2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/moduleparam.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h> /* printk() */
20 #include <linux/slab.h> /* kmalloc() */
21 #include <linux/errno.h> /* error codes */
22 #include <linux/types.h> /* size_t */
23 #include <linux/interrupt.h>
25 #include <linux/netdevice.h> /* struct device, and other headers */
26 #include <linux/etherdevice.h> /* eth_type_trans */
27 #include <linux/skbuff.h>
28 #include <linux/ioctl.h>
29 #include <linux/cdev.h>
30 #include <linux/hugetlb.h>
31 #include <linux/in6.h>
32 #include <linux/timer.h>
34 #include <asm/checksum.h>
35 #include <asm/homecache.h>
37 #include <hv/drv_xgbe_intf.h>
38 #include <hv/drv_xgbe_impl.h>
39 #include <hv/hypervisor.h>
40 #include <hv/netio_intf.h>
44 #include <linux/tcp.h>
48 * First, "tile_net_init_module()" initializes all four "devices" which
49 * can be used by linux.
51 * Then, "ifconfig DEVICE up" calls "tile_net_open()", which analyzes
52 * the network cpus, then uses "tile_net_open_aux()" to initialize
53 * LIPP/LEPP, and then uses "tile_net_open_inner()" to register all
54 * the tiles, provide buffers to LIPP, allow ingress to start, and
55 * turn on hypervisor interrupt handling (and NAPI) on all tiles.
57 * If registration fails due to the link being down, then "retry_work"
58 * is used to keep calling "tile_net_open_inner()" until it succeeds.
60 * If "ifconfig DEVICE down" is called, it uses "tile_net_stop()" to
61 * stop egress, drain the LIPP buffers, unregister all the tiles, stop
62 * LIPP/LEPP, and wipe the LEPP queue.
64 * We start out with the ingress interrupt enabled on each CPU. When
65 * this interrupt fires, we disable it, and call "napi_schedule()".
66 * This will cause "tile_net_poll()" to be called, which will pull
67 * packets from the netio queue, filtering them out, or passing them
68 * to "netif_receive_skb()". If our budget is exhausted, we will
69 * return, knowing we will be called again later. Otherwise, we
70 * reenable the ingress interrupt, and call "napi_complete()".
72 * HACK: Since disabling the ingress interrupt is not reliable, we
73 * ignore the interrupt if the global "active" flag is false.
76 * NOTE: The use of "native_driver" ensures that EPP exists, and that
77 * we are using "LIPP" and "LEPP".
79 * NOTE: Failing to free completions for an arbitrarily long time
80 * (which is defined to be illegal) does in fact cause bizarre
81 * problems. The "egress_timer" helps prevent this from happening.
85 /* HACK: Allow use of "jumbo" packets. */
86 /* This should be 1500 if "jumbo" is not set in LIPP. */
87 /* This should be at most 10226 (10240 - 14) if "jumbo" is set in LIPP. */
88 /* ISSUE: This has not been thoroughly tested (except at 1500). */
89 #define TILE_NET_MTU 1500
91 /* HACK: Define to support GSO. */
92 /* ISSUE: This may actually hurt performance of the TCP blaster. */
93 /* #define TILE_NET_GSO */
95 /* Define this to collapse "duplicate" acks. */
96 /* #define IGNORE_DUP_ACKS */
98 /* HACK: Define this to verify incoming packets. */
99 /* #define TILE_NET_VERIFY_INGRESS */
101 /* Use 3000 to enable the Linux Traffic Control (QoS) layer, else 0. */
102 #define TILE_NET_TX_QUEUE_LEN 0
104 /* Define to dump packets (prints out the whole packet on tx and rx). */
105 /* #define TILE_NET_DUMP_PACKETS */
107 /* Define to enable debug spew (all PDEBUG's are enabled). */
108 /* #define TILE_NET_DEBUG */
111 /* Define to activate paranoia checks. */
112 /* #define TILE_NET_PARANOIA */
114 /* Default transmit lockup timeout period, in jiffies. */
115 #define TILE_NET_TIMEOUT (5 * HZ)
117 /* Default retry interval for bringing up the NetIO interface, in jiffies. */
118 #define TILE_NET_RETRY_INTERVAL (5 * HZ)
120 /* Number of ports (xgbe0, xgbe1, gbe0, gbe1). */
121 #define TILE_NET_DEVS 4
126 #if NET_IP_ALIGN != LIPP_PACKET_PADDING
127 #error "NET_IP_ALIGN must match LIPP_PACKET_PADDING."
132 #ifdef TILE_NET_DEBUG
133 #define PDEBUG(fmt, args...) net_printk(fmt, ## args)
135 #define PDEBUG(fmt, args...)
139 MODULE_AUTHOR("Tilera");
140 MODULE_LICENSE("GPL");
144 * Queue of incoming packets for a specific cpu and device.
146 * Includes a pointer to the "system" data, and the actual "user" data.
148 struct tile_netio_queue
{
149 netio_queue_impl_t
*__system_part
;
150 netio_queue_user_impl_t __user_part
;
156 * Statistics counters for a specific cpu and device.
158 struct tile_net_stats_t
{
167 * Info for a specific cpu and device.
169 * ISSUE: There is a "dev" pointer in "napi" as well.
171 struct tile_net_cpu
{
172 /* The NAPI struct. */
173 struct napi_struct napi
;
175 struct tile_netio_queue queue
;
177 struct tile_net_stats_t stats
;
178 /* True iff NAPI is enabled. */
180 /* True if this tile has successfully registered with the IPP. */
182 /* True if the link was down last time we tried to register. */
184 /* True if "egress_timer" is scheduled. */
185 bool egress_timer_scheduled
;
186 /* Number of small sk_buffs which must still be provided. */
187 unsigned int num_needed_small_buffers
;
188 /* Number of large sk_buffs which must still be provided. */
189 unsigned int num_needed_large_buffers
;
190 /* A timer for handling egress completions. */
191 struct timer_list egress_timer
;
196 * Info for a specific device.
198 struct tile_net_priv
{
199 /* Our network device. */
200 struct net_device
*dev
;
201 /* Pages making up the egress queue. */
202 struct page
*eq_pages
;
203 /* Address of the actual egress queue. */
207 /* The hypervisor handle for this interface. */
209 /* The intr bit mask that IDs this device. */
211 /* True iff "tile_net_open_aux()" has succeeded. */
213 /* True iff the device is "active". */
215 /* Effective network cpus. */
216 struct cpumask network_cpus_map
;
217 /* Number of network cpus. */
218 int network_cpus_count
;
219 /* Credits per network cpu. */
220 int network_cpus_credits
;
222 struct net_device_stats stats
;
223 /* For NetIO bringup retries. */
224 struct delayed_work retry_work
;
225 /* Quick access to per cpu data. */
226 struct tile_net_cpu
*cpu
[NR_CPUS
];
229 /* Log2 of the number of small pages needed for the egress queue. */
230 #define EQ_ORDER get_order(sizeof(lepp_queue_t))
231 /* Size of the egress queue's pages. */
232 #define EQ_SIZE (1 << (PAGE_SHIFT + EQ_ORDER))
235 * The actual devices (xgbe0, xgbe1, gbe0, gbe1).
237 static struct net_device
*tile_net_devs
[TILE_NET_DEVS
];
240 * The "tile_net_cpu" structures for each device.
242 static DEFINE_PER_CPU(struct tile_net_cpu
, hv_xgbe0
);
243 static DEFINE_PER_CPU(struct tile_net_cpu
, hv_xgbe1
);
244 static DEFINE_PER_CPU(struct tile_net_cpu
, hv_gbe0
);
245 static DEFINE_PER_CPU(struct tile_net_cpu
, hv_gbe1
);
249 * True if "network_cpus" was specified.
251 static bool network_cpus_used
;
254 * The actual cpus in "network_cpus".
256 static struct cpumask network_cpus_map
;
260 #ifdef TILE_NET_DEBUG
262 * printk with extra stuff.
264 * We print the CPU we're running in brackets.
266 static void net_printk(char *fmt
, ...)
271 static char buf
[256];
273 len
= sprintf(buf
, "tile_net[%2.2d]: ", smp_processor_id());
275 i
= vscnprintf(buf
+ len
, sizeof(buf
) - len
- 1, fmt
, args
);
283 #ifdef TILE_NET_DUMP_PACKETS
287 static void dump_packet(unsigned char *data
, unsigned long length
, char *s
)
289 int my_cpu
= smp_processor_id();
294 static unsigned int count
;
296 pr_info("dump_packet(data %p, length 0x%lx s %s count 0x%x)\n",
297 data
, length
, s
, count
++);
301 for (i
= 0; i
< length
; i
++) {
303 sprintf(buf
, "[%02d] %8.8lx:", my_cpu
, i
);
304 sprintf(buf
+ strlen(buf
), " %2.2x", data
[i
]);
305 if ((i
& 0xf) == 0xf || i
== length
- 1) {
315 * Provide support for the __netio_fastio1() swint
316 * (see <hv/drv_xgbe_intf.h> for how it is used).
318 * The fastio swint2 call may clobber all the caller-saved registers.
319 * It rarely clobbers memory, but we allow for the possibility in
320 * the signature just to be on the safe side.
322 * Also, gcc doesn't seem to allow an input operand to be
323 * clobbered, so we fake it with dummy outputs.
325 * This function can't be static because of the way it is declared
326 * in the netio header.
328 inline int __netio_fastio1(u32 fastio_index
, u32 arg0
)
330 long result
, clobber_r1
, clobber_r10
;
331 asm volatile("swint2"
333 "=R01" (clobber_r1
), "=R10" (clobber_r10
)
334 : "R10" (fastio_index
), "R01" (arg0
)
335 : "memory", "r2", "r3", "r4",
336 "r5", "r6", "r7", "r8", "r9",
337 "r11", "r12", "r13", "r14",
338 "r15", "r16", "r17", "r18", "r19",
339 "r20", "r21", "r22", "r23", "r24",
340 "r25", "r26", "r27", "r28", "r29");
346 * Provide a linux buffer to LIPP.
