2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
16 #include <asm/uaccess.h>
17 #include <asm/tlbflush.h>
20 void task_mem(struct seq_file
*m
, struct mm_struct
*mm
)
22 unsigned long data
, text
, lib
, swap
;
23 unsigned long hiwater_vm
, total_vm
, hiwater_rss
, total_rss
;
26 * Note: to minimize their overhead, mm maintains hiwater_vm and
27 * hiwater_rss only when about to *lower* total_vm or rss. Any
28 * collector of these hiwater stats must therefore get total_vm
29 * and rss too, which will usually be the higher. Barriers? not
30 * worth the effort, such snapshots can always be inconsistent.
32 hiwater_vm
= total_vm
= mm
->total_vm
;
33 if (hiwater_vm
< mm
->hiwater_vm
)
34 hiwater_vm
= mm
->hiwater_vm
;
35 hiwater_rss
= total_rss
= get_mm_rss(mm
);
36 if (hiwater_rss
< mm
->hiwater_rss
)
37 hiwater_rss
= mm
->hiwater_rss
;
39 data
= mm
->total_vm
- mm
->shared_vm
- mm
->stack_vm
;
40 text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
)) >> 10;
41 lib
= (mm
->exec_vm
<< (PAGE_SHIFT
-10)) - text
;
42 swap
= get_mm_counter(mm
, MM_SWAPENTS
);
55 hiwater_vm
<< (PAGE_SHIFT
-10),
56 (total_vm
- mm
->reserved_vm
) << (PAGE_SHIFT
-10),
57 mm
->locked_vm
<< (PAGE_SHIFT
-10),
58 hiwater_rss
<< (PAGE_SHIFT
-10),
59 total_rss
<< (PAGE_SHIFT
-10),
60 data
<< (PAGE_SHIFT
-10),
61 mm
->stack_vm
<< (PAGE_SHIFT
-10), text
, lib
,
62 (PTRS_PER_PTE
*sizeof(pte_t
)*mm
->nr_ptes
) >> 10,
63 swap
<< (PAGE_SHIFT
-10));
66 unsigned long task_vsize(struct mm_struct
*mm
)
68 return PAGE_SIZE
* mm
->total_vm
;
71 unsigned long task_statm(struct mm_struct
*mm
,
72 unsigned long *shared
, unsigned long *text
,
73 unsigned long *data
, unsigned long *resident
)
75 *shared
= get_mm_counter(mm
, MM_FILEPAGES
);
76 *text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
))
78 *data
= mm
->total_vm
- mm
->shared_vm
;
79 *resident
= *shared
+ get_mm_counter(mm
, MM_ANONPAGES
);
83 static void pad_len_spaces(struct seq_file
*m
, int len
)
85 len
= 25 + sizeof(void*) * 6 - len
;
88 seq_printf(m
, "%*c", len
, ' ');
91 static void vma_stop(struct proc_maps_private
*priv
, struct vm_area_struct
*vma
)
93 if (vma
&& vma
!= priv
->tail_vma
) {
94 struct mm_struct
*mm
= vma
->vm_mm
;
95 up_read(&mm
->mmap_sem
);
100 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
102 struct proc_maps_private
*priv
= m
->private;
103 unsigned long last_addr
= m
->version
;
104 struct mm_struct
*mm
;
105 struct vm_area_struct
*vma
, *tail_vma
= NULL
;
108 /* Clear the per syscall fields in priv */
110 priv
->tail_vma
= NULL
;
113 * We remember last_addr rather than next_addr to hit with
114 * mmap_cache most of the time. We have zero last_addr at
115 * the beginning and also after lseek. We will have -1 last_addr
116 * after the end of the vmas.
