2 * builtin-timechart.c - make an svg timechart of system activity
4 * (C) Copyright 2009 Intel Corporation
7 * Arjan van de Ven <arjan@linux.intel.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
17 #include "util/util.h"
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include "util/evsel.h"
23 #include <linux/rbtree.h>
24 #include "util/symbol.h"
25 #include "util/callchain.h"
26 #include "util/strlist.h"
29 #include "util/header.h"
30 #include "util/parse-options.h"
31 #include "util/parse-events.h"
32 #include "util/event.h"
33 #include "util/session.h"
34 #include "util/svghelper.h"
35 #include "util/tool.h"
37 #define SUPPORT_OLD_POWER_EVENTS 1
38 #define PWR_EVENT_EXIT -1
41 static const char *input_name
;
42 static const char *output_name
= "output.svg";
44 static unsigned int numcpus
;
45 static u64 min_freq
; /* Lowest CPU frequency seen */
46 static u64 max_freq
; /* Highest CPU frequency seen */
47 static u64 turbo_frequency
;
49 static u64 first_time
, last_time
;
51 static bool power_only
;
61 struct sample_wrapper
;
64 * Datastructure layout:
65 * We keep an list of "pid"s, matching the kernels notion of a task struct.
66 * Each "pid" entry, has a list of "comm"s.
67 * this is because we want to track different programs different, while
68 * exec will reuse the original pid (by design).
69 * Each comm has a list of samples that will be used to draw
84 struct per_pidcomm
*all
;
85 struct per_pidcomm
*current
;
90 struct per_pidcomm
*next
;
104 struct cpu_sample
*samples
;
107 struct sample_wrapper
{
108 struct sample_wrapper
*next
;
111 unsigned char data
[0];
115 #define TYPE_RUNNING 1
116 #define TYPE_WAITING 2
117 #define TYPE_BLOCKED 3
120 struct cpu_sample
*next
;
128 static struct per_pid
*all_data
;
134 struct power_event
*next
;
143 struct wake_event
*next
;
149 static struct power_event
*power_events
;
150 static struct wake_event
*wake_events
;
152 struct process_filter
;
153 struct process_filter
{
156 struct process_filter
*next
;
159 static struct process_filter
*process_filter
;
162 static struct per_pid
*find_create_pid(int pid
)
164 struct per_pid
*cursor
= all_data
;
167 if (cursor
->pid
== pid
)
169 cursor
= cursor
->next
;
171 cursor
= malloc(sizeof(struct per_pid
));
172 assert(cursor
!= NULL
);
173 memset(cursor
, 0, sizeof(struct per_pid
));
175 cursor
->next
= all_data
;
180 static void pid_set_comm(int pid
, char *comm
)
183 struct per_pidcomm
*c
;
184 p
= find_create_pid(pid
);
187 if (c
->comm
&& strcmp(c
->comm
, comm
) == 0) {
192 c
->comm
= strdup(comm
);
198 c
= malloc(sizeof(struct per_pidcomm
));
200 memset(c
, 0, sizeof(struct per_pidcomm
));
201 c
->comm
= strdup(comm
);
207 static void pid_fork(int pid
, int ppid
, u64 timestamp
)
209 struct per_pid
*p
, *pp
;
210 p
= find_create_pid(pid
);
211 pp
= find_create_pid(ppid
);
213 if (pp
->current
&& pp
->current
->comm
&& !p
->current
)
214 pid_set_comm(pid
, pp
->current
->comm
);
216 p
->start_time
= timestamp
;
218 p
->current
->start_time
= timestamp
;
219 p
->current
->state_since
= timestamp
;
223 static void pid_exit(int pid
, u64 timestamp
)
226 p
= find_create_pid(pid
);
227 p
->end_time
= timestamp
;
229 p
->current
->end_time
= timestamp
;
233 pid_put_sample(int pid
, int type
, unsigned int cpu
, u64 start
, u64 end
)
