call to launch a GPU kernel.
726 /// @param GPUKernel The kernel to launch.
727 /// @param GridDimX The size of the first grid dimension.
728 /// @param GridDimY The size of the second grid dimension.
729 /// @param GridBlockX The size of the first block dimension.
730 /// @param GridBlockY The size of the second block dimension.
731 /// @param GridBlockZ The size of the third block dimension.
732 /// @param Parameters A pointer to an array that contains itself pointers to
733 /// the parameter values passed for each kernel argument.
734 void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
735 Value *GridDimY, Value *BlockDimX,
736 Value *BlockDimY, Value *BlockDimZ,
737 Value *Parameters);
740 std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) {
741 return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" +
742 std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id);
745 void GPUNodeBuilder::initializeAfterRTH() {
746 BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(),
747 &*Builder.GetInsertPoint(), &DT, &LI);
748 NewBB->setName("polly.acc.initialize");
749 Builder.SetInsertPoint(&NewBB->front());
751 GPUContext = createCallInitContext();
753 if (!PollyManagedMemory)
754 allocateDeviceArrays();
755 else
756 prepareManagedDeviceArrays();
759 void GPUNodeBuilder::finalize() {
760 if (!PollyManagedMemory)
761 freeDeviceArrays();
763 createCallFreeContext(GPUContext);
764 IslNodeBuilder::finalize();
767 void GPUNodeBuilder::allocateDeviceArrays() {
768 assert(!PollyManagedMemory &&
769 "Managed memory will directly send host pointers "
770 "to the kernel. There is no need for device arrays");
771 isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release());
773 for (int i = 0; i < Prog->n_array; ++i) {
774 gpu_array_info *Array = &Prog->array[i];
775 auto *ScopArray = (ScopArrayInfo *)Array->user;
776 std::string DevArrayName("p_dev_array_");
777 DevArrayName.append(Array->name);
779 Value *ArraySize = getArraySize(Array);
780 Value *Offset = getArrayOffset(Array);
781 if (Offset)
782 ArraySize = Builder.CreateSub(
783 ArraySize,
784 Builder.CreateMul(Offset,
785 Builder.getInt64(ScopArray->getElemSizeInBytes())));
786 const SCEV *SizeSCEV = SE.getSCEV(ArraySize);
787 // It makes no sense to have an array of size 0. The CUDA API will
788 // throw an error anyway if we invoke `cuMallocManaged` with size `0`. We
789 // choose to be defensive and catch this at the compile phase. It is
790 // most likely that we are doing something wrong with size computation.
791 if (SizeSCEV->isZero()) {
792 errs() << getUniqueScopName(&S)
793 << " has computed array size 0: " << *ArraySize
794 << " | for array: " << *(ScopArray->getBasePtr())
795 << ". This is illegal, exiting.\n";
796 report_fatal_error("array size was computed to be 0");
799 Value *DevArray = createCallAllocateMemoryForDevice(ArraySize);
800 DevArray->setName(DevArrayName);
801 DeviceAllocations[ScopArray] = DevArray;
804 isl_ast_build_free(Build);
807 void GPUNodeBuilder::prepareManagedDeviceArrays() {
808 assert(PollyManagedMemory &&
809 "Device array most only be prepared in managed-memory mode");
810 for (int i = 0; i < Prog->n_array; ++i) {
811 gpu_array_info *Array = &Prog->array[i];
812 ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user;
813 Value *HostPtr;
815 if (gpu_array_is_scalar(Array))
816 HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
817 else
818 HostPtr = ScopArray->getBasePtr();
819 HostPtr = getLatestValue(HostPtr);
821 Value *Offset = getArrayOffset(Array);
822 if (Offset) {
823 HostPtr = Builder.CreatePointerCast(
824 HostPtr, ScopArray->getElementType()->getPointerTo());
825 HostPtr = Builder.CreateGEP(HostPtr, Offset);
828 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
829 DeviceAllocations[ScopArray] = HostPtr;
833 void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX,
834 Value *BlockDimY, Value *BlockDimZ) {
835 auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations");
837 for (auto &F : *M) {
838 if (F.getCallingConv() != CallingConv::PTX_Kernel)
839 continue;
841 Value *V[] = {BlockDimX, BlockDimY, BlockDimZ};
843 Metadata *Elements[] = {
844 ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"),
845 ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"),
846 ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"),
847 ValueAsMetadata::get(V[2]),
849 MDNode *Node = MDNode::get(M->getContext(), Elements);
850 AnnotationNode->addOperand(Node);
854 void GPUNodeBuilder::freeDeviceArrays() {
855 assert(!PollyManagedMemory && "Managed memory does not use device arrays");
856 for (auto &Array : DeviceAllocations)
857 createCallFreeDeviceMemory(Array.second);
860 Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) {
861 const char *Name = "polly_getKernel";
862 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
863 Function *F = M->getFunction(Name);
865 // If F is not available, declare it.
866 if (!F) {
867 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
868 std::vector<Type *> Args;
869 Args.push_back(Builder.getInt8PtrTy());
870 Args.push_back(Builder.getInt8PtrTy());
871 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
872 F = Function::Create(Ty, Linkage, Name, M);
875 return Builder.CreateCall(F, {Buffer, Entry});
878 Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) {
879 const char *Name = "polly_getDevicePtr";
880 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
881 Function *F = M->getFunction(Name);
883 // If F is not available, declare it.
884 if (!F) {
885 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
886 std::vector<Type *> Args;
887 Args.push_back(Builder.getInt8PtrTy());
888 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
889 F = Function::Create(Ty, Linkage, Name, M);
892 return Builder.CreateCall(F, {Allocation});
895 void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
896 Value *GridDimY, Value *BlockDimX,
897 Value *BlockDimY, Value *BlockDimZ,
898 Value *Parameters) {
899 const char *Name = "polly_launchKernel";
900 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
901 Function *F = M->getFunction(Name);
903 // If F is not available, declare it.
904 if (!F) {
905 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
906 std::vector<Type *> Args;
907 Args.push_back(Builder.getInt8PtrTy());
908 Args.push_back(Builder.getInt32Ty());
909 Args.push_back(Builder.getInt32Ty());
910 Args.push_back(Builder.getInt32Ty());
911 Args.push_back(Builder.getInt32Ty());
912 Args.push_back(Builder.getInt32Ty());
913 Args.push_back(Builder.getInt8PtrTy());
914 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
915 F = Function::Create(Ty, Linkage, Name, M);
918 Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
919 BlockDimZ, Parameters});
922 void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) {
923 const char *Name = "polly_freeKernel";
924 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
925 Function *F = M->getFunction(Name);
927 // If F is not available, declare it.
928 if (!F) {
929 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
930 std::vector<Type *> Args;
931 Args.push_back(Builder.getInt8PtrTy());
932 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
933 F = Function::Create(Ty, Linkage, Name, M);
936 Builder.CreateCall(F, {GPUKernel});
939 void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) {
940 assert(!PollyManagedMemory &&
941 "Managed memory does not allocate or free memory "
942 "for device");
943 const char *Name = "polly_freeDeviceMemory";
944 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
945 Function *F = M->getFunction(Name);
947 // If F is not available, declare it.
948 if (!F) {
949 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
950 std::vector<Type *> Args;
951 Args.push_back(Builder.getInt8PtrTy());
952 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
953 F = Function::Create(Ty, Linkage, Name, M);
956 Builder.CreateCall(F, {Array});
959 Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) {
960 assert(!PollyManagedMemory &&
961 "Managed memory does not allocate or free memory "
962 "for device");
963 const char *Name = "polly_allocateMemoryForDevice";
964 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
965 Function *F = M->getFunction(Name);
967 // If F is not available, declare it.
968 if (!F) {
969 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
970 std::vector<Type *> Args;
971 Args.push_back(Builder.getInt64Ty());
972 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
973 F = Function::Create(Ty, Linkage, Name, M);
976 return Builder.CreateCall(F, {Size});
979 void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData,
980 Value *DeviceData,
981 Value *Size) {
982 assert(!PollyManagedMemory &&
983 "Managed memory does not transfer memory between "
984 "device and host");
985 const char *Name = "polly_copyFromHostToDevice";
986 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
987 Function *F = M->getFunction(Name);
989 // If F is not available, declare it.
990 if (!F) {
991 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
992 std::vector<Type *> Args;
993 Args.push_back(Builder.getInt8PtrTy());
994 Args.push_back(Builder.getInt8PtrTy());
995 Args.push_back(Builder.getInt64Ty());
996 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
997 F = Function::Create(Ty, Linkage, Name, M);
1000 Builder.CreateCall(F, {HostData, DeviceData, Size});
1003 void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData,
1004 Value *HostData,
1005 Value *Size) {
1006 assert(!PollyManagedMemory &&
1007 "Managed memory does not transfer memory between "
1008 "device and host");
1009 const char *Name = "polly_copyFromDeviceToHost";
1010 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1011 Function *F = M->getFunction(Name);
1013 // If F is not available, declare it.
1014 if (!F) {
1015 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1016 std::vector<Type *> Args;
1017 Args.push_back(Builder.getInt8PtrTy());
1018 Args.push_back(Builder.getInt8PtrTy());
1019 Args.push_back(Builder.getInt64Ty());
1020 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1021 F = Function::Create(Ty, Linkage, Name, M);
1024 Builder.CreateCall(F, {DeviceData, HostData, Size});
1027 void GPUNodeBuilder::createCallSynchronizeDevice() {
1028 assert(PollyManagedMemory && "explicit synchronization is only necessary for "
1029 "managed memory");
1030 const char *Name = "polly_synchronizeDevice";
1031 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1032 Function *F = M->getFunction(Name);
1034 // If F is not available, declare it.
1035 if (!F) {
1036 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1037 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false);
1038 F = Function::Create(Ty, Linkage, Name, M);
1041 Builder.CreateCall(F);
1044 Value *GPUNodeBuilder::createCallInitContext() {
1045 const char *Name;
1047 switch (Runtime) {
1048 case GPURuntime::CUDA:
1049 Name = "polly_initContextCUDA";
1050 break;
1051 case GPURuntime::OpenCL:
1052 Name = "polly_initContextCL";
1053 break;
1056 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1057 Function *F = M->getFunction(Name);
1059 // If F is not available, declare it.
1060 if (!F) {
1061 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1062 std::vector<Type *> Args;
1063 FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
1064 F = Function::Create(Ty, Linkage, Name, M);
1067 return Builder.CreateCall(F, {});
1070 void GPUNodeBuilder::createCallFreeContext(Value *Context) {
1071 const char *Name = "polly_freeContext";
1072 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1073 Function *F = M->getFunction(Name);
1075 // If F is not available, declare it.
1076 if (!F) {
1077 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1078 std::vector<Type *> Args;
1079 Args.push_back(Builder.getInt8PtrTy());
1080 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1081 F = Function::Create(Ty, Linkage, Name, M);
1084 Builder.CreateCall(F, {Context});
1087 /// Check if one string is a prefix of another.
1089 /// @param String The string in which to look for the prefix.
1090 /// @param Prefix The prefix to look for.
