Fix a couple of spelling mistakes
[polly-mirror.git] / lib / CodeGen / BlockGenerators.cpp
blob436aea16e1362d0b92fc73a6f2053103b2bce7ba
1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BlockGenerator and VectorBlockGenerator classes,
11 // which generate sequential code and vectorized code for a polyhedral
12 // statement, respectively.
14 //===----------------------------------------------------------------------===//
16 #include "polly/CodeGen/BlockGenerators.h"
17 #include "polly/CodeGen/CodeGeneration.h"
18 #include "polly/CodeGen/IslExprBuilder.h"
19 #include "polly/CodeGen/RuntimeDebugBuilder.h"
20 #include "polly/Options.h"
21 #include "polly/ScopInfo.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/SCEVValidator.h"
24 #include "polly/Support/ScopHelper.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/RegionInfo.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "isl/aff.h"
33 #include "isl/ast.h"
34 #include "isl/ast_build.h"
35 #include "isl/set.h"
36 #include <deque>
38 using namespace llvm;
39 using namespace polly;
41 static cl::opt<bool> Aligned("enable-polly-aligned",
42 cl::desc("Assumed aligned memory accesses."),
43 cl::Hidden, cl::init(false), cl::ZeroOrMore,
44 cl::cat(PollyCategory));
46 static cl::opt<bool> DebugPrinting(
47 "polly-codegen-add-debug-printing",
48 cl::desc("Add printf calls that show the values loaded/stored."),
49 cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
51 BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI,
52 ScalarEvolution &SE, DominatorTree &DT,
53 ScalarAllocaMapTy &ScalarMap,
54 ScalarAllocaMapTy &PHIOpMap,
55 EscapeUsersAllocaMapTy &EscapeMap,
56 ValueMapT &GlobalMap,
57 IslExprBuilder *ExprBuilder)
58 : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
59 EntryBB(nullptr), PHIOpMap(PHIOpMap), ScalarMap(ScalarMap),
60 EscapeMap(EscapeMap), GlobalMap(GlobalMap) {}
62 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
63 ValueMapT &BBMap,
64 LoopToScevMapT &LTS,
65 Loop *L) const {
66 if (!SE.isSCEVable(Old->getType()))
67 return nullptr;
69 const SCEV *Scev = SE.getSCEVAtScope(Old, L);
70 if (!Scev)
71 return nullptr;
73 if (isa<SCEVCouldNotCompute>(Scev))
74 return nullptr;
76 const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE);
77 ValueMapT VTV;
78 VTV.insert(BBMap.begin(), BBMap.end());
79 VTV.insert(GlobalMap.begin(), GlobalMap.end());
81 Scop &S = *Stmt.getParent();
82 const DataLayout &DL = S.getFunction().getParent()->getDataLayout();
83 auto IP = Builder.GetInsertPoint();
85 assert(IP != Builder.GetInsertBlock()->end() &&
86 "Only instructions can be insert points for SCEVExpander");
87 Value *Expanded =
88 expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV);
90 BBMap[Old] = Expanded;
91 return Expanded;
94 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
95 LoopToScevMapT &LTS, Loop *L) const {
96 // Constants that do not reference any named value can always remain
97 // unchanged. Handle them early to avoid expensive map lookups. We do not take
98 // the fast-path for external constants which are referenced through globals
99 // as these may need to be rewritten when distributing code accross different
100 // LLVM modules.
101 if (isa<Constant>(Old) && !isa<GlobalValue>(Old))
102 return Old;
104 // Inline asm is like a constant to us.
105 if (isa<InlineAsm>(Old))
106 return Old;
108 if (Value *New = GlobalMap.lookup(Old)) {
109 if (Value *NewRemapped = GlobalMap.lookup(New))
110 New = NewRemapped;
111 if (Old->getType()->getScalarSizeInBits() <
112 New->getType()->getScalarSizeInBits())
113 New = Builder.CreateTruncOrBitCast(New, Old->getType());
115 return New;
118 if (Value *New = BBMap.lookup(Old))
119 return New;
121 if (Value *New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L))
122 return New;
124 // A scop-constant value defined by a global or a function parameter.
125 if (isa<GlobalValue>(Old) || isa<Argument>(Old))
126 return Old;
128 // A scop-constant value defined by an instruction executed outside the scop.
129 if (const Instruction *Inst = dyn_cast<Instruction>(Old))
130 if (!Stmt.getParent()->contains(Inst->getParent()))
131 return Old;
133 // The scalar dependence is neither available nor SCEVCodegenable.
134 llvm_unreachable("Unexpected scalar dependence in region!");
135 return nullptr;
138 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
139 ValueMapT &BBMap, LoopToScevMapT &LTS) {
140 // We do not generate debug intrinsics as we did not investigate how to
141 // copy them correctly. At the current state, they just crash the code
142 // generation as the meta-data operands are not correctly copied.
143 if (isa<DbgInfoIntrinsic>(Inst))
144 return;
146 Instruction *NewInst = Inst->clone();
148 // Replace old operands with the new ones.
149 for (Value *OldOperand : Inst->operands()) {
150 Value *NewOperand =
151 getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt));
153 if (!NewOperand) {
154 assert(!isa<StoreInst>(NewInst) &&
155 "Store instructions are always needed!");
156 delete NewInst;
157 return;
160 NewInst->replaceUsesOfWith(OldOperand, NewOperand);
163 Builder.Insert(NewInst);
164 BBMap[Inst] = NewInst;
166 if (!NewInst->getType()->isVoidTy())
167 NewInst->setName("p_" + Inst->getName());
170 Value *
171 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst,
172 ValueMapT &BBMap, LoopToScevMapT &LTS,
173 isl_id_to_ast_expr *NewAccesses) {
174 const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst);
176 isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, MA.getId());
178 if (AccessExpr) {
179 AccessExpr = isl_ast_expr_address_of(AccessExpr);
180 auto Address = ExprBuilder->create(AccessExpr);
182 // Cast the address of this memory access to a pointer type that has the
183 // same element type as the original access, but uses the address space of
184 // the newly generated pointer.
