2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
26 #include <asm/pgtable.h>
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
33 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
34 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
35 unsigned long hugepages_treat_as_movable
;
37 static int max_hstate
;
38 unsigned int default_hstate_idx
;
39 struct hstate hstates
[HUGE_MAX_HSTATE
];
41 __initdata
LIST_HEAD(huge_boot_pages
);
43 /* for command line parsing */
44 static struct hstate
* __initdata parsed_hstate
;
45 static unsigned long __initdata default_hstate_max_huge_pages
;
46 static unsigned long __initdata default_hstate_size
;
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 static DEFINE_SPINLOCK(hugetlb_lock
);
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
65 * down_write(&mm->mmap_sem);
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
71 struct list_head link
;
76 static long region_add(struct list_head
*head
, long f
, long t
)
78 struct file_region
*rg
, *nrg
, *trg
;
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg
, head
, link
)
85 /* Round our left edge to the current segment if it encloses us. */
89 /* Check for and consume any regions we now overlap with. */
91 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
92 if (&rg
->link
== head
)
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
112 static long region_chg(struct list_head
*head
, long f
, long t
)
114 struct file_region
*rg
, *nrg
;
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg
, head
, link
)
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg
->link
== head
|| t
< rg
->from
) {
126 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
131 INIT_LIST_HEAD(&nrg
->link
);
132 list_add(&nrg
->link
, rg
->link
.prev
);
137 /* Round our left edge to the current segment if it encloses us. */
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
144 if (&rg
->link
== head
)
149 /* We overlap with this area, if it extends further than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
156 chg
-= rg
->to
- rg
->from
;
161 static long region_truncate(struct list_head
*head
, long end
)
163 struct file_region
*rg
, *trg
;
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg
, head
, link
)
170 if (&rg
->link
== head
)
173 /* If we are in the middle of a region then adjust it. */
174 if (end
> rg
->from
) {
177 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
182 if (&rg
->link
== head
)
184 chg
+= rg
->to
- rg
->from
;
191 static long region_count(struct list_head
*head
, long f
, long t
)
193 struct file_region
*rg
;
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg
, head
, link
) {
206 seg_from
= max(rg
->from
, f
);
207 seg_to
= min(rg
->to
, t
);
209 chg
+= seg_to
- seg_from
;
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
219 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
220 struct vm_area_struct
*vma
, unsigned long address
)
222 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
223 (vma
->vm_pgoff
>> huge_page_order(h
));
226 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
227 unsigned long address
)
229 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
236 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
238 struct hstate
*hstate
;
240 if (!is_vm_hugetlb_page(vma
))
243 hstate
= hstate_vma(vma
);
245 return 1UL << (hstate
->order
+ PAGE_SHIFT
);
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
258 return vma_kernel_pagesize(vma
);
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
267 #define HPAGE_RESV_OWNER (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
290 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
292 return (unsigned long)vma
->vm_private_data
;
295 static void set_vma_private_data(struct vm_area_struct
*vma
,
298 vma
->vm_private_data
= (void *)value
;
303 struct list_head regions
;
306 static struct resv_map
*resv_map_alloc(void)
308 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
312 kref_init(&resv_map
->refs
);
313 INIT_LIST_HEAD(&resv_map
->regions
);
318 static void resv_map_release(struct kref
*ref
)
320 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map
->regions
, 0);
327 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
329 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
330 if (!(vma
->vm_flags
& VM_MAYSHARE
))
331 return (struct resv_map
*)(get_vma_private_data(vma
) &
336 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
338 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
339 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
341 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
342 HPAGE_RESV_MASK
) | (unsigned long)map
);
345 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
347 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
348 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
350 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
353 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
355 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
357 return (get_vma_private_data(vma
) & flag
) != 0;
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate
*h
,
362 struct vm_area_struct
*vma
)
364 if (vma
->vm_flags
& VM_NORESERVE
)
367 if (vma
->vm_flags
& VM_MAYSHARE
) {
368 /* Shared mappings always use reserves */
369 h
->resv_huge_pages
--;
370 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
372 * Only the process that called mmap() has reserves for
375 h
->resv_huge_pages
--;
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
382 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
383 if (!(vma
->vm_flags
& VM_MAYSHARE
))
384 vma
->vm_private_data
= (void *)0;
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct
*vma
)
390 if (vma
->vm_flags
& VM_MAYSHARE
)
392 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
397 static void copy_gigantic_page(struct page
*dst
, struct page
*src
)
400 struct hstate
*h
= page_hstate(src
);
401 struct page
*dst_base
= dst
;
402 struct page
*src_base
= src
;
404 for (i
= 0; i
< pages_per_huge_page(h
); ) {
406 copy_highpage(dst
, src
);
409 dst
= mem_map_next(dst
, dst_base
, i
);
410 src
= mem_map_next(src
, src_base
, i
);
414 void copy_huge_page(struct page
*dst
, struct page
*src
)
417 struct hstate
*h
= page_hstate(src
);
419 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
)) {
420 copy_gigantic_page(dst
, src
);
425 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
427 copy_highpage(dst
+ i
, src
+ i
);
431 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
433 int nid
= page_to_nid(page
);
434 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
435 h
->free_huge_pages
++;
436 h
->free_huge_pages_node
[nid
]++;
439 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
443 if (list_empty(&h
->hugepage_freelists
[nid
]))
445 page
= list_entry(h
->hugepage_freelists
[nid
].next
, struct page
, lru
);
446 list_del(&page
->lru
);
447 set_page_refcounted(page
);
448 h
->free_huge_pages
--;
449 h
->free_huge_pages_node
[nid
]--;
453 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
454 struct vm_area_struct
*vma
,
455 unsigned long address
, int avoid_reserve
)
457 struct page
*page
= NULL
;
458 struct mempolicy
*mpol
;
459 nodemask_t
*nodemask
;
460 struct zonelist
*zonelist
;
465 zonelist
= huge_zonelist(vma
, address
,
466 htlb_alloc_mask
, &mpol
, &nodemask
);
468 * A child process with MAP_PRIVATE mappings created by their parent
469 * have no page reserves. This check ensures that reservations are
470 * not "stolen". The child may still get SIGKILLed
472 if (!vma_has_reserves(vma
) &&
473 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
476 /* If reserves cannot be used, ensure enough pages are in the pool */
477 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
480 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
481 MAX_NR_ZONES
- 1, nodemask
) {
482 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
)) {
483 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
486 decrement_hugepage_resv_vma(h
, vma
);
497 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
501 VM_BUG_ON(h
->order
>= MAX_ORDER
);
504 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
505 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
506 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
507 1 << PG_referenced
| 1 << PG_dirty
|
508 1 << PG_active
| 1 << PG_reserved
|
509 1 << PG_private
| 1 << PG_writeback
);
511 set_compound_page_dtor(page
, NULL
);
512 set_page_refcounted(page
);
513 arch_release_hugepage(page
);
514 __free_pages(page
, huge_page_order(h
));
517 struct hstate
*size_to_hstate(unsigned long size
)
522 if (huge_page_size(h
) == size
)
528 static void free_huge_page(struct page
*page
)
531 * Can't pass hstate in here because it is called from the
532 * compound page destructor.
