[ScopInfo] Integrate ScalarDefUseChain into polly::Scop. NFC.
[polly-mirror.git] / include / polly / ScopInfo.h
blob368f391d8b6db8223b30beb2ee9f65c428db545b
1 //===------ polly/ScopInfo.h -----------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Store the polyhedral model representation of a static control flow region,
11 // also called SCoP (Static Control Part).
13 // This representation is shared among several tools in the polyhedral
14 // community, which are e.g. CLooG, Pluto, Loopo, Graphite.
16 //===----------------------------------------------------------------------===//
18 #ifndef POLLY_SCOP_INFO_H
19 #define POLLY_SCOP_INFO_H
21 #include "polly/ScopDetection.h"
22 #include "polly/Support/SCEVAffinator.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/Analysis/RegionPass.h"
26 #include "llvm/IR/PassManager.h"
27 #include "isl/aff.h"
28 #include "isl/ctx.h"
29 #include "isl/set.h"
31 #include "isl-noexceptions.h"
33 #include <deque>
34 #include <forward_list>
36 using namespace llvm;
38 namespace llvm {
39 class AssumptionCache;
40 class Loop;
41 class LoopInfo;
42 class PHINode;
43 class ScalarEvolution;
44 class SCEV;
45 class SCEVAddRecExpr;
46 class Type;
47 } // namespace llvm
49 struct isl_ctx;
50 struct isl_map;
51 struct isl_basic_map;
52 struct isl_id;
53 struct isl_set;
54 struct isl_union_set;
55 struct isl_union_map;
56 struct isl_space;
57 struct isl_ast_build;
58 struct isl_constraint;
59 struct isl_pw_aff;
60 struct isl_pw_multi_aff;
61 struct isl_schedule;
63 namespace polly {
65 class MemoryAccess;
66 class Scop;
67 class ScopStmt;
68 class ScopBuilder;
70 //===---------------------------------------------------------------------===//
72 extern bool UseInstructionNames;
74 /// Enumeration of assumptions Polly can take.
75 enum AssumptionKind {
76 ALIASING,
77 INBOUNDS,
78 WRAPPING,
79 UNSIGNED,
80 PROFITABLE,
81 ERRORBLOCK,
82 COMPLEXITY,
83 INFINITELOOP,
84 INVARIANTLOAD,
85 DELINEARIZATION,
88 /// Enum to distinguish between assumptions and restrictions.
89 enum AssumptionSign { AS_ASSUMPTION, AS_RESTRICTION };
91 /// The different memory kinds used in Polly.
92 ///
93 /// We distinguish between arrays and various scalar memory objects. We use
94 /// the term ``array'' to describe memory objects that consist of a set of
95 /// individual data elements arranged in a multi-dimensional grid. A scalar
96 /// memory object describes an individual data element and is used to model
97 /// the definition and uses of llvm::Values.
98 ///
99 /// The polyhedral model does traditionally not reason about SSA values. To
100 /// reason about llvm::Values we model them "as if" they were zero-dimensional
101 /// memory objects, even though they were not actually allocated in (main)
102 /// memory. Memory for such objects is only alloca[ed] at CodeGeneration
103 /// time. To relate the memory slots used during code generation with the
104 /// llvm::Values they belong to the new names for these corresponding stack
105 /// slots are derived by appending suffixes (currently ".s2a" and ".phiops")
106 /// to the name of the original llvm::Value. To describe how def/uses are
107 /// modeled exactly we use these suffixes here as well.
109 /// There are currently four different kinds of memory objects:
110 enum class MemoryKind {
111 /// MemoryKind::Array: Models a one or multi-dimensional array
113 /// A memory object that can be described by a multi-dimensional array.
114 /// Memory objects of this type are used to model actual multi-dimensional
115 /// arrays as they exist in LLVM-IR, but they are also used to describe
116 /// other objects:
117 /// - A single data element allocated on the stack using 'alloca' is
118 /// modeled as a one-dimensional, single-element array.
119 /// - A single data element allocated as a global variable is modeled as
120 /// one-dimensional, single-element array.
121 /// - Certain multi-dimensional arrays with variable size, which in
122 /// LLVM-IR are commonly expressed as a single-dimensional access with a
123 /// complicated access function, are modeled as multi-dimensional
124 /// memory objects (grep for "delinearization").
125 Array,
127 /// MemoryKind::Value: Models an llvm::Value
129 /// Memory objects of type MemoryKind::Value are used to model the data flow
130 /// induced by llvm::Values. For each llvm::Value that is used across
131 /// BasicBocks one ScopArrayInfo object is created. A single memory WRITE
132 /// stores the llvm::Value at its definition into the memory object and at
133 /// each use of the llvm::Value (ignoring trivial intra-block uses) a
134 /// corresponding READ is added. For instance, the use/def chain of a
135 /// llvm::Value %V depicted below
136 /// ______________________
137 /// |DefBB: |
138 /// | %V = float op ... |
139 /// ----------------------
140 /// | |
141 /// _________________ _________________
142 /// |UseBB1: | |UseBB2: |
143 /// | use float %V | | use float %V |
144 /// ----------------- -----------------
146 /// is modeled as if the following memory accesses occurred:
148 /// __________________________
149 /// |entry: |
150 /// | %V.s2a = alloca float |
151 /// --------------------------
152 /// |
153 /// ___________________________________
154 /// |DefBB: |
155 /// | store %float %V, float* %V.s2a |
156 /// -----------------------------------
157 /// | |
158 /// ____________________________________ ___________________________________
159 /// |UseBB1: | |UseBB2: |
160 /// | %V.reload1 = load float* %V.s2a | | %V.reload2 = load float* %V.s2a|
161 /// | use float %V.reload1 | | use float %V.reload2 |
162 /// ------------------------------------ -----------------------------------
164 Value,
166 /// MemoryKind::PHI: Models PHI nodes within the SCoP
168 /// Besides the MemoryKind::Value memory object used to model the normal
169 /// llvm::Value dependences described above, PHI nodes require an additional
170 /// memory object of type MemoryKind::PHI to describe the forwarding of values
171 /// to
172 /// the PHI node.
174 /// As an example, a PHIInst instructions
176 /// %PHI = phi float [ %Val1, %IncomingBlock1 ], [ %Val2, %IncomingBlock2 ]
178 /// is modeled as if the accesses occurred this way:
180 /// _______________________________
181 /// |entry: |
182 /// | %PHI.phiops = alloca float |
183 /// -------------------------------
184 /// | |
185 /// __________________________________ __________________________________
186 /// |IncomingBlock1: | |IncomingBlock2: |
187 /// | ... | | ... |
188 /// | store float %Val1 %PHI.phiops | | store float %Val2 %PHI.phiops |
189 /// | br label % JoinBlock | | br label %JoinBlock |
190 /// ---------------------------------- ----------------------------------
191 /// \ /
192 /// \ /
193 /// _________________________________________
194 /// |JoinBlock: |
195 /// | %PHI = load float, float* PHI.phiops |
196 /// -----------------------------------------
198 /// Note that there can also be a scalar write access for %PHI if used in a
199 /// different BasicBlock, i.e. there can be a memory object %PHI.phiops as
200 /// well as a memory object %PHI.s2a.
201 PHI,
203 /// MemoryKind::ExitPHI: Models PHI nodes in the SCoP's exit block
205 /// For PHI nodes in the Scop's exit block a special memory object kind is
206 /// used. The modeling used is identical to MemoryKind::PHI, with the
207 /// exception
208 /// that there are no READs from these memory objects. The PHINode's
209 /// llvm::Value is treated as a value escaping the SCoP. WRITE accesses
210 /// write directly to the escaping value's ".s2a" alloca.
211 ExitPHI
214 /// Maps from a loop to the affine function expressing its backedge taken count.
215 /// The backedge taken count already enough to express iteration domain as we
216 /// only allow loops with canonical induction variable.
217 /// A canonical induction variable is:
218 /// an integer recurrence that starts at 0 and increments by one each time
219 /// through the loop.
220 typedef std::map<const Loop *, const SCEV *> LoopBoundMapType;
222 typedef std::vector<std::unique_ptr<MemoryAccess>> AccFuncVector;
224 /// A class to store information about arrays in the SCoP.
226 /// Objects are accessible via the ScoP, MemoryAccess or the id associated with
227 /// the MemoryAccess access function.
229 class ScopArrayInfo {
230 public:
231 /// Construct a ScopArrayInfo object.
233 /// @param BasePtr The array base pointer.
234 /// @param ElementType The type of the elements stored in the array.
235 /// @param IslCtx The isl context used to create the base pointer id.
236 /// @param DimensionSizes A vector containing the size of each dimension.
237 /// @param Kind The kind of the array object.
238 /// @param DL The data layout of the module.
239 /// @param S The scop this array object belongs to.
240 /// @param BaseName The optional name of this memory reference.
241 ScopArrayInfo(Value *BasePtr, Type *ElementType, isl_ctx *IslCtx,
242 ArrayRef<const SCEV *> DimensionSizes, MemoryKind Kind,
243 const DataLayout &DL, Scop *S, const char *BaseName = nullptr);
245 /// Update the element type of the ScopArrayInfo object.
247 /// Memory accesses referencing this ScopArrayInfo object may use
248 /// different element sizes. This function ensures the canonical element type
249 /// stored is small enough to model accesses to the current element type as
250 /// well as to @p NewElementType.
252 /// @param NewElementType An element type that is used to access this array.
253 void updateElementType(Type *NewElementType);
255 /// Update the sizes of the ScopArrayInfo object.
257 /// A ScopArrayInfo object may be created without all outer dimensions being
258 /// available. This function is called when new memory accesses are added for
259 /// this ScopArrayInfo object. It verifies that sizes are compatible and adds
260 /// additional outer array dimensions, if needed.
262 /// @param Sizes A vector of array sizes where the rightmost array
263 /// sizes need to match the innermost array sizes already
264 /// defined in SAI.
265 /// @param CheckConsistency Update sizes, even if new sizes are inconsistent
266 /// with old sizes
267 bool updateSizes(ArrayRef<const SCEV *> Sizes, bool CheckConsistency = true);
269 /// Make the ScopArrayInfo model a Fortran array.
270 /// It receives the Fortran array descriptor and stores this.
271 /// It also adds a piecewise expression for the outermost dimension
272 /// since this information is available for Fortran arrays at runtime.
273 void applyAndSetFAD(Value *FAD);
275 /// Destructor to free the isl id of the base pointer.
276 ~ScopArrayInfo();
278 /// Set the base pointer to @p BP.
279 void setBasePtr(Value *BP) { BasePtr = BP; }
281 /// Return the base pointer.
282 Value *getBasePtr() const { return BasePtr; }
284 // Set IsOnHeap to the value in parameter.
285 void setIsOnHeap(bool value) { IsOnHeap = value; }
287 /// For indirect accesses return the origin SAI of the BP, else null.
288 const ScopArrayInfo *getBasePtrOriginSAI() const { return BasePtrOriginSAI; }
290 /// The set of derived indirect SAIs for this origin SAI.
291 const SmallSetVector<ScopArrayInfo *, 2> &getDerivedSAIs() const {
292 return DerivedSAIs;
295 /// Return the number of dimensions.
296 unsigned getNumberOfDimensions() const {
297 if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI ||
298 Kind == MemoryKind::Value)
299 return 0;
300 return DimensionSizes.size();
303 /// Return the size of dimension @p dim as SCEV*.
305 // Scalars do not have array dimensions and the first dimension of
306 // a (possibly multi-dimensional) array also does not carry any size
307 // information, in case the array is not newly created.
308 const SCEV *getDimensionSize(unsigned Dim) const {
309 assert(Dim < getNumberOfDimensions() && "Invalid dimension");
310 return DimensionSizes[Dim];
313 /// Return the size of dimension @p dim as isl_pw_aff.
315 // Scalars do not have array dimensions and the first dimension of
316 // a (possibly multi-dimensional) array also does not carry any size
317 // information, in case the array is not newly created.
318 __isl_give isl_pw_aff *getDimensionSizePw(unsigned Dim) const {
319 assert(Dim < getNumberOfDimensions() && "Invalid dimension");
320 return isl_pw_aff_copy(DimensionSizesPw[Dim]);
323 /// Get the canonical element type of this array.
325 /// @returns The canonical element type of this array.
326 Type *getElementType() const { return ElementType; }
328 /// Get element size in bytes.
329 int getElemSizeInBytes() const;
331 /// Get the name of this memory reference.
332 std::string getName() const;
334 /// Return the isl id for the base pointer.
335 __isl_give isl_id *getBasePtrId() const;
337 /// Return what kind of memory this represents.
338 MemoryKind getKind() const { return Kind; }
340 /// Is this array info modeling an llvm::Value?
341 bool isValueKind() const { return Kind == MemoryKind::Value; }
343 /// Is this array info modeling special PHI node memory?
345 /// During code generation of PHI nodes, there is a need for two kinds of
346 /// virtual storage. The normal one as it is used for all scalar dependences,
347 /// where the result of the PHI node is stored and later loaded from as well
348 /// as a second one where the incoming values of the PHI nodes are stored
349 /// into and reloaded when the PHI is executed. As both memories use the
350 /// original PHI node as virtual base pointer, we have this additional
351 /// attribute to distinguish the PHI node specific array modeling from the
352 /// normal scalar array modeling.
353 bool isPHIKind() const { return Kind == MemoryKind::PHI; }
355 /// Is this array info modeling an MemoryKind::ExitPHI?
356 bool isExitPHIKind() const { return Kind == MemoryKind::ExitPHI; }
358 /// Is this array info modeling an array?
359 bool isArrayKind() const { return Kind == MemoryKind::Array; }
361 /// Is this array allocated on heap
363 /// This property is only relevant if the array is allocated by Polly instead
364 /// of pre-existing. If false, it is allocated using alloca instead malloca.
365 bool isOnHeap() const { return IsOnHeap; }
367 /// Dump a readable representation to stderr.
368 void dump() const;
370 /// Print a readable representation to @p OS.
372 /// @param SizeAsPwAff Print the size as isl_pw_aff
373 void print(raw_ostream &OS, bool SizeAsPwAff = false) const;
375 /// Access the ScopArrayInfo associated with an access function.
376 static const ScopArrayInfo *
377 getFromAccessFunction(__isl_keep isl_pw_multi_aff *PMA);
379 /// Access the ScopArrayInfo associated with an isl Id.
380 static const ScopArrayInfo *getFromId(__isl_take isl_id *Id);
382 /// Get the space of this array access.
