2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
32 * monitor mode reception
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
37 static struct sk_buff
*remove_monitor_info(struct ieee80211_local
*local
,
40 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
) {
41 if (likely(skb
->len
> FCS_LEN
))
42 __pskb_trim(skb
, skb
->len
- FCS_LEN
);
54 static inline int should_drop_frame(struct sk_buff
*skb
,
57 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
58 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
60 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
62 if (unlikely(skb
->len
< 16 + present_fcs_len
))
64 if (ieee80211_is_ctl(hdr
->frame_control
) &&
65 !ieee80211_is_pspoll(hdr
->frame_control
) &&
66 !ieee80211_is_back_req(hdr
->frame_control
))
72 ieee80211_rx_radiotap_len(struct ieee80211_local
*local
,
73 struct ieee80211_rx_status
*status
)
77 /* always present fields */
78 len
= sizeof(struct ieee80211_radiotap_header
) + 9;
80 if (status
->flag
& RX_FLAG_MACTIME_MPDU
)
82 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
)
85 if (len
& 1) /* padding for RX_FLAGS if necessary */
88 if (status
->flag
& RX_FLAG_HT
) /* HT info */
95 * ieee80211_add_rx_radiotap_header - add radiotap header
97 * add a radiotap header containing all the fields which the hardware provided.
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local
*local
,
102 struct ieee80211_rate
*rate
,
105 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
106 struct ieee80211_radiotap_header
*rthdr
;
110 rthdr
= (struct ieee80211_radiotap_header
*)skb_push(skb
, rtap_len
);
111 memset(rthdr
, 0, rtap_len
);
113 /* radiotap header, set always present flags */
115 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS
) |
116 (1 << IEEE80211_RADIOTAP_CHANNEL
) |
117 (1 << IEEE80211_RADIOTAP_ANTENNA
) |
118 (1 << IEEE80211_RADIOTAP_RX_FLAGS
));
119 rthdr
->it_len
= cpu_to_le16(rtap_len
);
121 pos
= (unsigned char *)(rthdr
+1);
123 /* the order of the following fields is important */
125 /* IEEE80211_RADIOTAP_TSFT */
126 if (status
->flag
& RX_FLAG_MACTIME_MPDU
) {
127 put_unaligned_le64(status
->mactime
, pos
);
129 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT
);
133 /* IEEE80211_RADIOTAP_FLAGS */
134 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
)
135 *pos
|= IEEE80211_RADIOTAP_F_FCS
;
136 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
137 *pos
|= IEEE80211_RADIOTAP_F_BADFCS
;
138 if (status
->flag
& RX_FLAG_SHORTPRE
)
139 *pos
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
142 /* IEEE80211_RADIOTAP_RATE */
143 if (status
->flag
& RX_FLAG_HT
) {
145 * MCS information is a separate field in radiotap,
146 * added below. The byte here is needed as padding
147 * for the channel though, so initialise it to 0.
151 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE
);
152 *pos
= rate
->bitrate
/ 5;
156 /* IEEE80211_RADIOTAP_CHANNEL */
157 put_unaligned_le16(status
->freq
, pos
);
159 if (status
->band
== IEEE80211_BAND_5GHZ
)
160 put_unaligned_le16(IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
,
162 else if (status
->flag
& RX_FLAG_HT
)
163 put_unaligned_le16(IEEE80211_CHAN_DYN
| IEEE80211_CHAN_2GHZ
,
165 else if (rate
->flags
& IEEE80211_RATE_ERP_G
)
166 put_unaligned_le16(IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
,
169 put_unaligned_le16(IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
,
173 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
174 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
) {
175 *pos
= status
->signal
;
177 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
181 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
183 /* IEEE80211_RADIOTAP_ANTENNA */
184 *pos
= status
->antenna
;
187 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
189 /* IEEE80211_RADIOTAP_RX_FLAGS */
190 /* ensure 2 byte alignment for the 2 byte field as required */
191 if ((pos
- (u8
*)rthdr
) & 1)
193 if (status
->flag
& RX_FLAG_FAILED_PLCP_CRC
)
194 rx_flags
|= IEEE80211_RADIOTAP_F_RX_BADPLCP
;
195 put_unaligned_le16(rx_flags
, pos
);
198 if (status
->flag
& RX_FLAG_HT
) {
199 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS
);
200 *pos
++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS
|
201 IEEE80211_RADIOTAP_MCS_HAVE_GI
|
202 IEEE80211_RADIOTAP_MCS_HAVE_BW
;
204 if (status
->flag
& RX_FLAG_SHORT_GI
)
205 *pos
|= IEEE80211_RADIOTAP_MCS_SGI
;
206 if (status
->flag
& RX_FLAG_40MHZ
)
207 *pos
|= IEEE80211_RADIOTAP_MCS_BW_40
;
209 *pos
++ = status
->rate_idx
;
214 * This function copies a received frame to all monitor interfaces and
215 * returns a cleaned-up SKB that no longer includes the FCS nor the
216 * radiotap header the driver might have added.
