sched: Try to deal with low capacity
[pohmelfs.git] / kernel / sched.c
blob5f5b359b01b85b0b52b9c93ef28d2916f45decff
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h>
69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h>
71 #include <linux/tick.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
123 #ifdef CONFIG_SMP
125 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145 #endif
147 static inline int rt_policy(int policy)
149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 return 1;
151 return 0;
154 static inline int task_has_rt_policy(struct task_struct *p)
156 return rt_policy(p->policy);
160 * This is the priority-queue data structure of the RT scheduling class:
162 struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
167 struct rt_bandwidth {
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
175 static struct rt_bandwidth def_rt_bandwidth;
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191 if (!overrun)
192 break;
194 idle = do_sched_rt_period_timer(rt_b, overrun);
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
200 static
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
206 spin_lock_init(&rt_b->rt_runtime_lock);
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
213 static inline int rt_bandwidth_enabled(void)
215 return sysctl_sched_rt_runtime >= 0;
218 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220 ktime_t now;
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 return;
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
230 unsigned long delta;
231 ktime_t soft, hard;
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS_PINNED, 0);
245 spin_unlock(&rt_b->rt_runtime_lock);
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
251 hrtimer_cancel(&rt_b->rt_period_timer);
253 #endif
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
259 static DEFINE_MUTEX(sched_domains_mutex);
261 #ifdef CONFIG_GROUP_SCHED
263 #include <linux/cgroup.h>
265 struct cfs_rq;
267 static LIST_HEAD(task_groups);
269 /* task group related information */
270 struct task_group {
271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css;
273 #endif
275 #ifdef CONFIG_USER_SCHED
276 uid_t uid;
277 #endif
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
285 #endif
287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
291 struct rt_bandwidth rt_bandwidth;
292 #endif
294 struct rcu_head rcu;
295 struct list_head list;
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
302 #ifdef CONFIG_USER_SCHED
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct *user)
307 user->tg->uid = user->uid;
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
315 struct task_group root_task_group;
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares.
335 static DEFINE_SPINLOCK(task_group_lock);
337 #ifdef CONFIG_SMP
338 static int root_task_group_empty(void)
340 return list_empty(&root_task_group.children);
342 #endif
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
359 #define MIN_SHARES 2
360 #define MAX_SHARES (1UL << 18)
362 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363 #endif
365 /* Default task group.
366 * Every task in system belong to this group at bootup.
368 struct task_group init_task_group;
370 /* return group to which a task belongs */
371 static inline struct task_group *task_group(struct task_struct *p)
373 struct task_group *tg;
375 #ifdef CONFIG_USER_SCHED
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
382 #else
383 tg = &init_task_group;
384 #endif
385 return tg;
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
394 #endif
396 #ifdef CONFIG_RT_GROUP_SCHED
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
399 #endif
402 #else
404 #ifdef CONFIG_SMP
405 static int root_task_group_empty(void)
407 return 1;
409 #endif
411 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 static inline struct task_group *task_group(struct task_struct *p)
414 return NULL;
417 #endif /* CONFIG_GROUP_SCHED */
419 /* CFS-related fields in a runqueue */
420 struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
424 u64 exec_clock;
425 u64 min_vruntime;
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
430 struct list_head tasks;
431 struct list_head *balance_iterator;
434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running).
437 struct sched_entity *curr, *next, *last;
439 unsigned int nr_spread_over;
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
455 #ifdef CONFIG_SMP
457 * the part of load.weight contributed by tasks
459 unsigned long task_weight;
462 * h_load = weight * f(tg)
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
467 unsigned long h_load;
470 * this cpu's part of tg->shares
472 unsigned long shares;
475 * load.weight at the time we set shares
477 unsigned long rq_weight;
478 #endif
479 #endif
482 /* Real-Time classes' related field in a runqueue: */
483 struct rt_rq {
484 struct rt_prio_array active;
485 unsigned long rt_nr_running;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 struct {
488 int curr; /* highest queued rt task prio */
489 #ifdef CONFIG_SMP
490 int next; /* next highest */
491 #endif
492 } highest_prio;
493 #endif
494 #ifdef CONFIG_SMP
495 unsigned long rt_nr_migratory;
496 unsigned long rt_nr_total;
497 int overloaded;
498 struct plist_head pushable_tasks;
499 #endif
500 int rt_throttled;
501 u64 rt_time;
502 u64 rt_runtime;
503 /* Nests inside the rq lock: */
504 spinlock_t rt_runtime_lock;
506 #ifdef CONFIG_RT_GROUP_SCHED
507 unsigned long rt_nr_boosted;
509 struct rq *rq;
510 struct list_head leaf_rt_rq_list;
511 struct task_group *tg;
512 struct sched_rt_entity *rt_se;
513 #endif
516 #ifdef CONFIG_SMP
519 * We add the notion of a root-domain which will be used to define per-domain
520 * variables. Each exclusive cpuset essentially defines an island domain by
521 * fully partitioning the member cpus from any other cpuset. Whenever a new
522 * exclusive cpuset is created, we also create and attach a new root-domain
523 * object.
526 struct root_domain {
527 atomic_t refcount;
528 cpumask_var_t span;
529 cpumask_var_t online;
532 * The "RT overload" flag: it gets set if a CPU has more than
533 * one runnable RT task.
535 cpumask_var_t rto_mask;
536 atomic_t rto_count;
537 #ifdef CONFIG_SMP
538 struct cpupri cpupri;
539 #endif
540 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
542 * Preferred wake up cpu nominated by sched_mc balance that will be
543 * used when most cpus are idle in the system indicating overall very
544 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
546 unsigned int sched_mc_preferred_wakeup_cpu;
547 #endif
551 * By default the system creates a single root-domain with all cpus as
552 * members (mimicking the global state we have today).
554 static struct root_domain def_root_domain;
556 #endif
559 * This is the main, per-CPU runqueue data structure.
561 * Locking rule: those places that want to lock multiple runqueues
562 * (such as the load balancing or the thread migration code), lock
563 * acquire operations must be ordered by ascending &runqueue.
565 struct rq {
566 /* runqueue lock: */
567 spinlock_t lock;
570 * nr_running and cpu_load should be in the same cacheline because
571 * remote CPUs use both these fields when doing load calculation.
573 unsigned long nr_running;
574 #define CPU_LOAD_IDX_MAX 5
575 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
576 #ifdef CONFIG_NO_HZ
577 unsigned long last_tick_seen;
578 unsigned char in_nohz_recently;
579 #endif
580 /* capture load from *all* tasks on this cpu: */
581 struct load_weight load;
582 unsigned long nr_load_updates;
583 u64 nr_switches;
584 u64 nr_migrations_in;
586 struct cfs_rq cfs;
587 struct rt_rq rt;
589 #ifdef CONFIG_FAIR_GROUP_SCHED
590 /* list of leaf cfs_rq on this cpu: */
591 struct list_head leaf_cfs_rq_list;
592 #endif
593 #ifdef CONFIG_RT_GROUP_SCHED
594 struct list_head leaf_rt_rq_list;
595 #endif
598 * This is part of a global counter where only the total sum
599 * over all CPUs matters. A task can increase this counter on
600 * one CPU and if it got migrated afterwards it may decrease
601 * it on another CPU. Always updated under the runqueue lock:
603 unsigned long nr_uninterruptible;
605 struct task_struct *curr, *idle;
606 unsigned long next_balance;
607 struct mm_struct *prev_mm;
609 u64 clock;
611 atomic_t nr_iowait;
613 #ifdef CONFIG_SMP
614 struct root_domain *rd;
615 struct sched_domain *sd;
617 unsigned char idle_at_tick;
618 /* For active balancing */
619 int post_schedule;
620 int active_balance;
621 int push_cpu;
622 /* cpu of this runqueue: */
623 int cpu;
624 int online;
626 unsigned long avg_load_per_task;
628 struct task_struct *migration_thread;
629 struct list_head migration_queue;
631 u64 rt_avg;
632 u64 age_stamp;
633 #endif
635 /* calc_load related fields */
636 unsigned long calc_load_update;
637 long calc_load_active;
639 #ifdef CONFIG_SCHED_HRTICK
640 #ifdef CONFIG_SMP
641 int hrtick_csd_pending;
642 struct call_single_data hrtick_csd;
643 #endif
644 struct hrtimer hrtick_timer;
645 #endif
647 #ifdef CONFIG_SCHEDSTATS
648 /* latency stats */
649 struct sched_info rq_sched_info;
650 unsigned long long rq_cpu_time;
651 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
653 /* sys_sched_yield() stats */
654 unsigned int yld_count;
656 /* schedule() stats */
657 unsigned int sched_switch;
658 unsigned int sched_count;
659 unsigned int sched_goidle;
661 /* try_to_wake_up() stats */
662 unsigned int ttwu_count;
663 unsigned int ttwu_local;
665 /* BKL stats */
666 unsigned int bkl_count;
667 #endif
670 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
672 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
674 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
677 static inline int cpu_of(struct rq *rq)
679 #ifdef CONFIG_SMP
680 return rq->cpu;
681 #else
682 return 0;
683 #endif
687 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
688 * See detach_destroy_domains: synchronize_sched for details.
690 * The domain tree of any CPU may only be accessed from within
691 * preempt-disabled sections.
693 #define for_each_domain(cpu, __sd) \
694 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
696 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
697 #define this_rq() (&__get_cpu_var(runqueues))
698 #define task_rq(p) cpu_rq(task_cpu(p))
699 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
700 #define raw_rq() (&__raw_get_cpu_var(runqueues))
702 inline void update_rq_clock(struct rq *rq)
704 rq->clock = sched_clock_cpu(cpu_of(rq));
708 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
710 #ifdef CONFIG_SCHED_DEBUG
711 # define const_debug __read_mostly
712 #else
713 # define const_debug static const
714 #endif
717 * runqueue_is_locked
719 * Returns true if the current cpu runqueue is locked.
720 * This interface allows printk to be called with the runqueue lock
721 * held and know whether or not it is OK to wake up the klogd.
723 int runqueue_is_locked(void)
725 int cpu = get_cpu();
726 struct rq *rq = cpu_rq(cpu);
727 int ret;
729 ret = spin_is_locked(&rq->lock);
730 put_cpu();
731 return ret;
735 * Debugging: various feature bits
738 #define SCHED_FEAT(name, enabled) \
739 __SCHED_FEAT_##name ,
741 enum {
742 #include "sched_features.h"
745 #undef SCHED_FEAT
747 #define SCHED_FEAT(name, enabled) \
748 (1UL << __SCHED_FEAT_##name) * enabled |
750 const_debug unsigned int sysctl_sched_features =
751 #include "sched_features.h"
754 #undef SCHED_FEAT
756 #ifdef CONFIG_SCHED_DEBUG
757 #define SCHED_FEAT(name, enabled) \
758 #name ,
760 static __read_mostly char *sched_feat_names[] = {
761 #include "sched_features.h"
762 NULL
765 #undef SCHED_FEAT
767 static int sched_feat_show(struct seq_file *m, void *v)
769 int i;
771 for (i = 0; sched_feat_names[i]; i++) {
772 if (!(sysctl_sched_features & (1UL << i)))
773 seq_puts(m, "NO_");
774 seq_printf(m, "%s ", sched_feat_names[i]);
776 seq_puts(m, "\n");
778 return 0;
781 static ssize_t
782 sched_feat_write(struct file *filp, const char __user *ubuf,
783 size_t cnt, loff_t *ppos)
785 char buf[64];
786 char *cmp = buf;
787 int neg = 0;
788 int i;
790 if (cnt > 63)
791 cnt = 63;
793 if (copy_from_user(&buf, ubuf, cnt))
794 return -EFAULT;
796 buf[cnt] = 0;
798 if (strncmp(buf, "NO_", 3) == 0) {
799 neg = 1;
800 cmp += 3;
803 for (i = 0; sched_feat_names[i]; i++) {
804 int len = strlen(sched_feat_names[i]);
806 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
807 if (neg)
808 sysctl_sched_features &= ~(1UL << i);
809 else
810 sysctl_sched_features |= (1UL << i);
811 break;
815 if (!sched_feat_names[i])
816 return -EINVAL;
818 filp->f_pos += cnt;
820 return cnt;
823 static int sched_feat_open(struct inode *inode, struct file *filp)
825 return single_open(filp, sched_feat_show, NULL);
828 static struct file_operations sched_feat_fops = {
829 .open = sched_feat_open,
830 .write = sched_feat_write,
831 .read = seq_read,
832 .llseek = seq_lseek,
833 .release = single_release,
836 static __init int sched_init_debug(void)
838 debugfs_create_file("sched_features", 0644, NULL, NULL,
839 &sched_feat_fops);
841 return 0;
843 late_initcall(sched_init_debug);
845 #endif
847 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
850 * Number of tasks to iterate in a single balance run.
851 * Limited because this is done with IRQs disabled.
853 const_debug unsigned int sysctl_sched_nr_migrate = 32;
856 * ratelimit for updating the group shares.
857 * default: 0.25ms
859 unsigned int sysctl_sched_shares_ratelimit = 250000;
862 * Inject some fuzzyness into changing the per-cpu group shares
863 * this avoids remote rq-locks at the expense of fairness.
864 * default: 4
866 unsigned int sysctl_sched_shares_thresh = 4;
869 * period over which we average the RT time consumption, measured
870 * in ms.
872 * default: 1s
874 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
877 * period over which we measure -rt task cpu usage in us.
878 * default: 1s
880 unsigned int sysctl_sched_rt_period = 1000000;
882 static __read_mostly int scheduler_running;
885 * part of the period that we allow rt tasks to run in us.
886 * default: 0.95s
888 int sysctl_sched_rt_runtime = 950000;
890 static inline u64 global_rt_period(void)
892 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
895 static inline u64 global_rt_runtime(void)
897 if (sysctl_sched_rt_runtime < 0)
898 return RUNTIME_INF;
900 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
903 #ifndef prepare_arch_switch
904 # define prepare_arch_switch(next) do { } while (0)
905 #endif
906 #ifndef finish_arch_switch
907 # define finish_arch_switch(prev) do { } while (0)
908 #endif
910 static inline int task_current(struct rq *rq, struct task_struct *p)
912 return rq->curr == p;
915 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
916 static inline int task_running(struct rq *rq, struct task_struct *p)
918 return task_current(rq, p);
921 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
925 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 #ifdef CONFIG_DEBUG_SPINLOCK
928 /* this is a valid case when another task releases the spinlock */
929 rq->lock.owner = current;
930 #endif
932 * If we are tracking spinlock dependencies then we have to
933 * fix up the runqueue lock - which gets 'carried over' from
934 * prev into current:
936 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
938 spin_unlock_irq(&rq->lock);
941 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
942 static inline int task_running(struct rq *rq, struct task_struct *p)
944 #ifdef CONFIG_SMP
945 return p->oncpu;
946 #else
947 return task_current(rq, p);
948 #endif
951 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
953 #ifdef CONFIG_SMP
955 * We can optimise this out completely for !SMP, because the
956 * SMP rebalancing from interrupt is the only thing that cares
957 * here.
959 next->oncpu = 1;
960 #endif
961 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
962 spin_unlock_irq(&rq->lock);
963 #else
964 spin_unlock(&rq->lock);
965 #endif
968 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
970 #ifdef CONFIG_SMP
972 * After ->oncpu is cleared, the task can be moved to a different CPU.
973 * We must ensure this doesn't happen until the switch is completely
974 * finished.
976 smp_wmb();
977 prev->oncpu = 0;
978 #endif
979 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
980 local_irq_enable();
981 #endif
983 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
986 * __task_rq_lock - lock the runqueue a given task resides on.
987 * Must be called interrupts disabled.
989 static inline struct rq *__task_rq_lock(struct task_struct *p)
990 __acquires(rq->lock)
992 for (;;) {
993 struct rq *rq = task_rq(p);
994 spin_lock(&rq->lock);
995 if (likely(rq == task_rq(p)))
996 return rq;
997 spin_unlock(&rq->lock);
1002 * task_rq_lock - lock the runqueue a given task resides on and disable
1003 * interrupts. Note the ordering: we can safely lookup the task_rq without
1004 * explicitly disabling preemption.
1006 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1007 __acquires(rq->lock)
1009 struct rq *rq;
1011 for (;;) {
1012 local_irq_save(*flags);
1013 rq = task_rq(p);
1014 spin_lock(&rq->lock);
1015 if (likely(rq == task_rq(p)))
1016 return rq;
1017 spin_unlock_irqrestore(&rq->lock, *flags);
1021 void task_rq_unlock_wait(struct task_struct *p)
1023 struct rq *rq = task_rq(p);
1025 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1026 spin_unlock_wait(&rq->lock);
1029 static void __task_rq_unlock(struct rq *rq)
1030 __releases(rq->lock)
1032 spin_unlock(&rq->lock);
1035 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1036 __releases(rq->lock)
1038 spin_unlock_irqrestore(&rq->lock, *flags);
1042 * this_rq_lock - lock this runqueue and disable interrupts.
1044 static struct rq *this_rq_lock(void)
1045 __acquires(rq->lock)
1047 struct rq *rq;
1049 local_irq_disable();
1050 rq = this_rq();
1051 spin_lock(&rq->lock);
1053 return rq;
1056 #ifdef CONFIG_SCHED_HRTICK
1058 * Use HR-timers to deliver accurate preemption points.
1060 * Its all a bit involved since we cannot program an hrt while holding the
1061 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1062 * reschedule event.
1064 * When we get rescheduled we reprogram the hrtick_timer outside of the
1065 * rq->lock.
1069 * Use hrtick when:
1070 * - enabled by features
1071 * - hrtimer is actually high res
1073 static inline int hrtick_enabled(struct rq *rq)
1075 if (!sched_feat(HRTICK))
1076 return 0;
1077 if (!cpu_active(cpu_of(rq)))
1078 return 0;
1079 return hrtimer_is_hres_active(&rq->hrtick_timer);
1082 static void hrtick_clear(struct rq *rq)
1084 if (hrtimer_active(&rq->hrtick_timer))
1085 hrtimer_cancel(&rq->hrtick_timer);
1089 * High-resolution timer tick.
1090 * Runs from hardirq context with interrupts disabled.
1092 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1094 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1096 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1098 spin_lock(&rq->lock);
1099 update_rq_clock(rq);
1100 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1101 spin_unlock(&rq->lock);
1103 return HRTIMER_NORESTART;
1106 #ifdef CONFIG_SMP
1108 * called from hardirq (IPI) context
1110 static void __hrtick_start(void *arg)
1112 struct rq *rq = arg;
1114 spin_lock(&rq->lock);
1115 hrtimer_restart(&rq->hrtick_timer);
1116 rq->hrtick_csd_pending = 0;
1117 spin_unlock(&rq->lock);
1121 * Called to set the hrtick timer state.
1123 * called with rq->lock held and irqs disabled
1125 static void hrtick_start(struct rq *rq, u64 delay)
1127 struct hrtimer *timer = &rq->hrtick_timer;
1128 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1130 hrtimer_set_expires(timer, time);
1132 if (rq == this_rq()) {
1133 hrtimer_restart(timer);
1134 } else if (!rq->hrtick_csd_pending) {
1135 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1136 rq->hrtick_csd_pending = 1;
1140 static int
1141 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1143 int cpu = (int)(long)hcpu;
1145 switch (action) {
1146 case CPU_UP_CANCELED:
1147 case CPU_UP_CANCELED_FROZEN:
1148 case CPU_DOWN_PREPARE:
1149 case CPU_DOWN_PREPARE_FROZEN:
1150 case CPU_DEAD:
1151 case CPU_DEAD_FROZEN:
1152 hrtick_clear(cpu_rq(cpu));
1153 return NOTIFY_OK;
1156 return NOTIFY_DONE;
1159 static __init void init_hrtick(void)
1161 hotcpu_notifier(hotplug_hrtick, 0);
1163 #else
1165 * Called to set the hrtick timer state.
1167 * called with rq->lock held and irqs disabled
1169 static void hrtick_start(struct rq *rq, u64 delay)
1171 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1172 HRTIMER_MODE_REL_PINNED, 0);
1175 static inline void init_hrtick(void)
1178 #endif /* CONFIG_SMP */
1180 static void init_rq_hrtick(struct rq *rq)
1182 #ifdef CONFIG_SMP
1183 rq->hrtick_csd_pending = 0;
1185 rq->hrtick_csd.flags = 0;
1186 rq->hrtick_csd.func = __hrtick_start;
1187 rq->hrtick_csd.info = rq;
1188 #endif
1190 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1191 rq->hrtick_timer.function = hrtick;
1193 #else /* CONFIG_SCHED_HRTICK */
1194 static inline void hrtick_clear(struct rq *rq)
1198 static inline void init_rq_hrtick(struct rq *rq)
1202 static inline void init_hrtick(void)
1205 #endif /* CONFIG_SCHED_HRTICK */
1208 * resched_task - mark a task 'to be rescheduled now'.
1210 * On UP this means the setting of the need_resched flag, on SMP it
1211 * might also involve a cross-CPU call to trigger the scheduler on
1212 * the target CPU.
1214 #ifdef CONFIG_SMP
1216 #ifndef tsk_is_polling
1217 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1218 #endif
1220 static void resched_task(struct task_struct *p)
1222 int cpu;
1224 assert_spin_locked(&task_rq(p)->lock);
1226 if (test_tsk_need_resched(p))
1227 return;
1229 set_tsk_need_resched(p);
1231 cpu = task_cpu(p);
1232 if (cpu == smp_processor_id())
1233 return;
1235 /* NEED_RESCHED must be visible before we test polling */
1236 smp_mb();
1237 if (!tsk_is_polling(p))
1238 smp_send_reschedule(cpu);
1241 static void resched_cpu(int cpu)
1243 struct rq *rq = cpu_rq(cpu);
1244 unsigned long flags;
1246 if (!spin_trylock_irqsave(&rq->lock, flags))
1247 return;
1248 resched_task(cpu_curr(cpu));
1249 spin_unlock_irqrestore(&rq->lock, flags);
1252 #ifdef CONFIG_NO_HZ
1254 * When add_timer_on() enqueues a timer into the timer wheel of an
1255 * idle CPU then this timer might expire before the next timer event
1256 * which is scheduled to wake up that CPU. In case of a completely
1257 * idle system the next event might even be infinite time into the
1258 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1259 * leaves the inner idle loop so the newly added timer is taken into
1260 * account when the CPU goes back to idle and evaluates the timer
1261 * wheel for the next timer event.
1263 void wake_up_idle_cpu(int cpu)
1265 struct rq *rq = cpu_rq(cpu);
1267 if (cpu == smp_processor_id())
1268 return;
1271 * This is safe, as this function is called with the timer
1272 * wheel base lock of (cpu) held. When the CPU is on the way
1273 * to idle and has not yet set rq->curr to idle then it will
1274 * be serialized on the timer wheel base lock and take the new
1275 * timer into account automatically.
1277 if (rq->curr != rq->idle)
1278 return;
1281 * We can set TIF_RESCHED on the idle task of the other CPU
1282 * lockless. The worst case is that the other CPU runs the
1283 * idle task through an additional NOOP schedule()
1285 set_tsk_need_resched(rq->idle);
1287 /* NEED_RESCHED must be visible before we test polling */
1288 smp_mb();
1289 if (!tsk_is_polling(rq->idle))
1290 smp_send_reschedule(cpu);
1292 #endif /* CONFIG_NO_HZ */
1294 static u64 sched_avg_period(void)
1296 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1299 static void sched_avg_update(struct rq *rq)
1301 s64 period = sched_avg_period();
1303 while ((s64)(rq->clock - rq->age_stamp) > period) {
1304 rq->age_stamp += period;
1305 rq->rt_avg /= 2;
1309 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1311 rq->rt_avg += rt_delta;
1312 sched_avg_update(rq);
1315 #else /* !CONFIG_SMP */
1316 static void resched_task(struct task_struct *p)
1318 assert_spin_locked(&task_rq(p)->lock);
1319 set_tsk_need_resched(p);
1322 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1325 #endif /* CONFIG_SMP */
1327 #if BITS_PER_LONG == 32
1328 # define WMULT_CONST (~0UL)
1329 #else
1330 # define WMULT_CONST (1UL << 32)
1331 #endif
1333 #define WMULT_SHIFT 32
1336 * Shift right and round:
1338 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1341 * delta *= weight / lw
1343 static unsigned long
1344 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1345 struct load_weight *lw)
1347 u64 tmp;
1349 if (!lw->inv_weight) {
1350 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1351 lw->inv_weight = 1;
1352 else
1353 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1354 / (lw->weight+1);
1357 tmp = (u64)delta_exec * weight;
1359 * Check whether we'd overflow the 64-bit multiplication:
1361 if (unlikely(tmp > WMULT_CONST))
1362 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1363 WMULT_SHIFT/2);
1364 else
1365 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1367 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1370 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1372 lw->weight += inc;
1373 lw->inv_weight = 0;
1376 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1378 lw->weight -= dec;
1379 lw->inv_weight = 0;
1383 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1384 * of tasks with abnormal "nice" values across CPUs the contribution that
1385 * each task makes to its run queue's load is weighted according to its
1386 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1387 * scaled version of the new time slice allocation that they receive on time
1388 * slice expiry etc.
1391 #define WEIGHT_IDLEPRIO 3
1392 #define WMULT_IDLEPRIO 1431655765
1395 * Nice levels are multiplicative, with a gentle 10% change for every
1396 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1397 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1398 * that remained on nice 0.
1400 * The "10% effect" is relative and cumulative: from _any_ nice level,
1401 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1402 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1403 * If a task goes up by ~10% and another task goes down by ~10% then
1404 * the relative distance between them is ~25%.)
1406 static const int prio_to_weight[40] = {
1407 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1408 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1409 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1410 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1411 /* 0 */ 1024, 820, 655, 526, 423,
1412 /* 5 */ 335, 272, 215, 172, 137,
1413 /* 10 */ 110, 87, 70, 56, 45,
1414 /* 15 */ 36, 29, 23, 18, 15,
1418 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1420 * In cases where the weight does not change often, we can use the
1421 * precalculated inverse to speed up arithmetics by turning divisions
1422 * into multiplications:
1424 static const u32 prio_to_wmult[40] = {
1425 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1426 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1427 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1428 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1429 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1430 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1431 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1432 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1435 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1438 * runqueue iterator, to support SMP load-balancing between different
1439 * scheduling classes, without having to expose their internal data
1440 * structures to the load-balancing proper:
1442 struct rq_iterator {
1443 void *arg;
1444 struct task_struct *(*start)(void *);
1445 struct task_struct *(*next)(void *);
1448 #ifdef CONFIG_SMP
1449 static unsigned long
1450 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1451 unsigned long max_load_move, struct sched_domain *sd,
1452 enum cpu_idle_type idle, int *all_pinned,
1453 int *this_best_prio, struct rq_iterator *iterator);
1455 static int
1456 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1457 struct sched_domain *sd, enum cpu_idle_type idle,
1458 struct rq_iterator *iterator);
1459 #endif
1461 /* Time spent by the tasks of the cpu accounting group executing in ... */
1462 enum cpuacct_stat_index {
1463 CPUACCT_STAT_USER, /* ... user mode */
1464 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1466 CPUACCT_STAT_NSTATS,
1469 #ifdef CONFIG_CGROUP_CPUACCT
1470 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1471 static void cpuacct_update_stats(struct task_struct *tsk,
1472 enum cpuacct_stat_index idx, cputime_t val);
1473 #else
1474 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1475 static inline void cpuacct_update_stats(struct task_struct *tsk,
1476 enum cpuacct_stat_index idx, cputime_t val) {}
1477 #endif
1479 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1481 update_load_add(&rq->load, load);
1484 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1486 update_load_sub(&rq->load, load);
1489 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1490 typedef int (*tg_visitor)(struct task_group *, void *);
1493 * Iterate the full tree, calling @down when first entering a node and @up when
1494 * leaving it for the final time.
1496 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1498 struct task_group *parent, *child;
1499 int ret;
1501 rcu_read_lock();
1502 parent = &root_task_group;
1503 down:
1504 ret = (*down)(parent, data);
1505 if (ret)
1506 goto out_unlock;
1507 list_for_each_entry_rcu(child, &parent->children, siblings) {
1508 parent = child;
1509 goto down;
1512 continue;
1514 ret = (*up)(parent, data);
1515 if (ret)
1516 goto out_unlock;
1518 child = parent;
1519 parent = parent->parent;
1520 if (parent)
1521 goto up;
1522 out_unlock:
1523 rcu_read_unlock();
1525 return ret;
1528 static int tg_nop(struct task_group *tg, void *data)
1530 return 0;
1532 #endif
1534 #ifdef CONFIG_SMP
1535 static unsigned long source_load(int cpu, int type);
1536 static unsigned long target_load(int cpu, int type);
1537 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1539 static unsigned long cpu_avg_load_per_task(int cpu)
1541 struct rq *rq = cpu_rq(cpu);
1542 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1544 if (nr_running)
1545 rq->avg_load_per_task = rq->load.weight / nr_running;
1546 else
1547 rq->avg_load_per_task = 0;
1549 return rq->avg_load_per_task;
1552 #ifdef CONFIG_FAIR_GROUP_SCHED
1554 struct update_shares_data {
1555 unsigned long rq_weight[NR_CPUS];
1558 static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1560 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1563 * Calculate and set the cpu's group shares.
1565 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1566 unsigned long sd_shares,
1567 unsigned long sd_rq_weight,
1568 struct update_shares_data *usd)
1570 unsigned long shares, rq_weight;
1571 int boost = 0;
1573 rq_weight = usd->rq_weight[cpu];
1574 if (!rq_weight) {
1575 boost = 1;
1576 rq_weight = NICE_0_LOAD;
1580 * \Sum_j shares_j * rq_weight_i
1581 * shares_i = -----------------------------
1582 * \Sum_j rq_weight_j
1584 shares = (sd_shares * rq_weight) / sd_rq_weight;
1585 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1587 if (abs(shares - tg->se[cpu]->load.weight) >
1588 sysctl_sched_shares_thresh) {
1589 struct rq *rq = cpu_rq(cpu);
1590 unsigned long flags;
1592 spin_lock_irqsave(&rq->lock, flags);
1593 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1594 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1595 __set_se_shares(tg->se[cpu], shares);
1596 spin_unlock_irqrestore(&rq->lock, flags);
1601 * Re-compute the task group their per cpu shares over the given domain.
1602 * This needs to be done in a bottom-up fashion because the rq weight of a
1603 * parent group depends on the shares of its child groups.
1605 static int tg_shares_up(struct task_group *tg, void *data)
1607 unsigned long weight, rq_weight = 0, shares = 0;
1608 struct update_shares_data *usd;
1609 struct sched_domain *sd = data;
1610 unsigned long flags;
1611 int i;
1613 if (!tg->se[0])
1614 return 0;
1616 local_irq_save(flags);
1617 usd = &__get_cpu_var(update_shares_data);
1619 for_each_cpu(i, sched_domain_span(sd)) {
1620 weight = tg->cfs_rq[i]->load.weight;
1621 usd->rq_weight[i] = weight;
1624 * If there are currently no tasks on the cpu pretend there
1625 * is one of average load so that when a new task gets to
1626 * run here it will not get delayed by group starvation.
1628 if (!weight)
1629 weight = NICE_0_LOAD;
1631 rq_weight += weight;
1632 shares += tg->cfs_rq[i]->shares;
1635 if ((!shares && rq_weight) || shares > tg->shares)
1636 shares = tg->shares;
1638 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1639 shares = tg->shares;
1641 for_each_cpu(i, sched_domain_span(sd))
1642 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1644 local_irq_restore(flags);
1646 return 0;
1650 * Compute the cpu's hierarchical load factor for each task group.
1651 * This needs to be done in a top-down fashion because the load of a child
1652 * group is a fraction of its parents load.
1654 static int tg_load_down(struct task_group *tg, void *data)
1656 unsigned long load;
1657 long cpu = (long)data;
1659 if (!tg->parent) {
1660 load = cpu_rq(cpu)->load.weight;
1661 } else {
1662 load = tg->parent->cfs_rq[cpu]->h_load;
1663 load *= tg->cfs_rq[cpu]->shares;
1664 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1667 tg->cfs_rq[cpu]->h_load = load;
1669 return 0;
1672 static void update_shares(struct sched_domain *sd)
1674 s64 elapsed;
1675 u64 now;
1677 if (root_task_group_empty())
1678 return;
1680 now = cpu_clock(raw_smp_processor_id());
1681 elapsed = now - sd->last_update;
1683 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1684 sd->last_update = now;
1685 walk_tg_tree(tg_nop, tg_shares_up, sd);
1689 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1691 if (root_task_group_empty())
1692 return;
1694 spin_unlock(&rq->lock);
1695 update_shares(sd);
1696 spin_lock(&rq->lock);
1699 static void update_h_load(long cpu)
1701 if (root_task_group_empty())
1702 return;
1704 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1707 #else
1709 static inline void update_shares(struct sched_domain *sd)
1713 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1717 #endif
1719 #ifdef CONFIG_PREEMPT
1722 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1723 * way at the expense of forcing extra atomic operations in all
1724 * invocations. This assures that the double_lock is acquired using the
1725 * same underlying policy as the spinlock_t on this architecture, which
1726 * reduces latency compared to the unfair variant below. However, it
1727 * also adds more overhead and therefore may reduce throughput.
1729 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1730 __releases(this_rq->lock)
1731 __acquires(busiest->lock)
1732 __acquires(this_rq->lock)
1734 spin_unlock(&this_rq->lock);
1735 double_rq_lock(this_rq, busiest);
1737 return 1;
1740 #else
1742 * Unfair double_lock_balance: Optimizes throughput at the expense of
1743 * latency by eliminating extra atomic operations when the locks are
1744 * already in proper order on entry. This favors lower cpu-ids and will
1745 * grant the double lock to lower cpus over higher ids under contention,
1746 * regardless of entry order into the function.
