4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 * ->i_mmap_mutex (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
67 * ->i_mmap_mutex (truncate->unmap_mapping_range)
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * sb_lock (fs/fs-writeback.c)
82 * ->mapping->tree_lock (__sync_single_inode)
85 * ->anon_vma.lock (vma_adjust)
88 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
90 * ->page_table_lock or pte_lock
91 * ->swap_lock (try_to_unmap_one)
92 * ->private_lock (try_to_unmap_one)
93 * ->tree_lock (try_to_unmap_one)
94 * ->zone.lru_lock (follow_page->mark_page_accessed)
95 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
96 * ->private_lock (page_remove_rmap->set_page_dirty)
97 * ->tree_lock (page_remove_rmap->set_page_dirty)
98 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
99 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
100 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
101 * ->inode->i_lock (zap_pte_range->set_page_dirty)
102 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 * (code doesn't rely on that order, so you could switch it around)
105 * ->tasklist_lock (memory_failure, collect_procs_ao)
110 * Delete a page from the page cache and free it. Caller has to make
111 * sure the page is locked and that nobody else uses it - or that usage
112 * is safe. The caller must hold the mapping's tree_lock.
114 void __delete_from_page_cache(struct page
*page
)
116 struct address_space
*mapping
= page
->mapping
;
119 * if we're uptodate, flush out into the cleancache, otherwise
120 * invalidate any existing cleancache entries. We can't leave
121 * stale data around in the cleancache once our page is gone
123 if (PageUptodate(page
) && PageMappedToDisk(page
))
124 cleancache_put_page(page
);
126 cleancache_flush_page(mapping
, page
);
128 radix_tree_delete(&mapping
->page_tree
, page
->index
);
129 page
->mapping
= NULL
;
130 /* Leave page->index set: truncation lookup relies upon it */
132 __dec_zone_page_state(page
, NR_FILE_PAGES
);
133 if (PageSwapBacked(page
))
134 __dec_zone_page_state(page
, NR_SHMEM
);
135 BUG_ON(page_mapped(page
));
138 * Some filesystems seem to re-dirty the page even after
139 * the VM has canceled the dirty bit (eg ext3 journaling).
141 * Fix it up by doing a final dirty accounting check after
142 * having removed the page entirely.
144 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
145 dec_zone_page_state(page
, NR_FILE_DIRTY
);
146 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
151 * delete_from_page_cache - delete page from page cache
152 * @page: the page which the kernel is trying to remove from page cache
154 * This must be called only on pages that have been verified to be in the page
155 * cache and locked. It will never put the page into the free list, the caller
156 * has a reference on the page.
158 void delete_from_page_cache(struct page
*page
)
160 struct address_space
*mapping
= page
->mapping
;
161 void (*freepage
)(struct page
*);
163 BUG_ON(!PageLocked(page
));
165 freepage
= mapping
->a_ops
->freepage
;
166 spin_lock_irq(&mapping
->tree_lock
);
167 __delete_from_page_cache(page
);
168 spin_unlock_irq(&mapping
->tree_lock
);
169 mem_cgroup_uncharge_cache_page(page
);
173 page_cache_release(page
);
175 EXPORT_SYMBOL(delete_from_page_cache
);
177 static int sleep_on_page(void *word
)
183 static int sleep_on_page_killable(void *word
)
186 return fatal_signal_pending(current
) ? -EINTR
: 0;
190 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
191 * @mapping: address space structure to write
192 * @start: offset in bytes where the range starts
193 * @end: offset in bytes where the range ends (inclusive)
194 * @sync_mode: enable synchronous operation
196 * Start writeback against all of a mapping's dirty pages that lie
197 * within the byte offsets <start, end> inclusive.
199 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
200 * opposed to a regular memory cleansing writeback. The difference between
201 * these two operations is that if a dirty page/buffer is encountered, it must
202 * be waited upon, and not just skipped over.
204 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
205 loff_t end
, int sync_mode
)
208 struct writeback_control wbc
= {
209 .sync_mode
= sync_mode
,
210 .nr_to_write
= LONG_MAX
,
211 .range_start
= start
,
215 if (!mapping_cap_writeback_dirty(mapping
))
218 ret
= do_writepages(mapping
, &wbc
);
222 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
225 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
228 int filemap_fdatawrite(struct address_space
*mapping
)
230 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
232 EXPORT_SYMBOL(filemap_fdatawrite
);
234 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
237 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
239 EXPORT_SYMBOL(filemap_fdatawrite_range
);
242 * filemap_flush - mostly a non-blocking flush
243 * @mapping: target address_space
245 * This is a mostly non-blocking flush. Not suitable for data-integrity
246 * purposes - I/O may not be started against all dirty pages.
248 int filemap_flush(struct address_space
*mapping
)
250 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
252 EXPORT_SYMBOL(filemap_flush
);
255 * filemap_fdatawait_range - wait for writeback to complete
256 * @mapping: address space structure to wait for
257 * @start_byte: offset in bytes where the range starts
258 * @end_byte: offset in bytes where the range ends (inclusive)
260 * Walk the list of under-writeback pages of the given address space
261 * in the given range and wait for all of them.
263 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
266 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
267 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
272 if (end_byte
< start_byte
)
275 pagevec_init(&pvec
, 0);
276 while ((index
<= end
) &&
277 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
278 PAGECACHE_TAG_WRITEBACK
,
279 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
282 for (i
= 0; i
< nr_pages
; i
++) {
283 struct page
*page
= pvec
.pages
[i
];
285 /* until radix tree lookup accepts end_index */
286 if (page
->index
> end
)
289 wait_on_page_writeback(page
);
290 if (TestClearPageError(page
))
293 pagevec_release(&pvec
);
297 /* Check for outstanding write errors */
298 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
300 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
305 EXPORT_SYMBOL(filemap_fdatawait_range
);
308 * filemap_fdatawait - wait for all under-writeback pages to complete
309 * @mapping: address space structure to wait for
311 * Walk the list of under-writeback pages of the given address space
312 * and wait for all of them.
314 int filemap_fdatawait(struct address_space
*mapping
)
316 loff_t i_size
= i_size_read(mapping
->host
);
321 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
323 EXPORT_SYMBOL(filemap_fdatawait
);
325 int filemap_write_and_wait(struct address_space
*mapping
)
329 if (mapping
->nrpages
) {
330 err
= filemap_fdatawrite(mapping
);
332 * Even if the above returned error, the pages may be
333 * written partially (e.g. -ENOSPC), so we wait for it.
334 * But the -EIO is special case, it may indicate the worst
335 * thing (e.g. bug) happened, so we avoid waiting for it.
338 int err2
= filemap_fdatawait(mapping
);
345 EXPORT_SYMBOL(filemap_write_and_wait
);
348 * filemap_write_and_wait_range - write out & wait on a file range
349 * @mapping: the address_space for the pages
350 * @lstart: offset in bytes where the range starts
351 * @lend: offset in bytes where the range ends (inclusive)
353 * Write out and wait upon file offsets lstart->lend, inclusive.
355 * Note that `lend' is inclusive (describes the last byte to be written) so
356 * that this function can be used to write to the very end-of-file (end = -1).
