2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info
*pipe
,
41 struct pipe_buffer
*buf
)
43 struct page
*page
= buf
->page
;
44 struct address_space
*mapping
;
48 mapping
= page_mapping(page
);
50 WARN_ON(!PageUptodate(page
));
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
60 wait_on_page_writeback(page
);
62 if (page_has_private(page
) &&
63 !try_to_release_page(page
, GFP_KERNEL
))
67 * If we succeeded in removing the mapping, set LRU flag
70 if (remove_mapping(mapping
, page
)) {
71 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
85 static void page_cache_pipe_buf_release(struct pipe_inode_info
*pipe
,
86 struct pipe_buffer
*buf
)
88 page_cache_release(buf
->page
);
89 buf
->flags
&= ~PIPE_BUF_FLAG_LRU
;
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info
*pipe
,
97 struct pipe_buffer
*buf
)
99 struct page
*page
= buf
->page
;
102 if (!PageUptodate(page
)) {
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
109 if (!page
->mapping
) {
115 * Uh oh, read-error from disk.
117 if (!PageUptodate(page
)) {
123 * Page is ok afterall, we are done.
134 const struct pipe_buf_operations page_cache_pipe_buf_ops
= {
136 .map
= generic_pipe_buf_map
,
137 .unmap
= generic_pipe_buf_unmap
,
138 .confirm
= page_cache_pipe_buf_confirm
,
139 .release
= page_cache_pipe_buf_release
,
140 .steal
= page_cache_pipe_buf_steal
,
141 .get
= generic_pipe_buf_get
,
144 static int user_page_pipe_buf_steal(struct pipe_inode_info
*pipe
,
145 struct pipe_buffer
*buf
)
147 if (!(buf
->flags
& PIPE_BUF_FLAG_GIFT
))
150 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
151 return generic_pipe_buf_steal(pipe
, buf
);
154 static const struct pipe_buf_operations user_page_pipe_buf_ops
= {
156 .map
= generic_pipe_buf_map
,
157 .unmap
= generic_pipe_buf_unmap
,
158 .confirm
= generic_pipe_buf_confirm
,
159 .release
= page_cache_pipe_buf_release
,
160 .steal
= user_page_pipe_buf_steal
,
161 .get
= generic_pipe_buf_get
,
164 static void wakeup_pipe_readers(struct pipe_inode_info
*pipe
)
167 if (waitqueue_active(&pipe
->wait
))
168 wake_up_interruptible(&pipe
->wait
);
169 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
173 * splice_to_pipe - fill passed data into a pipe
174 * @pipe: pipe to fill
178 * @spd contains a map of pages and len/offset tuples, along with
179 * the struct pipe_buf_operations associated with these pages. This
180 * function will link that data to the pipe.
183 ssize_t
splice_to_pipe(struct pipe_inode_info
*pipe
,
184 struct splice_pipe_desc
*spd
)
186 unsigned int spd_pages
= spd
->nr_pages
;
187 int ret
, do_wakeup
, page_nr
;
196 if (!pipe
->readers
) {
197 send_sig(SIGPIPE
, current
, 0);
203 if (pipe
->nrbufs
< pipe
->buffers
) {
204 int newbuf
= (pipe
->curbuf
+ pipe
->nrbufs
) & (pipe
->buffers
- 1);
205 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
207 buf
->page
= spd
->pages
[page_nr
];
208 buf
->offset
= spd
->partial
[page_nr
].offset
;
209 buf
->len
= spd
->partial
[page_nr
].len
;
210 buf
->private = spd
->partial
[page_nr
].private;
212 if (spd
->flags
& SPLICE_F_GIFT
)
213 buf
->flags
|= PIPE_BUF_FLAG_GIFT
;
222 if (!--spd
->nr_pages
)
224 if (pipe
->nrbufs
< pipe
->buffers
)
230 if (spd
->flags
& SPLICE_F_NONBLOCK
) {
236 if (signal_pending(current
)) {
244 if (waitqueue_active(&pipe
->wait
))
245 wake_up_interruptible_sync(&pipe
->wait
);
246 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
250 pipe
->waiting_writers
++;
252 pipe
->waiting_writers
--;
258 wakeup_pipe_readers(pipe
);
260 while (page_nr
< spd_pages
)
261 spd
->spd_release(spd
, page_nr
++);
266 void spd_release_page(struct splice_pipe_desc
*spd
, unsigned int i
)
268 page_cache_release(spd
->pages
[i
]);
272 * Check if we need to grow the arrays holding pages and partial page
275 int splice_grow_spd(struct pipe_inode_info
*pipe
, struct splice_pipe_desc
*spd
)
277 if (pipe
->buffers
<= PIPE_DEF_BUFFERS
)
280 spd
->pages
= kmalloc(pipe
->buffers
* sizeof(struct page
*), GFP_KERNEL
);
281 spd
->partial
= kmalloc(pipe
->buffers
* sizeof(struct partial_page
), GFP_KERNEL
);
283 if (spd
->pages
&& spd
->partial
)
291 void splice_shrink_spd(struct pipe_inode_info
*pipe
,
292 struct splice_pipe_desc
*spd
)
294 if (pipe
->buffers
<= PIPE_DEF_BUFFERS
)
302 __generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
303 struct pipe_inode_info
*pipe
, size_t len
,
306 struct address_space
*mapping
= in
->f_mapping
;
307 unsigned int loff
, nr_pages
, req_pages
;
308 struct page
*pages
[PIPE_DEF_BUFFERS
];
309 struct partial_page partial
[PIPE_DEF_BUFFERS
];
311 pgoff_t index
, end_index
;
314 struct splice_pipe_desc spd
= {
318 .ops
= &page_cache_pipe_buf_ops
,
319 .spd_release
= spd_release_page
,
322 if (splice_grow_spd(pipe
, &spd
))
325 index
= *ppos
>> PAGE_CACHE_SHIFT
;
326 loff
= *ppos
& ~PAGE_CACHE_MASK
;
327 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
328 nr_pages
= min(req_pages
, pipe
->buffers
);
331 * Lookup the (hopefully) full range of pages we need.