236 struct per_pidcomm
*c
;
237 struct cpu_sample
*sample
;
239 p
= find_create_pid(pid
);
242 c
= malloc(sizeof(struct per_pidcomm
));
244 memset(c
, 0, sizeof(struct per_pidcomm
));
250 sample
= malloc(sizeof(struct cpu_sample
));
251 assert(sample
!= NULL
);
252 memset(sample
, 0, sizeof(struct cpu_sample
));
253 sample
->start_time
= start
;
254 sample
->end_time
= end
;
256 sample
->next
= c
->samples
;
260 if (sample
->type
== TYPE_RUNNING
&& end
> start
&& start
> 0) {
261 c
->total_time
+= (end
-start
);
262 p
->total_time
+= (end
-start
);
265 if (c
->start_time
== 0 || c
->start_time
> start
)
266 c
->start_time
= start
;
267 if (p
->start_time
== 0 || p
->start_time
> start
)
268 p
->start_time
= start
;
271 #define MAX_CPUS 4096
273 static u64 cpus_cstate_start_times
[MAX_CPUS
];
274 static int cpus_cstate_state
[MAX_CPUS
];
275 static u64 cpus_pstate_start_times
[MAX_CPUS
];
276 static u64 cpus_pstate_state
[MAX_CPUS
];
278 static int process_comm_event(struct perf_tool
*tool __used
,
279 union perf_event
*event
,
280 struct perf_sample
*sample __used
,
281 struct machine
*machine __used
)
283 pid_set_comm(event
->comm
.tid
, event
->comm
.comm
);
287 static int process_fork_event(struct perf_tool
*tool __used
,
288 union perf_event
*event
,
289 struct perf_sample
*sample __used
,
290 struct machine
*machine __used
)
292 pid_fork(event
->fork
.pid
, event
->fork
.ppid
, event
->fork
.time
);
296 static int process_exit_event(struct perf_tool
*tool __used
,
297 union perf_event
*event
,
298 struct perf_sample
*sample __used
,
299 struct machine
*machine __used
)
301 pid_exit(event
->fork
.pid
, event
->fork
.time
);
308 unsigned char preempt_count
;
313 #ifdef SUPPORT_OLD_POWER_EVENTS
314 static int use_old_power_events
;
315 struct power_entry_old
{
316 struct trace_entry te
;
323 struct power_processor_entry
{
324 struct trace_entry te
;
329 #define TASK_COMM_LEN 16
330 struct wakeup_entry
{
331 struct trace_entry te
;
332 char comm
[TASK_COMM_LEN
];
339 * trace_flag_type is an enumeration that holds different
340 * states when a trace occurs. These are:
341 * IRQS_OFF - interrupts were disabled
342 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
343 * NEED_RESCED - reschedule is requested
344 * HARDIRQ - inside an interrupt handler
345 * SOFTIRQ - inside a softirq handler
347 enum trace_flag_type
{
348 TRACE_FLAG_IRQS_OFF
= 0x01,
349 TRACE_FLAG_IRQS_NOSUPPORT
= 0x02,
350 TRACE_FLAG_NEED_RESCHED
= 0x04,
351 TRACE_FLAG_HARDIRQ
= 0x08,
352 TRACE_FLAG_SOFTIRQ
= 0x10,
357 struct sched_switch
{
358 struct trace_entry te
;
359 char prev_comm
[TASK_COMM_LEN
];
362 long prev_state
; /* Arjan weeps. */
363 char next_comm
[TASK_COMM_LEN
];
368 static void c_state_start(int cpu
, u64 timestamp
, int state
)
370 cpus_cstate_start_times
[cpu
] = timestamp
;
371 cpus_cstate_state
[cpu
] = state
;
374 static void c_state_end(int cpu
, u64 timestamp
)
376 struct power_event
*pwr
;
377 pwr
= malloc(sizeof(struct power_event
));
380 memset(pwr
, 0, sizeof(struct power_event
));
382 pwr
->state
= cpus_cstate_state
[cpu
];
383 pwr
->start_time
= cpus_cstate_start_times
[cpu
];
384 pwr
->end_time
= timestamp
;
387 pwr
->next
= power_events
;
392 static void p_state_change(int cpu
, u64 timestamp
, u64 new_freq
)
394 struct power_event
*pwr
;
395 pwr
