[PATCH] HZ free ntp
[pohmelfs.git] / kernel / hrtimer.c
blob80666f6cd4f9cd5caf55b633d369dd78423c1f6a
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
7 * High-resolution kernel timers
9 * In contrast to the low-resolution timeout API implemented in
10 * kernel/timer.c, hrtimers provide finer resolution and accuracy
11 * depending on system configuration and capabilities.
13 * These timers are currently used for:
14 * - itimers
15 * - POSIX timers
16 * - nanosleep
17 * - precise in-kernel timing
19 * Started by: Thomas Gleixner and Ingo Molnar
21 * Credits:
22 * based on kernel/timer.c
24 * Help, testing, suggestions, bugfixes, improvements were
25 * provided by:
27 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
28 * et. al.
30 * For licencing details see kernel-base/COPYING
33 #include <linux/cpu.h>
34 #include <linux/module.h>
35 #include <linux/percpu.h>
36 #include <linux/hrtimer.h>
37 #include <linux/notifier.h>
38 #include <linux/syscalls.h>
39 #include <linux/interrupt.h>
41 #include <asm/uaccess.h>
43 /**
44 * ktime_get - get the monotonic time in ktime_t format
46 * returns the time in ktime_t format
48 static ktime_t ktime_get(void)
50 struct timespec now;
52 ktime_get_ts(&now);
54 return timespec_to_ktime(now);
57 /**
58 * ktime_get_real - get the real (wall-) time in ktime_t format
60 * returns the time in ktime_t format
62 static ktime_t ktime_get_real(void)
64 struct timespec now;
66 getnstimeofday(&now);
68 return timespec_to_ktime(now);
71 EXPORT_SYMBOL_GPL(ktime_get_real);
74 * The timer bases:
76 * Note: If we want to add new timer bases, we have to skip the two
77 * clock ids captured by the cpu-timers. We do this by holding empty
78 * entries rather than doing math adjustment of the clock ids.
79 * This ensures that we capture erroneous accesses to these clock ids
80 * rather than moving them into the range of valid clock id's.
83 #define MAX_HRTIMER_BASES 2
85 static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) =
88 .index = CLOCK_REALTIME,
89 .get_time = &ktime_get_real,
90 .resolution = KTIME_REALTIME_RES,
93 .index = CLOCK_MONOTONIC,
94 .get_time = &ktime_get,
95 .resolution = KTIME_MONOTONIC_RES,
99 /**
100 * ktime_get_ts - get the monotonic clock in timespec format
101 * @ts: pointer to timespec variable
103 * The function calculates the monotonic clock from the realtime
104 * clock and the wall_to_monotonic offset and stores the result
105 * in normalized timespec format in the variable pointed to by @ts.
107 void ktime_get_ts(struct timespec *ts)
109 struct timespec tomono;
110 unsigned long seq;
112 do {
113 seq = read_seqbegin(&xtime_lock);
114 getnstimeofday(ts);
115 tomono = wall_to_monotonic;
117 } while (read_seqretry(&xtime_lock, seq));
119 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
120 ts->tv_nsec + tomono.tv_nsec);
122 EXPORT_SYMBOL_GPL(ktime_get_ts);
125 * Get the coarse grained time at the softirq based on xtime and
126 * wall_to_monotonic.
128 static void hrtimer_get_softirq_time(struct hrtimer_base *base)
130 ktime_t xtim, tomono;
131 struct timespec xts;
132 unsigned long seq;
134 do {
135 seq = read_seqbegin(&xtime_lock);
136 #ifdef CONFIG_NO_HZ
137 getnstimeofday(&xts);
138 #else
139 xts = xtime;
140 #endif
141 } while (read_seqretry(&xtime_lock, seq));
143 xtim = timespec_to_ktime(xts);
144 tomono = timespec_to_ktime(wall_to_monotonic);
145 base[CLOCK_REALTIME].softirq_time = xtim;
146 base[CLOCK_MONOTONIC].softirq_time = ktime_add(xtim, tomono);
150 * Functions and macros which are different for UP/SMP systems are kept in a
151 * single place
153 #ifdef CONFIG_SMP
155 #define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0)
158 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
159 * means that all timers which are tied to this base via timer->base are
160 * locked, and the base itself is locked too.
162 * So __run_timers/migrate_timers can safely modify all timers which could
163 * be found on the lists/queues.
165 * When the timer's base is locked, and the timer removed from list, it is
166 * possible to set timer->base = NULL and drop the lock: the timer remains
167 * locked.