218 static struct sk_buff
*
219 ieee80211_rx_monitor(struct ieee80211_local
*local
, struct sk_buff
*origskb
,
220 struct ieee80211_rate
*rate
)
222 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(origskb
);
223 struct ieee80211_sub_if_data
*sdata
;
224 int needed_headroom
= 0;
225 struct sk_buff
*skb
, *skb2
;
226 struct net_device
*prev_dev
= NULL
;
227 int present_fcs_len
= 0;
230 * First, we may need to make a copy of the skb because
231 * (1) we need to modify it for radiotap (if not present), and
232 * (2) the other RX handlers will modify the skb we got.
234 * We don't need to, of course, if we aren't going to return
235 * the SKB because it has a bad FCS/PLCP checksum.
238 /* room for the radiotap header based on driver features */
239 needed_headroom
= ieee80211_rx_radiotap_len(local
, status
);
241 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
)
242 present_fcs_len
= FCS_LEN
;
244 /* make sure hdr->frame_control is on the linear part */
245 if (!pskb_may_pull(origskb
, 2)) {
246 dev_kfree_skb(origskb
);
250 if (!local
->monitors
) {
251 if (should_drop_frame(origskb
, present_fcs_len
)) {
252 dev_kfree_skb(origskb
);
256 return remove_monitor_info(local
, origskb
);
259 if (should_drop_frame(origskb
, present_fcs_len
)) {
260 /* only need to expand headroom if necessary */
265 * This shouldn't trigger often because most devices have an
266 * RX header they pull before we get here, and that should
267 * be big enough for our radiotap information. We should
268 * probably export the length to drivers so that we can have
269 * them allocate enough headroom to start with.
271 if (skb_headroom(skb
) < needed_headroom
&&
272 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
)) {
278 * Need to make a copy and possibly remove radiotap header
279 * and FCS from the original.
281 skb
= skb_copy_expand(origskb
, needed_headroom
, 0, GFP_ATOMIC
);
283 origskb
= remove_monitor_info(local
, origskb
);
289 /* prepend radiotap information */
290 ieee80211_add_rx_radiotap_header(local
, skb
, rate
, needed_headroom
);
292 skb_reset_mac_header(skb
);
293 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
294 skb
->pkt_type
= PACKET_OTHERHOST
;
295 skb
->protocol
= htons(ETH_P_802_2
);
297 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
298 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
)
301 if (sdata
->u
.mntr_flags
& MONITOR_FLAG_COOK_FRAMES
)
304 if (!ieee80211_sdata_running(sdata
))
308 skb2
= skb_clone(skb
, GFP_ATOMIC
);
310 skb2
->dev
= prev_dev
;
311 netif_receive_skb(skb2
);
315 prev_dev
= sdata
->dev
;
316 sdata
->dev
->stats
.rx_packets
++;
317 sdata
->dev
->stats
.rx_bytes
+= skb
->len
;
322 netif_receive_skb(skb
);
330 static void ieee80211_parse_qos(struct ieee80211_rx_data
*rx
)
332 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
333 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
336 /* does the frame have a qos control field? */
337 if (ieee80211_is_data_qos(hdr
->frame_control
)) {
338 u8
*qc
= ieee80211_get_qos_ctl(hdr
);
339 /* frame has qos control */
340 tid
= *qc
& IEEE80211_QOS_CTL_TID_MASK
;
341 if (*qc
& IEEE80211_QOS_CONTROL_A_MSDU_PRESENT
)
342 status
->rx_flags
|= IEEE80211_RX_AMSDU
;
345 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
347 * Sequence numbers for management frames, QoS data
348 * frames with a broadcast/multicast address in the
349 * Address 1 field, and all non-QoS data frames sent
350 * by QoS STAs are assigned using an additional single
351 * modulo-4096 counter, [...]
353 * We also use that counter for non-QoS STAs.
355 tid
= NUM_RX_DATA_QUEUES
- 1;
359 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
360 * For now, set skb->priority to 0 for other cases. */
361 rx
->skb
->priority
= (tid
> 7) ? 0 : tid
;
365 * DOC: Packet alignment
367 * Drivers always need to pass packets that are aligned to two-byte boundaries
370 * Additionally, should, if possible, align the payload data in a way that
371 * guarantees that the contained IP header is aligned to a four-byte
372 * boundary. In the case of regular frames, this simply means aligning the
373 * payload to a four-byte boundary (because either the IP header is directly
374 * contained, or IV/RFC1042 headers that have a length divisible by four are
375 * in front of it). If the payload data is not properly aligned and the
376 * architecture doesn't support efficient unaligned operations, mac80211
377 * will align the data.
379 * With A-MSDU frames, however, the payload data address must yield two modulo
380 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
381 * push the IP header further back to a multiple of four again. Thankfully, the
382 * specs were sane enough this time around to require padding each A-MSDU
383 * subframe to a length that is a multiple of four.