534 struct hstate
*h
= page_hstate(page
);
535 int nid
= page_to_nid(page
);
536 struct address_space
*mapping
;
538 mapping
= (struct address_space
*) page_private(page
);
539 set_page_private(page
, 0);
540 page
->mapping
= NULL
;
541 BUG_ON(page_count(page
));
542 BUG_ON(page_mapcount(page
));
543 INIT_LIST_HEAD(&page
->lru
);
545 spin_lock(&hugetlb_lock
);
546 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
547 update_and_free_page(h
, page
);
548 h
->surplus_huge_pages
--;
549 h
->surplus_huge_pages_node
[nid
]--;
551 enqueue_huge_page(h
, page
);
553 spin_unlock(&hugetlb_lock
);
555 hugetlb_put_quota(mapping
, 1);
558 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
560 set_compound_page_dtor(page
, free_huge_page
);
561 spin_lock(&hugetlb_lock
);
563 h
->nr_huge_pages_node
[nid
]++;
564 spin_unlock(&hugetlb_lock
);
565 put_page(page
); /* free it into the hugepage allocator */
568 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
571 int nr_pages
= 1 << order
;
572 struct page
*p
= page
+ 1;
574 /* we rely on prep_new_huge_page to set the destructor */
575 set_compound_order(page
, order
);
577 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
579 set_page_count(p
, 0);
580 p
->first_page
= page
;
584 int PageHuge(struct page
*page
)
586 compound_page_dtor
*dtor
;
588 if (!PageCompound(page
))
591 page
= compound_head(page
);
592 dtor
= get_compound_page_dtor(page
);
594 return dtor
== free_huge_page
;
596 EXPORT_SYMBOL_GPL(PageHuge
);
598 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
602 if (h
->order
>= MAX_ORDER
)
605 page
= alloc_pages_exact_node(nid
,
606 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
607 __GFP_REPEAT
|__GFP_NOWARN
,
610 if (arch_prepare_hugepage(page
)) {
611 __free_pages(page
, huge_page_order(h
));
614 prep_new_huge_page(h
, page
, nid
);
621 * common helper functions for hstate_next_node_to_{alloc|free}.
622 * We may have allocated or freed a huge page based on a different
623 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
624 * be outside of *nodes_allowed. Ensure that we use an allowed
625 * node for alloc or free.
627 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
629 nid
= next_node(nid
, *nodes_allowed
);
630 if (nid
== MAX_NUMNODES
)
631 nid
= first_node(*nodes_allowed
);
632 VM_BUG_ON(nid
>= MAX_NUMNODES
);
637 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
639 if (!node_isset(nid
, *nodes_allowed
))
640 nid
= next_node_allowed(nid
, nodes_allowed
);
645 * returns the previously saved node ["this node"] from which to
646 * allocate a persistent huge page for the pool and advance the
647 * next node from which to allocate, handling wrap at end of node
650 static int hstate_next_node_to_alloc(struct hstate
*h
,
651 nodemask_t
*nodes_allowed
)
655 VM_BUG_ON(!nodes_allowed
);
657 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
658 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
663 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
670 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
671 next_nid
= start_nid
;
674 page
= alloc_fresh_huge_page_node(h
, next_nid
);
679 next_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
680 } while (next_nid
!= start_nid
);
683 count_vm_event(HTLB_BUDDY_PGALLOC
);
685 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
691 * helper for free_pool_huge_page() - return the previously saved
692 * node ["this node"] from which to free a huge page. Advance the
693 * next node id whether or not we find a free huge page to free so
694 * that the next attempt to free addresses the next node.
696 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
700 VM_BUG_ON(!nodes_allowed
);
702 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
703 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
709 * Free huge page from pool from next node to free.
710 * Attempt to keep persistent huge pages more or less
711 * balanced over allowed nodes.
712 * Called with hugetlb_lock locked.
714 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
721 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
722 next_nid
= start_nid
;
726 * If we're returning unused surplus pages, only examine
727 * nodes with surplus pages.
729 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[next_nid
]) &&
730 !list_empty(&h
->hugepage_freelists
[next_nid
])) {
732 list_entry(h
->hugepage_freelists
[next_nid
].next
,
734 list_del(&page
->lru
);
735 h
->free_huge_pages
--;
736 h
->free_huge_pages_node
[next_nid
]--;
738 h
->surplus_huge_pages
--;
739 h
->surplus_huge_pages_node
[next_nid
]--;
741 update_and_free_page(h
, page
);
745 next_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
746 } while (next_nid
!= start_nid
);
751 static struct page
*alloc_buddy_huge_page(struct hstate
*h
, int nid
)
756 if (h
->order
>= MAX_ORDER
)
760 * Assume we will successfully allocate the surplus page to
761 * prevent racing processes from causing the surplus to exceed
764 * This however introduces a different race, where a process B
765 * tries to grow the static hugepage pool while alloc_pages() is
766 * called by process A. B will only examine the per-node
767 * counters in determining if surplus huge pages can be
768 * converted to normal huge pages in adjust_pool_surplus(). A
769 * won't be able to increment the per-node counter, until the
770 * lock is dropped by B, but B doesn't drop hugetlb_lock until
771 * no more huge pages can be converted from surplus to normal
772 * state (and doesn't try to convert again). Thus, we have a
773 * case where a surplus huge page exists, the pool is grown, and
774 * the surplus huge page still exists after, even though it
775 * should just have been converted to a normal huge page. This
776 * does not leak memory, though, as the hugepage will be freed
777 * once it is out of use. It also does not allow the counters to
778 * go out of whack in adjust_pool_surplus() as we don't modify
779 * the node values until we've gotten the hugepage and only the
780 * per-node value is checked there.
782 spin_lock(&hugetlb_lock
);
783 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
784 spin_unlock(&hugetlb_lock
);
788 h
->surplus_huge_pages
++;
790 spin_unlock(&hugetlb_lock
);
792 if (nid
== NUMA_NO_NODE
)
793 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
794 __GFP_REPEAT
|__GFP_NOWARN
,
797 page
= alloc_pages_exact_node(nid
,
798 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
799 __GFP_REPEAT
|__GFP_NOWARN
, huge_page_order(h
));
801 if (page
&& arch_prepare_hugepage(page
)) {
802 __free_pages(page
, huge_page_order(h
));
806 spin_lock(&hugetlb_lock
);
808 r_nid
= page_to_nid(page
);
809 set_compound_page_dtor(page
, free_huge_page
);
811 * We incremented the global counters already
813 h
->nr_huge_pages_node
[r_nid
]++;
814 h
->surplus_huge_pages_node
[r_nid
]++;
815 __count_vm_event(HTLB_BUDDY_PGALLOC
);
818 h
->surplus_huge_pages
--;
819 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
821 spin_unlock(&hugetlb_lock
);
827 * This allocation function is useful in the context where vma is irrelevant.
828 * E.g. soft-offlining uses this function because it only cares physical
829 * address of error page.
831 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
835 spin_lock(&hugetlb_lock
);
836 page
= dequeue_huge_page_node(h
, nid
);
837 spin_unlock(&hugetlb_lock
);
840 page
= alloc_buddy_huge_page(h
, nid
);
846 * Increase the hugetlb pool such that it can accommodate a reservation
849 static int gather_surplus_pages(struct hstate
*h
, int delta
)
851 struct list_head surplus_list
;
852 struct page
*page
, *tmp
;
854 int needed
, allocated
;
856 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
858 h
->resv_huge_pages
+= delta
;
863 INIT_LIST_HEAD(&surplus_list
);
867 spin_unlock(&hugetlb_lock
);
868 for (i
= 0; i
< needed
; i
++) {
869 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
872 * We were not able to allocate enough pages to
873 * satisfy the entire reservation so we free what
874 * we've allocated so far.
878 list_add(&page
->lru
, &surplus_list
);
883 * After retaking hugetlb_lock, we need to recalculate 'needed'
884 * because either resv_huge_pages or free_huge_pages may have changed.
886 spin_lock(&hugetlb_lock
);
887 needed
= (h
->resv_huge_pages
+ delta
) -
888 (h
->free_huge_pages
+ allocated
);
893 * The surplus_list now contains _at_least_ the number of extra pages
894 * needed to accommodate the reservation. Add the appropriate number
895 * of pages to the hugetlb pool and free the extras back to the buddy
896 * allocator. Commit the entire reservation here to prevent another
897 * process from stealing the pages as they are added to the pool but
898 * before they are reserved.
901 h
->resv_huge_pages
+= delta
;
904 /* Free the needed pages to the hugetlb pool */
905 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
908 list_del(&page
->lru
);
910 * This page is now managed by the hugetlb allocator and has
911 * no users -- drop the buddy allocator's reference.
913 put_page_testzero(page
);
914 VM_BUG_ON(page_count(page
));
915 enqueue_huge_page(h
, page
);
917 spin_unlock(&hugetlb_lock
);
919 /* Free unnecessary surplus pages to the buddy allocator */
921 if (!list_empty(&surplus_list
)) {
922 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
923 list_del(&page
->lru
);
927 spin_lock(&hugetlb_lock
);
933 * When releasing a hugetlb pool reservation, any surplus pages that were
934 * allocated to satisfy the reservation must be explicitly freed if they were
936 * Called with hugetlb_lock held.