119 if (last_addr
== -1UL)
122 priv
->task
= get_pid_task(priv
->pid
, PIDTYPE_PID
);
124 return ERR_PTR(-ESRCH
);
126 mm
= mm_for_maps(priv
->task
);
127 if (!mm
|| IS_ERR(mm
))
129 down_read(&mm
->mmap_sem
);
131 tail_vma
= get_gate_vma(priv
->task
->mm
);
132 priv
->tail_vma
= tail_vma
;
134 /* Start with last addr hint */
135 vma
= find_vma(mm
, last_addr
);
136 if (last_addr
&& vma
) {
142 * Check the vma index is within the range and do
143 * sequential scan until m_index.
146 if ((unsigned long)l
< mm
->map_count
) {
153 if (l
!= mm
->map_count
)
154 tail_vma
= NULL
; /* After gate vma */
160 /* End of vmas has been reached */
161 m
->version
= (tail_vma
!= NULL
)? 0: -1UL;
162 up_read(&mm
->mmap_sem
);
167 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
169 struct proc_maps_private
*priv
= m
->private;
170 struct vm_area_struct
*vma
= v
;
171 struct vm_area_struct
*tail_vma
= priv
->tail_vma
;
174 if (vma
&& (vma
!= tail_vma
) && vma
->vm_next
)
177 return (vma
!= tail_vma
)? tail_vma
: NULL
;
180 static void m_stop(struct seq_file
*m
, void *v
)
182 struct proc_maps_private
*priv
= m
->private;
183 struct vm_area_struct
*vma
= v
;
188 put_task_struct(priv
->task
);
191 static int do_maps_open(struct inode
*inode
, struct file
*file
,
192 const struct seq_operations
*ops
)
194 struct proc_maps_private
*priv
;
196 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL
);
198 priv
->pid
= proc_pid(inode
);
199 ret
= seq_open(file
, ops
);
201 struct seq_file
*m
= file
->private_data
;
210 static void show_map_vma(struct seq_file
*m
, struct vm_area_struct
*vma
)
212 struct mm_struct
*mm
= vma
->vm_mm
;
213 struct file
*file
= vma
->vm_file
;
214 vm_flags_t flags
= vma
->vm_flags
;
215 unsigned long ino
= 0;
216 unsigned long long pgoff
= 0;
217 unsigned long start
, end
;
222 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
223 dev
= inode
->i_sb
->s_dev
;
225 pgoff
= ((loff_t
)vma
->vm_pgoff
) << PAGE_SHIFT
;
228 /* We don't show the stack guard page in /proc/maps */
229 start
= vma
->vm_start
;
230 if (stack_guard_page_start(vma
, start
))
233 if (stack_guard_page_end(vma
, end
))
236 seq_printf(m
, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
239 flags
& VM_READ
? 'r' : '-',
240 flags
& VM_WRITE
? 'w' : '-',
241 flags
& VM_EXEC
? 'x' : '-',
242 flags
& VM_MAYSHARE
? 's' : 'p',
244 MAJOR(dev
), MINOR(dev
), ino
, &len
);
247 * Print the dentry name for named mappings, and a
248 * special [heap] marker for the heap:
251 pad_len_spaces(m
, len
);
252 seq_path(m
, &file
->f_path
, "\n");
254 const char *name
= arch_vma_name(vma
);
257 if (vma
->vm_start
<= mm
->brk
&&
258 vma
->vm_end
>= mm
->start_brk
) {
260 } else if (vma
->vm_start
<= mm
->start_stack
&&
261 vma
->vm_end
>= mm
->start_stack
) {
269 pad_len_spaces(m
, len
);
276 static int show_map(struct seq_file
*m
, void *v
)
278 struct vm_area_struct
*vma
= v
;
279 struct proc_maps_private
*priv
= m
->private;
280 struct task_struct
*task
= priv
->task
;
282 show_map_vma(m
, vma
);
284 if (m
->count
< m
->size
) /* vma is copied successfully */
285 m
->version
= (vma
!= get_gate_vma(task
->mm
))
290 static const struct seq_operations proc_pid_maps_op
= {
297 static int maps_open(struct inode
*inode
, struct file
*file
)
299 return do_maps_open(inode
, file
, &proc_pid_maps_op
);
302 const struct file_operations proc_maps_operations
= {
306 .release
= seq_release_private
,
310 * Proportional Set Size(PSS): my share of RSS.