358 int filemap_write_and_wait_range(struct address_space
*mapping
,
359 loff_t lstart
, loff_t lend
)
363 if (mapping
->nrpages
) {
364 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
366 /* See comment of filemap_write_and_wait() */
368 int err2
= filemap_fdatawait_range(mapping
,
376 EXPORT_SYMBOL(filemap_write_and_wait_range
);
379 * replace_page_cache_page - replace a pagecache page with a new one
380 * @old: page to be replaced
381 * @new: page to replace with
382 * @gfp_mask: allocation mode
384 * This function replaces a page in the pagecache with a new one. On
385 * success it acquires the pagecache reference for the new page and
386 * drops it for the old page. Both the old and new pages must be
387 * locked. This function does not add the new page to the LRU, the
388 * caller must do that.
390 * The remove + add is atomic. The only way this function can fail is
391 * memory allocation failure.
393 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
397 VM_BUG_ON(!PageLocked(old
));
398 VM_BUG_ON(!PageLocked(new));
399 VM_BUG_ON(new->mapping
);
401 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
403 struct address_space
*mapping
= old
->mapping
;
404 void (*freepage
)(struct page
*);
406 pgoff_t offset
= old
->index
;
407 freepage
= mapping
->a_ops
->freepage
;
410 new->mapping
= mapping
;
413 spin_lock_irq(&mapping
->tree_lock
);
414 __delete_from_page_cache(old
);
415 error
= radix_tree_insert(&mapping
->page_tree
, offset
, new);
418 __inc_zone_page_state(new, NR_FILE_PAGES
);
419 if (PageSwapBacked(new))
420 __inc_zone_page_state(new, NR_SHMEM
);
421 spin_unlock_irq(&mapping
->tree_lock
);
422 /* mem_cgroup codes must not be called under tree_lock */
423 mem_cgroup_replace_page_cache(old
, new);
424 radix_tree_preload_end();
427 page_cache_release(old
);
432 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
435 * add_to_page_cache_locked - add a locked page to the pagecache
437 * @mapping: the page's address_space
438 * @offset: page index
439 * @gfp_mask: page allocation mode
441 * This function is used to add a page to the pagecache. It must be locked.
442 * This function does not add the page to the LRU. The caller must do that.
444 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
445 pgoff_t offset
, gfp_t gfp_mask
)
449 VM_BUG_ON(!PageLocked(page
));
450 VM_BUG_ON(PageSwapBacked(page
));
452 error
= mem_cgroup_cache_charge(page
, current
->mm
,
453 gfp_mask
& GFP_RECLAIM_MASK
);
457 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
459 page_cache_get(page
);
460 page
->mapping
= mapping
;
461 page
->index
= offset
;
463 spin_lock_irq(&mapping
->tree_lock
);
464 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
465 if (likely(!error
)) {
467 __inc_zone_page_state(page
, NR_FILE_PAGES
);
468 spin_unlock_irq(&mapping
->tree_lock
);
470 page
->mapping
= NULL
;
471 /* Leave page->index set: truncation relies upon it */
472 spin_unlock_irq(&mapping
->tree_lock
);
473 mem_cgroup_uncharge_cache_page(page
);
474 page_cache_release(page
);
476 radix_tree_preload_end();
478 mem_cgroup_uncharge_cache_page(page
);
482 EXPORT_SYMBOL(add_to_page_cache_locked
);
484 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
485 pgoff_t offset
, gfp_t gfp_mask
)
489 ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
491 lru_cache_add_file(page
);
494 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
497 struct page
*__page_cache_alloc(gfp_t gfp
)
502 if (cpuset_do_page_mem_spread()) {
504 n
= cpuset_mem_spread_node();
505 page
= alloc_pages_exact_node(n
, gfp
, 0);
509 return alloc_pages(gfp
, 0);
511 EXPORT_SYMBOL(__page_cache_alloc
);
515 * In order to wait for pages to become available there must be
516 * waitqueues associated with pages. By using a hash table of
517 * waitqueues where the bucket discipline is to maintain all
518 * waiters on the same queue and wake all when any of the pages
519 * become available, and for the woken contexts to check to be
520 * sure the appropriate page became available, this saves space
521 * at a cost of "thundering herd" phenomena during rare hash
524 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
526 const struct zone
*zone
= page_zone(page
);
528 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
531 static inline void wake_up_page(struct page
*page
, int bit
)
533 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
536 void wait_on_page_bit(struct page
*page
, int bit_nr
)
538 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
540 if (test_bit(bit_nr
, &page
->flags
))
541 __wait_on_bit(page_waitqueue(page
), &wait
, sleep_on_page
,
542 TASK_UNINTERRUPTIBLE
);
544 EXPORT_SYMBOL(wait_on_page_bit
);
546 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
548 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
550 if (!test_bit(bit_nr
, &page
->flags
))
553 return __wait_on_bit(page_waitqueue(page
), &wait
,
554 sleep_on_page_killable
, TASK_KILLABLE
);
558 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
559 * @page: Page defining the wait queue of interest
560 * @waiter: Waiter to add to the queue
562 * Add an arbitrary @waiter to the wait queue for the nominated @page.
564 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
566 wait_queue_head_t
*q
= page_waitqueue(page
);
569 spin_lock_irqsave(&q
->lock
, flags
);
570 __add_wait_queue(q
, waiter
);
571 spin_unlock_irqrestore(&q
->lock
, flags
);
573 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
576 * unlock_page - unlock a locked page
579 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
580 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
581 * mechananism between PageLocked pages and PageWriteback pages is shared.
582 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
584 * The mb is necessary to enforce ordering between the clear_bit and the read
585 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
587 void unlock_page(struct page
*page
)
589 VM_BUG_ON(!PageLocked(page
));
590 clear_bit_unlock(PG_locked
, &page
->flags
);
591 smp_mb__after_clear_bit();
592 wake_up_page(page
, PG_locked
);
594 EXPORT_SYMBOL(unlock_page
);
597 * end_page_writeback - end writeback against a page
600 void end_page_writeback(struct page
*page
)
602 if (TestClearPageReclaim(page
))
603 rotate_reclaimable_page(page
);
605 if (!test_clear_page_writeback(page
))
608 smp_mb__after_clear_bit();
609 wake_up_page(page
, PG_writeback
);
611 EXPORT_SYMBOL(end_page_writeback
);
614 * __lock_page - get a lock on the page, assuming we need to sleep to get it
615 * @page: the page to lock
617 void __lock_page(struct page
*page
)
619 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
621 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sleep_on_page
,
622 TASK_UNINTERRUPTIBLE
);
624 EXPORT_SYMBOL(__lock_page
);
626 int __lock_page_killable(struct page
*page
)
628 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
630 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
631 sleep_on_page_killable
, TASK_KILLABLE
);
633 EXPORT_SYMBOL_GPL(__lock_page_killable
);
635 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
638 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
640 * CAUTION! In this case, mmap_sem is not released
641 * even though return 0.
643 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
646 up_read(&mm
->mmap_sem
);
647 if (flags
& FAULT_FLAG_KILLABLE
)
648 wait_on_page_locked_killable(page
);
650 wait_on_page_locked(page
);
653 if (flags
& FAULT_FLAG_KILLABLE
) {
656 ret
= __lock_page_killable(page
);
658 up_read(&mm
->mmap_sem
);
668 * find_get_page - find and get a page reference
669 * @mapping: the address_space to search
670 * @offset: the page index
672 * Is there a pagecache struct page at the given (mapping, offset) tuple?
673 * If yes, increment its refcount and return it; if no, return NULL.