348 static void tile_net_provide_linux_buffer(struct tile_net_cpu
*info
,
349 void *va
, bool small
)
351 struct tile_netio_queue
*queue
= &info
->queue
;
353 /* Convert "va" and "small" to "linux_buffer_t". */
354 unsigned int buffer
= ((unsigned int)(__pa(va
) >> 7) << 1) + small
;
356 __netio_fastio_free_buffer(queue
->__user_part
.__fastio_index
, buffer
);
361 * Provide a linux buffer for LIPP.
363 * Note that the ACTUAL allocation for each buffer is a "struct sk_buff",
364 * plus a chunk of memory that includes not only the requested bytes, but
365 * also NET_SKB_PAD bytes of initial padding, and a "struct skb_shared_info".
367 * Note that "struct skb_shared_info" is 88 bytes with 64K pages and
368 * 268 bytes with 4K pages (since the frags[] array needs 18 entries).
370 * Without jumbo packets, the maximum packet size will be 1536 bytes,
371 * and we use 2 bytes (NET_IP_ALIGN) of padding. ISSUE: If we told
372 * the hardware to clip at 1518 bytes instead of 1536 bytes, then we
373 * could save an entire cache line, but in practice, we don't need it.
375 * Since CPAs are 38 bits, and we can only encode the high 31 bits in
376 * a "linux_buffer_t", the low 7 bits must be zero, and thus, we must
377 * align the actual "va" mod 128.
379 * We assume that the underlying "head" will be aligned mod 64. Note
380 * that in practice, we have seen "head" NOT aligned mod 128 even when
381 * using 2048 byte allocations, which is surprising.
383 * If "head" WAS always aligned mod 128, we could change LIPP to
384 * assume that the low SIX bits are zero, and the 7th bit is one, that
385 * is, align the actual "va" mod 128 plus 64, which would be "free".
387 * For now, the actual "head" pointer points at NET_SKB_PAD bytes of
388 * padding, plus 28 or 92 bytes of extra padding, plus the sk_buff
389 * pointer, plus the NET_IP_ALIGN padding, plus 126 or 1536 bytes for
390 * the actual packet, plus 62 bytes of empty padding, plus some
391 * padding and the "struct skb_shared_info".
393 * With 64K pages, a large buffer thus needs 32+92+4+2+1536+62+88
394 * bytes, or 1816 bytes, which fits comfortably into 2048 bytes.
396 * With 64K pages, a small buffer thus needs 32+92+4+2+126+88
397 * bytes, or 344 bytes, which means we are wasting 64+ bytes, and
398 * could presumably increase the size of small buffers.
400 * With 4K pages, a large buffer thus needs 32+92+4+2+1536+62+268
401 * bytes, or 1996 bytes, which fits comfortably into 2048 bytes.
403 * With 4K pages, a small buffer thus needs 32+92+4+2+126+268
404 * bytes, or 524 bytes, which is annoyingly wasteful.
406 * Maybe we should increase LIPP_SMALL_PACKET_SIZE to 192?
408 * ISSUE: Maybe we should increase "NET_SKB_PAD" to 64?
410 static bool tile_net_provide_needed_buffer(struct tile_net_cpu
*info
,
413 #if TILE_NET_MTU <= 1536
414 /* Without "jumbo", 2 + 1536 should be sufficient. */
415 unsigned int large_size
= NET_IP_ALIGN
+ 1536;
417 /* ISSUE: This has not been tested. */
418 unsigned int large_size
= NET_IP_ALIGN
+ TILE_NET_MTU
+ 100;
421 /* Avoid "false sharing" with last cache line. */
422 /* ISSUE: This is already done by "dev_alloc_skb()". */
424 (((small
? LIPP_SMALL_PACKET_SIZE
: large_size
) +
425 CHIP_L2_LINE_SIZE() - 1) & -CHIP_L2_LINE_SIZE());
427 unsigned int padding
= 128 - NET_SKB_PAD
;
433 struct sk_buff
**skb_ptr
;
435 /* Request 96 extra bytes for alignment purposes. */
436 skb
= dev_alloc_skb(len
+ padding
);
440 /* Skip 32 or 96 bytes to align "data" mod 128. */
441 align
= -(long)skb
->data
& (128 - 1);
442 BUG_ON(align
> padding
);
443 skb_reserve(skb
, align
);
445 /* This address is given to IPP. */
448 /* Buffers must not span a huge page. */
449 BUG_ON(((((long)va
& ~HPAGE_MASK
) + len
) & HPAGE_MASK
) != 0);
451 #ifdef TILE_NET_PARANOIA
452 #if CHIP_HAS_CBOX_HOME_MAP()
454 HV_PTE pte
= *virt_to_pte(current
->mm
, (unsigned long)va
);
455 if (hv_pte_get_mode(pte
) != HV_PTE_MODE_CACHE_HASH_L3
)
456 panic("Non-HFH ingress buffer! VA=%p Mode=%d PTE=%llx",
457 va
, hv_pte_get_mode(pte
), hv_pte_val(pte
));
462 /* Invalidate the packet buffer. */
464 __inv_buffer(va
, len
);
466 /* Skip two bytes to satisfy LIPP assumptions. */
467 /* Note that this aligns IP on a 16 byte boundary. */
468 /* ISSUE: Do this when the packet arrives? */
469 skb_reserve(skb
, NET_IP_ALIGN
);
471 /* Save a back-pointer to 'skb'. */
472 skb_ptr
= va
- sizeof(*skb_ptr
);
475 /* Make sure "skb_ptr" has been flushed. */
478 /* Provide the new buffer. */
479 tile_net_provide_linux_buffer(info
, va
, small
);
486 * Provide linux buffers for LIPP.
488 static void tile_net_provide_needed_buffers(struct tile_net_cpu
*info
)
490 while (info
->num_needed_small_buffers
!= 0) {
491 if (!tile_net_provide_needed_buffer(info
, true))
493 info
->num_needed_small_buffers
--;
496 while (info
->num_needed_large_buffers
!= 0) {
497 if (!tile_net_provide_needed_buffer(info
, false))
499 info
->num_needed_large_buffers
--;
506 /* Add a description to the page allocation failure dump. */
507 pr_notice("Could not provide a linux buffer to LIPP.\n");
512 * Grab some LEPP completions, and store them in "comps", of size
513 * "comps_size", and return the number of completions which were
514 * stored, so the caller can free them.
516 static unsigned int tile_net_lepp_grab_comps(lepp_queue_t
*eq
,
517 struct sk_buff
*comps
[],
518 unsigned int comps_size
,
519 unsigned int min_size
)
523 unsigned int comp_head
= eq
->comp_head
;
524 unsigned int comp_busy
= eq
->comp_busy
;
526 while (comp_head
!= comp_busy
&& n
< comps_size
) {
527 comps
[n
++] = eq
->comps
[comp_head
];
528 LEPP_QINC(comp_head
);
534 eq
->comp_head
= comp_head
;
541 * Free some comps, and return true iff there are still some pending.
543 static bool tile_net_lepp_free_comps(struct net_device
*dev
, bool all
)
545 struct tile_net_priv
*priv
= netdev_priv(dev
);
547 lepp_queue_t
*eq
= priv
->eq
;
549 struct sk_buff
*olds
[64];
550 unsigned int wanted
= 64;
554 spin_lock(&priv
->eq_lock
);
557 eq
->comp_busy
= eq
->comp_tail
;
559 n
= tile_net_lepp_grab_comps(eq
, olds
, wanted
, 0);
561 pending
= (eq
->comp_head
!= eq
->comp_tail
);
563 spin_unlock(&priv
->eq_lock
);
565 for (i
= 0; i
< n
; i
++)
573 * Make sure the egress timer is scheduled.
575 * Note that we use "schedule if not scheduled" logic instead of the more
576 * obvious "reschedule" logic, because "reschedule" is fairly expensive.
578 static void tile_net_schedule_egress_timer(struct tile_net_cpu
*info
)
580 if (!info
->egress_timer_scheduled
) {
581 mod_timer_pinned(&info
->egress_timer
, jiffies
+ 1);
582 info
->egress_timer_scheduled
= true;
588 * The "function" for "info->egress_timer".
590 * This timer will reschedule itself as long as there are any pending
591 * completions expected (on behalf of any tile).
593 * ISSUE: Realistically, will the timer ever stop scheduling itself?
595 * ISSUE: This timer is almost never actually needed, so just use a global
596 * timer that can run on any tile.
598 * ISSUE: Maybe instead track number of expected completions, and free
599 * only that many, resetting to zero if "pending" is ever false.
601 static void tile_net_handle_egress_timer(unsigned long arg
)
603 struct tile_net_cpu
*info
= (struct tile_net_cpu
*)arg
;
604 struct net_device
*dev
= info
->napi
.dev
;
606 /* The timer is no longer scheduled. */
607 info
->egress_timer_scheduled
= false;
609 /* Free comps, and reschedule timer if more are pending. */
610 if (tile_net_lepp_free_comps(dev
, false))
611 tile_net_schedule_egress_timer(info
);
615 #ifdef IGNORE_DUP_ACKS
618 * Help detect "duplicate" ACKs. These are sequential packets (for a
619 * given flow) which are exactly 66 bytes long, sharing everything but
620 * ID=2@0x12, Hsum=2@0x18, Ack=4@0x2a, WinSize=2@0x30, Csum=2@0x32,
621 * Tstamps=10@0x38. The ID's are +1, the Hsum's are -1, the Ack's are
622 * +N, and the Tstamps are usually identical.
624 * NOTE: Apparently truly duplicate acks (with identical "ack" values),
625 * should not be collapsed, as they are used for some kind of flow control.