169 static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer,
170 unsigned long *flags)
172 struct hrtimer_base *base;
174 for (;;) {
175 base = timer->base;
176 if (likely(base != NULL)) {
177 spin_lock_irqsave(&base->lock, *flags);
178 if (likely(base == timer->base))
179 return base;
180 /* The timer has migrated to another CPU: */
181 spin_unlock_irqrestore(&base->lock, *flags);
183 cpu_relax();
188 * Switch the timer base to the current CPU when possible.
190 static inline struct hrtimer_base *
191 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base)
193 struct hrtimer_base *new_base;
195 new_base = &__get_cpu_var(hrtimer_bases)[base->index];
197 if (base != new_base) {
199 * We are trying to schedule the timer on the local CPU.
200 * However we can't change timer's base while it is running,
201 * so we keep it on the same CPU. No hassle vs. reprogramming
202 * the event source in the high resolution case. The softirq
203 * code will take care of this when the timer function has
204 * completed. There is no conflict as we hold the lock until
205 * the timer is enqueued.
207 if (unlikely(base->curr_timer == timer))
208 return base;
210 /* See the comment in lock_timer_base() */
211 timer->base = NULL;
212 spin_unlock(&base->lock);
213 spin_lock(&new_base->lock);
214 timer->base = new_base;
216 return new_base;
219 #else /* CONFIG_SMP */
221 #define set_curr_timer(b, t) do { } while (0)
223 static inline struct hrtimer_base *
224 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
226 struct hrtimer_base *base = timer->base;
228 spin_lock_irqsave(&base->lock, *flags);
230 return base;
233 #define switch_hrtimer_base(t, b) (b)
235 #endif /* !CONFIG_SMP */
238 * Functions for the union type storage format of ktime_t which are
239 * too large for inlining:
241 #if BITS_PER_LONG < 64
242 # ifndef CONFIG_KTIME_SCALAR
244 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
245 * @kt: addend
246 * @nsec: the scalar nsec value to add
248 * Returns the sum of kt and nsec in ktime_t format
250 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
252 ktime_t tmp;
254 if (likely(nsec < NSEC_PER_SEC)) {
255 tmp.tv64 = nsec;
256 } else {
257 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
259 tmp = ktime_set((long)nsec, rem);
262 return ktime_add(kt, tmp);
265 #else /* CONFIG_KTIME_SCALAR */
267 # endif /* !CONFIG_KTIME_SCALAR */
270 * Divide a ktime value by a nanosecond value
272 static unsigned long ktime_divns(const ktime_t kt, s64 div)
274 u64 dclc, inc, dns;
275 int sft = 0;
277 dclc = dns = ktime_to_ns(kt);
278 inc = div;
279 /* Make sure the divisor is less than 2^32: */
280 while (div >> 32) {
281 sft++;
282 div >>= 1;
284 dclc >>= sft;
285 do_div(dclc, (unsigned long) div);
287 return (unsigned long) dclc;
290 #else /* BITS_PER_LONG < 64 */
291 # define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div))
292 #endif /* BITS_PER_LONG >= 64 */
295 * Counterpart to lock_timer_base above:
297 static inline
298 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
300 spin_unlock_irqrestore(&timer->base->lock, *flags);
304 * hrtimer_forward - forward the timer expiry
305 * @timer: hrtimer to forward
306 * @now: forward past this time
307 * @interval: the interval to forward
309 * Forward the timer expiry so it will expire in the future.
310 * Returns the number of overruns.
312 unsigned long
313 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
315 unsigned long orun = 1;
316 ktime_t delta;
318 delta = ktime_sub(now, timer->expires);
320 if (delta.tv64 < 0)
321 return 0;
323 if (interval.tv64 < timer->base->resolution.tv64)
324 interval.tv64 = timer->base->resolution.tv64;
326 if (unlikely(delta.tv64 >= interval.tv64)) {
327 s64 incr = ktime_to_ns(interval);
329 orun = ktime_divns(delta, incr);
330 timer->expires = ktime_add_ns(timer->expires, incr * orun);
331 if (timer->expires.tv64 > now.tv64)
332 return orun;
334 * This (and the ktime_add() below) is the
335 * correction for exact:
337 orun++;
339 timer->expires = ktime_add(timer->expires, interval);
341 return orun;
345 * enqueue_hrtimer - internal function to (re)start a timer
347 * The timer is inserted in expiry order. Insertion into the
348 * red black tree is O(log(n)). Must hold the base lock.