385 * Padding like Atheros hardware adds which is between the 802.11 header and
386 * the payload is not supported, the driver is required to move the 802.11
387 * header to be directly in front of the payload in that case.
389 static void ieee80211_verify_alignment(struct ieee80211_rx_data
*rx
)
391 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
392 WARN_ONCE((unsigned long)rx
->skb
->data
& 1,
393 "unaligned packet at 0x%p\n", rx
->skb
->data
);
400 static ieee80211_rx_result debug_noinline
401 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data
*rx
)
403 struct ieee80211_local
*local
= rx
->local
;
404 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
405 struct sk_buff
*skb
= rx
->skb
;
407 if (likely(!(status
->rx_flags
& IEEE80211_RX_IN_SCAN
) &&
408 !local
->sched_scanning
))
411 if (test_bit(SCAN_HW_SCANNING
, &local
->scanning
) ||
412 test_bit(SCAN_SW_SCANNING
, &local
->scanning
) ||
413 local
->sched_scanning
)
414 return ieee80211_scan_rx(rx
->sdata
, skb
);
416 /* scanning finished during invoking of handlers */
417 I802_DEBUG_INC(local
->rx_handlers_drop_passive_scan
);
418 return RX_DROP_UNUSABLE
;
422 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff
*skb
)
424 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
426 if (skb
->len
< 24 || is_multicast_ether_addr(hdr
->addr1
))
429 return ieee80211_is_robust_mgmt_frame(hdr
);
433 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff
*skb
)
435 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
437 if (skb
->len
< 24 || !is_multicast_ether_addr(hdr
->addr1
))
440 return ieee80211_is_robust_mgmt_frame(hdr
);
444 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
445 static int ieee80211_get_mmie_keyidx(struct sk_buff
*skb
)
447 struct ieee80211_mgmt
*hdr
= (struct ieee80211_mgmt
*) skb
->data
;
448 struct ieee80211_mmie
*mmie
;
450 if (skb
->len
< 24 + sizeof(*mmie
) ||
451 !is_multicast_ether_addr(hdr
->da
))
454 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr
*) hdr
))
455 return -1; /* not a robust management frame */
457 mmie
= (struct ieee80211_mmie
*)
458 (skb
->data
+ skb
->len
- sizeof(*mmie
));
459 if (mmie
->element_id
!= WLAN_EID_MMIE
||
460 mmie
->length
!= sizeof(*mmie
) - 2)
463 return le16_to_cpu(mmie
->key_id
);
467 static ieee80211_rx_result
468 ieee80211_rx_mesh_check(struct ieee80211_rx_data
*rx
)
470 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
471 unsigned int hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
472 char *dev_addr
= rx
->sdata
->vif
.addr
;
474 if (ieee80211_is_data(hdr
->frame_control
)) {
475 if (is_multicast_ether_addr(hdr
->addr1
)) {
476 if (ieee80211_has_tods(hdr
->frame_control
) ||
477 !ieee80211_has_fromds(hdr
->frame_control
))
478 return RX_DROP_MONITOR
;
479 if (memcmp(hdr
->addr3
, dev_addr
, ETH_ALEN
) == 0)
480 return RX_DROP_MONITOR
;
482 if (!ieee80211_has_a4(hdr
->frame_control
))
483 return RX_DROP_MONITOR
;
484 if (memcmp(hdr
->addr4
, dev_addr
, ETH_ALEN
) == 0)
485 return RX_DROP_MONITOR
;
489 /* If there is not an established peer link and this is not a peer link
490 * establisment frame, beacon or probe, drop the frame.