312 * PSS of a process is the count of pages it has in memory, where each
313 * page is divided by the number of processes sharing it. So if a
314 * process has 1000 pages all to itself, and 1000 shared with one other
315 * process, its PSS will be 1500.
317 * To keep (accumulated) division errors low, we adopt a 64bit
318 * fixed-point pss counter to minimize division errors. So (pss >>
319 * PSS_SHIFT) would be the real byte count.
321 * A shift of 12 before division means (assuming 4K page size):
322 * - 1M 3-user-pages add up to 8KB errors;
323 * - supports mapcount up to 2^24, or 16M;
324 * - supports PSS up to 2^52 bytes, or 4PB.
328 #ifdef CONFIG_PROC_PAGE_MONITOR
329 struct mem_size_stats
{
330 struct vm_area_struct
*vma
;
331 unsigned long resident
;
332 unsigned long shared_clean
;
333 unsigned long shared_dirty
;
334 unsigned long private_clean
;
335 unsigned long private_dirty
;
336 unsigned long referenced
;
337 unsigned long anonymous
;
338 unsigned long anonymous_thp
;
344 static void smaps_pte_entry(pte_t ptent
, unsigned long addr
,
345 unsigned long ptent_size
, struct mm_walk
*walk
)
347 struct mem_size_stats
*mss
= walk
->private;
348 struct vm_area_struct
*vma
= mss
->vma
;
352 if (is_swap_pte(ptent
)) {
353 mss
->swap
+= ptent_size
;
357 if (!pte_present(ptent
))
360 page
= vm_normal_page(vma
, addr
, ptent
);
365 mss
->anonymous
+= ptent_size
;
367 mss
->resident
+= ptent_size
;
368 /* Accumulate the size in pages that have been accessed. */
369 if (pte_young(ptent
) || PageReferenced(page
))
370 mss
->referenced
+= ptent_size
;
371 mapcount
= page_mapcount(page
);
373 if (pte_dirty(ptent
) || PageDirty(page
))
374 mss
->shared_dirty
+= ptent_size
;
376 mss
->shared_clean
+= ptent_size
;
377 mss
->pss
+= (ptent_size
<< PSS_SHIFT
) / mapcount
;
379 if (pte_dirty(ptent
) || PageDirty(page
))
380 mss
->private_dirty
+= ptent_size
;
382 mss
->private_clean
+= ptent_size
;
383 mss
->pss
+= (ptent_size
<< PSS_SHIFT
);
387 static int smaps_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
388 struct mm_walk
*walk
)
390 struct mem_size_stats
*mss
= walk
->private;
391 struct vm_area_struct
*vma
= mss
->vma
;
395 spin_lock(&walk
->mm
->page_table_lock
);
396 if (pmd_trans_huge(*pmd
)) {
397 if (pmd_trans_splitting(*pmd
)) {
398 spin_unlock(&walk
->mm
->page_table_lock
);
399 wait_split_huge_page(vma
->anon_vma
, pmd
);
401 smaps_pte_entry(*(pte_t
*)pmd
, addr
,
402 HPAGE_PMD_SIZE
, walk
);
403 spin_unlock(&walk
->mm
->page_table_lock
);
404 mss
->anonymous_thp
+= HPAGE_PMD_SIZE
;
408 spin_unlock(&walk
->mm
->page_table_lock
);
411 * The mmap_sem held all the way back in m_start() is what
412 * keeps khugepaged out of here and from collapsing things
415 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
416 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
417 smaps_pte_entry(*pte
, addr
, PAGE_SIZE
, walk
);
418 pte_unmap_unlock(pte
- 1, ptl
);
423 static int show_smap(struct seq_file
*m
, void *v
)
425 struct proc_maps_private
*priv
= m
->private;
426 struct task_struct