185 auto OldPtrTy = MA.getAccessValue()->getType()->getPointerTo();
186 auto NewPtrTy = Address->getType();
187 OldPtrTy = PointerType::get(OldPtrTy->getElementType(),
188 NewPtrTy->getPointerAddressSpace());
190 if (OldPtrTy != NewPtrTy)
191 Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
192 return Address;
195 return getNewValue(Stmt, Inst.getPointerOperand(), BBMap, LTS,
196 getLoopForStmt(Stmt));
199 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const {
200 auto *StmtBB = Stmt.getEntryBlock();
201 return LI.getLoopFor(StmtBB);
204 Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, LoadInst *Load,
205 ValueMapT &BBMap, LoopToScevMapT &LTS,
206 isl_id_to_ast_expr *NewAccesses) {
207 if (Value *PreloadLoad = GlobalMap.lookup(Load))
208 return PreloadLoad;
210 Value *NewPointer =
211 generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses);
212 Value *ScalarLoad = Builder.CreateAlignedLoad(
213 NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");
215 if (DebugPrinting)
216 RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
217 ": ", ScalarLoad, "\n");
219 return ScalarLoad;
222 void BlockGenerator::generateScalarStore(ScopStmt &Stmt, StoreInst *Store,
223 ValueMapT &BBMap, LoopToScevMapT &LTS,
224 isl_id_to_ast_expr *NewAccesses) {
225 Value *NewPointer =
226 generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses);
227 Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap, LTS,
228 getLoopForStmt(Stmt));
230 if (DebugPrinting)
231 RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer,
232 ": ", ValueOperand, "\n");
234 Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlignment());
237 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) {
238 Loop *L = getLoopForStmt(Stmt);
239 return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
240 canSynthesize(Inst, *Stmt.getParent(), &LI, &SE, L);
243 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
244 ValueMapT &BBMap, LoopToScevMapT &LTS,
245 isl_id_to_ast_expr *NewAccesses) {
246 // Terminator instructions control the control flow. They are explicitly
247 // expressed in the clast and do not need to be copied.
248 if (Inst->isTerminator())
249 return;
251 // Synthesizable statements will be generated on-demand.
252 if (canSyntheziseInStmt(Stmt, Inst))
253 return;
255 if (auto *Load = dyn_cast<LoadInst>(Inst)) {
256 Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, LTS, NewAccesses);
257 // Compute NewLoad before its insertion in BBMap to make the insertion
258 // deterministic.
259 BBMap[Load] = NewLoad;
260 return;
263 if (auto *Store = dyn_cast<StoreInst>(Inst)) {
264 generateScalarStore(Stmt, Store, BBMap, LTS, NewAccesses);
265 return;
268 if (auto *PHI = dyn_cast<PHINode>(Inst)) {
269 copyPHIInstruction(Stmt, PHI, BBMap, LTS);
270 return;
273 // Skip some special intrinsics for which we do not adjust the semantics to
274 // the new schedule. All others are handled like every other instruction.
275 if (isIgnoredIntrinsic(Inst))
276 return;
278 copyInstScalar(Stmt, Inst, BBMap, LTS);
281 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) {
282 for (auto I = BB->rbegin(), E = BB->rend(); I != E; I++) {
283 Instruction *Inst = &*I;
284 Value *NewVal = BBMap[Inst];
286 if (!NewVal)
287 continue;
289 Instruction *NewInst = dyn_cast<Instruction>(NewVal);
291 if (!NewInst)
292 continue;
294 if (!isInstructionTriviallyDead(NewInst))
295 continue;
297 BBMap.erase(Inst);
298 NewInst->eraseFromParent();
302 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
303 isl_id_to_ast_expr *NewAccesses) {
304 assert(Stmt.isBlockStmt() &&
305 "Only block statements can be copied by the block generator");
307 ValueMapT BBMap;
309 BasicBlock *BB = Stmt.getBasicBlock();
310 copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
311 removeDeadInstructions(BB, BBMap);
314 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
315 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
316 &*Builder.GetInsertPoint(), &DT, &LI);
317 CopyBB->setName("polly.stmt." + BB->getName());
318 return CopyBB;
321 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
322 ValueMapT &BBMap, LoopToScevMapT &LTS,
323 isl_id_to_ast_expr *NewAccesses) {
324 BasicBlock *CopyBB = splitBB(BB);
325 Builder.SetInsertPoint(&CopyBB->front());
326 generateScalarLoads(Stmt, BBMap);
328 copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
330 // After a basic block was copied store all scalars that escape this block in
331 // their alloca.
332 generateScalarStores(Stmt, LTS, BBMap);
333 return CopyBB;
336 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
337 ValueMapT &BBMap, LoopToScevMapT &LTS,
338 isl_id_to_ast_expr *NewAccesses) {
339 EntryBB = &CopyBB->getParent()->getEntryBlock();
341 for (Instruction &Inst : *BB)
342 copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
345 Value *BlockGenerator::getOrCreateAlloca(Value *ScalarBase,
346 ScalarAllocaMapTy &Map,
347 const char *NameExt) {
348 // If no alloca was found create one and insert it in the entry block.