627 static bool is_dup_ack(char *s1
, char *s2
, unsigned int len
)
631 unsigned long long ignorable
= 0;
633 /* Identification. */
634 ignorable
|= (1ULL << 0x12);
635 ignorable
|= (1ULL << 0x13);
637 /* Header checksum. */
638 ignorable
|= (1ULL << 0x18);
639 ignorable
|= (1ULL << 0x19);
642 ignorable
|= (1ULL << 0x2a);
643 ignorable
|= (1ULL << 0x2b);
644 ignorable
|= (1ULL << 0x2c);
645 ignorable
|= (1ULL << 0x2d);
648 ignorable
|= (1ULL << 0x30);
649 ignorable
|= (1ULL << 0x31);
652 ignorable
|= (1ULL << 0x32);
653 ignorable
|= (1ULL << 0x33);
655 for (i
= 0; i
< len
; i
++, ignorable
>>= 1) {
657 if ((ignorable
& 1) || (s1
[i
] == s2
[i
]))
660 #ifdef TILE_NET_DEBUG
661 /* HACK: Mention non-timestamp diffs. */
662 if (i
< 0x38 && i
!= 0x2f &&
664 pr_info("Diff at 0x%x\n", i
);
670 #ifdef TILE_NET_NO_SUPPRESS_DUP_ACKS
671 /* HACK: Do not suppress truly duplicate ACKs. */
672 /* ISSUE: Is this actually necessary or helpful? */
673 if (s1
[0x2a] == s2
[0x2a] &&
674 s1
[0x2b] == s2
[0x2b] &&
675 s1
[0x2c] == s2
[0x2c] &&
676 s1
[0x2d] == s2
[0x2d]) {
688 static void tile_net_discard_aux(struct tile_net_cpu
*info
, int index
)
690 struct tile_netio_queue
*queue
= &info
->queue
;
691 netio_queue_impl_t
*qsp
= queue
->__system_part
;
692 netio_queue_user_impl_t
*qup
= &queue
->__user_part
;
694 int index2_aux
= index
+ sizeof(netio_pkt_t
);
697 qsp
->__packet_receive_queue
.__last_packet_plus_one
) ?
700 netio_pkt_t
*pkt
= (netio_pkt_t
*)((unsigned long) &qsp
[1] + index
);
702 /* Extract the "linux_buffer_t". */
703 unsigned int buffer
= pkt
->__packet
.word
;
705 /* Convert "linux_buffer_t" to "va". */
706 void *va
= __va((phys_addr_t
)(buffer
>> 1) << 7);
708 /* Acquire the associated "skb". */
709 struct sk_buff
**skb_ptr
= va
- sizeof(*skb_ptr
);
710 struct sk_buff
*skb
= *skb_ptr
;
714 /* Consume this packet. */
715 qup
->__packet_receive_read
= index2
;
720 * Like "tile_net_poll()", but just discard packets.
722 static void tile_net_discard_packets(struct net_device
*dev
)
724 struct tile_net_priv
*priv
= netdev_priv(dev
);
725 int my_cpu
= smp_processor_id();
726 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
727 struct tile_netio_queue
*queue
= &info
->queue
;
728 netio_queue_impl_t
*qsp
= queue
->__system_part
;
729 netio_queue_user_impl_t
*qup
= &queue
->__user_part
;
731 while (qup
->__packet_receive_read
!=
732 qsp
->__packet_receive_queue
.__packet_write
) {
733 int index
= qup
->__packet_receive_read
;
734 tile_net_discard_aux(info
, index
);
740 * Handle the next packet. Return true if "processed", false if "filtered".
742 static bool tile_net_poll_aux(struct tile_net_cpu
*info
, int index
)
744 struct net_device
*dev
= info
->napi
.dev
;
746 struct tile_netio_queue
*queue
= &info
->queue
;
747 netio_queue_impl_t
*qsp
= queue
->__system_part
;
748 netio_queue_user_impl_t
*qup
= &queue
->__user_part
;
749 struct tile_net_stats_t
*stats
= &info
->stats
;
753 int index2_aux
= index
+ sizeof(netio_pkt_t
);
756 qsp
->__packet_receive_queue
.__last_packet_plus_one
) ?
759 netio_pkt_t
*pkt
= (netio_pkt_t
*)((unsigned long) &qsp
[1] + index
);
761 netio_pkt_metadata_t
*metadata
= NETIO_PKT_METADATA(pkt
);
763 /* Extract the packet size. FIXME: Shouldn't the second line */
764 /* get subtracted? Mostly moot, since it should be "zero". */
766 (NETIO_PKT_CUSTOM_LENGTH(pkt
) +
767 NET_IP_ALIGN
- NETIO_PACKET_PADDING
);
769 /* Extract the "linux_buffer_t". */
770 unsigned int buffer
= pkt
->__packet
.word
;
772 /* Extract "small" (vs "large"). */
773 bool small
= ((buffer
& 1) != 0);
775 /* Convert "linux_buffer_t" to "va". */
776 void *va
= __va((phys_addr_t
)(buffer
>> 1) << 7);
778 /* Extract the packet data pointer. */
779 /* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */
780 unsigned char *buf
= va
+ NET_IP_ALIGN
;
782 /* Invalidate the packet buffer. */
784 __inv_buffer(buf
, len
);
786 /* ISSUE: Is this needed? */
787 dev
->last_rx
= jiffies
;
789 #ifdef TILE_NET_DUMP_PACKETS
790 dump_packet(buf
, len
, "rx");
791 #endif /* TILE_NET_DUMP_PACKETS */
793 #ifdef TILE_NET_VERIFY_INGRESS
794 if (!NETIO_PKT_L4_CSUM_CORRECT_M(metadata
, pkt
) &&
795 NETIO_PKT_L4_CSUM_CALCULATED_M(metadata
, pkt
)) {
796 /* Bug 6624: Includes UDP packets with a "zero" checksum. */
797 pr_warning("Bad L4 checksum on %d byte packet.\n", len
);
799 if (!NETIO_PKT_L3_CSUM_CORRECT_M(metadata
, pkt
) &&
800 NETIO_PKT_L3_CSUM_CALCULATED_M(metadata
, pkt
)) {
801 dump_packet(buf
, len
, "rx");
802 panic("Bad L3 checksum.");
804 switch (NETIO_PKT_STATUS_M(metadata
, pkt
)) {
805 case NETIO_PKT_STATUS_OVERSIZE
:
807 dump_packet(buf
, len
, "rx");
808 panic("Unexpected OVERSIZE.");
811 case NETIO_PKT_STATUS_BAD
:
812 pr_warning("Unexpected BAD %ld byte packet.\n", len
);
818 /* ISSUE: Filter TCP packets with "bad" checksums? */
820 if (!(dev
->flags
& IFF_UP
)) {
821 /* Filter packets received before we're up. */
823 } else if (NETIO_PKT_STATUS_M(metadata
, pkt
) == NETIO_PKT_STATUS_BAD
) {
824 /* Filter "truncated" packets. */
826 } else if (!(dev
->flags
& IFF_PROMISC
)) {
827 /* FIXME: Implement HW multicast filter. */
828 if (!is_multicast_ether_addr(buf
)) {
829 /* Filter packets not for our address. */
830 const u8
*mine
= dev
->dev_addr
;
831 filter
= compare_ether_addr(mine
, buf
);
837 /* ISSUE: Update "drop" statistics? */
839 tile_net_provide_linux_buffer(info
, va
, small
);
843 /* Acquire the associated "skb". */
844 struct sk_buff
**skb_ptr
= va
- sizeof(*skb_ptr
);
845 struct sk_buff
*skb
= *skb_ptr
;
848 if (skb
->data
!= buf
)
849 panic("Corrupt linux buffer from LIPP! "
850 "VA=%p, skb=%p, skb->data=%p\n",
853 /* Encode the actual packet length. */
856 /* NOTE: This call also sets "skb->dev = dev". */
857 skb
->protocol
= eth_type_trans(skb
, dev
);
859 /* Avoid recomputing "good" TCP/UDP checksums. */
860 if (NETIO_PKT_L4_CSUM_CORRECT_M(metadata
, pkt
))
861 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
863 netif_receive_skb(skb
);
866 stats
->rx_bytes
+= len
;
869 info
->num_needed_small_buffers
++;
871 info
->num_needed_large_buffers
++;
874 /* Return four credits after every fourth packet. */
875 if (--qup
->__receive_credit_remaining
== 0) {
876 u32 interval
= qup
->__receive_credit_interval
;
877 qup
->__receive_credit_remaining
= interval
;
878 __netio_fastio_return_credits(qup
->__fastio_index
, interval
);
881 /* Consume this packet. */
882 qup
->__packet_receive_read
= index2
;
889 * Handle some packets for the given device on the current CPU.
891 * If "tile_net_stop()" is called on some other tile while this
892 * function is running, we will return, hopefully before that
893 * other tile asks us to call "napi_disable()".
895 * The "rotting packet" race condition occurs if a packet arrives
896 * during the extremely narrow window between the queue appearing to
897 * be empty, and the ingress interrupt being re-enabled. This happens
898 * a LOT under heavy network load.
900 static int tile_net_poll(struct napi_struct
*napi
, int budget
)
902 struct net_device
*dev
= napi
->dev
;
903 struct tile_net_priv
*priv
= netdev_priv(dev
);
904 int my_cpu
= smp_processor_id();
905 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
906 struct tile_netio_queue
*queue
= &info
->queue
;
907 netio_queue_impl_t
*qsp
= queue
->__system_part
;
908 netio_queue_user_impl_t
*qup
= &queue
->__user_part
;
910 unsigned int work
= 0;
912 while (priv
->active
) {
913 int index
= qup
->__packet_receive_read
;
914 if (index
== qsp
->__packet_receive_queue
.__packet_write
)
917 if (tile_net_poll_aux(info
, index
)) {
918 if (++work
>= budget
)
923 napi_complete(&info
->napi
);
928 /* Re-enable the ingress interrupt. */
929 enable_percpu_irq(priv
->intr_id
);
931 /* HACK: Avoid the "rotting packet" problem (see above). */
932 if (qup
->__packet_receive_read
!=
933 qsp
->__packet_receive_queue
.__packet_write
) {
934 /* ISSUE: Sometimes this returns zero, presumably */
935 /* because an interrupt was handled for this tile. */
936 (void)napi_reschedule(&info
->napi
);
942 tile_net_provide_needed_buffers(info
);
949 * Handle an ingress interrupt for the given device on the current cpu.