333 spd
.nr_pages
= find_get_pages_contig(mapping
, index
, nr_pages
, spd
.pages
);
334 index
+= spd
.nr_pages
;
337 * If find_get_pages_contig() returned fewer pages than we needed,
338 * readahead/allocate the rest and fill in the holes.
340 if (spd
.nr_pages
< nr_pages
)
341 page_cache_sync_readahead(mapping
, &in
->f_ra
, in
,
342 index
, req_pages
- spd
.nr_pages
);
345 while (spd
.nr_pages
< nr_pages
) {
347 * Page could be there, find_get_pages_contig() breaks on
350 page
= find_get_page(mapping
, index
);
353 * page didn't exist, allocate one.
355 page
= page_cache_alloc_cold(mapping
);
359 error
= add_to_page_cache_lru(page
, mapping
, index
,
361 if (unlikely(error
)) {
362 page_cache_release(page
);
363 if (error
== -EEXIST
)
368 * add_to_page_cache() locks the page, unlock it
369 * to avoid convoluting the logic below even more.
374 spd
.pages
[spd
.nr_pages
++] = page
;
379 * Now loop over the map and see if we need to start IO on any
380 * pages, fill in the partial map, etc.
382 index
= *ppos
>> PAGE_CACHE_SHIFT
;
383 nr_pages
= spd
.nr_pages
;
385 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
386 unsigned int this_len
;
392 * this_len is the max we'll use from this page
394 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
395 page
= spd
.pages
[page_nr
];
397 if (PageReadahead(page
))
398 page_cache_async_readahead(mapping
, &in
->f_ra
, in
,
399 page
, index
, req_pages
- page_nr
);
402 * If the page isn't uptodate, we may need to start io on it
404 if (!PageUptodate(page
)) {
408 * Page was truncated, or invalidated by the
409 * filesystem. Redo the find/create, but this time the
410 * page is kept locked, so there's no chance of another
411 * race with truncate/invalidate.
413 if (!page
->mapping
) {
415 page
= find_or_create_page(mapping
, index
,
416 mapping_gfp_mask(mapping
));
422 page_cache_release(spd
.pages
[page_nr
]);
423 spd
.pages
[page_nr
] = page
;
426 * page was already under io and is now done, great
428 if (PageUptodate(page
)) {
434 * need to read in the page
436 error
= mapping
->a_ops
->readpage(in
, page
);
437 if (unlikely(error
)) {
439 * We really should re-lookup the page here,
440 * but it complicates things a lot. Instead
441 * lets just do what we already stored, and
442 * we'll get it the next time we are called.
444 if (error
== AOP_TRUNCATED_PAGE
)
452 * i_size must be checked after PageUptodate.
454 isize
= i_size_read(mapping
->host
);
455 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
456 if (unlikely(!isize
|| index
> end_index
))
460 * if this is the last page, see if we need to shrink
461 * the length and stop
463 if (end_index
== index
) {
467 * max good bytes in this page
469 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
474 * force quit after adding this page
476 this_len
= min(this_len
, plen
- loff
);
480 spd
.partial
[page_nr
].offset
= loff
;
481 spd
.partial
[page_nr
].len
= this_len
;
489 * Release any pages at the end, if we quit early. 'page_nr' is how far
490 * we got, 'nr_pages' is how many pages are in the map.
492 while (page_nr
< nr_pages
)
493 page_cache_release(spd
.pages
[page_nr
++]);
494 in
->f_ra
.prev_pos
= (loff_t
)index
<< PAGE_CACHE_SHIFT
;
497 error
= splice_to_pipe(pipe
, &spd
);
499 splice_shrink_spd(pipe
, &spd
);
504 * generic_file_splice_read - splice data from file to a pipe
505 * @in: file to splice from
506 * @ppos: position in @in
507 * @pipe: pipe to splice to
508 * @len: number of bytes to splice
509 * @flags: splice modifier flags
512 * Will read pages from given file and fill them into a pipe. Can be
513 * used as long as the address_space operations for the source implements
517 ssize_t
generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
518 struct pipe_inode_info
*pipe
, size_t len
,
524 isize
= i_size_read(in
->f_mapping
->host
);
525 if (unlikely(*ppos
>= isize
))
528 left
= isize
- *ppos
;
529 if (unlikely(left
< len
))
532 ret
= __generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
540 EXPORT_SYMBOL(generic_file_splice_read
);
542 static const struct pipe_buf_operations default_pipe_buf_ops
= {
544 .map
= generic_pipe_buf_map
,
545 .unmap
= generic_pipe_buf_unmap
,
546 .confirm
= generic_pipe_buf_confirm
,
547 .release
= generic_pipe_buf_release
,
548 .steal
= generic_pipe_buf_steal
,
549 .get
= generic_pipe_buf_get
,
552 static ssize_t
kernel_readv(struct file
*file
, const struct iovec
*vec
,
553 unsigned long vlen
, loff_t offset
)
561 /* The cast to a user pointer is valid due to the set_fs() */
562 res
= vfs_readv(file
, (const struct iovec __user
*)vec
, vlen
, &pos
);
568 static ssize_t
kernel_write(struct file
*file
, const char *buf
, size_t count
,
576 /* The cast to a user pointer is valid due to the set_fs() */
577 res
= vfs_write(file