938 static void return_unused_surplus_pages(struct hstate
*h
,
939 unsigned long unused_resv_pages
)
941 unsigned long nr_pages
;
943 /* Uncommit the reservation */
944 h
->resv_huge_pages
-= unused_resv_pages
;
946 /* Cannot return gigantic pages currently */
947 if (h
->order
>= MAX_ORDER
)
950 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
953 * We want to release as many surplus pages as possible, spread
954 * evenly across all nodes with memory. Iterate across these nodes
955 * until we can no longer free unreserved surplus pages. This occurs
956 * when the nodes with surplus pages have no free pages.
957 * free_pool_huge_page() will balance the the freed pages across the
958 * on-line nodes with memory and will handle the hstate accounting.
961 if (!free_pool_huge_page(h
, &node_states
[N_HIGH_MEMORY
], 1))
967 * Determine if the huge page at addr within the vma has an associated
968 * reservation. Where it does not we will need to logically increase
969 * reservation and actually increase quota before an allocation can occur.
970 * Where any new reservation would be required the reservation change is
971 * prepared, but not committed. Once the page has been quota'd allocated
972 * an instantiated the change should be committed via vma_commit_reservation.
973 * No action is required on failure.
975 static long vma_needs_reservation(struct hstate
*h
,
976 struct vm_area_struct
*vma
, unsigned long addr
)
978 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
979 struct inode
*inode
= mapping
->host
;
981 if (vma
->vm_flags
& VM_MAYSHARE
) {
982 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
983 return region_chg(&inode
->i_mapping
->private_list
,
986 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
991 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
992 struct resv_map
*reservations
= vma_resv_map(vma
);
994 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
1000 static void vma_commit_reservation(struct hstate
*h
,
1001 struct vm_area_struct
*vma
, unsigned long addr
)
1003 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1004 struct inode
*inode
= mapping
->host
;
1006 if (vma
->vm_flags
& VM_MAYSHARE
) {
1007 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1008 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
1010 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1011 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1012 struct resv_map
*reservations
= vma_resv_map(vma
);
1014 /* Mark this page used in the map. */
1015 region_add(&reservations
->regions
, idx
, idx
+ 1);
1019 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1020 unsigned long addr
, int avoid_reserve
)
1022 struct hstate
*h
= hstate_vma(vma
);
1024 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1025 struct inode
*inode
= mapping
->host
;
1029 * Processes that did not create the mapping will have no reserves and
1030 * will not have accounted against quota. Check that the quota can be
1031 * made before satisfying the allocation
1032 * MAP_NORESERVE mappings may also need pages and quota allocated
1033 * if no reserve mapping overlaps.
1035 chg
= vma_needs_reservation(h
, vma
, addr
);
1037 return ERR_PTR(-VM_FAULT_OOM
);
1039 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
1040 return ERR_PTR(-VM_FAULT_SIGBUS
);
1042 spin_lock(&hugetlb_lock
);
1043 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
1044 spin_unlock(&hugetlb_lock
);
1047 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1049 hugetlb_put_quota(inode
->i_mapping
, chg
);
1050 return ERR_PTR(-VM_FAULT_SIGBUS
);
1054 set_page_private(page
, (unsigned long) mapping
);
1056 vma_commit_reservation(h
, vma
, addr
);
1061 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1063 struct huge_bootmem_page
*m
;
1064 int nr_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
1069 addr
= __alloc_bootmem_node_nopanic(
1070 NODE_DATA(hstate_next_node_to_alloc(h
,
1071 &node_states
[N_HIGH_MEMORY
])),
1072 huge_page_size(h
), huge_page_size(h
), 0);
1076 * Use the beginning of the huge page to store the
1077 * huge_bootmem_page struct (until gather_bootmem
1078 * puts them into the mem_map).
1088 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1089 /* Put them into a private list first because mem_map is not up yet */
1090 list_add(&m
->list
, &huge_boot_pages
);
1095 static void prep_compound_huge_page(struct page
*page
, int order
)
1097 if (unlikely(order
> (MAX_ORDER
- 1)))
1098 prep_compound_gigantic_page(page
, order
);
1100 prep_compound_page(page
, order
);
1103 /* Put bootmem huge pages into the standard lists after mem_map is up */
1104 static void __init
gather_bootmem_prealloc(void)
1106 struct huge_bootmem_page
*m
;
1108 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1109 struct hstate
*h
= m
->hstate
;
1112 #ifdef CONFIG_HIGHMEM
1113 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
1114 free_bootmem_late((unsigned long)m
,
1115 sizeof(struct huge_bootmem_page
));
1117 page
= virt_to_page(m
);
1119 __ClearPageReserved(page
);
1120 WARN_ON(page_count(page
) != 1);
1121 prep_compound_huge_page(page
, h
->order
);
1122 prep_new_huge_page(h
, page
, page_to_nid(page
));
1124 * If we had gigantic hugepages allocated at boot time, we need
1125 * to restore the 'stolen' pages to totalram_pages in order to
1126 * fix confusing memory reports from free(1) and another
1127 * side-effects, like CommitLimit going negative.
1129 if (h
->order
> (MAX_ORDER
- 1))
1130 totalram_pages
+= 1 << h
->order
;
1134 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1138 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1139 if (h
->order
>= MAX_ORDER
) {
1140 if (!alloc_bootmem_huge_page(h
))
1142 } else if (!alloc_fresh_huge_page(h
,
1143 &node_states
[N_HIGH_MEMORY
]))
1146 h
->max_huge_pages
= i
;
1149 static void __init
hugetlb_init_hstates(void)
1153 for_each_hstate(h
) {
1154 /* oversize hugepages were init'ed in early boot */
1155 if (h
->order
< MAX_ORDER
)
1156 hugetlb_hstate_alloc_pages(h
);
1160 static char * __init
memfmt(char *buf
, unsigned long n
)
1162 if (n
>= (1UL << 30))
1163 sprintf(buf
, "%lu GB", n
>> 30);
1164 else if (n
>= (1UL << 20))
1165 sprintf(buf
, "%lu MB", n
>> 20);
1167 sprintf(buf
, "%lu KB", n
>> 10);
1171 static void __init
report_hugepages(void)
1175 for_each_hstate(h
) {
1177 printk(KERN_INFO
"HugeTLB registered %s page size, "
1178 "pre-allocated %ld pages\n",
1179 memfmt(buf
, huge_page_size(h
)),
1180 h
->free_huge_pages
);
1184 #ifdef CONFIG_HIGHMEM
1185 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1186 nodemask_t
*nodes_allowed
)
1190 if (h
->order
>= MAX_ORDER
)
1193 for_each_node_mask(i
, *nodes_allowed
) {
1194 struct page
*page
, *next
;
1195 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1196 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1197 if (count
>= h
->nr_huge_pages
)
1199 if (PageHighMem(page
))
1201 list_del(&page
->lru
);
1202 update_and_free_page(h
, page
);
1203 h
->free_huge_pages
--;
1204 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1209 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1210 nodemask_t
*nodes_allowed
)
1216 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1217 * balanced by operating on them in a round-robin fashion.
1218 * Returns 1 if an adjustment was made.
1220 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1223 int start_nid
, next_nid
;
1226 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1229 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
1231 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
1232 next_nid
= start_nid
;
1238 * To shrink on this node, there must be a surplus page
1240 if (!h
->surplus_huge_pages_node
[nid
]) {
1241 next_nid
= hstate_next_node_to_alloc(h
,
1248 * Surplus cannot exceed the total number of pages
1250 if (h
->surplus_huge_pages_node
[nid
] >=
1251 h
->nr_huge_pages_node
[nid
]) {
1252 next_nid
= hstate_next_node_to_free(h
,
1258 h
->surplus_huge_pages
+= delta
;
1259 h
->surplus_huge_pages_node
[nid
] += delta
;
1262 } while (next_nid
!= start_nid
);
1267 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1268 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1269 nodemask_t
*nodes_allowed
)
1271 unsigned long min_count
, ret
;
1273 if (h
->order
>= MAX_ORDER
)
1274 return h
->max_huge_pages
;
1277 * Increase the pool size
1278 * First take pages out of surplus state. Then make up the
1279 * remaining difference by allocating fresh huge pages.