951 * ISSUE: Sometimes this gets called after "disable_percpu_irq()" has
952 * been called! This is probably due to "pending hypervisor downcalls".
954 * ISSUE: Is there any race condition between the "napi_schedule()" here
955 * and the "napi_complete()" call above?
957 static irqreturn_t
tile_net_handle_ingress_interrupt(int irq
, void *dev_ptr
)
959 struct net_device
*dev
= (struct net_device
*)dev_ptr
;
960 struct tile_net_priv
*priv
= netdev_priv(dev
);
961 int my_cpu
= smp_processor_id();
962 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
964 /* Disable the ingress interrupt. */
965 disable_percpu_irq(priv
->intr_id
);
967 /* Ignore unwanted interrupts. */
971 /* ISSUE: Sometimes "info->napi_enabled" is false here. */
973 napi_schedule(&info
->napi
);
980 * One time initialization per interface.
982 static int tile_net_open_aux(struct net_device
*dev
)
984 struct tile_net_priv
*priv
= netdev_priv(dev
);
988 unsigned int epp_lotar
;
991 * Find out where EPP memory should be homed.
993 ret
= hv_dev_pread(priv
->hv_devhdl
, 0,
994 (HV_VirtAddr
)&epp_lotar
, sizeof(epp_lotar
),
997 pr_err("could not read epp_shm_queue lotar.\n");
1002 * Home the page on the EPP.
1005 int epp_home
= hv_lotar_to_cpu(epp_lotar
);
1006 homecache_change_page_home(priv
->eq_pages
, EQ_ORDER
, epp_home
);
1010 * Register the EPP shared memory queue.
1013 netio_ipp_address_t ea
= {
1015 .pa
= __pa(priv
->eq
),
1019 ea
.pte
= hv_pte_set_lotar(ea
.pte
, epp_lotar
);
1020 ea
.pte
= hv_pte_set_mode(ea
.pte
, HV_PTE_MODE_CACHE_TILE_L3
);
1021 ret
= hv_dev_pwrite(priv
->hv_devhdl
, 0,
1032 if (hv_dev_pwrite(priv
->hv_devhdl
, 0, (HV_VirtAddr
)&dummy
,
1033 sizeof(dummy
), NETIO_IPP_START_SHIM_OFF
) < 0) {
1034 pr_warning("Failed to start LIPP/LEPP.\n");
1043 * Register with hypervisor on the current CPU.
1045 * Strangely, this function does important things even if it "fails",
1046 * which is especially common if the link is not up yet. Hopefully
1047 * these things are all "harmless" if done twice!
1049 static void tile_net_register(void *dev_ptr
)
1051 struct net_device
*dev
= (struct net_device
*)dev_ptr
;
1052 struct tile_net_priv
*priv
= netdev_priv(dev
);
1053 int my_cpu
= smp_processor_id();
1054 struct tile_net_cpu
*info
;
1056 struct tile_netio_queue
*queue
;
1058 /* Only network cpus can receive packets. */
1060 cpumask_test_cpu(my_cpu
, &priv
->network_cpus_map
) ? 0 : 255;
1062 netio_input_config_t config
= {
1064 .num_receive_packets
= priv
->network_cpus_credits
,
1065 .queue_id
= queue_id
1069 netio_queue_impl_t
*queuep
;
1071 PDEBUG("tile_net_register(queue_id %d)\n", queue_id
);
1073 if (!strcmp(dev
->name
, "xgbe0"))
1074 info
= &__get_cpu_var(hv_xgbe0
);
1075 else if (!strcmp(dev
->name
, "xgbe1"))
1076 info
= &__get_cpu_var(hv_xgbe1
);
1077 else if (!strcmp(dev
->name
, "gbe0"))
1078 info
= &__get_cpu_var(hv_gbe0
);
1079 else if (!strcmp(dev
->name
, "gbe1"))
1080 info
= &__get_cpu_var(hv_gbe1
);
1084 /* Initialize the egress timer. */
1085 init_timer(&info
->egress_timer
);
1086 info
->egress_timer
.data
= (long)info
;
1087 info
->egress_timer
.function
= tile_net_handle_egress_timer
;
1089 priv
->cpu
[my_cpu
] = info
;
1092 * Register ourselves with LIPP. This does a lot of stuff,
1093 * including invoking the LIPP registration code.
1095 ret
= hv_dev_pwrite(priv
->hv_devhdl
, 0,
1096 (HV_VirtAddr
)&config
,
1097 sizeof(netio_input_config_t
),
1098 NETIO_IPP_INPUT_REGISTER_OFF
);
1099 PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1102 if (ret
!= NETIO_LINK_DOWN
) {
1103 printk(KERN_DEBUG
"hv_dev_pwrite "
1104 "NETIO_IPP_INPUT_REGISTER_OFF failure %d\n",
1107 info
->link_down
= (ret
== NETIO_LINK_DOWN
);
1112 * Get the pointer to our queue's system part.
1115 ret
= hv_dev_pread(priv
->hv_devhdl
, 0,
1116 (HV_VirtAddr
)&queuep
,
1117 sizeof(netio_queue_impl_t
*),
1118 NETIO_IPP_INPUT_REGISTER_OFF
);
1119 PDEBUG("hv_dev_pread(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1121 PDEBUG("queuep %p\n", queuep
);
1123 /* ISSUE: Shouldn't this be a fatal error? */
1124 pr_err("hv_dev_pread NETIO_IPP_INPUT_REGISTER_OFF failure\n");
1128 queue
= &info
->queue
;
1130 queue
->__system_part
= queuep
;
1132 memset(&queue
->__user_part
, 0, sizeof(netio_queue_user_impl_t
));
1134 /* This is traditionally "config.num_receive_packets / 2". */
1135 queue
->__user_part
.__receive_credit_interval
= 4;
1136 queue
->__user_part
.__receive_credit_remaining
=
1137 queue
->__user_part
.__receive_credit_interval
;
1140 * Get a fastio index from the hypervisor.
1141 * ISSUE: Shouldn't this check the result?
1143 ret
= hv_dev_pread(priv
->hv_devhdl
, 0,
1144 (HV_VirtAddr
)&queue
->__user_part
.__fastio_index
,
1145 sizeof(queue
->__user_part
.__fastio_index
),
1146 NETIO_IPP_GET_FASTIO_OFF
);
1147 PDEBUG("hv_dev_pread(NETIO_IPP_GET_FASTIO_OFF) returned %d\n", ret
);
1149 /* Now we are registered. */
1150 info
->registered
= true;
1155 * Deregister with hypervisor on the current CPU.
1157 * This simply discards all our credits, so no more packets will be
1158 * delivered to this tile. There may still be packets in our queue.
1160 * Also, disable the ingress interrupt.
1162 static void tile_net_deregister(void *dev_ptr
)
1164 struct net_device
*dev
= (struct net_device
*)dev_ptr
;
1165 struct tile_net_priv
*priv
= netdev_priv(dev
);
1166 int my_cpu
= smp_processor_id();
1167 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
1169 /* Disable the ingress interrupt. */
1170 disable_percpu_irq(priv
->intr_id
);
1172 /* Do nothing else if not registered. */
1173 if (info
== NULL
|| !info
->registered
)
1177 struct tile_netio_queue
*queue
= &info
->queue
;
1178 netio_queue_user_impl_t
*qup
= &queue
->__user_part
;
1180 /* Discard all our credits. */
1181 __netio_fastio_return_credits(qup
->__fastio_index
, -1);
1187 * Unregister with hypervisor on the current CPU.
1189 * Also, disable the ingress interrupt.
1191 static void tile_net_unregister(void *dev_ptr
)
1193 struct net_device
*dev
= (struct net_device
*)dev_ptr
;
1194 struct tile_net_priv
*priv
= netdev_priv(dev
);
1195 int my_cpu
= smp_processor_id();
1196 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
1201 /* Disable the ingress interrupt. */
1202 disable_percpu_irq(priv
->intr_id
);
1204 /* Do nothing else if not registered. */
1205 if (info
== NULL
|| !info
->registered
)
1208 /* Unregister ourselves with LIPP/LEPP. */
1209 ret
= hv_dev_pwrite(priv
->hv_devhdl
, 0, (HV_VirtAddr
)&dummy
,
1210 sizeof(dummy
), NETIO_IPP_INPUT_UNREGISTER_OFF
);
1212 panic("Failed to unregister with LIPP/LEPP!\n");
1214 /* Discard all packets still in our NetIO queue. */
1215 tile_net_discard_packets(dev
);
1218 info
->num_needed_small_buffers
= 0;
1219 info
->num_needed_large_buffers
= 0;
1221 /* Cancel egress timer. */
1222 del_timer(&info
->egress_timer
);
1223 info
->egress_timer_scheduled
= false;
1228 * Helper function for "tile_net_stop()".
1230 * Also used to handle registration failure in "tile_net_open_inner()",
1231 * when the various extra steps in "tile_net_stop()" are not necessary.
1233 static void tile_net_stop_aux(struct net_device
*dev
)
1235 struct tile_net_priv
*priv
= netdev_priv(dev
);
1241 * Unregister all tiles, so LIPP will stop delivering packets.