*task
= priv
->task
;
427 struct vm_area_struct
*vma
= v
;
428 struct mem_size_stats mss
;
429 struct mm_walk smaps_walk
= {
430 .pmd_entry
= smaps_pte_range
,
435 memset(&mss
, 0, sizeof mss
);
437 /* mmap_sem is held in m_start */
438 if (vma
->vm_mm
&& !is_vm_hugetlb_page(vma
))
439 walk_page_range(vma
->vm_start
, vma
->vm_end
, &smaps_walk
);
441 show_map_vma(m
, vma
);
447 "Shared_Clean: %8lu kB\n"
448 "Shared_Dirty: %8lu kB\n"
449 "Private_Clean: %8lu kB\n"
450 "Private_Dirty: %8lu kB\n"
451 "Referenced: %8lu kB\n"
452 "Anonymous: %8lu kB\n"
453 "AnonHugePages: %8lu kB\n"
455 "KernelPageSize: %8lu kB\n"
456 "MMUPageSize: %8lu kB\n"
458 (vma
->vm_end
- vma
->vm_start
) >> 10,
460 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)),
461 mss
.shared_clean
>> 10,
462 mss
.shared_dirty
>> 10,
463 mss
.private_clean
>> 10,
464 mss
.private_dirty
>> 10,
465 mss
.referenced
>> 10,
467 mss
.anonymous_thp
>> 10,
469 vma_kernel_pagesize(vma
) >> 10,
470 vma_mmu_pagesize(vma
) >> 10,
471 (vma
->vm_flags
& VM_LOCKED
) ?
472 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)) : 0);
474 if (m
->count
< m
->size
) /* vma is copied successfully */
475 m
->version
= (vma
!= get_gate_vma(task
->mm
))
480 static const struct seq_operations proc_pid_smaps_op
= {
487 static int smaps_open(struct inode
*inode
, struct file
*file
)
489 return do_maps_open(inode
, file
, &proc_pid_smaps_op
);
492 const struct file_operations proc_smaps_operations
= {
496 .release
= seq_release_private
,
499 static int clear_refs_pte_range(pmd_t
*pmd
, unsigned long addr
,
500 unsigned long end
, struct mm_walk
*walk
)
502 struct vm_area_struct
*vma
= walk
->private;
507 split_huge_page_pmd(walk
->mm
, pmd
);
509 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
510 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
512 if (!pte_present(ptent
))
515 page
= vm_normal_page(vma
, addr
, ptent
);
519 /* Clear accessed and referenced bits. */
520 ptep_test_and_clear_young(vma
, addr
, pte
);
521 ClearPageReferenced(page
);
523 pte_unmap_unlock(pte
- 1, ptl
);
528 #define CLEAR_REFS_ALL 1
529 #define CLEAR_REFS_ANON 2
530 #define CLEAR_REFS_MAPPED 3
532 static ssize_t
clear_refs_write(struct file
*file
, const char __user
*buf
,
533 size_t count
, loff_t
*ppos
)
535 struct task_struct
*task
;
536 char buffer
[PROC_NUMBUF
];
537 struct mm_struct
*mm
;
538 struct vm_area_struct
*vma
;
542 memset(buffer
, 0, sizeof(buffer
));
543 if (count
> sizeof(buffer
) - 1)
544 count
= sizeof(buffer
) - 1;
545 if (copy_from_user(buffer
, buf
, count
))
547 rv
= kstrtoint(strstrip(buffer
), 10, &type
);
550 if (type
< CLEAR_REFS_ALL
|| type
> CLEAR_REFS_MAPPED
)
552 task
= get_proc_task(file
->f_path
.dentry
->d_inode
);
555 mm
= get_task_mm(task
);
557 struct mm_walk clear_refs_walk
= {
558 .pmd_entry
= clear_refs_pte_range
,
561 down_read(&mm
->mmap_sem
);
562 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
563 clear_refs_walk
.private = vma
;
564 if (is_vm_hugetlb_page(vma
))
567 * Writing 1 to /proc/pid/clear_refs affects all pages.