349 if (!Map.count(ScalarBase)) {
350 auto *Ty = ScalarBase->getType();
351 auto NewAddr = new AllocaInst(Ty, ScalarBase->getName() + NameExt);
352 EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
353 NewAddr->insertBefore(&*EntryBB->getFirstInsertionPt());
354 Map[ScalarBase] = NewAddr;
357 auto Addr = Map[ScalarBase];
359 if (auto NewAddr = GlobalMap.lookup(Addr))
360 return NewAddr;
362 return Addr;
365 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) {
366 if (Access.isPHIKind())
367 return getOrCreatePHIAlloca(Access.getBaseAddr());
368 else
369 return getOrCreateScalarAlloca(Access.getBaseAddr());
372 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
373 if (Array->isPHIKind())
374 return getOrCreatePHIAlloca(Array->getBasePtr());
375 else
376 return getOrCreateScalarAlloca(Array->getBasePtr());
379 Value *BlockGenerator::getOrCreateScalarAlloca(Value *ScalarBase) {
380 return getOrCreateAlloca(ScalarBase, ScalarMap, ".s2a");
383 Value *BlockGenerator::getOrCreatePHIAlloca(Value *ScalarBase) {
384 return getOrCreateAlloca(ScalarBase, PHIOpMap, ".phiops");
387 void BlockGenerator::handleOutsideUsers(const Scop &S, Instruction *Inst) {
388 // If there are escape users we get the alloca for this instruction and put it
389 // in the EscapeMap for later finalization. Lastly, if the instruction was
390 // copied multiple times we already did this and can exit.
391 if (EscapeMap.count(Inst))
392 return;
394 EscapeUserVectorTy EscapeUsers;
395 for (User *U : Inst->users()) {
397 // Non-instruction user will never escape.
398 Instruction *UI = dyn_cast<Instruction>(U);
399 if (!UI)
400 continue;
402 if (S.contains(UI))
403 continue;
405 EscapeUsers.push_back(UI);
408 // Exit if no escape uses were found.
409 if (EscapeUsers.empty())
410 return;
412 // Get or create an escape alloca for this instruction.
413 auto *ScalarAddr = getOrCreateScalarAlloca(Inst);
415 // Remember that this instruction has escape uses and the escape alloca.
416 EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
419 void BlockGenerator::generateScalarLoads(ScopStmt &Stmt, ValueMapT &BBMap) {
420 for (MemoryAccess *MA : Stmt) {
421 if (MA->isArrayKind() || MA->isWrite())
422 continue;
424 auto *Address = getOrCreateAlloca(*MA);
425 assert((!isa<Instruction>(Address) ||
426 DT.dominates(cast<Instruction>(Address)->getParent(),
427 Builder.GetInsertBlock())) &&
428 "Domination violation");
429 BBMap[MA->getBaseAddr()] =
430 Builder.CreateLoad(Address, Address->getName() + ".reload");
434 void BlockGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
435 ValueMapT &BBMap) {
436 Loop *L = LI.getLoopFor(Stmt.getBasicBlock());
438 assert(Stmt.isBlockStmt() && "Region statements need to use the "
439 "generateScalarStores() function in the "
440 "RegionGenerator");
442 for (MemoryAccess *MA : Stmt) {
443 if (MA->isArrayKind() || MA->isRead())
444 continue;
446 Value *Val = MA->getAccessValue();
447 if (MA->isAnyPHIKind()) {
448 assert(MA->getIncoming().size() >= 1 &&
449 "Block statements have exactly one exiting block, or multiple but "
450 "with same incoming block and value");
451 assert(std::all_of(MA->getIncoming().begin(), MA->getIncoming().end(),
452 [&](std::pair<BasicBlock *, Value *> p) -> bool {
453 return p.first == Stmt.getBasicBlock();
454 }) &&
455 "Incoming block must be statement's block");
456 Val = MA->getIncoming()[0].second;
458 auto *Address = getOrCreateAlloca(*MA);
460 Val = getNewValue(Stmt, Val, BBMap, LTS, L);
461 assert((!isa<Instruction>(Val) ||
462 DT.dominates(cast<Instruction>(Val)->getParent(),
463 Builder.GetInsertBlock())) &&
464 "Domination violation");
465 assert((!isa<Instruction>(Address) ||
466 DT.dominates(cast<Instruction>(Address)->getParent(),
467 Builder.GetInsertBlock())) &&
468 "Domination violation");
469 Builder.CreateStore(Val, Address);
473 void BlockGenerator::createScalarInitialization(Scop &S) {
474 BasicBlock *ExitBB = S.getExit();
476 // The split block __just before__ the region and optimized region.
477 BasicBlock *SplitBB = S.getEnteringBlock();
478 BranchInst *SplitBBTerm = cast<BranchInst>(SplitBB->getTerminator());
479 assert(SplitBBTerm->getNumSuccessors() == 2 && "Bad region entering block!");
481 // Get the start block of the __optimized__ region.
482 BasicBlock *StartBB = SplitBBTerm->getSuccessor(0);
483 if (StartBB == S.getEntry())
484 StartBB = SplitBBTerm->getSuccessor(1);
486 Builder.SetInsertPoint(StartBB->getTerminator());
488 for (auto &Array : S.arrays()) {
489 if (Array->getNumberOfDimensions() != 0)
490 continue;
491 if (Array->isPHIKind()) {
492 // For PHI nodes, the only values we need to store are the ones that
493 // reach the PHI node from outside the region. In general there should
494 // only be one such incoming edge and this edge should enter through
495 // 'SplitBB'.
496 auto PHI = cast<PHINode>(Array->getBasePtr());
498 for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
499 if (!S.contains(*BI) && *BI != SplitBB)
500 llvm_unreachable("Incoming edges from outside the scop should always "
501 "come from SplitBB");
503 int Idx = PHI->getBasicBlockIndex(SplitBB);
504 if (Idx < 0)
505 continue;
507 Value *ScalarValue = PHI->getIncomingValue(Idx);
509 Builder.CreateStore(ScalarValue, getOrCreatePHIAlloca(PHI));
510 continue;
513 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
515 if (Inst && S.contains(Inst))
516 continue;
518 // PHI nodes that are not marked as such in their SAI object are either exit
519 // PHI nodes we model as common scalars but without initialization, or
520 // incoming phi nodes that need to be initialized. Check if the first is the
521 // case for Inst and do not create and initialize memory if so.