383 __isl_give isl_space *getSpace() const;
385 /// If the array is read only
386 bool isReadOnly();
388 /// Verify that @p Array is compatible to this ScopArrayInfo.
390 /// Two arrays are compatible if their dimensionality, the sizes of their
391 /// dimensions, and their element sizes match.
393 /// @param Array The array to compare against.
395 /// @returns True, if the arrays are compatible, False otherwise.
396 bool isCompatibleWith(const ScopArrayInfo *Array) const;
398 private:
399 void addDerivedSAI(ScopArrayInfo *DerivedSAI) {
400 DerivedSAIs.insert(DerivedSAI);
403 /// For indirect accesses this is the SAI of the BP origin.
404 const ScopArrayInfo *BasePtrOriginSAI;
406 /// For origin SAIs the set of derived indirect SAIs.
407 SmallSetVector<ScopArrayInfo *, 2> DerivedSAIs;
409 /// The base pointer.
410 AssertingVH<Value> BasePtr;
412 /// The canonical element type of this array.
414 /// The canonical element type describes the minimal accessible element in
415 /// this array. Not all elements accessed, need to be of the very same type,
416 /// but the allocation size of the type of the elements loaded/stored from/to
417 /// this array needs to be a multiple of the allocation size of the canonical
418 /// type.
419 Type *ElementType;
421 /// The isl id for the base pointer.
422 isl_id *Id;
424 /// True if the newly allocated array is on heap.
425 bool IsOnHeap;
427 /// The sizes of each dimension as SCEV*.
428 SmallVector<const SCEV *, 4> DimensionSizes;
430 /// The sizes of each dimension as isl_pw_aff.
431 SmallVector<isl_pw_aff *, 4> DimensionSizesPw;
433 /// The type of this scop array info object.
435 /// We distinguish between SCALAR, PHI and ARRAY objects.
436 MemoryKind Kind;
438 /// The data layout of the module.
439 const DataLayout &DL;
441 /// The scop this SAI object belongs to.
442 Scop &S;
444 /// If this array models a Fortran array, then this points
445 /// to the Fortran array descriptor.
446 Value *FAD;
449 /// Represent memory accesses in statements.
450 class MemoryAccess {
451 friend class Scop;
452 friend class ScopStmt;
454 public:
455 /// The access type of a memory access
457 /// There are three kind of access types:
459 /// * A read access
461 /// A certain set of memory locations are read and may be used for internal
462 /// calculations.
464 /// * A must-write access
466 /// A certain set of memory locations is definitely written. The old value is
467 /// replaced by a newly calculated value. The old value is not read or used at
468 /// all.
470 /// * A may-write access
472 /// A certain set of memory locations may be written. The memory location may
473 /// contain a new value if there is actually a write or the old value may
474 /// remain, if no write happens.
475 enum AccessType {
476 READ = 0x1,
477 MUST_WRITE = 0x2,
478 MAY_WRITE = 0x3,
481 /// Reduction access type
483 /// Commutative and associative binary operations suitable for reductions
484 enum ReductionType {
485 RT_NONE, ///< Indicate no reduction at all
486 RT_ADD, ///< Addition
487 RT_MUL, ///< Multiplication
488 RT_BOR, ///< Bitwise Or
489 RT_BXOR, ///< Bitwise XOr
490 RT_BAND, ///< Bitwise And
493 private:
494 MemoryAccess(const MemoryAccess &) = delete;
495 const MemoryAccess &operator=(const MemoryAccess &) = delete;
497 /// A unique identifier for this memory access.
499 /// The identifier is unique between all memory accesses belonging to the same
500 /// scop statement.
501 isl_id *Id;
503 /// What is modeled by this MemoryAccess.
504 /// @see MemoryKind
505 MemoryKind Kind;
507 /// Whether it a reading or writing access, and if writing, whether it
508 /// is conditional (MAY_WRITE).
509 enum AccessType AccType;
511 /// Reduction type for reduction like accesses, RT_NONE otherwise
513 /// An access is reduction like if it is part of a load-store chain in which
514 /// both access the same memory location (use the same LLVM-IR value
515 /// as pointer reference). Furthermore, between the load and the store there
516 /// is exactly one binary operator which is known to be associative and
517 /// commutative.
519 /// TODO:
521 /// We can later lift the constraint that the same LLVM-IR value defines the
522 /// memory location to handle scops such as the following:
524 /// for i
525 /// for j
526 /// sum[i+j] = sum[i] + 3;
528 /// Here not all iterations access the same memory location, but iterations
529 /// for which j = 0 holds do. After lifting the equality check in ScopBuilder,
530 /// subsequent transformations do not only need check if a statement is
531 /// reduction like, but they also need to verify that that the reduction
532 /// property is only exploited for statement instances that load from and
533 /// store to the same data location. Doing so at dependence analysis time
534 /// could allow us to handle the above example.
535 ReductionType RedType = RT_NONE;
537 /// Parent ScopStmt of this access.
538 ScopStmt *Statement;
540 /// The domain under which this access is not modeled precisely.
542 /// The invalid domain for an access describes all parameter combinations
543 /// under which the statement looks to be executed but is in fact not because
544 /// some assumption/restriction makes the access invalid.
545 isl_set *InvalidDomain;
547 // Properties describing the accessed array.
548 // TODO: It might be possible to move them to ScopArrayInfo.
549 // @{
551 /// The base address (e.g., A for A[i+j]).
553 /// The #BaseAddr of a memory access of kind MemoryKind::Array is the base
554 /// pointer of the memory access.
555 /// The #BaseAddr of a memory access of kind MemoryKind::PHI or
556 /// MemoryKind::ExitPHI is the PHI node itself.
557 /// The #BaseAddr of a memory access of kind MemoryKind::Value is the
558 /// instruction defining the value.
559 AssertingVH<Value> BaseAddr;
561 /// Type a single array element wrt. this access.
562 Type *ElementType;
564 /// Size of each dimension of the accessed array.
565 SmallVector<const SCEV *, 4> Sizes;
566 // @}
568 // Properties describing the accessed element.
569 // @{
571 /// The access instruction of this memory access.
573 /// For memory accesses of kind MemoryKind::Array the access instruction is
574 /// the Load or Store instruction performing the access.
576 /// For memory accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI the
577 /// access instruction of a load access is the PHI instruction. The access
578 /// instruction of a PHI-store is the incoming's block's terminator
579 /// instruction.
581 /// For memory accesses of kind MemoryKind::Value the access instruction of a
582 /// load access is nullptr because generally there can be multiple
583 /// instructions in the statement using the same llvm::Value. The access
584 /// instruction of a write access is the instruction that defines the
585 /// llvm::Value.
586 Instruction *AccessInstruction;
588 /// Incoming block and value of a PHINode.
589 SmallVector<std::pair<BasicBlock *, Value *>, 4> Incoming;
591 /// The value associated with this memory access.
593 /// - For array memory accesses (MemoryKind::Array) it is the loaded result
594 /// or the stored value. If the access instruction is a memory intrinsic it
595 /// the access value is also the memory intrinsic.
596 /// - For accesses of kind MemoryKind::Value it is the access instruction
597 /// itself.
598 /// - For accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI it is the
599 /// PHI node itself (for both, READ and WRITE accesses).
601 AssertingVH<Value> AccessValue;
603 /// Are all the subscripts affine expression?
604 bool IsAffine;
606 /// Subscript expression for each dimension.
607 SmallVector<const SCEV *, 4> Subscripts;
609 /// Relation from statement instances to the accessed array elements.
611 /// In the common case this relation is a function that maps a set of loop
612 /// indices to the memory address from which a value is loaded/stored:
614 /// for i
615 /// for j
616 /// S: A[i + 3 j] = ...
618 /// => { S[i,j] -> A[i + 3j] }
620 /// In case the exact access function is not known, the access relation may
621 /// also be a one to all mapping { S[i,j] -> A[o] } describing that any
622 /// element accessible through A might be accessed.
624 /// In case of an access to a larger element belonging to an array that also
625 /// contains smaller elements, the access relation models the larger access
626 /// with multiple smaller accesses of the size of the minimal array element
627 /// type:
629 /// short *A;
631 /// for i
632 /// S: A[i] = *((double*)&A[4 * i]);
634 /// => { S[i] -> A[i]; S[i] -> A[o] : 4i <= o <= 4i + 3 }
635 isl_map *AccessRelation;
637 /// Updated access relation read from JSCOP file.
638 isl_map *NewAccessRelation;
640 /// Fortran arrays whose sizes are not statically known are stored in terms
641 /// of a descriptor struct. This maintains a raw pointer to the memory,
642 /// along with auxiliary fields with information such as dimensions.
643 /// We hold a reference to the descriptor corresponding to a MemoryAccess
644 /// into a Fortran array. FAD for "Fortran Array Descriptor"
645 AssertingVH<Value> FAD;
646 // @}
648 __isl_give isl_basic_map *createBasicAccessMap(ScopStmt *Statement);
650 void assumeNoOutOfBound();
652 /// Compute bounds on an over approximated access relation.
654 /// @param ElementSize The size of one element accessed.
655 void computeBoundsOnAccessRelation(unsigned ElementSize);
657 /// Get the original access function as read from IR.
658 __isl_give isl_map *getOriginalAccessRelation() const;
660 /// Return the space in which the access relation lives in.
661 __isl_give isl_space *getOriginalAccessRelationSpace() const;
663 /// Get the new access function imported or set by a pass
664 __isl_give isl_map *getNewAccessRelation() const;
666 /// Fold the memory access to consider parametric offsets
668 /// To recover memory accesses with array size parameters in the subscript
669 /// expression we post-process the delinearization results.
671 /// We would normally recover from an access A[exp0(i) * N + exp1(i)] into an
672 /// array A[][N] the 2D access A[exp0(i)][exp1(i)]. However, another valid
673 /// delinearization is A[exp0(i) - 1][exp1(i) + N] which - depending on the
674 /// range of exp1(i) - may be preferable. Specifically, for cases where we
675 /// know exp1(i) is negative, we want to choose the latter expression.
677 /// As we commonly do not have any information about the range of exp1(i),
678 /// we do not choose one of the two options, but instead create a piecewise
679 /// access function that adds the (-1, N) offsets as soon as exp1(i) becomes
680 /// negative. For a 2D array such an access function is created by applying
681 /// the piecewise map:
683 /// [i,j] -> [i, j] : j >= 0
684 /// [i,j] -> [i-1, j+N] : j < 0
686 /// We can generalize this mapping to arbitrary dimensions by applying this
687 /// piecewise mapping pairwise from the rightmost to the leftmost access
688 /// dimension. It would also be possible to cover a wider range by introducing
689 /// more cases and adding multiple of Ns to these cases. However, this has
690 /// not yet been necessary.
691 /// The introduction of different cases necessarily complicates the memory
692 /// access function, but cases that can be statically proven to not happen
693 /// will be eliminated later on.
694 void foldAccessRelation();
696 /// Create the access relation for the underlying memory intrinsic.
697 void buildMemIntrinsicAccessRelation();
699 /// Assemble the access relation from all available information.
701 /// In particular, used the information passes in the constructor and the
702 /// parent ScopStmt set by setStatment().
704 /// @param SAI Info object for the accessed array.
705 void buildAccessRelation(const ScopArrayInfo *SAI);
707 /// Carry index overflows of dimensions with constant size to the next higher
708 /// dimension.
710 /// For dimensions that have constant size, modulo the index by the size and
711 /// add up the carry (floored division) to the next higher dimension. This is
712 /// how overflow is defined in row-major order.
713 /// It happens e.g. when ScalarEvolution computes the offset to the base
714 /// pointer and would algebraically sum up all lower dimensions' indices of
715 /// constant size.
717 /// Example:
718 /// float (*A)[4];
719 /// A[1][6] -> A[2][2]
720 void wrapConstantDimensions();
722 public:
723 /// Create a new MemoryAccess.
725 /// @param Stmt The parent statement.
726 /// @param AccessInst The instruction doing the access.
727 /// @param BaseAddr The accessed array's address.
728 /// @param ElemType The type of the accessed array elements.
729 /// @param AccType Whether read or write access.
730 /// @param IsAffine Whether the subscripts are affine expressions.
731 /// @param Kind The kind of memory accessed.
732 /// @param Subscripts Subscript expressions
733 /// @param Sizes Dimension lengths of the accessed array.
734 MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst, AccessType AccType,
735 Value *BaseAddress, Type *ElemType, bool Affine,
736 ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes,
737 Value *AccessValue, MemoryKind Kind);
739 /// Create a new MemoryAccess that corresponds to @p AccRel.
741 /// Along with @p Stmt and @p AccType it uses information about dimension
742 /// lengths of the accessed array, the type of the accessed array elements,
743 /// the name of the accessed array that is derived from the object accessible
744 /// via @p AccRel.
746 /// @param Stmt The parent statement.
747 /// @param AccType Whether read or write access.
748 /// @param AccRel The access relation that describes the memory access.
749 MemoryAccess(ScopStmt *Stmt, AccessType AccType, __isl_take isl_map *AccRel);
751 ~MemoryAccess();
753 /// Add a new incoming block/value pairs for this PHI/ExitPHI access.
755 /// @param IncomingBlock The PHI's incoming block.
756 /// @param IncomingValue The value when reaching the PHI from the @p
757 /// IncomingBlock.
758 void addIncoming(BasicBlock *IncomingBlock, Value *IncomingValue) {
759 assert(!isRead());
760 assert(isAnyPHIKind());
761 Incoming.emplace_back(std::make_pair(IncomingBlock, IncomingValue));
764 /// Return the list of possible PHI/ExitPHI values.
766 /// After code generation moves some PHIs around during region simplification,
767 /// we cannot reliably locate the original PHI node and its incoming values
768 /// anymore. For this reason we remember these explicitly for all PHI-kind
769 /// accesses.
770 ArrayRef<std::pair<BasicBlock *, Value *>> getIncoming() const {
771 assert(isAnyPHIKind());
772 return Incoming;
775 /// Get the type of a memory access.
776 enum AccessType getType() { return AccType; }
778 /// Is this a reduction like access?
779 bool isReductionLike() const { return RedType != RT_NONE; }
781 /// Is this a read memory access?
782 bool isRead() const { return AccType == MemoryAccess::READ; }
784 /// Is this a must-write memory access?
785 bool isMustWrite() const { return AccType == MemoryAccess::MUST_WRITE; }
787 /// Is this a may-write memory access?
788 bool isMayWrite() const { return AccType == MemoryAccess::MAY_WRITE; }
790 /// Is this a write memory access?