= malloc(sizeof(struct power_event
));
397 if (new_freq
> 8000000) /* detect invalid data */
402 memset(pwr
, 0, sizeof(struct power_event
));
404 pwr
->state
= cpus_pstate_state
[cpu
];
405 pwr
->start_time
= cpus_pstate_start_times
[cpu
];
406 pwr
->end_time
= timestamp
;
409 pwr
->next
= power_events
;
411 if (!pwr
->start_time
)
412 pwr
->start_time
= first_time
;
416 cpus_pstate_state
[cpu
] = new_freq
;
417 cpus_pstate_start_times
[cpu
] = timestamp
;
419 if ((u64
)new_freq
> max_freq
)
422 if (new_freq
< min_freq
|| min_freq
== 0)
425 if (new_freq
== max_freq
- 1000)
426 turbo_frequency
= max_freq
;
430 sched_wakeup(int cpu
, u64 timestamp
, int pid
, struct trace_entry
*te
)
432 struct wake_event
*we
;
434 struct wakeup_entry
*wake
= (void *)te
;
436 we
= malloc(sizeof(struct wake_event
));
440 memset(we
, 0, sizeof(struct wake_event
));
441 we
->time
= timestamp
;
444 if ((te
->flags
& TRACE_FLAG_HARDIRQ
) || (te
->flags
& TRACE_FLAG_SOFTIRQ
))
447 we
->wakee
= wake
->pid
;
448 we
->next
= wake_events
;
450 p
= find_create_pid(we
->wakee
);
452 if (p
&& p
->current
&& p
->current
->state
== TYPE_NONE
) {
453 p
->current
->state_since
= timestamp
;
454 p
->current
->state
= TYPE_WAITING
;
456 if (p
&& p
->current
&& p
->current
->state
== TYPE_BLOCKED
) {
457 pid_put_sample(p
->pid
, p
->current
->state
, cpu
, p
->current
->state_since
, timestamp
);
458 p
->current
->state_since
= timestamp
;
459 p
->current
->state
= TYPE_WAITING
;
463 static void sched_switch(int cpu
, u64 timestamp
, struct trace_entry
*te
)
465 struct per_pid
*p
= NULL
, *prev_p
;
466 struct sched_switch
*sw
= (void *)te
;
469 prev_p
= find_create_pid(sw
->prev_pid
);
471 p
= find_create_pid(sw
->next_pid
);
473 if (prev_p
->current
&& prev_p
->current
->state
!= TYPE_NONE
)
474 pid_put_sample(sw
->prev_pid
, TYPE_RUNNING
, cpu
, prev_p
->current
->state_since
, timestamp
);
475 if (p
&& p
->current
) {
476 if (p
->current
->state
!= TYPE_NONE
)
477 pid_put_sample(sw
->next_pid
, p
->current
->state
, cpu
, p
->current
->state_since
, timestamp
);
479 p
->current
->state_since
= timestamp
;
480 p
->current
->state
= TYPE_RUNNING
;
483 if (prev_p
->current
) {
484 prev_p
->current
->state
= TYPE_NONE
;
485 prev_p
->current
->state_since
= timestamp
;
486 if (sw
->prev_state
& 2)
487 prev_p
->current
->state
= TYPE_BLOCKED
;
488 if (sw
->prev_state
== 0)
489 prev_p
->current
->state
= TYPE_WAITING
;
494 static int process_sample_event(struct perf_tool
*tool __used
,
495 union perf_event
*event __used
,
496 struct perf_sample
*sample
,
497 struct perf_evsel
*evsel
,
498 struct machine
*machine __used
)
500 struct trace_entry
*te
;
502 if (evsel
->attr
.sample_type
& PERF_SAMPLE_TIME
) {
503 if (!first_time
|| first_time
> sample
->time
)
504 first_time
= sample
->time
;
505 if (last_time
< sample
->time
)
506 last_time
= sample
->time
;
509 te
= (void *)sample
->raw_data
;
510 if ((evsel
->attr
.sample_type
& PERF_SAMPLE_RAW
) && sample
->raw_size
> 0) {
512 #ifdef SUPPORT_OLD_POWER_EVENTS
513 struct power_entry_old
*peo
;
517 * FIXME: use evsel, its already mapped from id to perf_evsel,
518 * remove perf_header__find_event infrastructure bits.
519 * Mapping all these "power:cpu_idle" strings to the tracepoint
520 * ID and then just comparing against evsel->attr.config.