1091 static bool isPrefix(std::string String, std::string Prefix) {
1092 return String.find(Prefix) == 0;
1095 Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) {
1096 isl::ast_build Build = isl::ast_build::from_context(S.getContext());
1097 Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size);
1099 if (!gpu_array_is_scalar(Array)) {
1100 isl::multi_pw_aff ArrayBound =
1101 isl::manage(isl_multi_pw_aff_copy(Array->bound));
1103 isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0);
1104 isl::ast_expr Res = Build.expr_from(OffsetDimZero);
1106 for (unsigned int i = 1; i < Array->n_index; i++) {
1107 isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i);
1108 isl::ast_expr Expr = Build.expr_from(Bound_I);
1109 Res = Res.mul(Expr);
1112 Value *NumElements = ExprBuilder.create(Res.release());
1113 if (NumElements->getType() != ArraySize->getType())
1114 NumElements = Builder.CreateSExt(NumElements, ArraySize->getType());
1115 ArraySize = Builder.CreateMul(ArraySize, NumElements);
1117 return ArraySize;
1120 Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) {
1121 if (gpu_array_is_scalar(Array))
1122 return nullptr;
1124 isl::ast_build Build = isl::ast_build::from_context(S.getContext());
1126 isl::set Min = isl::manage(isl_set_copy(Array->extent)).lexmin();
1128 isl::set ZeroSet = isl::set::universe(Min.get_space());
1130 for (long i = 0; i < Min.dim(isl::dim::set); i++)
1131 ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0);
1133 if (Min.is_subset(ZeroSet)) {
1134 return nullptr;
1137 isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0));
1139 for (long i = 0; i < Min.dim(isl::dim::set); i++) {
1140 if (i > 0) {
1141 isl::pw_aff Bound_I =
1142 isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1));
1143 isl::ast_expr BExpr = Build.expr_from(Bound_I);
1144 Result = Result.mul(BExpr);
1146 isl::pw_aff DimMin = Min.dim_min(i);
1147 isl::ast_expr MExpr = Build.expr_from(DimMin);
1148 Result = Result.add(MExpr);
1151 return ExprBuilder.create(Result.release());
1154 Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array,
1155 ScopArrayInfo *ArrayInfo) {
1156 assert(PollyManagedMemory && "Only used when you wish to get a host "
1157 "pointer for sending data to the kernel, "
1158 "with managed memory");
1159 std::map<ScopArrayInfo *, Value *>::iterator it;
1160 it = DeviceAllocations.find(ArrayInfo);
1161 assert(it != DeviceAllocations.end() &&
1162 "Device array expected to be available");
1163 return it->second;
1166 void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt,
1167 enum DataDirection Direction) {
1168 assert(!PollyManagedMemory && "Managed memory needs no data transfers");
1169 isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt);
1170 isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0);
1171 isl_id *Id = isl_ast_expr_get_id(Arg);
1172 auto Array = (gpu_array_info *)isl_id_get_user(Id);
1173 auto ScopArray = (ScopArrayInfo *)(Array->user);
1175 Value *Size = getArraySize(Array);
1176 Value *Offset = getArrayOffset(Array);
1177 Value *DevPtr = DeviceAllocations[ScopArray];
1179 Value *HostPtr;
1181 if (gpu_array_is_scalar(Array))
1182 HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
1183 else
1184 HostPtr = ScopArray->getBasePtr();
1185 HostPtr = getLatestValue(HostPtr);
1187 if (Offset) {
1188 HostPtr = Builder.CreatePointerCast(
1189 HostPtr, ScopArray->getElementType()->getPointerTo());
1190 HostPtr = Builder.CreateGEP(HostPtr, Offset);
1193 HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
1195 if (Offset) {
1196 Size = Builder.CreateSub(
1197 Size, Builder.CreateMul(
1198 Offset, Builder.getInt64(ScopArray->getElemSizeInBytes())));
1201 if (Direction == HOST_TO_DEVICE)
1202 createCallCopyFromHostToDevice(HostPtr, DevPtr, Size);
1203 else
1204 createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size);
1206 isl_id_free(Id);
1207 isl_ast_expr_free(Arg);
1208 isl_ast_expr_free(Expr);
1209 isl_ast_node_free(TransferStmt);
1212 void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) {
1213 isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt);
1214 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1215 isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1216 isl_id_free(Id);
1217 isl_ast_expr_free(StmtExpr);
1219 const char *Str = isl_id_get_name(Id);
1220 if (!strcmp(Str, "kernel")) {
1221 createKernel(UserStmt);
1222 isl_ast_expr_free(Expr);
1223 return;
1225 if (!strcmp(Str, "init_device")) {
1226 initializeAfterRTH();
1227 isl_ast_node_free(UserStmt);
1228 isl_ast_expr_free(Expr);
1229 return;
1231 if (!strcmp(Str, "clear_device")) {
1232 finalize();
1233 isl_ast_node_free(UserStmt);
1234 isl_ast_expr_free(Expr);
1235 return;
1237 if (isPrefix(Str, "to_device")) {
1238 if (!PollyManagedMemory)
1239 createDataTransfer(UserStmt, HOST_TO_DEVICE);
1240 else
1241 isl_ast_node_free(UserStmt);
1243 isl_ast_expr_free(Expr);
1244 return;
1247 if (isPrefix(Str, "from_device")) {
1248 if (!PollyManagedMemory) {
1249 createDataTransfer(UserStmt, DEVICE_TO_HOST);
1250 } else {
1251 createCallSynchronizeDevice();
1252 isl_ast_node_free(UserStmt);
1254 isl_ast_expr_free(Expr);
1255 return;
1258 isl_id *Anno = isl_ast_node_get_annotation(UserStmt);
1259 struct ppcg_kernel_stmt *KernelStmt =
1260 (struct ppcg_kernel_stmt *)isl_id_get_user(Anno);
1261 isl_id_free(Anno);
1263 switch (KernelStmt->type) {
1264 case ppcg_kernel_domain:
1265 createScopStmt(Expr, KernelStmt);
1266 isl_ast_node_free(UserStmt);
1267 return;
1268 case ppcg_kernel_copy:
1269 createKernelCopy(KernelStmt);
1270 isl_ast_expr_free(Expr);
1271 isl_ast_node_free(UserStmt);
1272 return;
1273 case ppcg_kernel_sync:
1274 createKernelSync();
1275 isl_ast_expr_free(Expr);
1276 isl_ast_node_free(UserStmt);
1277 return;
1280 isl_ast_expr_free(Expr);
1281 isl_ast_node_free(UserStmt);
1282 return;
1284 void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) {
1285 isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index);
1286 LocalIndex = isl_ast_expr_address_of(LocalIndex);
1287 Value *LocalAddr = ExprBuilder.create(LocalIndex);
1288 isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index);
1289 Index = isl_ast_expr_address_of(Index);
1290 Value *GlobalAddr = ExprBuilder.create(Index);
1292 if (KernelStmt->u.c.read) {
1293 LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read");
1294 Builder.CreateStore(Load, LocalAddr);
1295 } else {
1296 LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write");
1297 Builder.CreateStore(Load, GlobalAddr);
1301 void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr,
1302 ppcg_kernel_stmt *KernelStmt) {
1303 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1304 isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr;
1306 LoopToScevMapT LTS;
1307 LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
1309 createSubstitutions(Expr, Stmt, LTS);
1311 if (Stmt->isBlockStmt())
1312 BlockGen.copyStmt(*Stmt, LTS, Indexes);
1313 else
1314 RegionGen.copyStmt(*Stmt, LTS, Indexes);
1317 void GPUNodeBuilder::createKernelSync() {
1318 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1319 const char *SpirName = "__gen_ocl_barrier_global";
1321 Function *Sync;
1323 switch (Arch) {
1324 case GPUArch::SPIR64:
1325 case GPUArch::SPIR32:
1326 Sync = M->getFunction(SpirName);
1328 // If Sync is not available, declare it.
1329 if (!Sync) {
1330 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
1331 std::vector<Type *> Args;
1332 FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
1333 Sync = Function::Create(Ty, Linkage, SpirName, M);
1334 Sync->setCallingConv(CallingConv::SPIR_FUNC);
1336 break;
1337 case GPUArch::NVPTX64:
1338 Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0);
1339 break;
1342 Builder.CreateCall(Sync, {});
1345 /// Collect llvm::Values referenced from @p Node
1347 /// This function only applies to isl_ast_nodes that are user_nodes referring
1348 /// to a ScopStmt. All other node types are ignore.
1350 /// @param Node The node to collect references for.
1351 /// @param User A user pointer used as storage for the data that is collected.
1353 /// @returns isl_bool_true if data could be collected successfully.
1354 isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) {
1355 if (isl_ast_node_get_type(Node) != isl_ast_node_user)
1356 return isl_bool_true;
1358 isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node);
1359 isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
1360 isl_id *Id = isl_ast_expr_get_id(StmtExpr);
1361 const char *Str = isl_id_get_name(Id);
1362 isl_id_free(Id);
1363 isl_ast_expr_free(StmtExpr);
1364 isl_ast_expr_free(Expr);
1366 if (!isPrefix(Str, "Stmt"))
1367 return isl_bool_true;
1369 Id = isl_ast_node_get_annotation(Node);
1370 auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id);
1371 auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
1372 isl_id_free(Id);
1374 addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */);
1376 return isl_bool_true;
1379 /// A list of functions that are available in NVIDIA's libdevice.
1380 const std::set<std::string> CUDALibDeviceFunctions = {
1381 "exp", "expf", "expl", "cos", "cosf",
1382 "sqrt", "sqrtf", "copysign", "copysignf", "copysignl"};
1384 /// Return the corresponding CUDA libdevice function name for @p F.
1386 /// Return "" if we are not compiling for CUDA.
1387 std::string getCUDALibDeviceFuntion(Function *F) {
1388 if (CUDALibDeviceFunctions.count(F->getName()))
1389 return std::string("__nv_") + std::string(F->getName());
1391 return "";
1394 /// Check if F is a function that we can code-generate in a GPU kernel.
1395 static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) {
1396 assert(F && "F is an invalid pointer");
1397 // We string compare against the name of the function to allow
1398 // all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and
1399 // "llvm.copysign".
1400 const StringRef Name = F->getName();
1402 if (AllowLibDevice && getCUDALibDeviceFuntion(F).length() > 0)
1403 return true;
1405 return F->isIntrinsic() &&
1406 (Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") ||
1407 Name.startswith("llvm.copysign"));
1410 /// Do not take `Function` as a subtree value.
1412 /// We try to take the reference of all subtree values and pass them along
1413 /// to the kernel from the host. Taking an address of any function and
1414 /// trying to pass along is nonsensical. Only allow `Value`s that are not
1415 /// `Function`s.
1416 static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); }
1418 /// Return `Function`s from `RawSubtreeValues`.
1419 static SetVector<Function *>
1420 getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues,
1421 bool AllowCUDALibDevice) {
1422 SetVector<Function *> SubtreeFunctions;
1423 for (Value *It : RawSubtreeValues) {
1424 Function *F = dyn_cast<Function>(It);
1425 if (F) {
1426 assert(isValidFunctionInKernel(F, AllowCUDALibDevice) &&
1427 "Code should have bailed out by "
1428 "this point if an invalid function "
1429 "were present in a kernel.");
1430 SubtreeFunctions.insert(F);
1433 return SubtreeFunctions;
1436 std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>>
1437 GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) {
1438 SetVector<Value *> SubtreeValues;
1439 SetVector<const SCEV *> SCEVs;
1440 SetVector<const Loop *> Loops;
1441 SubtreeReferences References = {
1442 LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator()};
1444 for (const auto &I : IDToValue)
1445 SubtreeValues.insert(I.second);
1447 // NOTE: this is populated in IslNodeBuilder::addParameters
1448 // See [Code generation of induction variables of loops outside Scops].
1449 for (const auto &I : OutsideLoopIterations)
1450 SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue());
1452 isl_ast_node_foreach_descendant_top_down(
1453 Kernel->tree, collectReferencesInGPUStmt, &References);
1455 for (const SCEV *Expr : SCEVs) {
1456 findValues(Expr, SE, SubtreeValues);
1457 findLoops(Expr, Loops);
1460 Loops.remove_if([this](const Loop *L) {
1461 return S.contains(L) || L->contains(S.getEntry());
1464 for (auto &SAI : S.arrays())
1465 SubtreeValues.remove(SAI->getBasePtr());
1467 isl_space *Space = S.getParamSpace().release();
1468 for (long i = 0; i < isl_space_dim(Space, isl_dim_param); i++) {
1469 isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i);
1470 assert(IDToValue.count(Id));
1471 Value *Val = IDToValue[Id];
1472 SubtreeValues.remove(Val);
1473 isl_id_free(Id);
1475 isl_space_free(Space);
1477 for (long i = 0; i < isl_space_dim(Kernel->space, isl_dim_set); i++) {
1478 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1479 assert(IDToValue.count(Id));
1480 Value *Val = IDToValue[Id];
1481 SubtreeValues.remove(Val);
1482 isl_id_free(Id);
1485 // Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions
1486 // SubtreeValues. This is important, because we should not lose any
1487 // SubtreeValues in the process of constructing the
1488 // "ValidSubtree{Values, Functions} sets. Nor should the set
1489 // ValidSubtree{Values, Functions} have any common element.