791 bool isWrite() const { return isMustWrite() || isMayWrite(); }
793 /// Is this a memory intrinsic access (memcpy, memset, memmove)?
794 bool isMemoryIntrinsic() const {
795 return isa<MemIntrinsic>(getAccessInstruction());
798 /// Check if a new access relation was imported or set by a pass.
799 bool hasNewAccessRelation() const { return NewAccessRelation; }
801 /// Return the newest access relation of this access.
803 /// There are two possibilities:
804 /// 1) The original access relation read from the LLVM-IR.
805 /// 2) A new access relation imported from a json file or set by another
806 /// pass (e.g., for privatization).
808 /// As 2) is by construction "newer" than 1) we return the new access
809 /// relation if present.
811 __isl_give isl_map *getLatestAccessRelation() const {
812 return hasNewAccessRelation() ? getNewAccessRelation()
813 : getOriginalAccessRelation();
816 /// Old name of getLatestAccessRelation().
817 __isl_give isl_map *getAccessRelation() const {
818 return getLatestAccessRelation();
821 /// Get an isl map describing the memory address accessed.
823 /// In most cases the memory address accessed is well described by the access
824 /// relation obtained with getAccessRelation. However, in case of arrays
825 /// accessed with types of different size the access relation maps one access
826 /// to multiple smaller address locations. This method returns an isl map that
827 /// relates each dynamic statement instance to the unique memory location
828 /// that is loaded from / stored to.
830 /// For an access relation { S[i] -> A[o] : 4i <= o <= 4i + 3 } this method
831 /// will return the address function { S[i] -> A[4i] }.
833 /// @returns The address function for this memory access.
834 __isl_give isl_map *getAddressFunction() const;
836 /// Return the access relation after the schedule was applied.
837 __isl_give isl_pw_multi_aff *
838 applyScheduleToAccessRelation(__isl_take isl_union_map *Schedule) const;
840 /// Get an isl string representing the access function read from IR.
841 std::string getOriginalAccessRelationStr() const;
843 /// Get an isl string representing a new access function, if available.
844 std::string getNewAccessRelationStr() const;
846 /// Get an isl string representing the latest access relation.
847 std::string getAccessRelationStr() const;
849 /// Get the original base address of this access (e.g. A for A[i+j]) when
850 /// detected.
852 /// This adress may differ from the base address referenced by the Original
853 /// ScopArrayInfo to which this array belongs, as this memory access may
854 /// have been unified to a ScopArray which has a different but identically
855 /// valued base pointer in case invariant load hoisting is enabled.
856 Value *getOriginalBaseAddr() const { return BaseAddr; }
858 /// Get the detection-time base array isl_id for this access.
859 __isl_give isl_id *getOriginalArrayId() const;
861 /// Get the base array isl_id for this access, modifiable through
862 /// setNewAccessRelation().
863 __isl_give isl_id *getLatestArrayId() const;
865 /// Old name of getOriginalArrayId().
866 __isl_give isl_id *getArrayId() const { return getOriginalArrayId(); }
868 /// Get the detection-time ScopArrayInfo object for the base address.
869 const ScopArrayInfo *getOriginalScopArrayInfo() const;
871 /// Get the ScopArrayInfo object for the base address, or the one set
872 /// by setNewAccessRelation().
873 const ScopArrayInfo *getLatestScopArrayInfo() const;
875 /// Legacy name of getOriginalScopArrayInfo().
876 const ScopArrayInfo *getScopArrayInfo() const {
877 return getOriginalScopArrayInfo();
880 /// Return a string representation of the access's reduction type.
881 const std::string getReductionOperatorStr() const;
883 /// Return a string representation of the reduction type @p RT.
884 static const std::string getReductionOperatorStr(ReductionType RT);
886 /// Return the element type of the accessed array wrt. this access.
887 Type *getElementType() const { return ElementType; }
889 /// Return the access value of this memory access.
890 Value *getAccessValue() const { return AccessValue; }
892 /// Return llvm::Value that is stored by this access, if available.
894 /// PHI nodes may not have a unique value available that is stored, as in
895 /// case of region statements one out of possibly several llvm::Values
896 /// might be stored. In this case nullptr is returned.
897 Value *tryGetValueStored() {
898 assert(isWrite() && "Only write statement store values");
899 if (isAnyPHIKind()) {
900 if (Incoming.size() == 1)
901 return Incoming[0].second;
902 return nullptr;
904 return AccessValue;
907 /// Return the access instruction of this memory access.
908 Instruction *getAccessInstruction() const { return AccessInstruction; }
910 /// Return the number of access function subscript.
911 unsigned getNumSubscripts() const { return Subscripts.size(); }
913 /// Return the access function subscript in the dimension @p Dim.
914 const SCEV *getSubscript(unsigned Dim) const { return Subscripts[Dim]; }
916 /// Compute the isl representation for the SCEV @p E wrt. this access.
918 /// Note that this function will also adjust the invalid context accordingly.
919 __isl_give isl_pw_aff *getPwAff(const SCEV *E);
921 /// Get the invalid domain for this access.
922 __isl_give isl_set *getInvalidDomain() const {
923 return isl_set_copy(InvalidDomain);
926 /// Get the invalid context for this access.
927 __isl_give isl_set *getInvalidContext() const {
928 return isl_set_params(getInvalidDomain());
931 /// Get the stride of this memory access in the specified Schedule. Schedule
932 /// is a map from the statement to a schedule where the innermost dimension is
933 /// the dimension of the innermost loop containing the statement.
934 __isl_give isl_set *getStride(__isl_take const isl_map *Schedule) const;
936 /// Get the FortranArrayDescriptor corresponding to this memory access if
937 /// it exists, and nullptr otherwise.
938 Value *getFortranArrayDescriptor() const { return this->FAD; };
940 /// Is the stride of the access equal to a certain width? Schedule is a map
941 /// from the statement to a schedule where the innermost dimension is the
942 /// dimension of the innermost loop containing the statement.
943 bool isStrideX(__isl_take const isl_map *Schedule, int StrideWidth) const;
945 /// Is consecutive memory accessed for a given statement instance set?
946 /// Schedule is a map from the statement to a schedule where the innermost
947 /// dimension is the dimension of the innermost loop containing the
948 /// statement.
949 bool isStrideOne(__isl_take const isl_map *Schedule) const;
951 /// Is always the same memory accessed for a given statement instance set?
952 /// Schedule is a map from the statement to a schedule where the innermost
953 /// dimension is the dimension of the innermost loop containing the
954 /// statement.
955 bool isStrideZero(__isl_take const isl_map *Schedule) const;
957 /// Return the kind when this access was first detected.
958 MemoryKind getOriginalKind() const {
959 assert(!getOriginalScopArrayInfo() /* not yet initialized */ ||
960 getOriginalScopArrayInfo()->getKind() == Kind);
961 return Kind;
964 /// Return the kind considering a potential setNewAccessRelation.
965 MemoryKind getLatestKind() const {
966 return getLatestScopArrayInfo()->getKind();
969 /// Whether this is an access of an explicit load or store in the IR.
970 bool isOriginalArrayKind() const {
971 return getOriginalKind() == MemoryKind::Array;
974 /// Whether storage memory is either an custom .s2a/.phiops alloca
975 /// (false) or an existing pointer into an array (true).
976 bool isLatestArrayKind() const {
977 return getLatestKind() == MemoryKind::Array;
980 /// Old name of isOriginalArrayKind.
981 bool isArrayKind() const { return isOriginalArrayKind(); }
983 /// Whether this access is an array to a scalar memory object, without
984 /// considering changes by setNewAccessRelation.
986 /// Scalar accesses are accesses to MemoryKind::Value, MemoryKind::PHI or
987 /// MemoryKind::ExitPHI.
988 bool isOriginalScalarKind() const {
989 return getOriginalKind() != MemoryKind::Array;
992 /// Whether this access is an array to a scalar memory object, also
993 /// considering changes by setNewAccessRelation.
994 bool isLatestScalarKind() const {
995 return getLatestKind() != MemoryKind::Array;
998 /// Old name of isOriginalScalarKind.
999 bool isScalarKind() const { return isOriginalScalarKind(); }
1001 /// Was this MemoryAccess detected as a scalar dependences?
1002 bool isOriginalValueKind() const {
1003 return getOriginalKind() == MemoryKind::Value;
1006 /// Is this MemoryAccess currently modeling scalar dependences?
1007 bool isLatestValueKind() const {
1008 return getLatestKind() == MemoryKind::Value;
1011 /// Old name of isOriginalValueKind().
1012 bool isValueKind() const { return isOriginalValueKind(); }
1014 /// Was this MemoryAccess detected as a special PHI node access?
1015 bool isOriginalPHIKind() const {
1016 return getOriginalKind() == MemoryKind::PHI;
1019 /// Is this MemoryAccess modeling special PHI node accesses, also
1020 /// considering a potential change by setNewAccessRelation?
1021 bool isLatestPHIKind() const { return getLatestKind() == MemoryKind::PHI; }
1023 /// Old name of isOriginalPHIKind.
1024 bool isPHIKind() const { return isOriginalPHIKind(); }
1026 /// Was this MemoryAccess detected as the accesses of a PHI node in the
1027 /// SCoP's exit block?
1028 bool isOriginalExitPHIKind() const {
1029 return getOriginalKind() == MemoryKind::ExitPHI;
1032 /// Is this MemoryAccess modeling the accesses of a PHI node in the
1033 /// SCoP's exit block? Can be changed to an array access using
1034 /// setNewAccessRelation().
1035 bool isLatestExitPHIKind() const {
1036 return getLatestKind() == MemoryKind::ExitPHI;
1039 /// Old name of isOriginalExitPHIKind().
1040 bool isExitPHIKind() const { return isOriginalExitPHIKind(); }
1042 /// Was this access detected as one of the two PHI types?
1043 bool isOriginalAnyPHIKind() const {
1044 return isOriginalPHIKind() || isOriginalExitPHIKind();
1047 /// Does this access originate from one of the two PHI types? Can be
1048 /// changed to an array access using setNewAccessRelation().
1049 bool isLatestAnyPHIKind() const {
1050 return isLatestPHIKind() || isLatestExitPHIKind();
1053 /// Old name of isOriginalAnyPHIKind().
1054 bool isAnyPHIKind() const { return isOriginalAnyPHIKind(); }
1056 /// Get the statement that contains this memory access.
1057 ScopStmt *getStatement() const { return Statement; }
1059 /// Get the reduction type of this access
1060 ReductionType getReductionType() const { return RedType; }
1062 /// Set the array descriptor corresponding to the Array on which the
1063 /// memory access is performed.
1064 void setFortranArrayDescriptor(Value *FAD);
1066 /// Update the original access relation.
1068 /// We need to update the original access relation during scop construction,
1069 /// when unifying the memory accesses that access the same scop array info
1070 /// object. After the scop has been constructed, the original access relation
1071 /// should not be changed any more. Instead setNewAccessRelation should
1072 /// be called.
1073 void setAccessRelation(__isl_take isl_map *AccessRelation);
1075 /// Set the updated access relation read from JSCOP file.
1076 void setNewAccessRelation(__isl_take isl_map *NewAccessRelation);
1078 /// Return whether the MemoryyAccess is a partial access. That is, the access
1079 /// is not executed in some instances of the parent statement's domain.
1080 bool isLatestPartialAccess() const;
1082 /// Mark this a reduction like access
1083 void markAsReductionLike(ReductionType RT) { RedType = RT; }
1085 /// Align the parameters in the access relation to the scop context
1086 void realignParams();
1088 /// Update the dimensionality of the memory access.
1090 /// During scop construction some memory accesses may not be constructed with
1091 /// their full dimensionality, but outer dimensions may have been omitted if
1092 /// they took the value 'zero'. By updating the dimensionality of the
1093 /// statement we add additional zero-valued dimensions to match the
1094 /// dimensionality of the ScopArrayInfo object that belongs to this memory
1095 /// access.
1096 void updateDimensionality();
1098 /// Get identifier for the memory access.
1100 /// This identifier is unique for all accesses that belong to the same scop
1101 /// statement.
1102 __isl_give isl_id *getId() const;
1104 /// Print the MemoryAccess.
1106 /// @param OS The output stream the MemoryAccess is printed to.
1107 void print(raw_ostream &OS) const;
1109 /// Print the MemoryAccess to stderr.
1110 void dump() const;
1112 /// Is the memory access affine?
1113 bool isAffine() const { return IsAffine; }
1116 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
1117 MemoryAccess::ReductionType RT);
1119 /// Ordered list type to hold accesses.
1120 using MemoryAccessList = std::forward_list<MemoryAccess *>;
1122 /// Helper structure for invariant memory accesses.
1123 struct InvariantAccess {
1124 /// The memory access that is (partially) invariant.
1125 MemoryAccess *MA;
1127 /// The context under which the access is not invariant.
1128 isl_set *NonHoistableCtx;
1131 /// Ordered container type to hold invariant accesses.
1132 using InvariantAccessesTy = SmallVector<InvariantAccess, 8>;
1134 /// Type for equivalent invariant accesses and their domain context.
1135 struct InvariantEquivClassTy {
1137 /// The pointer that identifies this equivalence class
1138 const SCEV *IdentifyingPointer;
1140 /// Memory accesses now treated invariant
1142 /// These memory accesses access the pointer location that identifies
1143 /// this equivalence class. They are treated as invariant and hoisted during
1144 /// code generation.
1145 MemoryAccessList InvariantAccesses;
1147 /// The execution context under which the memory location is accessed
1149 /// It is the union of the execution domains of the memory accesses in the
1150 /// InvariantAccesses list.
1151 isl_set *ExecutionContext;
1153 /// The type of the invariant access
1155 /// It is used to differentiate between differently typed invariant loads from
1156 /// the same location.
1157 Type *AccessType;
1160 /// Type for invariant accesses equivalence classes.
1161 using InvariantEquivClassesTy = SmallVector<InvariantEquivClassTy, 8>;
1163 /// Statement of the Scop
1165 /// A Scop statement represents an instruction in the Scop.
1167 /// It is further described by its iteration domain, its schedule and its data
1168 /// accesses.
1169 /// At the moment every statement represents a single basic block of LLVM-IR.
1170 class ScopStmt {
1171 public:
1172 ScopStmt(const ScopStmt &) = delete;
1173 const ScopStmt &operator=(const ScopStmt &) = delete;
1175 /// Create the ScopStmt from a BasicBlock.
1176 ScopStmt(Scop &parent, BasicBlock &bb, Loop *SurroundingLoop,
1177 std::vector<Instruction *> Instructions);
1179 /// Create an overapproximating ScopStmt for the region @p R.