1242 * Also, delete all the "napi" objects (sequentially, to protect
1243 * "dev->napi_list").
1245 on_each_cpu(tile_net_unregister
, (void *)dev
, 1);
1246 for_each_online_cpu(i
) {
1247 struct tile_net_cpu
*info
= priv
->cpu
[i
];
1248 if (info
!= NULL
&& info
->registered
) {
1249 netif_napi_del(&info
->napi
);
1250 info
->registered
= false;
1254 /* Stop LIPP/LEPP. */
1255 if (hv_dev_pwrite(priv
->hv_devhdl
, 0, (HV_VirtAddr
)&dummy
,
1256 sizeof(dummy
), NETIO_IPP_STOP_SHIM_OFF
) < 0)
1257 panic("Failed to stop LIPP/LEPP!\n");
1259 priv
->partly_opened
= 0;
1264 * Disable NAPI for the given device on the current cpu.
1266 static void tile_net_stop_disable(void *dev_ptr
)
1268 struct net_device
*dev
= (struct net_device
*)dev_ptr
;
1269 struct tile_net_priv
*priv
= netdev_priv(dev
);
1270 int my_cpu
= smp_processor_id();
1271 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
1273 /* Disable NAPI if needed. */
1274 if (info
!= NULL
&& info
->napi_enabled
) {
1275 napi_disable(&info
->napi
);
1276 info
->napi_enabled
= false;
1282 * Enable NAPI and the ingress interrupt for the given device
1283 * on the current cpu.
1285 * ISSUE: Only do this for "network cpus"?
1287 static void tile_net_open_enable(void *dev_ptr
)
1289 struct net_device
*dev
= (struct net_device
*)dev_ptr
;
1290 struct tile_net_priv
*priv
= netdev_priv(dev
);
1291 int my_cpu
= smp_processor_id();
1292 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
1295 napi_enable(&info
->napi
);
1296 info
->napi_enabled
= true;
1298 /* Enable the ingress interrupt. */
1299 enable_percpu_irq(priv
->intr_id
);
1304 * tile_net_open_inner does most of the work of bringing up the interface.
1305 * It's called from tile_net_open(), and also from tile_net_retry_open().
1306 * The return value is 0 if the interface was brought up, < 0 if
1307 * tile_net_open() should return the return value as an error, and > 0 if
1308 * tile_net_open() should return success and schedule a work item to
1309 * periodically retry the bringup.
1311 static int tile_net_open_inner(struct net_device
*dev
)
1313 struct tile_net_priv
*priv
= netdev_priv(dev
);
1314 int my_cpu
= smp_processor_id();
1315 struct tile_net_cpu
*info
;
1316 struct tile_netio_queue
*queue
;
1322 * First try to register just on the local CPU, and handle any
1323 * semi-expected "link down" failure specially. Note that we
1324 * do NOT call "tile_net_stop_aux()", unlike below.
1326 tile_net_register(dev
);
1327 info
= priv
->cpu
[my_cpu
];
1328 if (!info
->registered
) {
1329 if (info
->link_down
)
1335 * Now register everywhere else. If any registration fails,
1336 * even for "link down" (which might not be possible), we
1337 * clean up using "tile_net_stop_aux()". Also, add all the
1338 * "napi" objects (sequentially, to protect "dev->napi_list").
1339 * ISSUE: Only use "netif_napi_add()" for "network cpus"?
1341 smp_call_function(tile_net_register
, (void *)dev
, 1);
1342 for_each_online_cpu(i
) {
1343 struct tile_net_cpu
*info
= priv
->cpu
[i
];
1344 if (info
->registered
)
1345 netif_napi_add(dev
, &info
->napi
, tile_net_poll
, 64);
1350 tile_net_stop_aux(dev
);
1354 queue
= &info
->queue
;
1356 if (priv
->intr_id
== 0) {
1360 * Acquire the irq allocated by the hypervisor. Every
1361 * queue gets the same irq. The "__intr_id" field is
1362 * "1 << irq", so we use "__ffs()" to extract "irq".
1364 priv
->intr_id
= queue
->__system_part
->__intr_id
;
1365 BUG_ON(priv
->intr_id
== 0);
1366 irq
= __ffs(priv
->intr_id
);
1369 * Register the ingress interrupt handler for this
1370 * device, permanently.
1372 * We used to call "free_irq()" in "tile_net_stop()",
1373 * and then re-register the handler here every time,
1374 * but that caused DNP errors in "handle_IRQ_event()"
1375 * because "desc->action" was NULL. See bug 9143.
1377 tile_irq_activate(irq
, TILE_IRQ_PERCPU
);
1378 BUG_ON(request_irq(irq
, tile_net_handle_ingress_interrupt
,
1379 0, dev
->name
, (void *)dev
) != 0);
1383 /* Allocate initial buffers. */
1386 priv
->network_cpus_count
* priv
->network_cpus_credits
;
1388 info
->num_needed_small_buffers
=
1389 min(LIPP_SMALL_BUFFERS
, max_buffers
);
1391 info
->num_needed_large_buffers
=
1392 min(LIPP_LARGE_BUFFERS
, max_buffers
);
1394 tile_net_provide_needed_buffers(info
);
1396 if (info
->num_needed_small_buffers
!= 0 ||
1397 info
->num_needed_large_buffers
!= 0)
1398 panic("Insufficient memory for buffer stack!");
1401 /* We are about to be active. */
1402 priv
->active
= true;
1404 /* Make sure "active" is visible to all tiles. */
1407 /* On each tile, enable NAPI and the ingress interrupt. */
1408 on_each_cpu(tile_net_open_enable
, (void *)dev
, 1);
1410 /* Start LIPP/LEPP and activate "ingress" at the shim. */
1411 if (hv_dev_pwrite(priv
->hv_devhdl
, 0, (HV_VirtAddr
)&dummy
,
1412 sizeof(dummy
), NETIO_IPP_INPUT_INIT_OFF
) < 0)
1413 panic("Failed to activate the LIPP Shim!\n");
1415 /* Start our transmit queue. */
1416 netif_start_queue(dev
);
1423 * Called periodically to retry bringing up the NetIO interface,
1424 * if it doesn't come up cleanly during tile_net_open().
1426 static void tile_net_open_retry(struct work_struct
*w
)
1428 struct delayed_work
*dw
=
1429 container_of(w
, struct delayed_work
, work
);
1431 struct tile_net_priv
*priv
=
1432 container_of(dw
, struct tile_net_priv
, retry_work
);
1435 * Try to bring the NetIO interface up. If it fails, reschedule
1436 * ourselves to try again later; otherwise, tell Linux we now have
1437 * a working link. ISSUE: What if the return value is negative?
1439 if (tile_net_open_inner(priv
->dev
) != 0)
1440 schedule_delayed_work(&priv
->retry_work
,
1441 TILE_NET_RETRY_INTERVAL
);
1443 netif_carrier_on(priv
->dev
);
1448 * Called when a network interface is made active.
1450 * Returns 0 on success, negative value on failure.
1452 * The open entry point is called when a network interface is made
1453 * active by the system (IFF_UP). At this point all resources needed
1454 * for transmit and receive operations are allocated, the interrupt
1455 * handler is registered with the OS (if needed), the watchdog timer
1456 * is started, and the stack is notified that the interface is ready.
1458 * If the actual link is not available yet, then we tell Linux that
1459 * we have no carrier, and we keep checking until the link comes up.
1461 static int tile_net_open(struct net_device
*dev
)
1464 struct tile_net_priv
*priv
= netdev_priv(dev
);
1467 * We rely on priv->partly_opened to tell us if this is the
1468 * first time this interface is being brought up. If it is
1469 * set, the IPP was already initialized and should not be
1470 * initialized again.
1472 if (!priv
->partly_opened
) {
1477 /* Initialize LIPP/LEPP, and start the Shim. */
1478 ret
= tile_net_open_aux(dev
);
1480 pr_err("tile_net_open_aux failed: %d\n", ret
);
1484 /* Analyze the network cpus. */
1486 if (network_cpus_used
)
1487 cpumask_copy(&priv
->network_cpus_map
,
1490 cpumask_copy(&priv
->network_cpus_map
, cpu_online_mask
);
1493 count
= cpumask_weight(&priv
->network_cpus_map
);
1495 /* Limit credits to available buffers, and apply min. */
1496 credits
= max(16, (LIPP_LARGE_BUFFERS
/ count
) & ~1);
1498 /* Apply "GBE" max limit. */
1499 /* ISSUE: Use higher limit for XGBE? */
1500 credits
= min(NETIO_MAX_RECEIVE_PKTS
, credits
);
1502 priv
->network_cpus_count
= count
;
1503 priv
->network_cpus_credits
= credits
;
1505 #ifdef TILE_NET_DEBUG
1506 pr_info("Using %d network cpus, with %d credits each\n",
1507 priv
->network_cpus_count
, priv
->network_cpus_credits
);
1510 priv
->partly_opened
= 1;
1513 /* FIXME: Is this possible? */
1514 /* printk("Already partly opened.\n"); */
1518 * Attempt to bring up the link.
1520 ret
= tile_net_open_inner(dev
);
1523 netif_carrier_on(dev
);
1528 * We were unable to bring up the NetIO interface, but we want to
1529 * try again in a little bit. Tell Linux that we have no carrier
1530 * so it doesn't try to use the interface before the link comes up
1531 * and then remember to try again later.
1533 netif_carrier_off(dev
);
1534 schedule_delayed_work(&priv
->retry_work
, TILE_NET_RETRY_INTERVAL
);
1540 static int tile_net_drain_lipp_buffers(struct tile_net_priv
*priv
)
1544 /* Drain all the LIPP buffers. */
1548 /* NOTE: This should never fail. */
1549 if (hv_dev_pread(priv
->hv_devhdl
, 0, (HV_VirtAddr
)&buffer
,
1550 sizeof(buffer
), NETIO_IPP_DRAIN_OFF
) < 0)
1553 /* Stop when done. */
1558 /* Convert "linux_buffer_t" to "va". */
1559 void *va
= __va((phys_addr_t
)(buffer
>> 1) << 7);
1561 /* Acquire the associated "skb". */
1562 struct sk_buff
**skb_ptr
= va
- sizeof(*skb_ptr
);
1563 struct sk_buff
*skb
= *skb_ptr
;
1576 * Disables a network interface.