522 if (auto *PHI = dyn_cast_or_null<PHINode>(Inst))
523 if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0)
524 continue;
526 Builder.CreateStore(Array->getBasePtr(),
527 getOrCreateScalarAlloca(Array->getBasePtr()));
531 void BlockGenerator::createScalarFinalization(Scop &S) {
532 // The exit block of the __unoptimized__ region.
533 BasicBlock *ExitBB = S.getExitingBlock();
534 // The merge block __just after__ the region and the optimized region.
535 BasicBlock *MergeBB = S.getExit();
537 // The exit block of the __optimized__ region.
538 BasicBlock *OptExitBB = *(pred_begin(MergeBB));
539 if (OptExitBB == ExitBB)
540 OptExitBB = *(++pred_begin(MergeBB));
542 Builder.SetInsertPoint(OptExitBB->getTerminator());
543 for (const auto &EscapeMapping : EscapeMap) {
544 // Extract the escaping instruction and the escaping users as well as the
545 // alloca the instruction was demoted to.
546 Instruction *EscapeInst = EscapeMapping.getFirst();
547 const auto &EscapeMappingValue = EscapeMapping.getSecond();
548 const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
549 Value *ScalarAddr = EscapeMappingValue.first;
551 // Reload the demoted instruction in the optimized version of the SCoP.
552 Value *EscapeInstReload =
553 Builder.CreateLoad(ScalarAddr, EscapeInst->getName() + ".final_reload");
554 EscapeInstReload =
555 Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());
557 // Create the merge PHI that merges the optimized and unoptimized version.
558 PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
559 EscapeInst->getName() + ".merge");
560 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
562 // Add the respective values to the merge PHI.
563 MergePHI->addIncoming(EscapeInstReload, OptExitBB);
564 MergePHI->addIncoming(EscapeInst, ExitBB);
566 // The information of scalar evolution about the escaping instruction needs
567 // to be revoked so the new merged instruction will be used.
568 if (SE.isSCEVable(EscapeInst->getType()))
569 SE.forgetValue(EscapeInst);
571 // Replace all uses of the demoted instruction with the merge PHI.
572 for (Instruction *EUser : EscapeUsers)
573 EUser->replaceUsesOfWith(EscapeInst, MergePHI);
577 void BlockGenerator::findOutsideUsers(Scop &S) {
578 for (auto &Array : S.arrays()) {
580 if (Array->getNumberOfDimensions() != 0)
581 continue;
583 if (Array->isPHIKind())
584 continue;
586 auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
588 if (!Inst)
589 continue;
591 // Scop invariant hoisting moves some of the base pointers out of the scop.
592 // We can ignore these, as the invariant load hoisting already registers the
593 // relevant outside users.
594 if (!S.contains(Inst))
595 continue;
597 handleOutsideUsers(S, Inst);
601 void BlockGenerator::createExitPHINodeMerges(Scop &S) {
602 if (S.hasSingleExitEdge())
603 return;
605 auto *ExitBB = S.getExitingBlock();
606 auto *MergeBB = S.getExit();
607 auto *AfterMergeBB = MergeBB->getSingleSuccessor();
608 BasicBlock *OptExitBB = *(pred_begin(MergeBB));
609 if (OptExitBB == ExitBB)
610 OptExitBB = *(++pred_begin(MergeBB));
612 Builder.SetInsertPoint(OptExitBB->getTerminator());
614 for (auto &SAI : S.arrays()) {
615 auto *Val = SAI->getBasePtr();
617 // Only Value-like scalars need a merge PHI. Exit block PHIs receive either
618 // the original PHI's value or the reloaded incoming values from the
619 // generated code. An llvm::Value is merged between the original code's
620 // value or the generated one.
621 if (!SAI->isValueKind() && !SAI->isExitPHIKind())
622 continue;
624 PHINode *PHI = dyn_cast<PHINode>(Val);
625 if (!PHI)
626 continue;
628 if (PHI->getParent() != AfterMergeBB)
629 continue;
631 std::string Name = PHI->getName();
632 Value *ScalarAddr = getOrCreateScalarAlloca(PHI);
633 Value *Reload = Builder.CreateLoad(ScalarAddr, Name + ".ph.final_reload");
634 Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType());
635 Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB);
636 assert((!isa<Instruction>(OriginalValue) ||
637 cast<Instruction>(OriginalValue)->getParent() != MergeBB) &&
638 "Original value must no be one we just generated.");
639 auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge");
640 MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
641 MergePHI->addIncoming(Reload, OptExitBB);
642 MergePHI->addIncoming(OriginalValue, ExitBB);
643 int Idx = PHI->getBasicBlockIndex(MergeBB);
644 PHI->setIncomingValue(Idx, MergePHI);
648 void BlockGenerator::finalizeSCoP(Scop &S) {
649 findOutsideUsers(S);
650 createScalarInitialization(S);
651 createExitPHINodeMerges(S);
652 createScalarFinalization(S);
655 VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
656 std::vector<LoopToScevMapT> &VLTS,
657 isl_map *Schedule)
658 : BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
659 assert(Schedule && "No statement domain provided");
662 Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old,
663 ValueMapT &VectorMap,
664 VectorValueMapT &ScalarMaps,
665 Loop *L) {
666 if (Value *NewValue = VectorMap.lookup(Old))
667 return NewValue;
669 int Width = getVectorWidth();
671 Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
673 for (int Lane = 0; Lane < Width; Lane++)
674 Vector = Builder.CreateInsertElement(
675 Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
676 Builder.getInt32(Lane));
678 VectorMap[Old] = Vector;
680 return Vector;
683 Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
684 PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
685 assert(PointerTy && "PointerType expected");
687 Type *ScalarType = PointerTy->getElementType();
688 VectorType *VectorType = VectorType::get(ScalarType, Width);
690 return PointerType::getUnqual(VectorType);
693 Value *VectorBlockGenerator::generateStrideOneLoad(
694 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
695 __isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
696 unsigned VectorWidth = getVectorWidth();
697 auto *Pointer = Load->getPointerOperand();
698 Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
699 unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
701 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset],
702 VLTS[Offset], NewAccesses);
703 Value *VectorPtr =
704 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
705 LoadInst *VecLoad =