1180 ScopStmt(Scop &parent, Region &R, Loop *SurroundingLoop);
1182 /// Create a copy statement.
1184 /// @param Stmt The parent statement.
1185 /// @param SourceRel The source location.
1186 /// @param TargetRel The target location.
1187 /// @param Domain The original domain under which the copy statement would
1188 /// be executed.
1189 ScopStmt(Scop &parent, __isl_take isl_map *SourceRel,
1190 __isl_take isl_map *TargetRel, __isl_take isl_set *Domain);
1192 /// Initialize members after all MemoryAccesses have been added.
1193 void init(LoopInfo &LI);
1195 private:
1196 /// Polyhedral description
1197 //@{
1199 /// The Scop containing this ScopStmt.
1200 Scop &Parent;
1202 /// The domain under which this statement is not modeled precisely.
1204 /// The invalid domain for a statement describes all parameter combinations
1205 /// under which the statement looks to be executed but is in fact not because
1206 /// some assumption/restriction makes the statement/scop invalid.
1207 isl_set *InvalidDomain;
1209 /// The iteration domain describes the set of iterations for which this
1210 /// statement is executed.
1212 /// Example:
1213 /// for (i = 0; i < 100 + b; ++i)
1214 /// for (j = 0; j < i; ++j)
1215 /// S(i,j);
1217 /// 'S' is executed for different values of i and j. A vector of all
1218 /// induction variables around S (i, j) is called iteration vector.
1219 /// The domain describes the set of possible iteration vectors.
1221 /// In this case it is:
1223 /// Domain: 0 <= i <= 100 + b
1224 /// 0 <= j <= i
1226 /// A pair of statement and iteration vector (S, (5,3)) is called statement
1227 /// instance.
1228 isl_set *Domain;
1230 /// The memory accesses of this statement.
1232 /// The only side effects of a statement are its memory accesses.
1233 typedef SmallVector<MemoryAccess *, 8> MemoryAccessVec;
1234 MemoryAccessVec MemAccs;
1236 /// Mapping from instructions to (scalar) memory accesses.
1237 DenseMap<const Instruction *, MemoryAccessList> InstructionToAccess;
1239 /// The set of values defined elsewhere required in this ScopStmt and
1240 /// their MemoryKind::Value READ MemoryAccesses.
1241 DenseMap<Value *, MemoryAccess *> ValueReads;
1243 /// The set of values defined in this ScopStmt that are required
1244 /// elsewhere, mapped to their MemoryKind::Value WRITE MemoryAccesses.
1245 DenseMap<Instruction *, MemoryAccess *> ValueWrites;
1247 /// Map from PHI nodes to its incoming value when coming from this
1248 /// statement.
1250 /// Non-affine subregions can have multiple exiting blocks that are incoming
1251 /// blocks of the PHI nodes. This map ensures that there is only one write
1252 /// operation for the complete subregion. A PHI selecting the relevant value
1253 /// will be inserted.
1254 DenseMap<PHINode *, MemoryAccess *> PHIWrites;
1256 //@}
1258 /// A SCoP statement represents either a basic block (affine/precise case) or
1259 /// a whole region (non-affine case).
1261 /// Only one of the following two members will therefore be set and indicate
1262 /// which kind of statement this is.
1264 ///{
1266 /// The BasicBlock represented by this statement (in the affine case).
1267 BasicBlock *BB;
1269 /// The region represented by this statement (in the non-affine case).
1270 Region *R;
1272 ///}
1274 /// The isl AST build for the new generated AST.
1275 isl_ast_build *Build;
1277 SmallVector<Loop *, 4> NestLoops;
1279 std::string BaseName;
1281 /// The closest loop that contains this statement.
1282 Loop *SurroundingLoop;
1284 /// Vector for Instructions in a BB.
1285 std::vector<Instruction *> Instructions;
1287 /// Build the statement.
1288 //@{
1289 void buildDomain();
1291 /// Fill NestLoops with loops surrounding this statement.
1292 void collectSurroundingLoops();
1294 /// Build the access relation of all memory accesses.
1295 void buildAccessRelations();
1297 /// Detect and mark reductions in the ScopStmt
1298 void checkForReductions();
1300 /// Collect loads which might form a reduction chain with @p StoreMA
1301 void
1302 collectCandiateReductionLoads(MemoryAccess *StoreMA,
1303 llvm::SmallVectorImpl<MemoryAccess *> &Loads);
1304 //@}
1306 /// Remove @p MA from dictionaries pointing to them.
1307 void removeAccessData(MemoryAccess *MA);
1309 public:
1310 ~ScopStmt();
1312 /// Get an isl_ctx pointer.
1313 isl_ctx *getIslCtx() const;
1315 /// Get the iteration domain of this ScopStmt.
1317 /// @return The iteration domain of this ScopStmt.
1318 __isl_give isl_set *getDomain() const;
1320 /// Get the space of the iteration domain
1322 /// @return The space of the iteration domain
1323 __isl_give isl_space *getDomainSpace() const;
1325 /// Get the id of the iteration domain space
1327 /// @return The id of the iteration domain space
1328 __isl_give isl_id *getDomainId() const;
1330 /// Get an isl string representing this domain.
1331 std::string getDomainStr() const;
1333 /// Get the schedule function of this ScopStmt.
1335 /// @return The schedule function of this ScopStmt, if it does not contain
1336 /// extension nodes, and nullptr, otherwise.
1337 __isl_give isl_map *getSchedule() const;
1339 /// Get an isl string representing this schedule.
1341 /// @return An isl string representing this schedule, if it does not contain
1342 /// extension nodes, and an empty string, otherwise.
1343 std::string getScheduleStr() const;
1345 /// Get the invalid domain for this statement.
1346 __isl_give isl_set *getInvalidDomain() const {
1347 return isl_set_copy(InvalidDomain);
1350 /// Get the invalid context for this statement.
1351 __isl_give isl_set *getInvalidContext() const {
1352 return isl_set_params(getInvalidDomain());
1355 /// Set the invalid context for this statement to @p ID.
1356 void setInvalidDomain(__isl_take isl_set *ID);
1358 /// Get the BasicBlock represented by this ScopStmt (if any).
1360 /// @return The BasicBlock represented by this ScopStmt, or null if the
1361 /// statement represents a region.
1362 BasicBlock *getBasicBlock() const { return BB; }
1364 /// Return true if this statement represents a single basic block.
1365 bool isBlockStmt() const { return BB != nullptr; }
1367 /// Return true if this is a copy statement.
1368 bool isCopyStmt() const { return BB == nullptr && R == nullptr; }
1370 /// Get the region represented by this ScopStmt (if any).
1372 /// @return The region represented by this ScopStmt, or null if the statement
1373 /// represents a basic block.
1374 Region *getRegion() const { return R; }
1376 /// Return true if this statement represents a whole region.
1377 bool isRegionStmt() const { return R != nullptr; }
1379 /// Return a BasicBlock from this statement.
1381 /// For block statements, it returns the BasicBlock itself. For subregion
1382 /// statements, return its entry block.
1383 BasicBlock *getEntryBlock() const;
1385 /// Return whether @p L is boxed within this statement.
1386 bool contains(const Loop *L) const {
1387 // Block statements never contain loops.
1388 if (isBlockStmt())
1389 return false;
1391 return getRegion()->contains(L);
1394 /// Return whether this statement contains @p BB.
1395 bool contains(BasicBlock *BB) const {
1396 if (isCopyStmt())
1397 return false;
1398 if (isBlockStmt())
1399 return BB == getBasicBlock();
1400 return getRegion()->contains(BB);
1403 /// Return whether this statement contains @p Inst.
1404 bool contains(Instruction *Inst) const {
1405 if (!Inst)
1406 return false;
1407 return contains(Inst->getParent());
1410 /// Return the closest innermost loop that contains this statement, but is not
1411 /// contained in it.
1413 /// For block statement, this is just the loop that contains the block. Region
1414 /// statements can contain boxed loops, so getting the loop of one of the
1415 /// region's BBs might return such an inner loop. For instance, the region's
1416 /// entry could be a header of a loop, but the region might extend to BBs
1417 /// after the loop exit. Similarly, the region might only contain parts of the
1418 /// loop body and still include the loop header.
1420 /// Most of the time the surrounding loop is the top element of #NestLoops,
1421 /// except when it is empty. In that case it return the loop that the whole
1422 /// SCoP is contained in. That can be nullptr if there is no such loop.
1423 Loop *getSurroundingLoop() const {
1424 assert(!isCopyStmt() &&
1425 "No surrounding loop for artificially created statements");
1426 return SurroundingLoop;
1429 /// Return true if this statement does not contain any accesses.
1430 bool isEmpty() const { return MemAccs.empty(); }
1432 /// Return the only array access for @p Inst, if existing.
1434 /// @param Inst The instruction for which to look up the access.
1435 /// @returns The unique array memory access related to Inst or nullptr if
1436 /// no array access exists
1437 MemoryAccess *getArrayAccessOrNULLFor(const Instruction *Inst) const {
1438 auto It = InstructionToAccess.find(Inst);
1439 if (It == InstructionToAccess.end())
1440 return nullptr;
1442 MemoryAccess *ArrayAccess = nullptr;
1444 for (auto Access : It->getSecond()) {
1445 if (!Access->isArrayKind())
1446 continue;
1448 assert(!ArrayAccess && "More then one array access for instruction");
1450 ArrayAccess = Access;
1453 return ArrayAccess;
1456 /// Return the only array access for @p Inst.
1458 /// @param Inst The instruction for which to look up the access.
1459 /// @returns The unique array memory access related to Inst.
1460 MemoryAccess &getArrayAccessFor(const Instruction *Inst) const {
1461 MemoryAccess *ArrayAccess = getArrayAccessOrNULLFor(Inst);
1463 assert(ArrayAccess && "No array access found for instruction!");
1464 return *ArrayAccess;
1467 /// Return the MemoryAccess that writes the value of an instruction
1468 /// defined in this statement, or nullptr if not existing, respectively
1469 /// not yet added.
1470 MemoryAccess *lookupValueWriteOf(Instruction *Inst) const {
1471 assert((isRegionStmt() && R->contains(Inst)) ||
1472 (!isRegionStmt() && Inst->getParent() == BB));
1473 return ValueWrites.lookup(Inst);
1476 /// Return the MemoryAccess that reloads a value, or nullptr if not
1477 /// existing, respectively not yet added.
1478 MemoryAccess *lookupValueReadOf(Value *Inst) const {
1479 return ValueReads.lookup(Inst);
1482 /// Return the MemoryAccess that loads a PHINode value, or nullptr if not
1483 /// existing, respectively not yet added.
1484 MemoryAccess *lookupPHIReadOf(PHINode *PHI) const;
1486 /// Return the PHI write MemoryAccess for the incoming values from any
1487 /// basic block in this ScopStmt, or nullptr if not existing,
1488 /// respectively not yet added.
1489 MemoryAccess *lookupPHIWriteOf(PHINode *PHI) const {
1490 assert(isBlockStmt() || R->getExit() == PHI->getParent());
1491 return PHIWrites.lookup(PHI);
1494 /// Return the input access of the value, or null if no such MemoryAccess
1495 /// exists.
1497 /// The input access is the MemoryAccess that makes an inter-statement value
1498 /// available in this statement by reading it at the start of this statement.
1499 /// This can be a MemoryKind::Value if defined in another statement or a
1500 /// MemoryKind::PHI if the value is a PHINode in this statement.
1501 MemoryAccess *lookupInputAccessOf(Value *Val) const {
1502 if (isa<PHINode>(Val))
1503 if (auto InputMA = lookupPHIReadOf(cast<PHINode>(Val))) {
1504 assert(!lookupValueReadOf(Val) && "input accesses must be unique; a "
1505 "statement cannot read a .s2a and "
1506 ".phiops simultaneously");
1507 return InputMA;
1510 if (auto *InputMA = lookupValueReadOf(Val))
1511 return InputMA;
1513 return nullptr;
1516 /// Add @p Access to this statement's list of accesses.
1517 void addAccess(MemoryAccess *Access);
1519 /// Remove a MemoryAccess from this statement.
1521 /// Note that scalar accesses that are caused by MA will
1522 /// be eliminated too.
1523 void removeMemoryAccess(MemoryAccess *MA);
1525 /// Remove @p MA from this statement.
1527 /// In contrast to removeMemoryAccess(), no other access will be eliminated.
1528 void removeSingleMemoryAccess(MemoryAccess *MA);
1530 typedef MemoryAccessVec::iterator iterator;
1531 typedef MemoryAccessVec::const_iterator const_iterator;
1533 iterator begin() { return MemAccs.begin(); }
1534 iterator end() { return MemAccs.end(); }
1535 const_iterator begin() const { return MemAccs.begin(); }
1536 const_iterator end() const { return MemAccs.end(); }
1537 size_t size() const { return MemAccs.size(); }
1539 unsigned getNumIterators() const;
1541 Scop *getParent() { return &Parent; }
1542 const Scop *getParent() const { return &Parent; }
1544 const std::vector<Instruction *> &getInstructions() const {
1545 return Instructions;
1548 const char *getBaseName() const;
1550 /// Set the isl AST build.
1551 void setAstBuild(__isl_keep isl_ast_build *B) { Build = B; }
1553 /// Get the isl AST build.
1554 __isl_keep isl_ast_build *getAstBuild() const { return Build; }
1556 /// Restrict the domain of the statement.
1558 /// @param NewDomain The new statement domain.
1559 void restrictDomain(__isl_take isl_set *NewDomain);
1561 /// Get the loop for a dimension.
1563 /// @param Dimension The dimension of the induction variable
1564 /// @return The loop at a certain dimension.
1565 Loop *getLoopForDimension(unsigned Dimension) const;
1567 /// Align the parameters in the statement to the scop context
1568 void realignParams();
1570 /// Print the ScopStmt.
1572 /// @param OS The output stream the ScopStmt is printed to.
1573 void print(raw_ostream &OS) const;
1575 /// Print the instructions in ScopStmt.
1577 void printInstructions(raw_ostream &OS) const;
1579 /// Print the ScopStmt to stderr.
1580 void dump() const;
1583 /// Print ScopStmt S to raw_ostream O.
1584 static inline raw_ostream &operator<<(raw_ostream &O, const ScopStmt &S) {
1585 S.print(O);
1586 return O;
1589 /// Static Control Part
1591 /// A Scop is the polyhedral representation of a control flow region detected
1592 /// by the Scop detection. It is generated by translating the LLVM-IR and
1593 /// abstracting its effects.