1578 * Returns 0, this is not allowed to fail.
1580 * The close entry point is called when an interface is de-activated
1581 * by the OS. The hardware is still under the drivers control, but
1582 * needs to be disabled. A global MAC reset is issued to stop the
1583 * hardware, and all transmit and receive resources are freed.
1585 * ISSUE: How closely does "netif_running(dev)" mirror "priv->active"?
1587 * Before we are called by "__dev_close()", "netif_running()" will
1588 * have been cleared, so no NEW calls to "tile_net_poll()" will be
1589 * made by "netpoll_poll_dev()".
1591 * Often, this can cause some tiles to still have packets in their
1592 * queues, so we must call "tile_net_discard_packets()" later.
1594 * Note that some other tile may still be INSIDE "tile_net_poll()",
1595 * and in fact, many will be, if there is heavy network load.
1597 * Calling "on_each_cpu(tile_net_stop_disable, (void *)dev, 1)" when
1598 * any tile is still "napi_schedule()"'d will induce a horrible crash
1599 * when "msleep()" is called. This includes tiles which are inside
1600 * "tile_net_poll()" which have not yet called "napi_complete()".
1602 * So, we must first try to wait long enough for other tiles to finish
1603 * with any current "tile_net_poll()" call, and, hopefully, to clear
1604 * the "scheduled" flag. ISSUE: It is unclear what happens to tiles
1605 * which have called "napi_schedule()" but which had not yet tried to
1606 * call "tile_net_poll()", or which exhausted their budget inside
1607 * "tile_net_poll()" just before this function was called.
1609 static int tile_net_stop(struct net_device
*dev
)
1611 struct tile_net_priv
*priv
= netdev_priv(dev
);
1613 PDEBUG("tile_net_stop()\n");
1615 /* Start discarding packets. */
1616 priv
->active
= false;
1618 /* Make sure "active" is visible to all tiles. */
1622 * On each tile, make sure no NEW packets get delivered, and
1623 * disable the ingress interrupt.
1625 * Note that the ingress interrupt can fire AFTER this,
1626 * presumably due to packets which were recently delivered,
1627 * but it will have no effect.
1629 on_each_cpu(tile_net_deregister
, (void *)dev
, 1);
1631 /* Optimistically drain LIPP buffers. */
1632 (void)tile_net_drain_lipp_buffers(priv
);
1634 /* ISSUE: Only needed if not yet fully open. */
1635 cancel_delayed_work_sync(&priv
->retry_work
);
1637 /* Can't transmit any more. */
1638 netif_stop_queue(dev
);
1640 /* Disable NAPI on each tile. */
1641 on_each_cpu(tile_net_stop_disable
, (void *)dev
, 1);
1644 * Drain any remaining LIPP buffers. NOTE: This "printk()"
1645 * has never been observed, but in theory it could happen.
1647 if (tile_net_drain_lipp_buffers(priv
) != 0)
1648 printk("Had to drain some extra LIPP buffers!\n");
1650 /* Stop LIPP/LEPP. */
1651 tile_net_stop_aux(dev
);
1654 * ISSUE: It appears that, in practice anyway, by the time we
1655 * get here, there are no pending completions, but just in case,
1656 * we free (all of) them anyway.
1658 while (tile_net_lepp_free_comps(dev
, true))
1661 /* Wipe the EPP queue, and wait till the stores hit the EPP. */
1662 memset(priv
->eq
, 0, sizeof(lepp_queue_t
));
1670 * Prepare the "frags" info for the resulting LEPP command.
1672 * If needed, flush the memory used by the frags.
1674 static unsigned int tile_net_tx_frags(lepp_frag_t
*frags
,
1675 struct sk_buff
*skb
,
1676 void *b_data
, unsigned int b_len
)
1678 unsigned int i
, n
= 0;
1680 struct skb_shared_info
*sh
= skb_shinfo(skb
);
1687 finv_buffer_remote(b_data
, b_len
, 0);
1690 frags
[n
].cpa_lo
= cpa
;
1691 frags
[n
].cpa_hi
= cpa
>> 32;
1692 frags
[n
].length
= b_len
;
1693 frags
[n
].hash_for_home
= hash_default
;
1697 for (i
= 0; i
< sh
->nr_frags
; i
++) {
1699 skb_frag_t
*f
= &sh
->frags
[i
];
1700 unsigned long pfn
= page_to_pfn(f
->page
);
1702 /* FIXME: Compute "hash_for_home" properly. */
1703 /* ISSUE: The hypervisor checks CHIP_HAS_REV1_DMA_PACKETS(). */
1704 int hash_for_home
= hash_default
;
1707 if (!hash_default
) {
1708 void *va
= pfn_to_kaddr(pfn
) + f
->page_offset
;
1709 BUG_ON(PageHighMem(f
->page
));
1710 finv_buffer_remote(va
, f
->size
, 0);
1713 cpa
= ((phys_addr_t
)pfn
<< PAGE_SHIFT
) + f
->page_offset
;
1714 frags
[n
].cpa_lo
= cpa
;
1715 frags
[n
].cpa_hi
= cpa
>> 32;
1716 frags
[n
].length
= f
->size
;
1717 frags
[n
].hash_for_home
= hash_for_home
;
1726 * This function takes "skb", consisting of a header template and a
1727 * payload, and hands it to LEPP, to emit as one or more segments,
1728 * each consisting of a possibly modified header, plus a piece of the
1729 * payload, via a process known as "tcp segmentation offload".
1731 * Usually, "data" will contain the header template, of size "sh_len",
1732 * and "sh->frags" will contain "skb->data_len" bytes of payload, and
1733 * there will be "sh->gso_segs" segments.
1735 * Sometimes, if "sendfile()" requires copying, we will be called with
1736 * "data" containing the header and payload, with "frags" being empty.
1738 * In theory, "sh->nr_frags" could be 3, but in practice, it seems
1739 * that this will never actually happen.
1741 * See "emulate_large_send_offload()" for some reference code, which
1742 * does not handle checksumming.
1744 * ISSUE: How do we make sure that high memory DMA does not migrate?
1746 static int tile_net_tx_tso(struct sk_buff
*skb
, struct net_device
*dev
)
1748 struct tile_net_priv
*priv
= netdev_priv(dev
);
1749 int my_cpu
= smp_processor_id();
1750 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
1751 struct tile_net_stats_t
*stats
= &info
->stats
;
1753 struct skb_shared_info
*sh
= skb_shinfo(skb
);
1755 unsigned char *data
= skb
->data
;
1757 /* The ip header follows the ethernet header. */
1758 struct iphdr
*ih
= ip_hdr(skb
);
1759 unsigned int ih_len
= ih
->ihl
* 4;
1761 /* Note that "nh == ih", by definition. */
1762 unsigned char *nh
= skb_network_header(skb
);
1763 unsigned int eh_len
= nh
- data
;
1765 /* The tcp header follows the ip header. */
1766 struct tcphdr
*th
= (struct tcphdr
*)(nh
+ ih_len
);
1767 unsigned int th_len
= th
->doff
* 4;
1769 /* The total number of header bytes. */
1770 /* NOTE: This may be less than skb_headlen(skb). */
1771 unsigned int sh_len
= eh_len
+ ih_len
+ th_len
;
1773 /* The number of payload bytes at "skb->data + sh_len". */
1774 /* This is non-zero for sendfile() without HIGHDMA. */
1775 unsigned int b_len
= skb_headlen(skb
) - sh_len
;
1777 /* The total number of payload bytes. */
1778 unsigned int d_len
= b_len
+ skb
->data_len
;
1780 /* The maximum payload size. */
1781 unsigned int p_len
= sh
->gso_size
;
1783 /* The total number of segments. */
1784 unsigned int num_segs
= sh
->gso_segs
;
1786 /* The temporary copy of the command. */
1787 u32 cmd_body
[(LEPP_MAX_CMD_SIZE
+ 3) / 4];
1788 lepp_tso_cmd_t
*cmd
= (lepp_tso_cmd_t
*)cmd_body
;
1790 /* Analyze the "frags". */
1791 unsigned int num_frags
=
1792 tile_net_tx_frags(cmd
->frags
, skb
, data
+ sh_len
, b_len
);
1794 /* The size of the command, including frags and header. */
1795 size_t cmd_size
= LEPP_TSO_CMD_SIZE(num_frags
, sh_len
);
1797 /* The command header. */
1798 lepp_tso_cmd_t cmd_init
= {
1800 .header_size
= sh_len
,
1801 .ip_offset
= eh_len
,
1802 .tcp_offset
= eh_len
+ ih_len
,
1803 .payload_size
= p_len
,
1804 .num_frags
= num_frags
,
1807 unsigned long irqflags
;
1809 lepp_queue_t
*eq
= priv
->eq
;
1811 struct sk_buff
*olds
[8];
1812 unsigned int wanted
= 8;
1813 unsigned int i
, nolds
= 0;
1815 unsigned int cmd_head
, cmd_tail
, cmd_next
;
1816 unsigned int comp_tail
;
1820 BUG_ON(skb
->protocol
!= htons(ETH_P_IP
));
1821 BUG_ON(ih
->protocol
!= IPPROTO_TCP
);
1822 BUG_ON(skb
->ip_summed
!= CHECKSUM_PARTIAL
);
1823 BUG_ON(num_frags
> LEPP_MAX_FRAGS
);
1824 /*--BUG_ON(num_segs != (d_len + (p_len - 1)) / p_len); */
1825 BUG_ON(num_segs
<= 1);
1828 /* Finish preparing the command. */
1830 /* Copy the command header. */
1833 /* Copy the "header". */
1834 memcpy(&cmd
->frags
[num_frags
], data
, sh_len
);
1837 /* Prefetch and wait, to minimize time spent holding the spinlock. */
1838 prefetch_L1(&eq
->comp_tail
);
1839 prefetch_L1(&eq
->cmd_tail
);
1843 /* Enqueue the command. */
1845 spin_lock_irqsave(&priv
->eq_lock
, irqflags
);
1848 * Handle completions if needed to make room.