675 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
683 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
685 page
= radix_tree_deref_slot(pagep
);
688 if (radix_tree_exception(page
)) {
689 if (radix_tree_deref_retry(page
))
692 * Otherwise, shmem/tmpfs must be storing a swap entry
693 * here as an exceptional entry: so return it without
694 * attempting to raise page count.
698 if (!page_cache_get_speculative(page
))
702 * Has the page moved?
703 * This is part of the lockless pagecache protocol. See
704 * include/linux/pagemap.h for details.
706 if (unlikely(page
!= *pagep
)) {
707 page_cache_release(page
);
716 EXPORT_SYMBOL(find_get_page
);
719 * find_lock_page - locate, pin and lock a pagecache page
720 * @mapping: the address_space to search
721 * @offset: the page index
723 * Locates the desired pagecache page, locks it, increments its reference
724 * count and returns its address.
726 * Returns zero if the page was not present. find_lock_page() may sleep.
728 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
733 page
= find_get_page(mapping
, offset
);
734 if (page
&& !radix_tree_exception(page
)) {
736 /* Has the page been truncated? */
737 if (unlikely(page
->mapping
!= mapping
)) {
739 page_cache_release(page
);
742 VM_BUG_ON(page
->index
!= offset
);
746 EXPORT_SYMBOL(find_lock_page
);
749 * find_or_create_page - locate or add a pagecache page
750 * @mapping: the page's address_space
751 * @index: the page's index into the mapping
752 * @gfp_mask: page allocation mode
754 * Locates a page in the pagecache. If the page is not present, a new page
755 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
756 * LRU list. The returned page is locked and has its reference count
759 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
762 * find_or_create_page() returns the desired page's address, or zero on
765 struct page
*find_or_create_page(struct address_space
*mapping
,
766 pgoff_t index
, gfp_t gfp_mask
)
771 page
= find_lock_page(mapping
, index
);
773 page
= __page_cache_alloc(gfp_mask
);
777 * We want a regular kernel memory (not highmem or DMA etc)
778 * allocation for the radix tree nodes, but we need to honour
779 * the context-specific requirements the caller has asked for.
780 * GFP_RECLAIM_MASK collects those requirements.
782 err
= add_to_page_cache_lru(page
, mapping
, index
,
783 (gfp_mask
& GFP_RECLAIM_MASK
));
785 page_cache_release(page
);
793 EXPORT_SYMBOL(find_or_create_page
);
796 * find_get_pages - gang pagecache lookup
797 * @mapping: The address_space to search
798 * @start: The starting page index
799 * @nr_pages: The maximum number of pages
800 * @pages: Where the resulting pages are placed
802 * find_get_pages() will search for and return a group of up to
803 * @nr_pages pages in the mapping. The pages are placed at @pages.
804 * find_get_pages() takes a reference against the returned pages.
806 * The search returns a group of mapping-contiguous pages with ascending
807 * indexes. There may be holes in the indices due to not-present pages.
809 * find_get_pages() returns the number of pages which were found.
811 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
812 unsigned int nr_pages
, struct page
**pages
)
816 unsigned int nr_found
, nr_skip
;
820 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
821 (void ***)pages
, NULL
, start
, nr_pages
);
824 for (i
= 0; i
< nr_found
; i
++) {
827 page
= radix_tree_deref_slot((void **)pages
[i
]);
831 if (radix_tree_exception(page
)) {
832 if (radix_tree_deref_retry(page
)) {
834 * Transient condition which can only trigger
835 * when entry at index 0 moves out of or back
836 * to root: none yet gotten, safe to restart.
842 * Otherwise, shmem/tmpfs must be storing a swap entry
843 * here as an exceptional entry: so skip over it -
844 * we only reach this from invalidate_mapping_pages().
850 if (!page_cache_get_speculative(page
))
853 /* Has the page moved? */
854 if (unlikely(page
!= *((void **)pages
[i
]))) {
855 page_cache_release(page
);
864 * If all entries were removed before we could secure them,
865 * try again, because callers stop trying once 0 is returned.
867 if (unlikely(!ret
&& nr_found
> nr_skip
))
874 * find_get_pages_contig - gang contiguous pagecache lookup
875 * @mapping: The address_space to search
876 * @index: The starting page index
877 * @nr_pages: The maximum number of pages
878 * @pages: Where the resulting pages are placed
880 * find_get_pages_contig() works exactly like find_get_pages(), except
881 * that the returned number of pages are guaranteed to be contiguous.
883 * find_get_pages_contig() returns the number of pages which were found.
885 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
886 unsigned int nr_pages
, struct page
**pages
)
890 unsigned int nr_found
;
894 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
895 (void ***)pages
, NULL
, index
, nr_pages
);
897 for (i
= 0; i
< nr_found
; i
++) {
900 page
= radix_tree_deref_slot((void **)pages
[i
]);
904 if (radix_tree_exception(page
)) {
905 if (radix_tree_deref_retry(page
)) {
907 * Transient condition which can only trigger
908 * when entry at index 0 moves out of or back
909 * to root: none yet gotten, safe to restart.
914 * Otherwise, shmem/tmpfs must be storing a swap entry
915 * here as an exceptional entry: so stop looking for
921 if (!page_cache_get_speculative(page
))
924 /* Has the page moved? */
925 if (unlikely(page
!= *((void **)pages
[i
]))) {
926 page_cache_release(page
);
931 * must check mapping and index after taking the ref.
932 * otherwise we can get both false positives and false
933 * negatives, which is just confusing to the caller.
935 if (page
->mapping
== NULL
|| page
->index
!= index
) {
936 page_cache_release(page
);
947 EXPORT_SYMBOL(find_get_pages_contig
);
950 * find_get_pages_tag - find and return pages that match @tag
951 * @mapping: the address_space to search
952 * @index: the starting page index
953 * @tag: the tag index
954 * @nr_pages: the maximum number of pages
955 * @pages: where the resulting pages are placed
957 * Like find_get_pages, except we only return pages which are tagged with
958 * @tag. We update @index to index the next page for the traversal.
960 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
961 int tag
, unsigned int nr_pages
, struct page
**pages
)
965 unsigned int nr_found
;
969 nr_found
= radix_tree_gang_lookup_tag_slot(&mapping
->page_tree
,
970 (void ***)pages
, *index
, nr_pages
, tag
);
972 for (i
= 0; i
< nr_found
; i
++) {
975 page
= radix_tree_deref_slot((void **)pages
[i
]);
979 if (radix_tree_exception(page
)) {
980 if (radix_tree_deref_retry(page
)) {
982 * Transient condition which can only trigger
983 * when entry at index 0 moves out of or back
984 * to root: none yet gotten, safe to restart.
989 * This function is never used on a shmem/tmpfs
990 * mapping, so a swap entry won't be found here.
995 if (!page_cache_get_speculative(page
))
998 /* Has the page moved? */
999 if (unlikely(page
!= *((void **)pages
[i
]))) {
1000 page_cache_release(page
);
1009 * If all entries were removed before we could secure them,
1010 * try again, because callers stop trying once 0 is returned.
1012 if (unlikely(!ret
&& nr_found
))
1017 *index
= pages
[ret
- 1]->index
+ 1;
1021 EXPORT_SYMBOL(find_get_pages_tag
);
1024 * grab_cache_page_nowait - returns locked page at given index in given cache
1025 * @mapping: target address_space
1026 * @index: the page index
1028 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1029 * This is intended for speculative data generators, where the data can
1030 * be regenerated if the page couldn't be grabbed. This routine should
1031 * be safe to call while holding the lock for another page.