1595 /// A Scop consists of a set of:
1597 /// * A set of statements executed in the Scop.
1599 /// * A set of global parameters
1600 /// Those parameters are scalar integer values, which are constant during
1601 /// execution.
1603 /// * A context
1604 /// This context contains information about the values the parameters
1605 /// can take and relations between different parameters.
1606 class Scop {
1607 public:
1608 /// Type to represent a pair of minimal/maximal access to an array.
1609 using MinMaxAccessTy = std::pair<isl_pw_multi_aff *, isl_pw_multi_aff *>;
1611 /// Vector of minimal/maximal accesses to different arrays.
1612 using MinMaxVectorTy = SmallVector<MinMaxAccessTy, 4>;
1614 /// Pair of minimal/maximal access vectors representing
1615 /// read write and read only accesses
1616 using MinMaxVectorPairTy = std::pair<MinMaxVectorTy, MinMaxVectorTy>;
1618 /// Vector of pair of minimal/maximal access vectors representing
1619 /// non read only and read only accesses for each alias group.
1620 using MinMaxVectorPairVectorTy = SmallVector<MinMaxVectorPairTy, 4>;
1622 private:
1623 Scop(const Scop &) = delete;
1624 const Scop &operator=(const Scop &) = delete;
1626 ScalarEvolution *SE;
1628 /// The underlying Region.
1629 Region &R;
1631 /// The name of the SCoP (identical to the regions name)
1632 std::string name;
1634 /// The ID to be assigned to the next Scop in a function
1635 static int NextScopID;
1637 /// The name of the function currently under consideration
1638 static std::string CurrentFunc;
1640 // Access functions of the SCoP.
1642 // This owns all the MemoryAccess objects of the Scop created in this pass.
1643 AccFuncVector AccessFunctions;
1645 /// Flag to indicate that the scheduler actually optimized the SCoP.
1646 bool IsOptimized;
1648 /// True if the underlying region has a single exiting block.
1649 bool HasSingleExitEdge;
1651 /// Flag to remember if the SCoP contained an error block or not.
1652 bool HasErrorBlock;
1654 /// Max loop depth.
1655 unsigned MaxLoopDepth;
1657 /// Number of copy statements.
1658 unsigned CopyStmtsNum;
1660 /// Flag to indicate if the Scop is to be skipped.
1661 bool SkipScop;
1663 typedef std::list<ScopStmt> StmtSet;
1664 /// The statements in this Scop.
1665 StmtSet Stmts;
1667 /// Parameters of this Scop
1668 ParameterSetTy Parameters;
1670 /// Mapping from parameters to their ids.
1671 DenseMap<const SCEV *, isl_id *> ParameterIds;
1673 /// The context of the SCoP created during SCoP detection.
1674 ScopDetection::DetectionContext &DC;
1676 /// OptimizationRemarkEmitter object for displaying diagnostic remarks
1677 OptimizationRemarkEmitter &ORE;
1679 /// Isl context.
1681 /// We need a shared_ptr with reference counter to delete the context when all
1682 /// isl objects are deleted. We will distribute the shared_ptr to all objects
1683 /// that use the context to create isl objects, and increase the reference
1684 /// counter. By doing this, we guarantee that the context is deleted when we
1685 /// delete the last object that creates isl objects with the context.
1686 std::shared_ptr<isl_ctx> IslCtx;
1688 /// A map from basic blocks to vector of SCoP statements. Currently this
1689 /// vector comprises only of a single statement.
1690 DenseMap<BasicBlock *, std::vector<ScopStmt *>> StmtMap;
1692 /// A map from basic blocks to their domains.
1693 DenseMap<BasicBlock *, isl::set> DomainMap;
1695 /// Constraints on parameters.
1696 isl_set *Context;
1698 /// The affinator used to translate SCEVs to isl expressions.
1699 SCEVAffinator Affinator;
1701 typedef std::map<std::pair<AssertingVH<const Value>, MemoryKind>,
1702 std::unique_ptr<ScopArrayInfo>>
1703 ArrayInfoMapTy;
1705 typedef StringMap<std::unique_ptr<ScopArrayInfo>> ArrayNameMapTy;
1707 typedef SetVector<ScopArrayInfo *> ArrayInfoSetTy;
1709 /// A map to remember ScopArrayInfo objects for all base pointers.
1711 /// As PHI nodes may have two array info objects associated, we add a flag
1712 /// that distinguishes between the PHI node specific ArrayInfo object
1713 /// and the normal one.
1714 ArrayInfoMapTy ScopArrayInfoMap;
1716 /// A map to remember ScopArrayInfo objects for all names of memory
1717 /// references.
1718 ArrayNameMapTy ScopArrayNameMap;
1720 /// A set to remember ScopArrayInfo objects.
1721 /// @see Scop::ScopArrayInfoMap
1722 ArrayInfoSetTy ScopArrayInfoSet;
1724 /// The assumptions under which this scop was built.
1726 /// When constructing a scop sometimes the exact representation of a statement
1727 /// or condition would be very complex, but there is a common case which is a
1728 /// lot simpler, but which is only valid under certain assumptions. The
1729 /// assumed context records the assumptions taken during the construction of
1730 /// this scop and that need to be code generated as a run-time test.
1731 isl_set *AssumedContext;
1733 /// The restrictions under which this SCoP was built.
1735 /// The invalid context is similar to the assumed context as it contains
1736 /// constraints over the parameters. However, while we need the constraints
1737 /// in the assumed context to be "true" the constraints in the invalid context
1738 /// need to be "false". Otherwise they behave the same.
1739 isl_set *InvalidContext;
1741 /// Helper struct to remember assumptions.
1742 struct Assumption {
1744 /// The kind of the assumption (e.g., WRAPPING).
1745 AssumptionKind Kind;
1747 /// Flag to distinguish assumptions and restrictions.
1748 AssumptionSign Sign;
1750 /// The valid/invalid context if this is an assumption/restriction.
1751 isl_set *Set;
1753 /// The location that caused this assumption.
1754 DebugLoc Loc;
1756 /// An optional block whose domain can simplify the assumption.
1757 BasicBlock *BB;
1760 /// Collection to hold taken assumptions.
1762 /// There are two reasons why we want to record assumptions first before we
1763 /// add them to the assumed/invalid context:
1764 /// 1) If the SCoP is not profitable or otherwise invalid without the
1765 /// assumed/invalid context we do not have to compute it.
1766 /// 2) Information about the context are gathered rather late in the SCoP
1767 /// construction (basically after we know all parameters), thus the user
1768 /// might see overly complicated assumptions to be taken while they will
1769 /// only be simplified later on.
1770 SmallVector<Assumption, 8> RecordedAssumptions;
1772 /// The schedule of the SCoP
1774 /// The schedule of the SCoP describes the execution order of the statements
1775 /// in the scop by assigning each statement instance a possibly
1776 /// multi-dimensional execution time. The schedule is stored as a tree of
1777 /// schedule nodes.
1779 /// The most common nodes in a schedule tree are so-called band nodes. Band
1780 /// nodes map statement instances into a multi dimensional schedule space.
1781 /// This space can be seen as a multi-dimensional clock.
1783 /// Example:
1785 /// <S,(5,4)> may be mapped to (5,4) by this schedule:
1787 /// s0 = i (Year of execution)
1788 /// s1 = j (Day of execution)
1790 /// or to (9, 20) by this schedule:
1792 /// s0 = i + j (Year of execution)
1793 /// s1 = 20 (Day of execution)
1795 /// The order statement instances are executed is defined by the
1796 /// schedule vectors they are mapped to. A statement instance
1797 /// <A, (i, j, ..)> is executed before a statement instance <B, (i', ..)>, if
1798 /// the schedule vector of A is lexicographic smaller than the schedule
1799 /// vector of B.
1801 /// Besides band nodes, schedule trees contain additional nodes that specify
1802 /// a textual ordering between two subtrees or filter nodes that filter the
1803 /// set of statement instances that will be scheduled in a subtree. There
1804 /// are also several other nodes. A full description of the different nodes
1805 /// in a schedule tree is given in the isl manual.
1806 isl_schedule *Schedule;
1808 /// The set of minimal/maximal accesses for each alias group.
1810 /// When building runtime alias checks we look at all memory instructions and
1811 /// build so called alias groups. Each group contains a set of accesses to
1812 /// different base arrays which might alias with each other. However, between
1813 /// alias groups there is no aliasing possible.
1815 /// In a program with int and float pointers annotated with tbaa information
1816 /// we would probably generate two alias groups, one for the int pointers and
1817 /// one for the float pointers.
1819 /// During code generation we will create a runtime alias check for each alias
1820 /// group to ensure the SCoP is executed in an alias free environment.
1821 MinMaxVectorPairVectorTy MinMaxAliasGroups;
1823 /// Mapping from invariant loads to the representing invariant load of
1824 /// their equivalence class.
1825 ValueToValueMap InvEquivClassVMap;
1827 /// List of invariant accesses.
1828 InvariantEquivClassesTy InvariantEquivClasses;
1830 /// The smallest array index not yet assigned.
1831 long ArrayIdx = 0;
1833 /// The smallest statement index not yet assigned.
1834 long StmtIdx = 0;
1836 /// A number that uniquely represents a Scop within its function
1837 const int ID;
1839 /// List of all uses (i.e. read MemoryAccesses) for a MemoryKind::Value
1840 /// scalar.
1841 DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>> ValueUseAccs;
1843 /// List of all incoming values (write MemoryAccess) of a MemoryKind::PHI or
1844 /// MemoryKind::ExitPHI scalar.
1845 DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>>
1846 PHIIncomingAccs;
1848 /// Return the ID for a new Scop within a function
1849 static int getNextID(std::string ParentFunc);
1851 /// Scop constructor; invoked from ScopBuilder::buildScop.
1852 Scop(Region &R, ScalarEvolution &SE, LoopInfo &LI,
1853 ScopDetection::DetectionContext &DC, OptimizationRemarkEmitter &ORE);
1855 //@}
1857 /// Initialize this ScopBuilder.
1858 void init(AliasAnalysis &AA, AssumptionCache &AC, DominatorTree &DT,
1859 LoopInfo &LI);
1861 /// Propagate domains that are known due to graph properties.
1863 /// As a CFG is mostly structured we use the graph properties to propagate
1864 /// domains without the need to compute all path conditions. In particular, if
1865 /// a block A dominates a block B and B post-dominates A we know that the
1866 /// domain of B is a superset of the domain of A. As we do not have
1867 /// post-dominator information available here we use the less precise region
1868 /// information. Given a region R, we know that the exit is always executed if
1869 /// the entry was executed, thus the domain of the exit is a superset of the
1870 /// domain of the entry. In case the exit can only be reached from within the
1871 /// region the domains are in fact equal. This function will use this property
1872 /// to avoid the generation of condition constraints that determine when a
1873 /// branch is taken. If @p BB is a region entry block we will propagate its
1874 /// domain to the region exit block. Additionally, we put the region exit
1875 /// block in the @p FinishedExitBlocks set so we can later skip edges from
1876 /// within the region to that block.
1878 /// @param BB The block for which the domain is currently
1879 /// propagated.
1880 /// @param BBLoop The innermost affine loop surrounding @p BB.
1881 /// @param FinishedExitBlocks Set of region exits the domain was set for.
1882 /// @param LI The LoopInfo for the current function.
1883 /// @param InvalidDomainMap BB to InvalidDomain map for the BB of current
1884 /// region.
1885 void propagateDomainConstraintsToRegionExit(
1886 BasicBlock *BB, Loop *BBLoop,
1887 SmallPtrSetImpl<BasicBlock *> &FinishedExitBlocks, LoopInfo &LI,
1888 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap);
1890 /// Compute the union of predecessor domains for @p BB.
1892 /// To compute the union of all domains of predecessors of @p BB this
1893 /// function applies similar reasoning on the CFG structure as described for
1894 /// @see propagateDomainConstraintsToRegionExit
1896 /// @param BB The block for which the predecessor domains are collected.
1897 /// @param Domain The domain under which BB is executed.
1898 /// @param DT The DominatorTree for the current function.
1899 /// @param LI The LoopInfo for the current function.
1901 /// @returns The domain under which @p BB is executed.
1902 __isl_give isl_set *
1903 getPredecessorDomainConstraints(BasicBlock *BB, __isl_keep isl_set *Domain,
1904 DominatorTree &DT, LoopInfo &LI);
1906 /// Add loop carried constraints to the header block of the loop @p L.
1908 /// @param L The loop to process.
1909 /// @param LI The LoopInfo for the current function.
1910 /// @param InvalidDomainMap BB to InvalidDomain map for the BB of current
1911 /// region.
1913 /// @returns True if there was no problem and false otherwise.
1914 bool addLoopBoundsToHeaderDomain(
1915 Loop *L, LoopInfo &LI,
1916 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap);
1918 /// Compute the branching constraints for each basic block in @p R.
1920 /// @param R The region we currently build branching conditions
1921 /// for.
1922 /// @param DT The DominatorTree for the current function.
1923 /// @param LI The LoopInfo for the current function.
1924 /// @param InvalidDomainMap BB to InvalidDomain map for the BB of current
1925 /// region.
1927 /// @returns True if there was no problem and false otherwise.
1928 bool buildDomainsWithBranchConstraints(
1929 Region *R, DominatorTree &DT, LoopInfo &LI,
1930 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap);
1932 /// Propagate the domain constraints through the region @p R.
1934 /// @param R The region we currently build branching conditions
1935 /// for.
1936 /// @param DT The DominatorTree for the current function.
1937 /// @param LI The LoopInfo for the current function.
1938 /// @param InvalidDomainMap BB to InvalidDomain map for the BB of current
1939 /// region.
1941 /// @returns True if there was no problem and false otherwise.
1942 bool propagateDomainConstraints(
1943 Region *R, DominatorTree &DT, LoopInfo &LI,
1944 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap);
1946 /// Propagate invalid domains of statements through @p R.
1948 /// This method will propagate invalid statement domains through @p R and at
1949 /// the same time add error block domains to them. Additionally, the domains
1950 /// of error statements and those only reachable via error statements will be
1951 /// replaced by an empty set. Later those will be removed completely.
1953 /// @param R The currently traversed region.
1954 /// @param DT The DominatorTree for the current function.
1955 /// @param LI The LoopInfo for the current function.
1956 /// @param InvalidDomainMap BB to InvalidDomain map for the BB of current
1957 /// region.