1748 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 __releases(this_rq->lock)
1750 __acquires(busiest->lock)
1751 __acquires(this_rq->lock)
1753 int ret = 0;
1755 if (unlikely(!spin_trylock(&busiest->lock))) {
1756 if (busiest < this_rq) {
1757 spin_unlock(&this_rq->lock);
1758 spin_lock(&busiest->lock);
1759 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1760 ret = 1;
1761 } else
1762 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1764 return ret;
1767 #endif /* CONFIG_PREEMPT */
1770 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1772 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1774 if (unlikely(!irqs_disabled())) {
1775 /* printk() doesn't work good under rq->lock */
1776 spin_unlock(&this_rq->lock);
1777 BUG_ON(1);
1780 return _double_lock_balance(this_rq, busiest);
1783 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1784 __releases(busiest->lock)
1786 spin_unlock(&busiest->lock);
1787 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1789 #endif
1791 #ifdef CONFIG_FAIR_GROUP_SCHED
1792 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1794 #ifdef CONFIG_SMP
1795 cfs_rq->shares = shares;
1796 #endif
1798 #endif
1800 static void calc_load_account_active(struct rq *this_rq);
1802 #include "sched_stats.h"
1803 #include "sched_idletask.c"
1804 #include "sched_fair.c"
1805 #include "sched_rt.c"
1806 #ifdef CONFIG_SCHED_DEBUG
1807 # include "sched_debug.c"
1808 #endif
1810 #define sched_class_highest (&rt_sched_class)
1811 #define for_each_class(class) \
1812 for (class = sched_class_highest; class; class = class->next)
1814 static void inc_nr_running(struct rq *rq)
1816 rq->nr_running++;
1819 static void dec_nr_running(struct rq *rq)
1821 rq->nr_running--;
1824 static void set_load_weight(struct task_struct *p)
1826 if (task_has_rt_policy(p)) {
1827 p->se.load.weight = prio_to_weight[0] * 2;
1828 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1829 return;
1833 * SCHED_IDLE tasks get minimal weight:
1835 if (p->policy == SCHED_IDLE) {
1836 p->se.load.weight = WEIGHT_IDLEPRIO;
1837 p->se.load.inv_weight = WMULT_IDLEPRIO;
1838 return;
1841 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1842 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1845 static void update_avg(u64 *avg, u64 sample)
1847 s64 diff = sample - *avg;
1848 *avg += diff >> 3;
1851 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1853 if (wakeup)
1854 p->se.start_runtime = p->se.sum_exec_runtime;
1856 sched_info_queued(p);
1857 p->sched_class->enqueue_task(rq, p, wakeup);
1858 p->se.on_rq = 1;
1861 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1863 if (sleep) {
1864 if (p->se.last_wakeup) {
1865 update_avg(&p->se.avg_overlap,
1866 p->se.sum_exec_runtime - p->se.last_wakeup);
1867 p->se.last_wakeup = 0;
1868 } else {
1869 update_avg(&p->se.avg_wakeup,
1870 sysctl_sched_wakeup_granularity);
1874 sched_info_dequeued(p);
1875 p->sched_class->dequeue_task(rq, p, sleep);
1876 p->se.on_rq = 0;
1880 * __normal_prio - return the priority that is based on the static prio
1882 static inline int __normal_prio(struct task_struct *p)
1884 return p->static_prio;
1888 * Calculate the expected normal priority: i.e. priority
1889 * without taking RT-inheritance into account. Might be
1890 * boosted by interactivity modifiers. Changes upon fork,
1891 * setprio syscalls, and whenever the interactivity
1892 * estimator recalculates.
1894 static inline int normal_prio(struct task_struct *p)
1896 int prio;
1898 if (task_has_rt_policy(p))
1899 prio = MAX_RT_PRIO-1 - p->rt_priority;
1900 else
1901 prio = __normal_prio(p);
1902 return prio;
1906 * Calculate the current priority, i.e. the priority
1907 * taken into account by the scheduler. This value might
1908 * be boosted by RT tasks, or might be boosted by
1909 * interactivity modifiers. Will be RT if the task got
1910 * RT-boosted. If not then it returns p->normal_prio.
1912 static int effective_prio(struct task_struct *p)
1914 p->normal_prio = normal_prio(p);
1916 * If we are RT tasks or we were boosted to RT priority,
1917 * keep the priority unchanged. Otherwise, update priority
1918 * to the normal priority:
1920 if (!rt_prio(p->prio))
1921 return p->normal_prio;
1922 return p->prio;
1926 * activate_task - move a task to the runqueue.
1928 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1930 if (task_contributes_to_load(p))
1931 rq->nr_uninterruptible--;
1933 enqueue_task(rq, p, wakeup);
1934 inc_nr_running(rq);
1938 * deactivate_task - remove a task from the runqueue.
1940 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1942 if (task_contributes_to_load(p))
1943 rq->nr_uninterruptible++;
1945 dequeue_task(rq, p, sleep);
1946 dec_nr_running(rq);
1950 * task_curr - is this task currently executing on a CPU?
1951 * @p: the task in question.
1953 inline int task_curr(const struct task_struct *p)
1955 return cpu_curr(task_cpu(p)) == p;
1958 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1960 set_task_rq(p, cpu);
1961 #ifdef CONFIG_SMP
1963 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1964 * successfuly executed on another CPU. We must ensure that updates of
1965 * per-task data have been completed by this moment.
1967 smp_wmb();
1968 task_thread_info(p)->cpu = cpu;
1969 #endif
1972 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1973 const struct sched_class *prev_class,
1974 int oldprio, int running)
1976 if (prev_class != p->sched_class) {
1977 if (prev_class->switched_from)
1978 prev_class->switched_from(rq, p, running);
1979 p->sched_class->switched_to(rq, p, running);
1980 } else
1981 p->sched_class->prio_changed(rq, p, oldprio, running);
1984 #ifdef CONFIG_SMP
1986 /* Used instead of source_load when we know the type == 0 */
1987 static unsigned long weighted_cpuload(const int cpu)
1989 return cpu_rq(cpu)->load.weight;
1993 * Is this task likely cache-hot:
1995 static int
1996 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1998 s64 delta;
2001 * Buddy candidates are cache hot:
2003 if (sched_feat(CACHE_HOT_BUDDY) &&
2004 (&p->se == cfs_rq_of(&p->se)->next ||
2005 &p->se == cfs_rq_of(&p->se)->last))
2006 return 1;
2008 if (p->sched_class != &fair_sched_class)
2009 return 0;
2011 if (sysctl_sched_migration_cost == -1)
2012 return 1;
2013 if (sysctl_sched_migration_cost == 0)
2014 return 0;
2016 delta = now - p->se.exec_start;
2018 return delta < (s64)sysctl_sched_migration_cost;
2022 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2024 int old_cpu = task_cpu(p);
2025 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2026 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2027 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2028 u64 clock_offset;
2030 clock_offset = old_rq->clock - new_rq->clock;
2032 trace_sched_migrate_task(p, new_cpu);
2034 #ifdef CONFIG_SCHEDSTATS
2035 if (p->se.wait_start)
2036 p->se.wait_start -= clock_offset;
2037 if (p->se.sleep_start)
2038 p->se.sleep_start -= clock_offset;
2039 if (p->se.block_start)
2040 p->se.block_start -= clock_offset;
2041 #endif
2042 if (old_cpu != new_cpu) {
2043 p->se.nr_migrations++;
2044 new_rq->nr_migrations_in++;
2045 #ifdef CONFIG_SCHEDSTATS
2046 if (task_hot(p, old_rq->clock, NULL))
2047 schedstat_inc(p, se.nr_forced2_migrations);
2048 #endif
2049 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2050 1, 1, NULL, 0);
2052 p->se.vruntime -= old_cfsrq->min_vruntime -
2053 new_cfsrq->min_vruntime;
2055 __set_task_cpu(p, new_cpu);
2058 struct migration_req {
2059 struct list_head list;
2061 struct task_struct *task;
2062 int dest_cpu;
2064 struct completion done;
2068 * The task's runqueue lock must be held.
2069 * Returns true if you have to wait for migration thread.
2071 static int
2072 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2074 struct rq *rq = task_rq(p);
2077 * If the task is not on a runqueue (and not running), then
2078 * it is sufficient to simply update the task's cpu field.
2080 if (!p->se.on_rq && !task_running(rq, p)) {
2081 set_task_cpu(p, dest_cpu);
2082 return 0;
2085 init_completion(&req->done);
2086 req->task = p;
2087 req->dest_cpu = dest_cpu;
2088 list_add(&req->list, &rq->migration_queue);
2090 return 1;
2094 * wait_task_context_switch - wait for a thread to complete at least one
2095 * context switch.
2097 * @p must not be current.
2099 void wait_task_context_switch(struct task_struct *p)
2101 unsigned long nvcsw, nivcsw, flags;
2102 int running;
2103 struct rq *rq;
2105 nvcsw = p->nvcsw;
2106 nivcsw = p->nivcsw;
2107 for (;;) {
2109 * The runqueue is assigned before the actual context
2110 * switch. We need to take the runqueue lock.
2112 * We could check initially without the lock but it is
2113 * very likely that we need to take the lock in every
2114 * iteration.
2116 rq = task_rq_lock(p, &flags);
2117 running = task_running(rq, p);
2118 task_rq_unlock(rq, &flags);
2120 if (likely(!running))
2121 break;
2123 * The switch count is incremented before the actual
2124 * context switch. We thus wait for two switches to be
2125 * sure at least one completed.
2127 if ((p->nvcsw - nvcsw) > 1)
2128 break;
2129 if ((p->nivcsw - nivcsw) > 1)
2130 break;
2132 cpu_relax();
2137 * wait_task_inactive - wait for a thread to unschedule.
2139 * If @match_state is nonzero, it's the @p->state value just checked and
2140 * not expected to change. If it changes, i.e. @p might have woken up,
2141 * then return zero. When we succeed in waiting for @p to be off its CPU,
2142 * we return a positive number (its total switch count). If a second call
2143 * a short while later returns the same number, the caller can be sure that
2144 * @p has remained unscheduled the whole time.
2146 * The caller must ensure that the task *will* unschedule sometime soon,
2147 * else this function might spin for a *long* time. This function can't
2148 * be called with interrupts off, or it may introduce deadlock with
2149 * smp_call_function() if an IPI is sent by the same process we are
2150 * waiting to become inactive.
2152 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2154 unsigned long flags;
2155 int running, on_rq;
2156 unsigned long ncsw;
2157 struct rq *rq;
2159 for (;;) {
2161 * We do the initial early heuristics without holding
2162 * any task-queue locks at all. We'll only try to get
2163 * the runqueue lock when things look like they will
2164 * work out!
2166 rq = task_rq(p);
2169 * If the task is actively running on another CPU
2170 * still, just relax and busy-wait without holding
2171 * any locks.
2173 * NOTE! Since we don't hold any locks, it's not
2174 * even sure that "rq" stays as the right runqueue!
2175 * But we don't care, since "task_running()" will
2176 * return false if the runqueue has changed and p
2177 * is actually now running somewhere else!
2179 while (task_running(rq, p)) {
2180 if (match_state && unlikely(p->state != match_state))
2181 return 0;
2182 cpu_relax();
2186 * Ok, time to look more closely! We need the rq
2187 * lock now, to be *sure*. If we're wrong, we'll
2188 * just go back and repeat.
2190 rq = task_rq_lock(p, &flags);
2191 trace_sched_wait_task(rq, p);
2192 running = task_running(rq, p);
2193 on_rq = p->se.on_rq;
2194 ncsw = 0;
2195 if (!match_state || p->state == match_state)
2196 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2197 task_rq_unlock(rq, &flags);
2200 * If it changed from the expected state, bail out now.
2202 if (unlikely(!ncsw))
2203 break;
2206 * Was it really running after all now that we
2207 * checked with the proper locks actually held?
2209 * Oops. Go back and try again..
2211 if (unlikely(running)) {
2212 cpu_relax();
2213 continue;
2217 * It's not enough that it's not actively running,
2218 * it must be off the runqueue _entirely_, and not
2219 * preempted!
2221 * So if it was still runnable (but just not actively
2222 * running right now), it's preempted, and we should
2223 * yield - it could be a while.
2225 if (unlikely(on_rq)) {
2226 schedule_timeout_uninterruptible(1);
2227 continue;
2231 * Ahh, all good. It wasn't running, and it wasn't
2232 * runnable, which means that it will never become
2233 * running in the future either. We're all done!
2235 break;
2238 return ncsw;
2241 /***
2242 * kick_process - kick a running thread to enter/exit the kernel
2243 * @p: the to-be-kicked thread
2245 * Cause a process which is running on another CPU to enter
2246 * kernel-mode, without any delay. (to get signals handled.)
2248 * NOTE: this function doesnt have to take the runqueue lock,
2249 * because all it wants to ensure is that the remote task enters
2250 * the kernel. If the IPI races and the task has been migrated
2251 * to another CPU then no harm is done and the purpose has been
2252 * achieved as well.
2254 void kick_process(struct task_struct *p)
2256 int cpu;
2258 preempt_disable();
2259 cpu = task_cpu(p);
2260 if ((cpu != smp_processor_id()) && task_curr(p))
2261 smp_send_reschedule(cpu);
2262 preempt_enable();
2264 EXPORT_SYMBOL_GPL(kick_process);
2267 * Return a low guess at the load of a migration-source cpu weighted
2268 * according to the scheduling class and "nice" value.
2270 * We want to under-estimate the load of migration sources, to
2271 * balance conservatively.
2273 static unsigned long source_load(int cpu, int type)
2275 struct rq *rq = cpu_rq(cpu);
2276 unsigned long total = weighted_cpuload(cpu);
2278 if (type == 0 || !sched_feat(LB_BIAS))
2279 return total;
2281 return min(rq->cpu_load[type-1], total);
2285 * Return a high guess at the load of a migration-target cpu weighted
2286 * according to the scheduling class and "nice" value.
2288 static unsigned long target_load(int cpu, int type)
2290 struct rq *rq = cpu_rq(cpu);
2291 unsigned long total = weighted_cpuload(cpu);
2293 if (type == 0 || !sched_feat(LB_BIAS))
2294 return total;
2296 return max(rq->cpu_load[type-1], total);
2300 * find_idlest_group finds and returns the least busy CPU group within the
2301 * domain.
2303 static struct sched_group *
2304 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2306 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2307 unsigned long min_load = ULONG_MAX, this_load = 0;
2308 int load_idx = sd->forkexec_idx;
2309 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2311 do {
2312 unsigned long load, avg_load;
2313 int local_group;
2314 int i;
2316 /* Skip over this group if it has no CPUs allowed */
2317 if (!cpumask_intersects(sched_group_cpus(group),
2318 &p->cpus_allowed))
2319 continue;
2321 local_group = cpumask_test_cpu(this_cpu,
2322 sched_group_cpus(group));
2324 /* Tally up the load of all CPUs in the group */
2325 avg_load = 0;
2327 for_each_cpu(i, sched_group_cpus(group)) {
2328 /* Bias balancing toward cpus of our domain */
2329 if (local_group)
2330 load = source_load(i, load_idx);
2331 else
2332 load = target_load(i, load_idx);
2334 avg_load += load;
2337 /* Adjust by relative CPU power of the group */
2338 avg_load = sg_div_cpu_power(group,
2339 avg_load * SCHED_LOAD_SCALE);
2341 if (local_group) {
2342 this_load = avg_load;
2343 this = group;
2344 } else if (avg_load < min_load) {
2345 min_load = avg_load;
2346 idlest = group;
2348 } while (group = group->next, group != sd->groups);
2350 if (!idlest || 100*this_load < imbalance*min_load)
2351 return NULL;
2352 return idlest;
2356 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2358 static int
2359 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2361 unsigned long load, min_load = ULONG_MAX;
2362 int idlest = -1;
2363 int i;
2365 /* Traverse only the allowed CPUs */
2366 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2367 load = weighted_cpuload(i);
2369 if (load < min_load || (load == min_load && i == this_cpu)) {
2370 min_load = load;
2371 idlest = i;
2375 return idlest;
2379 * sched_balance_self: balance the current task (running on cpu) in domains
2380 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2381 * SD_BALANCE_EXEC.
2383 * Balance, ie. select the least loaded group.
2385 * Returns the target CPU number, or the same CPU if no balancing is needed.
2387 * preempt must be disabled.
2389 static int sched_balance_self(int cpu, int flag)
2391 struct task_struct *t = current;
2392 struct sched_domain *tmp, *sd = NULL;
2394 for_each_domain(cpu, tmp) {
2396 * If power savings logic is enabled for a domain, stop there.
2398 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2399 break;
2400 if (tmp->flags & flag)
2401 sd = tmp;
2404 if (sd)
2405 update_shares(sd);
2407 while (sd) {
2408 struct sched_group *group;
2409 int new_cpu, weight;
2411 if (!(sd->flags & flag)) {
2412 sd = sd->child;
2413 continue;
2416 group = find_idlest_group(sd, t, cpu);
2417 if (!group) {
2418 sd = sd->child;
2419 continue;
2422 new_cpu = find_idlest_cpu(group, t, cpu);
2423 if (new_cpu == -1 || new_cpu == cpu) {
2424 /* Now try balancing at a lower domain level of cpu */
2425 sd = sd->child;
2426 continue;
2429 /* Now try balancing at a lower domain level of new_cpu */
2430 cpu = new_cpu;
2431 weight = cpumask_weight(sched_domain_span(sd));
2432 sd = NULL;
2433 for_each_domain(cpu, tmp) {
2434 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2435 break;
2436 if (tmp->flags & flag)
2437 sd = tmp;
2439 /* while loop will break here if sd == NULL */
2442 return cpu;
2445 #endif /* CONFIG_SMP */
2448 * task_oncpu_function_call - call a function on the cpu on which a task runs
2449 * @p: the task to evaluate
2450 * @func: the function to be called
2451 * @info: the function call argument
2453 * Calls the function @func when the task is currently running. This might
2454 * be on the current CPU, which just calls the function directly
2456 void task_oncpu_function_call(struct task_struct *p,
2457 void (*func) (void *info), void *info)
2459 int cpu;
2461 preempt_disable();
2462 cpu = task_cpu(p);
2463 if (task_curr(p))
2464 smp_call_function_single(cpu, func, info, 1);
2465 preempt_enable();
2468 /***
2469 * try_to_wake_up - wake up a thread
2470 * @p: the to-be-woken-up thread
2471 * @state: the mask of task states that can be woken
2472 * @sync: do a synchronous wakeup?
2474 * Put it on the run-queue if it's not already there. The "current"
2475 * thread is always on the run-queue (except when the actual
2476 * re-schedule is in progress), and as such you're allowed to do
2477 * the simpler "current->state = TASK_RUNNING" to mark yourself
2478 * runnable without the overhead of this.
2480 * returns failure only if the task is already active.
2482 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2484 int cpu, orig_cpu, this_cpu, success = 0;
2485 unsigned long flags;
2486 long old_state;
2487 struct rq *rq;
2489 if (!sched_feat(SYNC_WAKEUPS))
2490 sync = 0;
2492 #ifdef CONFIG_SMP
2493 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2494 struct sched_domain *sd;
2496 this_cpu = raw_smp_processor_id();
2497 cpu = task_cpu(p);
2499 for_each_domain(this_cpu, sd) {
2500 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2501 update_shares(sd);
2502 break;
2506 #endif
2508 smp_wmb();
2509 rq = task_rq_lock(p, &flags);
2510 update_rq_clock(rq);
2511 old_state = p->state;
2512 if (!(old_state & state))
2513 goto out;
2515 if (p->se.on_rq)
2516 goto out_running;
2518 cpu = task_cpu(p);
2519 orig_cpu = cpu;
2520 this_cpu = smp_processor_id();
2522 #ifdef CONFIG_SMP
2523 if (unlikely(task_running(rq, p)))
2524 goto out_activate;
2526 cpu = p->sched_class->select_task_rq(p, sync);
2527 if (cpu != orig_cpu) {
2528 set_task_cpu(p, cpu);
2529 task_rq_unlock(rq, &flags);
2530 /* might preempt at this point */
2531 rq = task_rq_lock(p, &flags);
2532 old_state = p->state;
2533 if (!(old_state & state))
2534 goto out;
2535 if (p->se.on_rq)
2536 goto out_running;
2538 this_cpu = smp_processor_id();
2539 cpu = task_cpu(p);
2542 #ifdef CONFIG_SCHEDSTATS
2543 schedstat_inc(rq, ttwu_count);
2544 if (cpu == this_cpu)
2545 schedstat_inc(rq, ttwu_local);
2546 else {
2547 struct sched_domain *sd;
2548 for_each_domain(this_cpu, sd) {
2549 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2550 schedstat_inc(sd, ttwu_wake_remote);
2551 break;
2555 #endif /* CONFIG_SCHEDSTATS */
2557 out_activate:
2558 #endif /* CONFIG_SMP */
2559 schedstat_inc(p, se.nr_wakeups);
2560 if (sync)
2561 schedstat_inc(p, se.nr_wakeups_sync);
2562 if (orig_cpu != cpu)
2563 schedstat_inc(p, se.nr_wakeups_migrate);
2564 if (cpu == this_cpu)
2565 schedstat_inc(p, se.nr_wakeups_local);
2566 else
2567 schedstat_inc(p, se.nr_wakeups_remote);
2568 activate_task(rq, p, 1);
2569 success = 1;
2572 * Only attribute actual wakeups done by this task.
2574 if (!in_interrupt()) {
2575 struct sched_entity *se = &current->se;
2576 u64 sample = se->sum_exec_runtime;
2578 if (se->last_wakeup)
2579 sample -= se->last_wakeup;
2580 else
2581 sample -= se->start_runtime;
2582 update_avg(&se->avg_wakeup, sample);
2584 se->last_wakeup = se->sum_exec_runtime;
2587 out_running:
2588 trace_sched_wakeup(rq, p, success);
2589 check_preempt_curr(rq, p, sync);
2591 p->state = TASK_RUNNING;
2592 #ifdef CONFIG_SMP
2593 if (p->sched_class->task_wake_up)
2594 p->sched_class->task_wake_up(rq, p);
2595 #endif
2596 out:
2597 task_rq_unlock(rq, &flags);
2599 return success;
2603 * wake_up_process - Wake up a specific process
2604 * @p: The process to be woken up.
2606 * Attempt to wake up the nominated process and move it to the set of runnable
2607 * processes. Returns 1 if the process was woken up, 0 if it was already
2608 * running.
2610 * It may be assumed that this function implies a write memory barrier before
2611 * changing the task state if and only if any tasks are woken up.
2613 int wake_up_process(struct task_struct *p)
2615 return try_to_wake_up(p, TASK_ALL, 0);
2617 EXPORT_SYMBOL(wake_up_process);
2619 int wake_up_state(struct task_struct *p, unsigned int state)
2621 return try_to_wake_up(p, state, 0);
2625 * Perform scheduler related setup for a newly forked process p.
2626 * p is forked by current.
2628 * __sched_fork() is basic setup used by init_idle() too:
2630 static void __sched_fork(struct task_struct *p)
2632 p->se.exec_start = 0;
2633 p->se.sum_exec_runtime = 0;
2634 p->se.prev_sum_exec_runtime = 0;
2635 p->se.nr_migrations = 0;
2636 p->se.last_wakeup = 0;
2637 p->se.avg_overlap = 0;
2638 p->se.start_runtime = 0;
2639 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2641 #ifdef CONFIG_SCHEDSTATS
2642 p->se.wait_start = 0;
2643 p->se.wait_max = 0;
2644 p->se.wait_count = 0;
2645 p->se.wait_sum = 0;
2647 p->se.sleep_start = 0;
2648 p->se.sleep_max = 0;
2649 p->se.sum_sleep_runtime = 0;
2651 p->se.block_start = 0;
2652 p->se.block_max = 0;
2653 p->se.exec_max = 0;
2654 p->se.slice_max = 0;
2656 p->se.nr_migrations_cold = 0;
2657 p->se.nr_failed_migrations_affine = 0;
2658 p->se.nr_failed_migrations_running = 0;
2659 p->se.nr_failed_migrations_hot = 0;
2660 p->se.nr_forced_migrations = 0;
2661 p->se.nr_forced2_migrations = 0;
2663 p->se.nr_wakeups = 0;
2664 p->se.nr_wakeups_sync = 0;
2665 p->se.nr_wakeups_migrate = 0;
2666 p->se.nr_wakeups_local = 0;
2667 p->se.nr_wakeups_remote = 0;
2668 p->se.nr_wakeups_affine = 0;
2669 p->se.nr_wakeups_affine_attempts = 0;
2670 p->se.nr_wakeups_passive = 0;
2671 p->se.nr_wakeups_idle = 0;
2673 #endif
2675 INIT_LIST_HEAD(&p->rt.run_list);
2676 p->se.on_rq = 0;
2677 INIT_LIST_HEAD(&p->se.group_node);
2679 #ifdef CONFIG_PREEMPT_NOTIFIERS
2680 INIT_HLIST_HEAD(&p->preempt_notifiers);
2681 #endif
2684 * We mark the process as running here, but have not actually
2685 * inserted it onto the runqueue yet. This guarantees that
2686 * nobody will actually run it, and a signal or other external
2687 * event cannot wake it up and insert it on the runqueue either.
2689 p->state = TASK_RUNNING;
2693 * fork()/clone()-time setup:
2695 void sched_fork(struct task_struct *p, int clone_flags)
2697 int cpu = get_cpu();
2699 __sched_fork(p);
2701 #ifdef CONFIG_SMP
2702 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2703 #endif
2704 set_task_cpu(p, cpu);
2707 * Make sure we do not leak PI boosting priority to the child.
2709 p->prio = current->normal_prio;
2712 * Revert to default priority/policy on fork if requested.
2714 if (unlikely(p->sched_reset_on_fork)) {
2715 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2716 p->policy = SCHED_NORMAL;
2718 if (p->normal_prio < DEFAULT_PRIO)
2719 p->prio = DEFAULT_PRIO;
2721 if (PRIO_TO_NICE(p->static_prio) < 0) {
2722 p->static_prio = NICE_TO_PRIO(0);
2723 set_load_weight(p);
2727 * We don't need the reset flag anymore after the fork. It has
2728 * fulfilled its duty:
2730 p->sched_reset_on_fork = 0;
2733 if (!rt_prio(p->prio))
2734 p->sched_class = &fair_sched_class;
2736 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2737 if (likely(sched_info_on()))
2738 memset(&p->sched_info, 0, sizeof(p->sched_info));
2739 #endif
2740 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2741 p->oncpu = 0;
2742 #endif
2743 #ifdef CONFIG_PREEMPT
2744 /* Want to start with kernel preemption disabled. */
2745 task_thread_info(p)->preempt_count = 1;
2746 #endif
2747 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2749 put_cpu();
2753 * wake_up_new_task - wake up a newly created task for the first time.
2755 * This function will do some initial scheduler statistics housekeeping
2756 * that must be done for every newly created context, then puts the task
2757 * on the runqueue and wakes it.
2759 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2761 unsigned long flags;
2762 struct rq *rq;
2764 rq = task_rq_lock(p, &flags);
2765 BUG_ON(p->state != TASK_RUNNING);
2766 update_rq_clock(rq);
2768 p->prio = effective_prio(p);
2770 if (!p->sched_class->task_new || !current->se.on_rq) {
2771 activate_task(rq, p, 0);
2772 } else {
2774 * Let the scheduling class do new task startup
2775 * management (if any):
2777 p->sched_class->task_new(rq, p);
2778 inc_nr_running(rq);
2780 trace_sched_wakeup_new(rq, p, 1);
2781 check_preempt_curr(rq, p, 0);
2782 #ifdef CONFIG_SMP
2783 if (p->sched_class->task_wake_up)
2784 p->sched_class->task_wake_up(rq, p);
2785 #endif
2786 task_rq_unlock(rq, &flags);
2789 #ifdef CONFIG_PREEMPT_NOTIFIERS
2792 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2793 * @notifier: notifier struct to register
2795 void preempt_notifier_register(struct preempt_notifier *notifier)
2797 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2799 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2802 * preempt_notifier_unregister - no longer interested in preemption notifications
2803 * @notifier: notifier struct to unregister
2805 * This is safe to call from within a preemption notifier.
2807 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2809 hlist_del(&notifier->link);
2811 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2813 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2815 struct preempt_notifier *notifier;
2816 struct hlist_node *node;
2818 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2819 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2822 static void
2823 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2824 struct task_struct *next)
2826 struct preempt_notifier *notifier;
2827 struct hlist_node *node;
2829 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2830 notifier->ops->sched_out(notifier, next);
2833 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2835 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2839 static void
2840 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2841 struct task_struct *next)
2845 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2848 * prepare_task_switch - prepare to switch tasks
2849 * @rq: the runqueue preparing to switch
2850 * @prev: the current task that is being switched out
2851 * @next: the task we are going to switch to.
2853 * This is called with the rq lock held and interrupts off. It must
2854 * be paired with a subsequent finish_task_switch after the context
2855 * switch.
2857 * prepare_task_switch sets up locking and calls architecture specific
2858 * hooks.
2860 static inline void
2861 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2862 struct task_struct *next)
2864 fire_sched_out_preempt_notifiers(prev, next);
2865 prepare_lock_switch(rq, next);
2866 prepare_arch_switch(next);
2870 * finish_task_switch - clean up after a task-switch
2871 * @rq: runqueue associated with task-switch
2872 * @prev: the thread we just switched away from.
2874 * finish_task_switch must be called after the context switch, paired
2875 * with a prepare_task_switch call before the context switch.
2876 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2877 * and do any other architecture-specific cleanup actions.
2879 * Note that we may have delayed dropping an mm in context_switch(). If
2880 * so, we finish that here outside of the runqueue lock. (Doing it
2881 * with the lock held can cause deadlocks; see schedule() for
2882 * details.)
2884 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2885 __releases(rq->lock)
2887 struct mm_struct *mm = rq->prev_mm;
2888 long prev_state;
2890 rq->prev_mm = NULL;
2893 * A task struct has one reference for the use as "current".
2894 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2895 * schedule one last time. The schedule call will never return, and
2896 * the scheduled task must drop that reference.
2897 * The test for TASK_DEAD must occur while the runqueue locks are
2898 * still held, otherwise prev could be scheduled on another cpu, die
2899 * there before we look at prev->state, and then the reference would
2900 * be dropped twice.
2901 * Manfred Spraul <manfred@colorfullife.com>
2903 prev_state = prev->state;
2904 finish_arch_switch(prev);
2905 perf_counter_task_sched_in(current, cpu_of(rq));
2906 finish_lock_switch(rq, prev);
2908 fire_sched_in_preempt_notifiers(current);
2909 if (mm)
2910 mmdrop(mm);
2911 if (unlikely(prev_state == TASK_DEAD)) {
2913 * Remove function-return probe instances associated with this
2914 * task and put them back on the free list.
2916 kprobe_flush_task(prev);
2917 put_task_struct(prev);
2921 #ifdef CONFIG_SMP
2923 /* assumes rq->lock is held */
2924 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2926 if (prev->sched_class->pre_schedule)
2927 prev->sched_class->pre_schedule(rq, prev);
2930 /* rq->lock is NOT held, but preemption is disabled */
2931 static inline void post_schedule(struct rq *rq)
2933 if (rq->post_schedule) {
2934 unsigned long flags;
2936 spin_lock_irqsave(&rq->lock, flags);
2937 if (rq->curr->sched_class->post_schedule)
2938 rq->curr->sched_class->post_schedule(rq);
2939 spin_unlock_irqrestore(&rq->lock, flags);
2941 rq->post_schedule = 0;
2945 #else
2947 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2951 static inline void post_schedule(struct rq *rq)
2955 #endif
2958 * schedule_tail - first thing a freshly forked thread must call.
2959 * @prev: the thread we just switched away from.
2961 asmlinkage void schedule_tail(struct task_struct *prev)
2962 __releases(rq->lock)
2964 struct rq *rq = this_rq();
2966 finish_task_switch(rq, prev);
2969 * FIXME: do we need to worry about rq being invalidated by the
2970 * task_switch?
2972 post_schedule(rq);
2974 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2975 /* In this case, finish_task_switch does not reenable preemption */
2976 preempt_enable();
2977 #endif
2978 if (current->set_child_tid)
2979 put_user(task_pid_vnr(current), current->set_child_tid);
2983 * context_switch - switch to the new MM and the new
2984 * thread's register state.
2986 static inline void
2987 context_switch(struct rq *rq, struct task_struct *prev,
2988 struct task_struct *next)
2990 struct mm_struct *mm, *oldmm;
2992 prepare_task_switch(rq, prev, next);
2993 trace_sched_switch(rq, prev, next);
2994 mm = next->mm;
2995 oldmm = prev->active_mm;
2997 * For paravirt, this is coupled with an exit in switch_to to
2998 * combine the page table reload and the switch backend into
2999 * one hypercall.
3001 arch_start_context_switch(prev);
3003 if (unlikely(!mm)) {
3004 next->active_mm = oldmm;
3005 atomic_inc(&oldmm->mm_count);
3006 enter_lazy_tlb(oldmm, next);
3007 } else
3008 switch_mm(oldmm, mm, next);
3010 if (unlikely(!prev->mm)) {
3011 prev->active_mm = NULL;
3012 rq->prev_mm = oldmm;
3015 * Since the runqueue lock will be released by the next
3016 * task (which is an invalid locking op but in the case
3017 * of the scheduler it's an obvious special-case), so we
3018 * do an early lockdep release here:
3020 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3021 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3022 #endif
3024 /* Here we just switch the register state and the stack. */
3025 switch_to(prev, next, prev);
3027 barrier();
3029 * this_rq must be evaluated again because prev may have moved
3030 * CPUs since it called schedule(), thus the 'rq' on its stack
3031 * frame will be invalid.
3033 finish_task_switch(this_rq(), prev);
3037 * nr_running, nr_uninterruptible and nr_context_switches:
3039 * externally visible scheduler statistics: current number of runnable
3040 * threads, current number of uninterruptible-sleeping threads, total
3041 * number of context switches performed since bootup.
3043 unsigned long nr_running(void)
3045 unsigned long i, sum = 0;
3047 for_each_online_cpu(i)
3048 sum += cpu_rq(i)->nr_running;
3050 return sum;
3053 unsigned long nr_uninterruptible(void)
3055 unsigned long i, sum = 0;
3057 for_each_possible_cpu(i)
3058 sum += cpu_rq(i)->nr_uninterruptible;
3061 * Since we read the counters lockless, it might be slightly
3062 * inaccurate. Do not allow it to go below zero though:
3064 if (unlikely((long)sum < 0))
3065 sum = 0;
3067 return sum;
3070 unsigned long long nr_context_switches(void)
3072 int i;
3073 unsigned long long sum = 0;
3075 for_each_possible_cpu(i)
3076 sum += cpu_rq(i)->nr_switches;
3078 return sum;
3081 unsigned long nr_iowait(void)
3083 unsigned long i, sum = 0;
3085 for_each_possible_cpu(i)
3086 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3088 return sum;
3091 /* Variables and functions for calc_load */
3092 static atomic_long_t calc_load_tasks;
3093 static unsigned long calc_load_update;
3094 unsigned long avenrun[3];
3095 EXPORT_SYMBOL(avenrun);
3098 * get_avenrun - get the load average array
3099 * @loads: pointer to dest load array
3100 * @offset: offset to add
3101 * @shift: shift count to shift the result left
3103 * These values are estimates at best, so no need for locking.
