mm: memcg: shorten preempt-disabled section around event checks
[pohmelfs.git] / mm / memcontrol.c
blobabb66a2cba652ea3403666f5b040cdecf2bd4e78
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
56 #include <asm/uaccess.h>
58 #include <trace/events/vmscan.h>
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
75 #else
76 #define do_swap_account (0)
77 #endif
81 * Statistics for memory cgroup.
83 enum mem_cgroup_stat_index {
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
93 MEM_CGROUP_STAT_NSTATS,
96 enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
102 MEM_CGROUP_EVENTS_NSTATS,
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
110 enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
113 MEM_CGROUP_TARGET_NUMAINFO,
114 MEM_CGROUP_NTARGETS,
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET (1024)
120 struct mem_cgroup_stat_cpu {
121 long count[MEM_CGROUP_STAT_NSTATS];
122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123 unsigned long targets[MEM_CGROUP_NTARGETS];
126 struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
128 int position;
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
134 * per-zone information in memory controller.
136 struct mem_cgroup_per_zone {
137 struct lruvec lruvec;
138 unsigned long count[NR_LRU_LISTS];
140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
142 struct zone_reclaim_stat reclaim_stat;
143 struct rb_node tree_node; /* RB tree node */
144 unsigned long long usage_in_excess;/* Set to the value by which */
145 /* the soft limit is exceeded*/
146 bool on_tree;
147 struct mem_cgroup *mem; /* Back pointer, we cannot */
148 /* use container_of */
150 /* Macro for accessing counter */
151 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
153 struct mem_cgroup_per_node {
154 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
157 struct mem_cgroup_lru_info {
158 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
166 struct mem_cgroup_tree_per_zone {
167 struct rb_root rb_root;
168 spinlock_t lock;
171 struct mem_cgroup_tree_per_node {
172 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
175 struct mem_cgroup_tree {
176 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
179 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
181 struct mem_cgroup_threshold {
182 struct eventfd_ctx *eventfd;
183 u64 threshold;
186 /* For threshold */
187 struct mem_cgroup_threshold_ary {
188 /* An array index points to threshold just below usage. */
189 int current_threshold;
190 /* Size of entries[] */
191 unsigned int size;
192 /* Array of thresholds */
193 struct mem_cgroup_threshold entries[0];
196 struct mem_cgroup_thresholds {
197 /* Primary thresholds array */
198 struct mem_cgroup_threshold_ary *primary;
200 * Spare threshold array.
201 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 * It must be able to store at least primary->size - 1 entries.
204 struct mem_cgroup_threshold_ary *spare;
207 /* for OOM */
208 struct mem_cgroup_eventfd_list {
209 struct list_head list;
210 struct eventfd_ctx *eventfd;
213 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
227 struct mem_cgroup {
228 struct cgroup_subsys_state css;
230 * the counter to account for memory usage
232 struct res_counter res;
234 * the counter to account for mem+swap usage.
236 struct res_counter memsw;
238 * Per cgroup active and inactive list, similar to the
239 * per zone LRU lists.
241 struct mem_cgroup_lru_info info;
242 int last_scanned_node;
243 #if MAX_NUMNODES > 1
244 nodemask_t scan_nodes;
245 atomic_t numainfo_events;
246 atomic_t numainfo_updating;
247 #endif
249 * Should the accounting and control be hierarchical, per subtree?
251 bool use_hierarchy;
253 bool oom_lock;
254 atomic_t under_oom;
256 atomic_t refcnt;
258 int swappiness;
259 /* OOM-Killer disable */
260 int oom_kill_disable;
262 /* set when res.limit == memsw.limit */
263 bool memsw_is_minimum;
265 /* protect arrays of thresholds */
266 struct mutex thresholds_lock;
268 /* thresholds for memory usage. RCU-protected */
269 struct mem_cgroup_thresholds thresholds;
271 /* thresholds for mem+swap usage. RCU-protected */
272 struct mem_cgroup_thresholds memsw_thresholds;
274 /* For oom notifier event fd */
275 struct list_head oom_notify;
278 * Should we move charges of a task when a task is moved into this
279 * mem_cgroup ? And what type of charges should we move ?
281 unsigned long move_charge_at_immigrate;
283 * percpu counter.
285 struct mem_cgroup_stat_cpu *stat;
287 * used when a cpu is offlined or other synchronizations
288 * See mem_cgroup_read_stat().
290 struct mem_cgroup_stat_cpu nocpu_base;
291 spinlock_t pcp_counter_lock;
293 #ifdef CONFIG_INET
294 struct tcp_memcontrol tcp_mem;
295 #endif
298 /* Stuffs for move charges at task migration. */
300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301 * left-shifted bitmap of these types.
303 enum move_type {
304 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
305 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
306 NR_MOVE_TYPE,
309 /* "mc" and its members are protected by cgroup_mutex */
310 static struct move_charge_struct {
311 spinlock_t lock; /* for from, to */
312 struct mem_cgroup *from;
313 struct mem_cgroup *to;
314 unsigned long precharge;
315 unsigned long moved_charge;
316 unsigned long moved_swap;
317 struct task_struct *moving_task; /* a task moving charges */
318 wait_queue_head_t waitq; /* a waitq for other context */
319 } mc = {
320 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
324 static bool move_anon(void)
326 return test_bit(MOVE_CHARGE_TYPE_ANON,
327 &mc.to->move_charge_at_immigrate);
330 static bool move_file(void)
332 return test_bit(MOVE_CHARGE_TYPE_FILE,
333 &mc.to->move_charge_at_immigrate);
337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338 * limit reclaim to prevent infinite loops, if they ever occur.
340 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
341 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
343 enum charge_type {
344 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345 MEM_CGROUP_CHARGE_TYPE_MAPPED,
346 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
347 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
348 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
349 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
350 NR_CHARGE_TYPE,
353 /* for encoding cft->private value on file */
354 #define _MEM (0)
355 #define _MEMSWAP (1)
356 #define _OOM_TYPE (2)
357 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
358 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
359 #define MEMFILE_ATTR(val) ((val) & 0xffff)
360 /* Used for OOM nofiier */
361 #define OOM_CONTROL (0)
364 * Reclaim flags for mem_cgroup_hierarchical_reclaim
366 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
367 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
369 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
371 static void mem_cgroup_get(struct mem_cgroup *memcg);
372 static void mem_cgroup_put(struct mem_cgroup *memcg);
374 /* Writing them here to avoid exposing memcg's inner layout */
375 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376 #ifdef CONFIG_INET
377 #include <net/sock.h>
378 #include <net/ip.h>
380 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
381 void sock_update_memcg(struct sock *sk)
383 if (static_branch(&memcg_socket_limit_enabled)) {
384 struct mem_cgroup *memcg;
386 BUG_ON(!sk->sk_prot->proto_cgroup);
388 /* Socket cloning can throw us here with sk_cgrp already
389 * filled. It won't however, necessarily happen from
390 * process context. So the test for root memcg given
391 * the current task's memcg won't help us in this case.
393 * Respecting the original socket's memcg is a better
394 * decision in this case.
396 if (sk->sk_cgrp) {
397 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
398 mem_cgroup_get(sk->sk_cgrp->memcg);
399 return;
402 rcu_read_lock();
403 memcg = mem_cgroup_from_task(current);
404 if (!mem_cgroup_is_root(memcg)) {
405 mem_cgroup_get(memcg);
406 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
408 rcu_read_unlock();
411 EXPORT_SYMBOL(sock_update_memcg);
413 void sock_release_memcg(struct sock *sk)
415 if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
416 struct mem_cgroup *memcg;
417 WARN_ON(!sk->sk_cgrp->memcg);
418 memcg = sk->sk_cgrp->memcg;
419 mem_cgroup_put(memcg);
423 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
425 if (!memcg || mem_cgroup_is_root(memcg))
426 return NULL;
428 return &memcg->tcp_mem.cg_proto;
430 EXPORT_SYMBOL(tcp_proto_cgroup);
431 #endif /* CONFIG_INET */
432 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
434 static void drain_all_stock_async(struct mem_cgroup *memcg);
436 static struct mem_cgroup_per_zone *
437 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
439 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
442 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
444 return &memcg->css;
447 static struct mem_cgroup_per_zone *
448 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
450 int nid = page_to_nid(page);
451 int zid = page_zonenum(page);
453 return mem_cgroup_zoneinfo(memcg, nid, zid);
456 static struct mem_cgroup_tree_per_zone *
457 soft_limit_tree_node_zone(int nid, int zid)
459 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
462 static struct mem_cgroup_tree_per_zone *
463 soft_limit_tree_from_page(struct page *page)
465 int nid = page_to_nid(page);
466 int zid = page_zonenum(page);
468 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
471 static void
472 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473 struct mem_cgroup_per_zone *mz,
474 struct mem_cgroup_tree_per_zone *mctz,
475 unsigned long long new_usage_in_excess)
477 struct rb_node **p = &mctz->rb_root.rb_node;
478 struct rb_node *parent = NULL;
479 struct mem_cgroup_per_zone *mz_node;
481 if (mz->on_tree)
482 return;
484 mz->usage_in_excess = new_usage_in_excess;
485 if (!mz->usage_in_excess)
486 return;
487 while (*p) {
488 parent = *p;
489 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490 tree_node);
491 if (mz->usage_in_excess < mz_node->usage_in_excess)
492 p = &(*p)->rb_left;
494 * We can't avoid mem cgroups that are over their soft
495 * limit by the same amount
497 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498 p = &(*p)->rb_right;
500 rb_link_node(&mz->tree_node, parent, p);
501 rb_insert_color(&mz->tree_node, &mctz->rb_root);
502 mz->on_tree = true;
505 static void
506 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 struct mem_cgroup_per_zone *mz,
508 struct mem_cgroup_tree_per_zone *mctz)
510 if (!mz->on_tree)
511 return;
512 rb_erase(&mz->tree_node, &mctz->rb_root);
513 mz->on_tree = false;
516 static void
517 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 struct mem_cgroup_per_zone *mz,
519 struct mem_cgroup_tree_per_zone *mctz)
521 spin_lock(&mctz->lock);
522 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 spin_unlock(&mctz->lock);
527 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
529 unsigned long long excess;
530 struct mem_cgroup_per_zone *mz;
531 struct mem_cgroup_tree_per_zone *mctz;
532 int nid = page_to_nid(page);
533 int zid = page_zonenum(page);
534 mctz = soft_limit_tree_from_page(page);
537 * Necessary to update all ancestors when hierarchy is used.
538 * because their event counter is not touched.
540 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542 excess = res_counter_soft_limit_excess(&memcg->res);
544 * We have to update the tree if mz is on RB-tree or
545 * mem is over its softlimit.
547 if (excess || mz->on_tree) {
548 spin_lock(&mctz->lock);
549 /* if on-tree, remove it */
550 if (mz->on_tree)
551 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
553 * Insert again. mz->usage_in_excess will be updated.
554 * If excess is 0, no tree ops.
556 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 spin_unlock(&mctz->lock);
562 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
564 int node, zone;
565 struct mem_cgroup_per_zone *mz;
566 struct mem_cgroup_tree_per_zone *mctz;
568 for_each_node_state(node, N_POSSIBLE) {
569 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570 mz = mem_cgroup_zoneinfo(memcg, node, zone);
571 mctz = soft_limit_tree_node_zone(node, zone);
572 mem_cgroup_remove_exceeded(memcg, mz, mctz);
577 static struct mem_cgroup_per_zone *
578 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
580 struct rb_node *rightmost = NULL;
581 struct mem_cgroup_per_zone *mz;
583 retry:
584 mz = NULL;
585 rightmost = rb_last(&mctz->rb_root);
586 if (!rightmost)
587 goto done; /* Nothing to reclaim from */
589 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
591 * Remove the node now but someone else can add it back,
592 * we will to add it back at the end of reclaim to its correct
593 * position in the tree.
595 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597 !css_tryget(&mz->mem->css))
598 goto retry;
599 done:
600 return mz;
603 static struct mem_cgroup_per_zone *
604 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
606 struct mem_cgroup_per_zone *mz;
608 spin_lock(&mctz->lock);
609 mz = __mem_cgroup_largest_soft_limit_node(mctz);
610 spin_unlock(&mctz->lock);
611 return mz;
615 * Implementation Note: reading percpu statistics for memcg.
617 * Both of vmstat[] and percpu_counter has threshold and do periodic
618 * synchronization to implement "quick" read. There are trade-off between
619 * reading cost and precision of value. Then, we may have a chance to implement
620 * a periodic synchronizion of counter in memcg's counter.
622 * But this _read() function is used for user interface now. The user accounts
623 * memory usage by memory cgroup and he _always_ requires exact value because
624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625 * have to visit all online cpus and make sum. So, for now, unnecessary
626 * synchronization is not implemented. (just implemented for cpu hotplug)
628 * If there are kernel internal actions which can make use of some not-exact
629 * value, and reading all cpu value can be performance bottleneck in some
630 * common workload, threashold and synchonization as vmstat[] should be
631 * implemented.
633 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634 enum mem_cgroup_stat_index idx)
636 long val = 0;
637 int cpu;
639 get_online_cpus();
640 for_each_online_cpu(cpu)
641 val += per_cpu(memcg->stat->count[idx], cpu);
642 #ifdef CONFIG_HOTPLUG_CPU
643 spin_lock(&memcg->pcp_counter_lock);
644 val += memcg->nocpu_base.count[idx];
645 spin_unlock(&memcg->pcp_counter_lock);
646 #endif
647 put_online_cpus();
648 return val;
651 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 bool charge)
654 int val = (charge) ? 1 : -1;
655 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
658 void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
660 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
663 void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
665 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
668 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
669 enum mem_cgroup_events_index idx)
671 unsigned long val = 0;
672 int cpu;
674 for_each_online_cpu(cpu)
675 val += per_cpu(memcg->stat->events[idx], cpu);
676 #ifdef CONFIG_HOTPLUG_CPU
677 spin_lock(&memcg->pcp_counter_lock);
678 val += memcg->nocpu_base.events[idx];
679 spin_unlock(&memcg->pcp_counter_lock);
680 #endif
681 return val;
684 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
685 bool file, int nr_pages)
687 preempt_disable();
689 if (file)
690 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
691 nr_pages);
692 else
693 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
694 nr_pages);
696 /* pagein of a big page is an event. So, ignore page size */
697 if (nr_pages > 0)
698 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
699 else {
700 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
701 nr_pages = -nr_pages; /* for event */
704 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
706 preempt_enable();
709 unsigned long
710 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
711 unsigned int lru_mask)
713 struct mem_cgroup_per_zone *mz;
714 enum lru_list l;
715 unsigned long ret = 0;
717 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
719 for_each_lru(l) {
720 if (BIT(l) & lru_mask)
721 ret += MEM_CGROUP_ZSTAT(mz, l);
723 return ret;
726 static unsigned long
727 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728 int nid, unsigned int lru_mask)
730 u64 total = 0;
731 int zid;
733 for (zid = 0; zid < MAX_NR_ZONES; zid++)
734 total += mem_cgroup_zone_nr_lru_pages(memcg,
735 nid, zid, lru_mask);
737 return total;
740 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
741 unsigned int lru_mask)
743 int nid;
744 u64 total = 0;
746 for_each_node_state(nid, N_HIGH_MEMORY)
747 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
748 return total;
751 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
752 enum mem_cgroup_events_target target)
754 unsigned long val, next;
756 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
757 next = __this_cpu_read(memcg->stat->targets[target]);
758 /* from time_after() in jiffies.h */
759 if ((long)next - (long)val < 0) {
760 switch (target) {
761 case MEM_CGROUP_TARGET_THRESH:
762 next = val + THRESHOLDS_EVENTS_TARGET;
763 break;
764 case MEM_CGROUP_TARGET_SOFTLIMIT:
765 next = val + SOFTLIMIT_EVENTS_TARGET;
766 break;
767 case MEM_CGROUP_TARGET_NUMAINFO:
768 next = val + NUMAINFO_EVENTS_TARGET;
769 break;
770 default:
771 break;
773 __this_cpu_write(memcg->stat->targets[target], next);
774 return true;
776 return false;
780 * Check events in order.
783 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
785 preempt_disable();
786 /* threshold event is triggered in finer grain than soft limit */
787 if (unlikely(mem_cgroup_event_ratelimit(memcg,
788 MEM_CGROUP_TARGET_THRESH))) {
789 bool do_softlimit, do_numainfo;
791 do_softlimit = mem_cgroup_event_ratelimit(memcg,
792 MEM_CGROUP_TARGET_SOFTLIMIT);
793 #if MAX_NUMNODES > 1
794 do_numainfo = mem_cgroup_event_ratelimit(memcg,
795 MEM_CGROUP_TARGET_NUMAINFO);
796 #endif
797 preempt_enable();
799 mem_cgroup_threshold(memcg);
800 if (unlikely(do_softlimit))
801 mem_cgroup_update_tree(memcg, page);
802 #if MAX_NUMNODES > 1
803 if (unlikely(do_numainfo))
804 atomic_inc(&memcg->numainfo_events);
805 #endif
806 } else
807 preempt_enable();
810 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
812 return container_of(cgroup_subsys_state(cont,
813 mem_cgroup_subsys_id), struct mem_cgroup,
814 css);
817 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
820 * mm_update_next_owner() may clear mm->owner to NULL
821 * if it races with swapoff, page migration, etc.
822 * So this can be called with p == NULL.
824 if (unlikely(!p))
825 return NULL;
827 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
828 struct mem_cgroup, css);
831 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
833 struct mem_cgroup *memcg = NULL;
835 if (!mm)
836 return NULL;
838 * Because we have no locks, mm->owner's may be being moved to other
839 * cgroup. We use css_tryget() here even if this looks
840 * pessimistic (rather than adding locks here).
842 rcu_read_lock();
843 do {
844 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
845 if (unlikely(!memcg))
846 break;
847 } while (!css_tryget(&memcg->css));
848 rcu_read_unlock();
849 return memcg;
853 * mem_cgroup_iter - iterate over memory cgroup hierarchy
854 * @root: hierarchy root
855 * @prev: previously returned memcg, NULL on first invocation
856 * @reclaim: cookie for shared reclaim walks, NULL for full walks
858 * Returns references to children of the hierarchy below @root, or
859 * @root itself, or %NULL after a full round-trip.