1281 * We might race with alloc_buddy_huge_page() here and be unable
1282 * to convert a surplus huge page to a normal huge page. That is
1283 * not critical, though, it just means the overall size of the
1284 * pool might be one hugepage larger than it needs to be, but
1285 * within all the constraints specified by the sysctls.
1287 spin_lock(&hugetlb_lock
);
1288 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1289 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1293 while (count
> persistent_huge_pages(h
)) {
1295 * If this allocation races such that we no longer need the
1296 * page, free_huge_page will handle it by freeing the page
1297 * and reducing the surplus.
1299 spin_unlock(&hugetlb_lock
);
1300 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1301 spin_lock(&hugetlb_lock
);
1305 /* Bail for signals. Probably ctrl-c from user */
1306 if (signal_pending(current
))
1311 * Decrease the pool size
1312 * First return free pages to the buddy allocator (being careful
1313 * to keep enough around to satisfy reservations). Then place
1314 * pages into surplus state as needed so the pool will shrink
1315 * to the desired size as pages become free.
1317 * By placing pages into the surplus state independent of the
1318 * overcommit value, we are allowing the surplus pool size to
1319 * exceed overcommit. There are few sane options here. Since
1320 * alloc_buddy_huge_page() is checking the global counter,
1321 * though, we'll note that we're not allowed to exceed surplus
1322 * and won't grow the pool anywhere else. Not until one of the
1323 * sysctls are changed, or the surplus pages go out of use.
1325 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1326 min_count
= max(count
, min_count
);
1327 try_to_free_low(h
, min_count
, nodes_allowed
);
1328 while (min_count
< persistent_huge_pages(h
)) {
1329 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1332 while (count
< persistent_huge_pages(h
)) {
1333 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1337 ret
= persistent_huge_pages(h
);
1338 spin_unlock(&hugetlb_lock
);
1342 #define HSTATE_ATTR_RO(_name) \
1343 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1345 #define HSTATE_ATTR(_name) \
1346 static struct kobj_attribute _name##_attr = \
1347 __ATTR(_name, 0644, _name##_show, _name##_store)
1349 static struct kobject
*hugepages_kobj
;
1350 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1352 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1354 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1358 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1359 if (hstate_kobjs
[i
] == kobj
) {
1361 *nidp
= NUMA_NO_NODE
;
1365 return kobj_to_node_hstate(kobj
, nidp
);
1368 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1369 struct kobj_attribute
*attr
, char *buf
)
1372 unsigned long nr_huge_pages
;
1375 h
= kobj_to_hstate(kobj
, &nid
);
1376 if (nid
== NUMA_NO_NODE
)
1377 nr_huge_pages
= h
->nr_huge_pages
;
1379 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1381 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1384 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1385 struct kobject
*kobj
, struct kobj_attribute
*attr
,
1386 const char *buf
, size_t len
)
1390 unsigned long count
;
1392 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1394 err
= strict_strtoul(buf
, 10, &count
);
1398 h
= kobj_to_hstate(kobj
, &nid
);
1399 if (h
->order
>= MAX_ORDER
) {
1404 if (nid
== NUMA_NO_NODE
) {
1406 * global hstate attribute
1408 if (!(obey_mempolicy
&&
1409 init_nodemask_of_mempolicy(nodes_allowed
))) {
1410 NODEMASK_FREE(nodes_allowed
);
1411 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1413 } else if (nodes_allowed
) {
1415 * per node hstate attribute: adjust count to global,
1416 * but restrict alloc/free to the specified node.
1418 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1419 init_nodemask_of_node(nodes_allowed
, nid
);
1421 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1423 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1425 if (nodes_allowed
!= &node_states
[N_HIGH_MEMORY
])
1426 NODEMASK_FREE(nodes_allowed
);
1430 NODEMASK_FREE(nodes_allowed
);
1434 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1435 struct kobj_attribute
*attr
, char *buf
)
1437 return nr_hugepages_show_common(kobj
, attr
, buf
);
1440 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1441 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1443 return nr_hugepages_store_common(false, kobj
, attr
, buf
, len
);
1445 HSTATE_ATTR(nr_hugepages
);
1450 * hstate attribute for optionally mempolicy-based constraint on persistent
1451 * huge page alloc/free.
1453 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1454 struct kobj_attribute
*attr
, char *buf
)
1456 return nr_hugepages_show_common(kobj
, attr
, buf
);
1459 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1460 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1462 return nr_hugepages_store_common(true, kobj
, attr
, buf
, len
);
1464 HSTATE_ATTR(nr_hugepages_mempolicy
);
1468 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1469 struct kobj_attribute
*attr
, char *buf
)
1471 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1472 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1475 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1476 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1479 unsigned long input
;
1480 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1482 if (h
->order
>= MAX_ORDER
)
1485 err
= strict_strtoul(buf
, 10, &input
);
1489 spin_lock(&hugetlb_lock
);
1490 h
->nr_overcommit_huge_pages
= input
;
1491 spin_unlock(&hugetlb_lock
);
1495 HSTATE_ATTR(nr_overcommit_hugepages
);
1497 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1498 struct kobj_attribute
*attr
, char *buf
)
1501 unsigned long free_huge_pages
;
1504 h
= kobj_to_hstate(kobj
, &nid
);
1505 if (nid
== NUMA_NO_NODE
)
1506 free_huge_pages
= h
->free_huge_pages
;
1508 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1510 return sprintf(buf
, "%lu\n", free_huge_pages
);
1512 HSTATE_ATTR_RO(free_hugepages
);
1514 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1515 struct kobj_attribute
*attr
, char *buf
)
1517 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1518 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1520 HSTATE_ATTR_RO(resv_hugepages
);
1522 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1523 struct kobj_attribute
*attr
, char *buf
)
1526 unsigned long surplus_huge_pages
;
1529 h
= kobj_to_hstate(kobj
, &nid
);
1530 if (nid
== NUMA_NO_NODE
)
1531 surplus_huge_pages
= h
->surplus_huge_pages
;
1533 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
1535 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
1537 HSTATE_ATTR_RO(surplus_hugepages
);
1539 static struct attribute
*hstate_attrs
[] = {
1540 &nr_hugepages_attr
.attr
,
1541 &nr_overcommit_hugepages_attr
.attr
,
1542 &free_hugepages_attr
.attr
,
1543 &resv_hugepages_attr
.attr
,
1544 &surplus_hugepages_attr
.attr
,
1546 &nr_hugepages_mempolicy_attr
.attr
,
1551 static struct attribute_group hstate_attr_group
= {
1552 .attrs
= hstate_attrs
,
1555 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
1556 struct kobject
**hstate_kobjs
,
1557 struct attribute_group
*hstate_attr_group
)
1560 int hi
= h
- hstates
;
1562 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
1563 if (!hstate_kobjs
[hi
])
1566 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
1568 kobject_put(hstate_kobjs
[hi
]);
1573 static void __init
hugetlb_sysfs_init(void)
1578 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1579 if (!hugepages_kobj
)
1582 for_each_hstate(h
) {
1583 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
1584 hstate_kobjs
, &hstate_attr_group
);
1586 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s",
1594 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1595 * with node devices in node_devices[] using a parallel array. The array
1596 * index of a node device or _hstate == node id.
1597 * This is here to avoid any static dependency of the node device driver, in
1598 * the base kernel, on the hugetlb module.
1600 struct node_hstate
{
1601 struct kobject
*hugepages_kobj
;
1602 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1604 struct node_hstate node_hstates
[MAX_NUMNODES
];
1607 * A subset of global hstate attributes for node devices
1609 static struct attribute
*per_node_hstate_attrs
[] = {
1610 &nr_hugepages_attr
.attr
,
1611 &free_hugepages_attr
.attr
,
1612 &surplus_hugepages_attr
.attr
,
1616 static struct attribute_group per_node_hstate_attr_group
= {
1617 .attrs
= per_node_hstate_attrs
,
1621 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1622 * Returns node id via non-NULL nidp.
1624 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1628 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
1629 struct node_hstate
*nhs
= &node_hstates
[nid
];
1631 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1632 if (nhs
->hstate_kobjs
[i
] == kobj
) {
1644 * Unregister hstate attributes from a single node device.