1033 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1034 * and deadlock against the caller's locked page.
1037 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
1039 struct page
*page
= find_get_page(mapping
, index
);
1042 if (trylock_page(page
))
1044 page_cache_release(page
);
1047 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
1048 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_NOFS
)) {
1049 page_cache_release(page
);
1054 EXPORT_SYMBOL(grab_cache_page_nowait
);
1057 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1058 * a _large_ part of the i/o request. Imagine the worst scenario:
1060 * ---R__________________________________________B__________
1061 * ^ reading here ^ bad block(assume 4k)
1063 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1064 * => failing the whole request => read(R) => read(R+1) =>
1065 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1066 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1067 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1069 * It is going insane. Fix it by quickly scaling down the readahead size.
1071 static void shrink_readahead_size_eio(struct file
*filp
,
1072 struct file_ra_state
*ra
)
1078 * do_generic_file_read - generic file read routine
1079 * @filp: the file to read
1080 * @ppos: current file position
1081 * @desc: read_descriptor
1082 * @actor: read method
1084 * This is a generic file read routine, and uses the
1085 * mapping->a_ops->readpage() function for the actual low-level stuff.
1087 * This is really ugly. But the goto's actually try to clarify some
1088 * of the logic when it comes to error handling etc.
1090 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
1091 read_descriptor_t
*desc
, read_actor_t actor
)
1093 struct address_space
*mapping
= filp
->f_mapping
;
1094 struct inode
*inode
= mapping
->host
;
1095 struct file_ra_state
*ra
= &filp
->f_ra
;
1099 unsigned long offset
; /* offset into pagecache page */
1100 unsigned int prev_offset
;
1103 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1104 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1105 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1106 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1107 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1113 unsigned long nr
, ret
;
1117 page
= find_get_page(mapping
, index
);
1119 page_cache_sync_readahead(mapping
,
1121 index
, last_index
- index
);
1122 page
= find_get_page(mapping
, index
);
1123 if (unlikely(page
== NULL
))
1124 goto no_cached_page
;
1126 if (PageReadahead(page
)) {
1127 page_cache_async_readahead(mapping
,
1129 index
, last_index
- index
);
1131 if (!PageUptodate(page
)) {
1132 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1133 !mapping
->a_ops
->is_partially_uptodate
)
1134 goto page_not_up_to_date
;
1135 if (!trylock_page(page
))
1136 goto page_not_up_to_date
;
1137 /* Did it get truncated before we got the lock? */
1139 goto page_not_up_to_date_locked
;
1140 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1142 goto page_not_up_to_date_locked
;
1147 * i_size must be checked after we know the page is Uptodate.
1149 * Checking i_size after the check allows us to calculate
1150 * the correct value for "nr", which means the zero-filled
1151 * part of the page is not copied back to userspace (unless
1152 * another truncate extends the file - this is desired though).
1155 isize
= i_size_read(inode
);
1156 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1157 if (unlikely(!isize
|| index
> end_index
)) {
1158 page_cache_release(page
);
1162 /* nr is the maximum number of bytes to copy from this page */
1163 nr
= PAGE_CACHE_SIZE
;
1164 if (index
== end_index
) {
1165 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1167 page_cache_release(page
);
1173 /* If users can be writing to this page using arbitrary
1174 * virtual addresses, take care about potential aliasing
1175 * before reading the page on the kernel side.
1177 if (mapping_writably_mapped(mapping
))
1178 flush_dcache_page(page
);
1181 * When a sequential read accesses a page several times,
1182 * only mark it as accessed the first time.
1184 if (prev_index
!= index
|| offset
!= prev_offset
)
1185 mark_page_accessed(page
);
1189 * Ok, we have the page, and it's up-to-date, so
1190 * now we can copy it to user space...
1192 * The actor routine returns how many bytes were actually used..
1193 * NOTE! This may not be the same as how much of a user buffer
1194 * we filled up (we may be padding etc), so we can only update
1195 * "pos" here (the actor routine has to update the user buffer
1196 * pointers and the remaining count).
1198 ret
= actor(desc
, page
, offset
, nr
);
1200 index
+= offset
>> PAGE_CACHE_SHIFT
;
1201 offset
&= ~PAGE_CACHE_MASK
;
1202 prev_offset
= offset
;
1204 page_cache_release(page
);
1205 if (ret
== nr
&& desc
->count
)
1209 page_not_up_to_date
:
1210 /* Get exclusive access to the page ... */
1211 error
= lock_page_killable(page
);
1212 if (unlikely(error
))
1213 goto readpage_error
;
1215 page_not_up_to_date_locked
:
1216 /* Did it get truncated before we got the lock? */
1217 if (!page
->mapping
) {
1219 page_cache_release(page
);
1223 /* Did somebody else fill it already? */
1224 if (PageUptodate(page
)) {
1231 * A previous I/O error may have been due to temporary
1232 * failures, eg. multipath errors.
1233 * PG_error will be set again if readpage fails.
1235 ClearPageError(page
);
1236 /* Start the actual read. The read will unlock the page. */
1237 error
= mapping
->a_ops
->readpage(filp
, page
);
1239 if (unlikely(error
)) {
1240 if (error
== AOP_TRUNCATED_PAGE
) {
1241 page_cache_release(page
);
1244 goto readpage_error
;
1247 if (!PageUptodate(page
)) {
1248 error
= lock_page_killable(page
);
1249 if (unlikely(error
))
1250 goto readpage_error
;
1251 if (!PageUptodate(page
)) {
1252 if (page
->mapping
== NULL
) {
1254 * invalidate_mapping_pages got it
1257 page_cache_release(page
);
1261 shrink_readahead_size_eio(filp
, ra
);
1263 goto readpage_error
;
1271 /* UHHUH! A synchronous read error occurred. Report it */
1272 desc
->error
= error
;
1273 page_cache_release(page
);
1278 * Ok, it wasn't cached, so we need to create a new
1281 page
= page_cache_alloc_cold(mapping
);
1283 desc
->error
= -ENOMEM
;
1286 error
= add_to_page_cache_lru(page
, mapping
,
1289 page_cache_release(page
);
1290 if (error
== -EEXIST
)
1292 desc
->error
= error
;
1299 ra
->prev_pos
= prev_index
;
1300 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1301 ra
->prev_pos
|= prev_offset
;
1303 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1304 file_accessed(filp
);
1307 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1308 unsigned long offset
, unsigned long size
)
1311 unsigned long left
, count
= desc
->count
;
1317 * Faults on the destination of a read are common, so do it before
1320 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1321 kaddr
= kmap_atomic(page
, KM_USER0
);
1322 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1323 kaddr
+ offset
, size
);
1324 kunmap_atomic(kaddr
, KM_USER0
);
1329 /* Do it the slow way */
1331 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1336 desc
->error
= -EFAULT
;
1339 desc
->count
= count
- size
;
1340 desc
->written
+= size
;
1341 desc
->arg
.buf
+= size
;
1346 * Performs necessary checks before doing a write
1347 * @iov: io vector request
1348 * @nr_segs: number of segments in the iovec
1349 * @count: number of bytes to write
1350 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1352 * Adjust number of segments and amount of bytes to write (nr_segs should be
1353 * properly initialized first). Returns appropriate error code that caller
1354 * should return or zero in case that write should be allowed.