3105 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3107 loads[0] = (avenrun[0] + offset) << shift;
3108 loads[1] = (avenrun[1] + offset) << shift;
3109 loads[2] = (avenrun[2] + offset) << shift;
3112 static unsigned long
3113 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3115 load *= exp;
3116 load += active * (FIXED_1 - exp);
3117 return load >> FSHIFT;
3121 * calc_load - update the avenrun load estimates 10 ticks after the
3122 * CPUs have updated calc_load_tasks.
3124 void calc_global_load(void)
3126 unsigned long upd = calc_load_update + 10;
3127 long active;
3129 if (time_before(jiffies, upd))
3130 return;
3132 active = atomic_long_read(&calc_load_tasks);
3133 active = active > 0 ? active * FIXED_1 : 0;
3135 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3136 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3137 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3139 calc_load_update += LOAD_FREQ;
3143 * Either called from update_cpu_load() or from a cpu going idle
3145 static void calc_load_account_active(struct rq *this_rq)
3147 long nr_active, delta;
3149 nr_active = this_rq->nr_running;
3150 nr_active += (long) this_rq->nr_uninterruptible;
3152 if (nr_active != this_rq->calc_load_active) {
3153 delta = nr_active - this_rq->calc_load_active;
3154 this_rq->calc_load_active = nr_active;
3155 atomic_long_add(delta, &calc_load_tasks);
3160 * Externally visible per-cpu scheduler statistics:
3161 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3163 u64 cpu_nr_migrations(int cpu)
3165 return cpu_rq(cpu)->nr_migrations_in;
3169 * Update rq->cpu_load[] statistics. This function is usually called every
3170 * scheduler tick (TICK_NSEC).
3172 static void update_cpu_load(struct rq *this_rq)
3174 unsigned long this_load = this_rq->load.weight;
3175 int i, scale;
3177 this_rq->nr_load_updates++;
3179 /* Update our load: */
3180 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3181 unsigned long old_load, new_load;
3183 /* scale is effectively 1 << i now, and >> i divides by scale */
3185 old_load = this_rq->cpu_load[i];
3186 new_load = this_load;
3188 * Round up the averaging division if load is increasing. This
3189 * prevents us from getting stuck on 9 if the load is 10, for
3190 * example.
3192 if (new_load > old_load)
3193 new_load += scale-1;
3194 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3197 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3198 this_rq->calc_load_update += LOAD_FREQ;
3199 calc_load_account_active(this_rq);
3203 #ifdef CONFIG_SMP
3206 * double_rq_lock - safely lock two runqueues
3208 * Note this does not disable interrupts like task_rq_lock,
3209 * you need to do so manually before calling.
3211 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3212 __acquires(rq1->lock)
3213 __acquires(rq2->lock)
3215 BUG_ON(!irqs_disabled());
3216 if (rq1 == rq2) {
3217 spin_lock(&rq1->lock);
3218 __acquire(rq2->lock); /* Fake it out ;) */
3219 } else {
3220 if (rq1 < rq2) {
3221 spin_lock(&rq1->lock);
3222 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3223 } else {
3224 spin_lock(&rq2->lock);
3225 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3228 update_rq_clock(rq1);
3229 update_rq_clock(rq2);
3233 * double_rq_unlock - safely unlock two runqueues
3235 * Note this does not restore interrupts like task_rq_unlock,
3236 * you need to do so manually after calling.
3238 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3239 __releases(rq1->lock)
3240 __releases(rq2->lock)
3242 spin_unlock(&rq1->lock);
3243 if (rq1 != rq2)
3244 spin_unlock(&rq2->lock);
3245 else
3246 __release(rq2->lock);
3250 * If dest_cpu is allowed for this process, migrate the task to it.
3251 * This is accomplished by forcing the cpu_allowed mask to only
3252 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3253 * the cpu_allowed mask is restored.
3255 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3257 struct migration_req req;
3258 unsigned long flags;
3259 struct rq *rq;
3261 rq = task_rq_lock(p, &flags);
3262 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3263 || unlikely(!cpu_active(dest_cpu)))
3264 goto out;
3266 /* force the process onto the specified CPU */
3267 if (migrate_task(p, dest_cpu, &req)) {
3268 /* Need to wait for migration thread (might exit: take ref). */
3269 struct task_struct *mt = rq->migration_thread;
3271 get_task_struct(mt);
3272 task_rq_unlock(rq, &flags);
3273 wake_up_process(mt);
3274 put_task_struct(mt);
3275 wait_for_completion(&req.done);
3277 return;
3279 out:
3280 task_rq_unlock(rq, &flags);
3284 * sched_exec - execve() is a valuable balancing opportunity, because at
3285 * this point the task has the smallest effective memory and cache footprint.
3287 void sched_exec(void)
3289 int new_cpu, this_cpu = get_cpu();
3290 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3291 put_cpu();
3292 if (new_cpu != this_cpu)
3293 sched_migrate_task(current, new_cpu);
3297 * pull_task - move a task from a remote runqueue to the local runqueue.
3298 * Both runqueues must be locked.
3300 static void pull_task(struct rq *src_rq, struct task_struct *p,
3301 struct rq *this_rq, int this_cpu)
3303 deactivate_task(src_rq, p, 0);
3304 set_task_cpu(p, this_cpu);
3305 activate_task(this_rq, p, 0);
3307 * Note that idle threads have a prio of MAX_PRIO, for this test
3308 * to be always true for them.
3310 check_preempt_curr(this_rq, p, 0);
3314 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3316 static
3317 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3318 struct sched_domain *sd, enum cpu_idle_type idle,
3319 int *all_pinned)
3321 int tsk_cache_hot = 0;
3323 * We do not migrate tasks that are:
3324 * 1) running (obviously), or
3325 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3326 * 3) are cache-hot on their current CPU.
3328 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3329 schedstat_inc(p, se.nr_failed_migrations_affine);
3330 return 0;
3332 *all_pinned = 0;
3334 if (task_running(rq, p)) {
3335 schedstat_inc(p, se.nr_failed_migrations_running);
3336 return 0;
3340 * Aggressive migration if:
3341 * 1) task is cache cold, or
3342 * 2) too many balance attempts have failed.
3345 tsk_cache_hot = task_hot(p, rq->clock, sd);
3346 if (!tsk_cache_hot ||
3347 sd->nr_balance_failed > sd->cache_nice_tries) {
3348 #ifdef CONFIG_SCHEDSTATS
3349 if (tsk_cache_hot) {
3350 schedstat_inc(sd, lb_hot_gained[idle]);
3351 schedstat_inc(p, se.nr_forced_migrations);
3353 #endif
3354 return 1;
3357 if (tsk_cache_hot) {
3358 schedstat_inc(p, se.nr_failed_migrations_hot);
3359 return 0;
3361 return 1;
3364 static unsigned long
3365 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3366 unsigned long max_load_move, struct sched_domain *sd,
3367 enum cpu_idle_type idle, int *all_pinned,
3368 int *this_best_prio, struct rq_iterator *iterator)
3370 int loops = 0, pulled = 0, pinned = 0;
3371 struct task_struct *p;
3372 long rem_load_move = max_load_move;
3374 if (max_load_move == 0)
3375 goto out;
3377 pinned = 1;
3380 * Start the load-balancing iterator:
3382 p = iterator->start(iterator->arg);
3383 next:
3384 if (!p || loops++ > sysctl_sched_nr_migrate)
3385 goto out;
3387 if ((p->se.load.weight >> 1) > rem_load_move ||
3388 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3389 p = iterator->next(iterator->arg);
3390 goto next;
3393 pull_task(busiest, p, this_rq, this_cpu);
3394 pulled++;
3395 rem_load_move -= p->se.load.weight;
3397 #ifdef CONFIG_PREEMPT
3399 * NEWIDLE balancing is a source of latency, so preemptible kernels
3400 * will stop after the first task is pulled to minimize the critical
3401 * section.
3403 if (idle == CPU_NEWLY_IDLE)
3404 goto out;
3405 #endif
3408 * We only want to steal up to the prescribed amount of weighted load.
3410 if (rem_load_move > 0) {
3411 if (p->prio < *this_best_prio)
3412 *this_best_prio = p->prio;
3413 p = iterator->next(iterator->arg);
3414 goto next;
3416 out:
3418 * Right now, this is one of only two places pull_task() is called,
3419 * so we can safely collect pull_task() stats here rather than
3420 * inside pull_task().
3422 schedstat_add(sd, lb_gained[idle], pulled);
3424 if (all_pinned)
3425 *all_pinned = pinned;
3427 return max_load_move - rem_load_move;
3431 * move_tasks tries to move up to max_load_move weighted load from busiest to
3432 * this_rq, as part of a balancing operation within domain "sd".
3433 * Returns 1 if successful and 0 otherwise.
3435 * Called with both runqueues locked.
3437 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3438 unsigned long max_load_move,
3439 struct sched_domain *sd, enum cpu_idle_type idle,
3440 int *all_pinned)
3442 const struct sched_class *class = sched_class_highest;
3443 unsigned long total_load_moved = 0;
3444 int this_best_prio = this_rq->curr->prio;
3446 do {
3447 total_load_moved +=
3448 class->load_balance(this_rq, this_cpu, busiest,
3449 max_load_move - total_load_moved,
3450 sd, idle, all_pinned, &this_best_prio);
3451 class = class->next;
3453 #ifdef CONFIG_PREEMPT
3455 * NEWIDLE balancing is a source of latency, so preemptible
3456 * kernels will stop after the first task is pulled to minimize
3457 * the critical section.
3459 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3460 break;
3461 #endif
3462 } while (class && max_load_move > total_load_moved);
3464 return total_load_moved > 0;
3467 static int
3468 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3469 struct sched_domain *sd, enum cpu_idle_type idle,
3470 struct rq_iterator *iterator)
3472 struct task_struct *p = iterator->start(iterator->arg);
3473 int pinned = 0;
3475 while (p) {
3476 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3477 pull_task(busiest, p, this_rq, this_cpu);
3479 * Right now, this is only the second place pull_task()
3480 * is called, so we can safely collect pull_task()
3481 * stats here rather than inside pull_task().
3483 schedstat_inc(sd, lb_gained[idle]);
3485 return 1;
3487 p = iterator->next(iterator->arg);
3490 return 0;
3494 * move_one_task tries to move exactly one task from busiest to this_rq, as
3495 * part of active balancing operations within "domain".
3496 * Returns 1 if successful and 0 otherwise.
3498 * Called with both runqueues locked.
3500 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3501 struct sched_domain *sd, enum cpu_idle_type idle)
3503 const struct sched_class *class;
3505 for_each_class(class) {
3506 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3507 return 1;
3510 return 0;
3512 /********** Helpers for find_busiest_group ************************/
3514 * sd_lb_stats - Structure to store the statistics of a sched_domain
3515 * during load balancing.
3517 struct sd_lb_stats {
3518 struct sched_group *busiest; /* Busiest group in this sd */
3519 struct sched_group *this; /* Local group in this sd */
3520 unsigned long total_load; /* Total load of all groups in sd */
3521 unsigned long total_pwr; /* Total power of all groups in sd */
3522 unsigned long avg_load; /* Average load across all groups in sd */
3524 /** Statistics of this group */
3525 unsigned long this_load;
3526 unsigned long this_load_per_task;
3527 unsigned long this_nr_running;
3529 /* Statistics of the busiest group */
3530 unsigned long max_load;
3531 unsigned long busiest_load_per_task;
3532 unsigned long busiest_nr_running;
3534 int group_imb; /* Is there imbalance in this sd */
3535 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3536 int power_savings_balance; /* Is powersave balance needed for this sd */
3537 struct sched_group *group_min; /* Least loaded group in sd */
3538 struct sched_group *group_leader; /* Group which relieves group_min */
3539 unsigned long min_load_per_task; /* load_per_task in group_min */
3540 unsigned long leader_nr_running; /* Nr running of group_leader */
3541 unsigned long min_nr_running; /* Nr running of group_min */
3542 #endif
3546 * sg_lb_stats - stats of a sched_group required for load_balancing
3548 struct sg_lb_stats {
3549 unsigned long avg_load; /*Avg load across the CPUs of the group */
3550 unsigned long group_load; /* Total load over the CPUs of the group */
3551 unsigned long sum_nr_running; /* Nr tasks running in the group */
3552 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3553 unsigned long group_capacity;
3554 int group_imb; /* Is there an imbalance in the group ? */
3558 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3559 * @group: The group whose first cpu is to be returned.
3561 static inline unsigned int group_first_cpu(struct sched_group *group)
3563 return cpumask_first(sched_group_cpus(group));
3567 * get_sd_load_idx - Obtain the load index for a given sched domain.
3568 * @sd: The sched_domain whose load_idx is to be obtained.
3569 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3571 static inline int get_sd_load_idx(struct sched_domain *sd,
3572 enum cpu_idle_type idle)
3574 int load_idx;
3576 switch (idle) {
3577 case CPU_NOT_IDLE:
3578 load_idx = sd->busy_idx;
3579 break;
3581 case CPU_NEWLY_IDLE:
3582 load_idx = sd->newidle_idx;
3583 break;
3584 default:
3585 load_idx = sd->idle_idx;
3586 break;
3589 return load_idx;
3593 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3595 * init_sd_power_savings_stats - Initialize power savings statistics for
3596 * the given sched_domain, during load balancing.
3598 * @sd: Sched domain whose power-savings statistics are to be initialized.
3599 * @sds: Variable containing the statistics for sd.
3600 * @idle: Idle status of the CPU at which we're performing load-balancing.
3602 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3603 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3606 * Busy processors will not participate in power savings
3607 * balance.
3609 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3610 sds->power_savings_balance = 0;
3611 else {
3612 sds->power_savings_balance = 1;
3613 sds->min_nr_running = ULONG_MAX;
3614 sds->leader_nr_running = 0;
3619 * update_sd_power_savings_stats - Update the power saving stats for a
3620 * sched_domain while performing load balancing.
3622 * @group: sched_group belonging to the sched_domain under consideration.
3623 * @sds: Variable containing the statistics of the sched_domain
3624 * @local_group: Does group contain the CPU for which we're performing
3625 * load balancing ?
3626 * @sgs: Variable containing the statistics of the group.
3628 static inline void update_sd_power_savings_stats(struct sched_group *group,
3629 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3632 if (!sds->power_savings_balance)
3633 return;
3636 * If the local group is idle or completely loaded
3637 * no need to do power savings balance at this domain
3639 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3640 !sds->this_nr_running))
3641 sds->power_savings_balance = 0;
3644 * If a group is already running at full capacity or idle,
3645 * don't include that group in power savings calculations
3647 if (!sds->power_savings_balance ||
3648 sgs->sum_nr_running >= sgs->group_capacity ||
3649 !sgs->sum_nr_running)
3650 return;
3653 * Calculate the group which has the least non-idle load.
3654 * This is the group from where we need to pick up the load
3655 * for saving power
3657 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3658 (sgs->sum_nr_running == sds->min_nr_running &&
3659 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3660 sds->group_min = group;
3661 sds->min_nr_running = sgs->sum_nr_running;
3662 sds->min_load_per_task = sgs->sum_weighted_load /
3663 sgs->sum_nr_running;
3667 * Calculate the group which is almost near its
3668 * capacity but still has some space to pick up some load
3669 * from other group and save more power
3671 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3672 return;
3674 if (sgs->sum_nr_running > sds->leader_nr_running ||
3675 (sgs->sum_nr_running == sds->leader_nr_running &&
3676 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3677 sds->group_leader = group;
3678 sds->leader_nr_running = sgs->sum_nr_running;
3683 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3684 * @sds: Variable containing the statistics of the sched_domain
3685 * under consideration.
3686 * @this_cpu: Cpu at which we're currently performing load-balancing.
3687 * @imbalance: Variable to store the imbalance.
3689 * Description:
3690 * Check if we have potential to perform some power-savings balance.
3691 * If yes, set the busiest group to be the least loaded group in the
3692 * sched_domain, so that it's CPUs can be put to idle.
3694 * Returns 1 if there is potential to perform power-savings balance.
3695 * Else returns 0.
3697 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3698 int this_cpu, unsigned long *imbalance)
3700 if (!sds->power_savings_balance)
3701 return 0;
3703 if (sds->this != sds->group_leader ||
3704 sds->group_leader == sds->group_min)
3705 return 0;
3707 *imbalance = sds->min_load_per_task;
3708 sds->busiest = sds->group_min;
3710 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3711 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3712 group_first_cpu(sds->group_leader);
3715 return 1;
3718 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3719 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3720 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3722 return;
3725 static inline void update_sd_power_savings_stats(struct sched_group *group,
3726 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3728 return;
3731 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3732 int this_cpu, unsigned long *imbalance)
3734 return 0;
3736 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3738 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3740 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3741 unsigned long smt_gain = sd->smt_gain;
3743 smt_gain /= weight;
3745 return smt_gain;
3748 unsigned long scale_rt_power(int cpu)
3750 struct rq *rq = cpu_rq(cpu);
3751 u64 total, available;
3753 sched_avg_update(rq);
3755 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3756 available = total - rq->rt_avg;
3758 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3759 total = SCHED_LOAD_SCALE;
3761 total >>= SCHED_LOAD_SHIFT;
3763 return div_u64(available, total);
3766 static void update_cpu_power(struct sched_domain *sd, int cpu)
3768 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3769 unsigned long power = SCHED_LOAD_SCALE;
3770 struct sched_group *sdg = sd->groups;
3771 unsigned long old = sdg->__cpu_power;
3773 /* here we could scale based on cpufreq */
3775 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3776 power *= arch_scale_smt_power(sd, cpu);
3777 power >>= SCHED_LOAD_SHIFT;
3780 power *= scale_rt_power(cpu);
3781 power >>= SCHED_LOAD_SHIFT;
3783 if (!power)
3784 power = 1;
3786 if (power != old) {
3787 sdg->__cpu_power = power;
3788 sdg->reciprocal_cpu_power = reciprocal_value(power);
3792 static void update_group_power(struct sched_domain *sd, int cpu)
3794 struct sched_domain *child = sd->child;
3795 struct sched_group *group, *sdg = sd->groups;
3796 unsigned long power = sdg->__cpu_power;
3798 if (!child) {
3799 update_cpu_power(sd, cpu);
3800 return;
3803 sdg->__cpu_power = 0;
3805 group = child->groups;
3806 do {
3807 sdg->__cpu_power += group->__cpu_power;
3808 group = group->next;
3809 } while (group != child->groups);
3811 if (power != sdg->__cpu_power)
3812 sdg->reciprocal_cpu_power = reciprocal_value(sdg->__cpu_power);
3816 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3817 * @group: sched_group whose statistics are to be updated.
3818 * @this_cpu: Cpu for which load balance is currently performed.
3819 * @idle: Idle status of this_cpu
3820 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3821 * @sd_idle: Idle status of the sched_domain containing group.
3822 * @local_group: Does group contain this_cpu.
3823 * @cpus: Set of cpus considered for load balancing.
3824 * @balance: Should we balance.
3825 * @sgs: variable to hold the statistics for this group.
3827 static inline void update_sg_lb_stats(struct sched_domain *sd,
3828 struct sched_group *group, int this_cpu,
3829 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3830 int local_group, const struct cpumask *cpus,
3831 int *balance, struct sg_lb_stats *sgs)
3833 unsigned long load, max_cpu_load, min_cpu_load;
3834 int i;
3835 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3836 unsigned long sum_avg_load_per_task;
3837 unsigned long avg_load_per_task;
3839 if (local_group) {
3840 balance_cpu = group_first_cpu(group);
3841 if (balance_cpu == this_cpu)
3842 update_group_power(sd, this_cpu);
3845 /* Tally up the load of all CPUs in the group */
3846 sum_avg_load_per_task = avg_load_per_task = 0;
3847 max_cpu_load = 0;
3848 min_cpu_load = ~0UL;
3850 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3851 struct rq *rq = cpu_rq(i);
3853 if (*sd_idle && rq->nr_running)
3854 *sd_idle = 0;
3856 /* Bias balancing toward cpus of our domain */
3857 if (local_group) {
3858 if (idle_cpu(i) && !first_idle_cpu) {
3859 first_idle_cpu = 1;
3860 balance_cpu = i;
3863 load = target_load(i, load_idx);
3864 } else {
3865 load = source_load(i, load_idx);
3866 if (load > max_cpu_load)
3867 max_cpu_load = load;
3868 if (min_cpu_load > load)
3869 min_cpu_load = load;
3872 sgs->group_load += load;
3873 sgs->sum_nr_running += rq->nr_running;
3874 sgs->sum_weighted_load += weighted_cpuload(i);
3876 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3880 * First idle cpu or the first cpu(busiest) in this sched group
3881 * is eligible for doing load balancing at this and above
3882 * domains. In the newly idle case, we will allow all the cpu's
3883 * to do the newly idle load balance.
3885 if (idle != CPU_NEWLY_IDLE && local_group &&
3886 balance_cpu != this_cpu && balance) {
3887 *balance = 0;
3888 return;
3891 /* Adjust by relative CPU power of the group */
3892 sgs->avg_load = sg_div_cpu_power(group,
3893 sgs->group_load * SCHED_LOAD_SCALE);
3897 * Consider the group unbalanced when the imbalance is larger
3898 * than the average weight of two tasks.
3900 * APZ: with cgroup the avg task weight can vary wildly and
3901 * might not be a suitable number - should we keep a
3902 * normalized nr_running number somewhere that negates
3903 * the hierarchy?
3905 avg_load_per_task = sg_div_cpu_power(group,
3906 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3908 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3909 sgs->group_imb = 1;
3911 sgs->group_capacity =
3912 DIV_ROUND_CLOSEST(group->__cpu_power, SCHED_LOAD_SCALE);
3916 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3917 * @sd: sched_domain whose statistics are to be updated.
3918 * @this_cpu: Cpu for which load balance is currently performed.
3919 * @idle: Idle status of this_cpu
3920 * @sd_idle: Idle status of the sched_domain containing group.
3921 * @cpus: Set of cpus considered for load balancing.
3922 * @balance: Should we balance.
3923 * @sds: variable to hold the statistics for this sched_domain.
3925 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3926 enum cpu_idle_type idle, int *sd_idle,
3927 const struct cpumask *cpus, int *balance,
3928 struct sd_lb_stats *sds)
3930 struct sched_domain *child = sd->child;
3931 struct sched_group *group = sd->groups;
3932 struct sg_lb_stats sgs;
3933 int load_idx, prefer_sibling = 0;
3935 if (child && child->flags & SD_PREFER_SIBLING)
3936 prefer_sibling = 1;
3938 init_sd_power_savings_stats(sd, sds, idle);
3939 load_idx = get_sd_load_idx(sd, idle);
3941 do {
3942 int local_group;
3944 local_group = cpumask_test_cpu(this_cpu,
3945 sched_group_cpus(group));
3946 memset(&sgs, 0, sizeof(sgs));
3947 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3948 local_group, cpus, balance, &sgs);
3950 if (local_group && balance && !(*balance))
3951 return;
3953 sds->total_load += sgs.group_load;
3954 sds->total_pwr += group->__cpu_power;
3957 * In case the child domain prefers tasks go to siblings
3958 * first, lower the group capacity to one so that we'll try
3959 * and move all the excess tasks away.
3961 if (prefer_sibling)
3962 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3964 if (local_group) {
3965 sds->this_load = sgs.avg_load;
3966 sds->this = group;
3967 sds->this_nr_running = sgs.sum_nr_running;
3968 sds->this_load_per_task = sgs.sum_weighted_load;
3969 } else if (sgs.avg_load > sds->max_load &&
3970 (sgs.sum_nr_running > sgs.group_capacity ||
3971 sgs.group_imb)) {
3972 sds->max_load = sgs.avg_load;
3973 sds->busiest = group;
3974 sds->busiest_nr_running = sgs.sum_nr_running;
3975 sds->busiest_load_per_task = sgs.sum_weighted_load;
3976 sds->group_imb = sgs.group_imb;
3979 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3980 group = group->next;
3981 } while (group != sd->groups);
3985 * fix_small_imbalance - Calculate the minor imbalance that exists
3986 * amongst the groups of a sched_domain, during
3987 * load balancing.
3988 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3989 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3990 * @imbalance: Variable to store the imbalance.
3992 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3993 int this_cpu, unsigned long *imbalance)
3995 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3996 unsigned int imbn = 2;
3998 if (sds->this_nr_running) {
3999 sds->this_load_per_task /= sds->this_nr_running;
4000 if (sds->busiest_load_per_task >
4001 sds->this_load_per_task)
4002 imbn = 1;
4003 } else
4004 sds->this_load_per_task =
4005 cpu_avg_load_per_task(this_cpu);
4007 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
4008 sds->busiest_load_per_task * imbn) {
4009 *imbalance = sds->busiest_load_per_task;
4010 return;
4014 * OK, we don't have enough imbalance to justify moving tasks,
4015 * however we may be able to increase total CPU power used by
4016 * moving them.
4019 pwr_now += sds->busiest->__cpu_power *
4020 min(sds->busiest_load_per_task, sds->max_load);
4021 pwr_now += sds->this->__cpu_power *
4022 min(sds->this_load_per_task, sds->this_load);
4023 pwr_now /= SCHED_LOAD_SCALE;
4025 /* Amount of load we'd subtract */
4026 tmp = sg_div_cpu_power(sds->busiest,
4027 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
4028 if (sds->max_load > tmp)
4029 pwr_move += sds->busiest->__cpu_power *
4030 min(sds->busiest_load_per_task, sds->max_load - tmp);
4032 /* Amount of load we'd add */
4033 if (sds->max_load * sds->busiest->__cpu_power <
4034 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
4035 tmp = sg_div_cpu_power(sds->this,
4036 sds->max_load * sds->busiest->__cpu_power);
4037 else
4038 tmp = sg_div_cpu_power(sds->this,
4039 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
4040 pwr_move += sds->this->__cpu_power *
4041 min(sds->this_load_per_task, sds->this_load + tmp);
4042 pwr_move /= SCHED_LOAD_SCALE;
4044 /* Move if we gain throughput */
4045 if (pwr_move > pwr_now)
4046 *imbalance = sds->busiest_load_per_task;
4050 * calculate_imbalance - Calculate the amount of imbalance present within the
4051 * groups of a given sched_domain during load balance.
4052 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4053 * @this_cpu: Cpu for which currently load balance is being performed.
4054 * @imbalance: The variable to store the imbalance.
4056 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4057 unsigned long *imbalance)
4059 unsigned long max_pull;
4061 * In the presence of smp nice balancing, certain scenarios can have
4062 * max load less than avg load(as we skip the groups at or below
4063 * its cpu_power, while calculating max_load..)
4065 if (sds->max_load < sds->avg_load) {
4066 *imbalance = 0;
4067 return fix_small_imbalance(sds, this_cpu, imbalance);
4070 /* Don't want to pull so many tasks that a group would go idle */
4071 max_pull = min(sds->max_load - sds->avg_load,
4072 sds->max_load - sds->busiest_load_per_task);
4074 /* How much load to actually move to equalise the imbalance */
4075 *imbalance = min(max_pull * sds->busiest->__cpu_power,
4076 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
4077 / SCHED_LOAD_SCALE;
4080 * if *imbalance is less than the average load per runnable task
4081 * there is no gaurantee that any tasks will be moved so we'll have
4082 * a think about bumping its value to force at least one task to be
4083 * moved
4085 if (*imbalance < sds->busiest_load_per_task)
4086 return fix_small_imbalance(sds, this_cpu, imbalance);
4089 /******* find_busiest_group() helpers end here *********************/
4092 * find_busiest_group - Returns the busiest group within the sched_domain
4093 * if there is an imbalance. If there isn't an imbalance, and
4094 * the user has opted for power-savings, it returns a group whose
4095 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4096 * such a group exists.
4098 * Also calculates the amount of weighted load which should be moved
4099 * to restore balance.
4101 * @sd: The sched_domain whose busiest group is to be returned.
4102 * @this_cpu: The cpu for which load balancing is currently being performed.
4103 * @imbalance: Variable which stores amount of weighted load which should
4104 * be moved to restore balance/put a group to idle.
4105 * @idle: The idle status of this_cpu.
4106 * @sd_idle: The idleness of sd
4107 * @cpus: The set of CPUs under consideration for load-balancing.
4108 * @balance: Pointer to a variable indicating if this_cpu
4109 * is the appropriate cpu to perform load balancing at this_level.
4111 * Returns: - the busiest group if imbalance exists.
4112 * - If no imbalance and user has opted for power-savings balance,
4113 * return the least loaded group whose CPUs can be
4114 * put to idle by rebalancing its tasks onto our group.
4116 static struct sched_group *
4117 find_busiest_group(struct sched_domain *sd, int this_cpu,
4118 unsigned long *imbalance, enum cpu_idle_type idle,
4119 int *sd_idle, const struct cpumask *cpus, int *balance)
4121 struct sd_lb_stats sds;
4123 memset(&sds, 0, sizeof(sds));
4126 * Compute the various statistics relavent for load balancing at
4127 * this level.
4129 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4130 balance, &sds);
4132 /* Cases where imbalance does not exist from POV of this_cpu */
4133 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4134 * at this level.
4135 * 2) There is no busy sibling group to pull from.
4136 * 3) This group is the busiest group.
4137 * 4) This group is more busy than the avg busieness at this
4138 * sched_domain.
4139 * 5) The imbalance is within the specified limit.
4140 * 6) Any rebalance would lead to ping-pong
4142 if (balance && !(*balance))
4143 goto ret;
4145 if (!sds.busiest || sds.busiest_nr_running == 0)
4146 goto out_balanced;
4148 if (sds.this_load >= sds.max_load)
4149 goto out_balanced;
4151 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4153 if (sds.this_load >= sds.avg_load)
4154 goto out_balanced;
4156 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4157 goto out_balanced;
4159 sds.busiest_load_per_task /= sds.busiest_nr_running;
4160 if (sds.group_imb)
4161 sds.busiest_load_per_task =
4162 min(sds.busiest_load_per_task, sds.avg_load);
4165 * We're trying to get all the cpus to the average_load, so we don't
4166 * want to push ourselves above the average load, nor do we wish to
4167 * reduce the max loaded cpu below the average load, as either of these
4168 * actions would just result in more rebalancing later, and ping-pong
4169 * tasks around. Thus we look for the minimum possible imbalance.
4170 * Negative imbalances (*we* are more loaded than anyone else) will
4171 * be counted as no imbalance for these purposes -- we can't fix that
4172 * by pulling tasks to us. Be careful of negative numbers as they'll
4173 * appear as very large values with unsigned longs.
4175 if (sds.max_load <= sds.busiest_load_per_task)
4176 goto out_balanced;
4178 /* Looks like there is an imbalance. Compute it */
4179 calculate_imbalance(&sds, this_cpu, imbalance);
4180 return sds.busiest;
4182 out_balanced:
4184 * There is no obvious imbalance. But check if we can do some balancing
4185 * to save power.
4187 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4188 return sds.busiest;
4189 ret:
4190 *imbalance = 0;
4191 return NULL;
4194 static struct sched_group *group_of(int cpu)
4196 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
4198 if (!sd)
4199 return NULL;
4201 return sd->groups;
4204 static unsigned long power_of(int cpu)
4206 struct sched_group *group = group_of(cpu);
4208 if (!group)
4209 return SCHED_LOAD_SCALE;
4211 return group->__cpu_power;
4215 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4217 static struct rq *
4218 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4219 unsigned long imbalance, const struct cpumask *cpus)
4221 struct rq *busiest = NULL, *rq;
4222 unsigned long max_load = 0;
4223 int i;
4225 for_each_cpu(i, sched_group_cpus(group)) {
4226 unsigned long power = power_of(i);
4227 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4228 unsigned long wl;
4230 if (!cpumask_test_cpu(i, cpus))
4231 continue;
4233 rq = cpu_rq(i);
4234 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4235 wl /= power;
4237 if (capacity && rq->nr_running == 1 && wl > imbalance)
4238 continue;
4240 if (wl > max_load) {
4241 max_load = wl;
4242 busiest = rq;
4246 return busiest;
4250 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4251 * so long as it is large enough.
4253 #define MAX_PINNED_INTERVAL 512
4255 /* Working cpumask for load_balance and load_balance_newidle. */
4256 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4259 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4260 * tasks if there is an imbalance.
4262 static int load_balance(int this_cpu, struct rq *this_rq,
4263 struct sched_domain *sd, enum cpu_idle_type idle,
4264 int *balance)
4266 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4267 struct sched_group *group;
4268 unsigned long imbalance;
4269 struct rq *busiest;
4270 unsigned long flags;
4271 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4273 cpumask_setall(cpus);
4276 * When power savings policy is enabled for the parent domain, idle
4277 * sibling can pick up load irrespective of busy siblings. In this case,
4278 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4279 * portraying it as CPU_NOT_IDLE.
4281 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4282 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4283 sd_idle = 1;
4285 schedstat_inc(sd, lb_count[idle]);
4287 redo:
4288 update_shares(sd);
4289 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4290 cpus, balance);
4292 if (*balance == 0)
4293 goto out_balanced;
4295 if (!group) {
4296 schedstat_inc(sd, lb_nobusyg[idle]);
4297 goto out_balanced;
4300 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4301 if (!busiest) {
4302 schedstat_inc(sd, lb_nobusyq[idle]);
4303 goto out_balanced;
4306 BUG_ON(busiest == this_rq);
4308 schedstat_add(sd, lb_imbalance[idle], imbalance);
4310 ld_moved = 0;
4311 if (busiest->nr_running > 1) {
4313 * Attempt to move tasks. If find_busiest_group has found
4314 * an imbalance but busiest->nr_running <= 1, the group is
4315 * still unbalanced. ld_moved simply stays zero, so it is
4316 * correctly treated as an imbalance.