1645 * No-op if no hstate attributes attached.
1647 void hugetlb_unregister_node(struct node
*node
)
1650 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
1652 if (!nhs
->hugepages_kobj
)
1653 return; /* no hstate attributes */
1656 if (nhs
->hstate_kobjs
[h
- hstates
]) {
1657 kobject_put(nhs
->hstate_kobjs
[h
- hstates
]);
1658 nhs
->hstate_kobjs
[h
- hstates
] = NULL
;
1661 kobject_put(nhs
->hugepages_kobj
);
1662 nhs
->hugepages_kobj
= NULL
;
1666 * hugetlb module exit: unregister hstate attributes from node devices
1669 static void hugetlb_unregister_all_nodes(void)
1674 * disable node device registrations.
1676 register_hugetlbfs_with_node(NULL
, NULL
);
1679 * remove hstate attributes from any nodes that have them.
1681 for (nid
= 0; nid
< nr_node_ids
; nid
++)
1682 hugetlb_unregister_node(&node_devices
[nid
]);
1686 * Register hstate attributes for a single node device.
1687 * No-op if attributes already registered.
1689 void hugetlb_register_node(struct node
*node
)
1692 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
1695 if (nhs
->hugepages_kobj
)
1696 return; /* already allocated */
1698 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
1700 if (!nhs
->hugepages_kobj
)
1703 for_each_hstate(h
) {
1704 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
1706 &per_node_hstate_attr_group
);
1708 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s"
1710 h
->name
, node
->dev
.id
);
1711 hugetlb_unregister_node(node
);
1718 * hugetlb init time: register hstate attributes for all registered node
1719 * devices of nodes that have memory. All on-line nodes should have
1720 * registered their associated device by this time.
1722 static void hugetlb_register_all_nodes(void)
1726 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1727 struct node
*node
= &node_devices
[nid
];
1728 if (node
->dev
.id
== nid
)
1729 hugetlb_register_node(node
);
1733 * Let the node device driver know we're here so it can
1734 * [un]register hstate attributes on node hotplug.
1736 register_hugetlbfs_with_node(hugetlb_register_node
,
1737 hugetlb_unregister_node
);
1739 #else /* !CONFIG_NUMA */
1741 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1749 static void hugetlb_unregister_all_nodes(void) { }
1751 static void hugetlb_register_all_nodes(void) { }
1755 static void __exit
hugetlb_exit(void)
1759 hugetlb_unregister_all_nodes();
1761 for_each_hstate(h
) {
1762 kobject_put(hstate_kobjs
[h
- hstates
]);
1765 kobject_put(hugepages_kobj
);
1767 module_exit(hugetlb_exit
);
1769 static int __init
hugetlb_init(void)
1771 /* Some platform decide whether they support huge pages at boot
1772 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1773 * there is no such support
1775 if (HPAGE_SHIFT
== 0)
1778 if (!size_to_hstate(default_hstate_size
)) {
1779 default_hstate_size
= HPAGE_SIZE
;
1780 if (!size_to_hstate(default_hstate_size
))
1781 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1783 default_hstate_idx
= size_to_hstate(default_hstate_size
) - hstates
;
1784 if (default_hstate_max_huge_pages
)
1785 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1787 hugetlb_init_hstates();
1789 gather_bootmem_prealloc();
1793 hugetlb_sysfs_init();
1795 hugetlb_register_all_nodes();
1799 module_init(hugetlb_init
);
1801 /* Should be called on processing a hugepagesz=... option */
1802 void __init
hugetlb_add_hstate(unsigned order
)
1807 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1808 printk(KERN_WARNING
"hugepagesz= specified twice, ignoring\n");
1811 BUG_ON(max_hstate
>= HUGE_MAX_HSTATE
);
1813 h
= &hstates
[max_hstate
++];
1815 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1816 h
->nr_huge_pages
= 0;
1817 h
->free_huge_pages
= 0;
1818 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1819 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1820 h
->next_nid_to_alloc
= first_node(node_states
[N_HIGH_MEMORY
]);
1821 h
->next_nid_to_free
= first_node(node_states
[N_HIGH_MEMORY
]);
1822 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1823 huge_page_size(h
)/1024);
1828 static int __init
hugetlb_nrpages_setup(char *s
)
1831 static unsigned long *last_mhp
;
1834 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1835 * so this hugepages= parameter goes to the "default hstate".
1838 mhp
= &default_hstate_max_huge_pages
;
1840 mhp
= &parsed_hstate
->max_huge_pages
;
1842 if (mhp
== last_mhp
) {
1843 printk(KERN_WARNING
"hugepages= specified twice without "
1844 "interleaving hugepagesz=, ignoring\n");
1848 if (sscanf(s
, "%lu", mhp
) <= 0)
1852 * Global state is always initialized later in hugetlb_init.
1853 * But we need to allocate >= MAX_ORDER hstates here early to still
1854 * use the bootmem allocator.
1856 if (max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1857 hugetlb_hstate_alloc_pages(parsed_hstate
);
1863 __setup("hugepages=", hugetlb_nrpages_setup
);
1865 static int __init
hugetlb_default_setup(char *s
)
1867 default_hstate_size
= memparse(s
, &s
);
1870 __setup("default_hugepagesz=", hugetlb_default_setup
);
1872 static unsigned int cpuset_mems_nr(unsigned int *array
)
1875 unsigned int nr
= 0;
1877 for_each_node_mask(node
, cpuset_current_mems_allowed
)
1883 #ifdef CONFIG_SYSCTL
1884 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
1885 struct ctl_table
*table
, int write
,
1886 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1888 struct hstate
*h
= &default_hstate
;
1892 tmp
= h
->max_huge_pages
;
1894 if (write
&& h
->order
>= MAX_ORDER
)
1898 table
->maxlen
= sizeof(unsigned long);
1899 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
1904 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
,
1905 GFP_KERNEL
| __GFP_NORETRY
);
1906 if (!(obey_mempolicy
&&
1907 init_nodemask_of_mempolicy(nodes_allowed
))) {
1908 NODEMASK_FREE(nodes_allowed
);
1909 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1911 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
, nodes_allowed
);
1913 if (nodes_allowed
!= &node_states
[N_HIGH_MEMORY
])
1914 NODEMASK_FREE(nodes_allowed
);
1920 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
1921 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1924 return hugetlb_sysctl_handler_common(false, table
, write
,
1925 buffer
, length
, ppos
);
1929 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
1930 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1932 return hugetlb_sysctl_handler_common(true, table
, write
,
1933 buffer
, length
, ppos
);
1935 #endif /* CONFIG_NUMA */
1937 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
1938 void __user
*buffer
,
1939 size_t *length
, loff_t
*ppos
)
1941 proc_dointvec(table
, write
, buffer
, length
, ppos
);
1942 if (hugepages_treat_as_movable
)
1943 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
1945 htlb_alloc_mask
= GFP_HIGHUSER
;
1949 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
1950 void __user
*buffer
,
1951 size_t *length
, loff_t
*ppos
)
1953 struct hstate
*h
= &default_hstate
;
1957 tmp
= h
->nr_overcommit_huge_pages
;
1959 if (write
&& h
->order
>= MAX_ORDER
)
1963 table
->maxlen
= sizeof(unsigned long);
1964 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
1969 spin_lock(&hugetlb_lock
);
1970 h
->nr_overcommit_huge_pages
= tmp
;
1971 spin_unlock(&hugetlb_lock
);
1977 #endif /* CONFIG_SYSCTL */
1979 void hugetlb_report_meminfo(struct seq_file
*m
)
1981 struct hstate
*h
= &default_hstate
;
1983 "HugePages_Total: %5lu\n"
1984 "HugePages_Free: %5lu\n"
1985 "HugePages_Rsvd: %5lu\n"
1986 "HugePages_Surp: %5lu\n"
1987 "Hugepagesize: %8lu kB\n",
1991 h
->surplus_huge_pages
,
1992 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
1995 int hugetlb_report_node_meminfo(int nid
, char *buf
)
1997 struct hstate
*h
= &default_hstate
;
1999 "Node %d HugePages_Total: %5u\n"
2000 "Node %d HugePages_Free: %5u\n"
2001 "Node %d HugePages_Surp: %5u\n",
2002 nid
, h
->nr_huge_pages_node
[nid
],
2003 nid
, h
->free_huge_pages_node
[nid
],
2004 nid
, h
->surplus_huge_pages_node
[nid
]);
2007 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2008 unsigned long hugetlb_total_pages(void)
2010 struct hstate
*h
= &default_hstate
;
2011 return h
->nr_huge_pages
* pages_per_huge_page(h
);
2014 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2018 spin_lock(&hugetlb_lock
);
2020 * When cpuset is configured, it breaks the strict hugetlb page
2021 * reservation as the accounting is done on a global variable. Such
2022 * reservation is completely rubbish in the presence of cpuset because
2023 * the reservation is not checked against page availability for the
2024 * current cpuset. Application can still potentially OOM'ed by kernel
2025 * with lack of free htlb page in cpuset that the task is in.