1356 int generic_segment_checks(const struct iovec
*iov
,
1357 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1361 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1362 const struct iovec
*iv
= &iov
[seg
];
1365 * If any segment has a negative length, or the cumulative
1366 * length ever wraps negative then return -EINVAL.
1369 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1371 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1376 cnt
-= iv
->iov_len
; /* This segment is no good */
1382 EXPORT_SYMBOL(generic_segment_checks
);
1385 * generic_file_aio_read - generic filesystem read routine
1386 * @iocb: kernel I/O control block
1387 * @iov: io vector request
1388 * @nr_segs: number of segments in the iovec
1389 * @pos: current file position
1391 * This is the "read()" routine for all filesystems
1392 * that can use the page cache directly.
1395 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1396 unsigned long nr_segs
, loff_t pos
)
1398 struct file
*filp
= iocb
->ki_filp
;
1400 unsigned long seg
= 0;
1402 loff_t
*ppos
= &iocb
->ki_pos
;
1405 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1409 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1410 if (filp
->f_flags
& O_DIRECT
) {
1412 struct address_space
*mapping
;
1413 struct inode
*inode
;
1415 mapping
= filp
->f_mapping
;
1416 inode
= mapping
->host
;
1418 goto out
; /* skip atime */
1419 size
= i_size_read(inode
);
1421 retval
= filemap_write_and_wait_range(mapping
, pos
,
1422 pos
+ iov_length(iov
, nr_segs
) - 1);
1424 struct blk_plug plug
;
1426 blk_start_plug(&plug
);
1427 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1429 blk_finish_plug(&plug
);
1432 *ppos
= pos
+ retval
;
1437 * Btrfs can have a short DIO read if we encounter
1438 * compressed extents, so if there was an error, or if
1439 * we've already read everything we wanted to, or if
1440 * there was a short read because we hit EOF, go ahead
1441 * and return. Otherwise fallthrough to buffered io for
1442 * the rest of the read.
1444 if (retval
< 0 || !count
|| *ppos
>= size
) {
1445 file_accessed(filp
);
1452 for (seg
= 0; seg
< nr_segs
; seg
++) {
1453 read_descriptor_t desc
;
1457 * If we did a short DIO read we need to skip the section of the
1458 * iov that we've already read data into.
1461 if (count
> iov
[seg
].iov_len
) {
1462 count
-= iov
[seg
].iov_len
;
1470 desc
.arg
.buf
= iov
[seg
].iov_base
+ offset
;
1471 desc
.count
= iov
[seg
].iov_len
- offset
;
1472 if (desc
.count
== 0)
1475 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1476 retval
+= desc
.written
;
1478 retval
= retval
?: desc
.error
;
1487 EXPORT_SYMBOL(generic_file_aio_read
);
1490 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1491 pgoff_t index
, unsigned long nr
)
1493 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1496 force_page_cache_readahead(mapping
, filp
, index
, nr
);
1500 SYSCALL_DEFINE(readahead
)(int fd
, loff_t offset
, size_t count
)
1508 if (file
->f_mode
& FMODE_READ
) {
1509 struct address_space
*mapping
= file
->f_mapping
;
1510 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1511 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1512 unsigned long len
= end
- start
+ 1;
1513 ret
= do_readahead(mapping
, file
, start
, len
);
1519 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1520 asmlinkage
long SyS_readahead(long fd
, loff_t offset
, long count
)
1522 return SYSC_readahead((int) fd
, offset
, (size_t) count
);
1524 SYSCALL_ALIAS(sys_readahead
, SyS_readahead
);
1529 * page_cache_read - adds requested page to the page cache if not already there
1530 * @file: file to read
1531 * @offset: page index
1533 * This adds the requested page to the page cache if it isn't already there,
1534 * and schedules an I/O to read in its contents from disk.
1536 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1538 struct address_space
*mapping
= file
->f_mapping
;
1543 page
= page_cache_alloc_cold(mapping
);
1547 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1549 ret
= mapping
->a_ops
->readpage(file
, page
);
1550 else if (ret
== -EEXIST
)
1551 ret
= 0; /* losing race to add is OK */
1553 page_cache_release(page
);
1555 } while (ret
== AOP_TRUNCATED_PAGE
);
1560 #define MMAP_LOTSAMISS (100)
1563 * Synchronous readahead happens when we don't even find
1564 * a page in the page cache at all.
1566 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1567 struct file_ra_state
*ra
,
1571 unsigned long ra_pages
;
1572 struct address_space
*mapping
= file
->f_mapping
;
1574 /* If we don't want any read-ahead, don't bother */
1575 if (VM_RandomReadHint(vma
))
1580 if (VM_SequentialReadHint(vma
)) {
1581 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1586 /* Avoid banging the cache line if not needed */
1587 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
1591 * Do we miss much more than hit in this file? If so,
1592 * stop bothering with read-ahead. It will only hurt.
1594 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1600 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1601 ra
->start
= max_t(long, 0, offset
- ra_pages
/ 2);
1602 ra
->size
= ra_pages
;
1603 ra
->async_size
= ra_pages
/ 4;
1604 ra_submit(ra
, mapping
, file
);
1608 * Asynchronous readahead happens when we find the page and PG_readahead,
1609 * so we want to possibly extend the readahead further..
1611 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1612 struct file_ra_state
*ra
,
1617 struct address_space
*mapping
= file
->f_mapping
;
1619 /* If we don't want any read-ahead, don't bother */
1620 if (VM_RandomReadHint(vma
))
1622 if (ra
->mmap_miss
> 0)
1624 if (PageReadahead(page
))
1625 page_cache_async_readahead(mapping
, ra
, file
,
1626 page
, offset
, ra
->ra_pages
);
1630 * filemap_fault - read in file data for page fault handling
1631 * @vma: vma in which the fault was taken
1632 * @vmf: struct vm_fault containing details of the fault
1634 * filemap_fault() is invoked via the vma operations vector for a
1635 * mapped memory region to read in file data during a page fault.
1637 * The goto's are kind of ugly, but this streamlines the normal case of having
1638 * it in the page cache, and handles the special cases reasonably without
1639 * having a lot of duplicated code.
1641 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1644 struct file
*file
= vma
->vm_file
;
1645 struct address_space
*mapping
= file
->f_mapping
;
1646 struct file_ra_state
*ra
= &file
->f_ra
;
1647 struct inode
*inode
= mapping
->host
;
1648 pgoff_t offset
= vmf
->pgoff
;
1653 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1655 return VM_FAULT_SIGBUS
;
1658 * Do we have something in the page cache already?
1660 page
= find_get_page(mapping
, offset
);
1663 * We found the page, so try async readahead before
1664 * waiting for the lock.
1666 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1668 /* No page in the page cache at all */
1669 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1670 count_vm_event(PGMAJFAULT
);
1671 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1672 ret
= VM_FAULT_MAJOR
;
1674 page
= find_get_page(mapping
, offset
);
1676 goto no_cached_page
;
1679 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
1680 page_cache_release(page
);
1681 return ret
| VM_FAULT_RETRY
;
1684 /* Did it get truncated? */
1685 if (unlikely(page
->mapping
!= mapping
)) {
1690 VM_BUG_ON(page
->index
!= offset
);
1693 * We have a locked page in the page cache, now we need to check
1694 * that it's up-to-date. If not, it is going to be due to an error.