493 if (!rx
->sta
|| sta_plink_state(rx
->sta
) != NL80211_PLINK_ESTAB
) {
494 struct ieee80211_mgmt
*mgmt
;
496 if (!ieee80211_is_mgmt(hdr
->frame_control
))
497 return RX_DROP_MONITOR
;
499 if (ieee80211_is_action(hdr
->frame_control
)) {
501 mgmt
= (struct ieee80211_mgmt
*)hdr
;
502 category
= mgmt
->u
.action
.category
;
503 if (category
!= WLAN_CATEGORY_MESH_ACTION
&&
504 category
!= WLAN_CATEGORY_SELF_PROTECTED
)
505 return RX_DROP_MONITOR
;
509 if (ieee80211_is_probe_req(hdr
->frame_control
) ||
510 ieee80211_is_probe_resp(hdr
->frame_control
) ||
511 ieee80211_is_beacon(hdr
->frame_control
) ||
512 ieee80211_is_auth(hdr
->frame_control
))
515 return RX_DROP_MONITOR
;
519 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
521 if (ieee80211_is_data(hdr
->frame_control
) &&
522 is_multicast_ether_addr(hdr
->addr1
) &&
523 mesh_rmc_check(hdr
->addr3
, msh_h_get(hdr
, hdrlen
), rx
->sdata
))
524 return RX_DROP_MONITOR
;
530 #define SEQ_MODULO 0x1000
531 #define SEQ_MASK 0xfff
533 static inline int seq_less(u16 sq1
, u16 sq2
)
535 return ((sq1
- sq2
) & SEQ_MASK
) > (SEQ_MODULO
>> 1);
538 static inline u16
seq_inc(u16 sq
)
540 return (sq
+ 1) & SEQ_MASK
;
543 static inline u16
seq_sub(u16 sq1
, u16 sq2
)
545 return (sq1
- sq2
) & SEQ_MASK
;
549 static void ieee80211_release_reorder_frame(struct ieee80211_hw
*hw
,
550 struct tid_ampdu_rx
*tid_agg_rx
,
553 struct ieee80211_local
*local
= hw_to_local(hw
);
554 struct sk_buff
*skb
= tid_agg_rx
->reorder_buf
[index
];
555 struct ieee80211_rx_status
*status
;
557 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
562 /* release the frame from the reorder ring buffer */
563 tid_agg_rx
->stored_mpdu_num
--;
564 tid_agg_rx
->reorder_buf
[index
] = NULL
;
565 status
= IEEE80211_SKB_RXCB(skb
);
566 status
->rx_flags
|= IEEE80211_RX_DEFERRED_RELEASE
;
567 skb_queue_tail(&local
->rx_skb_queue
, skb
);
570 tid_agg_rx
->head_seq_num
= seq_inc(tid_agg_rx
->head_seq_num
);
573 static void ieee80211_release_reorder_frames(struct ieee80211_hw
*hw
,
574 struct tid_ampdu_rx
*tid_agg_rx
,
579 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
581 while (seq_less(tid_agg_rx
->head_seq_num
, head_seq_num
)) {
582 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
) %
583 tid_agg_rx
->buf_size
;
584 ieee80211_release_reorder_frame(hw
, tid_agg_rx
, index
);
589 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
590 * the skb was added to the buffer longer than this time ago, the earlier
591 * frames that have not yet been received are assumed to be lost and the skb
592 * can be released for processing. This may also release other skb's from the
593 * reorder buffer if there are no additional gaps between the frames.
595 * Callers must hold tid_agg_rx->reorder_lock.
597 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
599 static void ieee80211_sta_reorder_release(struct ieee80211_hw
*hw
,
600 struct tid_ampdu_rx
*tid_agg_rx
)
604 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
606 /* release the buffer until next missing frame */
607 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
) %
608 tid_agg_rx
->buf_size
;
609 if (!tid_agg_rx
->reorder_buf
[index
] &&
610 tid_agg_rx
->stored_mpdu_num
> 1) {
612 * No buffers ready to be released, but check whether any
613 * frames in the reorder buffer have timed out.
616 for (j
= (index
+ 1) % tid_agg_rx
->buf_size
; j
!= index
;
617 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
618 if (!tid_agg_rx
->reorder_buf
[j
]) {
623 !time_after(jiffies
, tid_agg_rx
->reorder_time
[j
] +
624 HT_RX_REORDER_BUF_TIMEOUT
))
625 goto set_release_timer
;
627 #ifdef CONFIG_MAC80211_HT_DEBUG
629 wiphy_debug(hw
->wiphy
,
630 "release an RX reorder frame due to timeout on earlier frames\n");
632 ieee80211_release_reorder_frame(hw
, tid_agg_rx
, j
);
635 * Increment the head seq# also for the skipped slots.
637 tid_agg_rx
->head_seq_num
=
638 (tid_agg_rx
->head_seq_num
+ skipped
) & SEQ_MASK
;
641 } else while (tid_agg_rx
->reorder_buf
[index
]) {
642 ieee80211_release_reorder_frame(hw
, tid_agg_rx
, index
);
643 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
) %
644 tid_agg_rx
->buf_size
;
647 if (tid_agg_rx
->stored_mpdu_num
) {
648 j
= index
= seq_sub(tid_agg_rx
->head_seq_num
,
649 tid_agg_rx
->ssn
) % tid_agg_rx
->buf_size
;
651 for (; j
!= (index
- 1) % tid_agg_rx
->buf_size
;
652 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
653 if (tid_agg_rx
->reorder_buf
[j
])
659 mod_timer(&tid_agg_rx
->reorder_timer
,
660 tid_agg_rx
->reorder_time
[j
] + 1 +
661 HT_RX_REORDER_BUF_TIMEOUT
);
663 del_timer(&tid_agg_rx
->reorder_timer
);
668 * As this function belongs to the RX path it must be under
669 * rcu_read_lock protection. It returns false if the frame
670 * can be processed immediately, true if it was consumed.