569 * Writing 2 to /proc/pid/clear_refs only affects
572 * Writing 3 to /proc/pid/clear_refs only affects file
575 if (type
== CLEAR_REFS_ANON
&& vma
->vm_file
)
577 if (type
== CLEAR_REFS_MAPPED
&& !vma
->vm_file
)
579 walk_page_range(vma
->vm_start
, vma
->vm_end
,
583 up_read(&mm
->mmap_sem
);
586 put_task_struct(task
);
591 const struct file_operations proc_clear_refs_operations
= {
592 .write
= clear_refs_write
,
593 .llseek
= noop_llseek
,
601 #define PM_ENTRY_BYTES sizeof(u64)
602 #define PM_STATUS_BITS 3
603 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
604 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
605 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
606 #define PM_PSHIFT_BITS 6
607 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
608 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
609 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
610 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
611 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
613 #define PM_PRESENT PM_STATUS(4LL)
614 #define PM_SWAP PM_STATUS(2LL)
615 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
616 #define PM_END_OF_BUFFER 1
618 static int add_to_pagemap(unsigned long addr
, u64 pfn
,
619 struct pagemapread
*pm
)
621 pm
->buffer
[pm
->pos
++] = pfn
;
622 if (pm
->pos
>= pm
->len
)
623 return PM_END_OF_BUFFER
;
627 static int pagemap_pte_hole(unsigned long start
, unsigned long end
,
628 struct mm_walk
*walk
)
630 struct pagemapread
*pm
= walk
->private;
633 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
634 err
= add_to_pagemap(addr
, PM_NOT_PRESENT
, pm
);
641 static u64
swap_pte_to_pagemap_entry(pte_t pte
)
643 swp_entry_t e
= pte_to_swp_entry(pte
);
644 return swp_type(e
) | (swp_offset(e
) << MAX_SWAPFILES_SHIFT
);
647 static u64
pte_to_pagemap_entry(pte_t pte
)
650 if (is_swap_pte(pte
))
651 pme
= PM_PFRAME(swap_pte_to_pagemap_entry(pte
))
652 | PM_PSHIFT(PAGE_SHIFT
) | PM_SWAP
;
653 else if (pte_present(pte
))
654 pme
= PM_PFRAME(pte_pfn(pte
))
655 | PM_PSHIFT(PAGE_SHIFT
) | PM_PRESENT
;
659 static int pagemap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
660 struct mm_walk
*walk
)
662 struct vm_area_struct
*vma
;
663 struct pagemapread
*pm
= walk
->private;
667 split_huge_page_pmd(walk
->mm
, pmd
);
669 /* find the first VMA at or above 'addr' */
670 vma
= find_vma(walk
->mm
, addr
);
671 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
672 u64 pfn
= PM_NOT_PRESENT
;
674 /* check to see if we've left 'vma' behind
675 * and need a new, higher one */
676 if (vma
&& (addr
>= vma
->vm_end
))
677 vma
= find_vma(walk
->mm
, addr
);
679 /* check that 'vma' actually covers this address,
680 * and that it isn't a huge page vma */
681 if (vma
&& (vma
->vm_start
<= addr
) &&
682 !is_vm_hugetlb_page(vma
)) {
683 pte
= pte_offset_map(pmd
, addr
);
684 pfn
= pte_to_pagemap_entry(*pte
);
685 /* unmap before userspace copy */
688 err
= add_to_pagemap(addr
, pfn
, pm
);
698 #ifdef CONFIG_HUGETLB_PAGE
699 static u64