4318 local_irq_save(flags);
4319 double_rq_lock(this_rq, busiest);
4320 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4321 imbalance, sd, idle, &all_pinned);
4322 double_rq_unlock(this_rq, busiest);
4323 local_irq_restore(flags);
4326 * some other cpu did the load balance for us.
4328 if (ld_moved && this_cpu != smp_processor_id())
4329 resched_cpu(this_cpu);
4331 /* All tasks on this runqueue were pinned by CPU affinity */
4332 if (unlikely(all_pinned)) {
4333 cpumask_clear_cpu(cpu_of(busiest), cpus);
4334 if (!cpumask_empty(cpus))
4335 goto redo;
4336 goto out_balanced;
4340 if (!ld_moved) {
4341 schedstat_inc(sd, lb_failed[idle]);
4342 sd->nr_balance_failed++;
4344 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4346 spin_lock_irqsave(&busiest->lock, flags);
4348 /* don't kick the migration_thread, if the curr
4349 * task on busiest cpu can't be moved to this_cpu
4351 if (!cpumask_test_cpu(this_cpu,
4352 &busiest->curr->cpus_allowed)) {
4353 spin_unlock_irqrestore(&busiest->lock, flags);
4354 all_pinned = 1;
4355 goto out_one_pinned;
4358 if (!busiest->active_balance) {
4359 busiest->active_balance = 1;
4360 busiest->push_cpu = this_cpu;
4361 active_balance = 1;
4363 spin_unlock_irqrestore(&busiest->lock, flags);
4364 if (active_balance)
4365 wake_up_process(busiest->migration_thread);
4368 * We've kicked active balancing, reset the failure
4369 * counter.
4371 sd->nr_balance_failed = sd->cache_nice_tries+1;
4373 } else
4374 sd->nr_balance_failed = 0;
4376 if (likely(!active_balance)) {
4377 /* We were unbalanced, so reset the balancing interval */
4378 sd->balance_interval = sd->min_interval;
4379 } else {
4381 * If we've begun active balancing, start to back off. This
4382 * case may not be covered by the all_pinned logic if there
4383 * is only 1 task on the busy runqueue (because we don't call
4384 * move_tasks).
4386 if (sd->balance_interval < sd->max_interval)
4387 sd->balance_interval *= 2;
4390 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4391 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4392 ld_moved = -1;
4394 goto out;
4396 out_balanced:
4397 schedstat_inc(sd, lb_balanced[idle]);
4399 sd->nr_balance_failed = 0;
4401 out_one_pinned:
4402 /* tune up the balancing interval */
4403 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4404 (sd->balance_interval < sd->max_interval))
4405 sd->balance_interval *= 2;
4407 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4408 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4409 ld_moved = -1;
4410 else
4411 ld_moved = 0;
4412 out:
4413 if (ld_moved)
4414 update_shares(sd);
4415 return ld_moved;
4419 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4420 * tasks if there is an imbalance.
4422 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4423 * this_rq is locked.
4425 static int
4426 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4428 struct sched_group *group;
4429 struct rq *busiest = NULL;
4430 unsigned long imbalance;
4431 int ld_moved = 0;
4432 int sd_idle = 0;
4433 int all_pinned = 0;
4434 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4436 cpumask_setall(cpus);
4439 * When power savings policy is enabled for the parent domain, idle
4440 * sibling can pick up load irrespective of busy siblings. In this case,
4441 * let the state of idle sibling percolate up as IDLE, instead of
4442 * portraying it as CPU_NOT_IDLE.
4444 if (sd->flags & SD_SHARE_CPUPOWER &&
4445 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4446 sd_idle = 1;
4448 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4449 redo:
4450 update_shares_locked(this_rq, sd);
4451 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4452 &sd_idle, cpus, NULL);
4453 if (!group) {
4454 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4455 goto out_balanced;
4458 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4459 if (!busiest) {
4460 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4461 goto out_balanced;
4464 BUG_ON(busiest == this_rq);
4466 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4468 ld_moved = 0;
4469 if (busiest->nr_running > 1) {
4470 /* Attempt to move tasks */
4471 double_lock_balance(this_rq, busiest);
4472 /* this_rq->clock is already updated */
4473 update_rq_clock(busiest);
4474 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4475 imbalance, sd, CPU_NEWLY_IDLE,
4476 &all_pinned);
4477 double_unlock_balance(this_rq, busiest);
4479 if (unlikely(all_pinned)) {
4480 cpumask_clear_cpu(cpu_of(busiest), cpus);
4481 if (!cpumask_empty(cpus))
4482 goto redo;
4486 if (!ld_moved) {
4487 int active_balance = 0;
4489 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4490 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4491 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4492 return -1;
4494 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4495 return -1;
4497 if (sd->nr_balance_failed++ < 2)
4498 return -1;
4501 * The only task running in a non-idle cpu can be moved to this
4502 * cpu in an attempt to completely freeup the other CPU
4503 * package. The same method used to move task in load_balance()
4504 * have been extended for load_balance_newidle() to speedup
4505 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4507 * The package power saving logic comes from
4508 * find_busiest_group(). If there are no imbalance, then
4509 * f_b_g() will return NULL. However when sched_mc={1,2} then
4510 * f_b_g() will select a group from which a running task may be
4511 * pulled to this cpu in order to make the other package idle.
4512 * If there is no opportunity to make a package idle and if
4513 * there are no imbalance, then f_b_g() will return NULL and no
4514 * action will be taken in load_balance_newidle().
4516 * Under normal task pull operation due to imbalance, there
4517 * will be more than one task in the source run queue and
4518 * move_tasks() will succeed. ld_moved will be true and this
4519 * active balance code will not be triggered.
4522 /* Lock busiest in correct order while this_rq is held */
4523 double_lock_balance(this_rq, busiest);
4526 * don't kick the migration_thread, if the curr
4527 * task on busiest cpu can't be moved to this_cpu
4529 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4530 double_unlock_balance(this_rq, busiest);
4531 all_pinned = 1;
4532 return ld_moved;
4535 if (!busiest->active_balance) {
4536 busiest->active_balance = 1;
4537 busiest->push_cpu = this_cpu;
4538 active_balance = 1;
4541 double_unlock_balance(this_rq, busiest);
4543 * Should not call ttwu while holding a rq->lock
4545 spin_unlock(&this_rq->lock);
4546 if (active_balance)
4547 wake_up_process(busiest->migration_thread);
4548 spin_lock(&this_rq->lock);
4550 } else
4551 sd->nr_balance_failed = 0;
4553 update_shares_locked(this_rq, sd);
4554 return ld_moved;
4556 out_balanced:
4557 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4558 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4559 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4560 return -1;
4561 sd->nr_balance_failed = 0;
4563 return 0;
4567 * idle_balance is called by schedule() if this_cpu is about to become
4568 * idle. Attempts to pull tasks from other CPUs.
4570 static void idle_balance(int this_cpu, struct rq *this_rq)
4572 struct sched_domain *sd;
4573 int pulled_task = 0;
4574 unsigned long next_balance = jiffies + HZ;
4576 for_each_domain(this_cpu, sd) {
4577 unsigned long interval;
4579 if (!(sd->flags & SD_LOAD_BALANCE))
4580 continue;
4582 if (sd->flags & SD_BALANCE_NEWIDLE)
4583 /* If we've pulled tasks over stop searching: */
4584 pulled_task = load_balance_newidle(this_cpu, this_rq,
4585 sd);
4587 interval = msecs_to_jiffies(sd->balance_interval);
4588 if (time_after(next_balance, sd->last_balance + interval))
4589 next_balance = sd->last_balance + interval;
4590 if (pulled_task)
4591 break;
4593 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4595 * We are going idle. next_balance may be set based on
4596 * a busy processor. So reset next_balance.
4598 this_rq->next_balance = next_balance;
4603 * active_load_balance is run by migration threads. It pushes running tasks
4604 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4605 * running on each physical CPU where possible, and avoids physical /
4606 * logical imbalances.
4608 * Called with busiest_rq locked.
4610 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4612 int target_cpu = busiest_rq->push_cpu;
4613 struct sched_domain *sd;
4614 struct rq *target_rq;
4616 /* Is there any task to move? */
4617 if (busiest_rq->nr_running <= 1)
4618 return;
4620 target_rq = cpu_rq(target_cpu);
4623 * This condition is "impossible", if it occurs
4624 * we need to fix it. Originally reported by
4625 * Bjorn Helgaas on a 128-cpu setup.
4627 BUG_ON(busiest_rq == target_rq);
4629 /* move a task from busiest_rq to target_rq */
4630 double_lock_balance(busiest_rq, target_rq);
4631 update_rq_clock(busiest_rq);
4632 update_rq_clock(target_rq);
4634 /* Search for an sd spanning us and the target CPU. */
4635 for_each_domain(target_cpu, sd) {
4636 if ((sd->flags & SD_LOAD_BALANCE) &&
4637 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4638 break;
4641 if (likely(sd)) {
4642 schedstat_inc(sd, alb_count);
4644 if (move_one_task(target_rq, target_cpu, busiest_rq,
4645 sd, CPU_IDLE))
4646 schedstat_inc(sd, alb_pushed);
4647 else
4648 schedstat_inc(sd, alb_failed);
4650 double_unlock_balance(busiest_rq, target_rq);
4653 #ifdef CONFIG_NO_HZ
4654 static struct {
4655 atomic_t load_balancer;
4656 cpumask_var_t cpu_mask;
4657 cpumask_var_t ilb_grp_nohz_mask;
4658 } nohz ____cacheline_aligned = {
4659 .load_balancer = ATOMIC_INIT(-1),
4662 int get_nohz_load_balancer(void)
4664 return atomic_read(&nohz.load_balancer);
4667 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4669 * lowest_flag_domain - Return lowest sched_domain containing flag.
4670 * @cpu: The cpu whose lowest level of sched domain is to
4671 * be returned.
4672 * @flag: The flag to check for the lowest sched_domain
4673 * for the given cpu.
4675 * Returns the lowest sched_domain of a cpu which contains the given flag.
4677 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4679 struct sched_domain *sd;
4681 for_each_domain(cpu, sd)
4682 if (sd && (sd->flags & flag))
4683 break;
4685 return sd;
4689 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4690 * @cpu: The cpu whose domains we're iterating over.
4691 * @sd: variable holding the value of the power_savings_sd
4692 * for cpu.
4693 * @flag: The flag to filter the sched_domains to be iterated.
4695 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4696 * set, starting from the lowest sched_domain to the highest.
4698 #define for_each_flag_domain(cpu, sd, flag) \
4699 for (sd = lowest_flag_domain(cpu, flag); \
4700 (sd && (sd->flags & flag)); sd = sd->parent)
4703 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4704 * @ilb_group: group to be checked for semi-idleness
4706 * Returns: 1 if the group is semi-idle. 0 otherwise.
4708 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4709 * and atleast one non-idle CPU. This helper function checks if the given
4710 * sched_group is semi-idle or not.
4712 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4714 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4715 sched_group_cpus(ilb_group));
4718 * A sched_group is semi-idle when it has atleast one busy cpu
4719 * and atleast one idle cpu.
4721 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4722 return 0;
4724 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4725 return 0;
4727 return 1;
4730 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4731 * @cpu: The cpu which is nominating a new idle_load_balancer.
4733 * Returns: Returns the id of the idle load balancer if it exists,
4734 * Else, returns >= nr_cpu_ids.
4736 * This algorithm picks the idle load balancer such that it belongs to a
4737 * semi-idle powersavings sched_domain. The idea is to try and avoid
4738 * completely idle packages/cores just for the purpose of idle load balancing
4739 * when there are other idle cpu's which are better suited for that job.
4741 static int find_new_ilb(int cpu)
4743 struct sched_domain *sd;
4744 struct sched_group *ilb_group;
4747 * Have idle load balancer selection from semi-idle packages only
4748 * when power-aware load balancing is enabled
4750 if (!(sched_smt_power_savings || sched_mc_power_savings))
4751 goto out_done;
4754 * Optimize for the case when we have no idle CPUs or only one
4755 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4757 if (cpumask_weight(nohz.cpu_mask) < 2)
4758 goto out_done;
4760 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4761 ilb_group = sd->groups;
4763 do {
4764 if (is_semi_idle_group(ilb_group))
4765 return cpumask_first(nohz.ilb_grp_nohz_mask);
4767 ilb_group = ilb_group->next;
4769 } while (ilb_group != sd->groups);
4772 out_done:
4773 return cpumask_first(nohz.cpu_mask);
4775 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4776 static inline int find_new_ilb(int call_cpu)
4778 return cpumask_first(nohz.cpu_mask);
4780 #endif
4783 * This routine will try to nominate the ilb (idle load balancing)
4784 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4785 * load balancing on behalf of all those cpus. If all the cpus in the system
4786 * go into this tickless mode, then there will be no ilb owner (as there is
4787 * no need for one) and all the cpus will sleep till the next wakeup event
4788 * arrives...
4790 * For the ilb owner, tick is not stopped. And this tick will be used
4791 * for idle load balancing. ilb owner will still be part of
4792 * nohz.cpu_mask..
4794 * While stopping the tick, this cpu will become the ilb owner if there
4795 * is no other owner. And will be the owner till that cpu becomes busy
4796 * or if all cpus in the system stop their ticks at which point
4797 * there is no need for ilb owner.
4799 * When the ilb owner becomes busy, it nominates another owner, during the
4800 * next busy scheduler_tick()
4802 int select_nohz_load_balancer(int stop_tick)
4804 int cpu = smp_processor_id();
4806 if (stop_tick) {
4807 cpu_rq(cpu)->in_nohz_recently = 1;
4809 if (!cpu_active(cpu)) {
4810 if (atomic_read(&nohz.load_balancer) != cpu)
4811 return 0;
4814 * If we are going offline and still the leader,
4815 * give up!
4817 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4818 BUG();
4820 return 0;
4823 cpumask_set_cpu(cpu, nohz.cpu_mask);
4825 /* time for ilb owner also to sleep */
4826 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4827 if (atomic_read(&nohz.load_balancer) == cpu)
4828 atomic_set(&nohz.load_balancer, -1);
4829 return 0;
4832 if (atomic_read(&nohz.load_balancer) == -1) {
4833 /* make me the ilb owner */
4834 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4835 return 1;
4836 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4837 int new_ilb;
4839 if (!(sched_smt_power_savings ||
4840 sched_mc_power_savings))
4841 return 1;
4843 * Check to see if there is a more power-efficient
4844 * ilb.
4846 new_ilb = find_new_ilb(cpu);
4847 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4848 atomic_set(&nohz.load_balancer, -1);
4849 resched_cpu(new_ilb);
4850 return 0;
4852 return 1;
4854 } else {
4855 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4856 return 0;
4858 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4860 if (atomic_read(&nohz.load_balancer) == cpu)
4861 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4862 BUG();
4864 return 0;
4866 #endif
4868 static DEFINE_SPINLOCK(balancing);
4871 * It checks each scheduling domain to see if it is due to be balanced,
4872 * and initiates a balancing operation if so.
4874 * Balancing parameters are set up in arch_init_sched_domains.
4876 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4878 int balance = 1;
4879 struct rq *rq = cpu_rq(cpu);
4880 unsigned long interval;
4881 struct sched_domain *sd;
4882 /* Earliest time when we have to do rebalance again */
4883 unsigned long next_balance = jiffies + 60*HZ;
4884 int update_next_balance = 0;
4885 int need_serialize;
4887 for_each_domain(cpu, sd) {
4888 if (!(sd->flags & SD_LOAD_BALANCE))
4889 continue;
4891 interval = sd->balance_interval;
4892 if (idle != CPU_IDLE)
4893 interval *= sd->busy_factor;
4895 /* scale ms to jiffies */
4896 interval = msecs_to_jiffies(interval);
4897 if (unlikely(!interval))
4898 interval = 1;
4899 if (interval > HZ*NR_CPUS/10)
4900 interval = HZ*NR_CPUS/10;
4902 need_serialize = sd->flags & SD_SERIALIZE;
4904 if (need_serialize) {
4905 if (!spin_trylock(&balancing))
4906 goto out;
4909 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4910 if (load_balance(cpu, rq, sd, idle, &balance)) {
4912 * We've pulled tasks over so either we're no
4913 * longer idle, or one of our SMT siblings is
4914 * not idle.
4916 idle = CPU_NOT_IDLE;
4918 sd->last_balance = jiffies;
4920 if (need_serialize)
4921 spin_unlock(&balancing);
4922 out:
4923 if (time_after(next_balance, sd->last_balance + interval)) {
4924 next_balance = sd->last_balance + interval;
4925 update_next_balance = 1;
4929 * Stop the load balance at this level. There is another
4930 * CPU in our sched group which is doing load balancing more
4931 * actively.
4933 if (!balance)
4934 break;
4938 * next_balance will be updated only when there is a need.
4939 * When the cpu is attached to null domain for ex, it will not be
4940 * updated.
4942 if (likely(update_next_balance))
4943 rq->next_balance = next_balance;
4947 * run_rebalance_domains is triggered when needed from the scheduler tick.
4948 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4949 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4951 static void run_rebalance_domains(struct softirq_action *h)
4953 int this_cpu = smp_processor_id();
4954 struct rq *this_rq = cpu_rq(this_cpu);
4955 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4956 CPU_IDLE : CPU_NOT_IDLE;
4958 rebalance_domains(this_cpu, idle);
4960 #ifdef CONFIG_NO_HZ
4962 * If this cpu is the owner for idle load balancing, then do the
4963 * balancing on behalf of the other idle cpus whose ticks are
4964 * stopped.
4966 if (this_rq->idle_at_tick &&
4967 atomic_read(&nohz.load_balancer) == this_cpu) {
4968 struct rq *rq;
4969 int balance_cpu;
4971 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4972 if (balance_cpu == this_cpu)
4973 continue;
4976 * If this cpu gets work to do, stop the load balancing
4977 * work being done for other cpus. Next load
4978 * balancing owner will pick it up.
4980 if (need_resched())
4981 break;
4983 rebalance_domains(balance_cpu, CPU_IDLE);
4985 rq = cpu_rq(balance_cpu);
4986 if (time_after(this_rq->next_balance, rq->next_balance))
4987 this_rq->next_balance = rq->next_balance;
4990 #endif
4993 static inline int on_null_domain(int cpu)
4995 return !rcu_dereference(cpu_rq(cpu)->sd);
4999 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5001 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
5002 * idle load balancing owner or decide to stop the periodic load balancing,
5003 * if the whole system is idle.
5005 static inline void trigger_load_balance(struct rq *rq, int cpu)
5007 #ifdef CONFIG_NO_HZ
5009 * If we were in the nohz mode recently and busy at the current
5010 * scheduler tick, then check if we need to nominate new idle
5011 * load balancer.
5013 if (rq->in_nohz_recently && !rq->idle_at_tick) {
5014 rq->in_nohz_recently = 0;
5016 if (atomic_read(&nohz.load_balancer) == cpu) {
5017 cpumask_clear_cpu(cpu, nohz.cpu_mask);
5018 atomic_set(&nohz.load_balancer, -1);
5021 if (atomic_read(&nohz.load_balancer) == -1) {
5022 int ilb = find_new_ilb(cpu);
5024 if (ilb < nr_cpu_ids)
5025 resched_cpu(ilb);
5030 * If this cpu is idle and doing idle load balancing for all the
5031 * cpus with ticks stopped, is it time for that to stop?
5033 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
5034 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
5035 resched_cpu(cpu);
5036 return;
5040 * If this cpu is idle and the idle load balancing is done by
5041 * someone else, then no need raise the SCHED_SOFTIRQ
5043 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
5044 cpumask_test_cpu(cpu, nohz.cpu_mask))
5045 return;
5046 #endif
5047 /* Don't need to rebalance while attached to NULL domain */
5048 if (time_after_eq(jiffies, rq->next_balance) &&
5049 likely(!on_null_domain(cpu)))
5050 raise_softirq(SCHED_SOFTIRQ);
5053 #else /* CONFIG_SMP */
5056 * on UP we do not need to balance between CPUs:
5058 static inline void idle_balance(int cpu, struct rq *rq)
5062 #endif
5064 DEFINE_PER_CPU(struct kernel_stat, kstat);
5066 EXPORT_PER_CPU_SYMBOL(kstat);
5069 * Return any ns on the sched_clock that have not yet been accounted in
5070 * @p in case that task is currently running.
5072 * Called with task_rq_lock() held on @rq.
5074 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
5076 u64 ns = 0;
5078 if (task_current(rq, p)) {
5079 update_rq_clock(rq);
5080 ns = rq->clock - p->se.exec_start;
5081 if ((s64)ns < 0)
5082 ns = 0;
5085 return ns;
5088 unsigned long long task_delta_exec(struct task_struct *p)
5090 unsigned long flags;
5091 struct rq *rq;
5092 u64 ns = 0;
5094 rq = task_rq_lock(p, &flags);
5095 ns = do_task_delta_exec(p, rq);
5096 task_rq_unlock(rq, &flags);
5098 return ns;
5102 * Return accounted runtime for the task.
5103 * In case the task is currently running, return the runtime plus current's
5104 * pending runtime that have not been accounted yet.
5106 unsigned long long task_sched_runtime(struct task_struct *p)
5108 unsigned long flags;
5109 struct rq *rq;
5110 u64 ns = 0;
5112 rq = task_rq_lock(p, &flags);
5113 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5114 task_rq_unlock(rq, &flags);
5116 return ns;
5120 * Return sum_exec_runtime for the thread group.
5121 * In case the task is currently running, return the sum plus current's
5122 * pending runtime that have not been accounted yet.
5124 * Note that the thread group might have other running tasks as well,
5125 * so the return value not includes other pending runtime that other
5126 * running tasks might have.
5128 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5130 struct task_cputime totals;
5131 unsigned long flags;
5132 struct rq *rq;
5133 u64 ns;
5135 rq = task_rq_lock(p, &flags);
5136 thread_group_cputime(p, &totals);
5137 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5138 task_rq_unlock(rq, &flags);
5140 return ns;
5144 * Account user cpu time to a process.
5145 * @p: the process that the cpu time gets accounted to
5146 * @cputime: the cpu time spent in user space since the last update
5147 * @cputime_scaled: cputime scaled by cpu frequency
5149 void account_user_time(struct task_struct *p, cputime_t cputime,
5150 cputime_t cputime_scaled)
5152 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5153 cputime64_t tmp;
5155 /* Add user time to process. */
5156 p->utime = cputime_add(p->utime, cputime);
5157 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5158 account_group_user_time(p, cputime);
5160 /* Add user time to cpustat. */
5161 tmp = cputime_to_cputime64(cputime);
5162 if (TASK_NICE(p) > 0)
5163 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5164 else
5165 cpustat->user = cputime64_add(cpustat->user, tmp);
5167 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5168 /* Account for user time used */
5169 acct_update_integrals(p);
5173 * Account guest cpu time to a process.
5174 * @p: the process that the cpu time gets accounted to
5175 * @cputime: the cpu time spent in virtual machine since the last update
5176 * @cputime_scaled: cputime scaled by cpu frequency
5178 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5179 cputime_t cputime_scaled)
5181 cputime64_t tmp;
5182 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5184 tmp = cputime_to_cputime64(cputime);
5186 /* Add guest time to process. */
5187 p->utime = cputime_add(p->utime, cputime);
5188 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5189 account_group_user_time(p, cputime);
5190 p->gtime = cputime_add(p->gtime, cputime);
5192 /* Add guest time to cpustat. */
5193 cpustat->user = cputime64_add(cpustat->user, tmp);
5194 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5198 * Account system cpu time to a process.
5199 * @p: the process that the cpu time gets accounted to
5200 * @hardirq_offset: the offset to subtract from hardirq_count()
5201 * @cputime: the cpu time spent in kernel space since the last update
5202 * @cputime_scaled: cputime scaled by cpu frequency
5204 void account_system_time(struct task_struct *p, int hardirq_offset,
5205 cputime_t cputime, cputime_t cputime_scaled)
5207 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5208 cputime64_t tmp;
5210 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5211 account_guest_time(p, cputime, cputime_scaled);
5212 return;
5215 /* Add system time to process. */
5216 p->stime = cputime_add(p->stime, cputime);
5217 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5218 account_group_system_time(p, cputime);
5220 /* Add system time to cpustat. */
5221 tmp = cputime_to_cputime64(cputime);
5222 if (hardirq_count() - hardirq_offset)
5223 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5224 else if (softirq_count())
5225 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5226 else
5227 cpustat->system = cputime64_add(cpustat->system, tmp);
5229 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5231 /* Account for system time used */
5232 acct_update_integrals(p);
5236 * Account for involuntary wait time.
5237 * @steal: the cpu time spent in involuntary wait
5239 void account_steal_time(cputime_t cputime)
5241 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5242 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5244 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5248 * Account for idle time.
5249 * @cputime: the cpu time spent in idle wait
5251 void account_idle_time(cputime_t cputime)
5253 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5254 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5255 struct rq *rq = this_rq();
5257 if (atomic_read(&rq->nr_iowait) > 0)
5258 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5259 else
5260 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5263 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5266 * Account a single tick of cpu time.
5267 * @p: the process that the cpu time gets accounted to
5268 * @user_tick: indicates if the tick is a user or a system tick
5270 void account_process_tick(struct task_struct *p, int user_tick)
5272 cputime_t one_jiffy = jiffies_to_cputime(1);
5273 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5274 struct rq *rq = this_rq();
5276 if (user_tick)
5277 account_user_time(p, one_jiffy, one_jiffy_scaled);
5278 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5279 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5280 one_jiffy_scaled);
5281 else
5282 account_idle_time(one_jiffy);
5286 * Account multiple ticks of steal time.
5287 * @p: the process from which the cpu time has been stolen
5288 * @ticks: number of stolen ticks
5290 void account_steal_ticks(unsigned long ticks)
5292 account_steal_time(jiffies_to_cputime(ticks));
5296 * Account multiple ticks of idle time.
5297 * @ticks: number of stolen ticks
5299 void account_idle_ticks(unsigned long ticks)
5301 account_idle_time(jiffies_to_cputime(ticks));
5304 #endif
5307 * Use precise platform statistics if available:
5309 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5310 cputime_t task_utime(struct task_struct *p)
5312 return p->utime;
5315 cputime_t task_stime(struct task_struct *p)
5317 return p->stime;
5319 #else
5320 cputime_t task_utime(struct task_struct *p)
5322 clock_t utime = cputime_to_clock_t(p->utime),
5323 total = utime + cputime_to_clock_t(p->stime);
5324 u64 temp;
5327 * Use CFS's precise accounting:
5329 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5331 if (total) {
5332 temp *= utime;
5333 do_div(temp, total);
5335 utime = (clock_t)temp;
5337 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5338 return p->prev_utime;
5341 cputime_t task_stime(struct task_struct *p)
5343 clock_t stime;
5346 * Use CFS's precise accounting. (we subtract utime from
5347 * the total, to make sure the total observed by userspace
5348 * grows monotonically - apps rely on that):
5350 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5351 cputime_to_clock_t(task_utime(p));
5353 if (stime >= 0)
5354 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5356 return p->prev_stime;
5358 #endif
5360 inline cputime_t task_gtime(struct task_struct *p)
5362 return p->gtime;
5366 * This function gets called by the timer code, with HZ frequency.
5367 * We call it with interrupts disabled.
5369 * It also gets called by the fork code, when changing the parent's
5370 * timeslices.
5372 void scheduler_tick(void)
5374 int cpu = smp_processor_id();
5375 struct rq *rq = cpu_rq(cpu);
5376 struct task_struct *curr = rq->curr;
5378 sched_clock_tick();
5380 spin_lock(&rq->lock);
5381 update_rq_clock(rq);
5382 update_cpu_load(rq);
5383 curr->sched_class->task_tick(rq, curr, 0);
5384 spin_unlock(&rq->lock);
5386 perf_counter_task_tick(curr, cpu);
5388 #ifdef CONFIG_SMP
5389 rq->idle_at_tick = idle_cpu(cpu);
5390 trigger_load_balance(rq, cpu);
5391 #endif
5394 notrace unsigned long get_parent_ip(unsigned long addr)
5396 if (in_lock_functions(addr)) {
5397 addr = CALLER_ADDR2;
5398 if (in_lock_functions(addr))
5399 addr = CALLER_ADDR3;
5401 return addr;
5404 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5405 defined(CONFIG_PREEMPT_TRACER))
5407 void __kprobes add_preempt_count(int val)
5409 #ifdef CONFIG_DEBUG_PREEMPT
5411 * Underflow?
5413 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5414 return;
5415 #endif
5416 preempt_count() += val;
5417 #ifdef CONFIG_DEBUG_PREEMPT
5419 * Spinlock count overflowing soon?
5421 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5422 PREEMPT_MASK - 10);
5423 #endif
5424 if (preempt_count() == val)
5425 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5427 EXPORT_SYMBOL(add_preempt_count);
5429 void __kprobes sub_preempt_count(int val)
5431 #ifdef CONFIG_DEBUG_PREEMPT
5433 * Underflow?
5435 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5436 return;
5438 * Is the spinlock portion underflowing?
5440 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5441 !(preempt_count() & PREEMPT_MASK)))
5442 return;
5443 #endif
5445 if (preempt_count() == val)
5446 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5447 preempt_count() -= val;
5449 EXPORT_SYMBOL(sub_preempt_count);
5451 #endif
5454 * Print scheduling while atomic bug:
5456 static noinline void __schedule_bug(struct task_struct *prev)
5458 struct pt_regs *regs = get_irq_regs();
5460 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5461 prev->comm, prev->pid, preempt_count());
5463 debug_show_held_locks(prev);
5464 print_modules();
5465 if (irqs_disabled())
5466 print_irqtrace_events(prev);
5468 if (regs)
5469 show_regs(regs);
5470 else
5471 dump_stack();
5475 * Various schedule()-time debugging checks and statistics:
5477 static inline void schedule_debug(struct task_struct *prev)
5480 * Test if we are atomic. Since do_exit() needs to call into
5481 * schedule() atomically, we ignore that path for now.
5482 * Otherwise, whine if we are scheduling when we should not be.
5484 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5485 __schedule_bug(prev);
5487 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5489 schedstat_inc(this_rq(), sched_count);
5490 #ifdef CONFIG_SCHEDSTATS
5491 if (unlikely(prev->lock_depth >= 0)) {
5492 schedstat_inc(this_rq(), bkl_count);
5493 schedstat_inc(prev, sched_info.bkl_count);
5495 #endif
5498 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5500 if (prev->state == TASK_RUNNING) {
5501 u64 runtime = prev->se.sum_exec_runtime;
5503 runtime -= prev->se.prev_sum_exec_runtime;
5504 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5507 * In order to avoid avg_overlap growing stale when we are
5508 * indeed overlapping and hence not getting put to sleep, grow
5509 * the avg_overlap on preemption.
5511 * We use the average preemption runtime because that
5512 * correlates to the amount of cache footprint a task can
5513 * build up.
5515 update_avg(&prev->se.avg_overlap, runtime);
5517 prev->sched_class->put_prev_task(rq, prev);
5521 * Pick up the highest-prio task:
5523 static inline struct task_struct *
5524 pick_next_task(struct rq *rq)
5526 const struct sched_class *class;
5527 struct task_struct *p;
5530 * Optimization: we know that if all tasks are in
5531 * the fair class we can call that function directly:
5533 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5534 p = fair_sched_class.pick_next_task(rq);
5535 if (likely(p))
5536 return p;
5539 class = sched_class_highest;
5540 for ( ; ; ) {
5541 p = class->pick_next_task(rq);
5542 if (p)
5543 return p;
5545 * Will never be NULL as the idle class always
5546 * returns a non-NULL p:
5548 class = class->next;
5553 * schedule() is the main scheduler function.
5555 asmlinkage void __sched schedule(void)
5557 struct task_struct *prev, *next;
5558 unsigned long *switch_count;
5559 struct rq *rq;
5560 int cpu;
5562 need_resched:
5563 preempt_disable();
5564 cpu = smp_processor_id();
5565 rq = cpu_rq(cpu);
5566 rcu_qsctr_inc(cpu);
5567 prev = rq->curr;
5568 switch_count = &prev->nivcsw;
5570 release_kernel_lock(prev);
5571 need_resched_nonpreemptible:
5573 schedule_debug(prev);
5575 if (sched_feat(HRTICK))
5576 hrtick_clear(rq);
5578 spin_lock_irq(&rq->lock);
5579 update_rq_clock(rq);
5580 clear_tsk_need_resched(prev);
5582 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5583 if (unlikely(signal_pending_state(prev->state, prev)))
5584 prev->state = TASK_RUNNING;
5585 else
5586 deactivate_task(rq, prev, 1);
5587 switch_count = &prev->nvcsw;
5590 pre_schedule(rq, prev);
5592 if (unlikely(!rq->nr_running))
5593 idle_balance(cpu, rq);
5595 put_prev_task(rq, prev);
5596 next = pick_next_task(rq);
5598 if (likely(prev != next)) {
5599 sched_info_switch(prev, next);
5600 perf_counter_task_sched_out(prev, next, cpu);
5602 rq->nr_switches++;
5603 rq->curr = next;
5604 ++*switch_count;
5606 context_switch(rq, prev, next); /* unlocks the rq */
5608 * the context switch might have flipped the stack from under
5609 * us, hence refresh the local variables.
5611 cpu = smp_processor_id();
5612 rq = cpu_rq(cpu);
5613 } else
5614 spin_unlock_irq(&rq->lock);
5616 post_schedule(rq);
5618 if (unlikely(reacquire_kernel_lock(current) < 0))
5619 goto need_resched_nonpreemptible;
5621 preempt_enable_no_resched();
5622 if (need_resched())
5623 goto need_resched;
5625 EXPORT_SYMBOL(schedule);
5627 #ifdef CONFIG_SMP
5629 * Look out! "owner" is an entirely speculative pointer
5630 * access and not reliable.
5632 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5634 unsigned int cpu;
5635 struct rq *rq;
5637 if (!sched_feat(OWNER_SPIN))
5638 return 0;
5640 #ifdef CONFIG_DEBUG_PAGEALLOC
5642 * Need to access the cpu field knowing that
5643 * DEBUG_PAGEALLOC could have unmapped it if
5644 * the mutex owner just released it and exited.
5646 if (probe_kernel_address(&owner->cpu, cpu))
5647 goto out;
5648 #else
5649 cpu = owner->cpu;
5650 #endif
5653 * Even if the access succeeded (likely case),
5654 * the cpu field may no longer be valid.