1959 /// @returns True if there was no problem and false otherwise.
1960 bool propagateInvalidStmtDomains(
1961 Region *R, DominatorTree &DT, LoopInfo &LI,
1962 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap);
1964 /// Compute the domain for each basic block in @p R.
1966 /// @param R The region we currently traverse.
1967 /// @param DT The DominatorTree for the current function.
1968 /// @param LI The LoopInfo for the current function.
1969 /// @param InvalidDomainMap BB to InvalidDomain map for the BB of current
1970 /// region.
1972 /// @returns True if there was no problem and false otherwise.
1973 bool buildDomains(Region *R, DominatorTree &DT, LoopInfo &LI,
1974 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap);
1976 /// Add parameter constraints to @p C that imply a non-empty domain.
1977 __isl_give isl_set *addNonEmptyDomainConstraints(__isl_take isl_set *C) const;
1979 /// Return the access for the base ptr of @p MA if any.
1980 MemoryAccess *lookupBasePtrAccess(MemoryAccess *MA);
1982 /// Check if the base ptr of @p MA is in the SCoP but not hoistable.
1983 bool hasNonHoistableBasePtrInScop(MemoryAccess *MA, isl::union_map Writes);
1985 /// Create equivalence classes for required invariant accesses.
1987 /// These classes will consolidate multiple required invariant loads from the
1988 /// same address in order to keep the number of dimensions in the SCoP
1989 /// description small. For each such class equivalence class only one
1990 /// representing element, hence one required invariant load, will be chosen
1991 /// and modeled as parameter. The method
1992 /// Scop::getRepresentingInvariantLoadSCEV() will replace each element from an
1993 /// equivalence class with the representing element that is modeled. As a
1994 /// consequence Scop::getIdForParam() will only return an id for the
1995 /// representing element of each equivalence class, thus for each required
1996 /// invariant location.
1997 void buildInvariantEquivalenceClasses();
1999 /// Return the context under which the access cannot be hoisted.
2001 /// @param Access The access to check.
2002 /// @param Writes The set of all memory writes in the scop.
2004 /// @return Return the context under which the access cannot be hoisted or a
2005 /// nullptr if it cannot be hoisted at all.
2006 isl::set getNonHoistableCtx(MemoryAccess *Access, isl::union_map Writes);
2008 /// Verify that all required invariant loads have been hoisted.
2010 /// Invariant load hoisting is not guaranteed to hoist all loads that were
2011 /// assumed to be scop invariant during scop detection. This function checks
2012 /// for cases where the hoisting failed, but where it would have been
2013 /// necessary for our scop modeling to be correct. In case of insufficient
2014 /// hoisting the scop is marked as invalid.
2016 /// In the example below Bound[1] is required to be invariant:
2018 /// for (int i = 1; i < Bound[0]; i++)
2019 /// for (int j = 1; j < Bound[1]; j++)
2020 /// ...
2022 void verifyInvariantLoads();
2024 /// Hoist invariant memory loads and check for required ones.
2026 /// We first identify "common" invariant loads, thus loads that are invariant
2027 /// and can be hoisted. Then we check if all required invariant loads have
2028 /// been identified as (common) invariant. A load is a required invariant load
2029 /// if it was assumed to be invariant during SCoP detection, e.g., to assume
2030 /// loop bounds to be affine or runtime alias checks to be placeable. In case
2031 /// a required invariant load was not identified as (common) invariant we will
2032 /// drop this SCoP. An example for both "common" as well as required invariant
2033 /// loads is given below:
2035 /// for (int i = 1; i < *LB[0]; i++)
2036 /// for (int j = 1; j < *LB[1]; j++)
2037 /// A[i][j] += A[0][0] + (*V);
2039 /// Common inv. loads: V, A[0][0], LB[0], LB[1]
2040 /// Required inv. loads: LB[0], LB[1], (V, if it may alias with A or LB)
2042 void hoistInvariantLoads();
2044 /// Canonicalize arrays with base pointers from the same equivalence class.
2046 /// Some context: in our normal model we assume that each base pointer is
2047 /// related to a single specific memory region, where memory regions
2048 /// associated with different base pointers are disjoint. Consequently we do
2049 /// not need to compute additional data dependences that model possible
2050 /// overlaps of these memory regions. To verify our assumption we compute
2051 /// alias checks that verify that modeled arrays indeed do not overlap. In
2052 /// case an overlap is detected the runtime check fails and we fall back to
2053 /// the original code.
2055 /// In case of arrays where the base pointers are know to be identical,
2056 /// because they are dynamically loaded by accesses that are in the same
2057 /// invariant load equivalence class, such run-time alias check would always
2058 /// be false.
2060 /// This function makes sure that we do not generate consistently failing
2061 /// run-time checks for code that contains distinct arrays with known
2062 /// equivalent base pointers. It identifies for each invariant load
2063 /// equivalence class a single canonical array and canonicalizes all memory
2064 /// accesses that reference arrays that have base pointers that are known to
2065 /// be equal to the base pointer of such a canonical array to this canonical
2066 /// array.
2068 /// We currently do not canonicalize arrays for which certain memory accesses
2069 /// have been hoisted as loop invariant.
2070 void canonicalizeDynamicBasePtrs();
2072 /// Add invariant loads listed in @p InvMAs with the domain of @p Stmt.
2073 void addInvariantLoads(ScopStmt &Stmt, InvariantAccessesTy &InvMAs);
2075 /// Create an id for @p Param and store it in the ParameterIds map.
2076 void createParameterId(const SCEV *Param);
2078 /// Build the Context of the Scop.
2079 void buildContext();
2081 /// Add user provided parameter constraints to context (source code).
2082 void addUserAssumptions(AssumptionCache &AC, DominatorTree &DT, LoopInfo &LI,
2083 DenseMap<BasicBlock *, isl::set> &InvalidDomainMap);
2085 /// Add user provided parameter constraints to context (command line).
2086 void addUserContext();
2088 /// Add the bounds of the parameters to the context.
2089 void addParameterBounds();
2091 /// Simplify the assumed and invalid context.
2092 void simplifyContexts();
2094 /// Get the representing SCEV for @p S if applicable, otherwise @p S.
2096 /// Invariant loads of the same location are put in an equivalence class and
2097 /// only one of them is chosen as a representing element that will be
2098 /// modeled as a parameter. The others have to be normalized, i.e.,
2099 /// replaced by the representing element of their equivalence class, in order
2100 /// to get the correct parameter value, e.g., in the SCEVAffinator.
2102 /// @param S The SCEV to normalize.
2104 /// @return The representing SCEV for invariant loads or @p S if none.
2105 const SCEV *getRepresentingInvariantLoadSCEV(const SCEV *S);
2107 /// Create a new SCoP statement for @p BB.
2109 /// A new statement for @p BB will be created and added to the statement
2110 /// vector
2111 /// and map.
2113 /// @param BB The basic block we build the statement for.
2114 /// @param SurroundingLoop The loop the created statement is contained in.
2115 /// @param Instructions The instructions in the basic block.
2116 void addScopStmt(BasicBlock *BB, Loop *SurroundingLoop,
2117 std::vector<Instruction *> Instructions);
2119 /// Create a new SCoP statement for @p R.
2121 /// A new statement for @p R will be created and added to the statement vector
2122 /// and map.
2124 /// @param R The region we build the statement for.
2125 /// @param SurroundingLoop The loop the created statement is contained in.
2126 void addScopStmt(Region *R, Loop *SurroundingLoop);
2128 /// Update access dimensionalities.
2130 /// When detecting memory accesses different accesses to the same array may
2131 /// have built with different dimensionality, as outer zero-values dimensions
2132 /// may not have been recognized as separate dimensions. This function goes
2133 /// again over all memory accesses and updates their dimensionality to match
2134 /// the dimensionality of the underlying ScopArrayInfo object.
2135 void updateAccessDimensionality();
2137 /// Fold size constants to the right.
2139 /// In case all memory accesses in a given dimension are multiplied with a
2140 /// common constant, we can remove this constant from the individual access
2141 /// functions and move it to the size of the memory access. We do this as this
2142 /// increases the size of the innermost dimension, consequently widens the
2143 /// valid range the array subscript in this dimension can evaluate to, and
2144 /// as a result increases the likelihood that our delinearization is
2145 /// correct.
2147 /// Example:
2149 /// A[][n]
2150 /// S[i,j] -> A[2i][2j+1]
2151 /// S[i,j] -> A[2i][2j]
2153 /// =>
2155 /// A[][2n]
2156 /// S[i,j] -> A[i][2j+1]
2157 /// S[i,j] -> A[i][2j]
2159 /// Constants in outer dimensions can arise when the elements of a parametric
2160 /// multi-dimensional array are not elementary data types, but e.g.,
2161 /// structures.
2162 void foldSizeConstantsToRight();
2164 /// Fold memory accesses to handle parametric offset.
2166 /// As a post-processing step, we 'fold' memory accesses to parametric
2167 /// offsets in the access functions. @see MemoryAccess::foldAccess for
2168 /// details.
2169 void foldAccessRelations();
2171 /// Assume that all memory accesses are within bounds.
2173 /// After we have built a model of all memory accesses, we need to assume
2174 /// that the model we built matches reality -- aka. all modeled memory
2175 /// accesses always remain within bounds. We do this as last step, after
2176 /// all memory accesses have been modeled and canonicalized.
2177 void assumeNoOutOfBounds();
2179 /// Remove statements from the list of scop statements.
2181 /// @param ShouldDelete A function that returns true if the statement passed
2182 /// to it should be deleted.
2183 void removeStmts(std::function<bool(ScopStmt &)> ShouldDelete);
2185 /// Removes @p Stmt from the StmtMap.
2186 void removeFromStmtMap(ScopStmt &Stmt);
2188 /// Removes all statements where the entry block of the statement does not
2189 /// have a corresponding domain in the domain map.
2190 void removeStmtNotInDomainMap();
2192 /// Mark arrays that have memory accesses with FortranArrayDescriptor.
2193 void markFortranArrays();
2195 /// Finalize all access relations.
2197 /// When building up access relations, temporary access relations that
2198 /// correctly represent each individual access are constructed. However, these
2199 /// access relations can be inconsistent or non-optimal when looking at the
2200 /// set of accesses as a whole. This function finalizes the memory accesses
2201 /// and constructs a globally consistent state.
2202 void finalizeAccesses();
2204 /// Construct the schedule of this SCoP.
2206 /// @param LI The LoopInfo for the current function.
2207 void buildSchedule(LoopInfo &LI);
2209 /// A loop stack element to keep track of per-loop information during
2210 /// schedule construction.
2211 typedef struct LoopStackElement {
2212 // The loop for which we keep information.
2213 Loop *L;
2215 // The (possibly incomplete) schedule for this loop.
2216 isl_schedule *Schedule;
2218 // The number of basic blocks in the current loop, for which a schedule has
2219 // already been constructed.
2220 unsigned NumBlocksProcessed;
2222 LoopStackElement(Loop *L, __isl_give isl_schedule *S,
2223 unsigned NumBlocksProcessed)
2224 : L(L), Schedule(S), NumBlocksProcessed(NumBlocksProcessed) {}
2225 } LoopStackElementTy;
2227 /// The loop stack used for schedule construction.
2229 /// The loop stack keeps track of schedule information for a set of nested
2230 /// loops as well as an (optional) 'nullptr' loop that models the outermost
2231 /// schedule dimension. The loops in a loop stack always have a parent-child
2232 /// relation where the loop at position n is the parent of the loop at
2233 /// position n + 1.
2234 typedef SmallVector<LoopStackElementTy, 4> LoopStackTy;
2236 /// Construct schedule information for a given Region and add the
2237 /// derived information to @p LoopStack.
2239 /// Given a Region we derive schedule information for all RegionNodes
2240 /// contained in this region ensuring that the assigned execution times
2241 /// correctly model the existing control flow relations.
2243 /// @param R The region which to process.
2244 /// @param LoopStack A stack of loops that are currently under
2245 /// construction.
2246 /// @param LI The LoopInfo for the current function.
2247 void buildSchedule(Region *R, LoopStackTy &LoopStack, LoopInfo &LI);
2249 /// Build Schedule for the region node @p RN and add the derived
2250 /// information to @p LoopStack.
2252 /// In case @p RN is a BasicBlock or a non-affine Region, we construct the
2253 /// schedule for this @p RN and also finalize loop schedules in case the
2254 /// current @p RN completes the loop.
2256 /// In case @p RN is a not-non-affine Region, we delegate the construction to
2257 /// buildSchedule(Region *R, ...).
2259 /// @param RN The RegionNode region traversed.
2260 /// @param LoopStack A stack of loops that are currently under
2261 /// construction.
2262 /// @param LI The LoopInfo for the current function.
2263 void buildSchedule(RegionNode *RN, LoopStackTy &LoopStack, LoopInfo &LI);
2265 /// Collect all memory access relations of a given type.
2267 /// @param Predicate A predicate function that returns true if an access is
2268 /// of a given type.
2270 /// @returns The set of memory accesses in the scop that match the predicate.
2271 __isl_give isl_union_map *
2272 getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate);
2274 /// @name Helper functions for printing the Scop.
2276 //@{
2277 void printContext(raw_ostream &OS) const;
2278 void printArrayInfo(raw_ostream &OS) const;
2279 void printStatements(raw_ostream &OS) const;
2280 void printAliasAssumptions(raw_ostream &OS) const;
2281 //@}
2283 friend class ScopBuilder;
2285 public:
2286 ~Scop();
2288 /// Get the count of copy statements added to this Scop.
2290 /// @return The count of copy statements added to this Scop.
2291 unsigned getCopyStmtsNum() { return CopyStmtsNum; }
2293 /// Create a new copy statement.
2295 /// A new statement will be created and added to the statement vector.
2297 /// @param Stmt The parent statement.
2298 /// @param SourceRel The source location.
2299 /// @param TargetRel The target location.
2300 /// @param Domain The original domain under which the copy statement would
2301 /// be executed.
2302 ScopStmt *addScopStmt(__isl_take isl_map *SourceRel,
2303 __isl_take isl_map *TargetRel,
2304 __isl_take isl_set *Domain);
2306 /// Add the access function to all MemoryAccess objects of the Scop
2307 /// created in this pass.
2308 void addAccessFunction(MemoryAccess *Access) {
2309 AccessFunctions.emplace_back(Access);
2312 /// Add metadata for @p Access.
2313 void addAccessData(MemoryAccess *Access);
2315 /// Remove the metadata stored for @p Access.