672 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw
*hw
,
673 struct tid_ampdu_rx
*tid_agg_rx
,
676 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
677 u16 sc
= le16_to_cpu(hdr
->seq_ctrl
);
678 u16 mpdu_seq_num
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
679 u16 head_seq_num
, buf_size
;
683 spin_lock(&tid_agg_rx
->reorder_lock
);
685 buf_size
= tid_agg_rx
->buf_size
;
686 head_seq_num
= tid_agg_rx
->head_seq_num
;
688 /* frame with out of date sequence number */
689 if (seq_less(mpdu_seq_num
, head_seq_num
)) {
695 * If frame the sequence number exceeds our buffering window
696 * size release some previous frames to make room for this one.
698 if (!seq_less(mpdu_seq_num
, head_seq_num
+ buf_size
)) {
699 head_seq_num
= seq_inc(seq_sub(mpdu_seq_num
, buf_size
));
700 /* release stored frames up to new head to stack */
701 ieee80211_release_reorder_frames(hw
, tid_agg_rx
, head_seq_num
);
704 /* Now the new frame is always in the range of the reordering buffer */
706 index
= seq_sub(mpdu_seq_num
, tid_agg_rx
->ssn
) % tid_agg_rx
->buf_size
;
708 /* check if we already stored this frame */
709 if (tid_agg_rx
->reorder_buf
[index
]) {
715 * If the current MPDU is in the right order and nothing else
716 * is stored we can process it directly, no need to buffer it.
717 * If it is first but there's something stored, we may be able
718 * to release frames after this one.
720 if (mpdu_seq_num
== tid_agg_rx
->head_seq_num
&&
721 tid_agg_rx
->stored_mpdu_num
== 0) {
722 tid_agg_rx
->head_seq_num
= seq_inc(tid_agg_rx
->head_seq_num
);
727 /* put the frame in the reordering buffer */
728 tid_agg_rx
->reorder_buf
[index
] = skb
;
729 tid_agg_rx
->reorder_time
[index
] = jiffies
;
730 tid_agg_rx
->stored_mpdu_num
++;
731 ieee80211_sta_reorder_release(hw
, tid_agg_rx
);
734 spin_unlock(&tid_agg_rx
->reorder_lock
);
739 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
740 * true if the MPDU was buffered, false if it should be processed.
742 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data
*rx
)
744 struct sk_buff
*skb
= rx
->skb
;
745 struct ieee80211_local
*local
= rx
->local
;
746 struct ieee80211_hw
*hw
= &local
->hw
;
747 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
748 struct sta_info
*sta
= rx
->sta
;
749 struct tid_ampdu_rx
*tid_agg_rx
;
753 if (!ieee80211_is_data_qos(hdr
->frame_control
))
757 * filter the QoS data rx stream according to
758 * STA/TID and check if this STA/TID is on aggregation
764 tid
= *ieee80211_get_qos_ctl(hdr
) & IEEE80211_QOS_CTL_TID_MASK
;
766 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
770 /* qos null data frames are excluded */
771 if (unlikely(hdr
->frame_control
& cpu_to_le16(IEEE80211_STYPE_NULLFUNC
)))
774 /* new, potentially un-ordered, ampdu frame - process it */
776 /* reset session timer */
777 if (tid_agg_rx
->timeout
)
778 mod_timer(&tid_agg_rx
->session_timer
,
779 TU_TO_EXP_TIME(tid_agg_rx
->timeout
));
781 /* if this mpdu is fragmented - terminate rx aggregation session */
782 sc
= le16_to_cpu(hdr
->seq_ctrl
);
783 if (sc
& IEEE80211_SCTL_FRAG
) {
784 skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
785 skb_queue_tail(&rx
->sdata
->skb_queue
, skb
);
786 ieee80211_queue_work(&local
->hw
, &rx
->sdata
->work
);
791 * No locking needed -- we will only ever process one
792 * RX packet at a time, and thus own tid_agg_rx. All
793 * other code manipulating it needs to (and does) make
794 * sure that we cannot get to it any more before doing
797 if (ieee80211_sta_manage_reorder_buf(hw
, tid_agg_rx
, skb
))
801 skb_queue_tail(&local
->rx_skb_queue
, skb
);
804 static ieee80211_rx_result debug_noinline
805 ieee80211_rx_h_check(struct ieee80211_rx_data
*rx
)
807 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
808 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
810 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
811 if (rx
->sta
&& !is_multicast_ether_addr(hdr
->addr1
)) {
812 if (unlikely(ieee80211_has_retry(hdr
->frame_control
) &&
813 rx
->sta
->last_seq_ctrl
[rx
->queue
] ==
815 if (status
->rx_flags
& IEEE80211_RX_RA_MATCH
) {
816 rx
->local
->dot11FrameDuplicateCount
++;
817 rx
->sta
->num_duplicates
++;
819 return RX_DROP_UNUSABLE
;
821 rx
->sta
->last_seq_ctrl
[rx
->queue
] = hdr
->seq_ctrl
;
824 if (unlikely(rx
->skb
->len
< 16)) {
825 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_short
);
826 return RX_DROP_MONITOR
;
829 /* Drop disallowed frame classes based on STA auth/assoc state;
830 * IEEE 802.11, Chap 5.5.