861 * Caller must pass the return value in @prev on subsequent
862 * invocations for reference counting, or use mem_cgroup_iter_break()
863 * to cancel a hierarchy walk before the round-trip is complete.
865 * Reclaimers can specify a zone and a priority level in @reclaim to
866 * divide up the memcgs in the hierarchy among all concurrent
867 * reclaimers operating on the same zone and priority.
869 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
870 struct mem_cgroup *prev,
871 struct mem_cgroup_reclaim_cookie *reclaim)
873 struct mem_cgroup *memcg = NULL;
874 int id = 0;
876 if (mem_cgroup_disabled())
877 return NULL;
879 if (!root)
880 root = root_mem_cgroup;
882 if (prev && !reclaim)
883 id = css_id(&prev->css);
885 if (prev && prev != root)
886 css_put(&prev->css);
888 if (!root->use_hierarchy && root != root_mem_cgroup) {
889 if (prev)
890 return NULL;
891 return root;
894 while (!memcg) {
895 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
896 struct cgroup_subsys_state *css;
898 if (reclaim) {
899 int nid = zone_to_nid(reclaim->zone);
900 int zid = zone_idx(reclaim->zone);
901 struct mem_cgroup_per_zone *mz;
903 mz = mem_cgroup_zoneinfo(root, nid, zid);
904 iter = &mz->reclaim_iter[reclaim->priority];
905 if (prev && reclaim->generation != iter->generation)
906 return NULL;
907 id = iter->position;
910 rcu_read_lock();
911 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
912 if (css) {
913 if (css == &root->css || css_tryget(css))
914 memcg = container_of(css,
915 struct mem_cgroup, css);
916 } else
917 id = 0;
918 rcu_read_unlock();
920 if (reclaim) {
921 iter->position = id;
922 if (!css)
923 iter->generation++;
924 else if (!prev && memcg)
925 reclaim->generation = iter->generation;
928 if (prev && !css)
929 return NULL;
931 return memcg;
935 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
936 * @root: hierarchy root
937 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
939 void mem_cgroup_iter_break(struct mem_cgroup *root,
940 struct mem_cgroup *prev)
942 if (!root)
943 root = root_mem_cgroup;
944 if (prev && prev != root)
945 css_put(&prev->css);
949 * Iteration constructs for visiting all cgroups (under a tree). If
950 * loops are exited prematurely (break), mem_cgroup_iter_break() must
951 * be used for reference counting.
953 #define for_each_mem_cgroup_tree(iter, root) \
954 for (iter = mem_cgroup_iter(root, NULL, NULL); \
955 iter != NULL; \
956 iter = mem_cgroup_iter(root, iter, NULL))
958 #define for_each_mem_cgroup(iter) \
959 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
960 iter != NULL; \
961 iter = mem_cgroup_iter(NULL, iter, NULL))
963 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
965 return (memcg == root_mem_cgroup);
968 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
970 struct mem_cgroup *memcg;
972 if (!mm)
973 return;
975 rcu_read_lock();
976 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
977 if (unlikely(!memcg))
978 goto out;
980 switch (idx) {
981 case PGMAJFAULT:
982 mem_cgroup_pgmajfault(memcg, 1);
983 break;
984 case PGFAULT:
985 mem_cgroup_pgfault(memcg, 1);
986 break;
987 default:
988 BUG();
990 out:
991 rcu_read_unlock();
993 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
996 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
997 * @zone: zone of the wanted lruvec
998 * @mem: memcg of the wanted lruvec
1000 * Returns the lru list vector holding pages for the given @zone and
1001 * @mem. This can be the global zone lruvec, if the memory controller
1002 * is disabled.
1004 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1005 struct mem_cgroup *memcg)
1007 struct mem_cgroup_per_zone *mz;
1009 if (mem_cgroup_disabled())
1010 return &zone->lruvec;
1012 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1013 return &mz->lruvec;
1017 * Following LRU functions are allowed to be used without PCG_LOCK.
1018 * Operations are called by routine of global LRU independently from memcg.
1019 * What we have to take care of here is validness of pc->mem_cgroup.
1021 * Changes to pc->mem_cgroup happens when
1022 * 1. charge
1023 * 2. moving account
1024 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1025 * It is added to LRU before charge.
1026 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1027 * When moving account, the page is not on LRU. It's isolated.
1031 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1032 * @zone: zone of the page
1033 * @page: the page
1034 * @lru: current lru
1036 * This function accounts for @page being added to @lru, and returns
1037 * the lruvec for the given @zone and the memcg @page is charged to.
1039 * The callsite is then responsible for physically linking the page to
1040 * the returned lruvec->lists[@lru].
1042 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1043 enum lru_list lru)
1045 struct mem_cgroup_per_zone *mz;
1046 struct mem_cgroup *memcg;
1047 struct page_cgroup *pc;
1049 if (mem_cgroup_disabled())
1050 return &zone->lruvec;
1052 pc = lookup_page_cgroup(page);
1053 VM_BUG_ON(PageCgroupAcctLRU(pc));
1055 * putback: charge:
1056 * SetPageLRU SetPageCgroupUsed
1057 * smp_mb smp_mb
1058 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1060 * Ensure that one of the two sides adds the page to the memcg
1061 * LRU during a race.
1063 smp_mb();
1065 * If the page is uncharged, it may be freed soon, but it
1066 * could also be swap cache (readahead, swapoff) that needs to
1067 * be reclaimable in the future. root_mem_cgroup will babysit
1068 * it for the time being.
1070 if (PageCgroupUsed(pc)) {
1071 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1072 smp_rmb();
1073 memcg = pc->mem_cgroup;
1074 SetPageCgroupAcctLRU(pc);
1075 } else
1076 memcg = root_mem_cgroup;
1077 mz = page_cgroup_zoneinfo(memcg, page);
1078 /* compound_order() is stabilized through lru_lock */
1079 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1080 return &mz->lruvec;
1084 * mem_cgroup_lru_del_list - account for removing an lru page
1085 * @page: the page
1086 * @lru: target lru
1088 * This function accounts for @page being removed from @lru.
1090 * The callsite is then responsible for physically unlinking
1091 * @page->lru.
1093 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1095 struct mem_cgroup_per_zone *mz;
1096 struct mem_cgroup *memcg;
1097 struct page_cgroup *pc;
1099 if (mem_cgroup_disabled())
1100 return;
1102 pc = lookup_page_cgroup(page);
1104 * root_mem_cgroup babysits uncharged LRU pages, but
1105 * PageCgroupUsed is cleared when the page is about to get
1106 * freed. PageCgroupAcctLRU remembers whether the
1107 * LRU-accounting happened against pc->mem_cgroup or
1108 * root_mem_cgroup.
1110 if (TestClearPageCgroupAcctLRU(pc)) {
1111 VM_BUG_ON(!pc->mem_cgroup);
1112 memcg = pc->mem_cgroup;
1113 } else
1114 memcg = root_mem_cgroup;
1115 mz = page_cgroup_zoneinfo(memcg, page);
1116 /* huge page split is done under lru_lock. so, we have no races. */
1117 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1120 void mem_cgroup_lru_del(struct page *page)
1122 mem_cgroup_lru_del_list(page, page_lru(page));
1126 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1127 * @zone: zone of the page
1128 * @page: the page
1129 * @from: current lru
1130 * @to: target lru
1132 * This function accounts for @page being moved between the lrus @from
1133 * and @to, and returns the lruvec for the given @zone and the memcg
1134 * @page is charged to.
1136 * The callsite is then responsible for physically relinking
1137 * @page->lru to the returned lruvec->lists[@to].
1139 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1140 struct page *page,
1141 enum lru_list from,
1142 enum lru_list to)
1144 /* XXX: Optimize this, especially for @from == @to */
1145 mem_cgroup_lru_del_list(page, from);
1146 return mem_cgroup_lru_add_list(zone, page, to);
1150 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1151 * while it's linked to lru because the page may be reused after it's fully
1152 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1153 * It's done under lock_page and expected that zone->lru_lock isnever held.
1155 static void mem_cgroup_lru_del_before_commit(struct page *page)
1157 enum lru_list lru;
1158 unsigned long flags;
1159 struct zone *zone = page_zone(page);
1160 struct page_cgroup *pc = lookup_page_cgroup(page);
1163 * Doing this check without taking ->lru_lock seems wrong but this
1164 * is safe. Because if page_cgroup's USED bit is unset, the page
1165 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1166 * set, the commit after this will fail, anyway.
1167 * This all charge/uncharge is done under some mutual execustion.
1168 * So, we don't need to taking care of changes in USED bit.
1170 if (likely(!PageLRU(page)))
1171 return;
1173 spin_lock_irqsave(&zone->lru_lock, flags);
1174 lru = page_lru(page);
1176 * The uncharged page could still be registered to the LRU of
1177 * the stale pc->mem_cgroup.
1179 * As pc->mem_cgroup is about to get overwritten, the old LRU
1180 * accounting needs to be taken care of. Let root_mem_cgroup
1181 * babysit the page until the new memcg is responsible for it.
1183 * The PCG_USED bit is guarded by lock_page() as the page is
1184 * swapcache/pagecache.
1186 if (PageLRU(page) && PageCgroupAcctLRU(pc) && !PageCgroupUsed(pc)) {
1187 del_page_from_lru_list(zone, page, lru);
1188 add_page_to_lru_list(zone, page, lru);
1190 spin_unlock_irqrestore(&zone->lru_lock, flags);
1193 static void mem_cgroup_lru_add_after_commit(struct page *page)
1195 enum lru_list lru;
1196 unsigned long flags;
1197 struct zone *zone = page_zone(page);
1198 struct page_cgroup *pc = lookup_page_cgroup(page);
1200 * putback: charge:
1201 * SetPageLRU SetPageCgroupUsed
1202 * smp_mb smp_mb
1203 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1205 * Ensure that one of the two sides adds the page to the memcg
1206 * LRU during a race.
1208 smp_mb();
1209 /* taking care of that the page is added to LRU while we commit it */
1210 if (likely(!PageLRU(page)))
1211 return;
1212 spin_lock_irqsave(&zone->lru_lock, flags);
1213 lru = page_lru(page);
1215 * If the page is not on the LRU, someone will soon put it
1216 * there. If it is, and also already accounted for on the
1217 * memcg-side, it must be on the right lruvec as setting
1218 * pc->mem_cgroup and PageCgroupUsed is properly ordered.
1219 * Otherwise, root_mem_cgroup has been babysitting the page
1220 * during the charge. Move it to the new memcg now.
1222 if (PageLRU(page) && !PageCgroupAcctLRU(pc)) {
1223 del_page_from_lru_list(zone, page, lru);
1224 add_page_to_lru_list(zone, page, lru);
1226 spin_unlock_irqrestore(&zone->lru_lock, flags);
1230 * Checks whether given mem is same or in the root_mem_cgroup's
1231 * hierarchy subtree
1233 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1234 struct mem_cgroup *memcg)
1236 if (root_memcg != memcg) {
1237 return (root_memcg->use_hierarchy &&
1238 css_is_ancestor(&memcg->css, &root_memcg->css));
1241 return true;
1244 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1246 int ret;
1247 struct mem_cgroup *curr = NULL;
1248 struct task_struct *p;
1250 p = find_lock_task_mm(task);
1251 if (!p)
1252 return 0;
1253 curr = try_get_mem_cgroup_from_mm(p->mm);
1254 task_unlock(p);
1255 if (!curr)
1256 return 0;
1258 * We should check use_hierarchy of "memcg" not "curr". Because checking
1259 * use_hierarchy of "curr" here make this function true if hierarchy is
1260 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1261 * hierarchy(even if use_hierarchy is disabled in "memcg").
1263 ret = mem_cgroup_same_or_subtree(memcg, curr);
1264 css_put(&curr->css);
1265 return ret;
1268 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1270 unsigned long inactive_ratio;
1271 int nid = zone_to_nid(zone);
1272 int zid = zone_idx(zone);
1273 unsigned long inactive;
1274 unsigned long active;
1275 unsigned long gb;
1277 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1278 BIT(LRU_INACTIVE_ANON));
1279 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1280 BIT(LRU_ACTIVE_ANON));
1282 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1283 if (gb)
1284 inactive_ratio = int_sqrt(10 * gb);
1285 else
1286 inactive_ratio = 1;
1288 return inactive * inactive_ratio < active;
1291 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1293 unsigned long active;
1294 unsigned long inactive;
1295 int zid = zone_idx(zone);
1296 int nid = zone_to_nid(zone);
1298 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1299 BIT(LRU_INACTIVE_FILE));
1300 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1301 BIT(LRU_ACTIVE_FILE));
1303 return (active > inactive);
1306 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1307 struct zone *zone)
1309 int nid = zone_to_nid(zone);
1310 int zid = zone_idx(zone);
1311 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1313 return &mz->reclaim_stat;
1316 struct zone_reclaim_stat *
1317 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1319 struct page_cgroup *pc;
1320 struct mem_cgroup_per_zone *mz;
1322 if (mem_cgroup_disabled())
1323 return NULL;
1325 pc = lookup_page_cgroup(page);
1326 if (!PageCgroupUsed(pc))
1327 return NULL;
1328 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1329 smp_rmb();
1330 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1331 return &mz->reclaim_stat;
1334 #define mem_cgroup_from_res_counter(counter, member) \
1335 container_of(counter, struct mem_cgroup, member)
1338 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1339 * @mem: the memory cgroup
1341 * Returns the maximum amount of memory @mem can be charged with, in
1342 * pages.
1344 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1346 unsigned long long margin;
1348 margin = res_counter_margin(&memcg->res);
1349 if (do_swap_account)
1350 margin = min(margin, res_counter_margin(&memcg->memsw));
1351 return margin >> PAGE_SHIFT;
1354 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1356 struct cgroup *cgrp = memcg->css.cgroup;
1358 /* root ? */
1359 if (cgrp->parent == NULL)
1360 return vm_swappiness;
1362 return memcg->swappiness;
1365 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1367 int cpu;
1369 get_online_cpus();
1370 spin_lock(&memcg->pcp_counter_lock);
1371 for_each_online_cpu(cpu)
1372 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1373 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1374 spin_unlock(&memcg->pcp_counter_lock);
1375 put_online_cpus();
1377 synchronize_rcu();
1380 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1382 int cpu;
1384 if (!memcg)
1385 return;
1386 get_online_cpus();
1387 spin_lock(&memcg->pcp_counter_lock);
1388 for_each_online_cpu(cpu)
1389 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1390 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1391 spin_unlock(&memcg->pcp_counter_lock);
1392 put_online_cpus();
1395 * 2 routines for checking "mem" is under move_account() or not.
1397 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1398 * for avoiding race in accounting. If true,
1399 * pc->mem_cgroup may be overwritten.
1401 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1402 * under hierarchy of moving cgroups. This is for
1403 * waiting at hith-memory prressure caused by "move".
1406 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1408 VM_BUG_ON(!rcu_read_lock_held());
1409 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1412 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1414 struct mem_cgroup *from;
1415 struct mem_cgroup *to;
1416 bool ret = false;
1418 * Unlike task_move routines, we access mc.to, mc.from not under
1419 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1421 spin_lock(&mc.lock);
1422 from = mc.from;
1423 to = mc.to;
1424 if (!from)
1425 goto unlock;
1427 ret = mem_cgroup_same_or_subtree(memcg, from)
1428 || mem_cgroup_same_or_subtree(memcg, to);
1429 unlock:
1430 spin_unlock(&mc.lock);
1431 return ret;
1434 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1436 if (mc.moving_task && current != mc.moving_task) {
1437 if (mem_cgroup_under_move(memcg)) {
1438 DEFINE_WAIT(wait);
1439 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1440 /* moving charge context might have finished. */
1441 if (mc.moving_task)
1442 schedule();
1443 finish_wait(&mc.waitq, &wait);
1444 return true;
1447 return false;
1451 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1452 * @memcg: The memory cgroup that went over limit
1453 * @p: Task that is going to be killed
1455 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1456 * enabled
1458 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1460 struct cgroup *task_cgrp;
1461 struct cgroup *mem_cgrp;
1463 * Need a buffer in BSS, can't rely on allocations. The code relies
1464 * on the assumption that OOM is serialized for memory controller.
1465 * If this assumption is broken, revisit this code.
1467 static char memcg_name[PATH_MAX];
1468 int ret;
1470 if (!memcg || !p)
1471 return;
1474 rcu_read_lock();
1476 mem_cgrp = memcg->css.cgroup;
1477 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1479 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1480 if (ret < 0) {
1482 * Unfortunately, we are unable to convert to a useful name
1483 * But we'll still print out the usage information
1485 rcu_read_unlock();
1486 goto done;
1488 rcu_read_unlock();
1490 printk(KERN_INFO "Task in %s killed", memcg_name);
1492 rcu_read_lock();
1493 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1494 if (ret < 0) {
1495 rcu_read_unlock();
1496 goto done;
1498 rcu_read_unlock();
1501 * Continues from above, so we don't need an KERN_ level
1503 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1504 done:
1506 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1507 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1508 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1509 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1510 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1511 "failcnt %llu\n",
1512 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1513 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1514 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1518 * This function returns the number of memcg under hierarchy tree. Returns
1519 * 1(self count) if no children.
1521 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1523 int num = 0;
1524 struct mem_cgroup *iter;
1526 for_each_mem_cgroup_tree(iter, memcg)
1527 num++;
1528 return num;
1532 * Return the memory (and swap, if configured) limit for a memcg.
1534 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1536 u64 limit;
1537 u64 memsw;
1539 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1540 limit += total_swap_pages << PAGE_SHIFT;
1542 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1544 * If memsw is finite and limits the amount of swap space available
1545 * to this memcg, return that limit.