706 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
707 if (!Aligned)
708 VecLoad->setAlignment(8);
710 if (NegativeStride) {
711 SmallVector<Constant *, 16> Indices;
712 for (int i = VectorWidth - 1; i >= 0; i--)
713 Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
714 Constant *SV = llvm::ConstantVector::get(Indices);
715 Value *RevVecLoad = Builder.CreateShuffleVector(
716 VecLoad, VecLoad, SV, Load->getName() + "_reverse");
717 return RevVecLoad;
720 return VecLoad;
723 Value *VectorBlockGenerator::generateStrideZeroLoad(
724 ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap,
725 __isl_keep isl_id_to_ast_expr *NewAccesses) {
726 auto *Pointer = Load->getPointerOperand();
727 Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
728 Value *NewPointer =
729 generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses);
730 Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
731 Load->getName() + "_p_vec_p");
732 LoadInst *ScalarLoad =
733 Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
735 if (!Aligned)
736 ScalarLoad->setAlignment(8);
738 Constant *SplatVector = Constant::getNullValue(
739 VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
741 Value *VectorLoad = Builder.CreateShuffleVector(
742 ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
743 return VectorLoad;
746 Value *VectorBlockGenerator::generateUnknownStrideLoad(
747 ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
748 __isl_keep isl_id_to_ast_expr *NewAccesses) {
749 int VectorWidth = getVectorWidth();
750 auto *Pointer = Load->getPointerOperand();
751 VectorType *VectorType = VectorType::get(
752 dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
754 Value *Vector = UndefValue::get(VectorType);
756 for (int i = 0; i < VectorWidth; i++) {
757 Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i],
758 VLTS[i], NewAccesses);
759 Value *ScalarLoad =
760 Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
761 Vector = Builder.CreateInsertElement(
762 Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
765 return Vector;
768 void VectorBlockGenerator::generateLoad(
769 ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
770 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
771 if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
772 VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
773 Load->getName() + "_p");
774 return;
777 if (!VectorType::isValidElementType(Load->getType())) {
778 for (int i = 0; i < getVectorWidth(); i++)
779 ScalarMaps[i][Load] =
780 generateScalarLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
781 return;
784 const MemoryAccess &Access = Stmt.getArrayAccessFor(Load);
786 // Make sure we have scalar values available to access the pointer to
787 // the data location.
788 extractScalarValues(Load, VectorMap, ScalarMaps);
790 Value *NewLoad;
791 if (Access.isStrideZero(isl_map_copy(Schedule)))
792 NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
793 else if (Access.isStrideOne(isl_map_copy(Schedule)))
794 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
795 else if (Access.isStrideX(isl_map_copy(Schedule), -1))
796 NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
797 else
798 NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
800 VectorMap[Load] = NewLoad;
803 void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
804 ValueMapT &VectorMap,
805 VectorValueMapT &ScalarMaps) {
806 int VectorWidth = getVectorWidth();
807 Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
808 ScalarMaps, getLoopForStmt(Stmt));
810 assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
812 const CastInst *Cast = dyn_cast<CastInst>(Inst);
813 VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
814 VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
817 void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
818 ValueMapT &VectorMap,
819 VectorValueMapT &ScalarMaps) {
820 Loop *L = getLoopForStmt(Stmt);
821 Value *OpZero = Inst->getOperand(0);
822 Value *OpOne = Inst->getOperand(1);
824 Value *NewOpZero, *NewOpOne;
825 NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
826 NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
828 Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
829 Inst->getName() + "p_vec");
830 VectorMap[Inst] = NewInst;
833 void VectorBlockGenerator::copyStore(
834 ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
835 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
836 const MemoryAccess &Access = Stmt.getArrayAccessFor(Store);
838 auto *Pointer = Store->getPointerOperand();
839 Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
840 ScalarMaps, getLoopForStmt(Stmt));
842 // Make sure we have scalar values available to access the pointer to
843 // the data location.
844 extractScalarValues(Store, VectorMap, ScalarMaps);
846 if (Access.isStrideOne(isl_map_copy(Schedule))) {
847 Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
848 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0],
849 VLTS[0], NewAccesses);
851 Value *VectorPtr =
852 Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
853 StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
855 if (!Aligned)
856 Store->setAlignment(8);
857 } else {
858 for (unsigned i = 0; i < ScalarMaps.size(); i++) {
859 Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
860 Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i],
861 VLTS[i], NewAccesses);
862 Builder.CreateStore(Scalar, NewPointer);
867 bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
868 ValueMapT &VectorMap) {
869 for (Value *Operand : Inst->operands())
870 if (VectorMap.count(Operand))
871 return true;
872 return false;
875 bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
876 ValueMapT &VectorMap,
877 VectorValueMapT &ScalarMaps) {
878 bool HasVectorOperand = false;
879 int VectorWidth = getVectorWidth();
881 for (Value *Operand : Inst->operands()) {
882 ValueMapT::iterator VecOp = VectorMap.find(Operand);
884 if (VecOp == VectorMap.end())
885 continue;
887 HasVectorOperand = true;
888 Value *NewVector = VecOp->second;
890 for (int i = 0; i < VectorWidth; ++i) {
891 ValueMapT &SM = ScalarMaps[i];
893 // If there is one scalar extracted, all scalar elements should have
894 // already been extracted by the code here. So no need to check for the
895 // existence of all of them.