1490 auto ValidSubtreeValuesIt =
1491 make_filter_range(SubtreeValues, isValidSubtreeValue);
1492 SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(),
1493 ValidSubtreeValuesIt.end());
1495 bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64;
1497 SetVector<Function *> ValidSubtreeFunctions(
1498 getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice));
1500 // @see IslNodeBuilder::getReferencesInSubtree
1501 SetVector<Value *> ReplacedValues;
1502 for (Value *V : ValidSubtreeValues) {
1503 auto It = ValueMap.find(V);
1504 if (It == ValueMap.end())
1505 ReplacedValues.insert(V);
1506 else
1507 ReplacedValues.insert(It->second);
1509 return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops);
1512 void GPUNodeBuilder::clearDominators(Function *F) {
1513 DomTreeNode *N = DT.getNode(&F->getEntryBlock());
1514 std::vector<BasicBlock *> Nodes;
1515 for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
1516 Nodes.push_back(I->getBlock());
1518 for (BasicBlock *BB : Nodes)
1519 DT.eraseNode(BB);
1522 void GPUNodeBuilder::clearScalarEvolution(Function *F) {
1523 for (BasicBlock &BB : *F) {
1524 Loop *L = LI.getLoopFor(&BB);
1525 if (L)
1526 SE.forgetLoop(L);
1530 void GPUNodeBuilder::clearLoops(Function *F) {
1531 for (BasicBlock &BB : *F) {
1532 Loop *L = LI.getLoopFor(&BB);
1533 if (L)
1534 SE.forgetLoop(L);
1535 LI.removeBlock(&BB);
1539 std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) {
1540 std::vector<Value *> Sizes;
1541 isl::ast_build Context = isl::ast_build::from_context(S.getContext());
1543 isl::multi_pw_aff GridSizePwAffs =
1544 isl::manage(isl_multi_pw_aff_copy(Kernel->grid_size));
1545 for (long i = 0; i < Kernel->n_grid; i++) {
1546 isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i);
1547 isl::ast_expr GridSize = Context.expr_from(Size);
1548 Value *Res = ExprBuilder.create(GridSize.release());
1549 Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
1550 Sizes.push_back(Res);
1553 for (long i = Kernel->n_grid; i < 3; i++)
1554 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1556 return std::make_tuple(Sizes[0], Sizes[1]);
1559 std::tuple<Value *, Value *, Value *>
1560 GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) {
1561 std::vector<Value *> Sizes;
1563 for (long i = 0; i < Kernel->n_block; i++) {
1564 Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]);
1565 Sizes.push_back(Res);
1568 for (long i = Kernel->n_block; i < 3; i++)
1569 Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
1571 return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]);
1574 void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters,
1575 Instruction *Param, int Index) {
1576 Value *Slot = Builder.CreateGEP(
1577 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1578 Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1579 Builder.CreateStore(ParamTyped, Slot);
1582 Value *
1583 GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F,
1584 SetVector<Value *> SubtreeValues) {
1585 const int NumArgs = F->arg_size();
1586 std::vector<int> ArgSizes(NumArgs);
1588 Type *ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs);
1590 BasicBlock *EntryBlock =
1591 &Builder.GetInsertBlock()->getParent()->getEntryBlock();
1592 auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace();
1593 std::string Launch = "polly_launch_" + std::to_string(Kernel->id);
1594 Instruction *Parameters = new AllocaInst(
1595 ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator());
1597 int Index = 0;
1598 for (long i = 0; i < Prog->n_array; i++) {
1599 if (!ppcg_kernel_requires_array_argument(Kernel, i))
1600 continue;
1602 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1603 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
1605 ArgSizes[Index] = SAI->getElemSizeInBytes();
1607 Value *DevArray = nullptr;
1608 if (PollyManagedMemory) {
1609 DevArray = getManagedDeviceArray(&Prog->array[i],
1610 const_cast<ScopArrayInfo *>(SAI));
1611 } else {
1612 DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)];
1613 DevArray = createCallGetDevicePtr(DevArray);
1615 assert(DevArray != nullptr && "Array to be offloaded to device not "
1616 "initialized");
1617 Value *Offset = getArrayOffset(&Prog->array[i]);
1619 if (Offset) {
1620 DevArray = Builder.CreatePointerCast(
1621 DevArray, SAI->getElementType()->getPointerTo());
1622 DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset));
1623 DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy());
1625 Value *Slot = Builder.CreateGEP(
1626 Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
1628 if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1629 Value *ValPtr = nullptr;
1630 if (PollyManagedMemory)
1631 ValPtr = DevArray;
1632 else
1633 ValPtr = BlockGen.getOrCreateAlloca(SAI);
1635 assert(ValPtr != nullptr && "ValPtr that should point to a valid object"
1636 " to be stored into Parameters");
1637 Value *ValPtrCast =
1638 Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy());
1639 Builder.CreateStore(ValPtrCast, Slot);
1640 } else {
1641 Instruction *Param =
1642 new AllocaInst(Builder.getInt8PtrTy(), AddressSpace,
1643 Launch + "_param_" + std::to_string(Index),
1644 EntryBlock->getTerminator());
1645 Builder.CreateStore(DevArray, Param);
1646 Value *ParamTyped =
1647 Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
1648 Builder.CreateStore(ParamTyped, Slot);
1650 Index++;
1653 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1655 for (long i = 0; i < NumHostIters; i++) {
1656 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1657 Value *Val = IDToValue[Id];
1658 isl_id_free(Id);
1660 ArgSizes[Index] = computeSizeInBytes(Val->getType());
1662 Instruction *Param =
1663 new AllocaInst(Val->getType(), AddressSpace,
1664 Launch + "_param_" + std::to_string(Index),
1665 EntryBlock->getTerminator());
1666 Builder.CreateStore(Val, Param);
1667 insertStoreParameter(Parameters, Param, Index);
1668 Index++;
1671 int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1673 for (long i = 0; i < NumVars; i++) {
1674 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1675 Value *Val = IDToValue[Id];
1676 if (ValueMap.count(Val))
1677 Val = ValueMap[Val];
1678 isl_id_free(Id);
1680 ArgSizes[Index] = computeSizeInBytes(Val->getType());
1682 Instruction *Param =
1683 new AllocaInst(Val->getType(), AddressSpace,
1684 Launch + "_param_" + std::to_string(Index),
1685 EntryBlock->getTerminator());
1686 Builder.CreateStore(Val, Param);
1687 insertStoreParameter(Parameters, Param, Index);
1688 Index++;
1691 for (auto Val : SubtreeValues) {
1692 ArgSizes[Index] = computeSizeInBytes(Val->getType());
1694 Instruction *Param =
1695 new AllocaInst(Val->getType(), AddressSpace,
1696 Launch + "_param_" + std::to_string(Index),
1697 EntryBlock->getTerminator());
1698 Builder.CreateStore(Val, Param);
1699 insertStoreParameter(Parameters, Param, Index);
1700 Index++;
1703 for (int i = 0; i < NumArgs; i++) {
1704 Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]);
1705 Instruction *Param =
1706 new AllocaInst(Builder.getInt32Ty(), AddressSpace,
1707 Launch + "_param_size_" + std::to_string(i),
1708 EntryBlock->getTerminator());
1709 Builder.CreateStore(Val, Param);
1710 insertStoreParameter(Parameters, Param, Index);
1711 Index++;
1714 auto Location = EntryBlock->getTerminator();
1715 return new BitCastInst(Parameters, Builder.getInt8PtrTy(),
1716 Launch + "_params_i8ptr", Location);
1719 void GPUNodeBuilder::setupKernelSubtreeFunctions(
1720 SetVector<Function *> SubtreeFunctions) {
1721 for (auto Fn : SubtreeFunctions) {
1722 const std::string ClonedFnName = Fn->getName();
1723 Function *Clone = GPUModule->getFunction(ClonedFnName);
1724 if (!Clone)
1725 Clone =
1726 Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage,
1727 ClonedFnName, GPUModule.get());
1728 assert(Clone && "Expected cloned function to be initialized.");
1729 assert(ValueMap.find(Fn) == ValueMap.end() &&
1730 "Fn already present in ValueMap");
1731 ValueMap[Fn] = Clone;
1734 void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) {
1735 isl_id *Id = isl_ast_node_get_annotation(KernelStmt);
1736 ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id);
1737 isl_id_free(Id);
1738 isl_ast_node_free(KernelStmt);
1740 if (Kernel->n_grid > 1)
1741 DeepestParallel =
1742 std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set));
1743 else
1744 DeepestSequential =
1745 std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set));
1747 Value *BlockDimX, *BlockDimY, *BlockDimZ;
1748 std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel);
1750 SetVector<Value *> SubtreeValues;
1751 SetVector<Function *> SubtreeFunctions;
1752 SetVector<const Loop *> Loops;
1753 std::tie(SubtreeValues, SubtreeFunctions, Loops) =
1754 getReferencesInKernel(Kernel);
1756 assert(Kernel->tree && "Device AST of kernel node is empty");
1758 Instruction &HostInsertPoint = *Builder.GetInsertPoint();
1759 IslExprBuilder::IDToValueTy HostIDs = IDToValue;
1760 ValueMapT HostValueMap = ValueMap;
1761 BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap;
1762 ScalarMap.clear();
1764 // Create for all loops we depend on values that contain the current loop
1765 // iteration. These values are necessary to generate code for SCEVs that
1766 // depend on such loops. As a result we need to pass them to the subfunction.
1767 for (const Loop *L : Loops) {
1768 const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
1769 SE.getUnknown(Builder.getInt64(1)),
1770 L, SCEV::FlagAnyWrap);
1771 Value *V = generateSCEV(OuterLIV);
1772 OutsideLoopIterations[L] = SE.getUnknown(V);
1773 SubtreeValues.insert(V);
1776 createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions);
1777 setupKernelSubtreeFunctions(SubtreeFunctions);
1779 create(isl_ast_node_copy(Kernel->tree));
1781 finalizeKernelArguments(Kernel);
1782 Function *F = Builder.GetInsertBlock()->getParent();
1783 if (Arch == GPUArch::NVPTX64)
1784 addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ);
1785 clearDominators(F);
1786 clearScalarEvolution(F);
1787 clearLoops(F);
1789 IDToValue = HostIDs;
1791 ValueMap = std::move(HostValueMap);
1792 ScalarMap = std::move(HostScalarMap);
1793 EscapeMap.clear();
1794 IDToSAI.clear();
1795 Annotator.resetAlternativeAliasBases();
1796 for (auto &BasePtr : LocalArrays)
1797 S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array);
1798 LocalArrays.clear();
1800 std::string ASMString = finalizeKernelFunction();
1801 Builder.SetInsertPoint(&HostInsertPoint);
1802 Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues);
1804 std::string Name = getKernelFuncName(Kernel->id);
1805 Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name);
1806 Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name");
1807 Value *GPUKernel = createCallGetKernel(KernelString, NameString);
1809 Value *GridDimX, *GridDimY;
1810 std::tie(GridDimX, GridDimY) = getGridSizes(Kernel);
1812 createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
1813 BlockDimZ, Parameters);
1814 createCallFreeKernel(GPUKernel);
1816 for (auto Id : KernelIds)
1817 isl_id_free(Id);
1819 KernelIds.clear();
1822 /// Compute the DataLayout string for the NVPTX backend.
1824 /// @param is64Bit Are we looking for a 64 bit architecture?