350 static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
352 struct rb_node **link = &base->active.rb_node;
353 struct rb_node *parent = NULL;
354 struct hrtimer *entry;
357 * Find the right place in the rbtree:
359 while (*link) {
360 parent = *link;
361 entry = rb_entry(parent, struct hrtimer, node);
363 * We dont care about collisions. Nodes with
364 * the same expiry time stay together.
366 if (timer->expires.tv64 < entry->expires.tv64)
367 link = &(*link)->rb_left;
368 else
369 link = &(*link)->rb_right;
373 * Insert the timer to the rbtree and check whether it
374 * replaces the first pending timer
376 rb_link_node(&timer->node, parent, link);
377 rb_insert_color(&timer->node, &base->active);
379 if (!base->first || timer->expires.tv64 <
380 rb_entry(base->first, struct hrtimer, node)->expires.tv64)
381 base->first = &timer->node;
385 * __remove_hrtimer - internal function to remove a timer
387 * Caller must hold the base lock.
389 static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
392 * Remove the timer from the rbtree and replace the
393 * first entry pointer if necessary.
395 if (base->first == &timer->node)
396 base->first = rb_next(&timer->node);
397 rb_erase(&timer->node, &base->active);
398 rb_set_parent(&timer->node, &timer->node);
402 * remove hrtimer, called with base lock held
404 static inline int
405 remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
407 if (hrtimer_active(timer)) {
408 __remove_hrtimer(timer, base);
409 return 1;
411 return 0;
415 * hrtimer_start - (re)start an relative timer on the current CPU
416 * @timer: the timer to be added
417 * @tim: expiry time
418 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
420 * Returns:
421 * 0 on success
422 * 1 when the timer was active
425 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
427 struct hrtimer_base *base, *new_base;
428 unsigned long flags;
429 int ret;
431 base = lock_hrtimer_base(timer, &flags);
433 /* Remove an active timer from the queue: */
434 ret = remove_hrtimer(timer, base);
436 /* Switch the timer base, if necessary: */
437 new_base = switch_hrtimer_base(timer, base);
439 if (mode == HRTIMER_REL) {
440 tim = ktime_add(tim, new_base->get_time());
442 * CONFIG_TIME_LOW_RES is a temporary way for architectures
443 * to signal that they simply return xtime in
444 * do_gettimeoffset(). In this case we want to round up by
445 * resolution when starting a relative timer, to avoid short
446 * timeouts. This will go away with the GTOD framework.
448 #ifdef CONFIG_TIME_LOW_RES
449 tim = ktime_add(tim, base->resolution);
450 #endif
452 timer->expires = tim;
454 enqueue_hrtimer(timer, new_base);
456 unlock_hrtimer_base(timer, &flags);
458 return ret;
460 EXPORT_SYMBOL_GPL(hrtimer_start);
463 * hrtimer_try_to_cancel - try to deactivate a timer
464 * @timer: hrtimer to stop
466 * Returns:
467 * 0 when the timer was not active
468 * 1 when the timer was active
469 * -1 when the timer is currently excuting the callback function and
470 * cannot be stopped
472 int hrtimer_try_to_cancel(struct hrtimer *timer)
474 struct hrtimer_base *base;
475 unsigned long flags;
476 int ret = -1;
478 base = lock_hrtimer_base(timer, &flags);
480 if (base->curr_timer != timer)
481 ret = remove_hrtimer(timer, base);
483 unlock_hrtimer_base(timer, &flags);
485 return ret;
488 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
491 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
492 * @timer: the timer to be cancelled
494 * Returns:
495 * 0 when the timer was not active
496 * 1 when the timer was active
498 int hrtimer_cancel(struct hrtimer *timer)
500 for (;;) {
501 int ret = hrtimer_try_to_cancel(timer);
503 if (ret >= 0)
504 return ret;
505 cpu_relax();
508 EXPORT_SYMBOL_GPL(hrtimer_cancel);
511 * hrtimer_get_remaining - get remaining time for the timer
512 * @timer: the timer to read
514 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
516 struct hrtimer_base *base;
517 unsigned long flags;
518 ktime_t rem;
520 base = lock_hrtimer_base(timer, &flags);
521 rem = ktime_sub(timer->expires, timer->base->get_time());
522 unlock_hrtimer_base(timer, &flags);
524 return rem;
526 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
528 #ifdef CONFIG_NO_IDLE_HZ
530 * hrtimer_get_next_event - get the time until next expiry event
532 * Returns the delta to the next expiry event or KTIME_MAX if no timer
533 * is pending.