896 if (SM.count(Operand))
897 break;
899 SM[Operand] =
900 Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
904 return HasVectorOperand;
907 void VectorBlockGenerator::copyInstScalarized(
908 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
909 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
910 bool HasVectorOperand;
911 int VectorWidth = getVectorWidth();
913 HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
915 for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
916 BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
917 VLTS[VectorLane], NewAccesses);
919 if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
920 return;
922 // Make the result available as vector value.
923 VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
924 Value *Vector = UndefValue::get(VectorType);
926 for (int i = 0; i < VectorWidth; i++)
927 Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
928 Builder.getInt32(i));
930 VectorMap[Inst] = Vector;
933 int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
935 void VectorBlockGenerator::copyInstruction(
936 ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
937 VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
938 // Terminator instructions control the control flow. They are explicitly
939 // expressed in the clast and do not need to be copied.
940 if (Inst->isTerminator())
941 return;
943 if (canSyntheziseInStmt(Stmt, Inst))
944 return;
946 if (auto *Load = dyn_cast<LoadInst>(Inst)) {
947 generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
948 return;
951 if (hasVectorOperands(Inst, VectorMap)) {
952 if (auto *Store = dyn_cast<StoreInst>(Inst)) {
953 copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
954 return;
957 if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) {
958 copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
959 return;
962 if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) {
963 copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
964 return;
967 // Falltrough: We generate scalar instructions, if we don't know how to
968 // generate vector code.
971 copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
974 void VectorBlockGenerator::generateScalarVectorLoads(
975 ScopStmt &Stmt, ValueMapT &VectorBlockMap) {
976 for (MemoryAccess *MA : Stmt) {
977 if (MA->isArrayKind() || MA->isWrite())
978 continue;
980 auto *Address = getOrCreateAlloca(*MA);
981 Type *VectorPtrType = getVectorPtrTy(Address, 1);
982 Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType,
983 Address->getName() + "_p_vec_p");
984 auto *Val = Builder.CreateLoad(VectorPtr, Address->getName() + ".reload");
985 Constant *SplatVector = Constant::getNullValue(
986 VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
988 Value *VectorVal = Builder.CreateShuffleVector(
989 Val, Val, SplatVector, Address->getName() + "_p_splat");
990 VectorBlockMap[MA->getBaseAddr()] = VectorVal;
994 void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) {
995 for (MemoryAccess *MA : Stmt) {
996 if (MA->isArrayKind() || MA->isRead())
997 continue;
999 llvm_unreachable("Scalar stores not expected in vector loop");
1003 void VectorBlockGenerator::copyStmt(
1004 ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
1005 assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by "
1006 "the vector block generator");
1008 BasicBlock *BB = Stmt.getBasicBlock();
1009 BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
1010 &*Builder.GetInsertPoint(), &DT, &LI);
1011 CopyBB->setName("polly.stmt." + BB->getName());
1012 Builder.SetInsertPoint(&CopyBB->front());
1014 // Create two maps that store the mapping from the original instructions of
1015 // the old basic block to their copies in the new basic block. Those maps
1016 // are basic block local.
1018 // As vector code generation is supported there is one map for scalar values
1019 // and one for vector values.
1021 // In case we just do scalar code generation, the vectorMap is not used and
1022 // the scalarMap has just one dimension, which contains the mapping.
1024 // In case vector code generation is done, an instruction may either appear
1025 // in the vector map once (as it is calculating >vectorwidth< values at a
1026 // time. Or (if the values are calculated using scalar operations), it
1027 // appears once in every dimension of the scalarMap.
1028 VectorValueMapT ScalarBlockMap(getVectorWidth());
1029 ValueMapT VectorBlockMap;
1031 generateScalarVectorLoads(Stmt, VectorBlockMap);
1033 for (Instruction &Inst : *BB)
1034 copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
1036 verifyNoScalarStores(Stmt);
1039 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
1040 BasicBlock *BBCopy) {
1042 BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
1043 BasicBlock *BBCopyIDom = BlockMap.lookup(BBIDom);
1045 if (BBCopyIDom)
1046 DT.changeImmediateDominator(BBCopy, BBCopyIDom);
1048 return BBCopyIDom;
1051 // This is to determine whether an llvm::Value (defined in @p BB) is usable when
1052 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock())
1053 // does not work in cases where the exit block has edges from outside the
1054 // region. In that case the llvm::Value would never be usable in in the exit
1055 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy')
1056 // for the subregion's exiting edges only. We need to determine whether an
1057 // llvm::Value is usable in there. We do this by checking whether it dominates
1058 // all exiting blocks individually.
1059 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R,
1060 BasicBlock *BB) {
1061 for (auto ExitingBB : predecessors(R->getExit())) {
1062 // Check for non-subregion incoming edges.
1063 if (!R->contains(ExitingBB))
1064 continue;
1066 if (!DT.dominates(BB, ExitingBB))
1067 return false;
1070 return true;
1073 // Find the direct dominator of the subregion's exit block if the subregion was
1074 // simplified.
1075 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) {
1076 BasicBlock *Common = nullptr;
1077 for (auto ExitingBB : predecessors(R->getExit())) {
1078 // Check for non-subregion incoming edges.
1079 if (!R->contains(ExitingBB))
1080 continue;
1082 // First exiting edge.
1083 if (!Common) {
1084 Common = ExitingBB;
1085 continue;
1088 Common = DT.findNearestCommonDominator(Common, ExitingBB);
1091 assert(Common && R->contains(Common));
1092 return Common;
1095 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
1096 isl_id_to_ast_expr *IdToAstExp) {
1097 assert(Stmt.isRegionStmt() &&
1098 "Only region statements can be copied by the region generator");
1100 // Forget all old mappings.