1825 static std::string computeNVPTXDataLayout(bool is64Bit) {
1826 std::string Ret = "";
1828 if (!is64Bit) {
1829 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1830 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1831 "64-v128:128:128-n16:32:64";
1832 } else {
1833 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1834 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
1835 "64-v128:128:128-n16:32:64";
1838 return Ret;
1841 /// Compute the DataLayout string for a SPIR kernel.
1843 /// @param is64Bit Are we looking for a 64 bit architecture?
1844 static std::string computeSPIRDataLayout(bool is64Bit) {
1845 std::string Ret = "";
1847 if (!is64Bit) {
1848 Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1849 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1850 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1851 "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1852 } else {
1853 Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
1854 "64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
1855 "32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
1856 "256:256-v256:256:256-v512:512:512-v1024:1024:1024";
1859 return Ret;
1862 Function *
1863 GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel,
1864 SetVector<Value *> &SubtreeValues) {
1865 std::vector<Type *> Args;
1866 std::string Identifier = getKernelFuncName(Kernel->id);
1868 std::vector<Metadata *> MemoryType;
1870 for (long i = 0; i < Prog->n_array; i++) {
1871 if (!ppcg_kernel_requires_array_argument(Kernel, i))
1872 continue;
1874 if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
1875 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1876 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
1877 Args.push_back(SAI->getElementType());
1878 MemoryType.push_back(
1879 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1880 } else {
1881 static const int UseGlobalMemory = 1;
1882 Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory));
1883 MemoryType.push_back(
1884 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1)));
1888 int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
1890 for (long i = 0; i < NumHostIters; i++) {
1891 Args.push_back(Builder.getInt64Ty());
1892 MemoryType.push_back(
1893 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1896 int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
1898 for (long i = 0; i < NumVars; i++) {
1899 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1900 Value *Val = IDToValue[Id];
1901 isl_id_free(Id);
1902 Args.push_back(Val->getType());
1903 MemoryType.push_back(
1904 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1907 for (auto *V : SubtreeValues) {
1908 Args.push_back(V->getType());
1909 MemoryType.push_back(
1910 ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
1913 auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false);
1914 auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier,
1915 GPUModule.get());
1917 std::vector<Metadata *> EmptyStrings;
1919 for (unsigned int i = 0; i < MemoryType.size(); i++) {
1920 EmptyStrings.push_back(MDString::get(FN->getContext(), ""));
1923 if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) {
1924 FN->setMetadata("kernel_arg_addr_space",
1925 MDNode::get(FN->getContext(), MemoryType));
1926 FN->setMetadata("kernel_arg_name",
1927 MDNode::get(FN->getContext(), EmptyStrings));
1928 FN->setMetadata("kernel_arg_access_qual",
1929 MDNode::get(FN->getContext(), EmptyStrings));
1930 FN->setMetadata("kernel_arg_type",
1931 MDNode::get(FN->getContext(), EmptyStrings));
1932 FN->setMetadata("kernel_arg_type_qual",
1933 MDNode::get(FN->getContext(), EmptyStrings));
1934 FN->setMetadata("kernel_arg_base_type",
1935 MDNode::get(FN->getContext(), EmptyStrings));
1938 switch (Arch) {
1939 case GPUArch::NVPTX64:
1940 FN->setCallingConv(CallingConv::PTX_Kernel);
1941 break;
1942 case GPUArch::SPIR32:
1943 case GPUArch::SPIR64:
1944 FN->setCallingConv(CallingConv::SPIR_KERNEL);
1945 break;
1948 auto Arg = FN->arg_begin();
1949 for (long i = 0; i < Kernel->n_array; i++) {
1950 if (!ppcg_kernel_requires_array_argument(Kernel, i))
1951 continue;
1953 Arg->setName(Kernel->array[i].array->name);
1955 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
1956 const ScopArrayInfo *SAI =
1957 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id)));
1958 Type *EleTy = SAI->getElementType();
1959 Value *Val = &*Arg;
1960 SmallVector<const SCEV *, 4> Sizes;
1961 isl_ast_build *Build =
1962 isl_ast_build_from_context(isl_set_copy(Prog->context));
1963 Sizes.push_back(nullptr);
1964 for (long j = 1; j < Kernel->array[i].array->n_index; j++) {
1965 isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff(
1966 Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j));
1967 auto V = ExprBuilder.create(DimSize);
1968 Sizes.push_back(SE.getSCEV(V));
1970 const ScopArrayInfo *SAIRep =
1971 S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array);
1972 LocalArrays.push_back(Val);
1974 isl_ast_build_free(Build);
1975 KernelIds.push_back(Id);
1976 IDToSAI[Id] = SAIRep;
1977 Arg++;
1980 for (long i = 0; i < NumHostIters; i++) {
1981 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
1982 Arg->setName(isl_id_get_name(Id));
1983 IDToValue[Id] = &*Arg;
1984 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
1985 Arg++;
1988 for (long i = 0; i < NumVars; i++) {
1989 isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
1990 Arg->setName(isl_id_get_name(Id));
1991 Value *Val = IDToValue[Id];
1992 ValueMap[Val] = &*Arg;
1993 IDToValue[Id] = &*Arg;
1994 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
1995 Arg++;
1998 for (auto *V : SubtreeValues) {
1999 Arg->setName(V->getName());
2000 ValueMap[V] = &*Arg;
2001 Arg++;
2004 return FN;
2007 void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) {
2008 Intrinsic::ID IntrinsicsBID[2];
2009 Intrinsic::ID IntrinsicsTID[3];
2011 switch (Arch) {
2012 case GPUArch::SPIR64:
2013 case GPUArch::SPIR32:
2014 llvm_unreachable("Cannot generate NVVM intrinsics for SPIR");
2015 case GPUArch::NVPTX64:
2016 IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x;
2017 IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y;
2019 IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x;
2020 IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y;
2021 IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z;
2022 break;
2025 auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable {
2026 std::string Name = isl_id_get_name(Id);
2027 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2028 Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr);
2029 Value *Val = Builder.CreateCall(IntrinsicFn, {});
2030 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
2031 IDToValue[Id] = Val;
2032 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2035 for (int i = 0; i < Kernel->n_grid; ++i) {
2036 isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i);
2037 addId(Id, IntrinsicsBID[i]);
2040 for (int i = 0; i < Kernel->n_block; ++i) {
2041 isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i);
2042 addId(Id, IntrinsicsTID[i]);
2046 void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel) {
2047 const char *GroupName[3] = {"__gen_ocl_get_group_id0",
2048 "__gen_ocl_get_group_id1",
2049 "__gen_ocl_get_group_id2"};
2051 const char *LocalName[3] = {"__gen_ocl_get_local_id0",
2052 "__gen_ocl_get_local_id1",
2053 "__gen_ocl_get_local_id2"};
2055 auto createFunc = [this](const char *Name, __isl_take isl_id *Id) mutable {
2056 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2057 Function *FN = M->getFunction(Name);
2059 // If FN is not available, declare it.
2060 if (!FN) {
2061 GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
2062 std::vector<Type *> Args;
2063 FunctionType *Ty = FunctionType::get(Builder.getInt32Ty(), Args, false);
2064 FN = Function::Create(Ty, Linkage, Name, M);
2065 FN->setCallingConv(CallingConv::SPIR_FUNC);
2068 Value *Val = Builder.CreateCall(FN, {});
2069 Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
2070 IDToValue[Id] = Val;
2071 KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
2074 for (int i = 0; i < Kernel->n_grid; ++i)
2075 createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i));
2077 for (int i = 0; i < Kernel->n_block; ++i)
2078 createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i));
2081 void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) {
2082 auto Arg = FN->arg_begin();
2083 for (long i = 0; i < Kernel->n_array; i++) {
2084 if (!ppcg_kernel_requires_array_argument(Kernel, i))
2085 continue;
2087 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2088 const ScopArrayInfo *SAI =
2089 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id)));
2090 isl_id_free(Id);
2092 if (SAI->getNumberOfDimensions() > 0) {
2093 Arg++;
2094 continue;
2097 Value *Val = &*Arg;
2099 if (!gpu_array_is_read_only_scalar(&Prog->array[i])) {
2100 Type *TypePtr = SAI->getElementType()->getPointerTo();
2101 Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr);
2102 Val = Builder.CreateLoad(TypedArgPtr);
2105 Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2106 Builder.CreateStore(Val, Alloca);
2108 Arg++;
2112 void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) {
2113 auto *FN = Builder.GetInsertBlock()->getParent();
2114 auto Arg = FN->arg_begin();
2116 bool StoredScalar = false;
2117 for (long i = 0; i < Kernel->n_array; i++) {
2118 if (!ppcg_kernel_requires_array_argument(Kernel, i))
2119 continue;
2121 isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
2122 const ScopArrayInfo *SAI =
2123 ScopArrayInfo::getFromId(isl::manage(isl_id_copy(Id)));
2124 isl_id_free(Id);
2126 if (SAI->getNumberOfDimensions() > 0) {
2127 Arg++;
2128 continue;
2131 if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
2132 Arg++;
2133 continue;
2136 Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
2137 Value *ArgPtr = &*Arg;
2138 Type *TypePtr = SAI->getElementType()->getPointerTo();
2139 Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr);
2140 Value *Val = Builder.CreateLoad(Alloca);
2141 Builder.CreateStore(Val, TypedArgPtr);
2142 StoredScalar = true;
2144 Arg++;
2147 if (StoredScalar) {
2148 /// In case more than one thread contains scalar stores, the generated
2149 /// code might be incorrect, if we only store at the end of the kernel.
2150 /// To support this case we need to store these scalars back at each
2151 /// memory store or at least before each kernel barrier.