1547 return min(limit, memsw);
1550 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1551 gfp_t gfp_mask,
1552 unsigned long flags)
1554 unsigned long total = 0;
1555 bool noswap = false;
1556 int loop;
1558 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1559 noswap = true;
1560 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1561 noswap = true;
1563 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1564 if (loop)
1565 drain_all_stock_async(memcg);
1566 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1568 * Allow limit shrinkers, which are triggered directly
1569 * by userspace, to catch signals and stop reclaim
1570 * after minimal progress, regardless of the margin.
1572 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1573 break;
1574 if (mem_cgroup_margin(memcg))
1575 break;
1577 * If nothing was reclaimed after two attempts, there
1578 * may be no reclaimable pages in this hierarchy.
1580 if (loop && !total)
1581 break;
1583 return total;
1587 * test_mem_cgroup_node_reclaimable
1588 * @mem: the target memcg
1589 * @nid: the node ID to be checked.
1590 * @noswap : specify true here if the user wants flle only information.
1592 * This function returns whether the specified memcg contains any
1593 * reclaimable pages on a node. Returns true if there are any reclaimable
1594 * pages in the node.
1596 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1597 int nid, bool noswap)
1599 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1600 return true;
1601 if (noswap || !total_swap_pages)
1602 return false;
1603 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1604 return true;
1605 return false;
1608 #if MAX_NUMNODES > 1
1611 * Always updating the nodemask is not very good - even if we have an empty
1612 * list or the wrong list here, we can start from some node and traverse all
1613 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1616 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1618 int nid;
1620 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1621 * pagein/pageout changes since the last update.
1623 if (!atomic_read(&memcg->numainfo_events))
1624 return;
1625 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1626 return;
1628 /* make a nodemask where this memcg uses memory from */
1629 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1631 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1633 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1634 node_clear(nid, memcg->scan_nodes);
1637 atomic_set(&memcg->numainfo_events, 0);
1638 atomic_set(&memcg->numainfo_updating, 0);
1642 * Selecting a node where we start reclaim from. Because what we need is just
1643 * reducing usage counter, start from anywhere is O,K. Considering
1644 * memory reclaim from current node, there are pros. and cons.
1646 * Freeing memory from current node means freeing memory from a node which
1647 * we'll use or we've used. So, it may make LRU bad. And if several threads
1648 * hit limits, it will see a contention on a node. But freeing from remote
1649 * node means more costs for memory reclaim because of memory latency.
1651 * Now, we use round-robin. Better algorithm is welcomed.
1653 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1655 int node;
1657 mem_cgroup_may_update_nodemask(memcg);
1658 node = memcg->last_scanned_node;
1660 node = next_node(node, memcg->scan_nodes);
1661 if (node == MAX_NUMNODES)
1662 node = first_node(memcg->scan_nodes);
1664 * We call this when we hit limit, not when pages are added to LRU.
1665 * No LRU may hold pages because all pages are UNEVICTABLE or
1666 * memcg is too small and all pages are not on LRU. In that case,
1667 * we use curret node.
1669 if (unlikely(node == MAX_NUMNODES))
1670 node = numa_node_id();
1672 memcg->last_scanned_node = node;
1673 return node;
1677 * Check all nodes whether it contains reclaimable pages or not.
1678 * For quick scan, we make use of scan_nodes. This will allow us to skip
1679 * unused nodes. But scan_nodes is lazily updated and may not cotain
1680 * enough new information. We need to do double check.
1682 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1684 int nid;
1687 * quick check...making use of scan_node.
1688 * We can skip unused nodes.
1690 if (!nodes_empty(memcg->scan_nodes)) {
1691 for (nid = first_node(memcg->scan_nodes);
1692 nid < MAX_NUMNODES;
1693 nid = next_node(nid, memcg->scan_nodes)) {
1695 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1696 return true;
1700 * Check rest of nodes.
1702 for_each_node_state(nid, N_HIGH_MEMORY) {
1703 if (node_isset(nid, memcg->scan_nodes))
1704 continue;
1705 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1706 return true;
1708 return false;
1711 #else
1712 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1714 return 0;
1717 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1719 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1721 #endif
1723 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1724 struct zone *zone,
1725 gfp_t gfp_mask,
1726 unsigned long *total_scanned)
1728 struct mem_cgroup *victim = NULL;
1729 int total = 0;
1730 int loop = 0;
1731 unsigned long excess;
1732 unsigned long nr_scanned;
1733 struct mem_cgroup_reclaim_cookie reclaim = {
1734 .zone = zone,
1735 .priority = 0,
1738 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1740 while (1) {
1741 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1742 if (!victim) {
1743 loop++;
1744 if (loop >= 2) {
1746 * If we have not been able to reclaim
1747 * anything, it might because there are
1748 * no reclaimable pages under this hierarchy
1750 if (!total)
1751 break;
1753 * We want to do more targeted reclaim.
1754 * excess >> 2 is not to excessive so as to
1755 * reclaim too much, nor too less that we keep
1756 * coming back to reclaim from this cgroup
1758 if (total >= (excess >> 2) ||
1759 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1760 break;
1762 continue;
1764 if (!mem_cgroup_reclaimable(victim, false))
1765 continue;
1766 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1767 zone, &nr_scanned);
1768 *total_scanned += nr_scanned;
1769 if (!res_counter_soft_limit_excess(&root_memcg->res))
1770 break;
1772 mem_cgroup_iter_break(root_memcg, victim);
1773 return total;
1777 * Check OOM-Killer is already running under our hierarchy.
1778 * If someone is running, return false.
1779 * Has to be called with memcg_oom_lock
1781 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1783 struct mem_cgroup *iter, *failed = NULL;
1785 for_each_mem_cgroup_tree(iter, memcg) {
1786 if (iter->oom_lock) {
1788 * this subtree of our hierarchy is already locked
1789 * so we cannot give a lock.
1791 failed = iter;
1792 mem_cgroup_iter_break(memcg, iter);
1793 break;
1794 } else
1795 iter->oom_lock = true;
1798 if (!failed)
1799 return true;
1802 * OK, we failed to lock the whole subtree so we have to clean up
1803 * what we set up to the failing subtree
1805 for_each_mem_cgroup_tree(iter, memcg) {
1806 if (iter == failed) {
1807 mem_cgroup_iter_break(memcg, iter);
1808 break;
1810 iter->oom_lock = false;
1812 return false;
1816 * Has to be called with memcg_oom_lock
1818 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1820 struct mem_cgroup *iter;
1822 for_each_mem_cgroup_tree(iter, memcg)
1823 iter->oom_lock = false;
1824 return 0;
1827 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1829 struct mem_cgroup *iter;
1831 for_each_mem_cgroup_tree(iter, memcg)
1832 atomic_inc(&iter->under_oom);
1835 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1837 struct mem_cgroup *iter;
1840 * When a new child is created while the hierarchy is under oom,
1841 * mem_cgroup_oom_lock() may not be called. We have to use
1842 * atomic_add_unless() here.
1844 for_each_mem_cgroup_tree(iter, memcg)
1845 atomic_add_unless(&iter->under_oom, -1, 0);
1848 static DEFINE_SPINLOCK(memcg_oom_lock);
1849 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1851 struct oom_wait_info {
1852 struct mem_cgroup *mem;
1853 wait_queue_t wait;
1856 static int memcg_oom_wake_function(wait_queue_t *wait,
1857 unsigned mode, int sync, void *arg)
1859 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1860 *oom_wait_memcg;
1861 struct oom_wait_info *oom_wait_info;
1863 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1864 oom_wait_memcg = oom_wait_info->mem;
1867 * Both of oom_wait_info->mem and wake_mem are stable under us.
1868 * Then we can use css_is_ancestor without taking care of RCU.
1870 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1871 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1872 return 0;
1873 return autoremove_wake_function(wait, mode, sync, arg);
1876 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1878 /* for filtering, pass "memcg" as argument. */
1879 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1882 static void memcg_oom_recover(struct mem_cgroup *memcg)
1884 if (memcg && atomic_read(&memcg->under_oom))
1885 memcg_wakeup_oom(memcg);
1889 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1891 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1893 struct oom_wait_info owait;
1894 bool locked, need_to_kill;
1896 owait.mem = memcg;
1897 owait.wait.flags = 0;
1898 owait.wait.func = memcg_oom_wake_function;
1899 owait.wait.private = current;
1900 INIT_LIST_HEAD(&owait.wait.task_list);
1901 need_to_kill = true;
1902 mem_cgroup_mark_under_oom(memcg);
1904 /* At first, try to OOM lock hierarchy under memcg.*/
1905 spin_lock(&memcg_oom_lock);
1906 locked = mem_cgroup_oom_lock(memcg);
1908 * Even if signal_pending(), we can't quit charge() loop without
1909 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1910 * under OOM is always welcomed, use TASK_KILLABLE here.
1912 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1913 if (!locked || memcg->oom_kill_disable)
1914 need_to_kill = false;
1915 if (locked)
1916 mem_cgroup_oom_notify(memcg);
1917 spin_unlock(&memcg_oom_lock);
1919 if (need_to_kill) {
1920 finish_wait(&memcg_oom_waitq, &owait.wait);
1921 mem_cgroup_out_of_memory(memcg, mask);
1922 } else {
1923 schedule();
1924 finish_wait(&memcg_oom_waitq, &owait.wait);
1926 spin_lock(&memcg_oom_lock);
1927 if (locked)
1928 mem_cgroup_oom_unlock(memcg);
1929 memcg_wakeup_oom(memcg);
1930 spin_unlock(&memcg_oom_lock);
1932 mem_cgroup_unmark_under_oom(memcg);
1934 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1935 return false;
1936 /* Give chance to dying process */
1937 schedule_timeout_uninterruptible(1);
1938 return true;
1942 * Currently used to update mapped file statistics, but the routine can be
1943 * generalized to update other statistics as well.
1945 * Notes: Race condition
1947 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1948 * it tends to be costly. But considering some conditions, we doesn't need
1949 * to do so _always_.
1951 * Considering "charge", lock_page_cgroup() is not required because all
1952 * file-stat operations happen after a page is attached to radix-tree. There
1953 * are no race with "charge".
1955 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1956 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1957 * if there are race with "uncharge". Statistics itself is properly handled
1958 * by flags.
1960 * Considering "move", this is an only case we see a race. To make the race
1961 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1962 * possibility of race condition. If there is, we take a lock.
1965 void mem_cgroup_update_page_stat(struct page *page,
1966 enum mem_cgroup_page_stat_item idx, int val)
1968 struct mem_cgroup *memcg;
1969 struct page_cgroup *pc = lookup_page_cgroup(page);
1970 bool need_unlock = false;
1971 unsigned long uninitialized_var(flags);
1973 if (unlikely(!pc))
1974 return;
1976 rcu_read_lock();
1977 memcg = pc->mem_cgroup;
1978 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1979 goto out;
1980 /* pc->mem_cgroup is unstable ? */
1981 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1982 /* take a lock against to access pc->mem_cgroup */
1983 move_lock_page_cgroup(pc, &flags);
1984 need_unlock = true;
1985 memcg = pc->mem_cgroup;
1986 if (!memcg || !PageCgroupUsed(pc))
1987 goto out;
1990 switch (idx) {
1991 case MEMCG_NR_FILE_MAPPED:
1992 if (val > 0)
1993 SetPageCgroupFileMapped(pc);
1994 else if (!page_mapped(page))
1995 ClearPageCgroupFileMapped(pc);
1996 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1997 break;
1998 default:
1999 BUG();
2002 this_cpu_add(memcg->stat->count[idx], val);
2004 out:
2005 if (unlikely(need_unlock))
2006 move_unlock_page_cgroup(pc, &flags);
2007 rcu_read_unlock();
2008 return;
2010 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2013 * size of first charge trial. "32" comes from vmscan.c's magic value.
2014 * TODO: maybe necessary to use big numbers in big irons.
2016 #define CHARGE_BATCH 32U
2017 struct memcg_stock_pcp {
2018 struct mem_cgroup *cached; /* this never be root cgroup */
2019 unsigned int nr_pages;
2020 struct work_struct work;
2021 unsigned long flags;
2022 #define FLUSHING_CACHED_CHARGE (0)
2024 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2025 static DEFINE_MUTEX(percpu_charge_mutex);
2028 * Try to consume stocked charge on this cpu. If success, one page is consumed
2029 * from local stock and true is returned. If the stock is 0 or charges from a
2030 * cgroup which is not current target, returns false. This stock will be
2031 * refilled.
2033 static bool consume_stock(struct mem_cgroup *memcg)
2035 struct memcg_stock_pcp *stock;
2036 bool ret = true;
2038 stock = &get_cpu_var(memcg_stock);
2039 if (memcg == stock->cached && stock->nr_pages)
2040 stock->nr_pages--;
2041 else /* need to call res_counter_charge */
2042 ret = false;
2043 put_cpu_var(memcg_stock);
2044 return ret;
2048 * Returns stocks cached in percpu to res_counter and reset cached information.
2050 static void drain_stock(struct memcg_stock_pcp *stock)
2052 struct mem_cgroup *old = stock->cached;
2054 if (stock->nr_pages) {
2055 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2057 res_counter_uncharge(&old->res, bytes);
2058 if (do_swap_account)
2059 res_counter_uncharge(&old->memsw, bytes);
2060 stock->nr_pages = 0;
2062 stock->cached = NULL;
2066 * This must be called under preempt disabled or must be called by
2067 * a thread which is pinned to local cpu.
2069 static void drain_local_stock(struct work_struct *dummy)
2071 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2072 drain_stock(stock);
2073 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2077 * Cache charges(val) which is from res_counter, to local per_cpu area.
2078 * This will be consumed by consume_stock() function, later.
2080 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2082 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2084 if (stock->cached != memcg) { /* reset if necessary */
2085 drain_stock(stock);
2086 stock->cached = memcg;
2088 stock->nr_pages += nr_pages;
2089 put_cpu_var(memcg_stock);
2093 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2094 * of the hierarchy under it. sync flag says whether we should block
2095 * until the work is done.
2097 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2099 int cpu, curcpu;
2101 /* Notify other cpus that system-wide "drain" is running */
2102 get_online_cpus();
2103 curcpu = get_cpu();
2104 for_each_online_cpu(cpu) {
2105 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2106 struct mem_cgroup *memcg;
2108 memcg = stock->cached;
2109 if (!memcg || !stock->nr_pages)
2110 continue;
2111 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2112 continue;
2113 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2114 if (cpu == curcpu)
2115 drain_local_stock(&stock->work);
2116 else
2117 schedule_work_on(cpu, &stock->work);
2120 put_cpu();
2122 if (!sync)
2123 goto out;
2125 for_each_online_cpu(cpu) {
2126 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2127 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2128 flush_work(&stock->work);
2130 out:
2131 put_online_cpus();
2135 * Tries to drain stocked charges in other cpus. This function is asynchronous
2136 * and just put a work per cpu for draining localy on each cpu. Caller can
2137 * expects some charges will be back to res_counter later but cannot wait for
2138 * it.
2140 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2143 * If someone calls draining, avoid adding more kworker runs.
2145 if (!mutex_trylock(&percpu_charge_mutex))
2146 return;
2147 drain_all_stock(root_memcg, false);
2148 mutex_unlock(&percpu_charge_mutex);
2151 /* This is a synchronous drain interface. */
2152 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2154 /* called when force_empty is called */
2155 mutex_lock(&percpu_charge_mutex);
2156 drain_all_stock(root_memcg, true);
2157 mutex_unlock(&percpu_charge_mutex);
2161 * This function drains percpu counter value from DEAD cpu and
2162 * move it to local cpu. Note that this function can be preempted.
2164 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2166 int i;
2168 spin_lock(&memcg->pcp_counter_lock);
2169 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2170 long x = per_cpu(memcg->stat->count[i], cpu);
2172 per_cpu(memcg->stat->count[i], cpu) = 0;
2173 memcg->nocpu_base.count[i] += x;
2175 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2176 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2178 per_cpu(memcg->stat->events[i], cpu) = 0;
2179 memcg->nocpu_base.events[i] += x;
2181 /* need to clear ON_MOVE value, works as a kind of lock. */
2182 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2183 spin_unlock(&memcg->pcp_counter_lock);
2186 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2188 int idx = MEM_CGROUP_ON_MOVE;
2190 spin_lock(&memcg->pcp_counter_lock);
2191 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2192 spin_unlock(&memcg->pcp_counter_lock);
2195 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2196 unsigned long action,
2197 void *hcpu)
2199 int cpu = (unsigned long)hcpu;
2200 struct memcg_stock_pcp *stock;
2201 struct mem_cgroup *iter;
2203 if ((action == CPU_ONLINE)) {
2204 for_each_mem_cgroup(iter)
2205 synchronize_mem_cgroup_on_move(iter, cpu);
2206 return NOTIFY_OK;
2209 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2210 return NOTIFY_OK;
2212 for_each_mem_cgroup(iter)
2213 mem_cgroup_drain_pcp_counter(iter, cpu);
2215 stock = &per_cpu(memcg_stock, cpu);
2216 drain_stock(stock);
2217 return NOTIFY_OK;
2221 /* See __mem_cgroup_try_charge() for details */
2222 enum {
2223 CHARGE_OK, /* success */
2224 CHARGE_RETRY, /* need to retry but retry is not bad */
2225 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2226 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2227 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2230 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2231 unsigned int nr_pages, bool oom_check)
2233 unsigned long csize = nr_pages * PAGE_SIZE;
2234 struct mem_cgroup *mem_over_limit;
2235 struct res_counter *fail_res;
2236 unsigned long flags = 0;
2237 int ret;
2239 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2241 if (likely(!ret)) {
2242 if (!do_swap_account)
2243 return CHARGE_OK;
2244 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2245 if (likely(!ret))
2246 return CHARGE_OK;
2248 res_counter_uncharge(&memcg->res, csize);
2249 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2250 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2251 } else
2252 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2254 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2255 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2257 * Never reclaim on behalf of optional batching, retry with a
2258 * single page instead.
2260 if (nr_pages == CHARGE_BATCH)
2261 return CHARGE_RETRY;
2263 if (!(gfp_mask & __GFP_WAIT))
2264 return CHARGE_WOULDBLOCK;
2266 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2267 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2268 return CHARGE_RETRY;
2270 * Even though the limit is exceeded at this point, reclaim
2271 * may have been able to free some pages. Retry the charge
2272 * before killing the task.