, (const char __user
*)buf
, count
, &pos
);
583 ssize_t
default_file_splice_read(struct file
*in
, loff_t
*ppos
,
584 struct pipe_inode_info
*pipe
, size_t len
,
587 unsigned int nr_pages
;
588 unsigned int nr_freed
;
590 struct page
*pages
[PIPE_DEF_BUFFERS
];
591 struct partial_page partial
[PIPE_DEF_BUFFERS
];
592 struct iovec
*vec
, __vec
[PIPE_DEF_BUFFERS
];
597 struct splice_pipe_desc spd
= {
601 .ops
= &default_pipe_buf_ops
,
602 .spd_release
= spd_release_page
,
605 if (splice_grow_spd(pipe
, &spd
))
610 if (pipe
->buffers
> PIPE_DEF_BUFFERS
) {
611 vec
= kmalloc(pipe
->buffers
* sizeof(struct iovec
), GFP_KERNEL
);
616 offset
= *ppos
& ~PAGE_CACHE_MASK
;
617 nr_pages
= (len
+ offset
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
619 for (i
= 0; i
< nr_pages
&& i
< pipe
->buffers
&& len
; i
++) {
622 page
= alloc_page(GFP_USER
);
627 this_len
= min_t(size_t, len
, PAGE_CACHE_SIZE
- offset
);
628 vec
[i
].iov_base
= (void __user
*) page_address(page
);
629 vec
[i
].iov_len
= this_len
;
636 res
= kernel_readv(in
, vec
, spd
.nr_pages
, *ppos
);
647 for (i
= 0; i
< spd
.nr_pages
; i
++) {
648 this_len
= min_t(size_t, vec
[i
].iov_len
, res
);
649 spd
.partial
[i
].offset
= 0;
650 spd
.partial
[i
].len
= this_len
;
652 __free_page(spd
.pages
[i
]);
658 spd
.nr_pages
-= nr_freed
;
660 res
= splice_to_pipe(pipe
, &spd
);
667 splice_shrink_spd(pipe
, &spd
);
671 for (i
= 0; i
< spd
.nr_pages
; i
++)
672 __free_page(spd
.pages
[i
]);
677 EXPORT_SYMBOL(default_file_splice_read
);
680 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
681 * using sendpage(). Return the number of bytes sent.
683 static int pipe_to_sendpage(struct pipe_inode_info
*pipe
,
684 struct pipe_buffer
*buf
, struct splice_desc
*sd
)
686 struct file
*file
= sd
->u
.file
;
687 loff_t pos
= sd
->pos
;
690 if (!likely(file
->f_op
&& file
->f_op
->sendpage
))
693 more
= (sd
->flags
& SPLICE_F_MORE
) || sd
->len
< sd
->total_len
;
694 return file
->f_op
->sendpage(file
, buf
->page
, buf
->offset
,
695 sd
->len
, &pos
, more
);
699 * This is a little more tricky than the file -> pipe splicing. There are
700 * basically three cases:
702 * - Destination page already exists in the address space and there
703 * are users of it. For that case we have no other option that
704 * copying the data. Tough luck.
705 * - Destination page already exists in the address space, but there
706 * are no users of it. Make sure it's uptodate, then drop it. Fall
707 * through to last case.
708 * - Destination page does not exist, we can add the pipe page to
709 * the page cache and avoid the copy.
711 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
712 * sd->flags), we attempt to migrate pages from the pipe to the output
713 * file address space page cache. This is possible if no one else has
714 * the pipe page referenced outside of the pipe and page cache. If
715 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
716 * a new page in the output file page cache and fill/dirty that.
718 int pipe_to_file(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
719 struct splice_desc
*sd
)
721 struct file
*file
= sd
->u
.file
;
722 struct address_space
*mapping
= file
->f_mapping
;
723 unsigned int offset
, this_len
;
728 offset
= sd
->pos
& ~PAGE_CACHE_MASK
;
731 if (this_len
+ offset
> PAGE_CACHE_SIZE
)
732 this_len
= PAGE_CACHE_SIZE
- offset
;
734 ret
= pagecache_write_begin(file
, mapping
, sd
->pos
, this_len
,
735 AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
739 if (buf
->page
!= page
) {
741 * Careful, ->map() uses KM_USER0!
743 char *src
= buf
->ops
->map(pipe
, buf
, 1);
744 char *dst
= kmap_atomic(page
, KM_USER1
);
746 memcpy(dst
+ offset
, src
+ buf
->offset
, this_len
);
747 flush_dcache_page(page
);
748 kunmap_atomic(dst
, KM_USER1
);
749 buf
->ops
->unmap(pipe
, buf
, src
);
751 ret
= pagecache_write_end(file
, mapping
, sd
->pos
, this_len
, this_len
,
756 EXPORT_SYMBOL(pipe_to_file
);
758 static void wakeup_pipe_writers(struct pipe_inode_info
*pipe
)
761 if (waitqueue_active(&pipe
->wait
))
762 wake_up_interruptible(&pipe
->wait
);
763 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
767 * splice_from_pipe_feed - feed available data from a pipe to a file
768 * @pipe: pipe to splice from
769 * @sd: information to @actor
770 * @actor: handler that splices the data
773 * This function loops over the pipe and calls @actor to do the
774 * actual moving of a single struct pipe_buffer to the desired
775 * destination. It returns when there's no more buffers left in
776 * the pipe or if the requested number of bytes (@sd->total_len)
777 * have been copied. It returns a positive number (one) if the
778 * pipe needs to be filled with more data, zero if the required
779 * number of bytes have been copied and -errno on error.