2152 if (Kernel->n_block != 0 || Kernel->n_grid != 0) {
2153 BuildSuccessful = 0;
2154 DEBUG(
2155 dbgs() << getUniqueScopName(&S)
2156 << " has a store to a scalar value that"
2157 " would be undefined to run in parallel. Bailing out.\n";);
2162 void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) {
2163 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
2165 for (int i = 0; i < Kernel->n_var; ++i) {
2166 struct ppcg_kernel_var &Var = Kernel->var[i];
2167 isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set);
2168 Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType();
2170 Type *ArrayTy = EleTy;
2171 SmallVector<const SCEV *, 4> Sizes;
2173 Sizes.push_back(nullptr);
2174 for (unsigned int j = 1; j < Var.array->n_index; ++j) {
2175 isl_val *Val = isl_vec_get_element_val(Var.size, j);
2176 long Bound = isl_val_get_num_si(Val);
2177 isl_val_free(Val);
2178 Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound));
2181 for (int j = Var.array->n_index - 1; j >= 0; --j) {
2182 isl_val *Val = isl_vec_get_element_val(Var.size, j);
2183 long Bound = isl_val_get_num_si(Val);
2184 isl_val_free(Val);
2185 ArrayTy = ArrayType::get(ArrayTy, Bound);
2188 const ScopArrayInfo *SAI;
2189 Value *Allocation;
2190 if (Var.type == ppcg_access_shared) {
2191 auto GlobalVar = new GlobalVariable(
2192 *M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name,
2193 nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3);
2194 GlobalVar->setAlignment(EleTy->getPrimitiveSizeInBits() / 8);
2195 GlobalVar->setInitializer(Constant::getNullValue(ArrayTy));
2197 Allocation = GlobalVar;
2198 } else if (Var.type == ppcg_access_private) {
2199 Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array");
2200 } else {
2201 llvm_unreachable("unknown variable type");
2203 SAI =
2204 S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array);
2205 Id = isl_id_alloc(S.getIslCtx(), Var.name, nullptr);
2206 IDToValue[Id] = Allocation;
2207 LocalArrays.push_back(Allocation);
2208 KernelIds.push_back(Id);
2209 IDToSAI[Id] = SAI;
2213 void GPUNodeBuilder::createKernelFunction(
2214 ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues,
2215 SetVector<Function *> &SubtreeFunctions) {
2216 std::string Identifier = getKernelFuncName(Kernel->id);
2217 GPUModule.reset(new Module(Identifier, Builder.getContext()));
2219 switch (Arch) {
2220 case GPUArch::NVPTX64:
2221 if (Runtime == GPURuntime::CUDA)
2222 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2223 else if (Runtime == GPURuntime::OpenCL)
2224 GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl"));
2225 GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */));
2226 break;
2227 case GPUArch::SPIR32:
2228 GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown"));
2229 GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */));
2230 break;
2231 case GPUArch::SPIR64:
2232 GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown"));
2233 GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */));
2234 break;
2237 Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues);
2239 BasicBlock *PrevBlock = Builder.GetInsertBlock();
2240 auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN);
2242 DT.addNewBlock(EntryBlock, PrevBlock);
2244 Builder.SetInsertPoint(EntryBlock);
2245 Builder.CreateRetVoid();
2246 Builder.SetInsertPoint(EntryBlock, EntryBlock->begin());
2248 ScopDetection::markFunctionAsInvalid(FN);
2250 prepareKernelArguments(Kernel, FN);
2251 createKernelVariables(Kernel, FN);
2253 switch (Arch) {
2254 case GPUArch::NVPTX64:
2255 insertKernelIntrinsics(Kernel);
2256 break;
2257 case GPUArch::SPIR32:
2258 case GPUArch::SPIR64:
2259 insertKernelCallsSPIR(Kernel);
2260 break;
2264 std::string GPUNodeBuilder::createKernelASM() {
2265 llvm::Triple GPUTriple;
2267 switch (Arch) {
2268 case GPUArch::NVPTX64:
2269 switch (Runtime) {
2270 case GPURuntime::CUDA:
2271 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda"));
2272 break;
2273 case GPURuntime::OpenCL:
2274 GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl"));
2275 break;
2277 break;
2278 case GPUArch::SPIR64:
2279 case GPUArch::SPIR32:
2280 std::string SPIRAssembly;
2281 raw_string_ostream IROstream(SPIRAssembly);
2282 IROstream << *GPUModule;
2283 IROstream.flush();
2284 return SPIRAssembly;
2287 std::string ErrMsg;
2288 auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg);
2290 if (!GPUTarget) {
2291 errs() << ErrMsg << "\n";
2292 return "";
2295 TargetOptions Options;
2296 Options.UnsafeFPMath = FastMath;
2298 std::string subtarget;
2300 switch (Arch) {
2301 case GPUArch::NVPTX64:
2302 subtarget = CudaVersion;
2303 break;
2304 case GPUArch::SPIR32:
2305 case GPUArch::SPIR64:
2306 llvm_unreachable("No subtarget for SPIR architecture");
2309 std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine(
2310 GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>()));
2312 SmallString<0> ASMString;
2313 raw_svector_ostream ASMStream(ASMString);
2314 llvm::legacy::PassManager PM;
2316 PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis()));
2318 if (TargetM->addPassesToEmitFile(
2319 PM, ASMStream, TargetMachine::CGFT_AssemblyFile, true /* verify */)) {
2320 errs() << "The target does not support generation of this file type!\n";
2321 return "";
2324 PM.run(*GPUModule);
2326 return ASMStream.str();
2329 bool GPUNodeBuilder::requiresCUDALibDevice() {
2330 bool RequiresLibDevice = false;
2331 for (Function &F : GPUModule->functions()) {
2332 if (!F.isDeclaration())
2333 continue;
2335 std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(&F);
2336 if (CUDALibDeviceFunc.length() != 0) {
2337 F.setName(CUDALibDeviceFunc);
2338 RequiresLibDevice = true;
2342 return RequiresLibDevice;
2345 void GPUNodeBuilder::addCUDALibDevice() {
2346 if (Arch != GPUArch::NVPTX64)
2347 return;
2349 if (requiresCUDALibDevice()) {
2350 SMDiagnostic Error;
2352 errs() << CUDALibDevice << "\n";
2353 auto LibDeviceModule =
2354 parseIRFile(CUDALibDevice, Error, GPUModule->getContext());
2356 if (!LibDeviceModule) {
2357 BuildSuccessful = false;
2358 report_fatal_error("Could not find or load libdevice. Skipping GPU "
2359 "kernel generation. Please set -polly-acc-libdevice "
2360 "accordingly.\n");
2361 return;
2364 Linker L(*GPUModule);
2366 // Set an nvptx64 target triple to avoid linker warnings. The original
2367 // triple of the libdevice files are nvptx-unknown-unknown.
2368 LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
2369 L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded);
2373 std::string GPUNodeBuilder::finalizeKernelFunction() {
2375 if (verifyModule(*GPUModule)) {
2376 DEBUG(dbgs() << "verifyModule failed on module:\n";
2377 GPUModule->print(dbgs(), nullptr); dbgs() << "\n";);
2378 DEBUG(dbgs() << "verifyModule Error:\n";
2379 verifyModule(*GPUModule, &dbgs()););
2381 if (FailOnVerifyModuleFailure)
2382 llvm_unreachable("VerifyModule failed.");
2384 BuildSuccessful = false;
2385 return "";
2388 addCUDALibDevice();
2390 if (DumpKernelIR)
2391 outs() << *GPUModule << "\n";
2393 if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) {
2394 // Optimize module.
2395 llvm::legacy::PassManager OptPasses;
2396 PassManagerBuilder PassBuilder;
2397 PassBuilder.OptLevel = 3;
2398 PassBuilder.SizeLevel = 0;
2399 PassBuilder.populateModulePassManager(OptPasses);
2400 OptPasses.run(*GPUModule);
2403 std::string Assembly = createKernelASM();
2405 if (DumpKernelASM)
2406 outs() << Assembly << "\n";
2408 GPUModule.release();
2409 KernelIDs.clear();
2411 return Assembly;
2413 /// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff`
2414 /// @param PwAffs The list of piecewise affine functions to create an
2415 /// `isl_pw_aff_list` from. We expect an rvalue ref because
2416 /// all the isl_pw_aff are used up by this function.
2418 /// @returns The `isl_pw_aff_list`.
2419 __isl_give isl_pw_aff_list *
2420 createPwAffList(isl_ctx *Context,
2421 const std::vector<__isl_take isl_pw_aff *> &&PwAffs) {
2422 isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size());
2424 for (unsigned i = 0; i < PwAffs.size(); i++) {
2425 List = isl_pw_aff_list_insert(List, i, PwAffs[i]);
2427 return List;
2430 /// Align all the `PwAffs` such that they have the same parameter dimensions.
2432 /// We loop over all `pw_aff` and align all of their spaces together to
2433 /// create a common space for all the `pw_aff`. This common space is the
2434 /// `AlignSpace`. We then align all the `pw_aff` to this space. We start
2435 /// with the given `SeedSpace`.
2436 /// @param PwAffs The list of piecewise affine functions we want to align.
2437 /// This is an rvalue reference because the entire vector is
2438 /// used up by the end of the operation.
2439 /// @param SeedSpace The space to start the alignment process with.
2440 /// @returns A std::pair, whose first element is the aligned space,
2441 /// whose second element is the vector of aligned piecewise
2442 /// affines.
2443 static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>>
2444 alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs,
2445 __isl_take isl_space *SeedSpace) {
2446 assert(SeedSpace && "Invalid seed space given.");
2448 isl_space *AlignSpace = SeedSpace;
2449 for (isl_pw_aff *PwAff : PwAffs) {
2450 isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff);
2451 AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace);
2453 std::vector<isl_pw_aff *> AdjustedPwAffs;
2455 for (unsigned i = 0; i < PwAffs.size(); i++) {
2456 isl_pw_aff *Adjusted = PwAffs[i];
2457 assert(Adjusted && "Invalid pw_aff given.");
2458 Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace));
2459 AdjustedPwAffs.push_back(Adjusted);
2461 return std::make_pair(AlignSpace, AdjustedPwAffs);
2464 namespace {
2465 class PPCGCodeGeneration : public ScopPass {
2466 public:
2467 static char ID;
2469 GPURuntime Runtime = GPURuntime::CUDA;
2471 GPUArch Architecture = GPUArch::NVPTX64;
2473 /// The scop that is currently processed.
2474 Scop *S;
2476 LoopInfo *LI;
2477 DominatorTree *DT;
2478 ScalarEvolution *SE;
2479 const DataLayout *DL;
2480 RegionInfo *RI;
2482 PPCGCodeGeneration() : ScopPass(ID) {}
2484 /// Construct compilation options for PPCG.
2486 /// @returns The compilation options.
2487 ppcg_options *createPPCGOptions() {
2488 auto DebugOptions =
2489 (ppcg_debug_options *)malloc(sizeof(ppcg_debug_options));
2490 auto Options = (ppcg_options *)malloc(sizeof(ppcg_options));
2492 DebugOptions->dump_schedule_constraints = false;
2493 DebugOptions->dump_schedule = false;
2494 DebugOptions->dump_final_schedule = false;
2495 DebugOptions->dump_sizes = false;
2496 DebugOptions->verbose = false;
2498 Options->debug = DebugOptions;
2500 Options->group_chains = false;
2501 Options->reschedule = true;
2502 Options->scale_tile_loops = false;
2503 Options->wrap = false;
2505 Options->non_negative_parameters = false;
2506 Options->ctx = nullptr;
2507 Options->sizes = nullptr;
2509 Options->tile = true;
2510 Options->tile_size = 32;
2512 Options->isolate_full_tiles = false;
2514 Options->use_private_memory = PrivateMemory;
2515 Options->use_shared_memory = SharedMemory;
2516 Options->max_shared_memory = 48 * 1024;
2518 Options->target = PPCG_TARGET_CUDA;
2519 Options->openmp = false;
2520 Options->linearize_device_arrays = true;
2521 Options->allow_gnu_extensions = false;
2523 Options->unroll_copy_shared = false;
2524 Options->unroll_gpu_tile = false;
2525 Options->live_range_reordering = true;
2527 Options->live_range_reordering = true;
2528 Options->hybrid = false;
2529 Options->opencl_compiler_options = nullptr;
2530 Options->opencl_use_gpu = false;
2531 Options->opencl_n_include_file = 0;
2532 Options->opencl_include_files = nullptr;
2533 Options->opencl_print_kernel_types = false;
2534 Options->opencl_embed_kernel_code = false;
2536 Options->save_schedule_file = nullptr;
2537 Options->load_schedule_file = nullptr;
2539 return Options;
2542 /// Get a tagged access relation containing all accesses of type @p AccessTy.
2544 /// Instead of a normal access of the form:
2546 /// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)]
2548 /// a tagged access has the form
2550 /// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)]
2552 /// where 'id' is an additional space that references the memory access that
2553 /// triggered the access.
2555 /// @param AccessTy The type of the memory accesses to collect.
2557 /// @return The relation describing all tagged memory accesses.
2558 isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) {
2559 isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release());
2561 for (auto &Stmt : *S)
2562 for (auto &Acc : Stmt)
2563 if (Acc->getType() == AccessTy) {
2564 isl_map *Relation = Acc->getAccessRelation().release();
2565 Relation =
2566 isl_map_intersect_domain(Relation, Stmt.getDomain().release());
2568 isl_space *Space = isl_map_get_space(Relation);
2569 Space = isl_space_range(Space);
2570 Space = isl_space_from_range(Space);
2571 Space =
2572 isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
2573 isl_map *Universe = isl_map_universe(Space);
2574 Relation = isl_map_domain_product(Relation, Universe);
2575 Accesses = isl_union_map_add_map(Accesses, Relation);
2578 return Accesses;
2581 /// Get the set of all read accesses, tagged with the access id.
2583 /// @see getTaggedAccesses
2584 isl_union_map *getTaggedReads() {
2585 return getTaggedAccesses(MemoryAccess::READ);
2588 /// Get the set of all may (and must) accesses, tagged with the access id.
2590 /// @see getTaggedAccesses
2591 isl_union_map *getTaggedMayWrites() {
2592 return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE),
2593 getTaggedAccesses(MemoryAccess::MUST_WRITE));
2596 /// Get the set of all must accesses, tagged with the access id.