2316 void removeAccessData(MemoryAccess *Access);
2318 ScalarEvolution *getSE() const;
2320 /// Get the count of parameters used in this Scop.
2322 /// @return The count of parameters used in this Scop.
2323 size_t getNumParams() const { return Parameters.size(); }
2325 /// Take a list of parameters and add the new ones to the scop.
2326 void addParams(const ParameterSetTy &NewParameters);
2328 /// Return an iterator range containing the scop parameters.
2329 iterator_range<ParameterSetTy::iterator> parameters() const {
2330 return make_range(Parameters.begin(), Parameters.end());
2333 /// Return whether this scop is empty, i.e. contains no statements that
2334 /// could be executed.
2335 bool isEmpty() const { return Stmts.empty(); }
2337 const StringRef getName() const { return name; }
2339 typedef ArrayInfoSetTy::iterator array_iterator;
2340 typedef ArrayInfoSetTy::const_iterator const_array_iterator;
2341 typedef iterator_range<ArrayInfoSetTy::iterator> array_range;
2342 typedef iterator_range<ArrayInfoSetTy::const_iterator> const_array_range;
2344 inline array_iterator array_begin() { return ScopArrayInfoSet.begin(); }
2346 inline array_iterator array_end() { return ScopArrayInfoSet.end(); }
2348 inline const_array_iterator array_begin() const {
2349 return ScopArrayInfoSet.begin();
2352 inline const_array_iterator array_end() const {
2353 return ScopArrayInfoSet.end();
2356 inline array_range arrays() {
2357 return array_range(array_begin(), array_end());
2360 inline const_array_range arrays() const {
2361 return const_array_range(array_begin(), array_end());
2364 /// Return the isl_id that represents a certain parameter.
2366 /// @param Parameter A SCEV that was recognized as a Parameter.
2368 /// @return The corresponding isl_id or NULL otherwise.
2369 __isl_give isl_id *getIdForParam(const SCEV *Parameter);
2371 /// Get the maximum region of this static control part.
2373 /// @return The maximum region of this static control part.
2374 inline const Region &getRegion() const { return R; }
2375 inline Region &getRegion() { return R; }
2377 /// Return the function this SCoP is in.
2378 Function &getFunction() const { return *R.getEntry()->getParent(); }
2380 /// Check if @p L is contained in the SCoP.
2381 bool contains(const Loop *L) const { return R.contains(L); }
2383 /// Check if @p BB is contained in the SCoP.
2384 bool contains(const BasicBlock *BB) const { return R.contains(BB); }
2386 /// Check if @p I is contained in the SCoP.
2387 bool contains(const Instruction *I) const { return R.contains(I); }
2389 /// Return the unique exit block of the SCoP.
2390 BasicBlock *getExit() const { return R.getExit(); }
2392 /// Return the unique exiting block of the SCoP if any.
2393 BasicBlock *getExitingBlock() const { return R.getExitingBlock(); }
2395 /// Return the unique entry block of the SCoP.
2396 BasicBlock *getEntry() const { return R.getEntry(); }
2398 /// Return the unique entering block of the SCoP if any.
2399 BasicBlock *getEnteringBlock() const { return R.getEnteringBlock(); }
2401 /// Return true if @p BB is the exit block of the SCoP.
2402 bool isExit(BasicBlock *BB) const { return getExit() == BB; }
2404 /// Return a range of all basic blocks in the SCoP.
2405 Region::block_range blocks() const { return R.blocks(); }
2407 /// Return true if and only if @p BB dominates the SCoP.
2408 bool isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const;
2410 /// Get the maximum depth of the loop.
2412 /// @return The maximum depth of the loop.
2413 inline unsigned getMaxLoopDepth() const { return MaxLoopDepth; }
2415 /// Return the invariant equivalence class for @p Val if any.
2416 InvariantEquivClassTy *lookupInvariantEquivClass(Value *Val);
2418 /// Return the set of invariant accesses.
2419 InvariantEquivClassesTy &getInvariantAccesses() {
2420 return InvariantEquivClasses;
2423 /// Check if the scop has any invariant access.
2424 bool hasInvariantAccesses() { return !InvariantEquivClasses.empty(); }
2426 /// Mark the SCoP as optimized by the scheduler.
2427 void markAsOptimized() { IsOptimized = true; }
2429 /// Check if the SCoP has been optimized by the scheduler.
2430 bool isOptimized() const { return IsOptimized; }
2432 /// Mark the SCoP to be skipped by ScopPass passes.
2433 void markAsToBeSkipped() { SkipScop = true; }
2435 /// Check if the SCoP is to be skipped by ScopPass passes.
2436 bool isToBeSkipped() const { return SkipScop; }
2438 /// Return the ID of the Scop
2439 int getID() const { return ID; }
2441 /// Get the name of the entry and exit blocks of this Scop.
2443 /// These along with the function name can uniquely identify a Scop.
2445 /// @return std::pair whose first element is the entry name & second element
2446 /// is the exit name.
2447 std::pair<std::string, std::string> getEntryExitStr() const;
2449 /// Get the name of this Scop.
2450 std::string getNameStr() const;
2452 /// Get the constraint on parameter of this Scop.
2454 /// @return The constraint on parameter of this Scop.
2455 __isl_give isl_set *getContext() const;
2456 __isl_give isl_space *getParamSpace() const;
2458 /// Get the assumed context for this Scop.
2460 /// @return The assumed context of this Scop.
2461 __isl_give isl_set *getAssumedContext() const;
2463 /// Return true if the optimized SCoP can be executed.
2465 /// In addition to the runtime check context this will also utilize the domain
2466 /// constraints to decide it the optimized version can actually be executed.
2468 /// @returns True if the optimized SCoP can be executed.
2469 bool hasFeasibleRuntimeContext() const;
2471 /// Check if the assumption in @p Set is trivial or not.
2473 /// @param Set The relations between parameters that are assumed to hold.
2474 /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2475 /// (needed/assumptions) or negative (invalid/restrictions).
2477 /// @returns True if the assumption @p Set is not trivial.
2478 bool isEffectiveAssumption(__isl_keep isl_set *Set, AssumptionSign Sign);
2480 /// Track and report an assumption.
2482 /// Use 'clang -Rpass-analysis=polly-scops' or 'opt
2483 /// -pass-remarks-analysis=polly-scops' to output the assumptions.
2485 /// @param Kind The assumption kind describing the underlying cause.
2486 /// @param Set The relations between parameters that are assumed to hold.
2487 /// @param Loc The location in the source that caused this assumption.
2488 /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2489 /// (needed/assumptions) or negative (invalid/restrictions).
2490 /// @param BB The block in which this assumption was taken. Used to
2491 /// calculate hotness when emitting remark.
2493 /// @returns True if the assumption is not trivial.
2494 bool trackAssumption(AssumptionKind Kind, __isl_keep isl_set *Set,
2495 DebugLoc Loc, AssumptionSign Sign, BasicBlock *BB);
2497 /// Add assumptions to assumed context.
2499 /// The assumptions added will be assumed to hold during the execution of the
2500 /// scop. However, as they are generally not statically provable, at code
2501 /// generation time run-time checks will be generated that ensure the
2502 /// assumptions hold.
2504 /// WARNING: We currently exploit in simplifyAssumedContext the knowledge
2505 /// that assumptions do not change the set of statement instances
2506 /// executed.
2508 /// @param Kind The assumption kind describing the underlying cause.
2509 /// @param Set The relations between parameters that are assumed to hold.
2510 /// @param Loc The location in the source that caused this assumption.
2511 /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2512 /// (needed/assumptions) or negative (invalid/restrictions).
2513 /// @param BB The block in which this assumption was taken. Used to
2514 /// calculate hotness when emitting remark.
2515 void addAssumption(AssumptionKind Kind, __isl_take isl_set *Set, DebugLoc Loc,
2516 AssumptionSign Sign, BasicBlock *BB);
2518 /// Record an assumption for later addition to the assumed context.
2520 /// This function will add the assumption to the RecordedAssumptions. This
2521 /// collection will be added (@see addAssumption) to the assumed context once
2522 /// all paramaters are known and the context is fully build.
2524 /// @param Kind The assumption kind describing the underlying cause.
2525 /// @param Set The relations between parameters that are assumed to hold.
2526 /// @param Loc The location in the source that caused this assumption.
2527 /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2528 /// (needed/assumptions) or negative (invalid/restrictions).
2529 /// @param BB The block in which this assumption was taken. If it is
2530 /// set, the domain of that block will be used to simplify the
2531 /// actual assumption in @p Set once it is added. This is useful
2532 /// if the assumption was created prior to the domain.
2533 void recordAssumption(AssumptionKind Kind, __isl_take isl_set *Set,
2534 DebugLoc Loc, AssumptionSign Sign,
2535 BasicBlock *BB = nullptr);
2537 /// Add all recorded assumptions to the assumed context.
2538 void addRecordedAssumptions();
2540 /// Mark the scop as invalid.
2542 /// This method adds an assumption to the scop that is always invalid. As a
2543 /// result, the scop will not be optimized later on. This function is commonly
2544 /// called when a condition makes it impossible (or too compile time
2545 /// expensive) to process this scop any further.
2547 /// @param Kind The assumption kind describing the underlying cause.
2548 /// @param Loc The location in the source that triggered .
2549 /// @param BB The BasicBlock where it was triggered.
2550 void invalidate(AssumptionKind Kind, DebugLoc Loc, BasicBlock *BB = nullptr);
2552 /// Get the invalid context for this Scop.
2554 /// @return The invalid context of this Scop.
2555 __isl_give isl_set *getInvalidContext() const;
2557 /// Return true if and only if the InvalidContext is trivial (=empty).
2558 bool hasTrivialInvalidContext() const {
2559 return isl_set_is_empty(InvalidContext);
2562 /// A vector of memory accesses that belong to an alias group.
2563 typedef SmallVector<MemoryAccess *, 4> AliasGroupTy;
2565 /// A vector of alias groups.
2566 typedef SmallVector<Scop::AliasGroupTy, 4> AliasGroupVectorTy;
2568 /// Build the alias checks for this SCoP.
2569 bool buildAliasChecks(AliasAnalysis &AA);
2571 /// Build all alias groups for this SCoP.
2573 /// @returns True if __no__ error occurred, false otherwise.
2574 bool buildAliasGroups(AliasAnalysis &AA);
2576 /// Build alias groups for all memory accesses in the Scop.
2578 /// Using the alias analysis and an alias set tracker we build alias sets
2579 /// for all memory accesses inside the Scop. For each alias set we then map
2580 /// the aliasing pointers back to the memory accesses we know, thus obtain
2581 /// groups of memory accesses which might alias. We also collect the set of
2582 /// arrays through which memory is written.
2584 /// @param AA A reference to the alias analysis.
2586 /// @returns A pair consistent of a vector of alias groups and a set of arrays
2587 /// through which memory is written.
2588 std::tuple<AliasGroupVectorTy, DenseSet<const ScopArrayInfo *>>
2589 buildAliasGroupsForAccesses(AliasAnalysis &AA);
2591 /// Split alias groups by iteration domains.
2593 /// We split each group based on the domains of the minimal/maximal accesses.
2594 /// That means two minimal/maximal accesses are only in a group if their
2595 /// access domains intersect. Otherwise, they are in different groups.
2597 /// @param AliasGroups The alias groups to split
2598 void splitAliasGroupsByDomain(AliasGroupVectorTy &AliasGroups);
2600 /// Build a given alias group and its access data.
2602 /// @param AliasGroup The alias group to build.
2603 /// @param HasWriteAccess A set of arrays through which memory is not only
2604 /// read, but also written.
2606 /// @returns True if __no__ error occurred, false otherwise.
2607 bool buildAliasGroup(Scop::AliasGroupTy &AliasGroup,
2608 DenseSet<const ScopArrayInfo *> HasWriteAccess);
2610 /// Return all alias groups for this SCoP.
2611 const MinMaxVectorPairVectorTy &getAliasGroups() const {
2612 return MinMaxAliasGroups;
2615 /// Get an isl string representing the context.
2616 std::string getContextStr() const;
2618 /// Get an isl string representing the assumed context.
2619 std::string getAssumedContextStr() const;
2621 /// Get an isl string representing the invalid context.
2622 std::string getInvalidContextStr() const;
2624 /// Return the ScopStmt for the given @p BB or nullptr if there is
2625 /// none.
2626 ScopStmt *getStmtFor(BasicBlock *BB) const;
2628 /// Return the last statement representing @p BB.
2630 /// Of the sequence of statements that represent a @p BB, this is the last one
2631 /// to be executed. It is typically used to determine which instruction to add
2632 /// a MemoryKind::PHI WRITE to. For this purpose, it is not strictly required
2633 /// to be executed last, only that the incoming value is available in it.
2634 ScopStmt *getLastStmtFor(BasicBlock *BB) const { return getStmtFor(BB); }
2636 /// Return the ScopStmt that represents the Region @p R, or nullptr if
2637 /// it is not represented by any statement in this Scop.
2638 ScopStmt *getStmtFor(Region *R) const;
2640 /// Return the ScopStmt that represents @p RN; can return nullptr if
2641 /// the RegionNode is not within the SCoP or has been removed due to
2642 /// simplifications.
2643 ScopStmt *getStmtFor(RegionNode *RN) const;
2645 /// Return the ScopStmt an instruction belongs to, or nullptr if it
2646 /// does not belong to any statement in this Scop.
2647 ScopStmt *getStmtFor(Instruction *Inst) const {
2648 return getStmtFor(Inst->getParent());
2651 /// Return the number of statements in the SCoP.
2652 size_t getSize() const { return Stmts.size(); }
2654 /// @name Statements Iterators
2656 /// These iterators iterate over all statements of this Scop.
2657 //@{
2658 typedef StmtSet::iterator iterator;
2659 typedef StmtSet::const_iterator const_iterator;
2661 iterator begin() { return Stmts.begin(); }
2662 iterator end() { return Stmts.end(); }
2663 const_iterator begin() const { return Stmts.begin(); }
2664 const_iterator end() const { return Stmts.end(); }
2666 typedef StmtSet::reverse_iterator reverse_iterator;
2667 typedef StmtSet::const_reverse_iterator const_reverse_iterator;
2669 reverse_iterator rbegin() { return Stmts.rbegin(); }
2670 reverse_iterator rend() { return Stmts.rend(); }
2671 const_reverse_iterator rbegin() const { return Stmts.rbegin(); }
2672 const_reverse_iterator rend() const { return Stmts.rend(); }
2673 //@}
2675 /// Return the set of required invariant loads.