1849 * HACK: Spin until there is sufficient room.
1851 if (lepp_num_free_comp_slots(eq
) == 0) {
1852 nolds
= tile_net_lepp_grab_comps(eq
, olds
, wanted
, 0);
1855 spin_unlock_irqrestore(&priv
->eq_lock
, irqflags
);
1856 return NETDEV_TX_BUSY
;
1860 cmd_head
= eq
->cmd_head
;
1861 cmd_tail
= eq
->cmd_tail
;
1863 /* Prepare to advance, detecting full queue. */
1864 cmd_next
= cmd_tail
+ cmd_size
;
1865 if (cmd_tail
< cmd_head
&& cmd_next
>= cmd_head
)
1867 if (cmd_next
> LEPP_CMD_LIMIT
) {
1869 if (cmd_next
== cmd_head
)
1873 /* Copy the command. */
1874 memcpy(&eq
->cmds
[cmd_tail
], cmd
, cmd_size
);
1877 cmd_tail
= cmd_next
;
1879 /* Record "skb" for eventual freeing. */
1880 comp_tail
= eq
->comp_tail
;
1881 eq
->comps
[comp_tail
] = skb
;
1882 LEPP_QINC(comp_tail
);
1883 eq
->comp_tail
= comp_tail
;
1885 /* Flush before allowing LEPP to handle the command. */
1886 /* ISSUE: Is this the optimal location for the flush? */
1889 eq
->cmd_tail
= cmd_tail
;
1891 /* NOTE: Using "4" here is more efficient than "0" or "2", */
1892 /* and, strangely, more efficient than pre-checking the number */
1893 /* of available completions, and comparing it to 4. */
1895 nolds
= tile_net_lepp_grab_comps(eq
, olds
, wanted
, 4);
1897 spin_unlock_irqrestore(&priv
->eq_lock
, irqflags
);
1899 /* Handle completions. */
1900 for (i
= 0; i
< nolds
; i
++)
1904 stats
->tx_packets
+= num_segs
;
1905 stats
->tx_bytes
+= (num_segs
* sh_len
) + d_len
;
1907 /* Make sure the egress timer is scheduled. */
1908 tile_net_schedule_egress_timer(info
);
1910 return NETDEV_TX_OK
;
1915 * Transmit a packet (called by the kernel via "hard_start_xmit" hook).
1917 static int tile_net_tx(struct sk_buff
*skb
, struct net_device
*dev
)
1919 struct tile_net_priv
*priv
= netdev_priv(dev
);
1920 int my_cpu
= smp_processor_id();
1921 struct tile_net_cpu
*info
= priv
->cpu
[my_cpu
];
1922 struct tile_net_stats_t
*stats
= &info
->stats
;
1924 unsigned long irqflags
;
1926 struct skb_shared_info
*sh
= skb_shinfo(skb
);
1928 unsigned int len
= skb
->len
;
1929 unsigned char *data
= skb
->data
;
1931 unsigned int csum_start
= skb_checksum_start_offset(skb
);
1933 lepp_frag_t frags
[LEPP_MAX_FRAGS
];
1935 unsigned int num_frags
;
1937 lepp_queue_t
*eq
= priv
->eq
;
1939 struct sk_buff
*olds
[8];
1940 unsigned int wanted
= 8;
1941 unsigned int i
, nolds
= 0;
1943 unsigned int cmd_size
= sizeof(lepp_cmd_t
);
1945 unsigned int cmd_head
, cmd_tail
, cmd_next
;
1946 unsigned int comp_tail
;
1948 lepp_cmd_t cmds
[LEPP_MAX_FRAGS
];
1952 * This is paranoia, since we think that if the link doesn't come
1953 * up, telling Linux we have no carrier will keep it from trying
1954 * to transmit. If it does, though, we can't execute this routine,
1955 * since data structures we depend on aren't set up yet.
1957 if (!info
->registered
)
1958 return NETDEV_TX_BUSY
;
1961 /* Save the timestamp. */
1962 dev
->trans_start
= jiffies
;
1965 #ifdef TILE_NET_PARANOIA
1966 #if CHIP_HAS_CBOX_HOME_MAP()
1968 HV_PTE pte
= *virt_to_pte(current
->mm
, (unsigned long)data
);
1969 if (hv_pte_get_mode(pte
) != HV_PTE_MODE_CACHE_HASH_L3
)
1970 panic("Non-HFH egress buffer! VA=%p Mode=%d PTE=%llx",
1971 data
, hv_pte_get_mode(pte
), hv_pte_val(pte
));
1977 #ifdef TILE_NET_DUMP_PACKETS
1978 /* ISSUE: Does not dump the "frags". */
1979 dump_packet(data
, skb_headlen(skb
), "tx");
1980 #endif /* TILE_NET_DUMP_PACKETS */
1983 if (sh
->gso_size
!= 0)
1984 return tile_net_tx_tso(skb
, dev
);
1987 /* Prepare the commands. */
1989 num_frags
= tile_net_tx_frags(frags
, skb
, data
, skb_headlen(skb
));
1991 for (i
= 0; i
< num_frags
; i
++) {
1993 bool final
= (i
== num_frags
- 1);
1996 .cpa_lo
= frags
[i
].cpa_lo
,
1997 .cpa_hi
= frags
[i
].cpa_hi
,
1998 .length
= frags
[i
].length
,
1999 .hash_for_home
= frags
[i
].hash_for_home
,
2000 .send_completion
= final
,
2001 .end_of_packet
= final
2004 if (i
== 0 && skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2005 cmd
.compute_checksum
= 1;
2006 cmd
.checksum_data
.bits
.start_byte
= csum_start
;
2007 cmd
.checksum_data
.bits
.count
= len
- csum_start
;
2008 cmd
.checksum_data
.bits
.destination_byte
=
2009 csum_start
+ skb
->csum_offset
;
2016 /* Prefetch and wait, to minimize time spent holding the spinlock. */
2017 prefetch_L1(&eq
->comp_tail
);
2018 prefetch_L1(&eq
->cmd_tail
);
2022 /* Enqueue the commands. */
2024 spin_lock_irqsave(&priv
->eq_lock
, irqflags
);
2027 * Handle completions if needed to make room.
2028 * HACK: Spin until there is sufficient room.
2030 if (lepp_num_free_comp_slots(eq
) == 0) {
2031 nolds
= tile_net_lepp_grab_comps(eq
, olds
, wanted
, 0);
2034 spin_unlock_irqrestore(&priv
->eq_lock
, irqflags
);
2035 return NETDEV_TX_BUSY
;
2039 cmd_head
= eq
->cmd_head
;
2040 cmd_tail
= eq
->cmd_tail
;
2042 /* Copy the commands, or fail. */
2043 for (i
= 0; i
< num_frags
; i
++) {
2045 /* Prepare to advance, detecting full queue. */
2046 cmd_next
= cmd_tail
+ cmd_size
;
2047 if (cmd_tail
< cmd_head
&& cmd_next
>= cmd_head
)
2049 if (cmd_next
> LEPP_CMD_LIMIT
) {
2051 if (cmd_next
== cmd_head
)
2055 /* Copy the command. */
2056 *(lepp_cmd_t
*)&eq
->cmds
[cmd_tail
] = cmds
[i
];
2059 cmd_tail
= cmd_next
;
2062 /* Record "skb" for eventual freeing. */
2063 comp_tail
= eq
->comp_tail
;
2064 eq
->comps
[comp_tail
] = skb
;
2065 LEPP_QINC(comp_tail
);
2066 eq
->comp_tail
= comp_tail
;
2068 /* Flush before allowing LEPP to handle the command. */
2069 /* ISSUE: Is this the optimal location for the flush? */
2072 eq
->cmd_tail
= cmd_tail
;
2074 /* NOTE: Using "4" here is more efficient than "0" or "2", */
2075 /* and, strangely, more efficient than pre-checking the number */
2076 /* of available completions, and comparing it to 4. */
2078 nolds
= tile_net_lepp_grab_comps(eq
, olds
, wanted
, 4);
2080 spin_unlock_irqrestore(&priv
->eq_lock
, irqflags
);
2082 /* Handle completions. */
2083 for (i
= 0; i
< nolds
; i
++)
2086 /* HACK: Track "expanded" size for short packets (e.g. 42 < 60). */
2087 stats
->tx_packets
++;
2088 stats
->tx_bytes
+= ((len
>= ETH_ZLEN
) ? len
: ETH_ZLEN
);
2090 /* Make sure the egress timer is scheduled. */
2091 tile_net_schedule_egress_timer(info
);
2093 return NETDEV_TX_OK
;
2098 * Deal with a transmit timeout.
2100 static void tile_net_tx_timeout(struct net_device
*dev
)
2102 PDEBUG("tile_net_tx_timeout()\n");
2103 PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies
,
2104 jiffies
- dev
->trans_start
);
2106 /* XXX: ISSUE: This doesn't seem useful for us. */
2107 netif_wake_queue(dev
);
2114 static int tile_net_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
2121 * Get System Network Statistics.
2123 * Returns the address of the device statistics structure.