535 ktime_t hrtimer_get_next_event(void)
537 struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
538 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
539 unsigned long flags;
540 int i;
542 for (i = 0; i < MAX_HRTIMER_BASES; i++, base++) {
543 struct hrtimer *timer;
545 spin_lock_irqsave(&base->lock, flags);
546 if (!base->first) {
547 spin_unlock_irqrestore(&base->lock, flags);
548 continue;
550 timer = rb_entry(base->first, struct hrtimer, node);
551 delta.tv64 = timer->expires.tv64;
552 spin_unlock_irqrestore(&base->lock, flags);
553 delta = ktime_sub(delta, base->get_time());
554 if (delta.tv64 < mindelta.tv64)
555 mindelta.tv64 = delta.tv64;
557 if (mindelta.tv64 < 0)
558 mindelta.tv64 = 0;
559 return mindelta;
561 #endif
564 * hrtimer_init - initialize a timer to the given clock
565 * @timer: the timer to be initialized
566 * @clock_id: the clock to be used
567 * @mode: timer mode abs/rel
569 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
570 enum hrtimer_mode mode)
572 struct hrtimer_base *bases;
574 memset(timer, 0, sizeof(struct hrtimer));
576 bases = __raw_get_cpu_var(hrtimer_bases);
578 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_ABS)
579 clock_id = CLOCK_MONOTONIC;
581 timer->base = &bases[clock_id];
582 rb_set_parent(&timer->node, &timer->node);
584 EXPORT_SYMBOL_GPL(hrtimer_init);
587 * hrtimer_get_res - get the timer resolution for a clock
588 * @which_clock: which clock to query
589 * @tp: pointer to timespec variable to store the resolution
591 * Store the resolution of the clock selected by @which_clock in the
592 * variable pointed to by @tp.
594 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
596 struct hrtimer_base *bases;
598 bases = __raw_get_cpu_var(hrtimer_bases);
599 *tp = ktime_to_timespec(bases[which_clock].resolution);
601 return 0;
603 EXPORT_SYMBOL_GPL(hrtimer_get_res);
606 * Expire the per base hrtimer-queue:
608 static inline void run_hrtimer_queue(struct hrtimer_base *base)
610 struct rb_node *node;
612 if (!base->first)
613 return;
615 if (base->get_softirq_time)
616 base->softirq_time = base->get_softirq_time();
618 spin_lock_irq(&base->lock);
620 while ((node = base->first)) {
621 struct hrtimer *timer;
622 int (*fn)(struct hrtimer *);
623 int restart;
625 timer = rb_entry(node, struct hrtimer, node);
626 if (base->softirq_time.tv64 <= timer->expires.tv64)
627 break;
629 fn = timer->function;
630 set_curr_timer(base, timer);
631 __remove_hrtimer(timer, base);
632 spin_unlock_irq(&base->lock);
634 restart = fn(timer);
636 spin_lock_irq(&base->lock);
638 if (restart != HRTIMER_NORESTART) {
639 BUG_ON(hrtimer_active(timer));
640 enqueue_hrtimer(timer, base);
643 set_curr_timer(base, NULL);
644 spin_unlock_irq(&base->lock);
648 * Called from timer softirq every jiffy, expire hrtimers:
650 void hrtimer_run_queues(void)
652 struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
653 int i;
655 hrtimer_get_softirq_time(base);
657 for (i = 0; i < MAX_HRTIMER_BASES; i++)
658 run_hrtimer_queue(&base[i]);
662 * Sleep related functions:
664 static int hrtimer_wakeup(struct hrtimer *timer)
666 struct hrtimer_sleeper *t =
667 container_of(timer, struct hrtimer_sleeper, timer);
668 struct task_struct *task = t->task;
670 t->task = NULL;
671 if (task)
672 wake_up_process(task);
674 return HRTIMER_NORESTART;
677 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
679 sl->timer.function = hrtimer_wakeup;
680 sl->task = task;
683 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
685 hrtimer_init_sleeper(t, current);
687 do {
688 set_current_state(TASK_INTERRUPTIBLE);
689 hrtimer_start(&t->timer, t->timer.expires, mode);
691 schedule();
693 hrtimer_cancel(&t->timer);
694 mode = HRTIMER_ABS;
696 } while (t->task && !signal_pending(current));
698 return t->task == NULL;
701 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
703 struct hrtimer_sleeper t;
704 struct timespec __user *rmtp;