2274 * Only for regular pages, though: huge pages are rather
2275 * unlikely to succeed so close to the limit, and we fall back
2276 * to regular pages anyway in case of failure.
2278 if (nr_pages == 1 && ret)
2279 return CHARGE_RETRY;
2282 * At task move, charge accounts can be doubly counted. So, it's
2283 * better to wait until the end of task_move if something is going on.
2285 if (mem_cgroup_wait_acct_move(mem_over_limit))
2286 return CHARGE_RETRY;
2288 /* If we don't need to call oom-killer at el, return immediately */
2289 if (!oom_check)
2290 return CHARGE_NOMEM;
2291 /* check OOM */
2292 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2293 return CHARGE_OOM_DIE;
2295 return CHARGE_RETRY;
2299 * Unlike exported interface, "oom" parameter is added. if oom==true,
2300 * oom-killer can be invoked.
2302 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2303 gfp_t gfp_mask,
2304 unsigned int nr_pages,
2305 struct mem_cgroup **ptr,
2306 bool oom)
2308 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2309 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2310 struct mem_cgroup *memcg = NULL;
2311 int ret;
2314 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2315 * in system level. So, allow to go ahead dying process in addition to
2316 * MEMDIE process.
2318 if (unlikely(test_thread_flag(TIF_MEMDIE)
2319 || fatal_signal_pending(current)))
2320 goto bypass;
2323 * We always charge the cgroup the mm_struct belongs to.
2324 * The mm_struct's mem_cgroup changes on task migration if the
2325 * thread group leader migrates. It's possible that mm is not
2326 * set, if so charge the init_mm (happens for pagecache usage).
2328 if (!*ptr && !mm)
2329 goto bypass;
2330 again:
2331 if (*ptr) { /* css should be a valid one */
2332 memcg = *ptr;
2333 VM_BUG_ON(css_is_removed(&memcg->css));
2334 if (mem_cgroup_is_root(memcg))
2335 goto done;
2336 if (nr_pages == 1 && consume_stock(memcg))
2337 goto done;
2338 css_get(&memcg->css);
2339 } else {
2340 struct task_struct *p;
2342 rcu_read_lock();
2343 p = rcu_dereference(mm->owner);
2345 * Because we don't have task_lock(), "p" can exit.
2346 * In that case, "memcg" can point to root or p can be NULL with
2347 * race with swapoff. Then, we have small risk of mis-accouning.
2348 * But such kind of mis-account by race always happens because
2349 * we don't have cgroup_mutex(). It's overkill and we allo that
2350 * small race, here.
2351 * (*) swapoff at el will charge against mm-struct not against
2352 * task-struct. So, mm->owner can be NULL.
2354 memcg = mem_cgroup_from_task(p);
2355 if (!memcg || mem_cgroup_is_root(memcg)) {
2356 rcu_read_unlock();
2357 goto done;
2359 if (nr_pages == 1 && consume_stock(memcg)) {
2361 * It seems dagerous to access memcg without css_get().
2362 * But considering how consume_stok works, it's not
2363 * necessary. If consume_stock success, some charges
2364 * from this memcg are cached on this cpu. So, we
2365 * don't need to call css_get()/css_tryget() before
2366 * calling consume_stock().
2368 rcu_read_unlock();
2369 goto done;
2371 /* after here, we may be blocked. we need to get refcnt */
2372 if (!css_tryget(&memcg->css)) {
2373 rcu_read_unlock();
2374 goto again;
2376 rcu_read_unlock();
2379 do {
2380 bool oom_check;
2382 /* If killed, bypass charge */
2383 if (fatal_signal_pending(current)) {
2384 css_put(&memcg->css);
2385 goto bypass;
2388 oom_check = false;
2389 if (oom && !nr_oom_retries) {
2390 oom_check = true;
2391 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2394 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2395 switch (ret) {
2396 case CHARGE_OK:
2397 break;
2398 case CHARGE_RETRY: /* not in OOM situation but retry */
2399 batch = nr_pages;
2400 css_put(&memcg->css);
2401 memcg = NULL;
2402 goto again;
2403 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2404 css_put(&memcg->css);
2405 goto nomem;
2406 case CHARGE_NOMEM: /* OOM routine works */
2407 if (!oom) {
2408 css_put(&memcg->css);
2409 goto nomem;
2411 /* If oom, we never return -ENOMEM */
2412 nr_oom_retries--;
2413 break;
2414 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2415 css_put(&memcg->css);
2416 goto bypass;
2418 } while (ret != CHARGE_OK);
2420 if (batch > nr_pages)
2421 refill_stock(memcg, batch - nr_pages);
2422 css_put(&memcg->css);
2423 done:
2424 *ptr = memcg;
2425 return 0;
2426 nomem:
2427 *ptr = NULL;
2428 return -ENOMEM;
2429 bypass:
2430 *ptr = NULL;
2431 return 0;
2435 * Somemtimes we have to undo a charge we got by try_charge().
2436 * This function is for that and do uncharge, put css's refcnt.
2437 * gotten by try_charge().
2439 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2440 unsigned int nr_pages)
2442 if (!mem_cgroup_is_root(memcg)) {
2443 unsigned long bytes = nr_pages * PAGE_SIZE;
2445 res_counter_uncharge(&memcg->res, bytes);
2446 if (do_swap_account)
2447 res_counter_uncharge(&memcg->memsw, bytes);
2452 * A helper function to get mem_cgroup from ID. must be called under
2453 * rcu_read_lock(). The caller must check css_is_removed() or some if
2454 * it's concern. (dropping refcnt from swap can be called against removed
2455 * memcg.)
2457 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2459 struct cgroup_subsys_state *css;
2461 /* ID 0 is unused ID */
2462 if (!id)
2463 return NULL;
2464 css = css_lookup(&mem_cgroup_subsys, id);
2465 if (!css)
2466 return NULL;
2467 return container_of(css, struct mem_cgroup, css);
2470 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2472 struct mem_cgroup *memcg = NULL;
2473 struct page_cgroup *pc;
2474 unsigned short id;
2475 swp_entry_t ent;
2477 VM_BUG_ON(!PageLocked(page));
2479 pc = lookup_page_cgroup(page);
2480 lock_page_cgroup(pc);
2481 if (PageCgroupUsed(pc)) {
2482 memcg = pc->mem_cgroup;
2483 if (memcg && !css_tryget(&memcg->css))
2484 memcg = NULL;
2485 } else if (PageSwapCache(page)) {
2486 ent.val = page_private(page);
2487 id = lookup_swap_cgroup(ent);
2488 rcu_read_lock();
2489 memcg = mem_cgroup_lookup(id);
2490 if (memcg && !css_tryget(&memcg->css))
2491 memcg = NULL;
2492 rcu_read_unlock();
2494 unlock_page_cgroup(pc);
2495 return memcg;
2498 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2499 struct page *page,
2500 unsigned int nr_pages,
2501 struct page_cgroup *pc,
2502 enum charge_type ctype)
2504 lock_page_cgroup(pc);
2505 if (unlikely(PageCgroupUsed(pc))) {
2506 unlock_page_cgroup(pc);
2507 __mem_cgroup_cancel_charge(memcg, nr_pages);
2508 return;
2511 * we don't need page_cgroup_lock about tail pages, becase they are not
2512 * accessed by any other context at this point.
2514 pc->mem_cgroup = memcg;
2516 * We access a page_cgroup asynchronously without lock_page_cgroup().
2517 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2518 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2519 * before USED bit, we need memory barrier here.
2520 * See mem_cgroup_add_lru_list(), etc.
2522 smp_wmb();
2523 switch (ctype) {
2524 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2525 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2526 SetPageCgroupCache(pc);
2527 SetPageCgroupUsed(pc);
2528 break;
2529 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2530 ClearPageCgroupCache(pc);
2531 SetPageCgroupUsed(pc);
2532 break;
2533 default:
2534 break;
2537 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2538 unlock_page_cgroup(pc);
2540 * "charge_statistics" updated event counter. Then, check it.
2541 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2542 * if they exceeds softlimit.
2544 memcg_check_events(memcg, page);
2547 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2549 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2550 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2552 * Because tail pages are not marked as "used", set it. We're under
2553 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2554 * charge/uncharge will be never happen and move_account() is done under
2555 * compound_lock(), so we don't have to take care of races.
2557 void mem_cgroup_split_huge_fixup(struct page *head)
2559 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2560 struct page_cgroup *pc;
2561 int i;
2563 if (mem_cgroup_disabled())
2564 return;
2565 for (i = 1; i < HPAGE_PMD_NR; i++) {
2566 pc = head_pc + i;
2567 pc->mem_cgroup = head_pc->mem_cgroup;
2568 smp_wmb();/* see __commit_charge() */
2570 * LRU flags cannot be copied because we need to add tail
2571 * page to LRU by generic call and our hooks will be called.
2573 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2576 if (PageCgroupAcctLRU(head_pc)) {
2577 enum lru_list lru;
2578 struct mem_cgroup_per_zone *mz;
2580 * We hold lru_lock, then, reduce counter directly.
2582 lru = page_lru(head);
2583 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2584 MEM_CGROUP_ZSTAT(mz, lru) -= HPAGE_PMD_NR - 1;
2587 #endif
2590 * mem_cgroup_move_account - move account of the page
2591 * @page: the page
2592 * @nr_pages: number of regular pages (>1 for huge pages)
2593 * @pc: page_cgroup of the page.
2594 * @from: mem_cgroup which the page is moved from.
2595 * @to: mem_cgroup which the page is moved to. @from != @to.
2596 * @uncharge: whether we should call uncharge and css_put against @from.
2598 * The caller must confirm following.
2599 * - page is not on LRU (isolate_page() is useful.)
2600 * - compound_lock is held when nr_pages > 1
2602 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2603 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2604 * true, this function does "uncharge" from old cgroup, but it doesn't if
2605 * @uncharge is false, so a caller should do "uncharge".
2607 static int mem_cgroup_move_account(struct page *page,
2608 unsigned int nr_pages,
2609 struct page_cgroup *pc,
2610 struct mem_cgroup *from,
2611 struct mem_cgroup *to,
2612 bool uncharge)
2614 unsigned long flags;
2615 int ret;
2617 VM_BUG_ON(from == to);
2618 VM_BUG_ON(PageLRU(page));
2620 * The page is isolated from LRU. So, collapse function
2621 * will not handle this page. But page splitting can happen.
2622 * Do this check under compound_page_lock(). The caller should
2623 * hold it.
2625 ret = -EBUSY;
2626 if (nr_pages > 1 && !PageTransHuge(page))
2627 goto out;
2629 lock_page_cgroup(pc);
2631 ret = -EINVAL;
2632 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2633 goto unlock;
2635 move_lock_page_cgroup(pc, &flags);
2637 if (PageCgroupFileMapped(pc)) {
2638 /* Update mapped_file data for mem_cgroup */
2639 preempt_disable();
2640 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2641 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2642 preempt_enable();
2644 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2645 if (uncharge)
2646 /* This is not "cancel", but cancel_charge does all we need. */
2647 __mem_cgroup_cancel_charge(from, nr_pages);
2649 /* caller should have done css_get */
2650 pc->mem_cgroup = to;
2651 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2653 * We charges against "to" which may not have any tasks. Then, "to"
2654 * can be under rmdir(). But in current implementation, caller of
2655 * this function is just force_empty() and move charge, so it's
2656 * guaranteed that "to" is never removed. So, we don't check rmdir
2657 * status here.
2659 move_unlock_page_cgroup(pc, &flags);
2660 ret = 0;
2661 unlock:
2662 unlock_page_cgroup(pc);
2664 * check events
2666 memcg_check_events(to, page);
2667 memcg_check_events(from, page);
2668 out:
2669 return ret;
2673 * move charges to its parent.
2676 static int mem_cgroup_move_parent(struct page *page,
2677 struct page_cgroup *pc,
2678 struct mem_cgroup *child,
2679 gfp_t gfp_mask)
2681 struct cgroup *cg = child->css.cgroup;
2682 struct cgroup *pcg = cg->parent;
2683 struct mem_cgroup *parent;
2684 unsigned int nr_pages;
2685 unsigned long uninitialized_var(flags);
2686 int ret;
2688 /* Is ROOT ? */
2689 if (!pcg)
2690 return -EINVAL;
2692 ret = -EBUSY;
2693 if (!get_page_unless_zero(page))
2694 goto out;
2695 if (isolate_lru_page(page))
2696 goto put;
2698 nr_pages = hpage_nr_pages(page);
2700 parent = mem_cgroup_from_cont(pcg);
2701 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2702 if (ret || !parent)
2703 goto put_back;
2705 if (nr_pages > 1)
2706 flags = compound_lock_irqsave(page);
2708 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2709 if (ret)
2710 __mem_cgroup_cancel_charge(parent, nr_pages);
2712 if (nr_pages > 1)
2713 compound_unlock_irqrestore(page, flags);
2714 put_back:
2715 putback_lru_page(page);
2716 put:
2717 put_page(page);
2718 out:
2719 return ret;
2723 * Charge the memory controller for page usage.
2724 * Return
2725 * 0 if the charge was successful
2726 * < 0 if the cgroup is over its limit
2728 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2729 gfp_t gfp_mask, enum charge_type ctype)
2731 struct mem_cgroup *memcg = NULL;
2732 unsigned int nr_pages = 1;
2733 struct page_cgroup *pc;
2734 bool oom = true;
2735 int ret;
2737 if (PageTransHuge(page)) {
2738 nr_pages <<= compound_order(page);
2739 VM_BUG_ON(!PageTransHuge(page));
2741 * Never OOM-kill a process for a huge page. The
2742 * fault handler will fall back to regular pages.
2744 oom = false;
2747 pc = lookup_page_cgroup(page);
2748 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2750 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2751 if (ret || !memcg)
2752 return ret;
2754 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2755 return 0;
2758 int mem_cgroup_newpage_charge(struct page *page,
2759 struct mm_struct *mm, gfp_t gfp_mask)
2761 if (mem_cgroup_disabled())
2762 return 0;
2764 * If already mapped, we don't have to account.
2765 * If page cache, page->mapping has address_space.
2766 * But page->mapping may have out-of-use anon_vma pointer,
2767 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2768 * is NULL.
2770 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2771 return 0;
2772 if (unlikely(!mm))
2773 mm = &init_mm;
2774 return mem_cgroup_charge_common(page, mm, gfp_mask,
2775 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2778 static void
2779 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2780 enum charge_type ctype);
2782 static void
2783 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2784 enum charge_type ctype)
2786 struct page_cgroup *pc = lookup_page_cgroup(page);
2788 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2789 * is already on LRU. It means the page may on some other page_cgroup's
2790 * LRU. Take care of it.
2792 mem_cgroup_lru_del_before_commit(page);
2793 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2794 mem_cgroup_lru_add_after_commit(page);
2795 return;
2798 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2799 gfp_t gfp_mask)
2801 struct mem_cgroup *memcg = NULL;
2802 int ret;
2804 if (mem_cgroup_disabled())
2805 return 0;
2806 if (PageCompound(page))
2807 return 0;
2809 if (unlikely(!mm))
2810 mm = &init_mm;
2812 if (page_is_file_cache(page)) {
2813 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2814 if (ret || !memcg)
2815 return ret;
2818 * FUSE reuses pages without going through the final
2819 * put that would remove them from the LRU list, make
2820 * sure that they get relinked properly.
2822 __mem_cgroup_commit_charge_lrucare(page, memcg,
2823 MEM_CGROUP_CHARGE_TYPE_CACHE);
2824 return ret;
2826 /* shmem */
2827 if (PageSwapCache(page)) {
2828 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2829 if (!ret)
2830 __mem_cgroup_commit_charge_swapin(page, memcg,
2831 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2832 } else
2833 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2834 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2836 return ret;
2840 * While swap-in, try_charge -> commit or cancel, the page is locked.
2841 * And when try_charge() successfully returns, one refcnt to memcg without
2842 * struct page_cgroup is acquired. This refcnt will be consumed by
2843 * "commit()" or removed by "cancel()"
2845 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2846 struct page *page,
2847 gfp_t mask, struct mem_cgroup **ptr)
2849 struct mem_cgroup *memcg;
2850 int ret;
2852 *ptr = NULL;
2854 if (mem_cgroup_disabled())
2855 return 0;
2857 if (!do_swap_account)
2858 goto charge_cur_mm;
2860 * A racing thread's fault, or swapoff, may have already updated
2861 * the pte, and even removed page from swap cache: in those cases
2862 * do_swap_page()'s pte_same() test will fail; but there's also a
2863 * KSM case which does need to charge the page.
2865 if (!PageSwapCache(page))
2866 goto charge_cur_mm;
2867 memcg = try_get_mem_cgroup_from_page(page);
2868 if (!memcg)
2869 goto charge_cur_mm;
2870 *ptr = memcg;
2871 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2872 css_put(&memcg->css);
2873 return ret;
2874 charge_cur_mm:
2875 if (unlikely(!mm))
2876 mm = &init_mm;
2877 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2880 static void
2881 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2882 enum charge_type ctype)
2884 if (mem_cgroup_disabled())
2885 return;
2886 if (!ptr)
2887 return;
2888 cgroup_exclude_rmdir(&ptr->css);
2890 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2892 * Now swap is on-memory. This means this page may be
2893 * counted both as mem and swap....double count.
2894 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2895 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2896 * may call delete_from_swap_cache() before reach here.
2898 if (do_swap_account && PageSwapCache(page)) {
2899 swp_entry_t ent = {.val = page_private(page)};
2900 unsigned short id;
2901 struct mem_cgroup *memcg;
2903 id = swap_cgroup_record(ent, 0);
2904 rcu_read_lock();
2905 memcg = mem_cgroup_lookup(id);
2906 if (memcg) {
2908 * This recorded memcg can be obsolete one. So, avoid
2909 * calling css_tryget
2911 if (!mem_cgroup_is_root(memcg))
2912 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2913 mem_cgroup_swap_statistics(memcg, false);
2914 mem_cgroup_put(memcg);
2916 rcu_read_unlock();
2919 * At swapin, we may charge account against cgroup which has no tasks.