5656 if (cpu >= nr_cpumask_bits)
5657 goto out;
5660 * We need to validate that we can do a
5661 * get_cpu() and that we have the percpu area.
5663 if (!cpu_online(cpu))
5664 goto out;
5666 rq = cpu_rq(cpu);
5668 for (;;) {
5670 * Owner changed, break to re-assess state.
5672 if (lock->owner != owner)
5673 break;
5676 * Is that owner really running on that cpu?
5678 if (task_thread_info(rq->curr) != owner || need_resched())
5679 return 0;
5681 cpu_relax();
5683 out:
5684 return 1;
5686 #endif
5688 #ifdef CONFIG_PREEMPT
5690 * this is the entry point to schedule() from in-kernel preemption
5691 * off of preempt_enable. Kernel preemptions off return from interrupt
5692 * occur there and call schedule directly.
5694 asmlinkage void __sched preempt_schedule(void)
5696 struct thread_info *ti = current_thread_info();
5699 * If there is a non-zero preempt_count or interrupts are disabled,
5700 * we do not want to preempt the current task. Just return..
5702 if (likely(ti->preempt_count || irqs_disabled()))
5703 return;
5705 do {
5706 add_preempt_count(PREEMPT_ACTIVE);
5707 schedule();
5708 sub_preempt_count(PREEMPT_ACTIVE);
5711 * Check again in case we missed a preemption opportunity
5712 * between schedule and now.
5714 barrier();
5715 } while (need_resched());
5717 EXPORT_SYMBOL(preempt_schedule);
5720 * this is the entry point to schedule() from kernel preemption
5721 * off of irq context.
5722 * Note, that this is called and return with irqs disabled. This will
5723 * protect us against recursive calling from irq.
5725 asmlinkage void __sched preempt_schedule_irq(void)
5727 struct thread_info *ti = current_thread_info();
5729 /* Catch callers which need to be fixed */
5730 BUG_ON(ti->preempt_count || !irqs_disabled());
5732 do {
5733 add_preempt_count(PREEMPT_ACTIVE);
5734 local_irq_enable();
5735 schedule();
5736 local_irq_disable();
5737 sub_preempt_count(PREEMPT_ACTIVE);
5740 * Check again in case we missed a preemption opportunity
5741 * between schedule and now.
5743 barrier();
5744 } while (need_resched());
5747 #endif /* CONFIG_PREEMPT */
5749 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5750 void *key)
5752 return try_to_wake_up(curr->private, mode, sync);
5754 EXPORT_SYMBOL(default_wake_function);
5757 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5758 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5759 * number) then we wake all the non-exclusive tasks and one exclusive task.
5761 * There are circumstances in which we can try to wake a task which has already
5762 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5763 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5765 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5766 int nr_exclusive, int sync, void *key)
5768 wait_queue_t *curr, *next;
5770 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5771 unsigned flags = curr->flags;
5773 if (curr->func(curr, mode, sync, key) &&
5774 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5775 break;
5780 * __wake_up - wake up threads blocked on a waitqueue.
5781 * @q: the waitqueue
5782 * @mode: which threads
5783 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5784 * @key: is directly passed to the wakeup function
5786 * It may be assumed that this function implies a write memory barrier before
5787 * changing the task state if and only if any tasks are woken up.
5789 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5790 int nr_exclusive, void *key)
5792 unsigned long flags;
5794 spin_lock_irqsave(&q->lock, flags);
5795 __wake_up_common(q, mode, nr_exclusive, 0, key);
5796 spin_unlock_irqrestore(&q->lock, flags);
5798 EXPORT_SYMBOL(__wake_up);
5801 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5803 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5805 __wake_up_common(q, mode, 1, 0, NULL);
5808 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5810 __wake_up_common(q, mode, 1, 0, key);
5814 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5815 * @q: the waitqueue
5816 * @mode: which threads
5817 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5818 * @key: opaque value to be passed to wakeup targets
5820 * The sync wakeup differs that the waker knows that it will schedule
5821 * away soon, so while the target thread will be woken up, it will not
5822 * be migrated to another CPU - ie. the two threads are 'synchronized'
5823 * with each other. This can prevent needless bouncing between CPUs.
5825 * On UP it can prevent extra preemption.
5827 * It may be assumed that this function implies a write memory barrier before
5828 * changing the task state if and only if any tasks are woken up.
5830 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5831 int nr_exclusive, void *key)
5833 unsigned long flags;
5834 int sync = 1;
5836 if (unlikely(!q))
5837 return;
5839 if (unlikely(!nr_exclusive))
5840 sync = 0;
5842 spin_lock_irqsave(&q->lock, flags);
5843 __wake_up_common(q, mode, nr_exclusive, sync, key);
5844 spin_unlock_irqrestore(&q->lock, flags);
5846 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5849 * __wake_up_sync - see __wake_up_sync_key()
5851 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5853 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5855 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5858 * complete: - signals a single thread waiting on this completion
5859 * @x: holds the state of this particular completion
5861 * This will wake up a single thread waiting on this completion. Threads will be
5862 * awakened in the same order in which they were queued.
5864 * See also complete_all(), wait_for_completion() and related routines.
5866 * It may be assumed that this function implies a write memory barrier before
5867 * changing the task state if and only if any tasks are woken up.
5869 void complete(struct completion *x)
5871 unsigned long flags;
5873 spin_lock_irqsave(&x->wait.lock, flags);
5874 x->done++;
5875 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5876 spin_unlock_irqrestore(&x->wait.lock, flags);
5878 EXPORT_SYMBOL(complete);
5881 * complete_all: - signals all threads waiting on this completion
5882 * @x: holds the state of this particular completion
5884 * This will wake up all threads waiting on this particular completion event.
5886 * It may be assumed that this function implies a write memory barrier before
5887 * changing the task state if and only if any tasks are woken up.
5889 void complete_all(struct completion *x)
5891 unsigned long flags;
5893 spin_lock_irqsave(&x->wait.lock, flags);
5894 x->done += UINT_MAX/2;
5895 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5896 spin_unlock_irqrestore(&x->wait.lock, flags);
5898 EXPORT_SYMBOL(complete_all);
5900 static inline long __sched
5901 do_wait_for_common(struct completion *x, long timeout, int state)
5903 if (!x->done) {
5904 DECLARE_WAITQUEUE(wait, current);
5906 wait.flags |= WQ_FLAG_EXCLUSIVE;
5907 __add_wait_queue_tail(&x->wait, &wait);
5908 do {
5909 if (signal_pending_state(state, current)) {
5910 timeout = -ERESTARTSYS;
5911 break;
5913 __set_current_state(state);
5914 spin_unlock_irq(&x->wait.lock);
5915 timeout = schedule_timeout(timeout);
5916 spin_lock_irq(&x->wait.lock);
5917 } while (!x->done && timeout);
5918 __remove_wait_queue(&x->wait, &wait);
5919 if (!x->done)
5920 return timeout;
5922 x->done--;
5923 return timeout ?: 1;
5926 static long __sched
5927 wait_for_common(struct completion *x, long timeout, int state)
5929 might_sleep();
5931 spin_lock_irq(&x->wait.lock);
5932 timeout = do_wait_for_common(x, timeout, state);
5933 spin_unlock_irq(&x->wait.lock);
5934 return timeout;
5938 * wait_for_completion: - waits for completion of a task
5939 * @x: holds the state of this particular completion
5941 * This waits to be signaled for completion of a specific task. It is NOT
5942 * interruptible and there is no timeout.
5944 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5945 * and interrupt capability. Also see complete().
5947 void __sched wait_for_completion(struct completion *x)
5949 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5951 EXPORT_SYMBOL(wait_for_completion);
5954 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5955 * @x: holds the state of this particular completion
5956 * @timeout: timeout value in jiffies
5958 * This waits for either a completion of a specific task to be signaled or for a
5959 * specified timeout to expire. The timeout is in jiffies. It is not
5960 * interruptible.
5962 unsigned long __sched
5963 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5965 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5967 EXPORT_SYMBOL(wait_for_completion_timeout);
5970 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5971 * @x: holds the state of this particular completion
5973 * This waits for completion of a specific task to be signaled. It is
5974 * interruptible.
5976 int __sched wait_for_completion_interruptible(struct completion *x)
5978 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5979 if (t == -ERESTARTSYS)
5980 return t;
5981 return 0;
5983 EXPORT_SYMBOL(wait_for_completion_interruptible);
5986 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5987 * @x: holds the state of this particular completion
5988 * @timeout: timeout value in jiffies
5990 * This waits for either a completion of a specific task to be signaled or for a
5991 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5993 unsigned long __sched
5994 wait_for_completion_interruptible_timeout(struct completion *x,
5995 unsigned long timeout)
5997 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5999 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
6002 * wait_for_completion_killable: - waits for completion of a task (killable)
6003 * @x: holds the state of this particular completion
6005 * This waits to be signaled for completion of a specific task. It can be
6006 * interrupted by a kill signal.
6008 int __sched wait_for_completion_killable(struct completion *x)
6010 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
6011 if (t == -ERESTARTSYS)
6012 return t;
6013 return 0;
6015 EXPORT_SYMBOL(wait_for_completion_killable);
6018 * try_wait_for_completion - try to decrement a completion without blocking
6019 * @x: completion structure
6021 * Returns: 0 if a decrement cannot be done without blocking
6022 * 1 if a decrement succeeded.
6024 * If a completion is being used as a counting completion,
6025 * attempt to decrement the counter without blocking. This
6026 * enables us to avoid waiting if the resource the completion
6027 * is protecting is not available.
6029 bool try_wait_for_completion(struct completion *x)
6031 int ret = 1;
6033 spin_lock_irq(&x->wait.lock);
6034 if (!x->done)
6035 ret = 0;
6036 else
6037 x->done--;
6038 spin_unlock_irq(&x->wait.lock);
6039 return ret;
6041 EXPORT_SYMBOL(try_wait_for_completion);
6044 * completion_done - Test to see if a completion has any waiters
6045 * @x: completion structure
6047 * Returns: 0 if there are waiters (wait_for_completion() in progress)
6048 * 1 if there are no waiters.
6051 bool completion_done(struct completion *x)
6053 int ret = 1;
6055 spin_lock_irq(&x->wait.lock);
6056 if (!x->done)
6057 ret = 0;
6058 spin_unlock_irq(&x->wait.lock);
6059 return ret;
6061 EXPORT_SYMBOL(completion_done);
6063 static long __sched
6064 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
6066 unsigned long flags;
6067 wait_queue_t wait;
6069 init_waitqueue_entry(&wait, current);
6071 __set_current_state(state);
6073 spin_lock_irqsave(&q->lock, flags);
6074 __add_wait_queue(q, &wait);
6075 spin_unlock(&q->lock);
6076 timeout = schedule_timeout(timeout);
6077 spin_lock_irq(&q->lock);
6078 __remove_wait_queue(q, &wait);
6079 spin_unlock_irqrestore(&q->lock, flags);
6081 return timeout;
6084 void __sched interruptible_sleep_on(wait_queue_head_t *q)
6086 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6088 EXPORT_SYMBOL(interruptible_sleep_on);
6090 long __sched
6091 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
6093 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
6095 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6097 void __sched sleep_on(wait_queue_head_t *q)
6099 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6101 EXPORT_SYMBOL(sleep_on);
6103 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
6105 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
6107 EXPORT_SYMBOL(sleep_on_timeout);
6109 #ifdef CONFIG_RT_MUTEXES
6112 * rt_mutex_setprio - set the current priority of a task
6113 * @p: task
6114 * @prio: prio value (kernel-internal form)
6116 * This function changes the 'effective' priority of a task. It does
6117 * not touch ->normal_prio like __setscheduler().
6119 * Used by the rt_mutex code to implement priority inheritance logic.
6121 void rt_mutex_setprio(struct task_struct *p, int prio)
6123 unsigned long flags;
6124 int oldprio, on_rq, running;
6125 struct rq *rq;
6126 const struct sched_class *prev_class = p->sched_class;
6128 BUG_ON(prio < 0 || prio > MAX_PRIO);
6130 rq = task_rq_lock(p, &flags);
6131 update_rq_clock(rq);
6133 oldprio = p->prio;
6134 on_rq = p->se.on_rq;
6135 running = task_current(rq, p);
6136 if (on_rq)
6137 dequeue_task(rq, p, 0);
6138 if (running)
6139 p->sched_class->put_prev_task(rq, p);
6141 if (rt_prio(prio))
6142 p->sched_class = &rt_sched_class;
6143 else
6144 p->sched_class = &fair_sched_class;
6146 p->prio = prio;
6148 if (running)
6149 p->sched_class->set_curr_task(rq);
6150 if (on_rq) {
6151 enqueue_task(rq, p, 0);
6153 check_class_changed(rq, p, prev_class, oldprio, running);
6155 task_rq_unlock(rq, &flags);
6158 #endif
6160 void set_user_nice(struct task_struct *p, long nice)
6162 int old_prio, delta, on_rq;
6163 unsigned long flags;
6164 struct rq *rq;
6166 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6167 return;
6169 * We have to be careful, if called from sys_setpriority(),
6170 * the task might be in the middle of scheduling on another CPU.
6172 rq = task_rq_lock(p, &flags);
6173 update_rq_clock(rq);
6175 * The RT priorities are set via sched_setscheduler(), but we still
6176 * allow the 'normal' nice value to be set - but as expected
6177 * it wont have any effect on scheduling until the task is
6178 * SCHED_FIFO/SCHED_RR:
6180 if (task_has_rt_policy(p)) {
6181 p->static_prio = NICE_TO_PRIO(nice);
6182 goto out_unlock;
6184 on_rq = p->se.on_rq;
6185 if (on_rq)
6186 dequeue_task(rq, p, 0);
6188 p->static_prio = NICE_TO_PRIO(nice);
6189 set_load_weight(p);
6190 old_prio = p->prio;
6191 p->prio = effective_prio(p);
6192 delta = p->prio - old_prio;
6194 if (on_rq) {
6195 enqueue_task(rq, p, 0);
6197 * If the task increased its priority or is running and
6198 * lowered its priority, then reschedule its CPU:
6200 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6201 resched_task(rq->curr);
6203 out_unlock:
6204 task_rq_unlock(rq, &flags);
6206 EXPORT_SYMBOL(set_user_nice);
6209 * can_nice - check if a task can reduce its nice value
6210 * @p: task
6211 * @nice: nice value
6213 int can_nice(const struct task_struct *p, const int nice)
6215 /* convert nice value [19,-20] to rlimit style value [1,40] */
6216 int nice_rlim = 20 - nice;
6218 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6219 capable(CAP_SYS_NICE));
6222 #ifdef __ARCH_WANT_SYS_NICE
6225 * sys_nice - change the priority of the current process.
6226 * @increment: priority increment
6228 * sys_setpriority is a more generic, but much slower function that
6229 * does similar things.
6231 SYSCALL_DEFINE1(nice, int, increment)
6233 long nice, retval;
6236 * Setpriority might change our priority at the same moment.
6237 * We don't have to worry. Conceptually one call occurs first
6238 * and we have a single winner.
6240 if (increment < -40)
6241 increment = -40;
6242 if (increment > 40)
6243 increment = 40;
6245 nice = TASK_NICE(current) + increment;
6246 if (nice < -20)
6247 nice = -20;
6248 if (nice > 19)
6249 nice = 19;
6251 if (increment < 0 && !can_nice(current, nice))
6252 return -EPERM;
6254 retval = security_task_setnice(current, nice);
6255 if (retval)
6256 return retval;
6258 set_user_nice(current, nice);
6259 return 0;
6262 #endif
6265 * task_prio - return the priority value of a given task.
6266 * @p: the task in question.
6268 * This is the priority value as seen by users in /proc.
6269 * RT tasks are offset by -200. Normal tasks are centered
6270 * around 0, value goes from -16 to +15.
6272 int task_prio(const struct task_struct *p)
6274 return p->prio - MAX_RT_PRIO;
6278 * task_nice - return the nice value of a given task.
6279 * @p: the task in question.
6281 int task_nice(const struct task_struct *p)
6283 return TASK_NICE(p);
6285 EXPORT_SYMBOL(task_nice);
6288 * idle_cpu - is a given cpu idle currently?
6289 * @cpu: the processor in question.
6291 int idle_cpu(int cpu)
6293 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6297 * idle_task - return the idle task for a given cpu.
6298 * @cpu: the processor in question.
6300 struct task_struct *idle_task(int cpu)
6302 return cpu_rq(cpu)->idle;
6306 * find_process_by_pid - find a process with a matching PID value.
6307 * @pid: the pid in question.
6309 static struct task_struct *find_process_by_pid(pid_t pid)
6311 return pid ? find_task_by_vpid(pid) : current;
6314 /* Actually do priority change: must hold rq lock. */
6315 static void
6316 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6318 BUG_ON(p->se.on_rq);
6320 p->policy = policy;
6321 switch (p->policy) {
6322 case SCHED_NORMAL:
6323 case SCHED_BATCH:
6324 case SCHED_IDLE:
6325 p->sched_class = &fair_sched_class;
6326 break;
6327 case SCHED_FIFO:
6328 case SCHED_RR:
6329 p->sched_class = &rt_sched_class;
6330 break;
6333 p->rt_priority = prio;
6334 p->normal_prio = normal_prio(p);
6335 /* we are holding p->pi_lock already */
6336 p->prio = rt_mutex_getprio(p);
6337 set_load_weight(p);
6341 * check the target process has a UID that matches the current process's
6343 static bool check_same_owner(struct task_struct *p)
6345 const struct cred *cred = current_cred(), *pcred;
6346 bool match;
6348 rcu_read_lock();
6349 pcred = __task_cred(p);
6350 match = (cred->euid == pcred->euid ||
6351 cred->euid == pcred->uid);
6352 rcu_read_unlock();
6353 return match;
6356 static int __sched_setscheduler(struct task_struct *p, int policy,
6357 struct sched_param *param, bool user)
6359 int retval, oldprio, oldpolicy = -1, on_rq, running;
6360 unsigned long flags;
6361 const struct sched_class *prev_class = p->sched_class;
6362 struct rq *rq;
6363 int reset_on_fork;
6365 /* may grab non-irq protected spin_locks */
6366 BUG_ON(in_interrupt());
6367 recheck:
6368 /* double check policy once rq lock held */
6369 if (policy < 0) {
6370 reset_on_fork = p->sched_reset_on_fork;
6371 policy = oldpolicy = p->policy;
6372 } else {
6373 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6374 policy &= ~SCHED_RESET_ON_FORK;
6376 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6377 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6378 policy != SCHED_IDLE)
6379 return -EINVAL;
6383 * Valid priorities for SCHED_FIFO and SCHED_RR are
6384 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6385 * SCHED_BATCH and SCHED_IDLE is 0.
6387 if (param->sched_priority < 0 ||
6388 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6389 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6390 return -EINVAL;
6391 if (rt_policy(policy) != (param->sched_priority != 0))
6392 return -EINVAL;
6395 * Allow unprivileged RT tasks to decrease priority:
6397 if (user && !capable(CAP_SYS_NICE)) {
6398 if (rt_policy(policy)) {
6399 unsigned long rlim_rtprio;
6401 if (!lock_task_sighand(p, &flags))
6402 return -ESRCH;
6403 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6404 unlock_task_sighand(p, &flags);
6406 /* can't set/change the rt policy */
6407 if (policy != p->policy && !rlim_rtprio)
6408 return -EPERM;
6410 /* can't increase priority */
6411 if (param->sched_priority > p->rt_priority &&
6412 param->sched_priority > rlim_rtprio)
6413 return -EPERM;
6416 * Like positive nice levels, dont allow tasks to
6417 * move out of SCHED_IDLE either:
6419 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6420 return -EPERM;
6422 /* can't change other user's priorities */
6423 if (!check_same_owner(p))
6424 return -EPERM;
6426 /* Normal users shall not reset the sched_reset_on_fork flag */
6427 if (p->sched_reset_on_fork && !reset_on_fork)
6428 return -EPERM;
6431 if (user) {
6432 #ifdef CONFIG_RT_GROUP_SCHED
6434 * Do not allow realtime tasks into groups that have no runtime
6435 * assigned.
6437 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6438 task_group(p)->rt_bandwidth.rt_runtime == 0)
6439 return -EPERM;
6440 #endif
6442 retval = security_task_setscheduler(p, policy, param);
6443 if (retval)
6444 return retval;
6448 * make sure no PI-waiters arrive (or leave) while we are
6449 * changing the priority of the task:
6451 spin_lock_irqsave(&p->pi_lock, flags);
6453 * To be able to change p->policy safely, the apropriate
6454 * runqueue lock must be held.
6456 rq = __task_rq_lock(p);
6457 /* recheck policy now with rq lock held */
6458 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6459 policy = oldpolicy = -1;
6460 __task_rq_unlock(rq);
6461 spin_unlock_irqrestore(&p->pi_lock, flags);
6462 goto recheck;
6464 update_rq_clock(rq);
6465 on_rq = p->se.on_rq;
6466 running = task_current(rq, p);
6467 if (on_rq)
6468 deactivate_task(rq, p, 0);
6469 if (running)
6470 p->sched_class->put_prev_task(rq, p);
6472 p->sched_reset_on_fork = reset_on_fork;
6474 oldprio = p->prio;
6475 __setscheduler(rq, p, policy, param->sched_priority);
6477 if (running)
6478 p->sched_class->set_curr_task(rq);
6479 if (on_rq) {
6480 activate_task(rq, p, 0);
6482 check_class_changed(rq, p, prev_class, oldprio, running);
6484 __task_rq_unlock(rq);
6485 spin_unlock_irqrestore(&p->pi_lock, flags);
6487 rt_mutex_adjust_pi(p);
6489 return 0;
6493 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6494 * @p: the task in question.
6495 * @policy: new policy.
6496 * @param: structure containing the new RT priority.
6498 * NOTE that the task may be already dead.
6500 int sched_setscheduler(struct task_struct *p, int policy,
6501 struct sched_param *param)
6503 return __sched_setscheduler(p, policy, param, true);
6505 EXPORT_SYMBOL_GPL(sched_setscheduler);
6508 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6509 * @p: the task in question.
6510 * @policy: new policy.
6511 * @param: structure containing the new RT priority.
6513 * Just like sched_setscheduler, only don't bother checking if the
6514 * current context has permission. For example, this is needed in
6515 * stop_machine(): we create temporary high priority worker threads,
6516 * but our caller might not have that capability.
6518 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6519 struct sched_param *param)
6521 return __sched_setscheduler(p, policy, param, false);
6524 static int
6525 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6527 struct sched_param lparam;
6528 struct task_struct *p;
6529 int retval;
6531 if (!param || pid < 0)
6532 return -EINVAL;
6533 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6534 return -EFAULT;
6536 rcu_read_lock();
6537 retval = -ESRCH;
6538 p = find_process_by_pid(pid);
6539 if (p != NULL)
6540 retval = sched_setscheduler(p, policy, &lparam);
6541 rcu_read_unlock();
6543 return retval;
6547 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6548 * @pid: the pid in question.
6549 * @policy: new policy.
6550 * @param: structure containing the new RT priority.
6552 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6553 struct sched_param __user *, param)
6555 /* negative values for policy are not valid */
6556 if (policy < 0)
6557 return -EINVAL;
6559 return do_sched_setscheduler(pid, policy, param);
6563 * sys_sched_setparam - set/change the RT priority of a thread
6564 * @pid: the pid in question.
6565 * @param: structure containing the new RT priority.
6567 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6569 return do_sched_setscheduler(pid, -1, param);
6573 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6574 * @pid: the pid in question.
6576 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6578 struct task_struct *p;
6579 int retval;
6581 if (pid < 0)
6582 return -EINVAL;
6584 retval = -ESRCH;
6585 read_lock(&tasklist_lock);
6586 p = find_process_by_pid(pid);
6587 if (p) {
6588 retval = security_task_getscheduler(p);
6589 if (!retval)
6590 retval = p->policy
6591 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6593 read_unlock(&tasklist_lock);
6594 return retval;
6598 * sys_sched_getparam - get the RT priority of a thread
6599 * @pid: the pid in question.
6600 * @param: structure containing the RT priority.
6602 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6604 struct sched_param lp;
6605 struct task_struct *p;
6606 int retval;
6608 if (!param || pid < 0)
6609 return -EINVAL;
6611 read_lock(&tasklist_lock);
6612 p = find_process_by_pid(pid);
6613 retval = -ESRCH;
6614 if (!p)
6615 goto out_unlock;
6617 retval = security_task_getscheduler(p);
6618 if (retval)
6619 goto out_unlock;
6621 lp.sched_priority = p->rt_priority;
6622 read_unlock(&tasklist_lock);
6625 * This one might sleep, we cannot do it with a spinlock held ...
6627 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6629 return retval;
6631 out_unlock:
6632 read_unlock(&tasklist_lock);
6633 return retval;
6636 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6638 cpumask_var_t cpus_allowed, new_mask;
6639 struct task_struct *p;
6640 int retval;
6642 get_online_cpus();
6643 read_lock(&tasklist_lock);
6645 p = find_process_by_pid(pid);
6646 if (!p) {
6647 read_unlock(&tasklist_lock);
6648 put_online_cpus();
6649 return -ESRCH;
6653 * It is not safe to call set_cpus_allowed with the
6654 * tasklist_lock held. We will bump the task_struct's
6655 * usage count and then drop tasklist_lock.
6657 get_task_struct(p);
6658 read_unlock(&tasklist_lock);
6660 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6661 retval = -ENOMEM;
6662 goto out_put_task;
6664 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6665 retval = -ENOMEM;
6666 goto out_free_cpus_allowed;
6668 retval = -EPERM;
6669 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6670 goto out_unlock;
6672 retval = security_task_setscheduler(p, 0, NULL);
6673 if (retval)
6674 goto out_unlock;
6676 cpuset_cpus_allowed(p, cpus_allowed);
6677 cpumask_and(new_mask, in_mask, cpus_allowed);
6678 again:
6679 retval = set_cpus_allowed_ptr(p, new_mask);
6681 if (!retval) {
6682 cpuset_cpus_allowed(p, cpus_allowed);
6683 if (!cpumask_subset(new_mask, cpus_allowed)) {
6685 * We must have raced with a concurrent cpuset
6686 * update. Just reset the cpus_allowed to the
6687 * cpuset's cpus_allowed
6689 cpumask_copy(new_mask, cpus_allowed);
6690 goto again;
6693 out_unlock:
6694 free_cpumask_var(new_mask);
6695 out_free_cpus_allowed:
6696 free_cpumask_var(cpus_allowed);
6697 out_put_task:
6698 put_task_struct(p);
6699 put_online_cpus();
6700 return retval;
6703 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6704 struct cpumask *new_mask)
6706 if (len < cpumask_size())
6707 cpumask_clear(new_mask);
6708 else if (len > cpumask_size())
6709 len = cpumask_size();
6711 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6715 * sys_sched_setaffinity - set the cpu affinity of a process
6716 * @pid: pid of the process
6717 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6718 * @user_mask_ptr: user-space pointer to the new cpu mask
6720 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6721 unsigned long __user *, user_mask_ptr)
6723 cpumask_var_t new_mask;
6724 int retval;
6726 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6727 return -ENOMEM;
6729 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6730 if (retval == 0)
6731 retval = sched_setaffinity(pid, new_mask);
6732 free_cpumask_var(new_mask);
6733 return retval;
6736 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6738 struct task_struct *p;
6739 int retval;
6741 get_online_cpus();
6742 read_lock(&tasklist_lock);
6744 retval = -ESRCH;
6745 p = find_process_by_pid(pid);
6746 if (!p)
6747 goto out_unlock;
6749 retval = security_task_getscheduler(p);
6750 if (retval)
6751 goto out_unlock;
6753 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6755 out_unlock:
6756 read_unlock(&tasklist_lock);
6757 put_online_cpus();
6759 return retval;
6763 * sys_sched_getaffinity - get the cpu affinity of a process
6764 * @pid: pid of the process
6765 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6766 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6768 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6769 unsigned long __user *, user_mask_ptr)
6771 int ret;
6772 cpumask_var_t mask;
6774 if (len < cpumask_size())
6775 return -EINVAL;
6777 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6778 return -ENOMEM;
6780 ret = sched_getaffinity(pid, mask);
6781 if (ret == 0) {
6782 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6783 ret = -EFAULT;
6784 else
6785 ret = cpumask_size();
6787 free_cpumask_var(mask);
6789 return ret;
6793 * sys_sched_yield - yield the current processor to other threads.
6795 * This function yields the current CPU to other tasks. If there are no
6796 * other threads running on this CPU then this function will return.
6798 SYSCALL_DEFINE0(sched_yield)
6800 struct rq *rq = this_rq_lock();
6802 schedstat_inc(rq, yld_count);
6803 current->sched_class->yield_task(rq);
6806 * Since we are going to call schedule() anyway, there's
6807 * no need to preempt or enable interrupts:
6809 __release(rq->lock);
6810 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6811 _raw_spin_unlock(&rq->lock);
6812 preempt_enable_no_resched();
6814 schedule();
6816 return 0;
6819 static inline int should_resched(void)
6821 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6824 static void __cond_resched(void)
6826 add_preempt_count(PREEMPT_ACTIVE);
6827 schedule();
6828 sub_preempt_count(PREEMPT_ACTIVE);
6831 int __sched _cond_resched(void)
6833 if (should_resched()) {
6834 __cond_resched();
6835 return 1;
6837 return 0;
6839 EXPORT_SYMBOL(_cond_resched);
6842 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6843 * call schedule, and on return reacquire the lock.
6845 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6846 * operations here to prevent schedule() from being called twice (once via
6847 * spin_unlock(), once by hand).
6849 int __cond_resched_lock(spinlock_t *lock)
6851 int resched = should_resched();
6852 int ret = 0;
6854 if (spin_needbreak(lock) || resched) {
6855 spin_unlock(lock);
6856 if (resched)
6857 __cond_resched();
6858 else
6859 cpu_relax();
6860 ret = 1;
6861 spin_lock(lock);
6863 return ret;
6865 EXPORT_SYMBOL(__cond_resched_lock);
6867 int __sched __cond_resched_softirq(void)
6869 BUG_ON(!in_softirq());
6871 if (should_resched()) {
6872 local_bh_enable();
6873 __cond_resched();
6874 local_bh_disable();
6875 return 1;
6877 return 0;
6879 EXPORT_SYMBOL(__cond_resched_softirq);
6882 * yield - yield the current processor to other threads.
6884 * This is a shortcut for kernel-space yielding - it marks the
6885 * thread runnable and calls sys_sched_yield().
6887 void __sched yield(void)
6889 set_current_state(TASK_RUNNING);
6890 sys_sched_yield();
6892 EXPORT_SYMBOL(yield);
6895 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6896 * that process accounting knows that this is a task in IO wait state.
6898 * But don't do that if it is a deliberate, throttling IO wait (this task
6899 * has set its backing_dev_info: the queue against which it should throttle)
6901 void __sched io_schedule(void)
6903 struct rq *rq = raw_rq();
6905 delayacct_blkio_start();
6906 atomic_inc(&rq->nr_iowait);
6907 current->in_iowait = 1;
6908 schedule();
6909 current->in_iowait = 0;
6910 atomic_dec(&rq->nr_iowait);
6911 delayacct_blkio_end();
6913 EXPORT_SYMBOL(io_schedule);
6915 long __sched io_schedule_timeout(long timeout)
6917 struct rq *rq = raw_rq();
6918 long ret;
6920 delayacct_blkio_start();
6921 atomic_inc(&rq->nr_iowait);
6922 current->in_iowait = 1;
6923 ret = schedule_timeout(timeout);
6924 current->in_iowait = 0;
6925 atomic_dec(&rq->nr_iowait);
6926 delayacct_blkio_end();
6927 return ret;
6931 * sys_sched_get_priority_max - return maximum RT priority.
6932 * @policy: scheduling class.
6934 * this syscall returns the maximum rt_priority that can be used
6935 * by a given scheduling class.
6937 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6939 int ret = -EINVAL;
6941 switch (policy) {
6942 case SCHED_FIFO:
6943 case SCHED_RR:
6944 ret = MAX_USER_RT_PRIO-1;
6945 break;
6946 case SCHED_NORMAL:
6947 case SCHED_BATCH:
6948 case SCHED_IDLE:
6949 ret = 0;
6950 break;
6952 return ret;
6956 * sys_sched_get_priority_min - return minimum RT priority.
6957 * @policy: scheduling class.
6959 * this syscall returns the minimum rt_priority that can be used
6960 * by a given scheduling class.
6962 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6964 int ret = -EINVAL;
6966 switch (policy) {
6967 case SCHED_FIFO:
6968 case SCHED_RR:
6969 ret = 1;
6970 break;
6971 case SCHED_NORMAL:
6972 case SCHED_BATCH:
6973 case SCHED_IDLE:
6974 ret = 0;
6976 return ret;
6980 * sys_sched_rr_get_interval - return the default timeslice of a process.
6981 * @pid: pid of the process.
6982 * @interval: userspace pointer to the timeslice value.
6984 * this syscall writes the default timeslice value of a given process
6985 * into the user-space timespec buffer. A value of '0' means infinity.