524 * if (evsel->attr.config == power_cpu_idle_id)
526 event_str
= perf_header__find_event(te
->type
);
531 if (sample
->cpu
> numcpus
)
532 numcpus
= sample
->cpu
;
534 if (strcmp(event_str
, "power:cpu_idle") == 0) {
535 struct power_processor_entry
*ppe
= (void *)te
;
536 if (ppe
->state
== (u32
)PWR_EVENT_EXIT
)
537 c_state_end(ppe
->cpu_id
, sample
->time
);
539 c_state_start(ppe
->cpu_id
, sample
->time
,
542 else if (strcmp(event_str
, "power:cpu_frequency") == 0) {
543 struct power_processor_entry
*ppe
= (void *)te
;
544 p_state_change(ppe
->cpu_id
, sample
->time
, ppe
->state
);
547 else if (strcmp(event_str
, "sched:sched_wakeup") == 0)
548 sched_wakeup(sample
->cpu
, sample
->time
, sample
->pid
, te
);
550 else if (strcmp(event_str
, "sched:sched_switch") == 0)
551 sched_switch(sample
->cpu
, sample
->time
, te
);
553 #ifdef SUPPORT_OLD_POWER_EVENTS
554 if (use_old_power_events
) {
555 if (strcmp(event_str
, "power:power_start") == 0)
556 c_state_start(peo
->cpu_id
, sample
->time
,
559 else if (strcmp(event_str
, "power:power_end") == 0)
560 c_state_end(sample
->cpu
, sample
->time
);
562 else if (strcmp(event_str
,
563 "power:power_frequency") == 0)
564 p_state_change(peo
->cpu_id
, sample
->time
,
573 * After the last sample we need to wrap up the current C/P state
574 * and close out each CPU for these.
576 static void end_sample_processing(void)
579 struct power_event
*pwr
;
581 for (cpu
= 0; cpu
<= numcpus
; cpu
++) {
582 pwr
= malloc(sizeof(struct power_event
));
585 memset(pwr
, 0, sizeof(struct power_event
));
589 pwr
->state
= cpus_cstate_state
[cpu
];
590 pwr
->start_time
= cpus_cstate_start_times
[cpu
];
591 pwr
->end_time
= last_time
;
594 pwr
->next
= power_events
;
600 pwr
= malloc(sizeof(struct power_event
));
603 memset(pwr
, 0, sizeof(struct power_event
));
605 pwr
->state
= cpus_pstate_state
[cpu
];
606 pwr
->start_time
= cpus_pstate_start_times
[cpu
];
607 pwr
->end_time
= last_time
;
610 pwr
->next
= power_events
;
612 if (!pwr
->start_time
)
613 pwr
->start_time
= first_time
;
615 pwr
->state
= min_freq
;
621 * Sort the pid datastructure
623 static void sort_pids(void)
625 struct per_pid
*new_list
, *p
, *cursor
, *prev
;
626 /* sort by ppid first, then by pid, lowest to highest */
635 if (new_list
== NULL
) {
643 if (cursor
->ppid
> p
->ppid
||
644 (cursor
->ppid
== p
->ppid
&& cursor
->pid
> p
->pid
)) {
645 /* must insert before */
647 p
->next
= prev
->next
;
660 cursor
= cursor
->next
;
669 static void draw_c_p_states(void)
671 struct power_event
*pwr
;
675 * two pass drawing so that the P state bars are on top of the C state blocks
678 if (pwr
->type
== CSTATE
)
679 svg_cstate(pwr
->cpu
, pwr
->start_time
, pwr
->end_time
, pwr
->state
);
685 if (pwr
->type
== PSTATE
) {
687 pwr
->state
= min_freq
;
688 svg_pstate(pwr
->cpu
, pwr
->start_time
, pwr
->end_time
, pwr
->state
);
694 static void draw_wakeups(void)
696 struct wake_event
*we
;
698 struct per_pidcomm
*c
;
702 int from
= 0, to
= 0;
703 char *task_from
= NULL
, *task_to
= NULL
;
705 /* locate the column of the waker and wakee */
708 if (p
->pid
== we
->waker
|| p
->pid
== we
->wakee
) {
711 if (c
->Y
&& c
->start_time
<= we
->time
&& c
->end_time
>= we
->time
) {
712 if (p
->pid
== we
->waker
&& !from
) {
714 task_from
= strdup(c
->comm
);