huge_pte_to_pagemap_entry(pte_t pte
, int offset
)
702 if (pte_present(pte
))
703 pme
= PM_PFRAME(pte_pfn(pte
) + offset
)
704 | PM_PSHIFT(PAGE_SHIFT
) | PM_PRESENT
;
708 /* This function walks within one hugetlb entry in the single call */
709 static int pagemap_hugetlb_range(pte_t
*pte
, unsigned long hmask
,
710 unsigned long addr
, unsigned long end
,
711 struct mm_walk
*walk
)
713 struct pagemapread
*pm
= walk
->private;
717 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
718 int offset
= (addr
& ~hmask
) >> PAGE_SHIFT
;
719 pfn
= huge_pte_to_pagemap_entry(*pte
, offset
);
720 err
= add_to_pagemap(addr
, pfn
, pm
);
729 #endif /* HUGETLB_PAGE */
732 * /proc/pid/pagemap - an array mapping virtual pages to pfns
734 * For each page in the address space, this file contains one 64-bit entry
735 * consisting of the following:
737 * Bits 0-55 page frame number (PFN) if present
738 * Bits 0-4 swap type if swapped
739 * Bits 5-55 swap offset if swapped
740 * Bits 55-60 page shift (page size = 1<<page shift)
741 * Bit 61 reserved for future use
742 * Bit 62 page swapped
743 * Bit 63 page present
745 * If the page is not present but in swap, then the PFN contains an
746 * encoding of the swap file number and the page's offset into the
747 * swap. Unmapped pages return a null PFN. This allows determining
748 * precisely which pages are mapped (or in swap) and comparing mapped
749 * pages between processes.
751 * Efficient users of this interface will use /proc/pid/maps to
752 * determine which areas of memory are actually mapped and llseek to
753 * skip over unmapped regions.
755 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
756 #define PAGEMAP_WALK_MASK (PMD_MASK)
757 static ssize_t
pagemap_read(struct file
*file
, char __user
*buf
,
758 size_t count
, loff_t
*ppos
)
760 struct task_struct
*task
= get_proc_task(file
->f_path
.dentry
->d_inode
);
761 struct mm_struct
*mm
;
762 struct pagemapread pm
;
764 struct mm_walk pagemap_walk
= {};
767 unsigned long start_vaddr
;
768 unsigned long end_vaddr
;
775 /* file position must be aligned */
776 if ((*ppos
% PM_ENTRY_BYTES
) || (count
% PM_ENTRY_BYTES
))
783 pm
.len
= PM_ENTRY_BYTES
* (PAGEMAP_WALK_SIZE
>> PAGE_SHIFT
);
784 pm
.buffer
= kmalloc(pm
.len
, GFP_TEMPORARY
);
789 mm
= mm_for_maps(task
);
791 if (!mm
|| IS_ERR(mm
))
794 pagemap_walk
.pmd_entry
= pagemap_pte_range
;
795 pagemap_walk
.pte_hole
= pagemap_pte_hole
;
796 #ifdef CONFIG_HUGETLB_PAGE
797 pagemap_walk
.hugetlb_entry
= pagemap_hugetlb_range
;
799 pagemap_walk
.mm
= mm
;
800 pagemap_walk
.private = &pm
;
803 svpfn
= src
/ PM_ENTRY_BYTES
;
804 start_vaddr
= svpfn
<< PAGE_SHIFT
;
805 end_vaddr
= TASK_SIZE_OF(task
);
807 /* watch out for wraparound */
808 if (svpfn
> TASK_SIZE_OF(task
) >> PAGE_SHIFT
)
809 start_vaddr
= end_vaddr
;
812 * The odds are that this will stop walking way
813 * before end_vaddr, because the length of the
814 * user buffer is tracked in "pm", and the walk
815 * will stop when we hit the end of the buffer.