6987 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6988 struct timespec __user *, interval)
6990 struct task_struct *p;
6991 unsigned int time_slice;
6992 int retval;
6993 struct timespec t;
6995 if (pid < 0)
6996 return -EINVAL;
6998 retval = -ESRCH;
6999 read_lock(&tasklist_lock);
7000 p = find_process_by_pid(pid);
7001 if (!p)
7002 goto out_unlock;
7004 retval = security_task_getscheduler(p);
7005 if (retval)
7006 goto out_unlock;
7009 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
7010 * tasks that are on an otherwise idle runqueue:
7012 time_slice = 0;
7013 if (p->policy == SCHED_RR) {
7014 time_slice = DEF_TIMESLICE;
7015 } else if (p->policy != SCHED_FIFO) {
7016 struct sched_entity *se = &p->se;
7017 unsigned long flags;
7018 struct rq *rq;
7020 rq = task_rq_lock(p, &flags);
7021 if (rq->cfs.load.weight)
7022 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
7023 task_rq_unlock(rq, &flags);
7025 read_unlock(&tasklist_lock);
7026 jiffies_to_timespec(time_slice, &t);
7027 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
7028 return retval;
7030 out_unlock:
7031 read_unlock(&tasklist_lock);
7032 return retval;
7035 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
7037 void sched_show_task(struct task_struct *p)
7039 unsigned long free = 0;
7040 unsigned state;
7042 state = p->state ? __ffs(p->state) + 1 : 0;
7043 printk(KERN_INFO "%-13.13s %c", p->comm,
7044 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
7045 #if BITS_PER_LONG == 32
7046 if (state == TASK_RUNNING)
7047 printk(KERN_CONT " running ");
7048 else
7049 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
7050 #else
7051 if (state == TASK_RUNNING)
7052 printk(KERN_CONT " running task ");
7053 else
7054 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
7055 #endif
7056 #ifdef CONFIG_DEBUG_STACK_USAGE
7057 free = stack_not_used(p);
7058 #endif
7059 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
7060 task_pid_nr(p), task_pid_nr(p->real_parent),
7061 (unsigned long)task_thread_info(p)->flags);
7063 show_stack(p, NULL);
7066 void show_state_filter(unsigned long state_filter)
7068 struct task_struct *g, *p;
7070 #if BITS_PER_LONG == 32
7071 printk(KERN_INFO
7072 " task PC stack pid father\n");
7073 #else
7074 printk(KERN_INFO
7075 " task PC stack pid father\n");
7076 #endif
7077 read_lock(&tasklist_lock);
7078 do_each_thread(g, p) {
7080 * reset the NMI-timeout, listing all files on a slow
7081 * console might take alot of time:
7083 touch_nmi_watchdog();
7084 if (!state_filter || (p->state & state_filter))
7085 sched_show_task(p);
7086 } while_each_thread(g, p);
7088 touch_all_softlockup_watchdogs();
7090 #ifdef CONFIG_SCHED_DEBUG
7091 sysrq_sched_debug_show();
7092 #endif
7093 read_unlock(&tasklist_lock);
7095 * Only show locks if all tasks are dumped:
7097 if (state_filter == -1)
7098 debug_show_all_locks();
7101 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7103 idle->sched_class = &idle_sched_class;
7107 * init_idle - set up an idle thread for a given CPU
7108 * @idle: task in question
7109 * @cpu: cpu the idle task belongs to
7111 * NOTE: this function does not set the idle thread's NEED_RESCHED
7112 * flag, to make booting more robust.
7114 void __cpuinit init_idle(struct task_struct *idle, int cpu)
7116 struct rq *rq = cpu_rq(cpu);
7117 unsigned long flags;
7119 spin_lock_irqsave(&rq->lock, flags);
7121 __sched_fork(idle);
7122 idle->se.exec_start = sched_clock();
7124 idle->prio = idle->normal_prio = MAX_PRIO;
7125 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
7126 __set_task_cpu(idle, cpu);
7128 rq->curr = rq->idle = idle;
7129 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7130 idle->oncpu = 1;
7131 #endif
7132 spin_unlock_irqrestore(&rq->lock, flags);
7134 /* Set the preempt count _outside_ the spinlocks! */
7135 #if defined(CONFIG_PREEMPT)
7136 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7137 #else
7138 task_thread_info(idle)->preempt_count = 0;
7139 #endif
7141 * The idle tasks have their own, simple scheduling class:
7143 idle->sched_class = &idle_sched_class;
7144 ftrace_graph_init_task(idle);
7148 * In a system that switches off the HZ timer nohz_cpu_mask
7149 * indicates which cpus entered this state. This is used
7150 * in the rcu update to wait only for active cpus. For system
7151 * which do not switch off the HZ timer nohz_cpu_mask should
7152 * always be CPU_BITS_NONE.
7154 cpumask_var_t nohz_cpu_mask;
7157 * Increase the granularity value when there are more CPUs,
7158 * because with more CPUs the 'effective latency' as visible
7159 * to users decreases. But the relationship is not linear,
7160 * so pick a second-best guess by going with the log2 of the
7161 * number of CPUs.
7163 * This idea comes from the SD scheduler of Con Kolivas:
7165 static inline void sched_init_granularity(void)
7167 unsigned int factor = 1 + ilog2(num_online_cpus());
7168 const unsigned long limit = 200000000;
7170 sysctl_sched_min_granularity *= factor;
7171 if (sysctl_sched_min_granularity > limit)
7172 sysctl_sched_min_granularity = limit;
7174 sysctl_sched_latency *= factor;
7175 if (sysctl_sched_latency > limit)
7176 sysctl_sched_latency = limit;
7178 sysctl_sched_wakeup_granularity *= factor;
7180 sysctl_sched_shares_ratelimit *= factor;
7183 #ifdef CONFIG_SMP
7185 * This is how migration works:
7187 * 1) we queue a struct migration_req structure in the source CPU's
7188 * runqueue and wake up that CPU's migration thread.
7189 * 2) we down() the locked semaphore => thread blocks.
7190 * 3) migration thread wakes up (implicitly it forces the migrated
7191 * thread off the CPU)
7192 * 4) it gets the migration request and checks whether the migrated
7193 * task is still in the wrong runqueue.
7194 * 5) if it's in the wrong runqueue then the migration thread removes
7195 * it and puts it into the right queue.
7196 * 6) migration thread up()s the semaphore.
7197 * 7) we wake up and the migration is done.
7201 * Change a given task's CPU affinity. Migrate the thread to a
7202 * proper CPU and schedule it away if the CPU it's executing on
7203 * is removed from the allowed bitmask.
7205 * NOTE: the caller must have a valid reference to the task, the
7206 * task must not exit() & deallocate itself prematurely. The
7207 * call is not atomic; no spinlocks may be held.
7209 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7211 struct migration_req req;
7212 unsigned long flags;
7213 struct rq *rq;
7214 int ret = 0;
7216 rq = task_rq_lock(p, &flags);
7217 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7218 ret = -EINVAL;
7219 goto out;
7222 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7223 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7224 ret = -EINVAL;
7225 goto out;
7228 if (p->sched_class->set_cpus_allowed)
7229 p->sched_class->set_cpus_allowed(p, new_mask);
7230 else {
7231 cpumask_copy(&p->cpus_allowed, new_mask);
7232 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7235 /* Can the task run on the task's current CPU? If so, we're done */
7236 if (cpumask_test_cpu(task_cpu(p), new_mask))
7237 goto out;
7239 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7240 /* Need help from migration thread: drop lock and wait. */
7241 struct task_struct *mt = rq->migration_thread;
7243 get_task_struct(mt);
7244 task_rq_unlock(rq, &flags);
7245 wake_up_process(rq->migration_thread);
7246 put_task_struct(mt);
7247 wait_for_completion(&req.done);
7248 tlb_migrate_finish(p->mm);
7249 return 0;
7251 out:
7252 task_rq_unlock(rq, &flags);
7254 return ret;
7256 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7259 * Move (not current) task off this cpu, onto dest cpu. We're doing
7260 * this because either it can't run here any more (set_cpus_allowed()
7261 * away from this CPU, or CPU going down), or because we're
7262 * attempting to rebalance this task on exec (sched_exec).
7264 * So we race with normal scheduler movements, but that's OK, as long
7265 * as the task is no longer on this CPU.
7267 * Returns non-zero if task was successfully migrated.
7269 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7271 struct rq *rq_dest, *rq_src;
7272 int ret = 0, on_rq;
7274 if (unlikely(!cpu_active(dest_cpu)))
7275 return ret;
7277 rq_src = cpu_rq(src_cpu);
7278 rq_dest = cpu_rq(dest_cpu);
7280 double_rq_lock(rq_src, rq_dest);
7281 /* Already moved. */
7282 if (task_cpu(p) != src_cpu)
7283 goto done;
7284 /* Affinity changed (again). */
7285 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7286 goto fail;
7288 on_rq = p->se.on_rq;
7289 if (on_rq)
7290 deactivate_task(rq_src, p, 0);
7292 set_task_cpu(p, dest_cpu);
7293 if (on_rq) {
7294 activate_task(rq_dest, p, 0);
7295 check_preempt_curr(rq_dest, p, 0);
7297 done:
7298 ret = 1;
7299 fail:
7300 double_rq_unlock(rq_src, rq_dest);
7301 return ret;
7305 * migration_thread - this is a highprio system thread that performs
7306 * thread migration by bumping thread off CPU then 'pushing' onto
7307 * another runqueue.
7309 static int migration_thread(void *data)
7311 int cpu = (long)data;
7312 struct rq *rq;
7314 rq = cpu_rq(cpu);
7315 BUG_ON(rq->migration_thread != current);
7317 set_current_state(TASK_INTERRUPTIBLE);
7318 while (!kthread_should_stop()) {
7319 struct migration_req *req;
7320 struct list_head *head;
7322 spin_lock_irq(&rq->lock);
7324 if (cpu_is_offline(cpu)) {
7325 spin_unlock_irq(&rq->lock);
7326 break;
7329 if (rq->active_balance) {
7330 active_load_balance(rq, cpu);
7331 rq->active_balance = 0;
7334 head = &rq->migration_queue;
7336 if (list_empty(head)) {
7337 spin_unlock_irq(&rq->lock);
7338 schedule();
7339 set_current_state(TASK_INTERRUPTIBLE);
7340 continue;
7342 req = list_entry(head->next, struct migration_req, list);
7343 list_del_init(head->next);
7345 spin_unlock(&rq->lock);
7346 __migrate_task(req->task, cpu, req->dest_cpu);
7347 local_irq_enable();
7349 complete(&req->done);
7351 __set_current_state(TASK_RUNNING);
7353 return 0;
7356 #ifdef CONFIG_HOTPLUG_CPU
7358 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7360 int ret;
7362 local_irq_disable();
7363 ret = __migrate_task(p, src_cpu, dest_cpu);
7364 local_irq_enable();
7365 return ret;
7369 * Figure out where task on dead CPU should go, use force if necessary.
7371 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7373 int dest_cpu;
7374 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7376 again:
7377 /* Look for allowed, online CPU in same node. */
7378 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7379 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7380 goto move;
7382 /* Any allowed, online CPU? */
7383 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7384 if (dest_cpu < nr_cpu_ids)
7385 goto move;
7387 /* No more Mr. Nice Guy. */
7388 if (dest_cpu >= nr_cpu_ids) {
7389 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7390 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7393 * Don't tell them about moving exiting tasks or
7394 * kernel threads (both mm NULL), since they never
7395 * leave kernel.
7397 if (p->mm && printk_ratelimit()) {
7398 printk(KERN_INFO "process %d (%s) no "
7399 "longer affine to cpu%d\n",
7400 task_pid_nr(p), p->comm, dead_cpu);
7404 move:
7405 /* It can have affinity changed while we were choosing. */
7406 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7407 goto again;
7411 * While a dead CPU has no uninterruptible tasks queued at this point,
7412 * it might still have a nonzero ->nr_uninterruptible counter, because
7413 * for performance reasons the counter is not stricly tracking tasks to
7414 * their home CPUs. So we just add the counter to another CPU's counter,
7415 * to keep the global sum constant after CPU-down:
7417 static void migrate_nr_uninterruptible(struct rq *rq_src)
7419 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7420 unsigned long flags;
7422 local_irq_save(flags);
7423 double_rq_lock(rq_src, rq_dest);
7424 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7425 rq_src->nr_uninterruptible = 0;
7426 double_rq_unlock(rq_src, rq_dest);
7427 local_irq_restore(flags);
7430 /* Run through task list and migrate tasks from the dead cpu. */
7431 static void migrate_live_tasks(int src_cpu)
7433 struct task_struct *p, *t;
7435 read_lock(&tasklist_lock);
7437 do_each_thread(t, p) {
7438 if (p == current)
7439 continue;
7441 if (task_cpu(p) == src_cpu)
7442 move_task_off_dead_cpu(src_cpu, p);
7443 } while_each_thread(t, p);
7445 read_unlock(&tasklist_lock);
7449 * Schedules idle task to be the next runnable task on current CPU.
7450 * It does so by boosting its priority to highest possible.
7451 * Used by CPU offline code.
7453 void sched_idle_next(void)
7455 int this_cpu = smp_processor_id();
7456 struct rq *rq = cpu_rq(this_cpu);
7457 struct task_struct *p = rq->idle;
7458 unsigned long flags;
7460 /* cpu has to be offline */
7461 BUG_ON(cpu_online(this_cpu));
7464 * Strictly not necessary since rest of the CPUs are stopped by now
7465 * and interrupts disabled on the current cpu.
7467 spin_lock_irqsave(&rq->lock, flags);
7469 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7471 update_rq_clock(rq);
7472 activate_task(rq, p, 0);
7474 spin_unlock_irqrestore(&rq->lock, flags);
7478 * Ensures that the idle task is using init_mm right before its cpu goes
7479 * offline.
7481 void idle_task_exit(void)
7483 struct mm_struct *mm = current->active_mm;
7485 BUG_ON(cpu_online(smp_processor_id()));
7487 if (mm != &init_mm)
7488 switch_mm(mm, &init_mm, current);
7489 mmdrop(mm);
7492 /* called under rq->lock with disabled interrupts */
7493 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7495 struct rq *rq = cpu_rq(dead_cpu);
7497 /* Must be exiting, otherwise would be on tasklist. */
7498 BUG_ON(!p->exit_state);
7500 /* Cannot have done final schedule yet: would have vanished. */
7501 BUG_ON(p->state == TASK_DEAD);
7503 get_task_struct(p);
7506 * Drop lock around migration; if someone else moves it,
7507 * that's OK. No task can be added to this CPU, so iteration is
7508 * fine.
7510 spin_unlock_irq(&rq->lock);
7511 move_task_off_dead_cpu(dead_cpu, p);
7512 spin_lock_irq(&rq->lock);
7514 put_task_struct(p);
7517 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7518 static void migrate_dead_tasks(unsigned int dead_cpu)
7520 struct rq *rq = cpu_rq(dead_cpu);
7521 struct task_struct *next;
7523 for ( ; ; ) {
7524 if (!rq->nr_running)
7525 break;
7526 update_rq_clock(rq);
7527 next = pick_next_task(rq);
7528 if (!next)
7529 break;
7530 next->sched_class->put_prev_task(rq, next);
7531 migrate_dead(dead_cpu, next);
7537 * remove the tasks which were accounted by rq from calc_load_tasks.
7539 static void calc_global_load_remove(struct rq *rq)
7541 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7542 rq->calc_load_active = 0;
7544 #endif /* CONFIG_HOTPLUG_CPU */
7546 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7548 static struct ctl_table sd_ctl_dir[] = {
7550 .procname = "sched_domain",
7551 .mode = 0555,
7553 {0, },
7556 static struct ctl_table sd_ctl_root[] = {
7558 .ctl_name = CTL_KERN,
7559 .procname = "kernel",
7560 .mode = 0555,
7561 .child = sd_ctl_dir,
7563 {0, },
7566 static struct ctl_table *sd_alloc_ctl_entry(int n)
7568 struct ctl_table *entry =
7569 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7571 return entry;
7574 static void sd_free_ctl_entry(struct ctl_table **tablep)
7576 struct ctl_table *entry;
7579 * In the intermediate directories, both the child directory and
7580 * procname are dynamically allocated and could fail but the mode
7581 * will always be set. In the lowest directory the names are
7582 * static strings and all have proc handlers.
7584 for (entry = *tablep; entry->mode; entry++) {
7585 if (entry->child)
7586 sd_free_ctl_entry(&entry->child);
7587 if (entry->proc_handler == NULL)
7588 kfree(entry->procname);
7591 kfree(*tablep);
7592 *tablep = NULL;
7595 static void
7596 set_table_entry(struct ctl_table *entry,
7597 const char *procname, void *data, int maxlen,
7598 mode_t mode, proc_handler *proc_handler)
7600 entry->procname = procname;
7601 entry->data = data;
7602 entry->maxlen = maxlen;
7603 entry->mode = mode;
7604 entry->proc_handler = proc_handler;
7607 static struct ctl_table *
7608 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7610 struct ctl_table *table = sd_alloc_ctl_entry(13);
7612 if (table == NULL)
7613 return NULL;
7615 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7616 sizeof(long), 0644, proc_doulongvec_minmax);
7617 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7618 sizeof(long), 0644, proc_doulongvec_minmax);
7619 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7620 sizeof(int), 0644, proc_dointvec_minmax);
7621 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7622 sizeof(int), 0644, proc_dointvec_minmax);
7623 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7624 sizeof(int), 0644, proc_dointvec_minmax);
7625 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7626 sizeof(int), 0644, proc_dointvec_minmax);
7627 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7628 sizeof(int), 0644, proc_dointvec_minmax);
7629 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7630 sizeof(int), 0644, proc_dointvec_minmax);
7631 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7632 sizeof(int), 0644, proc_dointvec_minmax);
7633 set_table_entry(&table[9], "cache_nice_tries",
7634 &sd->cache_nice_tries,
7635 sizeof(int), 0644, proc_dointvec_minmax);
7636 set_table_entry(&table[10], "flags", &sd->flags,
7637 sizeof(int), 0644, proc_dointvec_minmax);
7638 set_table_entry(&table[11], "name", sd->name,
7639 CORENAME_MAX_SIZE, 0444, proc_dostring);
7640 /* &table[12] is terminator */
7642 return table;
7645 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7647 struct ctl_table *entry, *table;
7648 struct sched_domain *sd;
7649 int domain_num = 0, i;
7650 char buf[32];
7652 for_each_domain(cpu, sd)
7653 domain_num++;
7654 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7655 if (table == NULL)
7656 return NULL;
7658 i = 0;
7659 for_each_domain(cpu, sd) {
7660 snprintf(buf, 32, "domain%d", i);
7661 entry->procname = kstrdup(buf, GFP_KERNEL);
7662 entry->mode = 0555;
7663 entry->child = sd_alloc_ctl_domain_table(sd);
7664 entry++;
7665 i++;
7667 return table;
7670 static struct ctl_table_header *sd_sysctl_header;
7671 static void register_sched_domain_sysctl(void)
7673 int i, cpu_num = num_online_cpus();
7674 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7675 char buf[32];
7677 WARN_ON(sd_ctl_dir[0].child);
7678 sd_ctl_dir[0].child = entry;
7680 if (entry == NULL)
7681 return;
7683 for_each_online_cpu(i) {
7684 snprintf(buf, 32, "cpu%d", i);
7685 entry->procname = kstrdup(buf, GFP_KERNEL);
7686 entry->mode = 0555;
7687 entry->child = sd_alloc_ctl_cpu_table(i);
7688 entry++;
7691 WARN_ON(sd_sysctl_header);
7692 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7695 /* may be called multiple times per register */
7696 static void unregister_sched_domain_sysctl(void)
7698 if (sd_sysctl_header)
7699 unregister_sysctl_table(sd_sysctl_header);
7700 sd_sysctl_header = NULL;
7701 if (sd_ctl_dir[0].child)
7702 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7704 #else
7705 static void register_sched_domain_sysctl(void)
7708 static void unregister_sched_domain_sysctl(void)
7711 #endif
7713 static void set_rq_online(struct rq *rq)
7715 if (!rq->online) {
7716 const struct sched_class *class;
7718 cpumask_set_cpu(rq->cpu, rq->rd->online);
7719 rq->online = 1;
7721 for_each_class(class) {
7722 if (class->rq_online)
7723 class->rq_online(rq);
7728 static void set_rq_offline(struct rq *rq)
7730 if (rq->online) {
7731 const struct sched_class *class;
7733 for_each_class(class) {
7734 if (class->rq_offline)
7735 class->rq_offline(rq);
7738 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7739 rq->online = 0;
7744 * migration_call - callback that gets triggered when a CPU is added.
7745 * Here we can start up the necessary migration thread for the new CPU.
7747 static int __cpuinit
7748 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7750 struct task_struct *p;
7751 int cpu = (long)hcpu;
7752 unsigned long flags;
7753 struct rq *rq;
7755 switch (action) {
7757 case CPU_UP_PREPARE:
7758 case CPU_UP_PREPARE_FROZEN:
7759 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7760 if (IS_ERR(p))
7761 return NOTIFY_BAD;
7762 kthread_bind(p, cpu);
7763 /* Must be high prio: stop_machine expects to yield to it. */
7764 rq = task_rq_lock(p, &flags);
7765 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7766 task_rq_unlock(rq, &flags);
7767 get_task_struct(p);
7768 cpu_rq(cpu)->migration_thread = p;
7769 rq->calc_load_update = calc_load_update;
7770 break;
7772 case CPU_ONLINE:
7773 case CPU_ONLINE_FROZEN:
7774 /* Strictly unnecessary, as first user will wake it. */
7775 wake_up_process(cpu_rq(cpu)->migration_thread);
7777 /* Update our root-domain */
7778 rq = cpu_rq(cpu);
7779 spin_lock_irqsave(&rq->lock, flags);
7780 if (rq->rd) {
7781 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7783 set_rq_online(rq);
7785 spin_unlock_irqrestore(&rq->lock, flags);
7786 break;
7788 #ifdef CONFIG_HOTPLUG_CPU
7789 case CPU_UP_CANCELED:
7790 case CPU_UP_CANCELED_FROZEN:
7791 if (!cpu_rq(cpu)->migration_thread)
7792 break;
7793 /* Unbind it from offline cpu so it can run. Fall thru. */
7794 kthread_bind(cpu_rq(cpu)->migration_thread,
7795 cpumask_any(cpu_online_mask));
7796 kthread_stop(cpu_rq(cpu)->migration_thread);
7797 put_task_struct(cpu_rq(cpu)->migration_thread);
7798 cpu_rq(cpu)->migration_thread = NULL;
7799 break;
7801 case CPU_DEAD:
7802 case CPU_DEAD_FROZEN:
7803 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7804 migrate_live_tasks(cpu);
7805 rq = cpu_rq(cpu);
7806 kthread_stop(rq->migration_thread);
7807 put_task_struct(rq->migration_thread);
7808 rq->migration_thread = NULL;
7809 /* Idle task back to normal (off runqueue, low prio) */
7810 spin_lock_irq(&rq->lock);
7811 update_rq_clock(rq);
7812 deactivate_task(rq, rq->idle, 0);
7813 rq->idle->static_prio = MAX_PRIO;
7814 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7815 rq->idle->sched_class = &idle_sched_class;
7816 migrate_dead_tasks(cpu);
7817 spin_unlock_irq(&rq->lock);
7818 cpuset_unlock();
7819 migrate_nr_uninterruptible(rq);
7820 BUG_ON(rq->nr_running != 0);
7821 calc_global_load_remove(rq);
7823 * No need to migrate the tasks: it was best-effort if
7824 * they didn't take sched_hotcpu_mutex. Just wake up
7825 * the requestors.
7827 spin_lock_irq(&rq->lock);
7828 while (!list_empty(&rq->migration_queue)) {
7829 struct migration_req *req;
7831 req = list_entry(rq->migration_queue.next,
7832 struct migration_req, list);
7833 list_del_init(&req->list);
7834 spin_unlock_irq(&rq->lock);
7835 complete(&req->done);
7836 spin_lock_irq(&rq->lock);
7838 spin_unlock_irq(&rq->lock);
7839 break;
7841 case CPU_DYING:
7842 case CPU_DYING_FROZEN:
7843 /* Update our root-domain */
7844 rq = cpu_rq(cpu);
7845 spin_lock_irqsave(&rq->lock, flags);
7846 if (rq->rd) {
7847 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7848 set_rq_offline(rq);
7850 spin_unlock_irqrestore(&rq->lock, flags);
7851 break;
7852 #endif
7854 return NOTIFY_OK;
7858 * Register at high priority so that task migration (migrate_all_tasks)
7859 * happens before everything else. This has to be lower priority than
7860 * the notifier in the perf_counter subsystem, though.
7862 static struct notifier_block __cpuinitdata migration_notifier = {
7863 .notifier_call = migration_call,
7864 .priority = 10
7867 static int __init migration_init(void)
7869 void *cpu = (void *)(long)smp_processor_id();
7870 int err;
7872 /* Start one for the boot CPU: */
7873 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7874 BUG_ON(err == NOTIFY_BAD);
7875 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7876 register_cpu_notifier(&migration_notifier);
7878 return 0;
7880 early_initcall(migration_init);
7881 #endif
7883 #ifdef CONFIG_SMP
7885 #ifdef CONFIG_SCHED_DEBUG
7887 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7888 struct cpumask *groupmask)
7890 struct sched_group *group = sd->groups;
7891 char str[256];
7893 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7894 cpumask_clear(groupmask);
7896 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7898 if (!(sd->flags & SD_LOAD_BALANCE)) {
7899 printk("does not load-balance\n");
7900 if (sd->parent)
7901 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7902 " has parent");
7903 return -1;
7906 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7908 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7909 printk(KERN_ERR "ERROR: domain->span does not contain "
7910 "CPU%d\n", cpu);
7912 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7913 printk(KERN_ERR "ERROR: domain->groups does not contain"
7914 " CPU%d\n", cpu);
7917 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7918 do {
7919 if (!group) {
7920 printk("\n");
7921 printk(KERN_ERR "ERROR: group is NULL\n");
7922 break;
7925 if (!group->__cpu_power) {
7926 printk(KERN_CONT "\n");
7927 printk(KERN_ERR "ERROR: domain->cpu_power not "
7928 "set\n");
7929 break;
7932 if (!cpumask_weight(sched_group_cpus(group))) {
7933 printk(KERN_CONT "\n");
7934 printk(KERN_ERR "ERROR: empty group\n");
7935 break;
7938 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7939 printk(KERN_CONT "\n");
7940 printk(KERN_ERR "ERROR: repeated CPUs\n");
7941 break;
7944 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7946 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7948 printk(KERN_CONT " %s", str);
7949 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7950 printk(KERN_CONT " (__cpu_power = %d)",
7951 group->__cpu_power);
7954 group = group->next;
7955 } while (group != sd->groups);
7956 printk(KERN_CONT "\n");
7958 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7959 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7961 if (sd->parent &&
7962 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7963 printk(KERN_ERR "ERROR: parent span is not a superset "
7964 "of domain->span\n");
7965 return 0;
7968 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7970 cpumask_var_t groupmask;
7971 int level = 0;
7973 if (!sd) {
7974 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7975 return;
7978 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7980 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7981 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7982 return;
7985 for (;;) {
7986 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7987 break;
7988 level++;
7989 sd = sd->parent;
7990 if (!sd)
7991 break;
7993 free_cpumask_var(groupmask);
7995 #else /* !CONFIG_SCHED_DEBUG */
7996 # define sched_domain_debug(sd, cpu) do { } while (0)
7997 #endif /* CONFIG_SCHED_DEBUG */
7999 static int sd_degenerate(struct sched_domain *sd)
8001 if (cpumask_weight(sched_domain_span(sd)) == 1)
8002 return 1;
8004 /* Following flags need at least 2 groups */
8005 if (sd->flags & (SD_LOAD_BALANCE |
8006 SD_BALANCE_NEWIDLE |
8007 SD_BALANCE_FORK |
8008 SD_BALANCE_EXEC |
8009 SD_SHARE_CPUPOWER |
8010 SD_SHARE_PKG_RESOURCES)) {
8011 if (sd->groups != sd->groups->next)
8012 return 0;
8015 /* Following flags don't use groups */
8016 if (sd->flags & (SD_WAKE_IDLE |
8017 SD_WAKE_AFFINE |
8018 SD_WAKE_BALANCE))
8019 return 0;
8021 return 1;
8024 static int
8025 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
8027 unsigned long cflags = sd->flags, pflags = parent->flags;
8029 if (sd_degenerate(parent))
8030 return 1;
8032 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
8033 return 0;
8035 /* Does parent contain flags not in child? */
8036 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
8037 if (cflags & SD_WAKE_AFFINE)
8038 pflags &= ~SD_WAKE_BALANCE;
8039 /* Flags needing groups don't count if only 1 group in parent */
8040 if (parent->groups == parent->groups->next) {
8041 pflags &= ~(SD_LOAD_BALANCE |
8042 SD_BALANCE_NEWIDLE |
8043 SD_BALANCE_FORK |
8044 SD_BALANCE_EXEC |
8045 SD_SHARE_CPUPOWER |
8046 SD_SHARE_PKG_RESOURCES);
8047 if (nr_node_ids == 1)
8048 pflags &= ~SD_SERIALIZE;
8050 if (~cflags & pflags)
8051 return 0;
8053 return 1;
8056 static void free_rootdomain(struct root_domain *rd)
8058 cpupri_cleanup(&rd->cpupri);
8060 free_cpumask_var(rd->rto_mask);
8061 free_cpumask_var(rd->online);
8062 free_cpumask_var(rd->span);
8063 kfree(rd);
8066 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
8068 struct root_domain *old_rd = NULL;
8069 unsigned long flags;
8071 spin_lock_irqsave(&rq->lock, flags);
8073 if (rq->rd) {
8074 old_rd = rq->rd;
8076 if (cpumask_test_cpu(rq->cpu, old_rd->online))
8077 set_rq_offline(rq);
8079 cpumask_clear_cpu(rq->cpu, old_rd->span);
8082 * If we dont want to free the old_rt yet then
8083 * set old_rd to NULL to skip the freeing later
8084 * in this function:
8086 if (!atomic_dec_and_test(&old_rd->refcount))
8087 old_rd = NULL;
8090 atomic_inc(&rd->refcount);
8091 rq->rd = rd;
8093 cpumask_set_cpu(rq->cpu, rd->span);
8094 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8095 set_rq_online(rq);
8097 spin_unlock_irqrestore(&rq->lock, flags);
8099 if (old_rd)
8100 free_rootdomain(old_rd);
8103 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8105 gfp_t gfp = GFP_KERNEL;
8107 memset(rd, 0, sizeof(*rd));
8109 if (bootmem)
8110 gfp = GFP_NOWAIT;
8112 if (!alloc_cpumask_var(&rd->span, gfp))
8113 goto out;
8114 if (!alloc_cpumask_var(&rd->online, gfp))
8115 goto free_span;
8116 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8117 goto free_online;
8119 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8120 goto free_rto_mask;
8121 return 0;
8123 free_rto_mask:
8124 free_cpumask_var(rd->rto_mask);
8125 free_online:
8126 free_cpumask_var(rd->online);
8127 free_span:
8128 free_cpumask_var(rd->span);
8129 out:
8130 return -ENOMEM;
8133 static void init_defrootdomain(void)
8135 init_rootdomain(&def_root_domain, true);
8137 atomic_set(&def_root_domain.refcount, 1);
8140 static struct root_domain *alloc_rootdomain(void)
8142 struct root_domain *rd;
8144 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8145 if (!rd)
8146 return NULL;
8148 if (init_rootdomain(rd, false) != 0) {
8149 kfree(rd);
8150 return NULL;
8153 return rd;
8157 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8158 * hold the hotplug lock.
8160 static void
8161 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8163 struct rq *rq = cpu_rq(cpu);
8164 struct sched_domain *tmp;
8166 /* Remove the sched domains which do not contribute to scheduling. */
8167 for (tmp = sd; tmp; ) {
8168 struct sched_domain *parent = tmp->parent;
8169 if (!parent)
8170 break;
8172 if (sd_parent_degenerate(tmp, parent)) {
8173 tmp->parent = parent->parent;
8174 if (parent->parent)
8175 parent->parent->child = tmp;
8176 } else
8177 tmp = tmp->parent;
8180 if (sd && sd_degenerate(sd)) {
8181 sd = sd->parent;
8182 if (sd)
8183 sd->child = NULL;
8186 sched_domain_debug(sd, cpu);
8188 rq_attach_root(rq, rd);
8189 rcu_assign_pointer(rq->sd, sd);
8192 /* cpus with isolated domains */
8193 static cpumask_var_t cpu_isolated_map;
8195 /* Setup the mask of cpus configured for isolated domains */
8196 static int __init isolated_cpu_setup(char *str)
8198 cpulist_parse(str, cpu_isolated_map);
8199 return 1;
8202 __setup("isolcpus=", isolated_cpu_setup);
8205 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8206 * to a function which identifies what group(along with sched group) a CPU
8207 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8208 * (due to the fact that we keep track of groups covered with a struct cpumask).
8210 * init_sched_build_groups will build a circular linked list of the groups
8211 * covered by the given span, and will set each group's ->cpumask correctly,
8212 * and ->cpu_power to 0.
8214 static void
8215 init_sched_build_groups(const struct cpumask *span,
8216 const struct cpumask *cpu_map,
8217 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8218 struct sched_group **sg,
8219 struct cpumask *tmpmask),
8220 struct cpumask *covered, struct cpumask *tmpmask)
8222 struct sched_group *first = NULL, *last = NULL;
8223 int i;
8225 cpumask_clear(covered);
8227 for_each_cpu(i, span) {
8228 struct sched_group *sg;
8229 int group = group_fn(i, cpu_map, &sg, tmpmask);
8230 int j;
8232 if (cpumask_test_cpu(i, covered))
8233 continue;
8235 cpumask_clear(sched_group_cpus(sg));
8236 sg->__cpu_power = 0;
8238 for_each_cpu(j, span) {
8239 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8240 continue;
8242 cpumask_set_cpu(j, covered);
8243 cpumask_set_cpu(j, sched_group_cpus(sg));
8245 if (!first)
8246 first = sg;
8247 if (last)
8248 last->next = sg;
8249 last = sg;
8251 last->next = first;
8254 #define SD_NODES_PER_DOMAIN 16
8256 #ifdef CONFIG_NUMA
8259 * find_next_best_node - find the next node to include in a sched_domain
8260 * @node: node whose sched_domain we're building
8261 * @used_nodes: nodes already in the sched_domain
8263 * Find the next node to include in a given scheduling domain. Simply
8264 * finds the closest node not already in the @used_nodes map.
8266 * Should use nodemask_t.
8268 static int find_next_best_node(int node, nodemask_t *used_nodes)
8270 int i, n, val, min_val, best_node = 0;
8272 min_val = INT_MAX;
8274 for (i = 0; i < nr_node_ids; i++) {
8275 /* Start at @node */
8276 n = (node + i) % nr_node_ids;
8278 if (!nr_cpus_node(n))
8279 continue;
8281 /* Skip already used nodes */
8282 if (node_isset(n, *used_nodes))
8283 continue;
8285 /* Simple min distance search */
8286 val = node_distance(node, n);
8288 if (val < min_val) {
8289 min_val = val;
8290 best_node = n;
8294 node_set(best_node, *used_nodes);
8295 return best_node;
8299 * sched_domain_node_span - get a cpumask for a node's sched_domain
8300 * @node: node whose cpumask we're constructing
8301 * @span: resulting cpumask
8303 * Given a node, construct a good cpumask for its sched_domain to span. It
8304 * should be one that prevents unnecessary balancing, but also spreads tasks
8305 * out optimally.