716 if (p
->pid
== we
->wakee
&& !to
) {
718 task_to
= strdup(c
->comm
);
725 if (p
->pid
== we
->waker
&& !from
) {
727 task_from
= strdup(c
->comm
);
729 if (p
->pid
== we
->wakee
&& !to
) {
731 task_to
= strdup(c
->comm
);
740 task_from
= malloc(40);
741 sprintf(task_from
, "[%i]", we
->waker
);
744 task_to
= malloc(40);
745 sprintf(task_to
, "[%i]", we
->wakee
);
749 svg_interrupt(we
->time
, to
);
750 else if (from
&& to
&& abs(from
- to
) == 1)
751 svg_wakeline(we
->time
, from
, to
);
753 svg_partial_wakeline(we
->time
, from
, task_from
, to
, task_to
);
761 static void draw_cpu_usage(void)
764 struct per_pidcomm
*c
;
765 struct cpu_sample
*sample
;
772 if (sample
->type
== TYPE_RUNNING
)
773 svg_process(sample
->cpu
, sample
->start_time
, sample
->end_time
, "sample", c
->comm
);
775 sample
= sample
->next
;
783 static void draw_process_bars(void)
786 struct per_pidcomm
*c
;
787 struct cpu_sample
*sample
;
802 svg_box(Y
, c
->start_time
, c
->end_time
, "process");
805 if (sample
->type
== TYPE_RUNNING
)
806 svg_sample(Y
, sample
->cpu
, sample
->start_time
, sample
->end_time
);
807 if (sample
->type
== TYPE_BLOCKED
)
808 svg_box(Y
, sample
->start_time
, sample
->end_time
, "blocked");
809 if (sample
->type
== TYPE_WAITING
)
810 svg_waiting(Y
, sample
->start_time
, sample
->end_time
);
811 sample
= sample
->next
;
816 if (c
->total_time
> 5000000000) /* 5 seconds */
817 sprintf(comm
, "%s:%i (%2.2fs)", c
->comm
, p
->pid
, c
->total_time
/ 1000000000.0);
819 sprintf(comm
, "%s:%i (%3.1fms)", c
->comm
, p
->pid
, c
->total_time
/ 1000000.0);
821 svg_text(Y
, c
->start_time
, comm
);
831 static void add_process_filter(const char *string
)
833 struct process_filter
*filt
;
836 pid
= strtoull(string
, NULL
, 10);
837 filt
= malloc(sizeof(struct process_filter
));
841 filt
->name
= strdup(string
);
843 filt
->next
= process_filter
;
845 process_filter
= filt
;
848 static int passes_filter(struct per_pid
*p
, struct per_pidcomm
*c
)
850 struct process_filter
*filt
;
854 filt
= process_filter
;
856 if (filt
->pid
&& p
->pid
== filt
->pid
)
858 if (strcmp(filt
->name
, c
->comm
) == 0)
865 static int determine_display_tasks_filtered(void)
868 struct per_pidcomm
*c
;
874 if (p
->start_time
== 1)
875 p
->start_time
= first_time
;
877 /* no exit marker, task kept running to the end */
878 if (p
->end_time
== 0)
879 p
->end_time
= last_time
;
886 if (c
->start_time
== 1)
887 c
->start_time
= first_time
;
889 if (passes_filter(p
, c
)) {
895 if (c
->end_time
== 0)
896 c
->end_time
= last_time
;
905 static int determine_display_tasks(u64 threshold
)
908 struct per_pidcomm
*c
;
912 return determine_display_tasks_filtered();
917 if (p
->start_time
== 1)
918 p
->start_time
= first_time
;
920 /* no exit marker, task kept running to the end */
921 if (p
->end_time
== 0)
922 p
->end_time
= last_time
;
923 if (p
->total_time
>= threshold
&& !power_only
)
931 if (c
->start_time
== 1)
932 c
->start_time
= first_time
;
934 if (c
->total_time
>= threshold
&& !power_only
) {
939 if (c
->end_time
== 0)
940 c
->end_time
= last_time
;
951 #define TIME_THRESH 10000000
953 static void write_svg_file(const char *filename
)
961 count
= determine_display_tasks(TIME_THRESH
);
963 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
965 count
= determine_display_tasks(TIME_THRESH