832 * mac80211 filters only based on association state, i.e. it drops
833 * Class 3 frames from not associated stations. hostapd sends
834 * deauth/disassoc frames when needed. In addition, hostapd is
835 * responsible for filtering on both auth and assoc states.
838 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
839 return ieee80211_rx_mesh_check(rx
);
841 if (unlikely((ieee80211_is_data(hdr
->frame_control
) ||
842 ieee80211_is_pspoll(hdr
->frame_control
)) &&
843 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
844 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_WDS
&&
845 (!rx
->sta
|| !test_sta_flags(rx
->sta
, WLAN_STA_ASSOC
))))
846 return RX_DROP_MONITOR
;
852 static ieee80211_rx_result debug_noinline
853 ieee80211_rx_h_decrypt(struct ieee80211_rx_data
*rx
)
855 struct sk_buff
*skb
= rx
->skb
;
856 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
857 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
860 ieee80211_rx_result result
= RX_DROP_UNUSABLE
;
861 struct ieee80211_key
*sta_ptk
= NULL
;
862 int mmie_keyidx
= -1;
868 * There are four types of keys:
870 * - IGTK (group keys for management frames)
871 * - PTK (pairwise keys)
872 * - STK (station-to-station pairwise keys)
874 * When selecting a key, we have to distinguish between multicast
875 * (including broadcast) and unicast frames, the latter can only
876 * use PTKs and STKs while the former always use GTKs and IGTKs.
877 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
878 * unicast frames can also use key indices like GTKs. Hence, if we
879 * don't have a PTK/STK we check the key index for a WEP key.
881 * Note that in a regular BSS, multicast frames are sent by the
882 * AP only, associated stations unicast the frame to the AP first
883 * which then multicasts it on their behalf.
885 * There is also a slight problem in IBSS mode: GTKs are negotiated
886 * with each station, that is something we don't currently handle.
887 * The spec seems to expect that one negotiates the same key with
888 * every station but there's no such requirement; VLANs could be
893 * No point in finding a key and decrypting if the frame is neither
894 * addressed to us nor a multicast frame.
896 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
899 /* start without a key */
903 sta_ptk
= rcu_dereference(rx
->sta
->ptk
);
905 fc
= hdr
->frame_control
;
907 if (!ieee80211_has_protected(fc
))
908 mmie_keyidx
= ieee80211_get_mmie_keyidx(rx
->skb
);
910 if (!is_multicast_ether_addr(hdr
->addr1
) && sta_ptk
) {
912 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
913 (status
->flag
& RX_FLAG_IV_STRIPPED
))
915 /* Skip decryption if the frame is not protected. */
916 if (!ieee80211_has_protected(fc
))
918 } else if (mmie_keyidx
>= 0) {
919 /* Broadcast/multicast robust management frame / BIP */
920 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
921 (status
->flag
& RX_FLAG_IV_STRIPPED
))
924 if (mmie_keyidx
< NUM_DEFAULT_KEYS
||
925 mmie_keyidx
>= NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
)
926 return RX_DROP_MONITOR
; /* unexpected BIP keyidx */
928 rx
->key
= rcu_dereference(rx
->sta
->gtk
[mmie_keyidx
]);
930 rx
->key
= rcu_dereference(rx
->sdata
->keys
[mmie_keyidx
]);
931 } else if (!ieee80211_has_protected(fc
)) {
933 * The frame was not protected, so skip decryption. However, we
934 * need to set rx->key if there is a key that could have been
935 * used so that the frame may be dropped if encryption would
936 * have been expected.
938 struct ieee80211_key
*key
= NULL
;
939 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
942 if (ieee80211_is_mgmt(fc
) &&
943 is_multicast_ether_addr(hdr
->addr1
) &&
944 (key
= rcu_dereference(rx
->sdata
->default_mgmt_key
)))
948 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
949 key
= rcu_dereference(rx
->sta
->gtk
[i
]);
955 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
956 key
= rcu_dereference(sdata
->keys
[i
]);
968 * The device doesn't give us the IV so we won't be
969 * able to look up the key. That's ok though, we
970 * don't need to decrypt the frame, we just won't
971 * be able to keep statistics accurate.
972 * Except for key threshold notifications, should
973 * we somehow allow the driver to tell us which key
974 * the hardware used if this flag is set?
976 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
977 (status
->flag
& RX_FLAG_IV_STRIPPED
))
980 hdrlen
= ieee80211_hdrlen(fc
);
982 if (rx
->skb
->len
< 8 + hdrlen
)
983 return RX_DROP_UNUSABLE
; /* TODO: count this? */
986 * no need to call ieee80211_wep_get_keyidx,
987 * it verifies a bunch of things we've done already
989 skb_copy_bits(rx
->skb
, hdrlen
+ 3, &keyid
, 1);
992 /* check per-station GTK first, if multicast packet */
993 if (is_multicast_ether_addr(hdr
->addr1
) && rx
->sta
)
994 rx
->key
= rcu_dereference(rx
->sta
->gtk
[keyidx
]);
996 /* if not found, try default key */
998 rx
->key
= rcu_dereference(rx
->sdata
->keys
[keyidx
]);
1001 * RSNA-protected unicast frames should always be
1002 * sent with pairwise or station-to-station keys,
1003 * but for WEP we allow using a key index as well.