8307 static void sched_domain_node_span(int node, struct cpumask *span)
8309 nodemask_t used_nodes;
8310 int i;
8312 cpumask_clear(span);
8313 nodes_clear(used_nodes);
8315 cpumask_or(span, span, cpumask_of_node(node));
8316 node_set(node, used_nodes);
8318 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8319 int next_node = find_next_best_node(node, &used_nodes);
8321 cpumask_or(span, span, cpumask_of_node(next_node));
8324 #endif /* CONFIG_NUMA */
8326 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8329 * The cpus mask in sched_group and sched_domain hangs off the end.
8331 * ( See the the comments in include/linux/sched.h:struct sched_group
8332 * and struct sched_domain. )
8334 struct static_sched_group {
8335 struct sched_group sg;
8336 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8339 struct static_sched_domain {
8340 struct sched_domain sd;
8341 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8344 struct s_data {
8345 #ifdef CONFIG_NUMA
8346 int sd_allnodes;
8347 cpumask_var_t domainspan;
8348 cpumask_var_t covered;
8349 cpumask_var_t notcovered;
8350 #endif
8351 cpumask_var_t nodemask;
8352 cpumask_var_t this_sibling_map;
8353 cpumask_var_t this_core_map;
8354 cpumask_var_t send_covered;
8355 cpumask_var_t tmpmask;
8356 struct sched_group **sched_group_nodes;
8357 struct root_domain *rd;
8360 enum s_alloc {
8361 sa_sched_groups = 0,
8362 sa_rootdomain,
8363 sa_tmpmask,
8364 sa_send_covered,
8365 sa_this_core_map,
8366 sa_this_sibling_map,
8367 sa_nodemask,
8368 sa_sched_group_nodes,
8369 #ifdef CONFIG_NUMA
8370 sa_notcovered,
8371 sa_covered,
8372 sa_domainspan,
8373 #endif
8374 sa_none,
8378 * SMT sched-domains:
8380 #ifdef CONFIG_SCHED_SMT
8381 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8382 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8384 static int
8385 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8386 struct sched_group **sg, struct cpumask *unused)
8388 if (sg)
8389 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8390 return cpu;
8392 #endif /* CONFIG_SCHED_SMT */
8395 * multi-core sched-domains:
8397 #ifdef CONFIG_SCHED_MC
8398 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8399 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8400 #endif /* CONFIG_SCHED_MC */
8402 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8403 static int
8404 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8405 struct sched_group **sg, struct cpumask *mask)
8407 int group;
8409 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8410 group = cpumask_first(mask);
8411 if (sg)
8412 *sg = &per_cpu(sched_group_core, group).sg;
8413 return group;
8415 #elif defined(CONFIG_SCHED_MC)
8416 static int
8417 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8418 struct sched_group **sg, struct cpumask *unused)
8420 if (sg)
8421 *sg = &per_cpu(sched_group_core, cpu).sg;
8422 return cpu;
8424 #endif
8426 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8427 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8429 static int
8430 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8431 struct sched_group **sg, struct cpumask *mask)
8433 int group;
8434 #ifdef CONFIG_SCHED_MC
8435 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8436 group = cpumask_first(mask);
8437 #elif defined(CONFIG_SCHED_SMT)
8438 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8439 group = cpumask_first(mask);
8440 #else
8441 group = cpu;
8442 #endif
8443 if (sg)
8444 *sg = &per_cpu(sched_group_phys, group).sg;
8445 return group;
8448 #ifdef CONFIG_NUMA
8450 * The init_sched_build_groups can't handle what we want to do with node
8451 * groups, so roll our own. Now each node has its own list of groups which
8452 * gets dynamically allocated.
8454 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8455 static struct sched_group ***sched_group_nodes_bycpu;
8457 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8458 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8460 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8461 struct sched_group **sg,
8462 struct cpumask *nodemask)
8464 int group;
8466 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8467 group = cpumask_first(nodemask);
8469 if (sg)
8470 *sg = &per_cpu(sched_group_allnodes, group).sg;
8471 return group;
8474 static void init_numa_sched_groups_power(struct sched_group *group_head)
8476 struct sched_group *sg = group_head;
8477 int j;
8479 if (!sg)
8480 return;
8481 do {
8482 for_each_cpu(j, sched_group_cpus(sg)) {
8483 struct sched_domain *sd;
8485 sd = &per_cpu(phys_domains, j).sd;
8486 if (j != group_first_cpu(sd->groups)) {
8488 * Only add "power" once for each
8489 * physical package.
8491 continue;
8494 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8496 sg = sg->next;
8497 } while (sg != group_head);
8500 static int build_numa_sched_groups(struct s_data *d,
8501 const struct cpumask *cpu_map, int num)
8503 struct sched_domain *sd;
8504 struct sched_group *sg, *prev;
8505 int n, j;
8507 cpumask_clear(d->covered);
8508 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8509 if (cpumask_empty(d->nodemask)) {
8510 d->sched_group_nodes[num] = NULL;
8511 goto out;
8514 sched_domain_node_span(num, d->domainspan);
8515 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8517 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8518 GFP_KERNEL, num);
8519 if (!sg) {
8520 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8521 num);
8522 return -ENOMEM;
8524 d->sched_group_nodes[num] = sg;
8526 for_each_cpu(j, d->nodemask) {
8527 sd = &per_cpu(node_domains, j).sd;
8528 sd->groups = sg;
8531 sg->__cpu_power = 0;
8532 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8533 sg->next = sg;
8534 cpumask_or(d->covered, d->covered, d->nodemask);
8536 prev = sg;
8537 for (j = 0; j < nr_node_ids; j++) {
8538 n = (num + j) % nr_node_ids;
8539 cpumask_complement(d->notcovered, d->covered);
8540 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8541 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8542 if (cpumask_empty(d->tmpmask))
8543 break;
8544 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8545 if (cpumask_empty(d->tmpmask))
8546 continue;
8547 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8548 GFP_KERNEL, num);
8549 if (!sg) {
8550 printk(KERN_WARNING
8551 "Can not alloc domain group for node %d\n", j);
8552 return -ENOMEM;
8554 sg->__cpu_power = 0;
8555 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8556 sg->next = prev->next;
8557 cpumask_or(d->covered, d->covered, d->tmpmask);
8558 prev->next = sg;
8559 prev = sg;
8561 out:
8562 return 0;
8564 #endif /* CONFIG_NUMA */
8566 #ifdef CONFIG_NUMA
8567 /* Free memory allocated for various sched_group structures */
8568 static void free_sched_groups(const struct cpumask *cpu_map,
8569 struct cpumask *nodemask)
8571 int cpu, i;
8573 for_each_cpu(cpu, cpu_map) {
8574 struct sched_group **sched_group_nodes
8575 = sched_group_nodes_bycpu[cpu];
8577 if (!sched_group_nodes)
8578 continue;
8580 for (i = 0; i < nr_node_ids; i++) {
8581 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8583 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8584 if (cpumask_empty(nodemask))
8585 continue;
8587 if (sg == NULL)
8588 continue;
8589 sg = sg->next;
8590 next_sg:
8591 oldsg = sg;
8592 sg = sg->next;
8593 kfree(oldsg);
8594 if (oldsg != sched_group_nodes[i])
8595 goto next_sg;
8597 kfree(sched_group_nodes);
8598 sched_group_nodes_bycpu[cpu] = NULL;
8601 #else /* !CONFIG_NUMA */
8602 static void free_sched_groups(const struct cpumask *cpu_map,
8603 struct cpumask *nodemask)
8606 #endif /* CONFIG_NUMA */
8609 * Initialize sched groups cpu_power.
8611 * cpu_power indicates the capacity of sched group, which is used while
8612 * distributing the load between different sched groups in a sched domain.
8613 * Typically cpu_power for all the groups in a sched domain will be same unless
8614 * there are asymmetries in the topology. If there are asymmetries, group
8615 * having more cpu_power will pickup more load compared to the group having
8616 * less cpu_power.
8618 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8620 struct sched_domain *child;
8621 struct sched_group *group;
8622 long power;
8623 int weight;
8625 WARN_ON(!sd || !sd->groups);
8627 if (cpu != group_first_cpu(sd->groups))
8628 return;
8630 child = sd->child;
8632 sd->groups->__cpu_power = 0;
8634 if (!child) {
8635 power = SCHED_LOAD_SCALE;
8636 weight = cpumask_weight(sched_domain_span(sd));
8638 * SMT siblings share the power of a single core.
8639 * Usually multiple threads get a better yield out of
8640 * that one core than a single thread would have,
8641 * reflect that in sd->smt_gain.
8643 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8644 power *= sd->smt_gain;
8645 power /= weight;
8646 power >>= SCHED_LOAD_SHIFT;
8648 sg_inc_cpu_power(sd->groups, power);
8649 return;
8653 * Add cpu_power of each child group to this groups cpu_power.
8655 group = child->groups;
8656 do {
8657 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8658 group = group->next;
8659 } while (group != child->groups);
8663 * Initializers for schedule domains
8664 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8667 #ifdef CONFIG_SCHED_DEBUG
8668 # define SD_INIT_NAME(sd, type) sd->name = #type
8669 #else
8670 # define SD_INIT_NAME(sd, type) do { } while (0)
8671 #endif
8673 #define SD_INIT(sd, type) sd_init_##type(sd)
8675 #define SD_INIT_FUNC(type) \
8676 static noinline void sd_init_##type(struct sched_domain *sd) \
8678 memset(sd, 0, sizeof(*sd)); \
8679 *sd = SD_##type##_INIT; \
8680 sd->level = SD_LV_##type; \
8681 SD_INIT_NAME(sd, type); \
8684 SD_INIT_FUNC(CPU)
8685 #ifdef CONFIG_NUMA
8686 SD_INIT_FUNC(ALLNODES)
8687 SD_INIT_FUNC(NODE)
8688 #endif
8689 #ifdef CONFIG_SCHED_SMT
8690 SD_INIT_FUNC(SIBLING)
8691 #endif
8692 #ifdef CONFIG_SCHED_MC
8693 SD_INIT_FUNC(MC)
8694 #endif
8696 static int default_relax_domain_level = -1;
8698 static int __init setup_relax_domain_level(char *str)
8700 unsigned long val;
8702 val = simple_strtoul(str, NULL, 0);
8703 if (val < SD_LV_MAX)
8704 default_relax_domain_level = val;
8706 return 1;
8708 __setup("relax_domain_level=", setup_relax_domain_level);
8710 static void set_domain_attribute(struct sched_domain *sd,
8711 struct sched_domain_attr *attr)
8713 int request;
8715 if (!attr || attr->relax_domain_level < 0) {
8716 if (default_relax_domain_level < 0)
8717 return;
8718 else
8719 request = default_relax_domain_level;
8720 } else
8721 request = attr->relax_domain_level;
8722 if (request < sd->level) {
8723 /* turn off idle balance on this domain */
8724 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8725 } else {
8726 /* turn on idle balance on this domain */
8727 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8731 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8732 const struct cpumask *cpu_map)
8734 switch (what) {
8735 case sa_sched_groups:
8736 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8737 d->sched_group_nodes = NULL;
8738 case sa_rootdomain:
8739 free_rootdomain(d->rd); /* fall through */
8740 case sa_tmpmask:
8741 free_cpumask_var(d->tmpmask); /* fall through */
8742 case sa_send_covered:
8743 free_cpumask_var(d->send_covered); /* fall through */
8744 case sa_this_core_map:
8745 free_cpumask_var(d->this_core_map); /* fall through */
8746 case sa_this_sibling_map:
8747 free_cpumask_var(d->this_sibling_map); /* fall through */
8748 case sa_nodemask:
8749 free_cpumask_var(d->nodemask); /* fall through */
8750 case sa_sched_group_nodes:
8751 #ifdef CONFIG_NUMA
8752 kfree(d->sched_group_nodes); /* fall through */
8753 case sa_notcovered:
8754 free_cpumask_var(d->notcovered); /* fall through */
8755 case sa_covered:
8756 free_cpumask_var(d->covered); /* fall through */
8757 case sa_domainspan:
8758 free_cpumask_var(d->domainspan); /* fall through */
8759 #endif
8760 case sa_none:
8761 break;
8765 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8766 const struct cpumask *cpu_map)
8768 #ifdef CONFIG_NUMA
8769 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8770 return sa_none;
8771 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8772 return sa_domainspan;
8773 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8774 return sa_covered;
8775 /* Allocate the per-node list of sched groups */
8776 d->sched_group_nodes = kcalloc(nr_node_ids,
8777 sizeof(struct sched_group *), GFP_KERNEL);
8778 if (!d->sched_group_nodes) {
8779 printk(KERN_WARNING "Can not alloc sched group node list\n");
8780 return sa_notcovered;
8782 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8783 #endif
8784 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8785 return sa_sched_group_nodes;
8786 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8787 return sa_nodemask;
8788 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8789 return sa_this_sibling_map;
8790 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8791 return sa_this_core_map;
8792 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8793 return sa_send_covered;
8794 d->rd = alloc_rootdomain();
8795 if (!d->rd) {
8796 printk(KERN_WARNING "Cannot alloc root domain\n");
8797 return sa_tmpmask;
8799 return sa_rootdomain;
8802 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8803 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8805 struct sched_domain *sd = NULL;
8806 #ifdef CONFIG_NUMA
8807 struct sched_domain *parent;
8809 d->sd_allnodes = 0;
8810 if (cpumask_weight(cpu_map) >
8811 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8812 sd = &per_cpu(allnodes_domains, i).sd;
8813 SD_INIT(sd, ALLNODES);
8814 set_domain_attribute(sd, attr);
8815 cpumask_copy(sched_domain_span(sd), cpu_map);
8816 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8817 d->sd_allnodes = 1;
8819 parent = sd;
8821 sd = &per_cpu(node_domains, i).sd;
8822 SD_INIT(sd, NODE);
8823 set_domain_attribute(sd, attr);
8824 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8825 sd->parent = parent;
8826 if (parent)
8827 parent->child = sd;
8828 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8829 #endif
8830 return sd;
8833 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8834 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8835 struct sched_domain *parent, int i)
8837 struct sched_domain *sd;
8838 sd = &per_cpu(phys_domains, i).sd;
8839 SD_INIT(sd, CPU);
8840 set_domain_attribute(sd, attr);
8841 cpumask_copy(sched_domain_span(sd), d->nodemask);
8842 sd->parent = parent;
8843 if (parent)
8844 parent->child = sd;
8845 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8846 return sd;
8849 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8850 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8851 struct sched_domain *parent, int i)
8853 struct sched_domain *sd = parent;
8854 #ifdef CONFIG_SCHED_MC
8855 sd = &per_cpu(core_domains, i).sd;
8856 SD_INIT(sd, MC);
8857 set_domain_attribute(sd, attr);
8858 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8859 sd->parent = parent;
8860 parent->child = sd;
8861 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8862 #endif
8863 return sd;
8866 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8867 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8868 struct sched_domain *parent, int i)
8870 struct sched_domain *sd = parent;
8871 #ifdef CONFIG_SCHED_SMT
8872 sd = &per_cpu(cpu_domains, i).sd;
8873 SD_INIT(sd, SIBLING);
8874 set_domain_attribute(sd, attr);
8875 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8876 sd->parent = parent;
8877 parent->child = sd;
8878 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8879 #endif
8880 return sd;
8883 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8884 const struct cpumask *cpu_map, int cpu)
8886 switch (l) {
8887 #ifdef CONFIG_SCHED_SMT
8888 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8889 cpumask_and(d->this_sibling_map, cpu_map,
8890 topology_thread_cpumask(cpu));
8891 if (cpu == cpumask_first(d->this_sibling_map))
8892 init_sched_build_groups(d->this_sibling_map, cpu_map,
8893 &cpu_to_cpu_group,
8894 d->send_covered, d->tmpmask);
8895 break;
8896 #endif
8897 #ifdef CONFIG_SCHED_MC
8898 case SD_LV_MC: /* set up multi-core groups */
8899 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8900 if (cpu == cpumask_first(d->this_core_map))
8901 init_sched_build_groups(d->this_core_map, cpu_map,
8902 &cpu_to_core_group,
8903 d->send_covered, d->tmpmask);
8904 break;
8905 #endif
8906 case SD_LV_CPU: /* set up physical groups */
8907 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8908 if (!cpumask_empty(d->nodemask))
8909 init_sched_build_groups(d->nodemask, cpu_map,
8910 &cpu_to_phys_group,
8911 d->send_covered, d->tmpmask);
8912 break;
8913 #ifdef CONFIG_NUMA
8914 case SD_LV_ALLNODES:
8915 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8916 d->send_covered, d->tmpmask);
8917 break;
8918 #endif
8919 default:
8920 break;
8925 * Build sched domains for a given set of cpus and attach the sched domains
8926 * to the individual cpus
8928 static int __build_sched_domains(const struct cpumask *cpu_map,
8929 struct sched_domain_attr *attr)
8931 enum s_alloc alloc_state = sa_none;
8932 struct s_data d;
8933 struct sched_domain *sd;
8934 int i;
8935 #ifdef CONFIG_NUMA
8936 d.sd_allnodes = 0;
8937 #endif
8939 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8940 if (alloc_state != sa_rootdomain)
8941 goto error;
8942 alloc_state = sa_sched_groups;
8945 * Set up domains for cpus specified by the cpu_map.
8947 for_each_cpu(i, cpu_map) {
8948 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8949 cpu_map);
8951 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8952 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8953 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8954 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8957 for_each_cpu(i, cpu_map) {
8958 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8959 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8962 /* Set up physical groups */
8963 for (i = 0; i < nr_node_ids; i++)
8964 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8966 #ifdef CONFIG_NUMA
8967 /* Set up node groups */
8968 if (d.sd_allnodes)
8969 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8971 for (i = 0; i < nr_node_ids; i++)
8972 if (build_numa_sched_groups(&d, cpu_map, i))
8973 goto error;
8974 #endif
8976 /* Calculate CPU power for physical packages and nodes */
8977 #ifdef CONFIG_SCHED_SMT
8978 for_each_cpu(i, cpu_map) {
8979 sd = &per_cpu(cpu_domains, i).sd;
8980 init_sched_groups_power(i, sd);
8982 #endif
8983 #ifdef CONFIG_SCHED_MC
8984 for_each_cpu(i, cpu_map) {
8985 sd = &per_cpu(core_domains, i).sd;
8986 init_sched_groups_power(i, sd);
8988 #endif
8990 for_each_cpu(i, cpu_map) {
8991 sd = &per_cpu(phys_domains, i).sd;
8992 init_sched_groups_power(i, sd);
8995 #ifdef CONFIG_NUMA
8996 for (i = 0; i < nr_node_ids; i++)
8997 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8999 if (d.sd_allnodes) {
9000 struct sched_group *sg;
9002 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
9003 d.tmpmask);
9004 init_numa_sched_groups_power(sg);
9006 #endif
9008 /* Attach the domains */
9009 for_each_cpu(i, cpu_map) {
9010 #ifdef CONFIG_SCHED_SMT
9011 sd = &per_cpu(cpu_domains, i).sd;
9012 #elif defined(CONFIG_SCHED_MC)
9013 sd = &per_cpu(core_domains, i).sd;
9014 #else
9015 sd = &per_cpu(phys_domains, i).sd;
9016 #endif
9017 cpu_attach_domain(sd, d.rd, i);
9020 d.sched_group_nodes = NULL; /* don't free this we still need it */
9021 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
9022 return 0;
9024 error:
9025 __free_domain_allocs(&d, alloc_state, cpu_map);
9026 return -ENOMEM;
9029 static int build_sched_domains(const struct cpumask *cpu_map)
9031 return __build_sched_domains(cpu_map, NULL);
9034 static struct cpumask *doms_cur; /* current sched domains */
9035 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
9036 static struct sched_domain_attr *dattr_cur;
9037 /* attribues of custom domains in 'doms_cur' */
9040 * Special case: If a kmalloc of a doms_cur partition (array of
9041 * cpumask) fails, then fallback to a single sched domain,
9042 * as determined by the single cpumask fallback_doms.
9044 static cpumask_var_t fallback_doms;
9047 * arch_update_cpu_topology lets virtualized architectures update the
9048 * cpu core maps. It is supposed to return 1 if the topology changed
9049 * or 0 if it stayed the same.
9051 int __attribute__((weak)) arch_update_cpu_topology(void)
9053 return 0;
9057 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
9058 * For now this just excludes isolated cpus, but could be used to
9059 * exclude other special cases in the future.
9061 static int arch_init_sched_domains(const struct cpumask *cpu_map)
9063 int err;
9065 arch_update_cpu_topology();
9066 ndoms_cur = 1;
9067 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
9068 if (!doms_cur)
9069 doms_cur = fallback_doms;
9070 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
9071 dattr_cur = NULL;
9072 err = build_sched_domains(doms_cur);
9073 register_sched_domain_sysctl();
9075 return err;
9078 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9079 struct cpumask *tmpmask)
9081 free_sched_groups(cpu_map, tmpmask);
9085 * Detach sched domains from a group of cpus specified in cpu_map
9086 * These cpus will now be attached to the NULL domain
9088 static void detach_destroy_domains(const struct cpumask *cpu_map)
9090 /* Save because hotplug lock held. */
9091 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9092 int i;
9094 for_each_cpu(i, cpu_map)
9095 cpu_attach_domain(NULL, &def_root_domain, i);
9096 synchronize_sched();
9097 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9100 /* handle null as "default" */
9101 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9102 struct sched_domain_attr *new, int idx_new)
9104 struct sched_domain_attr tmp;
9106 /* fast path */
9107 if (!new && !cur)
9108 return 1;
9110 tmp = SD_ATTR_INIT;
9111 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9112 new ? (new + idx_new) : &tmp,
9113 sizeof(struct sched_domain_attr));
9117 * Partition sched domains as specified by the 'ndoms_new'
9118 * cpumasks in the array doms_new[] of cpumasks. This compares
9119 * doms_new[] to the current sched domain partitioning, doms_cur[].
9120 * It destroys each deleted domain and builds each new domain.
9122 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
9123 * The masks don't intersect (don't overlap.) We should setup one
9124 * sched domain for each mask. CPUs not in any of the cpumasks will
9125 * not be load balanced. If the same cpumask appears both in the
9126 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9127 * it as it is.
9129 * The passed in 'doms_new' should be kmalloc'd. This routine takes
9130 * ownership of it and will kfree it when done with it. If the caller
9131 * failed the kmalloc call, then it can pass in doms_new == NULL &&
9132 * ndoms_new == 1, and partition_sched_domains() will fallback to
9133 * the single partition 'fallback_doms', it also forces the domains
9134 * to be rebuilt.
9136 * If doms_new == NULL it will be replaced with cpu_online_mask.
9137 * ndoms_new == 0 is a special case for destroying existing domains,
9138 * and it will not create the default domain.
9140 * Call with hotplug lock held
9142 /* FIXME: Change to struct cpumask *doms_new[] */
9143 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
9144 struct sched_domain_attr *dattr_new)
9146 int i, j, n;
9147 int new_topology;
9149 mutex_lock(&sched_domains_mutex);
9151 /* always unregister in case we don't destroy any domains */
9152 unregister_sched_domain_sysctl();
9154 /* Let architecture update cpu core mappings. */
9155 new_topology = arch_update_cpu_topology();
9157 n = doms_new ? ndoms_new : 0;
9159 /* Destroy deleted domains */
9160 for (i = 0; i < ndoms_cur; i++) {
9161 for (j = 0; j < n && !new_topology; j++) {
9162 if (cpumask_equal(&doms_cur[i], &doms_new[j])
9163 && dattrs_equal(dattr_cur, i, dattr_new, j))
9164 goto match1;
9166 /* no match - a current sched domain not in new doms_new[] */
9167 detach_destroy_domains(doms_cur + i);
9168 match1:
9172 if (doms_new == NULL) {
9173 ndoms_cur = 0;
9174 doms_new = fallback_doms;
9175 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9176 WARN_ON_ONCE(dattr_new);
9179 /* Build new domains */
9180 for (i = 0; i < ndoms_new; i++) {
9181 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9182 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9183 && dattrs_equal(dattr_new, i, dattr_cur, j))
9184 goto match2;
9186 /* no match - add a new doms_new */
9187 __build_sched_domains(doms_new + i,
9188 dattr_new ? dattr_new + i : NULL);
9189 match2:
9193 /* Remember the new sched domains */
9194 if (doms_cur != fallback_doms)
9195 kfree(doms_cur);
9196 kfree(dattr_cur); /* kfree(NULL) is safe */
9197 doms_cur = doms_new;
9198 dattr_cur = dattr_new;
9199 ndoms_cur = ndoms_new;
9201 register_sched_domain_sysctl();
9203 mutex_unlock(&sched_domains_mutex);
9206 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9207 static void arch_reinit_sched_domains(void)
9209 get_online_cpus();
9211 /* Destroy domains first to force the rebuild */
9212 partition_sched_domains(0, NULL, NULL);
9214 rebuild_sched_domains();
9215 put_online_cpus();
9218 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9220 unsigned int level = 0;
9222 if (sscanf(buf, "%u", &level) != 1)
9223 return -EINVAL;
9226 * level is always be positive so don't check for
9227 * level < POWERSAVINGS_BALANCE_NONE which is 0
9228 * What happens on 0 or 1 byte write,
9229 * need to check for count as well?
9232 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9233 return -EINVAL;
9235 if (smt)
9236 sched_smt_power_savings = level;
9237 else
9238 sched_mc_power_savings = level;
9240 arch_reinit_sched_domains();
9242 return count;
9245 #ifdef CONFIG_SCHED_MC
9246 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9247 char *page)
9249 return sprintf(page, "%u\n", sched_mc_power_savings);
9251 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9252 const char *buf, size_t count)
9254 return sched_power_savings_store(buf, count, 0);
9256 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9257 sched_mc_power_savings_show,
9258 sched_mc_power_savings_store);
9259 #endif
9261 #ifdef CONFIG_SCHED_SMT
9262 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9263 char *page)
9265 return sprintf(page, "%u\n", sched_smt_power_savings);
9267 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9268 const char *buf, size_t count)
9270 return sched_power_savings_store(buf, count, 1);
9272 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9273 sched_smt_power_savings_show,
9274 sched_smt_power_savings_store);
9275 #endif
9277 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9279 int err = 0;
9281 #ifdef CONFIG_SCHED_SMT
9282 if (smt_capable())
9283 err = sysfs_create_file(&cls->kset.kobj,
9284 &attr_sched_smt_power_savings.attr);
9285 #endif
9286 #ifdef CONFIG_SCHED_MC
9287 if (!err && mc_capable())
9288 err = sysfs_create_file(&cls->kset.kobj,
9289 &attr_sched_mc_power_savings.attr);
9290 #endif
9291 return err;
9293 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9295 #ifndef CONFIG_CPUSETS
9297 * Add online and remove offline CPUs from the scheduler domains.
9298 * When cpusets are enabled they take over this function.
9300 static int update_sched_domains(struct notifier_block *nfb,
9301 unsigned long action, void *hcpu)
9303 switch (action) {
9304 case CPU_ONLINE:
9305 case CPU_ONLINE_FROZEN:
9306 case CPU_DEAD:
9307 case CPU_DEAD_FROZEN:
9308 partition_sched_domains(1, NULL, NULL);
9309 return NOTIFY_OK;
9311 default:
9312 return NOTIFY_DONE;
9315 #endif
9317 static int update_runtime(struct notifier_block *nfb,
9318 unsigned long action, void *hcpu)
9320 int cpu = (int)(long)hcpu;
9322 switch (action) {
9323 case CPU_DOWN_PREPARE:
9324 case CPU_DOWN_PREPARE_FROZEN:
9325 disable_runtime(cpu_rq(cpu));
9326 return NOTIFY_OK;
9328 case CPU_DOWN_FAILED:
9329 case CPU_DOWN_FAILED_FROZEN:
9330 case CPU_ONLINE:
9331 case CPU_ONLINE_FROZEN:
9332 enable_runtime(cpu_rq(cpu));
9333 return NOTIFY_OK;
9335 default:
9336 return NOTIFY_DONE;
9340 void __init sched_init_smp(void)
9342 cpumask_var_t non_isolated_cpus;
9344 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9346 #if defined(CONFIG_NUMA)
9347 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9348 GFP_KERNEL);
9349 BUG_ON(sched_group_nodes_bycpu == NULL);
9350 #endif
9351 get_online_cpus();
9352 mutex_lock(&sched_domains_mutex);
9353 arch_init_sched_domains(cpu_online_mask);
9354 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9355 if (cpumask_empty(non_isolated_cpus))
9356 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9357 mutex_unlock(&sched_domains_mutex);
9358 put_online_cpus();
9360 #ifndef CONFIG_CPUSETS
9361 /* XXX: Theoretical race here - CPU may be hotplugged now */
9362 hotcpu_notifier(update_sched_domains, 0);
9363 #endif
9365 /* RT runtime code needs to handle some hotplug events */
9366 hotcpu_notifier(update_runtime, 0);
9368 init_hrtick();
9370 /* Move init over to a non-isolated CPU */
9371 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9372 BUG();
9373 sched_init_granularity();
9374 free_cpumask_var(non_isolated_cpus);
9376 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9377 init_sched_rt_class();
9379 #else
9380 void __init sched_init_smp(void)
9382 sched_init_granularity();
9384 #endif /* CONFIG_SMP */
9386 const_debug unsigned int sysctl_timer_migration = 1;
9388 int in_sched_functions(unsigned long addr)
9390 return in_lock_functions(addr) ||
9391 (addr >= (unsigned long)__sched_text_start
9392 && addr < (unsigned long)__sched_text_end);
9395 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9397 cfs_rq->tasks_timeline = RB_ROOT;
9398 INIT_LIST_HEAD(&cfs_rq->tasks);
9399 #ifdef CONFIG_FAIR_GROUP_SCHED
9400 cfs_rq->rq = rq;
9401 #endif
9402 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9405 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9407 struct rt_prio_array *array;
9408 int i;
9410 array = &rt_rq->active;
9411 for (i = 0; i < MAX_RT_PRIO; i++) {
9412 INIT_LIST_HEAD(array->queue + i);
9413 __clear_bit(i, array->bitmap);
9415 /* delimiter for bitsearch: */
9416 __set_bit(MAX_RT_PRIO, array->bitmap);
9418 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9419 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9420 #ifdef CONFIG_SMP
9421 rt_rq->highest_prio.next = MAX_RT_PRIO;
9422 #endif
9423 #endif
9424 #ifdef CONFIG_SMP
9425 rt_rq->rt_nr_migratory = 0;
9426 rt_rq->overloaded = 0;
9427 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9428 #endif
9430 rt_rq->rt_time = 0;
9431 rt_rq->rt_throttled = 0;
9432 rt_rq->rt_runtime = 0;
9433 spin_lock_init(&rt_rq->rt_runtime_lock);
9435 #ifdef CONFIG_RT_GROUP_SCHED
9436 rt_rq->rt_nr_boosted = 0;
9437 rt_rq->rq = rq;
9438 #endif
9441 #ifdef CONFIG_FAIR_GROUP_SCHED
9442 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9443 struct sched_entity *se, int cpu, int add,
9444 struct sched_entity *parent)
9446 struct rq *rq = cpu_rq(cpu);
9447 tg->cfs_rq[cpu] = cfs_rq;
9448 init_cfs_rq(cfs_rq, rq);
9449 cfs_rq->tg = tg;
9450 if (add)
9451 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9453 tg->se[cpu] = se;
9454 /* se could be NULL for init_task_group */
9455 if (!se)
9456 return;
9458 if (!parent)
9459 se->cfs_rq = &rq->cfs;
9460 else
9461 se->cfs_rq = parent->my_q;
9463 se->my_q = cfs_rq;
9464 se->load.weight = tg->shares;
9465 se->load.inv_weight = 0;
9466 se->parent = parent;
9468 #endif
9470 #ifdef CONFIG_RT_GROUP_SCHED
9471 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9472 struct sched_rt_entity *rt_se, int cpu, int add,
9473 struct sched_rt_entity *parent)
9475 struct rq *rq = cpu_rq(cpu);
9477 tg->rt_rq[cpu] = rt_rq;
9478 init_rt_rq(rt_rq, rq);
9479 rt_rq->tg = tg;
9480 rt_rq->rt_se = rt_se;
9481 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9482 if (add)
9483 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9485 tg->rt_se[cpu] = rt_se;
9486 if (!rt_se)
9487 return;
9489 if (!parent)
9490 rt_se->rt_rq = &rq->rt;
9491 else
9492 rt_se->rt_rq = parent->my_q;
9494 rt_se->my_q = rt_rq;
9495 rt_se->parent = parent;
9496 INIT_LIST_HEAD(&rt_se->run_list);
9498 #endif
9500 void __init sched_init(void)
9502 int i, j;
9503 unsigned long alloc_size = 0, ptr;
9505 #ifdef CONFIG_FAIR_GROUP_SCHED
9506 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9507 #endif
9508 #ifdef CONFIG_RT_GROUP_SCHED
9509 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9510 #endif
9511 #ifdef CONFIG_USER_SCHED
9512 alloc_size *= 2;
9513 #endif
9514 #ifdef CONFIG_CPUMASK_OFFSTACK
9515 alloc_size += num_possible_cpus() * cpumask_size();
9516 #endif
9518 * As sched_init() is called before page_alloc is setup,
9519 * we use alloc_bootmem().