/ 10);
967 open_svg(filename
, numcpus
, count
, first_time
, last_time
);
972 for (i
= 0; i
< numcpus
; i
++)
973 svg_cpu_box(i
, max_freq
, turbo_frequency
);
983 static struct perf_tool perf_timechart
= {
984 .comm
= process_comm_event
,
985 .fork
= process_fork_event
,
986 .exit
= process_exit_event
,
987 .sample
= process_sample_event
,
988 .ordered_samples
= true,
991 static int __cmd_timechart(void)
993 struct perf_session
*session
= perf_session__new(input_name
, O_RDONLY
,
994 0, false, &perf_timechart
);
1000 if (!perf_session__has_traces(session
, "timechart record"))
1003 ret
= perf_session__process_events(session
, &perf_timechart
);
1007 end_sample_processing();
1011 write_svg_file(output_name
);
1013 pr_info("Written %2.1f seconds of trace to %s.\n",
1014 (last_time
- first_time
) / 1000000000.0, output_name
);
1016 perf_session__delete(session
);
1020 static const char * const timechart_usage
[] = {
1021 "perf timechart [<options>] {record}",
1025 #ifdef SUPPORT_OLD_POWER_EVENTS
1026 static const char * const record_old_args
[] = {
1032 "-e", "power:power_start",
1033 "-e", "power:power_end",
1034 "-e", "power:power_frequency",
1035 "-e", "sched:sched_wakeup",
1036 "-e", "sched:sched_switch",
1040 static const char * const record_new_args
[] = {
1046 "-e", "power:cpu_frequency",
1047 "-e", "power:cpu_idle",
1048 "-e", "sched:sched_wakeup",
1049 "-e", "sched:sched_switch",
1052 static int __cmd_record(int argc
, const char **argv
)
1054 unsigned int rec_argc
, i
, j
;
1055 const char **rec_argv
;
1056 const char * const *record_args
= record_new_args
;
1057 unsigned int record_elems
= ARRAY_SIZE(record_new_args
);
1059 #ifdef SUPPORT_OLD_POWER_EVENTS
1060 if (!is_valid_tracepoint("power:cpu_idle") &&
1061 is_valid_tracepoint("power:power_start")) {
1062 use_old_power_events
= 1;
1063 record_args
= record_old_args
;
1064 record_elems
= ARRAY_SIZE(record_old_args
);
1068 rec_argc
= record_elems
+ argc
- 1;
1069 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
1071 if (rec_argv
== NULL
)
1074 for (i
= 0; i
< record_elems
; i
++)
1075 rec_argv
[i
] = strdup(record_args
[i
]);
1077 for (j
= 1; j
< (unsigned int)argc
; j
++, i
++)
1078 rec_argv
[i
] = argv
[j
];
1080 return cmd_record(i
, rec_argv
, NULL
);
1084 parse_process(const struct option
*opt __used
, const char *arg
, int __used unset
)
1087 add_process_filter(arg
);
1091 static const struct option options
[] = {
1092 OPT_STRING('i', "input", &input_name
, "file",
1094 OPT_STRING('o', "output", &output_name
, "file",
1095 "output file name"),
1096 OPT_INTEGER('w', "width", &svg_page_width
,
1098 OPT_BOOLEAN('P', "power-only", &power_only
,
1099 "output power data only"),
1100 OPT_CALLBACK('p', "process", NULL
, "process",
1101 "process selector. Pass a pid or process name.",
1103 OPT_STRING(0, "symfs", &symbol_conf
.symfs
, "directory",
1104 "Look for files with symbols relative to this directory"),
1109 int cmd_timechart(int argc
, const char **argv
, const char *prefix __used
)
1111 argc
= parse_options(argc
, argv
, options
, timechart_usage
,
1112 PARSE_OPT_STOP_AT_NON_OPTION
);
1116 if (argc
&& !strncmp(argv
[0], "rec", 3))
1117 return __cmd_record(argc
, argv
);
1119 usage_with_options(timechart_usage
, options
);
1123 return __cmd_timechart();