1696 if (unlikely(!PageUptodate(page
)))
1697 goto page_not_uptodate
;
1700 * Found the page and have a reference on it.
1701 * We must recheck i_size under page lock.
1703 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1704 if (unlikely(offset
>= size
)) {
1706 page_cache_release(page
);
1707 return VM_FAULT_SIGBUS
;
1711 return ret
| VM_FAULT_LOCKED
;
1715 * We're only likely to ever get here if MADV_RANDOM is in
1718 error
= page_cache_read(file
, offset
);
1721 * The page we want has now been added to the page cache.
1722 * In the unlikely event that someone removed it in the
1723 * meantime, we'll just come back here and read it again.
1729 * An error return from page_cache_read can result if the
1730 * system is low on memory, or a problem occurs while trying
1733 if (error
== -ENOMEM
)
1734 return VM_FAULT_OOM
;
1735 return VM_FAULT_SIGBUS
;
1739 * Umm, take care of errors if the page isn't up-to-date.
1740 * Try to re-read it _once_. We do this synchronously,
1741 * because there really aren't any performance issues here
1742 * and we need to check for errors.
1744 ClearPageError(page
);
1745 error
= mapping
->a_ops
->readpage(file
, page
);
1747 wait_on_page_locked(page
);
1748 if (!PageUptodate(page
))
1751 page_cache_release(page
);
1753 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1756 /* Things didn't work out. Return zero to tell the mm layer so. */
1757 shrink_readahead_size_eio(file
, ra
);
1758 return VM_FAULT_SIGBUS
;
1760 EXPORT_SYMBOL(filemap_fault
);
1762 const struct vm_operations_struct generic_file_vm_ops
= {
1763 .fault
= filemap_fault
,
1766 /* This is used for a general mmap of a disk file */
1768 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1770 struct address_space
*mapping
= file
->f_mapping
;
1772 if (!mapping
->a_ops
->readpage
)
1774 file_accessed(file
);
1775 vma
->vm_ops
= &generic_file_vm_ops
;
1776 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1781 * This is for filesystems which do not implement ->writepage.
1783 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1785 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1787 return generic_file_mmap(file
, vma
);
1790 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1794 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1798 #endif /* CONFIG_MMU */
1800 EXPORT_SYMBOL(generic_file_mmap
);
1801 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1803 static struct page
*__read_cache_page(struct address_space
*mapping
,
1805 int (*filler
)(void *, struct page
*),
1812 page
= find_get_page(mapping
, index
);
1814 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
1816 return ERR_PTR(-ENOMEM
);
1817 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp
);
1818 if (unlikely(err
)) {
1819 page_cache_release(page
);
1822 /* Presumably ENOMEM for radix tree node */
1823 return ERR_PTR(err
);
1825 err
= filler(data
, page
);
1827 page_cache_release(page
);
1828 page
= ERR_PTR(err
);
1834 static struct page
*do_read_cache_page(struct address_space
*mapping
,
1836 int (*filler
)(void *, struct page
*),
1845 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
1848 if (PageUptodate(page
))
1852 if (!page
->mapping
) {
1854 page_cache_release(page
);
1857 if (PageUptodate(page
)) {
1861 err
= filler(data
, page
);
1863 page_cache_release(page
);
1864 return ERR_PTR(err
);
1867 mark_page_accessed(page
);
1872 * read_cache_page_async - read into page cache, fill it if needed
1873 * @mapping: the page's address_space
1874 * @index: the page index
1875 * @filler: function to perform the read
1876 * @data: first arg to filler(data, page) function, often left as NULL
1878 * Same as read_cache_page, but don't wait for page to become unlocked
1879 * after submitting it to the filler.
1881 * Read into the page cache. If a page already exists, and PageUptodate() is
1882 * not set, try to fill the page but don't wait for it to become unlocked.
1884 * If the page does not get brought uptodate, return -EIO.
1886 struct page
*read_cache_page_async(struct address_space
*mapping
,
1888 int (*filler
)(void *, struct page
*),
1891 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
1893 EXPORT_SYMBOL(read_cache_page_async
);
1895 static struct page
*wait_on_page_read(struct page
*page
)
1897 if (!IS_ERR(page
)) {
1898 wait_on_page_locked(page
);
1899 if (!PageUptodate(page
)) {
1900 page_cache_release(page
);
1901 page
= ERR_PTR(-EIO
);
1908 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1909 * @mapping: the page's address_space
1910 * @index: the page index
1911 * @gfp: the page allocator flags to use if allocating
1913 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1914 * any new page allocations done using the specified allocation flags.
1916 * If the page does not get brought uptodate, return -EIO.
1918 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
1922 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
1924 return wait_on_page_read(do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
));
1926 EXPORT_SYMBOL(read_cache_page_gfp
);
1929 * read_cache_page - read into page cache, fill it if needed
1930 * @mapping: the page's address_space
1931 * @index: the page index
1932 * @filler: function to perform the read
1933 * @data: first arg to filler(data, page) function, often left as NULL
1935 * Read into the page cache. If a page already exists, and PageUptodate() is
1936 * not set, try to fill the page then wait for it to become unlocked.
1938 * If the page does not get brought uptodate, return -EIO.
1940 struct page
*read_cache_page(struct address_space
*mapping
,
1942 int (*filler
)(void *, struct page
*),
1945 return wait_on_page_read(read_cache_page_async(mapping
, index
, filler
, data
));
1947 EXPORT_SYMBOL(read_cache_page
);
1950 * The logic we want is
1952 * if suid or (sgid and xgrp)
1955 int should_remove_suid(struct dentry
*dentry
)
1957 umode_t mode
= dentry
->d_inode
->i_mode
;
1960 /* suid always must be killed */
1961 if (unlikely(mode
& S_ISUID
))
1962 kill
= ATTR_KILL_SUID
;
1965 * sgid without any exec bits is just a mandatory locking mark; leave
1966 * it alone. If some exec bits are set, it's a real sgid; kill it.
1968 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1969 kill
|= ATTR_KILL_SGID
;
1971 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1976 EXPORT_SYMBOL(should_remove_suid
);
1978 static int __remove_suid(struct dentry
*dentry
, int kill
)
1980 struct iattr newattrs
;
1982 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1983 return notify_change(dentry
, &newattrs
);
1986 int file_remove_suid(struct file
*file
)
1988 struct dentry
*dentry
= file
->f_path
.dentry
;
1989 struct inode
*inode
= dentry
->d_inode
;
1994 /* Fast path for nothing security related */
1995 if (IS_NOSEC(inode
))
1998 killsuid
= should_remove_suid(dentry
);
1999 killpriv
= security_inode_need_killpriv(dentry
);
2004 error
= security_inode_killpriv(dentry
);
2005 if (!error
&& killsuid
)
2006 error
= __remove_suid(dentry
, killsuid
);
2007 if (!error
&& (inode
->i_sb
->s_flags
& MS_NOSEC
))
2008 inode
->i_flags
|= S_NOSEC
;
2012 EXPORT_SYMBOL(file_remove_suid
);
2014 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
2015 const struct iovec
*iov
, size_t base
, size_t bytes
)
2017 size_t copied
= 0, left
= 0;
2020 char __user
*buf
= iov
->iov_base
+ base
;
2021 int copy
= min(bytes
, iov
->iov_len
- base
);
2024 left
= __copy_from_user_inatomic(vaddr
, buf
, copy
);
2033 return copied
- left
;
2037 * Copy as much as we can into the page and return the number of bytes which
2038 * were successfully copied. If a fault is encountered then return the number of
2039 * bytes which were copied.