2920 * So, rmdir()->pre_destroy() can be called while we do this charge.
2921 * In that case, we need to call pre_destroy() again. check it here.
2923 cgroup_release_and_wakeup_rmdir(&ptr->css);
2926 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2928 __mem_cgroup_commit_charge_swapin(page, ptr,
2929 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2932 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2934 if (mem_cgroup_disabled())
2935 return;
2936 if (!memcg)
2937 return;
2938 __mem_cgroup_cancel_charge(memcg, 1);
2941 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2942 unsigned int nr_pages,
2943 const enum charge_type ctype)
2945 struct memcg_batch_info *batch = NULL;
2946 bool uncharge_memsw = true;
2948 /* If swapout, usage of swap doesn't decrease */
2949 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2950 uncharge_memsw = false;
2952 batch = &current->memcg_batch;
2954 * In usual, we do css_get() when we remember memcg pointer.
2955 * But in this case, we keep res->usage until end of a series of
2956 * uncharges. Then, it's ok to ignore memcg's refcnt.
2958 if (!batch->memcg)
2959 batch->memcg = memcg;
2961 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2962 * In those cases, all pages freed continuously can be expected to be in
2963 * the same cgroup and we have chance to coalesce uncharges.
2964 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2965 * because we want to do uncharge as soon as possible.
2968 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2969 goto direct_uncharge;
2971 if (nr_pages > 1)
2972 goto direct_uncharge;
2975 * In typical case, batch->memcg == mem. This means we can
2976 * merge a series of uncharges to an uncharge of res_counter.
2977 * If not, we uncharge res_counter ony by one.
2979 if (batch->memcg != memcg)
2980 goto direct_uncharge;
2981 /* remember freed charge and uncharge it later */
2982 batch->nr_pages++;
2983 if (uncharge_memsw)
2984 batch->memsw_nr_pages++;
2985 return;
2986 direct_uncharge:
2987 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2988 if (uncharge_memsw)
2989 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2990 if (unlikely(batch->memcg != memcg))
2991 memcg_oom_recover(memcg);
2992 return;
2996 * uncharge if !page_mapped(page)
2998 static struct mem_cgroup *
2999 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3001 struct mem_cgroup *memcg = NULL;
3002 unsigned int nr_pages = 1;
3003 struct page_cgroup *pc;
3005 if (mem_cgroup_disabled())
3006 return NULL;
3008 if (PageSwapCache(page))
3009 return NULL;
3011 if (PageTransHuge(page)) {
3012 nr_pages <<= compound_order(page);
3013 VM_BUG_ON(!PageTransHuge(page));
3016 * Check if our page_cgroup is valid
3018 pc = lookup_page_cgroup(page);
3019 if (unlikely(!pc || !PageCgroupUsed(pc)))
3020 return NULL;
3022 lock_page_cgroup(pc);
3024 memcg = pc->mem_cgroup;
3026 if (!PageCgroupUsed(pc))
3027 goto unlock_out;
3029 switch (ctype) {
3030 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3031 case MEM_CGROUP_CHARGE_TYPE_DROP:
3032 /* See mem_cgroup_prepare_migration() */
3033 if (page_mapped(page) || PageCgroupMigration(pc))
3034 goto unlock_out;
3035 break;
3036 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3037 if (!PageAnon(page)) { /* Shared memory */
3038 if (page->mapping && !page_is_file_cache(page))
3039 goto unlock_out;
3040 } else if (page_mapped(page)) /* Anon */
3041 goto unlock_out;
3042 break;
3043 default:
3044 break;
3047 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3049 ClearPageCgroupUsed(pc);
3051 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3052 * freed from LRU. This is safe because uncharged page is expected not
3053 * to be reused (freed soon). Exception is SwapCache, it's handled by
3054 * special functions.
3057 unlock_page_cgroup(pc);
3059 * even after unlock, we have memcg->res.usage here and this memcg
3060 * will never be freed.
3062 memcg_check_events(memcg, page);
3063 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3064 mem_cgroup_swap_statistics(memcg, true);
3065 mem_cgroup_get(memcg);
3067 if (!mem_cgroup_is_root(memcg))
3068 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3070 return memcg;
3072 unlock_out:
3073 unlock_page_cgroup(pc);
3074 return NULL;
3077 void mem_cgroup_uncharge_page(struct page *page)
3079 /* early check. */
3080 if (page_mapped(page))
3081 return;
3082 if (page->mapping && !PageAnon(page))
3083 return;
3084 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3087 void mem_cgroup_uncharge_cache_page(struct page *page)
3089 VM_BUG_ON(page_mapped(page));
3090 VM_BUG_ON(page->mapping);
3091 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3095 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3096 * In that cases, pages are freed continuously and we can expect pages
3097 * are in the same memcg. All these calls itself limits the number of
3098 * pages freed at once, then uncharge_start/end() is called properly.
3099 * This may be called prural(2) times in a context,
3102 void mem_cgroup_uncharge_start(void)
3104 current->memcg_batch.do_batch++;
3105 /* We can do nest. */
3106 if (current->memcg_batch.do_batch == 1) {
3107 current->memcg_batch.memcg = NULL;
3108 current->memcg_batch.nr_pages = 0;
3109 current->memcg_batch.memsw_nr_pages = 0;
3113 void mem_cgroup_uncharge_end(void)
3115 struct memcg_batch_info *batch = &current->memcg_batch;
3117 if (!batch->do_batch)
3118 return;
3120 batch->do_batch--;
3121 if (batch->do_batch) /* If stacked, do nothing. */
3122 return;
3124 if (!batch->memcg)
3125 return;
3127 * This "batch->memcg" is valid without any css_get/put etc...
3128 * bacause we hide charges behind us.
3130 if (batch->nr_pages)
3131 res_counter_uncharge(&batch->memcg->res,
3132 batch->nr_pages * PAGE_SIZE);
3133 if (batch->memsw_nr_pages)
3134 res_counter_uncharge(&batch->memcg->memsw,
3135 batch->memsw_nr_pages * PAGE_SIZE);
3136 memcg_oom_recover(batch->memcg);
3137 /* forget this pointer (for sanity check) */
3138 batch->memcg = NULL;
3141 #ifdef CONFIG_SWAP
3143 * called after __delete_from_swap_cache() and drop "page" account.
3144 * memcg information is recorded to swap_cgroup of "ent"
3146 void
3147 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3149 struct mem_cgroup *memcg;
3150 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3152 if (!swapout) /* this was a swap cache but the swap is unused ! */
3153 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3155 memcg = __mem_cgroup_uncharge_common(page, ctype);
3158 * record memcg information, if swapout && memcg != NULL,
3159 * mem_cgroup_get() was called in uncharge().
3161 if (do_swap_account && swapout && memcg)
3162 swap_cgroup_record(ent, css_id(&memcg->css));
3164 #endif
3166 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3168 * called from swap_entry_free(). remove record in swap_cgroup and
3169 * uncharge "memsw" account.
3171 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3173 struct mem_cgroup *memcg;
3174 unsigned short id;
3176 if (!do_swap_account)
3177 return;
3179 id = swap_cgroup_record(ent, 0);
3180 rcu_read_lock();
3181 memcg = mem_cgroup_lookup(id);
3182 if (memcg) {
3184 * We uncharge this because swap is freed.
3185 * This memcg can be obsolete one. We avoid calling css_tryget
3187 if (!mem_cgroup_is_root(memcg))
3188 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3189 mem_cgroup_swap_statistics(memcg, false);
3190 mem_cgroup_put(memcg);
3192 rcu_read_unlock();
3196 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3197 * @entry: swap entry to be moved
3198 * @from: mem_cgroup which the entry is moved from
3199 * @to: mem_cgroup which the entry is moved to
3200 * @need_fixup: whether we should fixup res_counters and refcounts.
3202 * It succeeds only when the swap_cgroup's record for this entry is the same
3203 * as the mem_cgroup's id of @from.
3205 * Returns 0 on success, -EINVAL on failure.
3207 * The caller must have charged to @to, IOW, called res_counter_charge() about
3208 * both res and memsw, and called css_get().
3210 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3211 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3213 unsigned short old_id, new_id;
3215 old_id = css_id(&from->css);
3216 new_id = css_id(&to->css);
3218 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3219 mem_cgroup_swap_statistics(from, false);
3220 mem_cgroup_swap_statistics(to, true);
3222 * This function is only called from task migration context now.
3223 * It postpones res_counter and refcount handling till the end
3224 * of task migration(mem_cgroup_clear_mc()) for performance
3225 * improvement. But we cannot postpone mem_cgroup_get(to)
3226 * because if the process that has been moved to @to does
3227 * swap-in, the refcount of @to might be decreased to 0.
3229 mem_cgroup_get(to);
3230 if (need_fixup) {
3231 if (!mem_cgroup_is_root(from))
3232 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3233 mem_cgroup_put(from);
3235 * we charged both to->res and to->memsw, so we should
3236 * uncharge to->res.
3238 if (!mem_cgroup_is_root(to))
3239 res_counter_uncharge(&to->res, PAGE_SIZE);
3241 return 0;
3243 return -EINVAL;
3245 #else
3246 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3247 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3249 return -EINVAL;
3251 #endif
3254 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3255 * page belongs to.
3257 int mem_cgroup_prepare_migration(struct page *page,
3258 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3260 struct mem_cgroup *memcg = NULL;
3261 struct page_cgroup *pc;
3262 enum charge_type ctype;
3263 int ret = 0;
3265 *ptr = NULL;
3267 VM_BUG_ON(PageTransHuge(page));
3268 if (mem_cgroup_disabled())
3269 return 0;
3271 pc = lookup_page_cgroup(page);
3272 lock_page_cgroup(pc);
3273 if (PageCgroupUsed(pc)) {
3274 memcg = pc->mem_cgroup;
3275 css_get(&memcg->css);
3277 * At migrating an anonymous page, its mapcount goes down
3278 * to 0 and uncharge() will be called. But, even if it's fully
3279 * unmapped, migration may fail and this page has to be
3280 * charged again. We set MIGRATION flag here and delay uncharge
3281 * until end_migration() is called
3283 * Corner Case Thinking
3284 * A)
3285 * When the old page was mapped as Anon and it's unmap-and-freed
3286 * while migration was ongoing.
3287 * If unmap finds the old page, uncharge() of it will be delayed
3288 * until end_migration(). If unmap finds a new page, it's
3289 * uncharged when it make mapcount to be 1->0. If unmap code
3290 * finds swap_migration_entry, the new page will not be mapped
3291 * and end_migration() will find it(mapcount==0).
3293 * B)
3294 * When the old page was mapped but migraion fails, the kernel
3295 * remaps it. A charge for it is kept by MIGRATION flag even
3296 * if mapcount goes down to 0. We can do remap successfully
3297 * without charging it again.
3299 * C)
3300 * The "old" page is under lock_page() until the end of
3301 * migration, so, the old page itself will not be swapped-out.
3302 * If the new page is swapped out before end_migraton, our
3303 * hook to usual swap-out path will catch the event.
3305 if (PageAnon(page))
3306 SetPageCgroupMigration(pc);
3308 unlock_page_cgroup(pc);
3310 * If the page is not charged at this point,
3311 * we return here.
3313 if (!memcg)
3314 return 0;
3316 *ptr = memcg;
3317 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3318 css_put(&memcg->css);/* drop extra refcnt */
3319 if (ret || *ptr == NULL) {
3320 if (PageAnon(page)) {
3321 lock_page_cgroup(pc);
3322 ClearPageCgroupMigration(pc);
3323 unlock_page_cgroup(pc);
3325 * The old page may be fully unmapped while we kept it.
3327 mem_cgroup_uncharge_page(page);
3329 return -ENOMEM;
3332 * We charge new page before it's used/mapped. So, even if unlock_page()
3333 * is called before end_migration, we can catch all events on this new
3334 * page. In the case new page is migrated but not remapped, new page's
3335 * mapcount will be finally 0 and we call uncharge in end_migration().
3337 pc = lookup_page_cgroup(newpage);
3338 if (PageAnon(page))
3339 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3340 else if (page_is_file_cache(page))
3341 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3342 else
3343 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3344 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3345 return ret;
3348 /* remove redundant charge if migration failed*/
3349 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3350 struct page *oldpage, struct page *newpage, bool migration_ok)
3352 struct page *used, *unused;
3353 struct page_cgroup *pc;
3355 if (!memcg)
3356 return;
3357 /* blocks rmdir() */
3358 cgroup_exclude_rmdir(&memcg->css);
3359 if (!migration_ok) {
3360 used = oldpage;
3361 unused = newpage;
3362 } else {
3363 used = newpage;
3364 unused = oldpage;
3367 * We disallowed uncharge of pages under migration because mapcount
3368 * of the page goes down to zero, temporarly.
3369 * Clear the flag and check the page should be charged.
3371 pc = lookup_page_cgroup(oldpage);
3372 lock_page_cgroup(pc);
3373 ClearPageCgroupMigration(pc);
3374 unlock_page_cgroup(pc);
3376 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3379 * If a page is a file cache, radix-tree replacement is very atomic
3380 * and we can skip this check. When it was an Anon page, its mapcount
3381 * goes down to 0. But because we added MIGRATION flage, it's not
3382 * uncharged yet. There are several case but page->mapcount check
3383 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3384 * check. (see prepare_charge() also)
3386 if (PageAnon(used))
3387 mem_cgroup_uncharge_page(used);
3389 * At migration, we may charge account against cgroup which has no
3390 * tasks.
3391 * So, rmdir()->pre_destroy() can be called while we do this charge.
3392 * In that case, we need to call pre_destroy() again. check it here.
3394 cgroup_release_and_wakeup_rmdir(&memcg->css);
3398 * At replace page cache, newpage is not under any memcg but it's on
3399 * LRU. So, this function doesn't touch res_counter but handles LRU
3400 * in correct way. Both pages are locked so we cannot race with uncharge.
3402 void mem_cgroup_replace_page_cache(struct page *oldpage,
3403 struct page *newpage)
3405 struct mem_cgroup *memcg;
3406 struct page_cgroup *pc;
3407 struct zone *zone;
3408 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3409 unsigned long flags;
3411 if (mem_cgroup_disabled())
3412 return;
3414 pc = lookup_page_cgroup(oldpage);
3415 /* fix accounting on old pages */
3416 lock_page_cgroup(pc);
3417 memcg = pc->mem_cgroup;
3418 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3419 ClearPageCgroupUsed(pc);
3420 unlock_page_cgroup(pc);
3422 if (PageSwapBacked(oldpage))
3423 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3425 zone = page_zone(newpage);
3426 pc = lookup_page_cgroup(newpage);
3428 * Even if newpage->mapping was NULL before starting replacement,
3429 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3430 * LRU while we overwrite pc->mem_cgroup.
3432 spin_lock_irqsave(&zone->lru_lock, flags);
3433 if (PageLRU(newpage))
3434 del_page_from_lru_list(zone, newpage, page_lru(newpage));
3435 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
3436 if (PageLRU(newpage))
3437 add_page_to_lru_list(zone, newpage, page_lru(newpage));
3438 spin_unlock_irqrestore(&zone->lru_lock, flags);
3441 #ifdef CONFIG_DEBUG_VM
3442 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3444 struct page_cgroup *pc;
3446 pc = lookup_page_cgroup(page);
3447 if (likely(pc) && PageCgroupUsed(pc))
3448 return pc;
3449 return NULL;
3452 bool mem_cgroup_bad_page_check(struct page *page)
3454 if (mem_cgroup_disabled())
3455 return false;
3457 return lookup_page_cgroup_used(page) != NULL;
3460 void mem_cgroup_print_bad_page(struct page *page)
3462 struct page_cgroup *pc;
3464 pc = lookup_page_cgroup_used(page);
3465 if (pc) {
3466 int ret = -1;
3467 char *path;
3469 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3470 pc, pc->flags, pc->mem_cgroup);
3472 path = kmalloc(PATH_MAX, GFP_KERNEL);
3473 if (path) {
3474 rcu_read_lock();
3475 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3476 path, PATH_MAX);
3477 rcu_read_unlock();
3480 printk(KERN_CONT "(%s)\n",
3481 (ret < 0) ? "cannot get the path" : path);
3482 kfree(path);
3485 #endif
3487 static DEFINE_MUTEX(set_limit_mutex);
3489 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3490 unsigned long long val)
3492 int retry_count;
3493 u64 memswlimit, memlimit;
3494 int ret = 0;
3495 int children = mem_cgroup_count_children(memcg);
3496 u64 curusage, oldusage;
3497 int enlarge;
3500 * For keeping hierarchical_reclaim simple, how long we should retry
3501 * is depends on callers. We set our retry-count to be function
3502 * of # of children which we should visit in this loop.
3504 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3506 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3508 enlarge = 0;
3509 while (retry_count) {
3510 if (signal_pending(current)) {
3511 ret = -EINTR;
3512 break;
3515 * Rather than hide all in some function, I do this in
3516 * open coded manner. You see what this really does.
3517 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3519 mutex_lock(&set_limit_mutex);
3520 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3521 if (memswlimit < val) {
3522 ret = -EINVAL;
3523 mutex_unlock(&set_limit_mutex);
3524 break;
3527 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3528 if (memlimit < val)
3529 enlarge = 1;
3531 ret = res_counter_set_limit(&memcg->res, val);
3532 if (!ret) {
3533 if (memswlimit == val)
3534 memcg->memsw_is_minimum = true;
3535 else
3536 memcg->memsw_is_minimum = false;
3538 mutex_unlock(&set_limit_mutex);
3540 if (!ret)
3541 break;
3543 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3544 MEM_CGROUP_RECLAIM_SHRINK);
3545 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3546 /* Usage is reduced ? */
3547 if (curusage >= oldusage)
3548 retry_count--;
3549 else
3550 oldusage = curusage;
3552 if (!ret && enlarge)
3553 memcg_oom_recover(memcg);
3555 return ret;
3558 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3559 unsigned long long val)
3561 int retry_count;
3562 u64 memlimit, memswlimit, oldusage, curusage;
3563 int children = mem_cgroup_count_children(memcg);
3564 int ret = -EBUSY;
3565 int enlarge = 0;
3567 /* see mem_cgroup_resize_res_limit */
3568 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3569 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3570 while (retry_count) {
3571 if (signal_pending(current)) {
3572 ret = -EINTR;
3573 break;
3576 * Rather than hide all in some function, I do this in
3577 * open coded manner. You see what this really does.
