[VirtualInstruction] Avoid use of getStmtFor(BB). NFC.
[polly-mirror.git] / lib / Support / VirtualInstruction.cpp
blobd2b910100d913c3777e05e029f8e9c850082bacd
1 //===------ VirtualInstruction.cpp ------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Tools for determining which instructions are within a statement and the
11 // nature of their operands.
13 //===----------------------------------------------------------------------===//
15 #include "polly/Support/VirtualInstruction.h"
16 #include "polly/Support/SCEVValidator.h"
18 using namespace polly;
19 using namespace llvm;
21 VirtualUse VirtualUse ::create(Scop *S, const Use &U, LoopInfo *LI,
22 bool Virtual) {
23 auto *UserBB = getUseBlock(U);
24 Instruction *UI = dyn_cast<Instruction>(U.getUser());
25 ScopStmt *UserStmt = nullptr;
26 if (PHINode *PHI = dyn_cast<PHINode>(UI))
27 UserStmt = S->getLastStmtFor(PHI->getIncomingBlock(U));
28 else
29 UserStmt = S->getStmtFor(UI);
30 auto *UserScope = LI->getLoopFor(UserBB);
31 return create(S, UserStmt, UserScope, U.get(), Virtual);
34 VirtualUse VirtualUse::create(Scop *S, ScopStmt *UserStmt, Loop *UserScope,
35 Value *Val, bool Virtual) {
36 assert(!isa<StoreInst>(Val) && "a StoreInst cannot be used");
38 if (isa<BasicBlock>(Val))
39 return VirtualUse(UserStmt, Val, Block, nullptr, nullptr);
41 if (isa<llvm::Constant>(Val))
42 return VirtualUse(UserStmt, Val, Constant, nullptr, nullptr);
44 // Is the value synthesizable? If the user has been pruned
45 // (UserStmt == nullptr), it is either not used anywhere or is synthesizable.
46 // We assume synthesizable which practically should have the same effect.
47 auto *SE = S->getSE();
48 if (SE->isSCEVable(Val->getType())) {
49 auto *ScevExpr = SE->getSCEVAtScope(Val, UserScope);
50 if (!UserStmt || canSynthesize(Val, *UserStmt->getParent(), SE, UserScope))
51 return VirtualUse(UserStmt, Val, Synthesizable, ScevExpr, nullptr);
54 // FIXME: Inconsistency between lookupInvariantEquivClass and
55 // getRequiredInvariantLoads. Querying one of them should be enough.
56 auto &RIL = S->getRequiredInvariantLoads();
57 if (S->lookupInvariantEquivClass(Val) || RIL.count(dyn_cast<LoadInst>(Val)))
58 return VirtualUse(UserStmt, Val, Hoisted, nullptr, nullptr);
60 // ReadOnly uses may have MemoryAccesses that we want to associate with the
61 // use. This is why we look for a MemoryAccess here already.
62 MemoryAccess *InputMA = nullptr;
63 if (UserStmt && Virtual)
64 InputMA = UserStmt->lookupValueReadOf(Val);
66 // Uses are read-only if they have been defined before the SCoP, i.e., they
67 // cannot be written to inside the SCoP. Arguments are defined before any
68 // instructions, hence also before the SCoP. If the user has been pruned
69 // (UserStmt == nullptr) and is not SCEVable, assume it is read-only as it is
70 // neither an intra- nor an inter-use.
71 if (!UserStmt || isa<Argument>(Val))
72 return VirtualUse(UserStmt, Val, ReadOnly, nullptr, InputMA);
74 auto Inst = cast<Instruction>(Val);
75 if (!S->contains(Inst))
76 return VirtualUse(UserStmt, Val, ReadOnly, nullptr, InputMA);
78 // A use is inter-statement if either it is defined in another statement, or
79 // there is a MemoryAccess that reads its value that has been written by
80 // another statement.
81 if (InputMA || (!Virtual && !UserStmt->represents(Inst->getParent())))
82 return VirtualUse(UserStmt, Val, Inter, nullptr, InputMA);
84 return VirtualUse(UserStmt, Val, Intra, nullptr, nullptr);
87 void VirtualUse::print(raw_ostream &OS, bool Reproducible) const {
88 OS << "User: [" << User->getBaseName() << "] ";
89 switch (Kind) {
90 case VirtualUse::Constant:
91 OS << "Constant Op:";
92 break;
93 case VirtualUse::Block:
94 OS << "BasicBlock Op:";
95 break;
96 case VirtualUse::Synthesizable:
97 OS << "Synthesizable Op:";
98 break;
99 case VirtualUse::Hoisted:
100 OS << "Hoisted load Op:";
101 break;
102 case VirtualUse::ReadOnly:
103 OS << "Read-Only Op:";
104 break;
105 case VirtualUse::Intra:
106 OS << "Intra Op:";
107 break;
108 case VirtualUse::Inter:
109 OS << "Inter Op:";
110 break;
113 if (Val) {
114 OS << ' ';
115 if (Reproducible)
116 OS << '"' << Val->getName() << '"';
117 else
118 Val->print(OS, true);
120 if (ScevExpr) {
121 OS << ' ';
122 ScevExpr->print(OS);
124 if (InputMA && !Reproducible)
125 OS << ' ' << InputMA;
128 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
129 LLVM_DUMP_METHOD void VirtualUse::dump() const {
130 print(errs(), false);
131 errs() << '\n';
133 #endif
135 void VirtualInstruction::print(raw_ostream &OS, bool Reproducible) const {
136 if (!Stmt || !Inst) {
137 OS << "[null VirtualInstruction]";
138 return;
141 OS << "[" << Stmt->getBaseName() << "]";
142 Inst->print(OS, !Reproducible);
145 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
146 LLVM_DUMP_METHOD void VirtualInstruction::dump() const {
147 print(errs(), false);
148 errs() << '\n';
150 #endif
152 /// Return true if @p Inst cannot be removed, even if it is nowhere referenced.