2041 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
2042 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
2047 BUG_ON(!in_atomic());
2048 kaddr
= kmap_atomic(page
, KM_USER0
);
2049 if (likely(i
->nr_segs
== 1)) {
2051 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2052 left
= __copy_from_user_inatomic(kaddr
+ offset
, buf
, bytes
);
2053 copied
= bytes
- left
;
2055 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
2056 i
->iov
, i
->iov_offset
, bytes
);
2058 kunmap_atomic(kaddr
, KM_USER0
);
2062 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
2065 * This has the same sideeffects and return value as
2066 * iov_iter_copy_from_user_atomic().
2067 * The difference is that it attempts to resolve faults.
2068 * Page must not be locked.
2070 size_t iov_iter_copy_from_user(struct page
*page
,
2071 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
2077 if (likely(i
->nr_segs
== 1)) {
2079 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2080 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
2081 copied
= bytes
- left
;
2083 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
2084 i
->iov
, i
->iov_offset
, bytes
);
2089 EXPORT_SYMBOL(iov_iter_copy_from_user
);
2091 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
2093 BUG_ON(i
->count
< bytes
);
2095 if (likely(i
->nr_segs
== 1)) {
2096 i
->iov_offset
+= bytes
;
2099 const struct iovec
*iov
= i
->iov
;
2100 size_t base
= i
->iov_offset
;
2101 unsigned long nr_segs
= i
->nr_segs
;
2104 * The !iov->iov_len check ensures we skip over unlikely
2105 * zero-length segments (without overruning the iovec).
2107 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
2110 copy
= min(bytes
, iov
->iov_len
- base
);
2111 BUG_ON(!i
->count
|| i
->count
< copy
);
2115 if (iov
->iov_len
== base
) {
2122 i
->iov_offset
= base
;
2123 i
->nr_segs
= nr_segs
;
2126 EXPORT_SYMBOL(iov_iter_advance
);
2129 * Fault in the first iovec of the given iov_iter, to a maximum length
2130 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2131 * accessed (ie. because it is an invalid address).
2133 * writev-intensive code may want this to prefault several iovecs -- that
2134 * would be possible (callers must not rely on the fact that _only_ the
2135 * first iovec will be faulted with the current implementation).
2137 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
2139 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2140 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
2141 return fault_in_pages_readable(buf
, bytes
);
2143 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
2146 * Return the count of just the current iov_iter segment.
2148 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
2150 const struct iovec
*iov
= i
->iov
;
2151 if (i
->nr_segs
== 1)
2154 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
2156 EXPORT_SYMBOL(iov_iter_single_seg_count
);
2159 * Performs necessary checks before doing a write
2161 * Can adjust writing position or amount of bytes to write.
2162 * Returns appropriate error code that caller should return or
2163 * zero in case that write should be allowed.
2165 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2167 struct inode
*inode
= file
->f_mapping
->host
;
2168 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2170 if (unlikely(*pos
< 0))
2174 /* FIXME: this is for backwards compatibility with 2.4 */
2175 if (file
->f_flags
& O_APPEND
)
2176 *pos
= i_size_read(inode
);
2178 if (limit
!= RLIM_INFINITY
) {
2179 if (*pos
>= limit
) {
2180 send_sig(SIGXFSZ
, current
, 0);
2183 if (*count
> limit
- (typeof(limit
))*pos
) {
2184 *count
= limit
- (typeof(limit
))*pos
;
2192 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2193 !(file
->f_flags
& O_LARGEFILE
))) {
2194 if (*pos
>= MAX_NON_LFS
) {
2197 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2198 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2203 * Are we about to exceed the fs block limit ?
2205 * If we have written data it becomes a short write. If we have
2206 * exceeded without writing data we send a signal and return EFBIG.
2207 * Linus frestrict idea will clean these up nicely..
2209 if (likely(!isblk
)) {
2210 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2211 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2214 /* zero-length writes at ->s_maxbytes are OK */
2217 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2218 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2222 if (bdev_read_only(I_BDEV(inode
)))
2224 isize
= i_size_read(inode
);
2225 if (*pos
>= isize
) {
2226 if (*count
|| *pos
> isize
)
2230 if (*pos
+ *count
> isize
)
2231 *count
= isize
- *pos
;
2238 EXPORT_SYMBOL(generic_write_checks
);
2240 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2241 loff_t pos
, unsigned len
, unsigned flags
,
2242 struct page
**pagep
, void **fsdata
)
2244 const struct address_space_operations
*aops
= mapping
->a_ops
;
2246 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2249 EXPORT_SYMBOL(pagecache_write_begin
);
2251 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2252 loff_t pos
, unsigned len
, unsigned copied
,
2253 struct page
*page
, void *fsdata
)
2255 const struct address_space_operations
*aops
= mapping
->a_ops
;
2257 mark_page_accessed(page
);
2258 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2260 EXPORT_SYMBOL(pagecache_write_end
);
2263 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2264 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2265 size_t count
, size_t ocount
)
2267 struct file
*file
= iocb
->ki_filp
;
2268 struct address_space
*mapping
= file
->f_mapping
;
2269 struct inode
*inode
= mapping
->host
;
2274 if (count
!= ocount
)
2275 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2277 write_len
= iov_length(iov
, *nr_segs
);
2278 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2280 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2285 * After a write we want buffered reads to be sure to go to disk to get
2286 * the new data. We invalidate clean cached page from the region we're
2287 * about to write. We do this *before* the write so that we can return
2288 * without clobbering -EIOCBQUEUED from ->direct_IO().
2290 if (mapping
->nrpages
) {
2291 written
= invalidate_inode_pages2_range(mapping
,
2292 pos
>> PAGE_CACHE_SHIFT
, end
);
2294 * If a page can not be invalidated, return 0 to fall back
2295 * to buffered write.
2298 if (written
== -EBUSY
)
2304 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2307 * Finally, try again to invalidate clean pages which might have been
2308 * cached by non-direct readahead, or faulted in by get_user_pages()
2309 * if the source of the write was an mmap'ed region of the file
2310 * we're writing. Either one is a pretty crazy thing to do,
2311 * so we don't support it 100%. If this invalidation
2312 * fails, tough, the write still worked...
2314 if (mapping
->nrpages
) {
2315 invalidate_inode_pages2_range(mapping
,
2316 pos
>> PAGE_CACHE_SHIFT
, end
);
2321 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2322 i_size_write(inode
, pos
);
2323 mark_inode_dirty(inode
);
2330 EXPORT_SYMBOL(generic_file_direct_write
);
2333 * Find or create a page at the given pagecache position. Return the locked
2334 * page. This function is specifically for buffered writes.