1006 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP40
&&
1007 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP104
&&
1008 !is_multicast_ether_addr(hdr
->addr1
))
1014 rx
->key
->tx_rx_count
++;
1015 /* TODO: add threshold stuff again */
1017 return RX_DROP_MONITOR
;
1020 if (skb_linearize(rx
->skb
))
1021 return RX_DROP_UNUSABLE
;
1022 /* the hdr variable is invalid now! */
1024 switch (rx
->key
->conf
.cipher
) {
1025 case WLAN_CIPHER_SUITE_WEP40
:
1026 case WLAN_CIPHER_SUITE_WEP104
:
1027 /* Check for weak IVs if possible */
1028 if (rx
->sta
&& ieee80211_is_data(fc
) &&
1029 (!(status
->flag
& RX_FLAG_IV_STRIPPED
) ||
1030 !(status
->flag
& RX_FLAG_DECRYPTED
)) &&
1031 ieee80211_wep_is_weak_iv(rx
->skb
, rx
->key
))
1032 rx
->sta
->wep_weak_iv_count
++;
1034 result
= ieee80211_crypto_wep_decrypt(rx
);
1036 case WLAN_CIPHER_SUITE_TKIP
:
1037 result
= ieee80211_crypto_tkip_decrypt(rx
);
1039 case WLAN_CIPHER_SUITE_CCMP
:
1040 result
= ieee80211_crypto_ccmp_decrypt(rx
);
1042 case WLAN_CIPHER_SUITE_AES_CMAC
:
1043 result
= ieee80211_crypto_aes_cmac_decrypt(rx
);
1047 * We can reach here only with HW-only algorithms
1048 * but why didn't it decrypt the frame?!
1050 return RX_DROP_UNUSABLE
;
1053 /* either the frame has been decrypted or will be dropped */
1054 status
->flag
|= RX_FLAG_DECRYPTED
;
1059 static ieee80211_rx_result debug_noinline
1060 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data
*rx
)
1062 struct ieee80211_local
*local
;
1063 struct ieee80211_hdr
*hdr
;
1064 struct sk_buff
*skb
;
1068 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1070 if (!local
->pspolling
)
1073 if (!ieee80211_has_fromds(hdr
->frame_control
))
1074 /* this is not from AP */
1077 if (!ieee80211_is_data(hdr
->frame_control
))
1080 if (!ieee80211_has_moredata(hdr
->frame_control
)) {
1081 /* AP has no more frames buffered for us */
1082 local
->pspolling
= false;
1086 /* more data bit is set, let's request a new frame from the AP */
1087 ieee80211_send_pspoll(local
, rx
->sdata
);
1092 static void ap_sta_ps_start(struct sta_info
*sta
)
1094 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
1095 struct ieee80211_local
*local
= sdata
->local
;
1097 atomic_inc(&sdata
->bss
->num_sta_ps
);
1098 set_sta_flags(sta
, WLAN_STA_PS_STA
);
1099 if (!(local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
))
1100 drv_sta_notify(local
, sdata
, STA_NOTIFY_SLEEP
, &sta
->sta
);
1101 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1102 printk(KERN_DEBUG
"%s: STA %pM aid %d enters power save mode\n",
1103 sdata
->name
, sta
->sta
.addr
, sta
->sta
.aid
);
1104 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1107 static void ap_sta_ps_end(struct sta_info
*sta
)
1109 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
1111 atomic_dec(&sdata
->bss
->num_sta_ps
);
1113 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1114 printk(KERN_DEBUG
"%s: STA %pM aid %d exits power save mode\n",
1115 sdata
->name
, sta
->sta
.addr
, sta
->sta
.aid
);
1116 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1118 if (test_sta_flags(sta
, WLAN_STA_PS_DRIVER
)) {
1119 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1120 printk(KERN_DEBUG
"%s: STA %pM aid %d driver-ps-blocked\n",
1121 sdata
->name
, sta
->sta
.addr
, sta
->sta
.aid
);
1122 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1126 ieee80211_sta_ps_deliver_wakeup(sta
);
1129 int ieee80211_sta_ps_transition(struct ieee80211_sta
*sta
, bool start
)
1131 struct sta_info
*sta_inf
= container_of(sta
, struct sta_info
, sta
);
1134 WARN_ON(!(sta_inf
->local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
));
1136 /* Don't let the same PS state be set twice */
1137 in_ps
= test_sta_flags(sta_inf
, WLAN_STA_PS_STA
);
1138 if ((start
&& in_ps
) || (!start
&& !in_ps
))
1142 ap_sta_ps_start(sta_inf
);
1144 ap_sta_ps_end(sta_inf
);
1148 EXPORT_SYMBOL(ieee80211_sta_ps_transition
);
1150 static ieee80211_rx_result debug_noinline
1151 ieee80211_rx_h_sta_process(struct ieee80211_rx_data
*rx
)
1153 struct sta_info
*sta
= rx
->sta
;
1154 struct sk_buff
*skb
= rx
->skb
;
1155 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1156 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1162 * Update last_rx only for IBSS packets which are for the current
1163 * BSSID to avoid keeping the current IBSS network alive in cases
1164 * where other STAs start using different BSSID.