2026 * Attempt to enforce strict accounting with cpuset is almost
2027 * impossible (or too ugly) because cpuset is too fluid that
2028 * task or memory node can be dynamically moved between cpusets.
2030 * The change of semantics for shared hugetlb mapping with cpuset is
2031 * undesirable. However, in order to preserve some of the semantics,
2032 * we fall back to check against current free page availability as
2033 * a best attempt and hopefully to minimize the impact of changing
2034 * semantics that cpuset has.
2037 if (gather_surplus_pages(h
, delta
) < 0)
2040 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2041 return_unused_surplus_pages(h
, delta
);
2048 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2051 spin_unlock(&hugetlb_lock
);
2055 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2057 struct resv_map
*reservations
= vma_resv_map(vma
);
2060 * This new VMA should share its siblings reservation map if present.
2061 * The VMA will only ever have a valid reservation map pointer where
2062 * it is being copied for another still existing VMA. As that VMA
2063 * has a reference to the reservation map it cannot disappear until
2064 * after this open call completes. It is therefore safe to take a
2065 * new reference here without additional locking.
2068 kref_get(&reservations
->refs
);
2071 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2073 struct hstate
*h
= hstate_vma(vma
);
2074 struct resv_map
*reservations
= vma_resv_map(vma
);
2075 unsigned long reserve
;
2076 unsigned long start
;
2080 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2081 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2083 reserve
= (end
- start
) -
2084 region_count(&reservations
->regions
, start
, end
);
2086 kref_put(&reservations
->refs
, resv_map_release
);
2089 hugetlb_acct_memory(h
, -reserve
);
2090 hugetlb_put_quota(vma
->vm_file
->f_mapping
, reserve
);
2096 * We cannot handle pagefaults against hugetlb pages at all. They cause
2097 * handle_mm_fault() to try to instantiate regular-sized pages in the
2098 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2101 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2107 const struct vm_operations_struct hugetlb_vm_ops
= {
2108 .fault
= hugetlb_vm_op_fault
,
2109 .open
= hugetlb_vm_op_open
,
2110 .close
= hugetlb_vm_op_close
,
2113 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2120 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
2122 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
2124 entry
= pte_mkyoung(entry
);
2125 entry
= pte_mkhuge(entry
);
2130 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2131 unsigned long address
, pte_t
*ptep
)
2135 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
2136 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
2137 update_mmu_cache(vma
, address
, ptep
);
2141 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2142 struct vm_area_struct
*vma
)
2144 pte_t
*src_pte
, *dst_pte
, entry
;
2145 struct page
*ptepage
;
2148 struct hstate
*h
= hstate_vma(vma
);
2149 unsigned long sz
= huge_page_size(h
);
2151 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2153 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2154 src_pte
= huge_pte_offset(src
, addr
);
2157 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2161 /* If the pagetables are shared don't copy or take references */
2162 if (dst_pte
== src_pte
)
2165 spin_lock(&dst
->page_table_lock
);
2166 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
2167 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
2169 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2170 entry
= huge_ptep_get(src_pte
);
2171 ptepage
= pte_page(entry
);
2173 page_dup_rmap(ptepage
);
2174 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2176 spin_unlock(&src
->page_table_lock
);
2177 spin_unlock(&dst
->page_table_lock
);
2185 static int is_hugetlb_entry_migration(pte_t pte
)
2189 if (huge_pte_none(pte
) || pte_present(pte
))
2191 swp
= pte_to_swp_entry(pte
);
2192 if (non_swap_entry(swp
) && is_migration_entry(swp
))
2198 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2202 if (huge_pte_none(pte
) || pte_present(pte
))
2204 swp
= pte_to_swp_entry(pte
);
2205 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
2211 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2212 unsigned long end
, struct page
*ref_page
)
2214 struct mm_struct
*mm
= vma
->vm_mm
;
2215 unsigned long address
;
2220 struct hstate
*h
= hstate_vma(vma
);
2221 unsigned long sz
= huge_page_size(h
);
2224 * A page gathering list, protected by per file i_mmap_mutex. The
2225 * lock is used to avoid list corruption from multiple unmapping
2226 * of the same page since we are using page->lru.
2228 LIST_HEAD(page_list
);
2230 WARN_ON(!is_vm_hugetlb_page(vma
));
2231 BUG_ON(start
& ~huge_page_mask(h
));
2232 BUG_ON(end
& ~huge_page_mask(h
));
2234 mmu_notifier_invalidate_range_start(mm
, start
, end
);
2235 spin_lock(&mm
->page_table_lock
);
2236 for (address
= start
; address
< end
; address
+= sz
) {
2237 ptep
= huge_pte_offset(mm
, address
);
2241 if (huge_pmd_unshare(mm
, &address
, ptep
))
2245 * If a reference page is supplied, it is because a specific
2246 * page is being unmapped, not a range. Ensure the page we
2247 * are about to unmap is the actual page of interest.
2250 pte
= huge_ptep_get(ptep
);
2251 if (huge_pte_none(pte
))
2253 page
= pte_page(pte
);
2254 if (page
!= ref_page
)
2258 * Mark the VMA as having unmapped its page so that
2259 * future faults in this VMA will fail rather than
2260 * looking like data was lost
2262 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2265 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2266 if (huge_pte_none(pte
))
2270 * HWPoisoned hugepage is already unmapped and dropped reference
2272 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
)))
2275 page
= pte_page(pte
);
2277 set_page_dirty(page
);
2278 list_add(&page
->lru
, &page_list
);
2280 flush_tlb_range(vma
, start
, end
);
2281 spin_unlock(&mm
->page_table_lock
);
2282 mmu_notifier_invalidate_range_end(mm
, start
, end
);
2283 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
2284 page_remove_rmap(page
);
2285 list_del(&page
->lru
);
2290 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2291 unsigned long end
, struct page
*ref_page
)
2293 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
2294 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
2295 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
2299 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2300 * mappping it owns the reserve page for. The intention is to unmap the page
2301 * from other VMAs and let the children be SIGKILLed if they are faulting the
2304 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2305 struct page
*page
, unsigned long address
)
2307 struct hstate
*h
= hstate_vma(vma
);
2308 struct vm_area_struct
*iter_vma
;
2309 struct address_space
*mapping
;
2310 struct prio_tree_iter iter
;
2314 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2315 * from page cache lookup which is in HPAGE_SIZE units.
2317 address
= address
& huge_page_mask(h
);
2318 pgoff
= vma_hugecache_offset(h
, vma
, address
);
2319 mapping
= (struct address_space
*)page_private(page
);
2322 * Take the mapping lock for the duration of the table walk. As
2323 * this mapping should be shared between all the VMAs,
2324 * __unmap_hugepage_range() is called as the lock is already held
2326 mutex_lock(&mapping
->i_mmap_mutex
);
2327 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2328 /* Do not unmap the current VMA */
2329 if (iter_vma
== vma
)
2333 * Unmap the page from other VMAs without their own reserves.
2334 * They get marked to be SIGKILLed if they fault in these
2335 * areas. This is because a future no-page fault on this VMA
2336 * could insert a zeroed page instead of the data existing
2337 * from the time of fork. This would look like data corruption
2339 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2340 __unmap_hugepage_range(iter_vma
,
2341 address
, address
+ huge_page_size(h
),
2344 mutex_unlock(&mapping
->i_mmap_mutex
);
2350 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2351 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2352 * cannot race with other handlers or page migration.