781 * This, together with splice_from_pipe_{begin,end,next}, may be
782 * used to implement the functionality of __splice_from_pipe() when
783 * locking is required around copying the pipe buffers to the
786 int splice_from_pipe_feed(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
,
791 while (pipe
->nrbufs
) {
792 struct pipe_buffer
*buf
= pipe
->bufs
+ pipe
->curbuf
;
793 const struct pipe_buf_operations
*ops
= buf
->ops
;
796 if (sd
->len
> sd
->total_len
)
797 sd
->len
= sd
->total_len
;
799 ret
= buf
->ops
->confirm(pipe
, buf
);
806 ret
= actor(pipe
, buf
, sd
);
813 sd
->num_spliced
+= ret
;
816 sd
->total_len
-= ret
;
820 ops
->release(pipe
, buf
);
821 pipe
->curbuf
= (pipe
->curbuf
+ 1) & (pipe
->buffers
- 1);
824 sd
->need_wakeup
= true;
833 EXPORT_SYMBOL(splice_from_pipe_feed
);
836 * splice_from_pipe_next - wait for some data to splice from
837 * @pipe: pipe to splice from
838 * @sd: information about the splice operation
841 * This function will wait for some data and return a positive
842 * value (one) if pipe buffers are available. It will return zero
843 * or -errno if no more data needs to be spliced.
845 int splice_from_pipe_next(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
847 while (!pipe
->nrbufs
) {
851 if (!pipe
->waiting_writers
&& sd
->num_spliced
)
854 if (sd
->flags
& SPLICE_F_NONBLOCK
)
857 if (signal_pending(current
))
860 if (sd
->need_wakeup
) {
861 wakeup_pipe_writers(pipe
);
862 sd
->need_wakeup
= false;
870 EXPORT_SYMBOL(splice_from_pipe_next
);
873 * splice_from_pipe_begin - start splicing from pipe
874 * @sd: information about the splice operation
877 * This function should be called before a loop containing
878 * splice_from_pipe_next() and splice_from_pipe_feed() to
879 * initialize the necessary fields of @sd.
881 void splice_from_pipe_begin(struct splice_desc
*sd
)
884 sd
->need_wakeup
= false;
886 EXPORT_SYMBOL(splice_from_pipe_begin
);
889 * splice_from_pipe_end - finish splicing from pipe
890 * @pipe: pipe to splice from
891 * @sd: information about the splice operation
894 * This function will wake up pipe writers if necessary. It should
895 * be called after a loop containing splice_from_pipe_next() and
896 * splice_from_pipe_feed().
898 void splice_from_pipe_end(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
901 wakeup_pipe_writers(pipe
);
903 EXPORT_SYMBOL(splice_from_pipe_end
);
906 * __splice_from_pipe - splice data from a pipe to given actor
907 * @pipe: pipe to splice from
908 * @sd: information to @actor
909 * @actor: handler that splices the data
912 * This function does little more than loop over the pipe and call
913 * @actor to do the actual moving of a single struct pipe_buffer to
914 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
918 ssize_t
__splice_from_pipe(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
,
923 splice_from_pipe_begin(sd
);
925 ret
= splice_from_pipe_next(pipe
, sd
);
927 ret
= splice_from_pipe_feed(pipe
, sd
, actor
);
929 splice_from_pipe_end(pipe
, sd
);
931 return sd
->num_spliced
? sd
->num_spliced
: ret
;
933 EXPORT_SYMBOL(__splice_from_pipe
);
936 * splice_from_pipe - splice data from a pipe to a file
937 * @pipe: pipe to splice from
938 * @out: file to splice to
939 * @ppos: position in @out
940 * @len: how many bytes to splice
941 * @flags: splice modifier flags
942 * @actor: handler that splices the data
945 * See __splice_from_pipe. This function locks the pipe inode,
946 * otherwise it's identical to __splice_from_pipe().
949 ssize_t
splice_from_pipe(struct pipe_inode_info
*pipe
, struct file
*out
,
950 loff_t
*ppos
, size_t len
, unsigned int flags
,
954 struct splice_desc sd
= {
962 ret
= __splice_from_pipe(pipe
, &sd
, actor
);
969 * generic_file_splice_write - splice data from a pipe to a file
971 * @out: file to write to
972 * @ppos: position in @out
973 * @len: number of bytes to splice
974 * @flags: splice modifier flags
977 * Will either move or copy pages (determined by @flags options) from
978 * the given pipe inode to the given file.