2598 /// @see getTaggedAccesses
2599 isl_union_map *getTaggedMustWrites() {
2600 return getTaggedAccesses(MemoryAccess::MUST_WRITE);
2603 /// Collect parameter and array names as isl_ids.
2605 /// To reason about the different parameters and arrays used, ppcg requires
2606 /// a list of all isl_ids in use. As PPCG traditionally performs
2607 /// source-to-source compilation each of these isl_ids is mapped to the
2608 /// expression that represents it. As we do not have a corresponding
2609 /// expression in Polly, we just map each id to a 'zero' expression to match
2610 /// the data format that ppcg expects.
2612 /// @returns Retun a map from collected ids to 'zero' ast expressions.
2613 __isl_give isl_id_to_ast_expr *getNames() {
2614 auto *Names = isl_id_to_ast_expr_alloc(
2615 S->getIslCtx(),
2616 S->getNumParams() + std::distance(S->array_begin(), S->array_end()));
2617 auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx()));
2619 for (const SCEV *P : S->parameters()) {
2620 isl_id *Id = S->getIdForParam(P).release();
2621 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2624 for (auto &Array : S->arrays()) {
2625 auto Id = Array->getBasePtrId().release();
2626 Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
2629 isl_ast_expr_free(Zero);
2631 return Names;
2634 /// Create a new PPCG scop from the current scop.
2636 /// The PPCG scop is initialized with data from the current polly::Scop. From
2637 /// this initial data, the data-dependences in the PPCG scop are initialized.
2638 /// We do not use Polly's dependence analysis for now, to ensure we match
2639 /// the PPCG default behaviour more closely.
2641 /// @returns A new ppcg scop.
2642 ppcg_scop *createPPCGScop() {
2643 MustKillsInfo KillsInfo = computeMustKillsInfo(*S);
2645 auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop));
2647 PPCGScop->options = createPPCGOptions();
2648 // enable live range reordering
2649 PPCGScop->options->live_range_reordering = 1;
2651 PPCGScop->start = 0;
2652 PPCGScop->end = 0;
2654 PPCGScop->context = S->getContext().release();
2655 PPCGScop->domain = S->getDomains().release();
2656 // TODO: investigate this further. PPCG calls collect_call_domains.
2657 PPCGScop->call = isl_union_set_from_set(S->getContext().release());
2658 PPCGScop->tagged_reads = getTaggedReads();
2659 PPCGScop->reads = S->getReads().release();
2660 PPCGScop->live_in = nullptr;
2661 PPCGScop->tagged_may_writes = getTaggedMayWrites();
2662 PPCGScop->may_writes = S->getWrites().release();
2663 PPCGScop->tagged_must_writes = getTaggedMustWrites();
2664 PPCGScop->must_writes = S->getMustWrites().release();
2665 PPCGScop->live_out = nullptr;
2666 PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.take();
2667 PPCGScop->must_kills = KillsInfo.MustKills.take();
2669 PPCGScop->tagger = nullptr;
2670 PPCGScop->independence =
2671 isl_union_map_empty(isl_set_get_space(PPCGScop->context));
2672 PPCGScop->dep_flow = nullptr;
2673 PPCGScop->tagged_dep_flow = nullptr;
2674 PPCGScop->dep_false = nullptr;
2675 PPCGScop->dep_forced = nullptr;
2676 PPCGScop->dep_order = nullptr;
2677 PPCGScop->tagged_dep_order = nullptr;
2679 PPCGScop->schedule = S->getScheduleTree().release();
2680 // If we have something non-trivial to kill, add it to the schedule
2681 if (KillsInfo.KillsSchedule.get())
2682 PPCGScop->schedule = isl_schedule_sequence(
2683 PPCGScop->schedule, KillsInfo.KillsSchedule.take());
2685 PPCGScop->names = getNames();
2686 PPCGScop->pet = nullptr;
2688 compute_tagger(PPCGScop);
2689 compute_dependences(PPCGScop);
2690 eliminate_dead_code(PPCGScop);
2692 return PPCGScop;
2695 /// Collect the array accesses in a statement.
2697 /// @param Stmt The statement for which to collect the accesses.
2699 /// @returns A list of array accesses.
2700 gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) {
2701 gpu_stmt_access *Accesses = nullptr;
2703 for (MemoryAccess *Acc : Stmt) {
2704 auto Access = isl_alloc_type(S->getIslCtx(), struct gpu_stmt_access);
2705 Access->read = Acc->isRead();
2706 Access->write = Acc->isWrite();
2707 Access->access = Acc->getAccessRelation().release();
2708 isl_space *Space = isl_map_get_space(Access->access);
2709 Space = isl_space_range(Space);
2710 Space = isl_space_from_range(Space);
2711 Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
2712 isl_map *Universe = isl_map_universe(Space);
2713 Access->tagged_access =
2714 isl_map_domain_product(Acc->getAccessRelation().release(), Universe);
2715 Access->exact_write = !Acc->isMayWrite();
2716 Access->ref_id = Acc->getId().release();
2717 Access->next = Accesses;
2718 Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions();
2719 Accesses = Access;
2722 return Accesses;
2725 /// Collect the list of GPU statements.
2727 /// Each statement has an id, a pointer to the underlying data structure,
2728 /// as well as a list with all memory accesses.
2730 /// TODO: Initialize the list of memory accesses.
2732 /// @returns A linked-list of statements.
2733 gpu_stmt *getStatements() {
2734 gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx(), struct gpu_stmt,
2735 std::distance(S->begin(), S->end()));
2737 int i = 0;
2738 for (auto &Stmt : *S) {
2739 gpu_stmt *GPUStmt = &Stmts[i];
2741 GPUStmt->id = Stmt.getDomainId().release();
2743 // We use the pet stmt pointer to keep track of the Polly statements.
2744 GPUStmt->stmt = (pet_stmt *)&Stmt;
2745 GPUStmt->accesses = getStmtAccesses(Stmt);
2746 i++;
2749 return Stmts;
2752 /// Derive the extent of an array.
2754 /// The extent of an array is the set of elements that are within the
2755 /// accessed array. For the inner dimensions, the extent constraints are
2756 /// 0 and the size of the corresponding array dimension. For the first
2757 /// (outermost) dimension, the extent constraints are the minimal and maximal
2758 /// subscript value for the first dimension.
2760 /// @param Array The array to derive the extent for.
2762 /// @returns An isl_set describing the extent of the array.
2763 __isl_give isl_set *getExtent(ScopArrayInfo *Array) {
2764 unsigned NumDims = Array->getNumberOfDimensions();
2765 isl_union_map *Accesses = S->getAccesses().release();
2766 Accesses =
2767 isl_union_map_intersect_domain(Accesses, S->getDomains().release());
2768 Accesses = isl_union_map_detect_equalities(Accesses);
2769 isl_union_set *AccessUSet = isl_union_map_range(Accesses);
2770 AccessUSet = isl_union_set_coalesce(AccessUSet);
2771 AccessUSet = isl_union_set_detect_equalities(AccessUSet);
2772 AccessUSet = isl_union_set_coalesce(AccessUSet);
2774 if (isl_union_set_is_empty(AccessUSet)) {
2775 isl_union_set_free(AccessUSet);
2776 return isl_set_empty(Array->getSpace().release());
2779 if (Array->getNumberOfDimensions() == 0) {
2780 isl_union_set_free(AccessUSet);
2781 return isl_set_universe(Array->getSpace().release());
2784 isl_set *AccessSet =
2785 isl_union_set_extract_set(AccessUSet, Array->getSpace().release());
2787 isl_union_set_free(AccessUSet);
2788 isl_local_space *LS =
2789 isl_local_space_from_space(Array->getSpace().release());
2791 isl_pw_aff *Val =
2792 isl_pw_aff_from_aff(isl_aff_var_on_domain(LS, isl_dim_set, 0));
2794 isl_pw_aff *OuterMin = isl_set_dim_min(isl_set_copy(AccessSet), 0);
2795 isl_pw_aff *OuterMax = isl_set_dim_max(AccessSet, 0);
2796 OuterMin = isl_pw_aff_add_dims(OuterMin, isl_dim_in,
2797 isl_pw_aff_dim(Val, isl_dim_in));
2798 OuterMax = isl_pw_aff_add_dims(OuterMax, isl_dim_in,
2799 isl_pw_aff_dim(Val, isl_dim_in));
2800 OuterMin = isl_pw_aff_set_tuple_id(OuterMin, isl_dim_in,
2801 Array->getBasePtrId().release());
2802 OuterMax = isl_pw_aff_set_tuple_id(OuterMax, isl_dim_in,
2803 Array->getBasePtrId().release());
2805 isl_set *Extent = isl_set_universe(Array->getSpace().release());
2807 Extent = isl_set_intersect(
2808 Extent, isl_pw_aff_le_set(OuterMin, isl_pw_aff_copy(Val)));
2809 Extent = isl_set_intersect(Extent, isl_pw_aff_ge_set(OuterMax, Val));
2811 for (unsigned i = 1; i < NumDims; ++i)
2812 Extent = isl_set_lower_bound_si(Extent, isl_dim_set, i, 0);
2814 for (unsigned i = 0; i < NumDims; ++i) {
2815 isl_pw_aff *PwAff =
2816 const_cast<isl_pw_aff *>(Array->getDimensionSizePw(i).release());
2818 // isl_pw_aff can be NULL for zero dimension. Only in the case of a
2819 // Fortran array will we have a legitimate dimension.
2820 if (!PwAff) {
2821 assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension");
2822 continue;
2825 isl_pw_aff *Val = isl_pw_aff_from_aff(isl_aff_var_on_domain(
2826 isl_local_space_from_space(Array->getSpace().release()), isl_dim_set,
2827 i));
2828 PwAff = isl_pw_aff_add_dims(PwAff, isl_dim_in,
2829 isl_pw_aff_dim(Val, isl_dim_in));
2830 PwAff = isl_pw_aff_set_tuple_id(PwAff, isl_dim_in,
2831 isl_pw_aff_get_tuple_id(Val, isl_dim_in));
2832 auto *Set = isl_pw_aff_gt_set(PwAff, Val);
2833 Extent = isl_set_intersect(Set, Extent);
2836 return Extent;
2839 /// Derive the bounds of an array.
2841 /// For the first dimension we derive the bound of the array from the extent
2842 /// of this dimension. For inner dimensions we obtain their size directly from
2843 /// ScopArrayInfo.
2845 /// @param PPCGArray The array to compute bounds for.
2846 /// @param Array The polly array from which to take the information.
2847 void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) {
2848 std::vector<isl_pw_aff *> Bounds;
2850 if (PPCGArray.n_index > 0) {
2851 if (isl_set_is_empty(PPCGArray.extent)) {
2852 isl_set *Dom = isl_set_copy(PPCGArray.extent);
2853 isl_local_space *LS = isl_local_space_from_space(
2854 isl_space_params(isl_set_get_space(Dom)));
2855 isl_set_free(Dom);
2856 isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS));
2857 Bounds.push_back(Zero);
2858 } else {
2859 isl_set *Dom = isl_set_copy(PPCGArray.extent);
2860 Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1);
2861 isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0);
2862 isl_set_free(Dom);
2863 Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound));
2864 isl_local_space *LS =
2865 isl_local_space_from_space(isl_set_get_space(Dom));
2866 isl_aff *One = isl_aff_zero_on_domain(LS);
2867 One = isl_aff_add_constant_si(One, 1);
2868 Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One));
2869 Bound = isl_pw_aff_gist(Bound, S->getContext().release());
2870 Bounds.push_back(Bound);
2874 for (unsigned i = 1; i < PPCGArray.n_index; ++i) {
2875 isl_pw_aff *Bound = Array->getDimensionSizePw(i).release();
2876 auto LS = isl_pw_aff_get_domain_space(Bound);
2877 auto Aff = isl_multi_aff_zero(LS);
2878 Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff);
2879 Bounds.push_back(Bound);
2882 /// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff`
2883 /// to have the same parameter dimensions. So, we need to align them to an
2884 /// appropriate space.