2676 const InvariantLoadsSetTy &getRequiredInvariantLoads() const {
2677 return DC.RequiredILS;
2680 /// Add @p LI to the set of required invariant loads.
2681 void addRequiredInvariantLoad(LoadInst *LI) { DC.RequiredILS.insert(LI); }
2683 /// Return true if and only if @p LI is a required invariant load.
2684 bool isRequiredInvariantLoad(LoadInst *LI) const {
2685 return getRequiredInvariantLoads().count(LI);
2688 /// Return the set of boxed (thus overapproximated) loops.
2689 const BoxedLoopsSetTy &getBoxedLoops() const { return DC.BoxedLoopsSet; }
2691 /// Return true if and only if @p R is a non-affine subregion.
2692 bool isNonAffineSubRegion(const Region *R) {
2693 return DC.NonAffineSubRegionSet.count(R);
2696 const MapInsnToMemAcc &getInsnToMemAccMap() const { return DC.InsnToMemAcc; }
2698 /// Return the (possibly new) ScopArrayInfo object for @p Access.
2700 /// @param ElementType The type of the elements stored in this array.
2701 /// @param Kind The kind of the array info object.
2702 /// @param BaseName The optional name of this memory reference.
2703 ScopArrayInfo *getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType,
2704 ArrayRef<const SCEV *> Sizes,
2705 MemoryKind Kind,
2706 const char *BaseName = nullptr);
2708 /// Create an array and return the corresponding ScopArrayInfo object.
2710 /// @param ElementType The type of the elements stored in this array.
2711 /// @param BaseName The name of this memory reference.
2712 /// @param Sizes The sizes of dimensions.
2713 ScopArrayInfo *createScopArrayInfo(Type *ElementType,
2714 const std::string &BaseName,
2715 const std::vector<unsigned> &Sizes);
2717 /// Return the cached ScopArrayInfo object for @p BasePtr.
2719 /// @param BasePtr The base pointer the object has been stored for.
2720 /// @param Kind The kind of array info object.
2722 /// @returns The ScopArrayInfo pointer or NULL if no such pointer is
2723 /// available.
2724 const ScopArrayInfo *getScopArrayInfoOrNull(Value *BasePtr, MemoryKind Kind);
2726 /// Return the cached ScopArrayInfo object for @p BasePtr.
2728 /// @param BasePtr The base pointer the object has been stored for.
2729 /// @param Kind The kind of array info object.
2731 /// @returns The ScopArrayInfo pointer (may assert if no such pointer is
2732 /// available).
2733 const ScopArrayInfo *getScopArrayInfo(Value *BasePtr, MemoryKind Kind);
2735 /// Invalidate ScopArrayInfo object for base address.
2737 /// @param BasePtr The base pointer of the ScopArrayInfo object to invalidate.
2738 /// @param Kind The Kind of the ScopArrayInfo object.
2739 void invalidateScopArrayInfo(Value *BasePtr, MemoryKind Kind) {
2740 auto It = ScopArrayInfoMap.find(std::make_pair(BasePtr, Kind));
2741 if (It == ScopArrayInfoMap.end())
2742 return;
2743 ScopArrayInfoSet.remove(It->second.get());
2744 ScopArrayInfoMap.erase(It);
2747 void setContext(__isl_take isl_set *NewContext);
2749 /// Align the parameters in the statement to the scop context
2750 void realignParams();
2752 /// Return true if this SCoP can be profitably optimized.
2754 /// @param ScalarsAreUnprofitable Never consider statements with scalar writes
2755 /// as profitably optimizable.
2757 /// @return Whether this SCoP can be profitably optimized.
2758 bool isProfitable(bool ScalarsAreUnprofitable) const;
2760 /// Return true if the SCoP contained at least one error block.
2761 bool hasErrorBlock() const { return HasErrorBlock; }
2763 /// Return true if the underlying region has a single exiting block.
2764 bool hasSingleExitEdge() const { return HasSingleExitEdge; }
2766 /// Print the static control part.
2768 /// @param OS The output stream the static control part is printed to.
2769 void print(raw_ostream &OS) const;
2771 /// Print the ScopStmt to stderr.
2772 void dump() const;
2774 /// Get the isl context of this static control part.
2776 /// @return The isl context of this static control part.
2777 isl_ctx *getIslCtx() const;
2779 /// Directly return the shared_ptr of the context.
2780 const std::shared_ptr<isl_ctx> &getSharedIslCtx() const { return IslCtx; }
2782 /// Compute the isl representation for the SCEV @p E
2784 /// @param E The SCEV that should be translated.
2785 /// @param BB An (optional) basic block in which the isl_pw_aff is computed.
2786 /// SCEVs known to not reference any loops in the SCoP can be
2787 /// passed without a @p BB.
2788 /// @param NonNegative Flag to indicate the @p E has to be non-negative.
2790 /// Note that this function will always return a valid isl_pw_aff. However, if
2791 /// the translation of @p E was deemed to complex the SCoP is invalidated and
2792 /// a dummy value of appropriate dimension is returned. This allows to bail
2793 /// for complex cases without "error handling code" needed on the users side.
2794 __isl_give PWACtx getPwAff(const SCEV *E, BasicBlock *BB = nullptr,
2795 bool NonNegative = false);
2797 /// Compute the isl representation for the SCEV @p E
2799 /// This function is like @see Scop::getPwAff() but strips away the invalid
2800 /// domain part associated with the piecewise affine function.
2801 __isl_give isl_pw_aff *getPwAffOnly(const SCEV *E, BasicBlock *BB = nullptr);
2803 /// Return the domain of @p Stmt.
2805 /// @param Stmt The statement for which the conditions should be returned.
2806 __isl_give isl_set *getDomainConditions(const ScopStmt *Stmt) const;
2808 /// Return the domain of @p BB.
2810 /// @param BB The block for which the conditions should be returned.
2811 __isl_give isl_set *getDomainConditions(BasicBlock *BB) const;
2813 /// Get a union set containing the iteration domains of all statements.
2814 __isl_give isl_union_set *getDomains() const;
2816 /// Get a union map of all may-writes performed in the SCoP.
2817 __isl_give isl_union_map *getMayWrites();
2819 /// Get a union map of all must-writes performed in the SCoP.
2820 __isl_give isl_union_map *getMustWrites();
2822 /// Get a union map of all writes performed in the SCoP.
2823 __isl_give isl_union_map *getWrites();
2825 /// Get a union map of all reads performed in the SCoP.
2826 __isl_give isl_union_map *getReads();
2828 /// Get a union map of all memory accesses performed in the SCoP.
2829 __isl_give isl_union_map *getAccesses();
2831 /// Get the schedule of all the statements in the SCoP.
2833 /// @return The schedule of all the statements in the SCoP, if the schedule of
2834 /// the Scop does not contain extension nodes, and nullptr, otherwise.
2835 __isl_give isl_union_map *getSchedule() const;
2837 /// Get a schedule tree describing the schedule of all statements.
2838 __isl_give isl_schedule *getScheduleTree() const;
2840 /// Update the current schedule
2842 /// NewSchedule The new schedule (given as a flat union-map).
2843 void setSchedule(__isl_take isl_union_map *NewSchedule);
2845 /// Update the current schedule
2847 /// NewSchedule The new schedule (given as schedule tree).
2848 void setScheduleTree(__isl_take isl_schedule *NewSchedule);
2850 /// Intersects the domains of all statements in the SCoP.
2852 /// @return true if a change was made
2853 bool restrictDomains(__isl_take isl_union_set *Domain);
2855 /// Get the depth of a loop relative to the outermost loop in the Scop.
2857 /// This will return
2858 /// 0 if @p L is an outermost loop in the SCoP
2859 /// >0 for other loops in the SCoP
2860 /// -1 if @p L is nullptr or there is no outermost loop in the SCoP
2861 int getRelativeLoopDepth(const Loop *L) const;
2863 /// Find the ScopArrayInfo associated with an isl Id
2864 /// that has name @p Name.
2865 ScopArrayInfo *getArrayInfoByName(const std::string BaseName);
2867 /// Check whether @p Schedule contains extension nodes.
2869 /// @return true if @p Schedule contains extension nodes.
2870 static bool containsExtensionNode(__isl_keep isl_schedule *Schedule);
2872 /// Simplify the SCoP representation.
2874 /// @param AfterHoisting Whether it is called after invariant load hoisting.
2875 /// When true, also removes statements without
2876 /// side-effects.
2877 void simplifySCoP(bool AfterHoisting);
2879 /// Get the next free array index.
2881 /// This function returns a unique index which can be used to identify an
2882 /// array.
2883 long getNextArrayIdx() { return ArrayIdx++; }
2885 /// Get the next free statement index.
2887 /// This function returns a unique index which can be used to identify a
2888 /// statement.
2889 long getNextStmtIdx() { return StmtIdx++; }
2891 /// Return the MemoryAccess that writes an llvm::Value, represented by a
2892 /// ScopArrayInfo.
2894 /// There can be at most one such MemoryAccess per llvm::Value in the SCoP.
2895 /// Zero is possible for read-only values.
2896 MemoryAccess *getValueDef(const ScopArrayInfo *SAI) const;
2898 /// Return all MemoryAccesses that us an llvm::Value, represented by a
2899 /// ScopArrayInfo.
2900 ArrayRef<MemoryAccess *> getValueUses(const ScopArrayInfo *SAI) const;
2902 /// Return the MemoryAccess that represents an llvm::PHINode.
2904 /// ExitPHIs's PHINode is not within the SCoPs. This function returns nullptr
2905 /// for them.
2906 MemoryAccess *getPHIRead(const ScopArrayInfo *SAI) const;
2908 /// Return all MemoryAccesses for all incoming statements of a PHINode,
2909 /// represented by a ScopArrayInfo.
2910 ArrayRef<MemoryAccess *> getPHIIncomings(const ScopArrayInfo *SAI) const;
2913 /// Print Scop scop to raw_ostream O.
2914 static inline raw_ostream &operator<<(raw_ostream &O, const Scop &scop) {
2915 scop.print(O);
2916 return O;
2919 /// The legacy pass manager's analysis pass to compute scop information
2920 /// for a region.
2921 class ScopInfoRegionPass : public RegionPass {
2922 /// The Scop pointer which is used to construct a Scop.
2923 std::unique_ptr<Scop> S;
2925 public:
2926 static char ID; // Pass identification, replacement for typeid
2928 ScopInfoRegionPass() : RegionPass(ID) {}
2929 ~ScopInfoRegionPass() {}
2931 /// Build Scop object, the Polly IR of static control
2932 /// part for the current SESE-Region.
2934 /// @return If the current region is a valid for a static control part,
2935 /// return the Polly IR representing this static control part,
2936 /// return null otherwise.
2937 Scop *getScop() { return S.get(); }
2938 const Scop *getScop() const { return S.get(); }
2940 /// Calculate the polyhedral scop information for a given Region.
2941 bool runOnRegion(Region *R, RGPassManager &RGM) override;
2943 void releaseMemory() override { S.reset(); }
2945 void print(raw_ostream &O, const Module *M = nullptr) const override;
2947 void getAnalysisUsage(AnalysisUsage &AU) const override;
2950 class ScopInfo {
2951 public:
2952 using RegionToScopMapTy = DenseMap<Region *, std::unique_ptr<Scop>>;
2953 using iterator = RegionToScopMapTy::iterator;
2954 using const_iterator = RegionToScopMapTy::const_iterator;
2956 private:
2957 /// A map of Region to its Scop object containing
2958 /// Polly IR of static control part.
2959 RegionToScopMapTy RegionToScopMap;
2961 public:
2962 ScopInfo(const DataLayout &DL, ScopDetection &SD, ScalarEvolution &SE,
2963 LoopInfo &LI, AliasAnalysis &AA, DominatorTree &DT,
2964 AssumptionCache &AC);
2966 /// Get the Scop object for the given Region.
2968 /// @return If the given region is the maximal region within a scop, return
2969 /// the scop object. If the given region is a subregion, return a
2970 /// nullptr. Top level region containing the entry block of a function
2971 /// is not considered in the scop creation.
2972 Scop *getScop(Region *R) const {
2973 auto MapIt = RegionToScopMap.find(R);
2974 if (MapIt != RegionToScopMap.end())
2975 return MapIt->second.get();
2976 return nullptr;
2979 iterator begin() { return RegionToScopMap.begin(); }
2980 iterator end() { return RegionToScopMap.end(); }
2981 const_iterator begin() const { return RegionToScopMap.begin(); }
2982 const_iterator end() const { return RegionToScopMap.end(); }
2983 bool empty() const { return RegionToScopMap.empty(); }
2986 struct ScopInfoAnalysis : public AnalysisInfoMixin<ScopInfoAnalysis> {
2987 static AnalysisKey Key;
2988 using Result = ScopInfo;
2989 Result run(Function &, FunctionAnalysisManager &);
2992 struct ScopInfoPrinterPass : public PassInfoMixin<ScopInfoPrinterPass> {
2993 ScopInfoPrinterPass(raw_ostream &O) : Stream(O) {}
2994 PreservedAnalyses run(Function &, FunctionAnalysisManager &);
2995 raw_ostream &Stream;
2998 //===----------------------------------------------------------------------===//
2999 /// The legacy pass manager's analysis pass to compute scop information
3000 /// for the whole function.
3002 /// This pass will maintain a map of the maximal region within a scop to its
3003 /// scop object for all the feasible scops present in a function.
3004 /// This pass is an alternative to the ScopInfoRegionPass in order to avoid a
3005 /// region pass manager.
3006 class ScopInfoWrapperPass : public FunctionPass {
3007 std::unique_ptr<ScopInfo> Result;
3009 public:
3010 ScopInfoWrapperPass() : FunctionPass(ID) {}
3011 ~ScopInfoWrapperPass() = default;
3013 static char ID; // Pass identification, replacement for typeid
3015 ScopInfo *getSI() { return Result.get(); }
3016 const ScopInfo *getSI() const { return Result.get(); }
3018 /// Calculate all the polyhedral scops for a given function.
3019 bool runOnFunction(Function &F) override;
3021 void releaseMemory() override { Result.reset(); }
3023 void print(raw_ostream &O, const Module *M = nullptr) const override;
3025 void getAnalysisUsage(AnalysisUsage &AU) const override;
3028 } // end namespace polly
3030 namespace llvm {
3031 class PassRegistry;
3032 void initializeScopInfoRegionPassPass(llvm::PassRegistry &);
3033 void initializeScopInfoWrapperPassPass(llvm::PassRegistry &);
3034 } // namespace llvm
3036 #endif