982 generic_file_splice_write(struct pipe_inode_info
*pipe
, struct file
*out
,
983 loff_t
*ppos
, size_t len
, unsigned int flags
)
985 struct address_space
*mapping
= out
->f_mapping
;
986 struct inode
*inode
= mapping
->host
;
987 struct splice_desc sd
= {
997 splice_from_pipe_begin(&sd
);
999 ret
= splice_from_pipe_next(pipe
, &sd
);
1003 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
1004 ret
= file_remove_suid(out
);
1006 file_update_time(out
);
1007 ret
= splice_from_pipe_feed(pipe
, &sd
, pipe_to_file
);
1009 mutex_unlock(&inode
->i_mutex
);
1011 splice_from_pipe_end(pipe
, &sd
);
1016 ret
= sd
.num_spliced
;
1019 unsigned long nr_pages
;
1022 nr_pages
= (ret
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1024 err
= generic_write_sync(out
, *ppos
, ret
);
1029 balance_dirty_pages_ratelimited_nr(mapping
, nr_pages
);
1035 EXPORT_SYMBOL(generic_file_splice_write
);
1037 static int write_pipe_buf(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
1038 struct splice_desc
*sd
)
1043 data
= buf
->ops
->map(pipe
, buf
, 0);
1044 ret
= kernel_write(sd
->u
.file
, data
+ buf
->offset
, sd
->len
, sd
->pos
);
1045 buf
->ops
->unmap(pipe
, buf
, data
);
1050 static ssize_t
default_file_splice_write(struct pipe_inode_info
*pipe
,
1051 struct file
*out
, loff_t
*ppos
,
1052 size_t len
, unsigned int flags
)
1056 ret
= splice_from_pipe(pipe
, out
, ppos
, len
, flags
, write_pipe_buf
);
1064 * generic_splice_sendpage - splice data from a pipe to a socket
1065 * @pipe: pipe to splice from
1066 * @out: socket to write to
1067 * @ppos: position in @out
1068 * @len: number of bytes to splice
1069 * @flags: splice modifier flags
1072 * Will send @len bytes from the pipe to a network socket. No data copying
1076 ssize_t
generic_splice_sendpage(struct pipe_inode_info
*pipe
, struct file
*out
,
1077 loff_t
*ppos
, size_t len
, unsigned int flags
)
1079 return splice_from_pipe(pipe
, out
, ppos
, len
, flags
, pipe_to_sendpage
);
1082 EXPORT_SYMBOL(generic_splice_sendpage
);
1085 * Attempt to initiate a splice from pipe to file.
1087 static long do_splice_from(struct pipe_inode_info
*pipe
, struct file
*out
,
1088 loff_t
*ppos
, size_t len
, unsigned int flags
)
1090 ssize_t (*splice_write
)(struct pipe_inode_info
*, struct file
*,
1091 loff_t
*, size_t, unsigned int);
1094 if (unlikely(!(out
->f_mode
& FMODE_WRITE
)))
1097 if (unlikely(out
->f_flags
& O_APPEND
))
1100 ret
= rw_verify_area(WRITE
, out
, ppos
, len
);
1101 if (unlikely(ret
< 0))
1104 if (out
->f_op
&& out
->f_op
->splice_write
)
1105 splice_write
= out
->f_op
->splice_write
;
1107 splice_write
= default_file_splice_write
;
1109 return splice_write(pipe
, out
, ppos
, len
, flags
);
1113 * Attempt to initiate a splice from a file to a pipe.
1115 static long do_splice_to(struct file
*in
, loff_t
*ppos
,
1116 struct pipe_inode_info
*pipe
, size_t len
,
1119 ssize_t (*splice_read
)(struct file
*, loff_t
*,
1120 struct pipe_inode_info
*, size_t, unsigned int);
1123 if (unlikely(!(in
->f_mode
& FMODE_READ
)))
1126 ret
= rw_verify_area(READ
, in
, ppos
, len
);
1127 if (unlikely(ret
< 0))
1130 if (in
->f_op
&& in
->f_op
->splice_read
)
1131 splice_read
= in
->f_op
->splice_read
;
1133 splice_read
= default_file_splice_read
;
1135 return splice_read(in
, ppos
, pipe
, len
, flags
);
1139 * splice_direct_to_actor - splices data directly between two non-pipes
1140 * @in: file to splice from
1141 * @sd: actor information on where to splice to
1142 * @actor: handles the data splicing
1145 * This is a special case helper to splice directly between two
1146 * points, without requiring an explicit pipe. Internally an allocated
1147 * pipe is cached in the process, and reused during the lifetime of
1151 ssize_t
splice_direct_to_actor(struct file
*in
, struct splice_desc
*sd
,
1152 splice_direct_actor
*actor
)
1154 struct pipe_inode_info
*pipe
;
1161 * We require the input being a regular file, as we don't want to
1162 * randomly drop data for eg socket -> socket splicing. Use the
1163 * piped splicing for that!
1165 i_mode
= in
->f_path
.dentry
->d_inode
->i_mode
;
1166 if (unlikely(!S_ISREG(i_mode
) && !S_ISBLK(i_mode
)))
1170 * neither in nor out is a pipe, setup an internal pipe attached to
1171 * 'out' and transfer the wanted data from 'in' to 'out' through that
1173 pipe
= current
->splice_pipe
;
1174 if (unlikely(!pipe
)) {
1175 pipe
= alloc_pipe_info(NULL
);
1180 * We don't have an immediate reader, but we'll read the stuff
1181 * out of the pipe right after the splice_to_pipe(). So set
1182 * PIPE_READERS appropriately.
1186 current
->splice_pipe
= pipe
;
1194 len
= sd
->total_len
;
1198 * Don't block on output, we have to drain the direct pipe.
1200 sd
->flags
&= ~SPLICE_F_NONBLOCK
;
1204 loff_t pos
= sd
->pos
, prev_pos
= pos
;
1206 ret
= do_splice_to(in
, &pos
, pipe
, len
, flags
);
1207 if (unlikely(ret
<= 0))
1211 sd
->total_len
= read_len
;
1214 * NOTE: nonblocking mode only applies to the input. We
1215 * must not do the output in nonblocking mode as then we
1216 * could get stuck data in the internal pipe:
1218 ret
= actor(pipe
, sd
);
1219 if (unlikely(ret
<= 0)) {
1228 if (ret
< read_len
) {
1229 sd
->pos
= prev_pos
+ ret
;
1235 pipe
->nrbufs
= pipe
->curbuf
= 0;
1241 * If we did an incomplete transfer we must release
1242 * the pipe buffers in question:
1244 for (i
= 0; i
< pipe
->buffers
; i
++) {
1245 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
1248 buf
->ops
->release(pipe
, buf
);
1258 EXPORT_SYMBOL(splice_direct_to_actor
);
1260 static int direct_splice_actor(struct pipe_inode_info
*pipe
,
1261 struct splice_desc
*sd
)
1263 struct file
*file
= sd
->u
.file
;
1265 return do_splice_from(pipe
, file
, &file
->f_pos
, sd
->total_len
,
1270 * do_splice_direct - splices data directly between two files
1271 * @in: file to splice from
1272 * @ppos: input file offset
1273 * @out: file to splice to
1274 * @len: number of bytes to splice
1275 * @flags: splice modifier flags
1278 * For use by do_sendfile(). splice can easily emulate sendfile, but
1279 * doing it in the application would incur an extra system call
1280 * (splice in + splice out, as compared to just sendfile()). So this helper
1281 * can splice directly through a process-private pipe.