2885 /// Scop::Context is _not_ an appropriate space, because when we have
2886 /// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not
2887 /// contain all parameter dimensions.
2888 /// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together.
2889 isl_space *SeedAlignSpace = S->getParamSpace().release();
2890 SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1);
2892 isl_space *AlignSpace = nullptr;
2893 std::vector<isl_pw_aff *> AlignedBounds;
2894 std::tie(AlignSpace, AlignedBounds) =
2895 alignPwAffs(std::move(Bounds), SeedAlignSpace);
2897 assert(AlignSpace && "alignPwAffs did not initialise AlignSpace");
2899 isl_pw_aff_list *BoundsList =
2900 createPwAffList(S->getIslCtx(), std::move(AlignedBounds));
2902 isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent);
2903 BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace);
2905 assert(BoundsSpace && "Unable to access space of array.");
2906 assert(BoundsList && "Unable to access list of bounds.");
2908 PPCGArray.bound =
2909 isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList);
2910 assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly.");
2913 /// Create the arrays for @p PPCGProg.
2915 /// @param PPCGProg The program to compute the arrays for.
2916 void createArrays(gpu_prog *PPCGProg,
2917 const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) {
2918 int i = 0;
2919 for (auto &Array : ValidSAIs) {
2920 std::string TypeName;
2921 raw_string_ostream OS(TypeName);
2923 OS << *Array->getElementType();
2924 TypeName = OS.str();
2926 gpu_array_info &PPCGArray = PPCGProg->array[i];
2928 PPCGArray.space = Array->getSpace().release();
2929 PPCGArray.type = strdup(TypeName.c_str());
2930 PPCGArray.size = DL->getTypeAllocSize(Array->getElementType());
2931 PPCGArray.name = strdup(Array->getName().c_str());
2932 PPCGArray.extent = nullptr;
2933 PPCGArray.n_index = Array->getNumberOfDimensions();
2934 PPCGArray.extent = getExtent(Array);
2935 PPCGArray.n_ref = 0;
2936 PPCGArray.refs = nullptr;
2937 PPCGArray.accessed = true;
2938 PPCGArray.read_only_scalar =
2939 Array->isReadOnly() && Array->getNumberOfDimensions() == 0;
2940 PPCGArray.has_compound_element = false;
2941 PPCGArray.local = false;
2942 PPCGArray.declare_local = false;
2943 PPCGArray.global = false;
2944 PPCGArray.linearize = false;
2945 PPCGArray.dep_order = nullptr;
2946 PPCGArray.user = Array;
2948 PPCGArray.bound = nullptr;
2949 setArrayBounds(PPCGArray, Array);
2950 i++;
2952 collect_references(PPCGProg, &PPCGArray);
2956 /// Create an identity map between the arrays in the scop.
2958 /// @returns An identity map between the arrays in the scop.
2959 isl_union_map *getArrayIdentity() {
2960 isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release());
2962 for (auto &Array : S->arrays()) {
2963 isl_space *Space = Array->getSpace().release();
2964 Space = isl_space_map_from_set(Space);
2965 isl_map *Identity = isl_map_identity(Space);
2966 Maps = isl_union_map_add_map(Maps, Identity);
2969 return Maps;
2972 /// Create a default-initialized PPCG GPU program.
2974 /// @returns A new gpu program description.
2975 gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) {
2977 if (!PPCGScop)
2978 return nullptr;
2980 auto PPCGProg = isl_calloc_type(S->getIslCtx(), struct gpu_prog);
2982 PPCGProg->ctx = S->getIslCtx();
2983 PPCGProg->scop = PPCGScop;
2984 PPCGProg->context = isl_set_copy(PPCGScop->context);
2985 PPCGProg->read = isl_union_map_copy(PPCGScop->reads);
2986 PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes);
2987 PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes);
2988 PPCGProg->tagged_must_kill =
2989 isl_union_map_copy(PPCGScop->tagged_must_kills);
2990 PPCGProg->to_inner = getArrayIdentity();
2991 PPCGProg->to_outer = getArrayIdentity();
2992 // TODO: verify that this assignment is correct.
2993 PPCGProg->any_to_outer = nullptr;
2995 // this needs to be set when live range reordering is enabled.
2996 // NOTE: I believe that is conservatively correct. I'm not sure
2997 // what the semantics of this is.
2998 // Quoting PPCG/gpu.h: "Order dependences on non-scalars."
2999 PPCGProg->array_order =
3000 isl_union_map_empty(isl_set_get_space(PPCGScop->context));
3001 PPCGProg->n_stmts = std::distance(S->begin(), S->end());
3002 PPCGProg->stmts = getStatements();
3004 // Only consider arrays that have a non-empty extent.
3005 // Otherwise, this will cause us to consider the following kinds of
3006 // empty arrays:
3007 // 1. Invariant loads that are represented by SAI objects.
3008 // 2. Arrays with statically known zero size.
3009 auto ValidSAIsRange =
3010 make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool {
3011 return !isl::manage(getExtent(SAI)).is_empty();
3013 SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(),
3014 ValidSAIsRange.end());
3016 PPCGProg->n_array =
3017 ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end());
3018 PPCGProg->array = isl_calloc_array(S->getIslCtx(), struct gpu_array_info,
3019 PPCGProg->n_array);
3021 createArrays(PPCGProg, ValidSAIs);
3023 PPCGProg->may_persist = compute_may_persist(PPCGProg);
3024 return PPCGProg;
3027 struct PrintGPUUserData {
3028 struct cuda_info *CudaInfo;
3029 struct gpu_prog *PPCGProg;
3030 std::vector<ppcg_kernel *> Kernels;
3033 /// Print a user statement node in the host code.
3035 /// We use ppcg's printing facilities to print the actual statement and
3036 /// additionally build up a list of all kernels that are encountered in the
3037 /// host ast.
3039 /// @param P The printer to print to
3040 /// @param Options The printing options to use
3041 /// @param Node The node to print
3042 /// @param User A user pointer to carry additional data. This pointer is
3043 /// expected to be of type PrintGPUUserData.
3045 /// @returns A printer to which the output has been printed.
3046 static __isl_give isl_printer *
3047 printHostUser(__isl_take isl_printer *P,
3048 __isl_take isl_ast_print_options *Options,
3049 __isl_take isl_ast_node *Node, void *User) {
3050 auto Data = (struct PrintGPUUserData *)User;
3051 auto Id = isl_ast_node_get_annotation(Node);
3053 if (Id) {
3054 bool IsUser = !strcmp(isl_id_get_name(Id), "user");
3056 // If this is a user statement, format it ourselves as ppcg would
3057 // otherwise try to call pet functionality that is not available in
3058 // Polly.
3059 if (IsUser) {
3060 P = isl_printer_start_line(P);
3061 P = isl_printer_print_ast_node(P, Node);
3062 P = isl_printer_end_line(P);
3063 isl_id_free(Id);
3064 isl_ast_print_options_free(Options);
3065 return P;
3068 auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id);
3069 isl_id_free(Id);
3070 Data->Kernels.push_back(Kernel);
3073 return print_host_user(P, Options, Node, User);
3076 /// Print C code corresponding to the control flow in @p Kernel.
3078 /// @param Kernel The kernel to print
3079 void printKernel(ppcg_kernel *Kernel) {
3080 auto *P = isl_printer_to_str(S->getIslCtx());
3081 P = isl_printer_set_output_format(P, ISL_FORMAT_C);
3082 auto *Options = isl_ast_print_options_alloc(S->getIslCtx());
3083 P = isl_ast_node_print(Kernel->tree, P, Options);
3084 char *String = isl_printer_get_str(P);
3085 printf("%s\n", String);
3086 free(String);
3087 isl_printer_free(P);
3090 /// Print C code corresponding to the GPU code described by @p Tree.
3092 /// @param Tree An AST describing GPU code
3093 /// @param PPCGProg The PPCG program from which @Tree has been constructed.
3094 void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) {
3095 auto *P = isl_printer_to_str(S->getIslCtx());
3096 P = isl_printer_set_output_format(P, ISL_FORMAT_C);
3098 PrintGPUUserData Data;
3099 Data.PPCGProg = PPCGProg;
3101 auto *Options = isl_ast_print_options_alloc(S->getIslCtx());
3102 Options =
3103 isl_ast_print_options_set_print_user(Options, printHostUser, &Data);
3104 P = isl_ast_node_print(Tree, P, Options);
3105 char *String = isl_printer_get_str(P);
3106 printf("# host\n");
3107 printf("%s\n", String);
3108 free(String);
3109 isl_printer_free(P);
3111 for (auto Kernel : Data.Kernels) {
3112 printf("# kernel%d\n", Kernel->id);
3113 printKernel(Kernel);
3117 // Generate a GPU program using PPCG.
3119 // GPU mapping consists of multiple steps:
3121 // 1) Compute new schedule for the program.
3122 // 2) Map schedule to GPU (TODO)
3123 // 3) Generate code for new schedule (TODO)
3125 // We do not use here the Polly ScheduleOptimizer, as the schedule optimizer
3126 // is mostly CPU specific. Instead, we use PPCG's GPU code generation
3127 // strategy directly from this pass.
3128 gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) {
3130 auto PPCGGen = isl_calloc_type(S->getIslCtx(), struct gpu_gen);
3132 PPCGGen->ctx = S->getIslCtx();
3133 PPCGGen->options = PPCGScop->options;
3134 PPCGGen->print = nullptr;
3135 PPCGGen->print_user = nullptr;
3136 PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt;
3137 PPCGGen->prog = PPCGProg;
3138 PPCGGen->tree = nullptr;
3139 PPCGGen->types.n = 0;
3140 PPCGGen->types.name = nullptr;
3141 PPCGGen->sizes = nullptr;
3142 PPCGGen->used_sizes = nullptr;
3143 PPCGGen->kernel_id = 0;
3145 // Set scheduling strategy to same strategy PPCG is using.
3146 isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true);
3147 isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true);
3148 isl_options_set_schedule_whole_component(PPCGGen->ctx, false);
3150 isl_schedule *Schedule = get_schedule(PPCGGen);
3152 int has_permutable = has_any_permutable_node(Schedule);
3154 Schedule =
3155 isl_schedule_align_params(Schedule, S->getFullParamSpace().release());
3157 if (!has_permutable || has_permutable < 0) {
3158 Schedule = isl_schedule_free(Schedule);
3159 DEBUG(dbgs() << getUniqueScopName(S)
3160 << " does not have permutable bands. Bailing out\n";);
3161 } else {
3162 Schedule = map_to_device(PPCGGen, Schedule);
3163 PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule));
3166 if (DumpSchedule) {
3167 isl_printer *P = isl_printer_to_str(S->getIslCtx());
3168 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
3169 P = isl_printer_print_str(P, "Schedule\n");
3170 P = isl_printer_print_str(P, "========\n");
3171 if (Schedule)
3172 P = isl_printer_print_schedule(P, Schedule);
3173 else
3174 P = isl_printer_print_str(P, "No schedule found\n");
3176 printf("%s\n", isl_printer_get_str(P));
3177 isl_printer_free(P);
3180 if (DumpCode) {
3181 printf("Code\n");
3182 printf("====\n");
3183 if (PPCGGen->tree)
3184 printGPUTree(PPCGGen->tree, PPCGProg);
3185 else
3186 printf("No code generated\n");
3189 isl_schedule_free(Schedule);
3191 return PPCGGen;
3194 /// Free gpu_gen structure.
3196 /// @param PPCGGen The ppcg_gen object to free.
3197 void freePPCGGen(gpu_gen *PPCGGen) {
3198 isl_ast_node_free(PPCGGen->tree);
3199 isl_union_map_free(PPCGGen->sizes);
3200 isl_union_map_free(PPCGGen->used_sizes);
3201 free(PPCGGen);
3204 /// Free the options in the ppcg scop structure.