3578 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3580 mutex_lock(&set_limit_mutex);
3581 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3582 if (memlimit > val) {
3583 ret = -EINVAL;
3584 mutex_unlock(&set_limit_mutex);
3585 break;
3587 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3588 if (memswlimit < val)
3589 enlarge = 1;
3590 ret = res_counter_set_limit(&memcg->memsw, val);
3591 if (!ret) {
3592 if (memlimit == val)
3593 memcg->memsw_is_minimum = true;
3594 else
3595 memcg->memsw_is_minimum = false;
3597 mutex_unlock(&set_limit_mutex);
3599 if (!ret)
3600 break;
3602 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3603 MEM_CGROUP_RECLAIM_NOSWAP |
3604 MEM_CGROUP_RECLAIM_SHRINK);
3605 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3606 /* Usage is reduced ? */
3607 if (curusage >= oldusage)
3608 retry_count--;
3609 else
3610 oldusage = curusage;
3612 if (!ret && enlarge)
3613 memcg_oom_recover(memcg);
3614 return ret;
3617 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3618 gfp_t gfp_mask,
3619 unsigned long *total_scanned)
3621 unsigned long nr_reclaimed = 0;
3622 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3623 unsigned long reclaimed;
3624 int loop = 0;
3625 struct mem_cgroup_tree_per_zone *mctz;
3626 unsigned long long excess;
3627 unsigned long nr_scanned;
3629 if (order > 0)
3630 return 0;
3632 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3634 * This loop can run a while, specially if mem_cgroup's continuously
3635 * keep exceeding their soft limit and putting the system under
3636 * pressure
3638 do {
3639 if (next_mz)
3640 mz = next_mz;
3641 else
3642 mz = mem_cgroup_largest_soft_limit_node(mctz);
3643 if (!mz)
3644 break;
3646 nr_scanned = 0;
3647 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3648 gfp_mask, &nr_scanned);
3649 nr_reclaimed += reclaimed;
3650 *total_scanned += nr_scanned;
3651 spin_lock(&mctz->lock);
3654 * If we failed to reclaim anything from this memory cgroup
3655 * it is time to move on to the next cgroup
3657 next_mz = NULL;
3658 if (!reclaimed) {
3659 do {
3661 * Loop until we find yet another one.
3663 * By the time we get the soft_limit lock
3664 * again, someone might have aded the
3665 * group back on the RB tree. Iterate to
3666 * make sure we get a different mem.
3667 * mem_cgroup_largest_soft_limit_node returns
3668 * NULL if no other cgroup is present on
3669 * the tree
3671 next_mz =
3672 __mem_cgroup_largest_soft_limit_node(mctz);
3673 if (next_mz == mz)
3674 css_put(&next_mz->mem->css);
3675 else /* next_mz == NULL or other memcg */
3676 break;
3677 } while (1);
3679 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3680 excess = res_counter_soft_limit_excess(&mz->mem->res);
3682 * One school of thought says that we should not add
3683 * back the node to the tree if reclaim returns 0.
3684 * But our reclaim could return 0, simply because due
3685 * to priority we are exposing a smaller subset of
3686 * memory to reclaim from. Consider this as a longer
3687 * term TODO.
3689 /* If excess == 0, no tree ops */
3690 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3691 spin_unlock(&mctz->lock);
3692 css_put(&mz->mem->css);
3693 loop++;
3695 * Could not reclaim anything and there are no more
3696 * mem cgroups to try or we seem to be looping without
3697 * reclaiming anything.
3699 if (!nr_reclaimed &&
3700 (next_mz == NULL ||
3701 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3702 break;
3703 } while (!nr_reclaimed);
3704 if (next_mz)
3705 css_put(&next_mz->mem->css);
3706 return nr_reclaimed;
3710 * This routine traverse page_cgroup in given list and drop them all.
3711 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3713 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3714 int node, int zid, enum lru_list lru)
3716 struct mem_cgroup_per_zone *mz;
3717 unsigned long flags, loop;
3718 struct list_head *list;
3719 struct page *busy;
3720 struct zone *zone;
3721 int ret = 0;
3723 zone = &NODE_DATA(node)->node_zones[zid];
3724 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3725 list = &mz->lruvec.lists[lru];
3727 loop = MEM_CGROUP_ZSTAT(mz, lru);
3728 /* give some margin against EBUSY etc...*/
3729 loop += 256;
3730 busy = NULL;
3731 while (loop--) {
3732 struct page_cgroup *pc;
3733 struct page *page;
3735 ret = 0;
3736 spin_lock_irqsave(&zone->lru_lock, flags);
3737 if (list_empty(list)) {
3738 spin_unlock_irqrestore(&zone->lru_lock, flags);
3739 break;
3741 page = list_entry(list->prev, struct page, lru);
3742 if (busy == page) {
3743 list_move(&page->lru, list);
3744 busy = NULL;
3745 spin_unlock_irqrestore(&zone->lru_lock, flags);
3746 continue;
3748 spin_unlock_irqrestore(&zone->lru_lock, flags);
3750 pc = lookup_page_cgroup(page);
3752 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3753 if (ret == -ENOMEM)
3754 break;
3756 if (ret == -EBUSY || ret == -EINVAL) {
3757 /* found lock contention or "pc" is obsolete. */
3758 busy = page;
3759 cond_resched();
3760 } else
3761 busy = NULL;
3764 if (!ret && !list_empty(list))
3765 return -EBUSY;
3766 return ret;
3770 * make mem_cgroup's charge to be 0 if there is no task.
3771 * This enables deleting this mem_cgroup.
3773 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3775 int ret;
3776 int node, zid, shrink;
3777 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3778 struct cgroup *cgrp = memcg->css.cgroup;
3780 css_get(&memcg->css);
3782 shrink = 0;
3783 /* should free all ? */
3784 if (free_all)
3785 goto try_to_free;
3786 move_account:
3787 do {
3788 ret = -EBUSY;
3789 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3790 goto out;
3791 ret = -EINTR;
3792 if (signal_pending(current))
3793 goto out;
3794 /* This is for making all *used* pages to be on LRU. */
3795 lru_add_drain_all();
3796 drain_all_stock_sync(memcg);
3797 ret = 0;
3798 mem_cgroup_start_move(memcg);
3799 for_each_node_state(node, N_HIGH_MEMORY) {
3800 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3801 enum lru_list l;
3802 for_each_lru(l) {
3803 ret = mem_cgroup_force_empty_list(memcg,
3804 node, zid, l);
3805 if (ret)
3806 break;
3809 if (ret)
3810 break;
3812 mem_cgroup_end_move(memcg);
3813 memcg_oom_recover(memcg);
3814 /* it seems parent cgroup doesn't have enough mem */
3815 if (ret == -ENOMEM)
3816 goto try_to_free;
3817 cond_resched();
3818 /* "ret" should also be checked to ensure all lists are empty. */
3819 } while (memcg->res.usage > 0 || ret);
3820 out:
3821 css_put(&memcg->css);
3822 return ret;
3824 try_to_free:
3825 /* returns EBUSY if there is a task or if we come here twice. */
3826 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3827 ret = -EBUSY;
3828 goto out;
3830 /* we call try-to-free pages for make this cgroup empty */
3831 lru_add_drain_all();
3832 /* try to free all pages in this cgroup */
3833 shrink = 1;
3834 while (nr_retries && memcg->res.usage > 0) {
3835 int progress;
3837 if (signal_pending(current)) {
3838 ret = -EINTR;
3839 goto out;
3841 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3842 false);
3843 if (!progress) {
3844 nr_retries--;
3845 /* maybe some writeback is necessary */
3846 congestion_wait(BLK_RW_ASYNC, HZ/10);
3850 lru_add_drain();
3851 /* try move_account...there may be some *locked* pages. */
3852 goto move_account;
3855 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3857 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3861 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3863 return mem_cgroup_from_cont(cont)->use_hierarchy;
3866 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3867 u64 val)
3869 int retval = 0;
3870 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3871 struct cgroup *parent = cont->parent;
3872 struct mem_cgroup *parent_memcg = NULL;
3874 if (parent)
3875 parent_memcg = mem_cgroup_from_cont(parent);
3877 cgroup_lock();
3879 * If parent's use_hierarchy is set, we can't make any modifications
3880 * in the child subtrees. If it is unset, then the change can
3881 * occur, provided the current cgroup has no children.
3883 * For the root cgroup, parent_mem is NULL, we allow value to be
3884 * set if there are no children.
3886 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3887 (val == 1 || val == 0)) {
3888 if (list_empty(&cont->children))
3889 memcg->use_hierarchy = val;
3890 else
3891 retval = -EBUSY;
3892 } else
3893 retval = -EINVAL;
3894 cgroup_unlock();
3896 return retval;
3900 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3901 enum mem_cgroup_stat_index idx)
3903 struct mem_cgroup *iter;
3904 long val = 0;
3906 /* Per-cpu values can be negative, use a signed accumulator */
3907 for_each_mem_cgroup_tree(iter, memcg)
3908 val += mem_cgroup_read_stat(iter, idx);
3910 if (val < 0) /* race ? */
3911 val = 0;
3912 return val;
3915 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3917 u64 val;
3919 if (!mem_cgroup_is_root(memcg)) {
3920 if (!swap)
3921 return res_counter_read_u64(&memcg->res, RES_USAGE);
3922 else
3923 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3926 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3927 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3929 if (swap)
3930 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3932 return val << PAGE_SHIFT;
3935 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3937 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3938 u64 val;
3939 int type, name;
3941 type = MEMFILE_TYPE(cft->private);
3942 name = MEMFILE_ATTR(cft->private);
3943 switch (type) {
3944 case _MEM:
3945 if (name == RES_USAGE)
3946 val = mem_cgroup_usage(memcg, false);
3947 else
3948 val = res_counter_read_u64(&memcg->res, name);
3949 break;
3950 case _MEMSWAP:
3951 if (name == RES_USAGE)
3952 val = mem_cgroup_usage(memcg, true);
3953 else
3954 val = res_counter_read_u64(&memcg->memsw, name);
3955 break;
3956 default:
3957 BUG();
3958 break;
3960 return val;
3963 * The user of this function is...
3964 * RES_LIMIT.
3966 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3967 const char *buffer)
3969 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3970 int type, name;
3971 unsigned long long val;
3972 int ret;
3974 type = MEMFILE_TYPE(cft->private);
3975 name = MEMFILE_ATTR(cft->private);
3976 switch (name) {
3977 case RES_LIMIT:
3978 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3979 ret = -EINVAL;
3980 break;
3982 /* This function does all necessary parse...reuse it */
3983 ret = res_counter_memparse_write_strategy(buffer, &val);
3984 if (ret)
3985 break;
3986 if (type == _MEM)
3987 ret = mem_cgroup_resize_limit(memcg, val);
3988 else
3989 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3990 break;
3991 case RES_SOFT_LIMIT:
3992 ret = res_counter_memparse_write_strategy(buffer, &val);
3993 if (ret)
3994 break;
3996 * For memsw, soft limits are hard to implement in terms
3997 * of semantics, for now, we support soft limits for
3998 * control without swap
4000 if (type == _MEM)
4001 ret = res_counter_set_soft_limit(&memcg->res, val);
4002 else
4003 ret = -EINVAL;
4004 break;
4005 default:
4006 ret = -EINVAL; /* should be BUG() ? */
4007 break;
4009 return ret;
4012 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4013 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4015 struct cgroup *cgroup;
4016 unsigned long long min_limit, min_memsw_limit, tmp;
4018 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4019 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4020 cgroup = memcg->css.cgroup;
4021 if (!memcg->use_hierarchy)
4022 goto out;
4024 while (cgroup->parent) {
4025 cgroup = cgroup->parent;
4026 memcg = mem_cgroup_from_cont(cgroup);
4027 if (!memcg->use_hierarchy)
4028 break;
4029 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4030 min_limit = min(min_limit, tmp);
4031 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4032 min_memsw_limit = min(min_memsw_limit, tmp);
4034 out:
4035 *mem_limit = min_limit;
4036 *memsw_limit = min_memsw_limit;
4037 return;
4040 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4042 struct mem_cgroup *memcg;
4043 int type, name;
4045 memcg = mem_cgroup_from_cont(cont);
4046 type = MEMFILE_TYPE(event);
4047 name = MEMFILE_ATTR(event);
4048 switch (name) {
4049 case RES_MAX_USAGE:
4050 if (type == _MEM)
4051 res_counter_reset_max(&memcg->res);
4052 else
4053 res_counter_reset_max(&memcg->memsw);
4054 break;
4055 case RES_FAILCNT:
4056 if (type == _MEM)
4057 res_counter_reset_failcnt(&memcg->res);
4058 else
4059 res_counter_reset_failcnt(&memcg->memsw);
4060 break;
4063 return 0;
4066 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4067 struct cftype *cft)
4069 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4072 #ifdef CONFIG_MMU
4073 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4074 struct cftype *cft, u64 val)
4076 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4078 if (val >= (1 << NR_MOVE_TYPE))
4079 return -EINVAL;
4081 * We check this value several times in both in can_attach() and
4082 * attach(), so we need cgroup lock to prevent this value from being
4083 * inconsistent.
4085 cgroup_lock();
4086 memcg->move_charge_at_immigrate = val;
4087 cgroup_unlock();
4089 return 0;
4091 #else
4092 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4093 struct cftype *cft, u64 val)
4095 return -ENOSYS;
4097 #endif
4100 /* For read statistics */
4101 enum {
4102 MCS_CACHE,
4103 MCS_RSS,
4104 MCS_FILE_MAPPED,
4105 MCS_PGPGIN,
4106 MCS_PGPGOUT,
4107 MCS_SWAP,
4108 MCS_PGFAULT,
4109 MCS_PGMAJFAULT,
4110 MCS_INACTIVE_ANON,
4111 MCS_ACTIVE_ANON,
4112 MCS_INACTIVE_FILE,
4113 MCS_ACTIVE_FILE,
4114 MCS_UNEVICTABLE,
4115 NR_MCS_STAT,
4118 struct mcs_total_stat {
4119 s64 stat[NR_MCS_STAT];
4122 struct {
4123 char *local_name;
4124 char *total_name;
4125 } memcg_stat_strings[NR_MCS_STAT] = {
4126 {"cache", "total_cache"},
4127 {"rss", "total_rss"},
4128 {"mapped_file", "total_mapped_file"},
4129 {"pgpgin", "total_pgpgin"},
4130 {"pgpgout", "total_pgpgout"},
4131 {"swap", "total_swap"},
4132 {"pgfault", "total_pgfault"},
4133 {"pgmajfault", "total_pgmajfault"},
4134 {"inactive_anon", "total_inactive_anon"},
4135 {"active_anon", "total_active_anon"},
4136 {"inactive_file", "total_inactive_file"},
4137 {"active_file", "total_active_file"},
4138 {"unevictable", "total_unevictable"}
4142 static void
4143 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4145 s64 val;
4147 /* per cpu stat */
4148 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4149 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4150 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4151 s->stat[MCS_RSS] += val * PAGE_SIZE;
4152 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4153 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4154 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4155 s->stat[MCS_PGPGIN] += val;
4156 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4157 s->stat[MCS_PGPGOUT] += val;
4158 if (do_swap_account) {
4159 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4160 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4162 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4163 s->stat[MCS_PGFAULT] += val;
4164 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4165 s->stat[MCS_PGMAJFAULT] += val;
4167 /* per zone stat */
4168 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4169 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4170 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4171 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4172 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4173 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4174 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4175 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4176 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4177 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4180 static void
4181 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4183 struct mem_cgroup *iter;
4185 for_each_mem_cgroup_tree(iter, memcg)
4186 mem_cgroup_get_local_stat(iter, s);
4189 #ifdef CONFIG_NUMA
4190 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4192 int nid;
4193 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4194 unsigned long node_nr;
4195 struct cgroup *cont = m->private;
4196 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4198 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4199 seq_printf(m, "total=%lu", total_nr);
4200 for_each_node_state(nid, N_HIGH_MEMORY) {
4201 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4202 seq_printf(m, " N%d=%lu", nid, node_nr);
4204 seq_putc(m, '\n');
4206 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4207 seq_printf(m, "file=%lu", file_nr);
4208 for_each_node_state(nid, N_HIGH_MEMORY) {
4209 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4210 LRU_ALL_FILE);
4211 seq_printf(m, " N%d=%lu", nid, node_nr);
4213 seq_putc(m, '\n');
4215 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4216 seq_printf(m, "anon=%lu", anon_nr);
4217 for_each_node_state(nid, N_HIGH_MEMORY) {
4218 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4219 LRU_ALL_ANON);
4220 seq_printf(m, " N%d=%lu", nid, node_nr);
4222 seq_putc(m, '\n');
4224 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4225 seq_printf(m, "unevictable=%lu", unevictable_nr);
4226 for_each_node_state(nid, N_HIGH_MEMORY) {
4227 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4228 BIT(LRU_UNEVICTABLE));
4229 seq_printf(m, " N%d=%lu", nid, node_nr);
4231 seq_putc(m, '\n');
4232 return 0;
4234 #endif /* CONFIG_NUMA */
4236 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4237 struct cgroup_map_cb *cb)
4239 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4240 struct mcs_total_stat mystat;
4241 int i;
4243 memset(&mystat, 0, sizeof(mystat));
4244 mem_cgroup_get_local_stat(mem_cont, &mystat);
4247 for (i = 0; i < NR_MCS_STAT; i++) {
4248 if (i == MCS_SWAP && !do_swap_account)
4249 continue;
4250 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4253 /* Hierarchical information */
4255 unsigned long long limit, memsw_limit;
4256 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4257 cb->fill(cb, "hierarchical_memory_limit", limit);
4258 if (do_swap_account)
4259 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4262 memset(&mystat, 0, sizeof(mystat));
4263 mem_cgroup_get_total_stat(mem_cont, &mystat);
4264 for (i = 0; i < NR_MCS_STAT; i++) {
4265 if (i == MCS_SWAP && !do_swap_account)
4266 continue;
4267 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4270 #ifdef CONFIG_DEBUG_VM
4272 int nid, zid;
4273 struct mem_cgroup_per_zone *mz;
4274 unsigned long recent_rotated[2] = {0, 0};
4275 unsigned long recent_scanned[2] = {0, 0};
4277 for_each_online_node(nid)
4278 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4279 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4281 recent_rotated[0] +=
4282 mz->reclaim_stat.recent_rotated[0];
4283 recent_rotated[1] +=
4284 mz->reclaim_stat.recent_rotated[1];
4285 recent_scanned[0] +=
4286 mz->reclaim_stat.recent_scanned[0];
4287 recent_scanned[1] +=
4288 mz->reclaim_stat.recent_scanned[1];
4290 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4291 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4292 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4293 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4295 #endif
4297 return 0;
4300 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4302 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4304 return mem_cgroup_swappiness(memcg);
4307 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4308 u64 val)
4310 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4311 struct mem_cgroup *parent;
4313 if (val > 100)
4314 return -EINVAL;
4316 if (cgrp->parent == NULL)
4317 return -EINVAL;
4319 parent = mem_cgroup_from_cont(cgrp->parent);
4321 cgroup_lock();
4323 /* If under hierarchy, only empty-root can set this value */
4324 if ((parent->use_hierarchy) ||
4325 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4326 cgroup_unlock();
4327 return -EINVAL;
4330 memcg->swappiness = val;
4332 cgroup_unlock();
4334 return 0;
4337 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4339 struct mem_cgroup_threshold_ary *t;
4340 u64 usage;
4341 int i;
4343 rcu_read_lock();
4344 if (!swap)
4345 t = rcu_dereference(memcg->thresholds.primary);
4346 else
4347 t = rcu_dereference(memcg->memsw_thresholds.primary);
4349 if (!t)
4350 goto unlock;
4352 usage = mem_cgroup_usage(memcg, swap);
4355 * current_threshold points to threshold just below usage.