153 static bool isRoot(const Instruction *Inst) {
154 // The store is handled by its MemoryAccess. The load must be reached from the
155 // roots in order to be marked as used.
156 if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
157 return false;
159 // Terminator instructions (in region statements) are required for control
160 // flow.
161 if (isa<TerminatorInst>(Inst))
162 return true;
164 // Writes to memory must be honored.
165 if (Inst->mayWriteToMemory())
166 return true;
168 return false;
171 /// Return true for MemoryAccesses that cannot be removed because it represents
172 /// an llvm::Value that is used after the SCoP.
173 static bool isEscaping(MemoryAccess *MA) {
174 assert(MA->isOriginalValueKind());
175 Scop *S = MA->getStatement()->getParent();
176 return S->isEscaping(cast<Instruction>(MA->getAccessValue()));
179 /// Add non-removable virtual instructions in @p Stmt to @p RootInsts.
180 static void
181 addInstructionRoots(ScopStmt *Stmt,
182 SmallVectorImpl<VirtualInstruction> &RootInsts) {
183 // For region statements we must keep all instructions because we do not
184 // support removing instructions from region statements.
185 if (!Stmt->isBlockStmt()) {
186 for (auto *BB : Stmt->getRegion()->blocks())
187 for (Instruction &Inst : *BB)
188 RootInsts.emplace_back(Stmt, &Inst);
189 return;
192 for (Instruction *Inst : Stmt->getInstructions())
193 if (isRoot(Inst))
194 RootInsts.emplace_back(Stmt, Inst);
197 /// Add non-removable memory accesses in @p Stmt to @p RootInsts.
199 /// @param Local If true, all writes are assumed to escape. markAndSweep
200 /// algorithms can use this to be applicable to a single ScopStmt only without
201 /// the risk of removing definitions required by other statements.
202 /// If false, only writes for SCoP-escaping values are roots. This
203 /// is global mode, where such writes must be marked by theirs uses
204 /// in order to be reachable.
205 static void addAccessRoots(ScopStmt *Stmt,
206 SmallVectorImpl<MemoryAccess *> &RootAccs,
207 bool Local) {
208 for (auto *MA : *Stmt) {
209 if (!MA->isWrite())
210 continue;
212 // Writes to arrays are always used.
213 if (MA->isLatestArrayKind())
214 RootAccs.push_back(MA);
216 // Values are roots if they are escaping.
217 else if (MA->isLatestValueKind()) {
218 if (Local || isEscaping(MA))
219 RootAccs.push_back(MA);
222 // Exit phis are, by definition, escaping.
223 else if (MA->isLatestExitPHIKind())
224 RootAccs.push_back(MA);
226 // phi writes are only roots if we are not visiting the statement
227 // containing the PHINode.
228 else if (Local && MA->isLatestPHIKind())
229 RootAccs.push_back(MA);
233 /// Determine all instruction and access roots.
234 static void addRoots(ScopStmt *Stmt,
235 SmallVectorImpl<VirtualInstruction> &RootInsts,
236 SmallVectorImpl<MemoryAccess *> &RootAccs, bool Local) {
237 addInstructionRoots(Stmt, RootInsts);
238 addAccessRoots(Stmt, RootAccs, Local);
241 /// Mark accesses and instructions as used if they are reachable from a root,
242 /// walking the operand trees.
244 /// @param S The SCoP to walk.
245 /// @param LI The LoopInfo Analysis.
246 /// @param RootInsts List of root instructions.
247 /// @param RootAccs List of root accesses.
248 /// @param UsesInsts[out] Receives all reachable instructions, including the
249 /// roots.
250 /// @param UsedAccs[out] Receives all reachable accesses, including the roots.
251 /// @param OnlyLocal If non-nullptr, restricts walking to a single
252 /// statement.