3206 /// ppcg is not freeing these options for us. To avoid leaks we do this
3207 /// ourselves.
3209 /// @param PPCGScop The scop referencing the options to free.
3210 void freeOptions(ppcg_scop *PPCGScop) {
3211 free(PPCGScop->options->debug);
3212 PPCGScop->options->debug = nullptr;
3213 free(PPCGScop->options);
3214 PPCGScop->options = nullptr;
3217 /// Approximate the number of points in the set.
3219 /// This function returns an ast expression that overapproximates the number
3220 /// of points in an isl set through the rectangular hull surrounding this set.
3222 /// @param Set The set to count.
3223 /// @param Build The isl ast build object to use for creating the ast
3224 /// expression.
3226 /// @returns An approximation of the number of points in the set.
3227 __isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set,
3228 __isl_keep isl_ast_build *Build) {
3230 isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1);
3231 auto *Expr = isl_ast_expr_from_val(isl_val_copy(One));
3233 isl_space *Space = isl_set_get_space(Set);
3234 Space = isl_space_params(Space);
3235 auto *Univ = isl_set_universe(Space);
3236 isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One);
3238 for (long i = 0; i < isl_set_dim(Set, isl_dim_set); i++) {
3239 isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i);
3240 isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i);
3241 isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min);
3242 DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff));
3243 auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize);
3244 Expr = isl_ast_expr_mul(Expr, DimSizeExpr);
3247 isl_set_free(Set);
3248 isl_pw_aff_free(OneAff);
3250 return Expr;
3253 /// Approximate a number of dynamic instructions executed by a given
3254 /// statement.
3256 /// @param Stmt The statement for which to compute the number of dynamic
3257 /// instructions.
3258 /// @param Build The isl ast build object to use for creating the ast
3259 /// expression.
3260 /// @returns An approximation of the number of dynamic instructions executed
3261 /// by @p Stmt.
3262 __isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt,
3263 __isl_keep isl_ast_build *Build) {
3264 auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build);
3266 long InstCount = 0;
3268 if (Stmt.isBlockStmt()) {
3269 auto *BB = Stmt.getBasicBlock();
3270 InstCount = std::distance(BB->begin(), BB->end());
3271 } else {
3272 auto *R = Stmt.getRegion();
3274 for (auto *BB : R->blocks()) {
3275 InstCount += std::distance(BB->begin(), BB->end());
3279 isl_val *InstVal = isl_val_int_from_si(S->getIslCtx(), InstCount);
3280 auto *InstExpr = isl_ast_expr_from_val(InstVal);
3281 return isl_ast_expr_mul(InstExpr, Iterations);
3284 /// Approximate dynamic instructions executed in scop.
3286 /// @param S The scop for which to approximate dynamic instructions.
3287 /// @param Build The isl ast build object to use for creating the ast
3288 /// expression.
3289 /// @returns An approximation of the number of dynamic instructions executed
3290 /// in @p S.
3291 __isl_give isl_ast_expr *
3292 getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) {
3293 isl_ast_expr *Instructions;
3295 isl_val *Zero = isl_val_int_from_si(S.getIslCtx(), 0);
3296 Instructions = isl_ast_expr_from_val(Zero);
3298 for (ScopStmt &Stmt : S) {
3299 isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build);
3300 Instructions = isl_ast_expr_add(Instructions, StmtInstructions);
3302 return Instructions;
3305 /// Create a check that ensures sufficient compute in scop.
3307 /// @param S The scop for which to ensure sufficient compute.
3308 /// @param Build The isl ast build object to use for creating the ast
3309 /// expression.
3310 /// @returns An expression that evaluates to TRUE in case of sufficient
3311 /// compute and to FALSE, otherwise.
3312 __isl_give isl_ast_expr *
3313 createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) {
3314 auto Iterations = getNumberOfIterations(S, Build);
3315 auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx(), MinCompute);
3316 auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal);
3317 return isl_ast_expr_ge(Iterations, MinComputeExpr);
3320 /// Check if the basic block contains a function we cannot codegen for GPU
3321 /// kernels.
3323 /// If this basic block does something with a `Function` other than calling
3324 /// a function that we support in a kernel, return true.
3325 bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB,
3326 bool AllowCUDALibDevice) {
3327 for (const Instruction &Inst : *BB) {
3328 const CallInst *Call = dyn_cast<CallInst>(&Inst);
3329 if (Call && isValidFunctionInKernel(Call->getCalledFunction(),
3330 AllowCUDALibDevice)) {
3331 continue;
3334 for (Value *SrcVal : Inst.operands()) {
3335 PointerType *p = dyn_cast<PointerType>(SrcVal->getType());
3336 if (!p)
3337 continue;
3338 if (isa<FunctionType>(p->getElementType()))
3339 return true;
3342 return false;
3345 /// Return whether the Scop S uses functions in a way that we do not support.
3346 bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) {
3347 for (auto &Stmt : S) {
3348 if (Stmt.isBlockStmt()) {
3349 if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(),
3350 AllowCUDALibDevice))
3351 return true;
3352 } else {
3353 assert(Stmt.isRegionStmt() &&
3354 "Stmt was neither block nor region statement");
3355 for (const BasicBlock *BB : Stmt.getRegion()->blocks())
3356 if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice))
3357 return true;
3360 return false;
3363 /// Generate code for a given GPU AST described by @p Root.
3365 /// @param Root An isl_ast_node pointing to the root of the GPU AST.
3366 /// @param Prog The GPU Program to generate code for.
3367 void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) {
3368 ScopAnnotator Annotator;
3369 Annotator.buildAliasScopes(*S);
3371 Region *R = &S->getRegion();
3373 simplifyRegion(R, DT, LI, RI);
3375 BasicBlock *EnteringBB = R->getEnteringBlock();
3377 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator);
3379 // Only build the run-time condition and parameters _after_ having
3380 // introduced the conditional branch. This is important as the conditional
3381 // branch will guard the original scop from new induction variables that
3382 // the SCEVExpander may introduce while code generating the parameters and
3383 // which may introduce scalar dependences that prevent us from correctly
3384 // code generating this scop.
3385 BBPair StartExitBlocks;
3386 BranchInst *CondBr = nullptr;
3387 std::tie(StartExitBlocks, CondBr) =
3388 executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI);
3389 BasicBlock *StartBlock = std::get<0>(StartExitBlocks);
3391 assert(CondBr && "CondBr not initialized by executeScopConditionally");
3393 GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S,
3394 StartBlock, Prog, Runtime, Architecture);
3396 // TODO: Handle LICM
3397 auto SplitBlock = StartBlock->getSinglePredecessor();
3398 Builder.SetInsertPoint(SplitBlock->getTerminator());
3400 isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx());
3401 isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build);
3402 isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build);
3403 Condition = isl_ast_expr_and(Condition, SufficientCompute);
3404 isl_ast_build_free(Build);
3406 // preload invariant loads. Note: This should happen before the RTC
3407 // because the RTC may depend on values that are invariant load hoisted.
3408 if (!NodeBuilder.preloadInvariantLoads()) {
3409 DEBUG(dbgs() << "preloading invariant loads failed in function: " +
3410 S->getFunction().getName() +
3411 " | Scop Region: " + S->getNameStr());
3412 // adjust the dominator tree accordingly.
3413 auto *ExitingBlock = StartBlock->getUniqueSuccessor();
3414 assert(ExitingBlock);
3415 auto *MergeBlock = ExitingBlock->getUniqueSuccessor();
3416 assert(MergeBlock);
3417 polly::markBlockUnreachable(*StartBlock, Builder);
3418 polly::markBlockUnreachable(*ExitingBlock, Builder);
3419 auto *ExitingBB = S->getExitingBlock();
3420 assert(ExitingBB);
3422 DT->changeImmediateDominator(MergeBlock, ExitingBB);
3423 DT->eraseNode(ExitingBlock);
3424 isl_ast_expr_free(Condition);
3425 isl_ast_node_free(Root);
3426 } else {
3428 NodeBuilder.addParameters(S->getContext().release());
3429 Value *RTC = NodeBuilder.createRTC(Condition);
3430 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC);
3432 Builder.SetInsertPoint(&*StartBlock->begin());
3434 NodeBuilder.create(Root);
3437 /// In case a sequential kernel has more surrounding loops as any parallel
3438 /// kernel, the SCoP is probably mostly sequential. Hence, there is no
3439 /// point in running it on a GPU.
3440 if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel)
3441 CondBr->setOperand(0, Builder.getFalse());
3443 if (!NodeBuilder.BuildSuccessful)
3444 CondBr->setOperand(0, Builder.getFalse());
3447 bool runOnScop(Scop &CurrentScop) override {
3448 S = &CurrentScop;
3449 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3450 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3451 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3452 DL = &S->getRegion().getEntry()->getModule()->getDataLayout();
3453 RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
3455 // We currently do not support functions other than intrinsics inside
3456 // kernels, as code generation will need to offload function calls to the
3457 // kernel. This may lead to a kernel trying to call a function on the host.
3458 // This also allows us to prevent codegen from trying to take the
3459 // address of an intrinsic function to send to the kernel.
3460 if (containsInvalidKernelFunction(CurrentScop,
3461 Architecture == GPUArch::NVPTX64)) {
3462 DEBUG(
3463 dbgs() << getUniqueScopName(S)
3464 << " contains function which cannot be materialised in a GPU "
3465 "kernel. Bailing out.\n";);
3466 return false;
3469 auto PPCGScop = createPPCGScop();
3470 auto PPCGProg = createPPCGProg(PPCGScop);
3471 auto PPCGGen = generateGPU(PPCGScop, PPCGProg);
3473 if (PPCGGen->tree) {
3474 generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg);
3475 CurrentScop.markAsToBeSkipped();
3476 } else {
3477 DEBUG(dbgs() << getUniqueScopName(S)
3478 << " has empty PPCGGen->tree. Bailing out.\n");
3481 freeOptions(PPCGScop);
3482 freePPCGGen(PPCGGen);
3483 gpu_prog_free(PPCGProg);
3484 ppcg_scop_free(PPCGScop);
3486 return true;
3489 void printScop(raw_ostream &, Scop &) const override {}
3491 void getAnalysisUsage(AnalysisUsage &AU) const override {
3492 AU.addRequired<DominatorTreeWrapperPass>();
3493 AU.addRequired<RegionInfoPass>();
3494 AU.addRequired<ScalarEvolutionWrapperPass>();
3495 AU.addRequired<ScopDetectionWrapperPass>();
3496 AU.addRequired<ScopInfoRegionPass>();
3497 AU.addRequired<LoopInfoWrapperPass>();
3499 AU.addPreserved<AAResultsWrapperPass>();
3500 AU.addPreserved<BasicAAWrapperPass>();
3501 AU.addPreserved<LoopInfoWrapperPass>();
3502 AU.addPreserved<DominatorTreeWrapperPass>();
3503 AU.addPreserved<GlobalsAAWrapperPass>();
3504 AU.addPreserved<ScopDetectionWrapperPass>();
3505 AU.addPreserved<ScalarEvolutionWrapperPass>();
3506 AU.addPreserved<SCEVAAWrapperPass>();
3508 // FIXME: We do not yet add regions for the newly generated code to the
3509 // region tree.
3510 AU.addPreserved<RegionInfoPass>();
3511 AU.addPreserved<ScopInfoRegionPass>();
3514 } // namespace
3516 char PPCGCodeGeneration::ID = 1;
3518 Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) {
3519 PPCGCodeGeneration *generator = new PPCGCodeGeneration();
3520 generator->Runtime = Runtime;
3521 generator->Architecture = Arch;
3522 return generator;
3525 INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg",
3526 "Polly - Apply PPCG translation to SCOP", false, false)
3527 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
3528 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
3529 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
3530 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
3531 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
3532 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
3533 INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg",
3534 "Polly - Apply PPCG translation to SCOP", false, false)