4356 * If it's not true, a threshold was crossed after last
4357 * call of __mem_cgroup_threshold().
4359 i = t->current_threshold;
4362 * Iterate backward over array of thresholds starting from
4363 * current_threshold and check if a threshold is crossed.
4364 * If none of thresholds below usage is crossed, we read
4365 * only one element of the array here.
4367 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4368 eventfd_signal(t->entries[i].eventfd, 1);
4370 /* i = current_threshold + 1 */
4371 i++;
4374 * Iterate forward over array of thresholds starting from
4375 * current_threshold+1 and check if a threshold is crossed.
4376 * If none of thresholds above usage is crossed, we read
4377 * only one element of the array here.
4379 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4380 eventfd_signal(t->entries[i].eventfd, 1);
4382 /* Update current_threshold */
4383 t->current_threshold = i - 1;
4384 unlock:
4385 rcu_read_unlock();
4388 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4390 while (memcg) {
4391 __mem_cgroup_threshold(memcg, false);
4392 if (do_swap_account)
4393 __mem_cgroup_threshold(memcg, true);
4395 memcg = parent_mem_cgroup(memcg);
4399 static int compare_thresholds(const void *a, const void *b)
4401 const struct mem_cgroup_threshold *_a = a;
4402 const struct mem_cgroup_threshold *_b = b;
4404 return _a->threshold - _b->threshold;
4407 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4409 struct mem_cgroup_eventfd_list *ev;
4411 list_for_each_entry(ev, &memcg->oom_notify, list)
4412 eventfd_signal(ev->eventfd, 1);
4413 return 0;
4416 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4418 struct mem_cgroup *iter;
4420 for_each_mem_cgroup_tree(iter, memcg)
4421 mem_cgroup_oom_notify_cb(iter);
4424 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4425 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4427 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4428 struct mem_cgroup_thresholds *thresholds;
4429 struct mem_cgroup_threshold_ary *new;
4430 int type = MEMFILE_TYPE(cft->private);
4431 u64 threshold, usage;
4432 int i, size, ret;
4434 ret = res_counter_memparse_write_strategy(args, &threshold);
4435 if (ret)
4436 return ret;
4438 mutex_lock(&memcg->thresholds_lock);
4440 if (type == _MEM)
4441 thresholds = &memcg->thresholds;
4442 else if (type == _MEMSWAP)
4443 thresholds = &memcg->memsw_thresholds;
4444 else
4445 BUG();
4447 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4449 /* Check if a threshold crossed before adding a new one */
4450 if (thresholds->primary)
4451 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4453 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4455 /* Allocate memory for new array of thresholds */
4456 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4457 GFP_KERNEL);
4458 if (!new) {
4459 ret = -ENOMEM;
4460 goto unlock;
4462 new->size = size;
4464 /* Copy thresholds (if any) to new array */
4465 if (thresholds->primary) {
4466 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4467 sizeof(struct mem_cgroup_threshold));
4470 /* Add new threshold */
4471 new->entries[size - 1].eventfd = eventfd;
4472 new->entries[size - 1].threshold = threshold;
4474 /* Sort thresholds. Registering of new threshold isn't time-critical */
4475 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4476 compare_thresholds, NULL);
4478 /* Find current threshold */
4479 new->current_threshold = -1;
4480 for (i = 0; i < size; i++) {
4481 if (new->entries[i].threshold < usage) {
4483 * new->current_threshold will not be used until
4484 * rcu_assign_pointer(), so it's safe to increment
4485 * it here.
4487 ++new->current_threshold;
4491 /* Free old spare buffer and save old primary buffer as spare */
4492 kfree(thresholds->spare);
4493 thresholds->spare = thresholds->primary;
4495 rcu_assign_pointer(thresholds->primary, new);
4497 /* To be sure that nobody uses thresholds */
4498 synchronize_rcu();
4500 unlock:
4501 mutex_unlock(&memcg->thresholds_lock);
4503 return ret;
4506 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4507 struct cftype *cft, struct eventfd_ctx *eventfd)
4509 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4510 struct mem_cgroup_thresholds *thresholds;
4511 struct mem_cgroup_threshold_ary *new;
4512 int type = MEMFILE_TYPE(cft->private);
4513 u64 usage;
4514 int i, j, size;
4516 mutex_lock(&memcg->thresholds_lock);
4517 if (type == _MEM)
4518 thresholds = &memcg->thresholds;
4519 else if (type == _MEMSWAP)
4520 thresholds = &memcg->memsw_thresholds;
4521 else
4522 BUG();
4525 * Something went wrong if we trying to unregister a threshold
4526 * if we don't have thresholds
4528 BUG_ON(!thresholds);
4530 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4532 /* Check if a threshold crossed before removing */
4533 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4535 /* Calculate new number of threshold */
4536 size = 0;
4537 for (i = 0; i < thresholds->primary->size; i++) {
4538 if (thresholds->primary->entries[i].eventfd != eventfd)
4539 size++;
4542 new = thresholds->spare;
4544 /* Set thresholds array to NULL if we don't have thresholds */
4545 if (!size) {
4546 kfree(new);
4547 new = NULL;
4548 goto swap_buffers;
4551 new->size = size;
4553 /* Copy thresholds and find current threshold */
4554 new->current_threshold = -1;
4555 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4556 if (thresholds->primary->entries[i].eventfd == eventfd)
4557 continue;
4559 new->entries[j] = thresholds->primary->entries[i];
4560 if (new->entries[j].threshold < usage) {
4562 * new->current_threshold will not be used
4563 * until rcu_assign_pointer(), so it's safe to increment
4564 * it here.
4566 ++new->current_threshold;
4568 j++;
4571 swap_buffers:
4572 /* Swap primary and spare array */
4573 thresholds->spare = thresholds->primary;
4574 rcu_assign_pointer(thresholds->primary, new);
4576 /* To be sure that nobody uses thresholds */
4577 synchronize_rcu();
4579 mutex_unlock(&memcg->thresholds_lock);
4582 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4583 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4585 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4586 struct mem_cgroup_eventfd_list *event;
4587 int type = MEMFILE_TYPE(cft->private);
4589 BUG_ON(type != _OOM_TYPE);
4590 event = kmalloc(sizeof(*event), GFP_KERNEL);
4591 if (!event)
4592 return -ENOMEM;
4594 spin_lock(&memcg_oom_lock);
4596 event->eventfd = eventfd;
4597 list_add(&event->list, &memcg->oom_notify);
4599 /* already in OOM ? */
4600 if (atomic_read(&memcg->under_oom))
4601 eventfd_signal(eventfd, 1);
4602 spin_unlock(&memcg_oom_lock);
4604 return 0;
4607 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4608 struct cftype *cft, struct eventfd_ctx *eventfd)
4610 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4611 struct mem_cgroup_eventfd_list *ev, *tmp;
4612 int type = MEMFILE_TYPE(cft->private);
4614 BUG_ON(type != _OOM_TYPE);
4616 spin_lock(&memcg_oom_lock);
4618 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4619 if (ev->eventfd == eventfd) {
4620 list_del(&ev->list);
4621 kfree(ev);
4625 spin_unlock(&memcg_oom_lock);
4628 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4629 struct cftype *cft, struct cgroup_map_cb *cb)
4631 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4633 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4635 if (atomic_read(&memcg->under_oom))
4636 cb->fill(cb, "under_oom", 1);
4637 else
4638 cb->fill(cb, "under_oom", 0);
4639 return 0;
4642 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4643 struct cftype *cft, u64 val)
4645 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4646 struct mem_cgroup *parent;
4648 /* cannot set to root cgroup and only 0 and 1 are allowed */
4649 if (!cgrp->parent || !((val == 0) || (val == 1)))
4650 return -EINVAL;
4652 parent = mem_cgroup_from_cont(cgrp->parent);
4654 cgroup_lock();
4655 /* oom-kill-disable is a flag for subhierarchy. */
4656 if ((parent->use_hierarchy) ||
4657 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4658 cgroup_unlock();
4659 return -EINVAL;
4661 memcg->oom_kill_disable = val;
4662 if (!val)
4663 memcg_oom_recover(memcg);
4664 cgroup_unlock();
4665 return 0;
4668 #ifdef CONFIG_NUMA
4669 static const struct file_operations mem_control_numa_stat_file_operations = {
4670 .read = seq_read,
4671 .llseek = seq_lseek,
4672 .release = single_release,
4675 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4677 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4679 file->f_op = &mem_control_numa_stat_file_operations;
4680 return single_open(file, mem_control_numa_stat_show, cont);
4682 #endif /* CONFIG_NUMA */
4684 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4685 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4688 * Part of this would be better living in a separate allocation
4689 * function, leaving us with just the cgroup tree population work.
4690 * We, however, depend on state such as network's proto_list that
4691 * is only initialized after cgroup creation. I found the less
4692 * cumbersome way to deal with it to defer it all to populate time
4694 return mem_cgroup_sockets_init(cont, ss);
4697 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4698 struct cgroup *cont)
4700 mem_cgroup_sockets_destroy(cont, ss);
4702 #else
4703 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4705 return 0;
4708 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4709 struct cgroup *cont)
4712 #endif
4714 static struct cftype mem_cgroup_files[] = {
4716 .name = "usage_in_bytes",
4717 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4718 .read_u64 = mem_cgroup_read,
4719 .register_event = mem_cgroup_usage_register_event,
4720 .unregister_event = mem_cgroup_usage_unregister_event,
4723 .name = "max_usage_in_bytes",
4724 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4725 .trigger = mem_cgroup_reset,
4726 .read_u64 = mem_cgroup_read,
4729 .name = "limit_in_bytes",
4730 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4731 .write_string = mem_cgroup_write,
4732 .read_u64 = mem_cgroup_read,
4735 .name = "soft_limit_in_bytes",
4736 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4737 .write_string = mem_cgroup_write,
4738 .read_u64 = mem_cgroup_read,
4741 .name = "failcnt",
4742 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4743 .trigger = mem_cgroup_reset,
4744 .read_u64 = mem_cgroup_read,
4747 .name = "stat",
4748 .read_map = mem_control_stat_show,
4751 .name = "force_empty",
4752 .trigger = mem_cgroup_force_empty_write,
4755 .name = "use_hierarchy",
4756 .write_u64 = mem_cgroup_hierarchy_write,
4757 .read_u64 = mem_cgroup_hierarchy_read,
4760 .name = "swappiness",
4761 .read_u64 = mem_cgroup_swappiness_read,
4762 .write_u64 = mem_cgroup_swappiness_write,
4765 .name = "move_charge_at_immigrate",
4766 .read_u64 = mem_cgroup_move_charge_read,
4767 .write_u64 = mem_cgroup_move_charge_write,
4770 .name = "oom_control",
4771 .read_map = mem_cgroup_oom_control_read,
4772 .write_u64 = mem_cgroup_oom_control_write,
4773 .register_event = mem_cgroup_oom_register_event,
4774 .unregister_event = mem_cgroup_oom_unregister_event,
4775 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4777 #ifdef CONFIG_NUMA
4779 .name = "numa_stat",
4780 .open = mem_control_numa_stat_open,
4781 .mode = S_IRUGO,
4783 #endif
4786 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4787 static struct cftype memsw_cgroup_files[] = {
4789 .name = "memsw.usage_in_bytes",
4790 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4791 .read_u64 = mem_cgroup_read,
4792 .register_event = mem_cgroup_usage_register_event,
4793 .unregister_event = mem_cgroup_usage_unregister_event,
4796 .name = "memsw.max_usage_in_bytes",
4797 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4798 .trigger = mem_cgroup_reset,
4799 .read_u64 = mem_cgroup_read,
4802 .name = "memsw.limit_in_bytes",
4803 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4804 .write_string = mem_cgroup_write,
4805 .read_u64 = mem_cgroup_read,
4808 .name = "memsw.failcnt",
4809 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4810 .trigger = mem_cgroup_reset,
4811 .read_u64 = mem_cgroup_read,
4815 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4817 if (!do_swap_account)
4818 return 0;
4819 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4820 ARRAY_SIZE(memsw_cgroup_files));
4822 #else
4823 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4825 return 0;
4827 #endif
4829 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4831 struct mem_cgroup_per_node *pn;
4832 struct mem_cgroup_per_zone *mz;
4833 enum lru_list l;
4834 int zone, tmp = node;
4836 * This routine is called against possible nodes.
4837 * But it's BUG to call kmalloc() against offline node.
4839 * TODO: this routine can waste much memory for nodes which will
4840 * never be onlined. It's better to use memory hotplug callback
4841 * function.
4843 if (!node_state(node, N_NORMAL_MEMORY))
4844 tmp = -1;
4845 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4846 if (!pn)
4847 return 1;
4849 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4850 mz = &pn->zoneinfo[zone];
4851 for_each_lru(l)
4852 INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4853 mz->usage_in_excess = 0;
4854 mz->on_tree = false;
4855 mz->mem = memcg;
4857 memcg->info.nodeinfo[node] = pn;
4858 return 0;
4861 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4863 kfree(memcg->info.nodeinfo[node]);
4866 static struct mem_cgroup *mem_cgroup_alloc(void)
4868 struct mem_cgroup *mem;
4869 int size = sizeof(struct mem_cgroup);
4871 /* Can be very big if MAX_NUMNODES is very big */
4872 if (size < PAGE_SIZE)
4873 mem = kzalloc(size, GFP_KERNEL);
4874 else
4875 mem = vzalloc(size);
4877 if (!mem)
4878 return NULL;
4880 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4881 if (!mem->stat)
4882 goto out_free;
4883 spin_lock_init(&mem->pcp_counter_lock);
4884 return mem;
4886 out_free:
4887 if (size < PAGE_SIZE)
4888 kfree(mem);
4889 else
4890 vfree(mem);
4891 return NULL;
4895 * At destroying mem_cgroup, references from swap_cgroup can remain.
4896 * (scanning all at force_empty is too costly...)
4898 * Instead of clearing all references at force_empty, we remember
4899 * the number of reference from swap_cgroup and free mem_cgroup when
4900 * it goes down to 0.
4902 * Removal of cgroup itself succeeds regardless of refs from swap.
4905 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4907 int node;
4909 mem_cgroup_remove_from_trees(memcg);
4910 free_css_id(&mem_cgroup_subsys, &memcg->css);
4912 for_each_node_state(node, N_POSSIBLE)
4913 free_mem_cgroup_per_zone_info(memcg, node);
4915 free_percpu(memcg->stat);
4916 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4917 kfree(memcg);
4918 else
4919 vfree(memcg);
4922 static void mem_cgroup_get(struct mem_cgroup *memcg)
4924 atomic_inc(&memcg->refcnt);
4927 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4929 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4930 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4931 __mem_cgroup_free(memcg);
4932 if (parent)
4933 mem_cgroup_put(parent);
4937 static void mem_cgroup_put(struct mem_cgroup *memcg)
4939 __mem_cgroup_put(memcg, 1);
4943 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4945 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4947 if (!memcg->res.parent)
4948 return NULL;
4949 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4951 EXPORT_SYMBOL(parent_mem_cgroup);
4953 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4954 static void __init enable_swap_cgroup(void)
4956 if (!mem_cgroup_disabled() && really_do_swap_account)
4957 do_swap_account = 1;
4959 #else
4960 static void __init enable_swap_cgroup(void)
4963 #endif
4965 static int mem_cgroup_soft_limit_tree_init(void)
4967 struct mem_cgroup_tree_per_node *rtpn;
4968 struct mem_cgroup_tree_per_zone *rtpz;
4969 int tmp, node, zone;
4971 for_each_node_state(node, N_POSSIBLE) {
4972 tmp = node;
4973 if (!node_state(node, N_NORMAL_MEMORY))
4974 tmp = -1;
4975 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4976 if (!rtpn)
4977 return 1;
4979 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4981 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4982 rtpz = &rtpn->rb_tree_per_zone[zone];
4983 rtpz->rb_root = RB_ROOT;
4984 spin_lock_init(&rtpz->lock);
4987 return 0;
4990 static struct cgroup_subsys_state * __ref
4991 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4993 struct mem_cgroup *memcg, *parent;
4994 long error = -ENOMEM;
4995 int node;
4997 memcg = mem_cgroup_alloc();
4998 if (!memcg)
4999 return ERR_PTR(error);
5001 for_each_node_state(node, N_POSSIBLE)
5002 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5003 goto free_out;
5005 /* root ? */
5006 if (cont->parent == NULL) {
5007 int cpu;
5008 enable_swap_cgroup();
5009 parent = NULL;
5010 if (mem_cgroup_soft_limit_tree_init())
5011 goto free_out;
5012 root_mem_cgroup = memcg;
5013 for_each_possible_cpu(cpu) {
5014 struct memcg_stock_pcp *stock =
5015 &per_cpu(memcg_stock, cpu);
5016 INIT_WORK(&stock->work, drain_local_stock);
5018 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5019 } else {
5020 parent = mem_cgroup_from_cont(cont->parent);
5021 memcg->use_hierarchy = parent->use_hierarchy;
5022 memcg->oom_kill_disable = parent->oom_kill_disable;
5025 if (parent && parent->use_hierarchy) {
5026 res_counter_init(&memcg->res, &parent->res);
5027 res_counter_init(&memcg->memsw, &parent->memsw);
5029 * We increment refcnt of the parent to ensure that we can
5030 * safely access it on res_counter_charge/uncharge.