1101 BlockMap.clear();
1102 RegionMaps.clear();
1103 IncompletePHINodeMap.clear();
1105 // Collection of all values related to this subregion.
1106 ValueMapT ValueMap;
1108 // The region represented by the statement.
1109 Region *R = Stmt.getRegion();
1111 // Create a dedicated entry for the region where we can reload all demoted
1112 // inputs.
1113 BasicBlock *EntryBB = R->getEntry();
1114 BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(),
1115 &*Builder.GetInsertPoint(), &DT, &LI);
1116 EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
1117 Builder.SetInsertPoint(&EntryBBCopy->front());
1119 ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy];
1120 generateScalarLoads(Stmt, EntryBBMap);
1122 for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
1123 if (!R->contains(*PI))
1124 BlockMap[*PI] = EntryBBCopy;
1126 // Iterate over all blocks in the region in a breadth-first search.
1127 std::deque<BasicBlock *> Blocks;
1128 SmallPtrSet<BasicBlock *, 8> SeenBlocks;
1129 Blocks.push_back(EntryBB);
1130 SeenBlocks.insert(EntryBB);
1132 while (!Blocks.empty()) {
1133 BasicBlock *BB = Blocks.front();
1134 Blocks.pop_front();
1136 // First split the block and update dominance information.
1137 BasicBlock *BBCopy = splitBB(BB);
1138 BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
1140 // Get the mapping for this block and initialize it with either the scalar
1141 // loads from the generated entering block (which dominates all blocks of
1142 // this subregion) or the maps of the immediate dominator, if part of the
1143 // subregion. The latter necessarily includes the former.
1144 ValueMapT *InitBBMap;
1145 if (BBCopyIDom) {
1146 assert(RegionMaps.count(BBCopyIDom));
1147 InitBBMap = &RegionMaps[BBCopyIDom];
1148 } else
1149 InitBBMap = &EntryBBMap;
1150 auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap));
1151 ValueMapT &RegionMap = Inserted.first->second;
1153 // Copy the block with the BlockGenerator.
1154 Builder.SetInsertPoint(&BBCopy->front());
1155 copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
1157 // In order to remap PHI nodes we store also basic block mappings.
1158 BlockMap[BB] = BBCopy;
1160 // Add values to incomplete PHI nodes waiting for this block to be copied.
1161 for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
1162 addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
1163 IncompletePHINodeMap[BB].clear();
1165 // And continue with new successors inside the region.
1166 for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
1167 if (R->contains(*SI) && SeenBlocks.insert(*SI).second)
1168 Blocks.push_back(*SI);
1170 // Remember value in case it is visible after this subregion.
1171 if (isDominatingSubregionExit(DT, R, BB))
1172 ValueMap.insert(RegionMap.begin(), RegionMap.end());
1175 // Now create a new dedicated region exit block and add it to the region map.
1176 BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(),
1177 &*Builder.GetInsertPoint(), &DT, &LI);
1178 ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
1179 BlockMap[R->getExit()] = ExitBBCopy;
1181 BasicBlock *ExitDomBBCopy = BlockMap.lookup(findExitDominator(DT, R));
1182 assert(ExitDomBBCopy && "Common exit dominator must be within region; at "
1183 "least the entry node must match");
1184 DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy);
1186 // As the block generator doesn't handle control flow we need to add the
1187 // region control flow by hand after all blocks have been copied.
1188 for (BasicBlock *BB : SeenBlocks) {
1190 BasicBlock *BBCopy = BlockMap[BB];
1191 TerminatorInst *TI = BB->getTerminator();
1192 if (isa<UnreachableInst>(TI)) {
1193 while (!BBCopy->empty())
1194 BBCopy->begin()->eraseFromParent();
1195 new UnreachableInst(BBCopy->getContext(), BBCopy);
1196 continue;
1199 Instruction *BICopy = BBCopy->getTerminator();
1201 ValueMapT &RegionMap = RegionMaps[BBCopy];
1202 RegionMap.insert(BlockMap.begin(), BlockMap.end());
1204 Builder.SetInsertPoint(BICopy);
1205 copyInstScalar(Stmt, TI, RegionMap, LTS);
1206 BICopy->eraseFromParent();
1209 // Add counting PHI nodes to all loops in the region that can be used as
1210 // replacement for SCEVs refering to the old loop.
1211 for (BasicBlock *BB : SeenBlocks) {
1212 Loop *L = LI.getLoopFor(BB);
1213 if (L == nullptr || L->getHeader() != BB || !R->contains(L))
1214 continue;
1216 BasicBlock *BBCopy = BlockMap[BB];
1217 Value *NullVal = Builder.getInt32(0);
1218 PHINode *LoopPHI =
1219 PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
1220 Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
1221 LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
1222 LoopPHI->insertBefore(&BBCopy->front());
1223 LoopPHIInc->insertBefore(BBCopy->getTerminator());
1225 for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
1226 if (!R->contains(PredBB))
1227 continue;
1228 if (L->contains(PredBB))
1229 LoopPHI->addIncoming(LoopPHIInc, BlockMap[PredBB]);
1230 else
1231 LoopPHI->addIncoming(NullVal, BlockMap[PredBB]);
1234 for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
1235 if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
1236 LoopPHI->addIncoming(NullVal, PredBBCopy);
1238 LTS[L] = SE.getUnknown(LoopPHI);
1241 // Continue generating code in the exit block.
1242 Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt());
1244 // Write values visible to other statements.