818 while (count
&& (start_vaddr
< end_vaddr
)) {
823 end
= (start_vaddr
+ PAGEMAP_WALK_SIZE
) & PAGEMAP_WALK_MASK
;
825 if (end
< start_vaddr
|| end
> end_vaddr
)
827 down_read(&mm
->mmap_sem
);
828 ret
= walk_page_range(start_vaddr
, end
, &pagemap_walk
);
829 up_read(&mm
->mmap_sem
);
832 len
= min(count
, PM_ENTRY_BYTES
* pm
.pos
);
833 if (copy_to_user(buf
, pm
.buffer
, len
)) {
842 if (!ret
|| ret
== PM_END_OF_BUFFER
)
850 put_task_struct(task
);
855 const struct file_operations proc_pagemap_operations
= {
856 .llseek
= mem_lseek
, /* borrow this */
857 .read
= pagemap_read
,
859 #endif /* CONFIG_PROC_PAGE_MONITOR */
864 struct vm_area_struct
*vma
;
867 unsigned long active
;
868 unsigned long writeback
;
869 unsigned long mapcount_max
;
871 unsigned long swapcache
;
872 unsigned long node
[MAX_NUMNODES
];
875 struct numa_maps_private
{
876 struct proc_maps_private proc_maps
;
880 static void gather_stats(struct page
*page
, struct numa_maps
*md
, int pte_dirty
,
881 unsigned long nr_pages
)
883 int count
= page_mapcount(page
);
885 md
->pages
+= nr_pages
;
886 if (pte_dirty
|| PageDirty(page
))
887 md
->dirty
+= nr_pages
;
889 if (PageSwapCache(page
))
890 md
->swapcache
+= nr_pages
;
892 if (PageActive(page
) || PageUnevictable(page
))
893 md
->active
+= nr_pages
;
895 if (PageWriteback(page
))
896 md
->writeback
+= nr_pages
;
899 md
->anon
+= nr_pages
;
901 if (count
> md
->mapcount_max
)
902 md
->mapcount_max
= count
;
904 md
->node
[page_to_nid(page
)] += nr_pages
;
907 static struct page
*can_gather_numa_stats(pte_t pte
, struct vm_area_struct
*vma
,
913 if (!pte_present(pte
))
916 page
= vm_normal_page(vma
, addr
, pte
);
920 if (PageReserved(page
))
923 nid
= page_to_nid(page
);
924 if (!node_isset(nid
, node_states
[N_HIGH_MEMORY
]))
930 static int gather_pte_stats(pmd_t
*pmd
, unsigned long addr
,
931 unsigned long end
, struct mm_walk
*walk
)
933 struct numa_maps
*md
;
939 spin_lock(&walk
->mm
->page_table_lock
);
940 if (pmd_trans_huge(*pmd
)) {
941 if (pmd_trans_splitting(*pmd
)) {
942 spin_unlock(&walk
->mm
->page_table_lock
);
943 wait_split_huge_page(md
->vma
->anon_vma
, pmd
);
945 pte_t huge_pte
= *(pte_t
*)pmd
;
948 page
= can_gather_numa_stats(huge_pte
, md
->vma
, addr
);
950 gather_stats(page
, md
, pte_dirty(huge_pte
),
951 HPAGE_PMD_SIZE
/PAGE_SIZE
);
952 spin_unlock(&walk
->mm
->page_table_lock
);
956 spin_unlock(&walk
->mm
->page_table_lock
);
959 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
961 struct page
*page
= can_gather_numa_stats(*pte
, md
->vma
, addr
);
964 gather_stats(page
, md
, pte_dirty(*pte
), 1);
966 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
967 pte_unmap_unlock(orig_pte
, ptl
);
970 #ifdef CONFIG_HUGETLB_PAGE
971 static int gather_hugetbl_stats(pte_t
*pte
, unsigned long hmask
,
972 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
974 struct numa_maps
*md
;
980 page
= pte_page(*pte
);
985 gather_stats(page
, md
, pte_dirty(*pte
), 1);
990 static int gather_hugetbl_stats(pte_t
*pte
, unsigned long hmask
,
991 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
998 * Display pages allocated per node and memory policy via /proc.