2336 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2337 pgoff_t index
, unsigned flags
)
2342 gfp_t gfp_notmask
= 0;
2344 gfp_mask
= mapping_gfp_mask(mapping
) | __GFP_WRITE
;
2345 if (flags
& AOP_FLAG_NOFS
)
2346 gfp_notmask
= __GFP_FS
;
2348 page
= find_lock_page(mapping
, index
);
2352 page
= __page_cache_alloc(gfp_mask
& ~gfp_notmask
);
2355 status
= add_to_page_cache_lru(page
, mapping
, index
,
2356 GFP_KERNEL
& ~gfp_notmask
);
2357 if (unlikely(status
)) {
2358 page_cache_release(page
);
2359 if (status
== -EEXIST
)
2364 wait_on_page_writeback(page
);
2367 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2369 static ssize_t
generic_perform_write(struct file
*file
,
2370 struct iov_iter
*i
, loff_t pos
)
2372 struct address_space
*mapping
= file
->f_mapping
;
2373 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2375 ssize_t written
= 0;
2376 unsigned int flags
= 0;
2379 * Copies from kernel address space cannot fail (NFSD is a big user).
2381 if (segment_eq(get_fs(), KERNEL_DS
))
2382 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2386 unsigned long offset
; /* Offset into pagecache page */
2387 unsigned long bytes
; /* Bytes to write to page */
2388 size_t copied
; /* Bytes copied from user */
2391 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2392 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2397 * Bring in the user page that we will copy from _first_.
2398 * Otherwise there's a nasty deadlock on copying from the
2399 * same page as we're writing to, without it being marked
2402 * Not only is this an optimisation, but it is also required
2403 * to check that the address is actually valid, when atomic
2404 * usercopies are used, below.
2406 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2411 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2413 if (unlikely(status
))
2416 if (mapping_writably_mapped(mapping
))
2417 flush_dcache_page(page
);
2419 pagefault_disable();
2420 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2422 flush_dcache_page(page
);
2424 mark_page_accessed(page
);
2425 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2427 if (unlikely(status
< 0))
2433 iov_iter_advance(i
, copied
);
2434 if (unlikely(copied
== 0)) {
2436 * If we were unable to copy any data at all, we must
2437 * fall back to a single segment length write.
2439 * If we didn't fallback here, we could livelock
2440 * because not all segments in the iov can be copied at
2441 * once without a pagefault.
2443 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2444 iov_iter_single_seg_count(i
));
2450 balance_dirty_pages_ratelimited(mapping
);
2451 if (fatal_signal_pending(current
)) {
2455 } while (iov_iter_count(i
));
2457 return written
? written
: status
;
2461 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2462 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2463 size_t count
, ssize_t written
)
2465 struct file
*file
= iocb
->ki_filp
;
2469 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2470 status
= generic_perform_write(file
, &i
, pos
);
2472 if (likely(status
>= 0)) {
2474 *ppos
= pos
+ status
;
2477 return written
? written
: status
;
2479 EXPORT_SYMBOL(generic_file_buffered_write
);
2482 * __generic_file_aio_write - write data to a file
2483 * @iocb: IO state structure (file, offset, etc.)
2484 * @iov: vector with data to write
2485 * @nr_segs: number of segments in the vector
2486 * @ppos: position where to write
2488 * This function does all the work needed for actually writing data to a
2489 * file. It does all basic checks, removes SUID from the file, updates
2490 * modification times and calls proper subroutines depending on whether we
2491 * do direct IO or a standard buffered write.
2493 * It expects i_mutex to be grabbed unless we work on a block device or similar
2494 * object which does not need locking at all.
2496 * This function does *not* take care of syncing data in case of O_SYNC write.
2497 * A caller has to handle it. This is mainly due to the fact that we want to
2498 * avoid syncing under i_mutex.
2500 ssize_t
__generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2501 unsigned long nr_segs
, loff_t
*ppos
)
2503 struct file
*file
= iocb
->ki_filp
;
2504 struct address_space
* mapping
= file
->f_mapping
;
2505 size_t ocount
; /* original count */
2506 size_t count
; /* after file limit checks */
2507 struct inode
*inode
= mapping
->host
;
2513 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2520 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2522 /* We can write back this queue in page reclaim */
2523 current
->backing_dev_info
= mapping
->backing_dev_info
;
2526 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2533 err
= file_remove_suid(file
);
2537 file_update_time(file
);
2539 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2540 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2542 ssize_t written_buffered
;
2544 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2545 ppos
, count
, ocount
);
2546 if (written
< 0 || written
== count
)
2549 * direct-io write to a hole: fall through to buffered I/O
2550 * for completing the rest of the request.
2554 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2555 nr_segs
, pos
, ppos
, count
,
2558 * If generic_file_buffered_write() retuned a synchronous error
2559 * then we want to return the number of bytes which were
2560 * direct-written, or the error code if that was zero. Note
2561 * that this differs from normal direct-io semantics, which
2562 * will return -EFOO even if some bytes were written.
2564 if (written_buffered
< 0) {
2565 err
= written_buffered
;
2570 * We need to ensure that the page cache pages are written to
2571 * disk and invalidated to preserve the expected O_DIRECT
2574 endbyte
= pos
+ written_buffered
- written
- 1;
2575 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2577 written
= written_buffered
;
2578 invalidate_mapping_pages(mapping
,
2579 pos
>> PAGE_CACHE_SHIFT
,
2580 endbyte
>> PAGE_CACHE_SHIFT
);
2583 * We don't know how much we wrote, so just return
2584 * the number of bytes which were direct-written
2588 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2589 pos
, ppos
, count
, written
);
2592 current
->backing_dev_info
= NULL
;
2593 return written
? written
: err
;
2595 EXPORT_SYMBOL(__generic_file_aio_write
);
2598 * generic_file_aio_write - write data to a file
2599 * @iocb: IO state structure
2600 * @iov: vector with data to write
2601 * @nr_segs: number of segments in the vector
2602 * @pos: position in file where to write
2604 * This is a wrapper around __generic_file_aio_write() to be used by most
2605 * filesystems. It takes care of syncing the file in case of O_SYNC file
2606 * and acquires i_mutex as needed.
2608 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2609 unsigned long nr_segs
, loff_t pos
)
2611 struct file
*file
= iocb
->ki_filp
;
2612 struct inode
*inode
= file
->f_mapping
->host
;
2613 struct blk_plug plug
;
2616 BUG_ON(iocb
->ki_pos
!= pos
);
2618 mutex_lock(&inode
->i_mutex
);
2619 blk_start_plug(&plug
);
2620 ret
= __generic_file_aio_write(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2621 mutex_unlock(&inode
->i_mutex
);
2623 if (ret
> 0 || ret
== -EIOCBQUEUED
) {
2626 err
= generic_write_sync(file
, pos
, ret
);
2627 if (err
< 0 && ret
> 0)
2630 blk_finish_plug(&plug
);
2633 EXPORT_SYMBOL(generic_file_aio_write
);
2636 * try_to_release_page() - release old fs-specific metadata on a page
2638 * @page: the page which the kernel is trying to free
2639 * @gfp_mask: memory allocation flags (and I/O mode)
2641 * The address_space is to try to release any data against the page
2642 * (presumably at page->private). If the release was successful, return `1'.
2643 * Otherwise return zero.
2645 * This may also be called if PG_fscache is set on a page, indicating that the
2646 * page is known to the local caching routines.
2648 * The @gfp_mask argument specifies whether I/O may be performed to release
2649 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2652 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2654 struct address_space
* const mapping
= page
->mapping
;
2656 BUG_ON(!PageLocked(page
));
2657 if (PageWriteback(page
))
2660 if (mapping
&& mapping
->a_ops
->releasepage
)
2661 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2662 return try_to_free_buffers(page
);
2665 EXPORT_SYMBOL(try_to_release_page
);