2353 * Keep the pte_same checks anyway to make transition from the mutex easier.
2355 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2356 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2357 struct page
*pagecache_page
)
2359 struct hstate
*h
= hstate_vma(vma
);
2360 struct page
*old_page
, *new_page
;
2362 int outside_reserve
= 0;
2364 old_page
= pte_page(pte
);
2367 /* If no-one else is actually using this page, avoid the copy
2368 * and just make the page writable */
2369 avoidcopy
= (page_mapcount(old_page
) == 1);
2371 if (PageAnon(old_page
))
2372 page_move_anon_rmap(old_page
, vma
, address
);
2373 set_huge_ptep_writable(vma
, address
, ptep
);
2378 * If the process that created a MAP_PRIVATE mapping is about to
2379 * perform a COW due to a shared page count, attempt to satisfy
2380 * the allocation without using the existing reserves. The pagecache
2381 * page is used to determine if the reserve at this address was
2382 * consumed or not. If reserves were used, a partial faulted mapping
2383 * at the time of fork() could consume its reserves on COW instead
2384 * of the full address range.
2386 if (!(vma
->vm_flags
& VM_MAYSHARE
) &&
2387 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2388 old_page
!= pagecache_page
)
2389 outside_reserve
= 1;
2391 page_cache_get(old_page
);
2393 /* Drop page_table_lock as buddy allocator may be called */
2394 spin_unlock(&mm
->page_table_lock
);
2395 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2397 if (IS_ERR(new_page
)) {
2398 page_cache_release(old_page
);
2401 * If a process owning a MAP_PRIVATE mapping fails to COW,
2402 * it is due to references held by a child and an insufficient
2403 * huge page pool. To guarantee the original mappers
2404 * reliability, unmap the page from child processes. The child
2405 * may get SIGKILLed if it later faults.
2407 if (outside_reserve
) {
2408 BUG_ON(huge_pte_none(pte
));
2409 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
2410 BUG_ON(page_count(old_page
) != 1);
2411 BUG_ON(huge_pte_none(pte
));
2412 spin_lock(&mm
->page_table_lock
);
2413 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2414 if (likely(pte_same(huge_ptep_get(ptep
), pte
)))
2415 goto retry_avoidcopy
;
2417 * race occurs while re-acquiring page_table_lock, and
2425 /* Caller expects lock to be held */
2426 spin_lock(&mm
->page_table_lock
);
2427 return -PTR_ERR(new_page
);
2431 * When the original hugepage is shared one, it does not have
2432 * anon_vma prepared.
2434 if (unlikely(anon_vma_prepare(vma
))) {
2435 page_cache_release(new_page
);
2436 page_cache_release(old_page
);
2437 /* Caller expects lock to be held */
2438 spin_lock(&mm
->page_table_lock
);
2439 return VM_FAULT_OOM
;
2442 copy_user_huge_page(new_page
, old_page
, address
, vma
,
2443 pages_per_huge_page(h
));
2444 __SetPageUptodate(new_page
);
2447 * Retake the page_table_lock to check for racing updates
2448 * before the page tables are altered
2450 spin_lock(&mm
->page_table_lock
);
2451 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2452 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
2454 mmu_notifier_invalidate_range_start(mm
,
2455 address
& huge_page_mask(h
),
2456 (address
& huge_page_mask(h
)) + huge_page_size(h
));
2457 huge_ptep_clear_flush(vma
, address
, ptep
);
2458 set_huge_pte_at(mm
, address
, ptep
,
2459 make_huge_pte(vma
, new_page
, 1));
2460 page_remove_rmap(old_page
);
2461 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
2462 /* Make the old page be freed below */
2463 new_page
= old_page
;
2464 mmu_notifier_invalidate_range_end(mm
,
2465 address
& huge_page_mask(h
),
2466 (address
& huge_page_mask(h
)) + huge_page_size(h
));
2468 page_cache_release(new_page
);
2469 page_cache_release(old_page
);
2473 /* Return the pagecache page at a given address within a VMA */
2474 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2475 struct vm_area_struct
*vma
, unsigned long address
)
2477 struct address_space
*mapping
;
2480 mapping
= vma
->vm_file
->f_mapping
;
2481 idx
= vma_hugecache_offset(h
, vma
, address
);
2483 return find_lock_page(mapping
, idx
);
2487 * Return whether there is a pagecache page to back given address within VMA.
2488 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2490 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2491 struct vm_area_struct
*vma
, unsigned long address
)
2493 struct address_space
*mapping
;
2497 mapping
= vma
->vm_file
->f_mapping
;
2498 idx
= vma_hugecache_offset(h
, vma
, address
);
2500 page
= find_get_page(mapping
, idx
);
2503 return page
!= NULL
;
2506 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2507 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2509 struct hstate
*h
= hstate_vma(vma
);
2510 int ret
= VM_FAULT_SIGBUS
;
2515 struct address_space
*mapping
;
2519 * Currently, we are forced to kill the process in the event the
2520 * original mapper has unmapped pages from the child due to a failed
2521 * COW. Warn that such a situation has occurred as it may not be obvious
2523 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2525 "PID %d killed due to inadequate hugepage pool\n",
2530 mapping
= vma
->vm_file
->f_mapping
;
2531 idx
= vma_hugecache_offset(h
, vma
, address
);
2534 * Use page lock to guard against racing truncation
2535 * before we get page_table_lock.
2538 page
= find_lock_page(mapping
, idx
);
2540 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2543 page
= alloc_huge_page(vma
, address
, 0);
2545 ret
= -PTR_ERR(page
);
2548 clear_huge_page(page
, address
, pages_per_huge_page(h
));
2549 __SetPageUptodate(page
);
2551 if (vma
->vm_flags
& VM_MAYSHARE
) {
2553 struct inode
*inode
= mapping
->host
;
2555 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2563 spin_lock(&inode
->i_lock
);
2564 inode
->i_blocks
+= blocks_per_huge_page(h
);
2565 spin_unlock(&inode
->i_lock
);
2568 if (unlikely(anon_vma_prepare(vma
))) {
2570 goto backout_unlocked
;
2576 * If memory error occurs between mmap() and fault, some process
2577 * don't have hwpoisoned swap entry for errored virtual address.
2578 * So we need to block hugepage fault by PG_hwpoison bit check.
2580 if (unlikely(PageHWPoison(page
))) {
2581 ret
= VM_FAULT_HWPOISON
|
2582 VM_FAULT_SET_HINDEX(h
- hstates
);
2583 goto backout_unlocked
;
2588 * If we are going to COW a private mapping later, we examine the
2589 * pending reservations for this page now. This will ensure that
2590 * any allocations necessary to record that reservation occur outside
2593 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
2594 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2596 goto backout_unlocked
;
2599 spin_lock(&mm
->page_table_lock
);
2600 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2605 if (!huge_pte_none(huge_ptep_get(ptep
)))
2609 hugepage_add_new_anon_rmap(page
, vma
, address
);
2611 page_dup_rmap(page
);
2612 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2613 && (vma
->vm_flags
& VM_SHARED
)));
2614 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2616 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
2617 /* Optimization, do the COW without a second fault */
2618 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2621 spin_unlock(&mm
->page_table_lock
);
2627 spin_unlock(&mm
->page_table_lock
);
2634 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2635 unsigned long address
, unsigned int flags
)
2640 struct page
*page
= NULL
;
2641 struct page
*pagecache_page
= NULL
;
2642 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2643 struct hstate
*h
= hstate_vma(vma
);
2645 address
&= huge_page_mask(h
);
2647 ptep
= huge_pte_offset(mm
, address
);
2649 entry
= huge_ptep_get(ptep
);
2650 if (unlikely(is_hugetlb_entry_migration(entry
))) {
2651 migration_entry_wait(mm
, (pmd_t
*)ptep
, address
);
2653 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
2654 return VM_FAULT_HWPOISON_LARGE
|
2655 VM_FAULT_SET_HINDEX(h
- hstates
);
2658 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2660 return VM_FAULT_OOM
;
2663 * Serialize hugepage allocation and instantiation, so that we don't
2664 * get spurious allocation failures if two CPUs race to instantiate
2665 * the same page in the page cache.