1284 long do_splice_direct(struct file
*in
, loff_t
*ppos
, struct file
*out
,
1285 size_t len
, unsigned int flags
)
1287 struct splice_desc sd
= {
1296 ret
= splice_direct_to_actor(in
, &sd
, direct_splice_actor
);
1303 static int splice_pipe_to_pipe(struct pipe_inode_info
*ipipe
,
1304 struct pipe_inode_info
*opipe
,
1305 size_t len
, unsigned int flags
);
1308 * Determine where to splice to/from.
1310 static long do_splice(struct file
*in
, loff_t __user
*off_in
,
1311 struct file
*out
, loff_t __user
*off_out
,
1312 size_t len
, unsigned int flags
)
1314 struct pipe_inode_info
*ipipe
;
1315 struct pipe_inode_info
*opipe
;
1316 loff_t offset
, *off
;
1319 ipipe
= get_pipe_info(in
);
1320 opipe
= get_pipe_info(out
);
1322 if (ipipe
&& opipe
) {
1323 if (off_in
|| off_out
)
1326 if (!(in
->f_mode
& FMODE_READ
))
1329 if (!(out
->f_mode
& FMODE_WRITE
))
1332 /* Splicing to self would be fun, but... */
1336 return splice_pipe_to_pipe(ipipe
, opipe
, len
, flags
);
1343 if (!(out
->f_mode
& FMODE_PWRITE
))
1345 if (copy_from_user(&offset
, off_out
, sizeof(loff_t
)))
1351 ret
= do_splice_from(ipipe
, out
, off
, len
, flags
);
1353 if (off_out
&& copy_to_user(off_out
, off
, sizeof(loff_t
)))
1363 if (!(in
->f_mode
& FMODE_PREAD
))
1365 if (copy_from_user(&offset
, off_in
, sizeof(loff_t
)))
1371 ret
= do_splice_to(in
, off
, opipe
, len
, flags
);
1373 if (off_in
&& copy_to_user(off_in
, off
, sizeof(loff_t
)))
1383 * Map an iov into an array of pages and offset/length tupples. With the
1384 * partial_page structure, we can map several non-contiguous ranges into
1385 * our ones pages[] map instead of splitting that operation into pieces.
1386 * Could easily be exported as a generic helper for other users, in which
1387 * case one would probably want to add a 'max_nr_pages' parameter as well.
1389 static int get_iovec_page_array(const struct iovec __user
*iov
,
1390 unsigned int nr_vecs
, struct page
**pages
,
1391 struct partial_page
*partial
, int aligned
,
1392 unsigned int pipe_buffers
)
1394 int buffers
= 0, error
= 0;
1397 unsigned long off
, npages
;
1404 if (copy_from_user(&entry
, iov
, sizeof(entry
)))
1407 base
= entry
.iov_base
;
1408 len
= entry
.iov_len
;
1411 * Sanity check this iovec. 0 read succeeds.
1417 if (!access_ok(VERIFY_READ
, base
, len
))
1421 * Get this base offset and number of pages, then map
1422 * in the user pages.
1424 off
= (unsigned long) base
& ~PAGE_MASK
;
1427 * If asked for alignment, the offset must be zero and the
1428 * length a multiple of the PAGE_SIZE.
1431 if (aligned
&& (off
|| len
& ~PAGE_MASK
))
1434 npages
= (off
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1435 if (npages
> pipe_buffers
- buffers
)
1436 npages
= pipe_buffers
- buffers
;
1438 error
= get_user_pages_fast((unsigned long)base
, npages
,
1439 0, &pages
[buffers
]);
1441 if (unlikely(error
<= 0))
1445 * Fill this contiguous range into the partial page map.
1447 for (i
= 0; i
< error
; i
++) {
1448 const int plen
= min_t(size_t, len
, PAGE_SIZE
- off
);
1450 partial
[buffers
].offset
= off
;
1451 partial
[buffers
].len
= plen
;
1459 * We didn't complete this iov, stop here since it probably
1460 * means we have to move some of this into a pipe to
1461 * be able to continue.
1467 * Don't continue if we mapped fewer pages than we asked for,
1468 * or if we mapped the max number of pages that we have
1471 if (error
< npages
|| buffers
== pipe_buffers
)
1484 static int pipe_to_user(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
1485 struct splice_desc
*sd
)
1491 * See if we can use the atomic maps, by prefaulting in the
1492 * pages and doing an atomic copy
1494 if (!fault_in_pages_writeable(sd
->u
.userptr
, sd
->len
)) {
1495 src
= buf
->ops
->map(pipe
, buf
, 1);
1496 ret
= __copy_to_user_inatomic(sd
->u
.userptr
, src
+ buf
->offset
,
1498 buf
->ops
->unmap(pipe
, buf
, src
);
1506 * No dice, use slow non-atomic map and copy
1508 src
= buf
->ops
->map(pipe
, buf
, 0);
1511 if (copy_to_user(sd
->u
.userptr
, src
+ buf
->offset
, sd
->len
))
1514 buf
->ops
->unmap(pipe
, buf
, src
);
1517 sd
->u
.userptr
+= ret
;
1522 * For lack of a better implementation, implement vmsplice() to userspace
1523 * as a simple copy of the pipes pages to the user iov.