5031 * This refcnt will be decremented when freeing this
5032 * mem_cgroup(see mem_cgroup_put).
5034 mem_cgroup_get(parent);
5035 } else {
5036 res_counter_init(&memcg->res, NULL);
5037 res_counter_init(&memcg->memsw, NULL);
5039 memcg->last_scanned_node = MAX_NUMNODES;
5040 INIT_LIST_HEAD(&memcg->oom_notify);
5042 if (parent)
5043 memcg->swappiness = mem_cgroup_swappiness(parent);
5044 atomic_set(&memcg->refcnt, 1);
5045 memcg->move_charge_at_immigrate = 0;
5046 mutex_init(&memcg->thresholds_lock);
5047 return &memcg->css;
5048 free_out:
5049 __mem_cgroup_free(memcg);
5050 return ERR_PTR(error);
5053 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5054 struct cgroup *cont)
5056 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5058 return mem_cgroup_force_empty(memcg, false);
5061 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5062 struct cgroup *cont)
5064 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5066 kmem_cgroup_destroy(ss, cont);
5068 mem_cgroup_put(memcg);
5071 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5072 struct cgroup *cont)
5074 int ret;
5076 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5077 ARRAY_SIZE(mem_cgroup_files));
5079 if (!ret)
5080 ret = register_memsw_files(cont, ss);
5082 if (!ret)
5083 ret = register_kmem_files(cont, ss);
5085 return ret;
5088 #ifdef CONFIG_MMU
5089 /* Handlers for move charge at task migration. */
5090 #define PRECHARGE_COUNT_AT_ONCE 256
5091 static int mem_cgroup_do_precharge(unsigned long count)
5093 int ret = 0;
5094 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5095 struct mem_cgroup *memcg = mc.to;
5097 if (mem_cgroup_is_root(memcg)) {
5098 mc.precharge += count;
5099 /* we don't need css_get for root */
5100 return ret;
5102 /* try to charge at once */
5103 if (count > 1) {
5104 struct res_counter *dummy;
5106 * "memcg" cannot be under rmdir() because we've already checked
5107 * by cgroup_lock_live_cgroup() that it is not removed and we
5108 * are still under the same cgroup_mutex. So we can postpone
5109 * css_get().
5111 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5112 goto one_by_one;
5113 if (do_swap_account && res_counter_charge(&memcg->memsw,
5114 PAGE_SIZE * count, &dummy)) {
5115 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5116 goto one_by_one;
5118 mc.precharge += count;
5119 return ret;
5121 one_by_one:
5122 /* fall back to one by one charge */
5123 while (count--) {
5124 if (signal_pending(current)) {
5125 ret = -EINTR;
5126 break;
5128 if (!batch_count--) {
5129 batch_count = PRECHARGE_COUNT_AT_ONCE;
5130 cond_resched();
5132 ret = __mem_cgroup_try_charge(NULL,
5133 GFP_KERNEL, 1, &memcg, false);
5134 if (ret || !memcg)
5135 /* mem_cgroup_clear_mc() will do uncharge later */
5136 return -ENOMEM;
5137 mc.precharge++;
5139 return ret;
5143 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5144 * @vma: the vma the pte to be checked belongs
5145 * @addr: the address corresponding to the pte to be checked
5146 * @ptent: the pte to be checked
5147 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5149 * Returns
5150 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5151 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5152 * move charge. if @target is not NULL, the page is stored in target->page
5153 * with extra refcnt got(Callers should handle it).
5154 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5155 * target for charge migration. if @target is not NULL, the entry is stored
5156 * in target->ent.
5158 * Called with pte lock held.
5160 union mc_target {
5161 struct page *page;
5162 swp_entry_t ent;
5165 enum mc_target_type {
5166 MC_TARGET_NONE, /* not used */
5167 MC_TARGET_PAGE,
5168 MC_TARGET_SWAP,
5171 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5172 unsigned long addr, pte_t ptent)
5174 struct page *page = vm_normal_page(vma, addr, ptent);
5176 if (!page || !page_mapped(page))
5177 return NULL;
5178 if (PageAnon(page)) {
5179 /* we don't move shared anon */
5180 if (!move_anon() || page_mapcount(page) > 2)
5181 return NULL;
5182 } else if (!move_file())
5183 /* we ignore mapcount for file pages */
5184 return NULL;
5185 if (!get_page_unless_zero(page))
5186 return NULL;
5188 return page;
5191 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5192 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5194 int usage_count;
5195 struct page *page = NULL;
5196 swp_entry_t ent = pte_to_swp_entry(ptent);
5198 if (!move_anon() || non_swap_entry(ent))
5199 return NULL;
5200 usage_count = mem_cgroup_count_swap_user(ent, &page);
5201 if (usage_count > 1) { /* we don't move shared anon */
5202 if (page)
5203 put_page(page);
5204 return NULL;
5206 if (do_swap_account)
5207 entry->val = ent.val;
5209 return page;
5212 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5213 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5215 struct page *page = NULL;
5216 struct inode *inode;
5217 struct address_space *mapping;
5218 pgoff_t pgoff;
5220 if (!vma->vm_file) /* anonymous vma */
5221 return NULL;
5222 if (!move_file())
5223 return NULL;
5225 inode = vma->vm_file->f_path.dentry->d_inode;
5226 mapping = vma->vm_file->f_mapping;
5227 if (pte_none(ptent))
5228 pgoff = linear_page_index(vma, addr);
5229 else /* pte_file(ptent) is true */
5230 pgoff = pte_to_pgoff(ptent);
5232 /* page is moved even if it's not RSS of this task(page-faulted). */
5233 page = find_get_page(mapping, pgoff);
5235 #ifdef CONFIG_SWAP
5236 /* shmem/tmpfs may report page out on swap: account for that too. */
5237 if (radix_tree_exceptional_entry(page)) {
5238 swp_entry_t swap = radix_to_swp_entry(page);
5239 if (do_swap_account)
5240 *entry = swap;
5241 page = find_get_page(&swapper_space, swap.val);
5243 #endif
5244 return page;
5247 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5248 unsigned long addr, pte_t ptent, union mc_target *target)
5250 struct page *page = NULL;
5251 struct page_cgroup *pc;
5252 int ret = 0;
5253 swp_entry_t ent = { .val = 0 };
5255 if (pte_present(ptent))
5256 page = mc_handle_present_pte(vma, addr, ptent);
5257 else if (is_swap_pte(ptent))
5258 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5259 else if (pte_none(ptent) || pte_file(ptent))
5260 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5262 if (!page && !ent.val)
5263 return 0;
5264 if (page) {
5265 pc = lookup_page_cgroup(page);
5267 * Do only loose check w/o page_cgroup lock.
5268 * mem_cgroup_move_account() checks the pc is valid or not under
5269 * the lock.
5271 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5272 ret = MC_TARGET_PAGE;
5273 if (target)
5274 target->page = page;
5276 if (!ret || !target)
5277 put_page(page);
5279 /* There is a swap entry and a page doesn't exist or isn't charged */
5280 if (ent.val && !ret &&
5281 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5282 ret = MC_TARGET_SWAP;
5283 if (target)
5284 target->ent = ent;
5286 return ret;
5289 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5290 unsigned long addr, unsigned long end,
5291 struct mm_walk *walk)
5293 struct vm_area_struct *vma = walk->private;
5294 pte_t *pte;
5295 spinlock_t *ptl;
5297 split_huge_page_pmd(walk->mm, pmd);
5299 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5300 for (; addr != end; pte++, addr += PAGE_SIZE)
5301 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5302 mc.precharge++; /* increment precharge temporarily */
5303 pte_unmap_unlock(pte - 1, ptl);
5304 cond_resched();
5306 return 0;
5309 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5311 unsigned long precharge;
5312 struct vm_area_struct *vma;
5314 down_read(&mm->mmap_sem);
5315 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5316 struct mm_walk mem_cgroup_count_precharge_walk = {
5317 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5318 .mm = mm,
5319 .private = vma,
5321 if (is_vm_hugetlb_page(vma))
5322 continue;
5323 walk_page_range(vma->vm_start, vma->vm_end,
5324 &mem_cgroup_count_precharge_walk);
5326 up_read(&mm->mmap_sem);
5328 precharge = mc.precharge;
5329 mc.precharge = 0;
5331 return precharge;
5334 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5336 unsigned long precharge = mem_cgroup_count_precharge(mm);
5338 VM_BUG_ON(mc.moving_task);
5339 mc.moving_task = current;
5340 return mem_cgroup_do_precharge(precharge);
5343 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5344 static void __mem_cgroup_clear_mc(void)
5346 struct mem_cgroup *from = mc.from;
5347 struct mem_cgroup *to = mc.to;
5349 /* we must uncharge all the leftover precharges from mc.to */
5350 if (mc.precharge) {
5351 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5352 mc.precharge = 0;
5355 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5356 * we must uncharge here.
5358 if (mc.moved_charge) {
5359 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5360 mc.moved_charge = 0;
5362 /* we must fixup refcnts and charges */
5363 if (mc.moved_swap) {
5364 /* uncharge swap account from the old cgroup */
5365 if (!mem_cgroup_is_root(mc.from))
5366 res_counter_uncharge(&mc.from->memsw,
5367 PAGE_SIZE * mc.moved_swap);
5368 __mem_cgroup_put(mc.from, mc.moved_swap);
5370 if (!mem_cgroup_is_root(mc.to)) {
5372 * we charged both to->res and to->memsw, so we should
5373 * uncharge to->res.
5375 res_counter_uncharge(&mc.to->res,
5376 PAGE_SIZE * mc.moved_swap);
5378 /* we've already done mem_cgroup_get(mc.to) */
5379 mc.moved_swap = 0;
5381 memcg_oom_recover(from);
5382 memcg_oom_recover(to);
5383 wake_up_all(&mc.waitq);
5386 static void mem_cgroup_clear_mc(void)
5388 struct mem_cgroup *from = mc.from;
5391 * we must clear moving_task before waking up waiters at the end of
5392 * task migration.
5394 mc.moving_task = NULL;
5395 __mem_cgroup_clear_mc();
5396 spin_lock(&mc.lock);
5397 mc.from = NULL;
5398 mc.to = NULL;
5399 spin_unlock(&mc.lock);
5400 mem_cgroup_end_move(from);
5403 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5404 struct cgroup *cgroup,
5405 struct cgroup_taskset *tset)
5407 struct task_struct *p = cgroup_taskset_first(tset);
5408 int ret = 0;
5409 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5411 if (memcg->move_charge_at_immigrate) {
5412 struct mm_struct *mm;
5413 struct mem_cgroup *from = mem_cgroup_from_task(p);
5415 VM_BUG_ON(from == memcg);
5417 mm = get_task_mm(p);
5418 if (!mm)
5419 return 0;
5420 /* We move charges only when we move a owner of the mm */
5421 if (mm->owner == p) {
5422 VM_BUG_ON(mc.from);
5423 VM_BUG_ON(mc.to);
5424 VM_BUG_ON(mc.precharge);
5425 VM_BUG_ON(mc.moved_charge);
5426 VM_BUG_ON(mc.moved_swap);
5427 mem_cgroup_start_move(from);
5428 spin_lock(&mc.lock);
5429 mc.from = from;
5430 mc.to = memcg;
5431 spin_unlock(&mc.lock);
5432 /* We set mc.moving_task later */
5434 ret = mem_cgroup_precharge_mc(mm);
5435 if (ret)
5436 mem_cgroup_clear_mc();
5438 mmput(mm);
5440 return ret;
5443 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5444 struct cgroup *cgroup,
5445 struct cgroup_taskset *tset)
5447 mem_cgroup_clear_mc();
5450 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5451 unsigned long addr, unsigned long end,
5452 struct mm_walk *walk)
5454 int ret = 0;
5455 struct vm_area_struct *vma = walk->private;
5456 pte_t *pte;
5457 spinlock_t *ptl;
5459 split_huge_page_pmd(walk->mm, pmd);
5460 retry:
5461 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5462 for (; addr != end; addr += PAGE_SIZE) {
5463 pte_t ptent = *(pte++);
5464 union mc_target target;
5465 int type;
5466 struct page *page;
5467 struct page_cgroup *pc;
5468 swp_entry_t ent;
5470 if (!mc.precharge)
5471 break;
5473 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5474 switch (type) {
5475 case MC_TARGET_PAGE:
5476 page = target.page;
5477 if (isolate_lru_page(page))
5478 goto put;
5479 pc = lookup_page_cgroup(page);
5480 if (!mem_cgroup_move_account(page, 1, pc,
5481 mc.from, mc.to, false)) {
5482 mc.precharge--;
5483 /* we uncharge from mc.from later. */
5484 mc.moved_charge++;
5486 putback_lru_page(page);
5487 put: /* is_target_pte_for_mc() gets the page */
5488 put_page(page);
5489 break;
5490 case MC_TARGET_SWAP:
5491 ent = target.ent;
5492 if (!mem_cgroup_move_swap_account(ent,
5493 mc.from, mc.to, false)) {
5494 mc.precharge--;
5495 /* we fixup refcnts and charges later. */
5496 mc.moved_swap++;
5498 break;
5499 default:
5500 break;
5503 pte_unmap_unlock(pte - 1, ptl);
5504 cond_resched();
5506 if (addr != end) {
5508 * We have consumed all precharges we got in can_attach().
5509 * We try charge one by one, but don't do any additional
5510 * charges to mc.to if we have failed in charge once in attach()
5511 * phase.
5513 ret = mem_cgroup_do_precharge(1);
5514 if (!ret)
5515 goto retry;
5518 return ret;
5521 static void mem_cgroup_move_charge(struct mm_struct *mm)
5523 struct vm_area_struct *vma;
5525 lru_add_drain_all();
5526 retry:
5527 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5529 * Someone who are holding the mmap_sem might be waiting in
5530 * waitq. So we cancel all extra charges, wake up all waiters,
5531 * and retry. Because we cancel precharges, we might not be able
5532 * to move enough charges, but moving charge is a best-effort
5533 * feature anyway, so it wouldn't be a big problem.
5535 __mem_cgroup_clear_mc();
5536 cond_resched();
5537 goto retry;
5539 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5540 int ret;
5541 struct mm_walk mem_cgroup_move_charge_walk = {
5542 .pmd_entry = mem_cgroup_move_charge_pte_range,
5543 .mm = mm,
5544 .private = vma,
5546 if (is_vm_hugetlb_page(vma))
5547 continue;
5548 ret = walk_page_range(vma->vm_start, vma->vm_end,
5549 &mem_cgroup_move_charge_walk);
5550 if (ret)
5552 * means we have consumed all precharges and failed in
5553 * doing additional charge. Just abandon here.
5555 break;
5557 up_read(&mm->mmap_sem);
5560 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5561 struct cgroup *cont,
5562 struct cgroup_taskset *tset)
5564 struct task_struct *p = cgroup_taskset_first(tset);
5565 struct mm_struct *mm = get_task_mm(p);
5567 if (mm) {
5568 if (mc.to)
5569 mem_cgroup_move_charge(mm);
5570 put_swap_token(mm);
5571 mmput(mm);
5573 if (mc.to)
5574 mem_cgroup_clear_mc();
5576 #else /* !CONFIG_MMU */
5577 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5578 struct cgroup *cgroup,
5579 struct cgroup_taskset *tset)
5581 return 0;
5583 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5584 struct cgroup *cgroup,
5585 struct cgroup_taskset *tset)
5588 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5589 struct cgroup *cont,
5590 struct cgroup_taskset *tset)
5593 #endif
5595 struct cgroup_subsys mem_cgroup_subsys = {
5596 .name = "memory",
5597 .subsys_id = mem_cgroup_subsys_id,
5598 .create = mem_cgroup_create,
5599 .pre_destroy = mem_cgroup_pre_destroy,
5600 .destroy = mem_cgroup_destroy,
5601 .populate = mem_cgroup_populate,
5602 .can_attach = mem_cgroup_can_attach,
5603 .cancel_attach = mem_cgroup_cancel_attach,
5604 .attach = mem_cgroup_move_task,
5605 .early_init = 0,
5606 .use_id = 1,
5609 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5610 static int __init enable_swap_account(char *s)
5612 /* consider enabled if no parameter or 1 is given */
5613 if (!strcmp(s, "1"))
5614 really_do_swap_account = 1;
5615 else if (!strcmp(s, "0"))
5616 really_do_swap_account = 0;
5617 return 1;
5619 __setup("swapaccount=", enable_swap_account);
5621 #endif