705 struct timespec tu;
706 ktime_t time;
708 restart->fn = do_no_restart_syscall;
710 hrtimer_init(&t.timer, restart->arg0, HRTIMER_ABS);
711 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
713 if (do_nanosleep(&t, HRTIMER_ABS))
714 return 0;
716 rmtp = (struct timespec __user *) restart->arg1;
717 if (rmtp) {
718 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
719 if (time.tv64 <= 0)
720 return 0;
721 tu = ktime_to_timespec(time);
722 if (copy_to_user(rmtp, &tu, sizeof(tu)))
723 return -EFAULT;
726 restart->fn = hrtimer_nanosleep_restart;
728 /* The other values in restart are already filled in */
729 return -ERESTART_RESTARTBLOCK;
732 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
733 const enum hrtimer_mode mode, const clockid_t clockid)
735 struct restart_block *restart;
736 struct hrtimer_sleeper t;
737 struct timespec tu;
738 ktime_t rem;
740 hrtimer_init(&t.timer, clockid, mode);
741 t.timer.expires = timespec_to_ktime(*rqtp);
742 if (do_nanosleep(&t, mode))
743 return 0;
745 /* Absolute timers do not update the rmtp value and restart: */
746 if (mode == HRTIMER_ABS)
747 return -ERESTARTNOHAND;
749 if (rmtp) {
750 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
751 if (rem.tv64 <= 0)
752 return 0;
753 tu = ktime_to_timespec(rem);
754 if (copy_to_user(rmtp, &tu, sizeof(tu)))
755 return -EFAULT;
758 restart = &current_thread_info()->restart_block;
759 restart->fn = hrtimer_nanosleep_restart;
760 restart->arg0 = (unsigned long) t.timer.base->index;
761 restart->arg1 = (unsigned long) rmtp;
762 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
763 restart->arg3 = t.timer.expires.tv64 >> 32;
765 return -ERESTART_RESTARTBLOCK;
768 asmlinkage long
769 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
771 struct timespec tu;
773 if (copy_from_user(&tu, rqtp, sizeof(tu)))
774 return -EFAULT;
776 if (!timespec_valid(&tu))
777 return -EINVAL;
779 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC);
783 * Functions related to boot-time initialization:
785 static void __devinit init_hrtimers_cpu(int cpu)
787 struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu);
788 int i;
790 for (i = 0; i < MAX_HRTIMER_BASES; i++, base++) {
791 spin_lock_init(&base->lock);
792 lockdep_set_class(&base->lock, &base->lock_key);
796 #ifdef CONFIG_HOTPLUG_CPU
798 static void migrate_hrtimer_list(struct hrtimer_base *old_base,
799 struct hrtimer_base *new_base)
801 struct hrtimer *timer;
802 struct rb_node *node;
804 while ((node = rb_first(&old_base->active))) {
805 timer = rb_entry(node, struct hrtimer, node);
806 __remove_hrtimer(timer, old_base);
807 timer->base = new_base;
808 enqueue_hrtimer(timer, new_base);
812 static void migrate_hrtimers(int cpu)
814 struct hrtimer_base *old_base, *new_base;
815 int i;
817 BUG_ON(cpu_online(cpu));
818 old_base = per_cpu(hrtimer_bases, cpu);
819 new_base = get_cpu_var(hrtimer_bases);
821 local_irq_disable();
823 for (i = 0; i < MAX_HRTIMER_BASES; i++) {
825 spin_lock(&new_base->lock);
826 spin_lock(&old_base->lock);
828 BUG_ON(old_base->curr_timer);
830 migrate_hrtimer_list(old_base, new_base);
832 spin_unlock(&old_base->lock);
833 spin_unlock(&new_base->lock);
834 old_base++;
835 new_base++;
838 local_irq_enable();
839 put_cpu_var(hrtimer_bases);
841 #endif /* CONFIG_HOTPLUG_CPU */
843 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
844 unsigned long action, void *hcpu)
846 long cpu = (long)hcpu;
848 switch (action) {
850 case CPU_UP_PREPARE:
851 init_hrtimers_cpu(cpu);
852 break;
854 #ifdef CONFIG_HOTPLUG_CPU
855 case CPU_DEAD:
856 migrate_hrtimers(cpu);
857 break;
858 #endif
860 default:
861 break;
864 return NOTIFY_OK;
867 static struct notifier_block __cpuinitdata hrtimers_nb = {
868 .notifier_call = hrtimer_cpu_notify,
871 void __init hrtimers_init(void)
873 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
874 (void *)(long)smp_processor_id());
875 register_cpu_notifier(&hrtimers_nb);