2667 mutex_lock(&hugetlb_instantiation_mutex
);
2668 entry
= huge_ptep_get(ptep
);
2669 if (huge_pte_none(entry
)) {
2670 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, flags
);
2677 * If we are going to COW the mapping later, we examine the pending
2678 * reservations for this page now. This will ensure that any
2679 * allocations necessary to record that reservation occur outside the
2680 * spinlock. For private mappings, we also lookup the pagecache
2681 * page now as it is used to determine if a reservation has been
2684 if ((flags
& FAULT_FLAG_WRITE
) && !pte_write(entry
)) {
2685 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2690 if (!(vma
->vm_flags
& VM_MAYSHARE
))
2691 pagecache_page
= hugetlbfs_pagecache_page(h
,
2696 * hugetlb_cow() requires page locks of pte_page(entry) and
2697 * pagecache_page, so here we need take the former one
2698 * when page != pagecache_page or !pagecache_page.
2699 * Note that locking order is always pagecache_page -> page,
2700 * so no worry about deadlock.
2702 page
= pte_page(entry
);
2703 if (page
!= pagecache_page
)
2706 spin_lock(&mm
->page_table_lock
);
2707 /* Check for a racing update before calling hugetlb_cow */
2708 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
2709 goto out_page_table_lock
;
2712 if (flags
& FAULT_FLAG_WRITE
) {
2713 if (!pte_write(entry
)) {
2714 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2716 goto out_page_table_lock
;
2718 entry
= pte_mkdirty(entry
);
2720 entry
= pte_mkyoung(entry
);
2721 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
2722 flags
& FAULT_FLAG_WRITE
))
2723 update_mmu_cache(vma
, address
, ptep
);
2725 out_page_table_lock
:
2726 spin_unlock(&mm
->page_table_lock
);
2728 if (pagecache_page
) {
2729 unlock_page(pagecache_page
);
2730 put_page(pagecache_page
);
2732 if (page
!= pagecache_page
)
2736 mutex_unlock(&hugetlb_instantiation_mutex
);
2741 /* Can be overriden by architectures */
2742 __attribute__((weak
)) struct page
*
2743 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
2744 pud_t
*pud
, int write
)
2750 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2751 struct page
**pages
, struct vm_area_struct
**vmas
,
2752 unsigned long *position
, int *length
, int i
,
2755 unsigned long pfn_offset
;
2756 unsigned long vaddr
= *position
;
2757 int remainder
= *length
;
2758 struct hstate
*h
= hstate_vma(vma
);
2760 spin_lock(&mm
->page_table_lock
);
2761 while (vaddr
< vma
->vm_end
&& remainder
) {
2767 * Some archs (sparc64, sh*) have multiple pte_ts to
2768 * each hugepage. We have to make sure we get the
2769 * first, for the page indexing below to work.
2771 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2772 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
2775 * When coredumping, it suits get_dump_page if we just return
2776 * an error where there's an empty slot with no huge pagecache
2777 * to back it. This way, we avoid allocating a hugepage, and
2778 * the sparse dumpfile avoids allocating disk blocks, but its
2779 * huge holes still show up with zeroes where they need to be.
2781 if (absent
&& (flags
& FOLL_DUMP
) &&
2782 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
2788 ((flags
& FOLL_WRITE
) && !pte_write(huge_ptep_get(pte
)))) {
2791 spin_unlock(&mm
->page_table_lock
);
2792 ret
= hugetlb_fault(mm
, vma
, vaddr
,
2793 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
2794 spin_lock(&mm
->page_table_lock
);
2795 if (!(ret
& VM_FAULT_ERROR
))
2802 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
2803 page
= pte_page(huge_ptep_get(pte
));
2806 pages
[i
] = mem_map_offset(page
, pfn_offset
);
2817 if (vaddr
< vma
->vm_end
&& remainder
&&
2818 pfn_offset
< pages_per_huge_page(h
)) {
2820 * We use pfn_offset to avoid touching the pageframes
2821 * of this compound page.
2826 spin_unlock(&mm
->page_table_lock
);
2827 *length
= remainder
;
2830 return i
? i
: -EFAULT
;
2833 void hugetlb_change_protection(struct vm_area_struct
*vma
,
2834 unsigned long address
, unsigned long end
, pgprot_t newprot
)
2836 struct mm_struct
*mm
= vma
->vm_mm
;
2837 unsigned long start
= address
;
2840 struct hstate
*h
= hstate_vma(vma
);
2842 BUG_ON(address
>= end
);
2843 flush_cache_range(vma
, address
, end
);
2845 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
2846 spin_lock(&mm
->page_table_lock
);
2847 for (; address
< end
; address
+= huge_page_size(h
)) {
2848 ptep
= huge_pte_offset(mm
, address
);
2851 if (huge_pmd_unshare(mm
, &address
, ptep
))
2853 if (!huge_pte_none(huge_ptep_get(ptep
))) {
2854 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2855 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
2856 set_huge_pte_at(mm
, address
, ptep
, pte
);
2859 spin_unlock(&mm
->page_table_lock
);
2860 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
2862 flush_tlb_range(vma
, start
, end
);
2865 int hugetlb_reserve_pages(struct inode
*inode
,
2867 struct vm_area_struct
*vma
,
2868 vm_flags_t vm_flags
)
2871 struct hstate
*h
= hstate_inode(inode
);
2874 * Only apply hugepage reservation if asked. At fault time, an
2875 * attempt will be made for VM_NORESERVE to allocate a page
2876 * and filesystem quota without using reserves
2878 if (vm_flags
& VM_NORESERVE
)
2882 * Shared mappings base their reservation on the number of pages that
2883 * are already allocated on behalf of the file. Private mappings need
2884 * to reserve the full area even if read-only as mprotect() may be
2885 * called to make the mapping read-write. Assume !vma is a shm mapping
2887 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2888 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
2890 struct resv_map
*resv_map
= resv_map_alloc();
2896 set_vma_resv_map(vma
, resv_map
);
2897 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
2903 /* There must be enough filesystem quota for the mapping */
2904 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
2908 * Check enough hugepages are available for the reservation.
2909 * Hand back the quota if there are not
2911 ret
= hugetlb_acct_memory(h
, chg
);
2913 hugetlb_put_quota(inode
->i_mapping
, chg
);
2918 * Account for the reservations made. Shared mappings record regions
2919 * that have reservations as they are shared by multiple VMAs.
2920 * When the last VMA disappears, the region map says how much
2921 * the reservation was and the page cache tells how much of
2922 * the reservation was consumed. Private mappings are per-VMA and
2923 * only the consumed reservations are tracked. When the VMA
2924 * disappears, the original reservation is the VMA size and the
2925 * consumed reservations are stored in the map. Hence, nothing
2926 * else has to be done for private mappings here
2928 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2929 region_add(&inode
->i_mapping
->private_list
, from
, to
);
2933 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
2935 struct hstate
*h
= hstate_inode(inode
);
2936 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
2938 spin_lock(&inode
->i_lock
);
2939 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
2940 spin_unlock(&inode
->i_lock
);
2942 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
2943 hugetlb_acct_memory(h
, -(chg
- freed
));
2946 #ifdef CONFIG_MEMORY_FAILURE
2948 /* Should be called in hugetlb_lock */
2949 static int is_hugepage_on_freelist(struct page
*hpage
)
2953 struct hstate
*h
= page_hstate(hpage
);
2954 int nid
= page_to_nid(hpage
);
2956 list_for_each_entry_safe(page
, tmp
, &h
->hugepage_freelists
[nid
], lru
)
2963 * This function is called from memory failure code.
2964 * Assume the caller holds page lock of the head page.
2966 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
2968 struct hstate
*h
= page_hstate(hpage
);
2969 int nid
= page_to_nid(hpage
);
2972 spin_lock(&hugetlb_lock
);
2973 if (is_hugepage_on_freelist(hpage
)) {
2974 list_del(&hpage
->lru
);
2975 set_page_refcounted(hpage
);
2976 h
->free_huge_pages
--;
2977 h
->free_huge_pages_node
[nid
]--;
2980 spin_unlock(&hugetlb_lock
);