9521 if (alloc_size) {
9522 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9524 #ifdef CONFIG_FAIR_GROUP_SCHED
9525 init_task_group.se = (struct sched_entity **)ptr;
9526 ptr += nr_cpu_ids * sizeof(void **);
9528 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9529 ptr += nr_cpu_ids * sizeof(void **);
9531 #ifdef CONFIG_USER_SCHED
9532 root_task_group.se = (struct sched_entity **)ptr;
9533 ptr += nr_cpu_ids * sizeof(void **);
9535 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9536 ptr += nr_cpu_ids * sizeof(void **);
9537 #endif /* CONFIG_USER_SCHED */
9538 #endif /* CONFIG_FAIR_GROUP_SCHED */
9539 #ifdef CONFIG_RT_GROUP_SCHED
9540 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9541 ptr += nr_cpu_ids * sizeof(void **);
9543 init_task_group.rt_rq = (struct rt_rq **)ptr;
9544 ptr += nr_cpu_ids * sizeof(void **);
9546 #ifdef CONFIG_USER_SCHED
9547 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9548 ptr += nr_cpu_ids * sizeof(void **);
9550 root_task_group.rt_rq = (struct rt_rq **)ptr;
9551 ptr += nr_cpu_ids * sizeof(void **);
9552 #endif /* CONFIG_USER_SCHED */
9553 #endif /* CONFIG_RT_GROUP_SCHED */
9554 #ifdef CONFIG_CPUMASK_OFFSTACK
9555 for_each_possible_cpu(i) {
9556 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9557 ptr += cpumask_size();
9559 #endif /* CONFIG_CPUMASK_OFFSTACK */
9562 #ifdef CONFIG_SMP
9563 init_defrootdomain();
9564 #endif
9566 init_rt_bandwidth(&def_rt_bandwidth,
9567 global_rt_period(), global_rt_runtime());
9569 #ifdef CONFIG_RT_GROUP_SCHED
9570 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9571 global_rt_period(), global_rt_runtime());
9572 #ifdef CONFIG_USER_SCHED
9573 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9574 global_rt_period(), RUNTIME_INF);
9575 #endif /* CONFIG_USER_SCHED */
9576 #endif /* CONFIG_RT_GROUP_SCHED */
9578 #ifdef CONFIG_GROUP_SCHED
9579 list_add(&init_task_group.list, &task_groups);
9580 INIT_LIST_HEAD(&init_task_group.children);
9582 #ifdef CONFIG_USER_SCHED
9583 INIT_LIST_HEAD(&root_task_group.children);
9584 init_task_group.parent = &root_task_group;
9585 list_add(&init_task_group.siblings, &root_task_group.children);
9586 #endif /* CONFIG_USER_SCHED */
9587 #endif /* CONFIG_GROUP_SCHED */
9589 for_each_possible_cpu(i) {
9590 struct rq *rq;
9592 rq = cpu_rq(i);
9593 spin_lock_init(&rq->lock);
9594 rq->nr_running = 0;
9595 rq->calc_load_active = 0;
9596 rq->calc_load_update = jiffies + LOAD_FREQ;
9597 init_cfs_rq(&rq->cfs, rq);
9598 init_rt_rq(&rq->rt, rq);
9599 #ifdef CONFIG_FAIR_GROUP_SCHED
9600 init_task_group.shares = init_task_group_load;
9601 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9602 #ifdef CONFIG_CGROUP_SCHED
9604 * How much cpu bandwidth does init_task_group get?
9606 * In case of task-groups formed thr' the cgroup filesystem, it
9607 * gets 100% of the cpu resources in the system. This overall
9608 * system cpu resource is divided among the tasks of
9609 * init_task_group and its child task-groups in a fair manner,
9610 * based on each entity's (task or task-group's) weight
9611 * (se->load.weight).
9613 * In other words, if init_task_group has 10 tasks of weight
9614 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9615 * then A0's share of the cpu resource is:
9617 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9619 * We achieve this by letting init_task_group's tasks sit
9620 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9622 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9623 #elif defined CONFIG_USER_SCHED
9624 root_task_group.shares = NICE_0_LOAD;
9625 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9627 * In case of task-groups formed thr' the user id of tasks,
9628 * init_task_group represents tasks belonging to root user.
9629 * Hence it forms a sibling of all subsequent groups formed.
9630 * In this case, init_task_group gets only a fraction of overall
9631 * system cpu resource, based on the weight assigned to root
9632 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9633 * by letting tasks of init_task_group sit in a separate cfs_rq
9634 * (init_tg_cfs_rq) and having one entity represent this group of
9635 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9637 init_tg_cfs_entry(&init_task_group,
9638 &per_cpu(init_tg_cfs_rq, i),
9639 &per_cpu(init_sched_entity, i), i, 1,
9640 root_task_group.se[i]);
9642 #endif
9643 #endif /* CONFIG_FAIR_GROUP_SCHED */
9645 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9646 #ifdef CONFIG_RT_GROUP_SCHED
9647 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9648 #ifdef CONFIG_CGROUP_SCHED
9649 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9650 #elif defined CONFIG_USER_SCHED
9651 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9652 init_tg_rt_entry(&init_task_group,
9653 &per_cpu(init_rt_rq, i),
9654 &per_cpu(init_sched_rt_entity, i), i, 1,
9655 root_task_group.rt_se[i]);
9656 #endif
9657 #endif
9659 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9660 rq->cpu_load[j] = 0;
9661 #ifdef CONFIG_SMP
9662 rq->sd = NULL;
9663 rq->rd = NULL;
9664 rq->post_schedule = 0;
9665 rq->active_balance = 0;
9666 rq->next_balance = jiffies;
9667 rq->push_cpu = 0;
9668 rq->cpu = i;
9669 rq->online = 0;
9670 rq->migration_thread = NULL;
9671 INIT_LIST_HEAD(&rq->migration_queue);
9672 rq_attach_root(rq, &def_root_domain);
9673 #endif
9674 init_rq_hrtick(rq);
9675 atomic_set(&rq->nr_iowait, 0);
9678 set_load_weight(&init_task);
9680 #ifdef CONFIG_PREEMPT_NOTIFIERS
9681 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9682 #endif
9684 #ifdef CONFIG_SMP
9685 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9686 #endif
9688 #ifdef CONFIG_RT_MUTEXES
9689 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9690 #endif
9693 * The boot idle thread does lazy MMU switching as well:
9695 atomic_inc(&init_mm.mm_count);
9696 enter_lazy_tlb(&init_mm, current);
9699 * Make us the idle thread. Technically, schedule() should not be
9700 * called from this thread, however somewhere below it might be,
9701 * but because we are the idle thread, we just pick up running again
9702 * when this runqueue becomes "idle".
9704 init_idle(current, smp_processor_id());
9706 calc_load_update = jiffies + LOAD_FREQ;
9709 * During early bootup we pretend to be a normal task:
9711 current->sched_class = &fair_sched_class;
9713 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9714 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9715 #ifdef CONFIG_SMP
9716 #ifdef CONFIG_NO_HZ
9717 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9718 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9719 #endif
9720 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9721 #endif /* SMP */
9723 perf_counter_init();
9725 scheduler_running = 1;
9728 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9729 static inline int preempt_count_equals(int preempt_offset)
9731 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9733 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9736 void __might_sleep(char *file, int line, int preempt_offset)
9738 #ifdef in_atomic
9739 static unsigned long prev_jiffy; /* ratelimiting */
9741 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9742 system_state != SYSTEM_RUNNING || oops_in_progress)
9743 return;
9744 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9745 return;
9746 prev_jiffy = jiffies;
9748 printk(KERN_ERR
9749 "BUG: sleeping function called from invalid context at %s:%d\n",
9750 file, line);
9751 printk(KERN_ERR
9752 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9753 in_atomic(), irqs_disabled(),
9754 current->pid, current->comm);
9756 debug_show_held_locks(current);
9757 if (irqs_disabled())
9758 print_irqtrace_events(current);
9759 dump_stack();
9760 #endif
9762 EXPORT_SYMBOL(__might_sleep);
9763 #endif
9765 #ifdef CONFIG_MAGIC_SYSRQ
9766 static void normalize_task(struct rq *rq, struct task_struct *p)
9768 int on_rq;
9770 update_rq_clock(rq);
9771 on_rq = p->se.on_rq;
9772 if (on_rq)
9773 deactivate_task(rq, p, 0);
9774 __setscheduler(rq, p, SCHED_NORMAL, 0);
9775 if (on_rq) {
9776 activate_task(rq, p, 0);
9777 resched_task(rq->curr);
9781 void normalize_rt_tasks(void)
9783 struct task_struct *g, *p;
9784 unsigned long flags;
9785 struct rq *rq;
9787 read_lock_irqsave(&tasklist_lock, flags);
9788 do_each_thread(g, p) {
9790 * Only normalize user tasks:
9792 if (!p->mm)
9793 continue;
9795 p->se.exec_start = 0;
9796 #ifdef CONFIG_SCHEDSTATS
9797 p->se.wait_start = 0;
9798 p->se.sleep_start = 0;
9799 p->se.block_start = 0;
9800 #endif
9802 if (!rt_task(p)) {
9804 * Renice negative nice level userspace
9805 * tasks back to 0:
9807 if (TASK_NICE(p) < 0 && p->mm)
9808 set_user_nice(p, 0);
9809 continue;
9812 spin_lock(&p->pi_lock);
9813 rq = __task_rq_lock(p);
9815 normalize_task(rq, p);
9817 __task_rq_unlock(rq);
9818 spin_unlock(&p->pi_lock);
9819 } while_each_thread(g, p);
9821 read_unlock_irqrestore(&tasklist_lock, flags);
9824 #endif /* CONFIG_MAGIC_SYSRQ */
9826 #ifdef CONFIG_IA64
9828 * These functions are only useful for the IA64 MCA handling.
9830 * They can only be called when the whole system has been
9831 * stopped - every CPU needs to be quiescent, and no scheduling
9832 * activity can take place. Using them for anything else would
9833 * be a serious bug, and as a result, they aren't even visible
9834 * under any other configuration.
9838 * curr_task - return the current task for a given cpu.
9839 * @cpu: the processor in question.
9841 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9843 struct task_struct *curr_task(int cpu)
9845 return cpu_curr(cpu);
9849 * set_curr_task - set the current task for a given cpu.
9850 * @cpu: the processor in question.
9851 * @p: the task pointer to set.
9853 * Description: This function must only be used when non-maskable interrupts
9854 * are serviced on a separate stack. It allows the architecture to switch the
9855 * notion of the current task on a cpu in a non-blocking manner. This function
9856 * must be called with all CPU's synchronized, and interrupts disabled, the
9857 * and caller must save the original value of the current task (see
9858 * curr_task() above) and restore that value before reenabling interrupts and
9859 * re-starting the system.
9861 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9863 void set_curr_task(int cpu, struct task_struct *p)
9865 cpu_curr(cpu) = p;
9868 #endif
9870 #ifdef CONFIG_FAIR_GROUP_SCHED
9871 static void free_fair_sched_group(struct task_group *tg)
9873 int i;
9875 for_each_possible_cpu(i) {
9876 if (tg->cfs_rq)
9877 kfree(tg->cfs_rq[i]);
9878 if (tg->se)
9879 kfree(tg->se[i]);
9882 kfree(tg->cfs_rq);
9883 kfree(tg->se);
9886 static
9887 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9889 struct cfs_rq *cfs_rq;
9890 struct sched_entity *se;
9891 struct rq *rq;
9892 int i;
9894 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9895 if (!tg->cfs_rq)
9896 goto err;
9897 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9898 if (!tg->se)
9899 goto err;
9901 tg->shares = NICE_0_LOAD;
9903 for_each_possible_cpu(i) {
9904 rq = cpu_rq(i);
9906 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9907 GFP_KERNEL, cpu_to_node(i));
9908 if (!cfs_rq)
9909 goto err;
9911 se = kzalloc_node(sizeof(struct sched_entity),
9912 GFP_KERNEL, cpu_to_node(i));
9913 if (!se)
9914 goto err;
9916 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9919 return 1;
9921 err:
9922 return 0;
9925 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9927 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9928 &cpu_rq(cpu)->leaf_cfs_rq_list);
9931 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9933 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9935 #else /* !CONFG_FAIR_GROUP_SCHED */
9936 static inline void free_fair_sched_group(struct task_group *tg)
9940 static inline
9941 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9943 return 1;
9946 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9950 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9953 #endif /* CONFIG_FAIR_GROUP_SCHED */
9955 #ifdef CONFIG_RT_GROUP_SCHED
9956 static void free_rt_sched_group(struct task_group *tg)
9958 int i;
9960 destroy_rt_bandwidth(&tg->rt_bandwidth);
9962 for_each_possible_cpu(i) {
9963 if (tg->rt_rq)
9964 kfree(tg->rt_rq[i]);
9965 if (tg->rt_se)
9966 kfree(tg->rt_se[i]);
9969 kfree(tg->rt_rq);
9970 kfree(tg->rt_se);
9973 static
9974 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9976 struct rt_rq *rt_rq;
9977 struct sched_rt_entity *rt_se;
9978 struct rq *rq;
9979 int i;
9981 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9982 if (!tg->rt_rq)
9983 goto err;
9984 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9985 if (!tg->rt_se)
9986 goto err;
9988 init_rt_bandwidth(&tg->rt_bandwidth,
9989 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9991 for_each_possible_cpu(i) {
9992 rq = cpu_rq(i);
9994 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9995 GFP_KERNEL, cpu_to_node(i));
9996 if (!rt_rq)
9997 goto err;
9999 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
10000 GFP_KERNEL, cpu_to_node(i));
10001 if (!rt_se)
10002 goto err;
10004 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
10007 return 1;
10009 err:
10010 return 0;
10013 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10015 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
10016 &cpu_rq(cpu)->leaf_rt_rq_list);
10019 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10021 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
10023 #else /* !CONFIG_RT_GROUP_SCHED */
10024 static inline void free_rt_sched_group(struct task_group *tg)
10028 static inline
10029 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
10031 return 1;
10034 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10038 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10041 #endif /* CONFIG_RT_GROUP_SCHED */
10043 #ifdef CONFIG_GROUP_SCHED
10044 static void free_sched_group(struct task_group *tg)
10046 free_fair_sched_group(tg);
10047 free_rt_sched_group(tg);
10048 kfree(tg);
10051 /* allocate runqueue etc for a new task group */
10052 struct task_group *sched_create_group(struct task_group *parent)
10054 struct task_group *tg;
10055 unsigned long flags;
10056 int i;
10058 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10059 if (!tg)
10060 return ERR_PTR(-ENOMEM);
10062 if (!alloc_fair_sched_group(tg, parent))
10063 goto err;
10065 if (!alloc_rt_sched_group(tg, parent))
10066 goto err;
10068 spin_lock_irqsave(&task_group_lock, flags);
10069 for_each_possible_cpu(i) {
10070 register_fair_sched_group(tg, i);
10071 register_rt_sched_group(tg, i);
10073 list_add_rcu(&tg->list, &task_groups);
10075 WARN_ON(!parent); /* root should already exist */
10077 tg->parent = parent;
10078 INIT_LIST_HEAD(&tg->children);
10079 list_add_rcu(&tg->siblings, &parent->children);
10080 spin_unlock_irqrestore(&task_group_lock, flags);
10082 return tg;
10084 err:
10085 free_sched_group(tg);
10086 return ERR_PTR(-ENOMEM);
10089 /* rcu callback to free various structures associated with a task group */
10090 static void free_sched_group_rcu(struct rcu_head *rhp)
10092 /* now it should be safe to free those cfs_rqs */
10093 free_sched_group(container_of(rhp, struct task_group, rcu));
10096 /* Destroy runqueue etc associated with a task group */
10097 void sched_destroy_group(struct task_group *tg)
10099 unsigned long flags;
10100 int i;
10102 spin_lock_irqsave(&task_group_lock, flags);
10103 for_each_possible_cpu(i) {
10104 unregister_fair_sched_group(tg, i);
10105 unregister_rt_sched_group(tg, i);
10107 list_del_rcu(&tg->list);
10108 list_del_rcu(&tg->siblings);
10109 spin_unlock_irqrestore(&task_group_lock, flags);
10111 /* wait for possible concurrent references to cfs_rqs complete */
10112 call_rcu(&tg->rcu, free_sched_group_rcu);
10115 /* change task's runqueue when it moves between groups.
10116 * The caller of this function should have put the task in its new group
10117 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10118 * reflect its new group.
10120 void sched_move_task(struct task_struct *tsk)
10122 int on_rq, running;
10123 unsigned long flags;
10124 struct rq *rq;
10126 rq = task_rq_lock(tsk, &flags);
10128 update_rq_clock(rq);
10130 running = task_current(rq, tsk);
10131 on_rq = tsk->se.on_rq;
10133 if (on_rq)
10134 dequeue_task(rq, tsk, 0);
10135 if (unlikely(running))
10136 tsk->sched_class->put_prev_task(rq, tsk);
10138 set_task_rq(tsk, task_cpu(tsk));
10140 #ifdef CONFIG_FAIR_GROUP_SCHED
10141 if (tsk->sched_class->moved_group)
10142 tsk->sched_class->moved_group(tsk);
10143 #endif
10145 if (unlikely(running))
10146 tsk->sched_class->set_curr_task(rq);
10147 if (on_rq)
10148 enqueue_task(rq, tsk, 0);
10150 task_rq_unlock(rq, &flags);
10152 #endif /* CONFIG_GROUP_SCHED */
10154 #ifdef CONFIG_FAIR_GROUP_SCHED
10155 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10157 struct cfs_rq *cfs_rq = se->cfs_rq;
10158 int on_rq;
10160 on_rq = se->on_rq;
10161 if (on_rq)
10162 dequeue_entity(cfs_rq, se, 0);
10164 se->load.weight = shares;
10165 se->load.inv_weight = 0;
10167 if (on_rq)
10168 enqueue_entity(cfs_rq, se, 0);
10171 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10173 struct cfs_rq *cfs_rq = se->cfs_rq;
10174 struct rq *rq = cfs_rq->rq;
10175 unsigned long flags;
10177 spin_lock_irqsave(&rq->lock, flags);
10178 __set_se_shares(se, shares);
10179 spin_unlock_irqrestore(&rq->lock, flags);
10182 static DEFINE_MUTEX(shares_mutex);
10184 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10186 int i;
10187 unsigned long flags;
10190 * We can't change the weight of the root cgroup.
10192 if (!tg->se[0])
10193 return -EINVAL;
10195 if (shares < MIN_SHARES)
10196 shares = MIN_SHARES;
10197 else if (shares > MAX_SHARES)
10198 shares = MAX_SHARES;
10200 mutex_lock(&shares_mutex);
10201 if (tg->shares == shares)
10202 goto done;
10204 spin_lock_irqsave(&task_group_lock, flags);
10205 for_each_possible_cpu(i)
10206 unregister_fair_sched_group(tg, i);
10207 list_del_rcu(&tg->siblings);
10208 spin_unlock_irqrestore(&task_group_lock, flags);
10210 /* wait for any ongoing reference to this group to finish */
10211 synchronize_sched();
10214 * Now we are free to modify the group's share on each cpu
10215 * w/o tripping rebalance_share or load_balance_fair.
10217 tg->shares = shares;
10218 for_each_possible_cpu(i) {
10220 * force a rebalance
10222 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10223 set_se_shares(tg->se[i], shares);
10227 * Enable load balance activity on this group, by inserting it back on
10228 * each cpu's rq->leaf_cfs_rq_list.
10230 spin_lock_irqsave(&task_group_lock, flags);
10231 for_each_possible_cpu(i)
10232 register_fair_sched_group(tg, i);
10233 list_add_rcu(&tg->siblings, &tg->parent->children);
10234 spin_unlock_irqrestore(&task_group_lock, flags);
10235 done:
10236 mutex_unlock(&shares_mutex);
10237 return 0;
10240 unsigned long sched_group_shares(struct task_group *tg)
10242 return tg->shares;
10244 #endif
10246 #ifdef CONFIG_RT_GROUP_SCHED
10248 * Ensure that the real time constraints are schedulable.
10250 static DEFINE_MUTEX(rt_constraints_mutex);
10252 static unsigned long to_ratio(u64 period, u64 runtime)
10254 if (runtime == RUNTIME_INF)
10255 return 1ULL << 20;
10257 return div64_u64(runtime << 20, period);
10260 /* Must be called with tasklist_lock held */
10261 static inline int tg_has_rt_tasks(struct task_group *tg)
10263 struct task_struct *g, *p;
10265 do_each_thread(g, p) {
10266 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10267 return 1;
10268 } while_each_thread(g, p);
10270 return 0;
10273 struct rt_schedulable_data {
10274 struct task_group *tg;
10275 u64 rt_period;
10276 u64 rt_runtime;
10279 static int tg_schedulable(struct task_group *tg, void *data)
10281 struct rt_schedulable_data *d = data;
10282 struct task_group *child;
10283 unsigned long total, sum = 0;
10284 u64 period, runtime;
10286 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10287 runtime = tg->rt_bandwidth.rt_runtime;
10289 if (tg == d->tg) {
10290 period = d->rt_period;
10291 runtime = d->rt_runtime;
10294 #ifdef CONFIG_USER_SCHED
10295 if (tg == &root_task_group) {
10296 period = global_rt_period();
10297 runtime = global_rt_runtime();
10299 #endif
10302 * Cannot have more runtime than the period.
10304 if (runtime > period && runtime != RUNTIME_INF)
10305 return -EINVAL;
10308 * Ensure we don't starve existing RT tasks.
10310 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10311 return -EBUSY;
10313 total = to_ratio(period, runtime);
10316 * Nobody can have more than the global setting allows.
10318 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10319 return -EINVAL;
10322 * The sum of our children's runtime should not exceed our own.
10324 list_for_each_entry_rcu(child, &tg->children, siblings) {
10325 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10326 runtime = child->rt_bandwidth.rt_runtime;
10328 if (child == d->tg) {
10329 period = d->rt_period;
10330 runtime = d->rt_runtime;
10333 sum += to_ratio(period, runtime);
10336 if (sum > total)
10337 return -EINVAL;
10339 return 0;
10342 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10344 struct rt_schedulable_data data = {
10345 .tg = tg,
10346 .rt_period = period,
10347 .rt_runtime = runtime,
10350 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10353 static int tg_set_bandwidth(struct task_group *tg,
10354 u64 rt_period, u64 rt_runtime)
10356 int i, err = 0;
10358 mutex_lock(&rt_constraints_mutex);
10359 read_lock(&tasklist_lock);
10360 err = __rt_schedulable(tg, rt_period, rt_runtime);
10361 if (err)
10362 goto unlock;
10364 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10365 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10366 tg->rt_bandwidth.rt_runtime = rt_runtime;
10368 for_each_possible_cpu(i) {
10369 struct rt_rq *rt_rq = tg->rt_rq[i];
10371 spin_lock(&rt_rq->rt_runtime_lock);
10372 rt_rq->rt_runtime = rt_runtime;
10373 spin_unlock(&rt_rq->rt_runtime_lock);
10375 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10376 unlock:
10377 read_unlock(&tasklist_lock);
10378 mutex_unlock(&rt_constraints_mutex);
10380 return err;
10383 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10385 u64 rt_runtime, rt_period;
10387 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10388 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10389 if (rt_runtime_us < 0)
10390 rt_runtime = RUNTIME_INF;
10392 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10395 long sched_group_rt_runtime(struct task_group *tg)
10397 u64 rt_runtime_us;
10399 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10400 return -1;
10402 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10403 do_div(rt_runtime_us, NSEC_PER_USEC);
10404 return rt_runtime_us;
10407 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10409 u64 rt_runtime, rt_period;
10411 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10412 rt_runtime = tg->rt_bandwidth.rt_runtime;
10414 if (rt_period == 0)
10415 return -EINVAL;
10417 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10420 long sched_group_rt_period(struct task_group *tg)
10422 u64 rt_period_us;
10424 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10425 do_div(rt_period_us, NSEC_PER_USEC);
10426 return rt_period_us;
10429 static int sched_rt_global_constraints(void)
10431 u64 runtime, period;
10432 int ret = 0;
10434 if (sysctl_sched_rt_period <= 0)
10435 return -EINVAL;
10437 runtime = global_rt_runtime();
10438 period = global_rt_period();
10441 * Sanity check on the sysctl variables.
10443 if (runtime > period && runtime != RUNTIME_INF)
10444 return -EINVAL;
10446 mutex_lock(&rt_constraints_mutex);
10447 read_lock(&tasklist_lock);
10448 ret = __rt_schedulable(NULL, 0, 0);
10449 read_unlock(&tasklist_lock);
10450 mutex_unlock(&rt_constraints_mutex);
10452 return ret;
10455 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10457 /* Don't accept realtime tasks when there is no way for them to run */
10458 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10459 return 0;
10461 return 1;
10464 #else /* !CONFIG_RT_GROUP_SCHED */
10465 static int sched_rt_global_constraints(void)
10467 unsigned long flags;
10468 int i;
10470 if (sysctl_sched_rt_period <= 0)
10471 return -EINVAL;
10474 * There's always some RT tasks in the root group
10475 * -- migration, kstopmachine etc..
10477 if (sysctl_sched_rt_runtime == 0)
10478 return -EBUSY;
10480 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10481 for_each_possible_cpu(i) {
10482 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10484 spin_lock(&rt_rq->rt_runtime_lock);
10485 rt_rq->rt_runtime = global_rt_runtime();
10486 spin_unlock(&rt_rq->rt_runtime_lock);
10488 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10490 return 0;
10492 #endif /* CONFIG_RT_GROUP_SCHED */
10494 int sched_rt_handler(struct ctl_table *table, int write,
10495 struct file *filp, void __user *buffer, size_t *lenp,
10496 loff_t *ppos)
10498 int ret;
10499 int old_period, old_runtime;
10500 static DEFINE_MUTEX(mutex);
10502 mutex_lock(&mutex);
10503 old_period = sysctl_sched_rt_period;
10504 old_runtime = sysctl_sched_rt_runtime;
10506 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10508 if (!ret && write) {
10509 ret = sched_rt_global_constraints();
10510 if (ret) {
10511 sysctl_sched_rt_period = old_period;
10512 sysctl_sched_rt_runtime = old_runtime;
10513 } else {
10514 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10515 def_rt_bandwidth.rt_period =
10516 ns_to_ktime(global_rt_period());
10519 mutex_unlock(&mutex);
10521 return ret;
10524 #ifdef CONFIG_CGROUP_SCHED
10526 /* return corresponding task_group object of a cgroup */
10527 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10529 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10530 struct task_group, css);
10533 static struct cgroup_subsys_state *
10534 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10536 struct task_group *tg, *parent;
10538 if (!cgrp->parent) {
10539 /* This is early initialization for the top cgroup */
10540 return &init_task_group.css;
10543 parent = cgroup_tg(cgrp->parent);
10544 tg = sched_create_group(parent);
10545 if (IS_ERR(tg))
10546 return ERR_PTR(-ENOMEM);
10548 return &tg->css;
10551 static void
10552 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10554 struct task_group *tg = cgroup_tg(cgrp);
10556 sched_destroy_group(tg);
10559 static int
10560 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10561 struct task_struct *tsk)
10563 #ifdef CONFIG_RT_GROUP_SCHED
10564 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10565 return -EINVAL;
10566 #else
10567 /* We don't support RT-tasks being in separate groups */
10568 if (tsk->sched_class != &fair_sched_class)
10569 return -EINVAL;
10570 #endif
10572 return 0;
10575 static void
10576 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10577 struct cgroup *old_cont, struct task_struct *tsk)
10579 sched_move_task(tsk);
10582 #ifdef CONFIG_FAIR_GROUP_SCHED
10583 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10584 u64 shareval)
10586 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10589 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10591 struct task_group *tg = cgroup_tg(cgrp);
10593 return (u64) tg->shares;
10595 #endif /* CONFIG_FAIR_GROUP_SCHED */
10597 #ifdef CONFIG_RT_GROUP_SCHED
10598 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10599 s64 val)
10601 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10604 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10606 return sched_group_rt_runtime(cgroup_tg(cgrp));
10609 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10610 u64 rt_period_us)
10612 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10615 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10617 return sched_group_rt_period(cgroup_tg(cgrp));
10619 #endif /* CONFIG_RT_GROUP_SCHED */
10621 static struct cftype cpu_files[] = {
10622 #ifdef CONFIG_FAIR_GROUP_SCHED
10624 .name = "shares",
10625 .read_u64 = cpu_shares_read_u64,
10626 .write_u64 = cpu_shares_write_u64,
10628 #endif
10629 #ifdef CONFIG_RT_GROUP_SCHED
10631 .name = "rt_runtime_us",
10632 .read_s64 = cpu_rt_runtime_read,
10633 .write_s64 = cpu_rt_runtime_write,
10636 .name = "rt_period_us",
10637 .read_u64 = cpu_rt_period_read_uint,
10638 .write_u64 = cpu_rt_period_write_uint,
10640 #endif
10643 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10645 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10648 struct cgroup_subsys cpu_cgroup_subsys = {
10649 .name = "cpu",
10650 .create = cpu_cgroup_create,
10651 .destroy = cpu_cgroup_destroy,
10652 .can_attach = cpu_cgroup_can_attach,
10653 .attach = cpu_cgroup_attach,
10654 .populate = cpu_cgroup_populate,
10655 .subsys_id = cpu_cgroup_subsys_id,
10656 .early_init = 1,
10659 #endif /* CONFIG_CGROUP_SCHED */
10661 #ifdef CONFIG_CGROUP_CPUACCT
10664 * CPU accounting code for task groups.
10666 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10667 * (balbir@in.ibm.com).
10670 /* track cpu usage of a group of tasks and its child groups */
10671 struct cpuacct {
10672 struct cgroup_subsys_state css;
10673 /* cpuusage holds pointer to a u64-type object on every cpu */
10674 u64 *cpuusage;
10675 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10676 struct cpuacct *parent;
10679 struct cgroup_subsys cpuacct_subsys;
10681 /* return cpu accounting group corresponding to this container */
10682 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10684 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10685 struct cpuacct, css);
10688 /* return cpu accounting group to which this task belongs */
10689 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10691 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10692 struct cpuacct, css);
10695 /* create a new cpu accounting group */
10696 static struct cgroup_subsys_state *cpuacct_create(
10697 struct cgroup_subsys *ss, struct cgroup *cgrp)
10699 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10700 int i;
10702 if (!ca)
10703 goto out;
10705 ca->cpuusage = alloc_percpu(u64);
10706 if (!ca->cpuusage)
10707 goto out_free_ca;
10709 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10710 if (percpu_counter_init(&ca->cpustat[i], 0))
10711 goto out_free_counters;
10713 if (cgrp->parent)
10714 ca->parent = cgroup_ca(cgrp->parent);
10716 return &ca->css;
10718 out_free_counters:
10719 while (--i >= 0)
10720 percpu_counter_destroy(&ca->cpustat[i]);
10721 free_percpu(ca->cpuusage);
10722 out_free_ca:
10723 kfree(ca);
10724 out:
10725 return ERR_PTR(-ENOMEM);
10728 /* destroy an existing cpu accounting group */
10729 static void
10730 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10732 struct cpuacct *ca = cgroup_ca(cgrp);
10733 int i;
10735 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10736 percpu_counter_destroy(&ca->cpustat[i]);
10737 free_percpu(ca->cpuusage);
10738 kfree(ca);
10741 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10743 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10744 u64 data;
10746 #ifndef CONFIG_64BIT
10748 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10750 spin_lock_irq(&cpu_rq(cpu)->lock);
10751 data = *cpuusage;
10752 spin_unlock_irq(&cpu_rq(cpu)->lock);
10753 #else
10754 data = *cpuusage;
10755 #endif
10757 return data;
10760 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10762 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10764 #ifndef CONFIG_64BIT
10766 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10768 spin_lock_irq(&cpu_rq(cpu)->lock);
10769 *cpuusage = val;
10770 spin_unlock_irq(&cpu_rq(cpu)->lock);
10771 #else
10772 *cpuusage = val;
10773 #endif
10776 /* return total cpu usage (in nanoseconds) of a group */
10777 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10779 struct cpuacct *ca = cgroup_ca(cgrp);
10780 u64 totalcpuusage = 0;
10781 int i;
10783 for_each_present_cpu(i)
10784 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10786 return totalcpuusage;
10789 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10790 u64 reset)
10792 struct cpuacct *ca = cgroup_ca(cgrp);
10793 int err = 0;
10794 int i;
10796 if (reset) {
10797 err = -EINVAL;
10798 goto out;
10801 for_each_present_cpu(i)
10802 cpuacct_cpuusage_write(ca, i, 0);
10804 out:
10805 return err;
10808 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10809 struct seq_file *m)
10811 struct cpuacct *ca = cgroup_ca(cgroup);
10812 u64 percpu;
10813 int i;
10815 for_each_present_cpu(i) {
10816 percpu = cpuacct_cpuusage_read(ca, i);
10817 seq_printf(m, "%llu ", (unsigned long long) percpu);
10819 seq_printf(m, "\n");
10820 return 0;
10823 static const char *cpuacct_stat_desc[] = {
10824 [CPUACCT_STAT_USER] = "user",
10825 [CPUACCT_STAT_SYSTEM] = "system",
10828 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10829 struct cgroup_map_cb *cb)
10831 struct cpuacct *ca = cgroup_ca(cgrp);
10832 int i;
10834 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10835 s64 val = percpu_counter_read(&ca->cpustat[i]);
10836 val = cputime64_to_clock_t(val);
10837 cb->fill(cb, cpuacct_stat_desc[i], val);
10839 return 0;
10842 static struct cftype files[] = {
10844 .name = "usage",
10845 .read_u64 = cpuusage_read,
10846 .write_u64 = cpuusage_write,
10849 .name = "usage_percpu",
10850 .read_seq_string = cpuacct_percpu_seq_read,
10853 .name = "stat",
10854 .read_map = cpuacct_stats_show,
10858 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10860 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10864 * charge this task's execution time to its accounting group.
10866 * called with rq->lock held.
10868 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10870 struct cpuacct *ca;
10871 int cpu;
10873 if (unlikely(!cpuacct_subsys.active))
10874 return;
10876 cpu = task_cpu(tsk);
10878 rcu_read_lock();
10880 ca = task_ca(tsk);
10882 for (; ca; ca = ca->parent) {
10883 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10884 *cpuusage += cputime;
10887 rcu_read_unlock();
10891 * Charge the system/user time to the task's accounting group.
10893 static void cpuacct_update_stats(struct task_struct *tsk,
10894 enum cpuacct_stat_index idx, cputime_t val)
10896 struct cpuacct *ca;
10898 if (unlikely(!cpuacct_subsys.active))
10899 return;
10901 rcu_read_lock();
10902 ca = task_ca(tsk);
10904 do {
10905 percpu_counter_add(&ca->cpustat[idx], val);
10906 ca = ca->parent;
10907 } while (ca);
10908 rcu_read_unlock();
10911 struct cgroup_subsys cpuacct_subsys = {
10912 .name = "cpuacct",
10913 .create = cpuacct_create,
10914 .destroy = cpuacct_destroy,
10915 .populate = cpuacct_populate,
10916 .subsys_id = cpuacct_subsys_id,
10918 #endif /* CONFIG_CGROUP_CPUACCT */