1525 static long vmsplice_to_user(struct file
*file
, const struct iovec __user
*iov
,
1526 unsigned long nr_segs
, unsigned int flags
)
1528 struct pipe_inode_info
*pipe
;
1529 struct splice_desc sd
;
1534 pipe
= get_pipe_info(file
);
1546 * Get user address base and length for this iovec.
1548 error
= get_user(base
, &iov
->iov_base
);
1549 if (unlikely(error
))
1551 error
= get_user(len
, &iov
->iov_len
);
1552 if (unlikely(error
))
1556 * Sanity check this iovec. 0 read succeeds.
1560 if (unlikely(!base
)) {
1565 if (unlikely(!access_ok(VERIFY_WRITE
, base
, len
))) {
1573 sd
.u
.userptr
= base
;
1576 size
= __splice_from_pipe(pipe
, &sd
, pipe_to_user
);
1602 * vmsplice splices a user address range into a pipe. It can be thought of
1603 * as splice-from-memory, where the regular splice is splice-from-file (or
1604 * to file). In both cases the output is a pipe, naturally.
1606 static long vmsplice_to_pipe(struct file
*file
, const struct iovec __user
*iov
,
1607 unsigned long nr_segs
, unsigned int flags
)
1609 struct pipe_inode_info
*pipe
;
1610 struct page
*pages
[PIPE_DEF_BUFFERS
];
1611 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1612 struct splice_pipe_desc spd
= {
1616 .ops
= &user_page_pipe_buf_ops
,
1617 .spd_release
= spd_release_page
,
1621 pipe
= get_pipe_info(file
);
1625 if (splice_grow_spd(pipe
, &spd
))
1628 spd
.nr_pages
= get_iovec_page_array(iov
, nr_segs
, spd
.pages
,
1629 spd
.partial
, flags
& SPLICE_F_GIFT
,
1631 if (spd
.nr_pages
<= 0)
1634 ret
= splice_to_pipe(pipe
, &spd
);
1636 splice_shrink_spd(pipe
, &spd
);
1641 * Note that vmsplice only really supports true splicing _from_ user memory
1642 * to a pipe, not the other way around. Splicing from user memory is a simple
1643 * operation that can be supported without any funky alignment restrictions
1644 * or nasty vm tricks. We simply map in the user memory and fill them into
1645 * a pipe. The reverse isn't quite as easy, though. There are two possible
1646 * solutions for that:
1648 * - memcpy() the data internally, at which point we might as well just
1649 * do a regular read() on the buffer anyway.
1650 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1651 * has restriction limitations on both ends of the pipe).
1653 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1656 SYSCALL_DEFINE4(vmsplice
, int, fd
, const struct iovec __user
*, iov
,
1657 unsigned long, nr_segs
, unsigned int, flags
)
1663 if (unlikely(nr_segs
> UIO_MAXIOV
))
1665 else if (unlikely(!nr_segs
))
1669 file
= fget_light(fd
, &fput
);
1671 if (file
->f_mode
& FMODE_WRITE
)
1672 error
= vmsplice_to_pipe(file
, iov
, nr_segs
, flags
);
1673 else if (file
->f_mode
& FMODE_READ
)
1674 error
= vmsplice_to_user(file
, iov
, nr_segs
, flags
);
1676 fput_light(file
, fput
);
1682 SYSCALL_DEFINE6(splice
, int, fd_in
, loff_t __user
*, off_in
,
1683 int, fd_out
, loff_t __user
*, off_out
,
1684 size_t, len
, unsigned int, flags
)
1687 struct file
*in
, *out
;
1688 int fput_in
, fput_out
;
1694 in
= fget_light(fd_in
, &fput_in
);
1696 if (in
->f_mode
& FMODE_READ
) {
1697 out
= fget_light(fd_out
, &fput_out
);
1699 if (out
->f_mode
& FMODE_WRITE
)
1700 error
= do_splice(in
, off_in
,
1703 fput_light(out
, fput_out
);
1707 fput_light(in
, fput_in
);
1714 * Make sure there's data to read. Wait for input if we can, otherwise
1715 * return an appropriate error.
1717 static int ipipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1722 * Check ->nrbufs without the inode lock first. This function
1723 * is speculative anyways, so missing one is ok.
1731 while (!pipe
->nrbufs
) {
1732 if (signal_pending(current
)) {
1738 if (!pipe
->waiting_writers
) {
1739 if (flags
& SPLICE_F_NONBLOCK
) {
1752 * Make sure there's writeable room. Wait for room if we can, otherwise
1753 * return an appropriate error.
1755 static int opipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1760 * Check ->nrbufs without the inode lock first. This function
1761 * is speculative anyways, so missing one is ok.
1763 if (pipe
->nrbufs
< pipe
->buffers
)
1769 while (pipe
->nrbufs
>= pipe
->buffers
) {
1770 if (!pipe
->readers
) {
1771 send_sig(SIGPIPE
, current
, 0);
1775 if (flags
& SPLICE_F_NONBLOCK
) {
1779 if (signal_pending(current
)) {
1783 pipe
->waiting_writers
++;
1785 pipe
->waiting_writers
--;
1793 * Splice contents of ipipe to opipe.