253 static void walkReachable(Scop *S, LoopInfo *LI,
254 ArrayRef<VirtualInstruction> RootInsts,
255 ArrayRef<MemoryAccess *> RootAccs,
256 DenseSet<VirtualInstruction> &UsedInsts,
257 DenseSet<MemoryAccess *> &UsedAccs,
258 ScopStmt *OnlyLocal = nullptr) {
259 UsedInsts.clear();
260 UsedAccs.clear();
262 SmallVector<VirtualInstruction, 32> WorklistInsts;
263 SmallVector<MemoryAccess *, 32> WorklistAccs;
265 WorklistInsts.append(RootInsts.begin(), RootInsts.end());
266 WorklistAccs.append(RootAccs.begin(), RootAccs.end());
268 auto AddToWorklist = [&](VirtualUse VUse) {
269 switch (VUse.getKind()) {
270 case VirtualUse::Block:
271 case VirtualUse::Constant:
272 case VirtualUse::Synthesizable:
273 case VirtualUse::Hoisted:
274 break;
275 case VirtualUse::ReadOnly:
276 // Read-only scalars only have MemoryAccesses if ModelReadOnlyScalars is
277 // enabled.
278 if (!VUse.getMemoryAccess())
279 break;
280 LLVM_FALLTHROUGH;
281 case VirtualUse::Inter:
282 assert(VUse.getMemoryAccess());
283 WorklistAccs.push_back(VUse.getMemoryAccess());
284 break;
285 case VirtualUse::Intra:
286 WorklistInsts.emplace_back(VUse.getUser(),
287 cast<Instruction>(VUse.getValue()));
288 break;
292 while (true) {
293 // We have two worklists to process: Only when the MemoryAccess worklist is
294 // empty, we process the instruction worklist.
296 while (!WorklistAccs.empty()) {
297 auto *Acc = WorklistAccs.pop_back_val();
299 ScopStmt *Stmt = Acc->getStatement();
300 if (OnlyLocal && Stmt != OnlyLocal)
301 continue;
303 auto Inserted = UsedAccs.insert(Acc);
304 if (!Inserted.second)
305 continue;
307 if (Acc->isRead()) {
308 const ScopArrayInfo *SAI = Acc->getScopArrayInfo();
310 if (Acc->isOriginalValueKind()) {
311 MemoryAccess *DefAcc = S->getValueDef(SAI);
313 // Accesses to read-only values do not have a definition.
314 if (DefAcc)
315 WorklistAccs.push_back(S->getValueDef(SAI));
318 if (Acc->isOriginalAnyPHIKind()) {
319 auto IncomingMAs = S->getPHIIncomings(SAI);
320 WorklistAccs.append(IncomingMAs.begin(), IncomingMAs.end());
324 if (Acc->isWrite()) {
325 if (Acc->isOriginalValueKind() ||
326 (Acc->isOriginalArrayKind() && Acc->getAccessValue())) {
327 Loop *Scope = Stmt->getSurroundingLoop();
328 VirtualUse VUse =
329 VirtualUse::create(S, Stmt, Scope, Acc->getAccessValue(), true);
330 AddToWorklist(VUse);
333 if (Acc->isOriginalAnyPHIKind()) {
334 for (auto Incoming : Acc->getIncoming()) {
335 VirtualUse VUse = VirtualUse::create(
336 S, Stmt, LI->getLoopFor(Incoming.first), Incoming.second, true);
337 AddToWorklist(VUse);
341 if (Acc->isOriginalArrayKind())
342 WorklistInsts.emplace_back(Stmt, Acc->getAccessInstruction());
346 // If both worklists are empty, stop walking.
347 if (WorklistInsts.empty())
348 break;
350 VirtualInstruction VInst = WorklistInsts.pop_back_val();
351 ScopStmt *Stmt = VInst.getStmt();
352 Instruction *Inst = VInst.getInstruction();
354 // Do not process statements other than the local.
355 if (OnlyLocal && Stmt != OnlyLocal)
356 continue;
358 auto InsertResult = UsedInsts.insert(VInst);
359 if (!InsertResult.second)
360 continue;
362 // Add all operands to the worklists.
363 PHINode *PHI = dyn_cast<PHINode>(Inst);
364 if (PHI && PHI->getParent() == Stmt->getEntryBlock()) {
365 if (MemoryAccess *PHIRead = Stmt->lookupPHIReadOf(PHI))
366 WorklistAccs.push_back(PHIRead);
367 } else {
368 for (VirtualUse VUse : VInst.operands())
369 AddToWorklist(VUse);
372 // If there is an array access, also add its MemoryAccesses to the worklist.
373 const MemoryAccessList *Accs = Stmt->lookupArrayAccessesFor(Inst);
374 if (!Accs)
375 continue;
377 for (MemoryAccess *Acc : *Accs)
378 WorklistAccs.push_back(Acc);
382 void polly::markReachable(Scop *S, LoopInfo *LI,
383 DenseSet<VirtualInstruction> &UsedInsts,
384 DenseSet<MemoryAccess *> &UsedAccs,
385 ScopStmt *OnlyLocal) {
386 SmallVector<VirtualInstruction, 32> RootInsts;
387 SmallVector<MemoryAccess *, 32> RootAccs;
389 if (OnlyLocal) {
390 addRoots(OnlyLocal, RootInsts, RootAccs, true);
391 } else {
392 for (auto &Stmt : *S)
393 addRoots(&Stmt, RootInsts, RootAccs, false);
396 walkReachable(S, LI, RootInsts, RootAccs, UsedInsts, UsedAccs, OnlyLocal);