2125 static struct net_device_stats
*tile_net_get_stats(struct net_device
*dev
)
2127 struct tile_net_priv
*priv
= netdev_priv(dev
);
2134 for_each_online_cpu(i
) {
2136 rx_packets
+= priv
->cpu
[i
]->stats
.rx_packets
;
2137 rx_bytes
+= priv
->cpu
[i
]->stats
.rx_bytes
;
2138 tx_packets
+= priv
->cpu
[i
]->stats
.tx_packets
;
2139 tx_bytes
+= priv
->cpu
[i
]->stats
.tx_bytes
;
2143 priv
->stats
.rx_packets
= rx_packets
;
2144 priv
->stats
.rx_bytes
= rx_bytes
;
2145 priv
->stats
.tx_packets
= tx_packets
;
2146 priv
->stats
.tx_bytes
= tx_bytes
;
2148 return &priv
->stats
;
2155 * The "change_mtu" method is usually not needed.
2156 * If you need it, it must be like this.
2158 static int tile_net_change_mtu(struct net_device
*dev
, int new_mtu
)
2160 PDEBUG("tile_net_change_mtu()\n");
2163 if ((new_mtu
< 68) || (new_mtu
> 1500))
2166 /* Accept the value. */
2174 * Change the Ethernet Address of the NIC.
2176 * The hypervisor driver does not support changing MAC address. However,
2177 * the IPP does not do anything with the MAC address, so the address which
2178 * gets used on outgoing packets, and which is accepted on incoming packets,
2179 * is completely up to the NetIO program or kernel driver which is actually
2182 * Returns 0 on success, negative on failure.
2184 static int tile_net_set_mac_address(struct net_device
*dev
, void *p
)
2186 struct sockaddr
*addr
= p
;
2188 if (!is_valid_ether_addr(addr
->sa_data
))
2191 /* ISSUE: Note that "dev_addr" is now a pointer. */
2192 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
2199 * Obtain the MAC address from the hypervisor.
2200 * This must be done before opening the device.
2202 static int tile_net_get_mac(struct net_device
*dev
)
2204 struct tile_net_priv
*priv
= netdev_priv(dev
);
2206 char hv_dev_name
[32];
2209 __netio_getset_offset_t offset
= { .word
= NETIO_IPP_PARAM_OFF
};
2213 /* For example, "xgbe0". */
2214 strcpy(hv_dev_name
, dev
->name
);
2215 len
= strlen(hv_dev_name
);
2217 /* For example, "xgbe/0". */
2218 hv_dev_name
[len
] = hv_dev_name
[len
- 1];
2219 hv_dev_name
[len
- 1] = '/';
2222 /* For example, "xgbe/0/native_hash". */
2223 strcpy(hv_dev_name
+ len
, hash_default
? "/native_hash" : "/native");
2225 /* Get the hypervisor handle for this device. */
2226 priv
->hv_devhdl
= hv_dev_open((HV_VirtAddr
)hv_dev_name
, 0);
2227 PDEBUG("hv_dev_open(%s) returned %d %p\n",
2228 hv_dev_name
, priv
->hv_devhdl
, &priv
->hv_devhdl
);
2229 if (priv
->hv_devhdl
< 0) {
2230 if (priv
->hv_devhdl
== HV_ENODEV
)
2231 printk(KERN_DEBUG
"Ignoring unconfigured device %s\n",
2234 printk(KERN_DEBUG
"hv_dev_open(%s) returned %d\n",
2235 hv_dev_name
, priv
->hv_devhdl
);
2240 * Read the hardware address from the hypervisor.
2241 * ISSUE: Note that "dev_addr" is now a pointer.
2243 offset
.bits
.class = NETIO_PARAM
;
2244 offset
.bits
.addr
= NETIO_PARAM_MAC
;
2245 ret
= hv_dev_pread(priv
->hv_devhdl
, 0,
2246 (HV_VirtAddr
)dev
->dev_addr
, dev
->addr_len
,
2248 PDEBUG("hv_dev_pread(NETIO_PARAM_MAC) returned %d\n", ret
);
2250 printk(KERN_DEBUG
"hv_dev_pread(NETIO_PARAM_MAC) %s failed\n",
2253 * Since the device is configured by the hypervisor but we
2254 * can't get its MAC address, we are most likely running
2255 * the simulator, so let's generate a random MAC address.
2257 random_ether_addr(dev
->dev_addr
);
2264 static struct net_device_ops tile_net_ops
= {
2265 .ndo_open
= tile_net_open
,
2266 .ndo_stop
= tile_net_stop
,
2267 .ndo_start_xmit
= tile_net_tx
,
2268 .ndo_do_ioctl
= tile_net_ioctl
,
2269 .ndo_get_stats
= tile_net_get_stats
,
2270 .ndo_change_mtu
= tile_net_change_mtu
,
2271 .ndo_tx_timeout
= tile_net_tx_timeout
,
2272 .ndo_set_mac_address
= tile_net_set_mac_address
2277 * The setup function.
2279 * This uses ether_setup() to assign various fields in dev, including
2280 * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2282 static void tile_net_setup(struct net_device
*dev
)
2284 PDEBUG("tile_net_setup()\n");
2288 dev
->netdev_ops
= &tile_net_ops
;
2290 dev
->watchdog_timeo
= TILE_NET_TIMEOUT
;
2292 /* We want lockless xmit. */
2293 dev
->features
|= NETIF_F_LLTX
;
2295 /* We support hardware tx checksums. */
2296 dev
->features
|= NETIF_F_HW_CSUM
;
2298 /* We support scatter/gather. */
2299 dev
->features
|= NETIF_F_SG
;
2301 /* We support TSO. */
2302 dev
->features
|= NETIF_F_TSO
;
2305 /* We support GSO. */
2306 dev
->features
|= NETIF_F_GSO
;
2310 dev
->features
|= NETIF_F_HIGHDMA
;
2312 /* ISSUE: We should support NETIF_F_UFO. */
2314 dev
->tx_queue_len
= TILE_NET_TX_QUEUE_LEN
;
2316 dev
->mtu
= TILE_NET_MTU
;
2321 * Allocate the device structure, register the device, and obtain the
2322 * MAC address from the hypervisor.
2324 static struct net_device
*tile_net_dev_init(const char *name
)
2327 struct net_device
*dev
;
2328 struct tile_net_priv
*priv
;
2331 * Allocate the device structure. This allocates "priv", calls
2332 * tile_net_setup(), and saves "name". Normally, "name" is a
2333 * template, instantiated by register_netdev(), but not for us.
2335 dev
= alloc_netdev(sizeof(*priv
), name
, tile_net_setup
);
2337 pr_err("alloc_netdev(%s) failed\n", name
);
2341 priv
= netdev_priv(dev
);
2343 /* Initialize "priv". */
2345 memset(priv
, 0, sizeof(*priv
));
2347 /* Save "dev" for "tile_net_open_retry()". */
2350 INIT_DELAYED_WORK(&priv
->retry_work
, tile_net_open_retry
);
2352 spin_lock_init(&priv
->eq_lock
);
2354 /* Allocate "eq". */
2355 priv
->eq_pages
= alloc_pages(GFP_KERNEL
| __GFP_ZERO
, EQ_ORDER
);
2356 if (!priv
->eq_pages
) {
2360 priv
->eq
= page_address(priv
->eq_pages
);
2362 /* Register the network device. */
2363 ret
= register_netdev(dev
);
2365 pr_err("register_netdev %s failed %d\n", dev
->name
, ret
);
2366 __free_pages(priv
->eq_pages
, EQ_ORDER
);
2371 /* Get the MAC address. */
2372 ret
= tile_net_get_mac(dev
);
2374 unregister_netdev(dev
);
2375 __free_pages(priv
->eq_pages
, EQ_ORDER
);
2387 * FIXME: If compiled as a module, this module cannot be "unloaded",
2388 * because the "ingress interrupt handler" is registered permanently.
2390 static void tile_net_cleanup(void)
2394 for (i
= 0; i
< TILE_NET_DEVS
; i
++) {
2395 if (tile_net_devs
[i
]) {
2396 struct net_device
*dev
= tile_net_devs
[i
];
2397 struct tile_net_priv
*priv
= netdev_priv(dev
);
2398 unregister_netdev(dev
);
2399 finv_buffer_remote(priv
->eq
, EQ_SIZE
, 0);
2400 __free_pages(priv
->eq_pages
, EQ_ORDER
);
2408 * Module initialization.
2410 static int tile_net_init_module(void)
2412 pr_info("Tilera IPP Net Driver\n");
2414 tile_net_devs
[0] = tile_net_dev_init("xgbe0");
2415 tile_net_devs
[1] = tile_net_dev_init("xgbe1");
2416 tile_net_devs
[2] = tile_net_dev_init("gbe0");
2417 tile_net_devs
[3] = tile_net_dev_init("gbe1");
2423 module_init(tile_net_init_module
);
2424 module_exit(tile_net_cleanup
);
2430 * The "network_cpus" boot argument specifies the cpus that are dedicated
2431 * to handle ingress packets.
2433 * The parameter should be in the form "network_cpus=m-n[,x-y]", where
2434 * m, n, x, y are integer numbers that represent the cpus that can be
2435 * neither a dedicated cpu nor a dataplane cpu.
2437 static int __init
network_cpus_setup(char *str
)
2439 int rc
= cpulist_parse_crop(str
, &network_cpus_map
);
2441 pr_warning("network_cpus=%s: malformed cpu list\n",
2445 /* Remove dedicated cpus. */
2446 cpumask_and(&network_cpus_map
, &network_cpus_map
,
2450 if (cpumask_empty(&network_cpus_map
)) {
2451 pr_warning("Ignoring network_cpus='%s'.\n",
2455 cpulist_scnprintf(buf
, sizeof(buf
), &network_cpus_map
);
2456 pr_info("Linux network CPUs: %s\n", buf
);
2457 network_cpus_used
= true;
2463 __setup("network_cpus=", network_cpus_setup
);