1000 static int show_numa_map(struct seq_file
*m
, void *v
)
1002 struct numa_maps_private
*numa_priv
= m
->private;
1003 struct proc_maps_private
*proc_priv
= &numa_priv
->proc_maps
;
1004 struct vm_area_struct
*vma
= v
;
1005 struct numa_maps
*md
= &numa_priv
->md
;
1006 struct file
*file
= vma
->vm_file
;
1007 struct mm_struct
*mm
= vma
->vm_mm
;
1008 struct mm_walk walk
= {};
1009 struct mempolicy
*pol
;
1016 /* Ensure we start with an empty set of numa_maps statistics. */
1017 memset(md
, 0, sizeof(*md
));
1021 walk
.hugetlb_entry
= gather_hugetbl_stats
;
1022 walk
.pmd_entry
= gather_pte_stats
;
1026 pol
= get_vma_policy(proc_priv
->task
, vma
, vma
->vm_start
);
1027 mpol_to_str(buffer
, sizeof(buffer
), pol
, 0);
1030 seq_printf(m
, "%08lx %s", vma
->vm_start
, buffer
);
1033 seq_printf(m
, " file=");
1034 seq_path(m
, &file
->f_path
, "\n\t= ");
1035 } else if (vma
->vm_start
<= mm
->brk
&& vma
->vm_end
>= mm
->start_brk
) {
1036 seq_printf(m
, " heap");
1037 } else if (vma
->vm_start
<= mm
->start_stack
&&
1038 vma
->vm_end
>= mm
->start_stack
) {
1039 seq_printf(m
, " stack");
1042 if (is_vm_hugetlb_page(vma
))
1043 seq_printf(m
, " huge");
1045 walk_page_range(vma
->vm_start
, vma
->vm_end
, &walk
);
1051 seq_printf(m
, " anon=%lu", md
->anon
);
1054 seq_printf(m
, " dirty=%lu", md
->dirty
);
1056 if (md
->pages
!= md
->anon
&& md
->pages
!= md
->dirty
)
1057 seq_printf(m
, " mapped=%lu", md
->pages
);
1059 if (md
->mapcount_max
> 1)
1060 seq_printf(m
, " mapmax=%lu", md
->mapcount_max
);
1063 seq_printf(m
, " swapcache=%lu", md
->swapcache
);
1065 if (md
->active
< md
->pages
&& !is_vm_hugetlb_page(vma
))
1066 seq_printf(m
, " active=%lu", md
->active
);
1069 seq_printf(m
, " writeback=%lu", md
->writeback
);
1071 for_each_node_state(n
, N_HIGH_MEMORY
)
1073 seq_printf(m
, " N%d=%lu", n
, md
->node
[n
]);
1077 if (m
->count
< m
->size
)
1078 m
->version
= (vma
!= proc_priv
->tail_vma
) ? vma
->vm_start
: 0;
1082 static const struct seq_operations proc_pid_numa_maps_op
= {
1086 .show
= show_numa_map
,
1089 static int numa_maps_open(struct inode
*inode
, struct file
*file
)
1091 struct numa_maps_private
*priv
;
1093 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL
);
1095 priv
->proc_maps
.pid
= proc_pid(inode
);
1096 ret
= seq_open(file
, &proc_pid_numa_maps_op
);
1098 struct seq_file
*m
= file
->private_data
;
1107 const struct file_operations proc_numa_maps_operations
= {
1108 .open
= numa_maps_open
,
1110 .llseek
= seq_lseek
,
1111 .release
= seq_release_private
,
1113 #endif /* CONFIG_NUMA */