1245 generateScalarStores(Stmt, LTS, ValueMap);
1246 BlockMap.clear();
1247 RegionMaps.clear();
1248 IncompletePHINodeMap.clear();
1251 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT &LTS,
1252 ValueMapT &BBMap, Loop *L) {
1253 ScopStmt *Stmt = MA->getStatement();
1254 Region *SubR = Stmt->getRegion();
1255 auto Incoming = MA->getIncoming();
1257 PollyIRBuilder::InsertPointGuard IPGuard(Builder);
1258 PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction());
1259 BasicBlock *NewSubregionExit = Builder.GetInsertBlock();
1261 // This can happen if the subregion is simplified after the ScopStmts
1262 // have been created; simplification happens as part of CodeGeneration.
1263 if (OrigPHI->getParent() != SubR->getExit()) {
1264 BasicBlock *FormerExit = SubR->getExitingBlock();
1265 if (FormerExit)
1266 NewSubregionExit = BlockMap.lookup(FormerExit);
1269 PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(),
1270 "polly." + OrigPHI->getName(),
1271 NewSubregionExit->getFirstNonPHI());
1273 // Add the incoming values to the PHI.
1274 for (auto &Pair : Incoming) {
1275 BasicBlock *OrigIncomingBlock = Pair.first;
1276 BasicBlock *NewIncomingBlock = BlockMap.lookup(OrigIncomingBlock);
1277 Builder.SetInsertPoint(NewIncomingBlock->getTerminator());
1278 assert(RegionMaps.count(NewIncomingBlock));
1279 ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlock];
1281 Value *OrigIncomingValue = Pair.second;
1282 Value *NewIncomingValue =
1283 getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L);
1284 NewPHI->addIncoming(NewIncomingValue, NewIncomingBlock);
1287 return NewPHI;
1290 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT &LTS,
1291 ValueMapT &BBMap) {
1292 ScopStmt *Stmt = MA->getStatement();
1294 // TODO: Add some test cases that ensure this is really the right choice.
1295 Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit());
1297 if (MA->isAnyPHIKind()) {
1298 auto Incoming = MA->getIncoming();
1299 assert(!Incoming.empty() &&
1300 "PHI WRITEs must have originate from at least one incoming block");
1302 // If there is only one incoming value, we do not need to create a PHI.
1303 if (Incoming.size() == 1) {
1304 Value *OldVal = Incoming[0].second;
1305 return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1308 return buildExitPHI(MA, LTS, BBMap, L);
1311 // MK_Value accesses leaving the subregion must dominate the exit block; just
1312 // pass the copied value
1313 Value *OldVal = MA->getAccessValue();
1314 return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1317 void RegionGenerator::generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
1318 ValueMapT &BBMap) {
1319 assert(Stmt.getRegion() &&
1320 "Block statements need to use the generateScalarStores() "
1321 "function in the BlockGenerator");
1323 for (MemoryAccess *MA : Stmt) {
1324 if (MA->isArrayKind() || MA->isRead())
1325 continue;
1327 Value *NewVal = getExitScalar(MA, LTS, BBMap);
1328 Value *Address = getOrCreateAlloca(*MA);
1329 assert((!isa<Instruction>(NewVal) ||
1330 DT.dominates(cast<Instruction>(NewVal)->getParent(),
1331 Builder.GetInsertBlock())) &&
1332 "Domination violation");
1333 assert((!isa<Instruction>(Address) ||
1334 DT.dominates(cast<Instruction>(Address)->getParent(),
1335 Builder.GetInsertBlock())) &&
1336 "Domination violation");
1337 Builder.CreateStore(NewVal, Address);
1341 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, const PHINode *PHI,
1342 PHINode *PHICopy, BasicBlock *IncomingBB,
1343 LoopToScevMapT &LTS) {
1344 Region *StmtR = Stmt.getRegion();
1346 // If the incoming block was not yet copied mark this PHI as incomplete.
1347 // Once the block will be copied the incoming value will be added.
1348 BasicBlock *BBCopy = BlockMap[IncomingBB];
1349 if (!BBCopy) {
1350 assert(StmtR->contains(IncomingBB) &&
1351 "Bad incoming block for PHI in non-affine region");
1352 IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
1353 return;
1356 Value *OpCopy = nullptr;
1357 if (StmtR->contains(IncomingBB)) {
1358 assert(RegionMaps.count(BBCopy) &&
1359 "Incoming PHI block did not have a BBMap");
1360 ValueMapT &BBCopyMap = RegionMaps[BBCopy];
1362 Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
1364 // If the current insert block is different from the PHIs incoming block
1365 // change it, otherwise do not.
1366 auto IP = Builder.GetInsertPoint();
1367 if (IP->getParent() != BBCopy)
1368 Builder.SetInsertPoint(BBCopy->getTerminator());
1369 OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt));
1370 if (IP->getParent() != BBCopy)
1371 Builder.SetInsertPoint(&*IP);
1372 } else {
1374 if (PHICopy->getBasicBlockIndex(BBCopy) >= 0)
1375 return;
1377 Value *PHIOpAddr = getOrCreatePHIAlloca(const_cast<PHINode *>(PHI));
1378 OpCopy = new LoadInst(PHIOpAddr, PHIOpAddr->getName() + ".reload",
1379 BlockMap[IncomingBB]->getTerminator());
1382 assert(OpCopy && "Incoming PHI value was not copied properly");
1383 assert(BBCopy && "Incoming PHI block was not copied properly");
1384 PHICopy->addIncoming(OpCopy, BBCopy);
1387 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
1388 ValueMapT &BBMap,
1389 LoopToScevMapT &LTS) {
1390 unsigned NumIncoming = PHI->getNumIncomingValues();
1391 PHINode *PHICopy =
1392 Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
1393 PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
1394 BBMap[PHI] = PHICopy;
1396 for (unsigned u = 0; u < NumIncoming; u++)
1397 addOperandToPHI(Stmt, PHI, PHICopy, PHI->getIncomingBlock(u), LTS);