1795 static int splice_pipe_to_pipe(struct pipe_inode_info
*ipipe
,
1796 struct pipe_inode_info
*opipe
,
1797 size_t len
, unsigned int flags
)
1799 struct pipe_buffer
*ibuf
, *obuf
;
1801 bool input_wakeup
= false;
1805 ret
= ipipe_prep(ipipe
, flags
);
1809 ret
= opipe_prep(opipe
, flags
);
1814 * Potential ABBA deadlock, work around it by ordering lock
1815 * grabbing by pipe info address. Otherwise two different processes
1816 * could deadlock (one doing tee from A -> B, the other from B -> A).
1818 pipe_double_lock(ipipe
, opipe
);
1821 if (!opipe
->readers
) {
1822 send_sig(SIGPIPE
, current
, 0);
1828 if (!ipipe
->nrbufs
&& !ipipe
->writers
)
1832 * Cannot make any progress, because either the input
1833 * pipe is empty or the output pipe is full.
1835 if (!ipipe
->nrbufs
|| opipe
->nrbufs
>= opipe
->buffers
) {
1836 /* Already processed some buffers, break */
1840 if (flags
& SPLICE_F_NONBLOCK
) {
1846 * We raced with another reader/writer and haven't
1847 * managed to process any buffers. A zero return
1848 * value means EOF, so retry instead.
1855 ibuf
= ipipe
->bufs
+ ipipe
->curbuf
;
1856 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (opipe
->buffers
- 1);
1857 obuf
= opipe
->bufs
+ nbuf
;
1859 if (len
>= ibuf
->len
) {
1861 * Simply move the whole buffer from ipipe to opipe
1866 ipipe
->curbuf
= (ipipe
->curbuf
+ 1) & (ipipe
->buffers
- 1);
1868 input_wakeup
= true;
1871 * Get a reference to this pipe buffer,
1872 * so we can copy the contents over.
1874 ibuf
->ops
->get(ipipe
, ibuf
);
1878 * Don't inherit the gift flag, we need to
1879 * prevent multiple steals of this page.
1881 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
1885 ibuf
->offset
+= obuf
->len
;
1886 ibuf
->len
-= obuf
->len
;
1896 * If we put data in the output pipe, wakeup any potential readers.
1899 wakeup_pipe_readers(opipe
);
1902 wakeup_pipe_writers(ipipe
);
1908 * Link contents of ipipe to opipe.
1910 static int link_pipe(struct pipe_inode_info
*ipipe
,
1911 struct pipe_inode_info
*opipe
,
1912 size_t len
, unsigned int flags
)
1914 struct pipe_buffer
*ibuf
, *obuf
;
1915 int ret
= 0, i
= 0, nbuf
;
1918 * Potential ABBA deadlock, work around it by ordering lock
1919 * grabbing by pipe info address. Otherwise two different processes
1920 * could deadlock (one doing tee from A -> B, the other from B -> A).
1922 pipe_double_lock(ipipe
, opipe
);
1925 if (!opipe
->readers
) {
1926 send_sig(SIGPIPE
, current
, 0);
1933 * If we have iterated all input buffers or ran out of
1934 * output room, break.
1936 if (i
>= ipipe
->nrbufs
|| opipe
->nrbufs
>= opipe
->buffers
)
1939 ibuf
= ipipe
->bufs
+ ((ipipe
->curbuf
+ i
) & (ipipe
->buffers
-1));
1940 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (opipe
->buffers
- 1);
1943 * Get a reference to this pipe buffer,
1944 * so we can copy the contents over.
1946 ibuf
->ops
->get(ipipe
, ibuf
);
1948 obuf
= opipe
->bufs
+ nbuf
;
1952 * Don't inherit the gift flag, we need to
1953 * prevent multiple steals of this page.
1955 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
1957 if (obuf
->len
> len
)
1967 * return EAGAIN if we have the potential of some data in the
1968 * future, otherwise just return 0
1970 if (!ret
&& ipipe
->waiting_writers
&& (flags
& SPLICE_F_NONBLOCK
))
1977 * If we put data in the output pipe, wakeup any potential readers.
1980 wakeup_pipe_readers(opipe
);
1986 * This is a tee(1) implementation that works on pipes. It doesn't copy
1987 * any data, it simply references the 'in' pages on the 'out' pipe.
1988 * The 'flags' used are the SPLICE_F_* variants, currently the only
1989 * applicable one is SPLICE_F_NONBLOCK.
1991 static long do_tee(struct file
*in
, struct file
*out
, size_t len
,
1994 struct pipe_inode_info
*ipipe
= get_pipe_info(in
);
1995 struct pipe_inode_info
*opipe
= get_pipe_info(out
);
1999 * Duplicate the contents of ipipe to opipe without actually
2002 if (ipipe
&& opipe
&& ipipe
!= opipe
) {
2004 * Keep going, unless we encounter an error. The ipipe/opipe
2005 * ordering doesn't really matter.
2007 ret
= ipipe_prep(ipipe
, flags
);
2009 ret
= opipe_prep(opipe
, flags
);
2011 ret
= link_pipe(ipipe
, opipe
, len
, flags
);
2018 SYSCALL_DEFINE4(tee
, int, fdin
, int, fdout
, size_t, len
, unsigned int, flags
)
2027 in
= fget_light(fdin
, &fput_in
);
2029 if (in
->f_mode
& FMODE_READ
) {
2031 struct file
*out
= fget_light(fdout
, &fput_out
);
2034 if (out
->f_mode
& FMODE_WRITE
)
2035 error
= do_tee(in
, out
, len
, flags
);
2036 fput_light(out
, fput_out
);
2039 fput_light(in
, fput_in
);