1166 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_ADHOC
) {
1167 u8
*bssid
= ieee80211_get_bssid(hdr
, rx
->skb
->len
,
1168 NL80211_IFTYPE_ADHOC
);
1169 if (compare_ether_addr(bssid
, rx
->sdata
->u
.ibss
.bssid
) == 0) {
1170 sta
->last_rx
= jiffies
;
1171 if (ieee80211_is_data(hdr
->frame_control
)) {
1172 sta
->last_rx_rate_idx
= status
->rate_idx
;
1173 sta
->last_rx_rate_flag
= status
->flag
;
1176 } else if (!is_multicast_ether_addr(hdr
->addr1
)) {
1178 * Mesh beacons will update last_rx when if they are found to
1179 * match the current local configuration when processed.
1181 sta
->last_rx
= jiffies
;
1182 if (ieee80211_is_data(hdr
->frame_control
)) {
1183 sta
->last_rx_rate_idx
= status
->rate_idx
;
1184 sta
->last_rx_rate_flag
= status
->flag
;
1188 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
1191 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
)
1192 ieee80211_sta_rx_notify(rx
->sdata
, hdr
);
1194 sta
->rx_fragments
++;
1195 sta
->rx_bytes
+= rx
->skb
->len
;
1196 sta
->last_signal
= status
->signal
;
1197 ewma_add(&sta
->avg_signal
, -status
->signal
);
1200 * Change STA power saving mode only at the end of a frame
1201 * exchange sequence.
1203 if (!(sta
->local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
) &&
1204 !ieee80211_has_morefrags(hdr
->frame_control
) &&
1205 !(status
->rx_flags
& IEEE80211_RX_DEFERRED_RELEASE
) &&
1206 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1207 rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)) {
1208 if (test_sta_flags(sta
, WLAN_STA_PS_STA
)) {
1210 * Ignore doze->wake transitions that are
1211 * indicated by non-data frames, the standard
1212 * is unclear here, but for example going to
1213 * PS mode and then scanning would cause a
1214 * doze->wake transition for the probe request,
1215 * and that is clearly undesirable.
1217 if (ieee80211_is_data(hdr
->frame_control
) &&
1218 !ieee80211_has_pm(hdr
->frame_control
))
1221 if (ieee80211_has_pm(hdr
->frame_control
))
1222 ap_sta_ps_start(sta
);
1227 * Drop (qos-)data::nullfunc frames silently, since they
1228 * are used only to control station power saving mode.
1230 if (ieee80211_is_nullfunc(hdr
->frame_control
) ||
1231 ieee80211_is_qos_nullfunc(hdr
->frame_control
)) {
1232 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_nullfunc
);
1235 * If we receive a 4-addr nullfunc frame from a STA
1236 * that was not moved to a 4-addr STA vlan yet, drop
1237 * the frame to the monitor interface, to make sure
1238 * that hostapd sees it
1240 if (ieee80211_has_a4(hdr
->frame_control
) &&
1241 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1242 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1243 !rx
->sdata
->u
.vlan
.sta
)))
1244 return RX_DROP_MONITOR
;
1246 * Update counter and free packet here to avoid
1247 * counting this as a dropped packed.
1250 dev_kfree_skb(rx
->skb
);
1255 } /* ieee80211_rx_h_sta_process */
1257 static inline struct ieee80211_fragment_entry
*
1258 ieee80211_reassemble_add(struct ieee80211_sub_if_data
*sdata
,
1259 unsigned int frag
, unsigned int seq
, int rx_queue
,
1260 struct sk_buff
**skb
)
1262 struct ieee80211_fragment_entry
*entry
;
1265 idx
= sdata
->fragment_next
;
1266 entry
= &sdata
->fragments
[sdata
->fragment_next
++];
1267 if (sdata
->fragment_next
>= IEEE80211_FRAGMENT_MAX
)
1268 sdata
->fragment_next
= 0;
1270 if (!skb_queue_empty(&entry
->skb_list
)) {
1271 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1272 struct ieee80211_hdr
*hdr
=
1273 (struct ieee80211_hdr
*) entry
->skb_list
.next
->data
;
1274 printk(KERN_DEBUG
"%s: RX reassembly removed oldest "
1275 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1276 "addr1=%pM addr2=%pM\n",
1278 jiffies
- entry
->first_frag_time
, entry
->seq
,
1279 entry
->last_frag
, hdr
->addr1
, hdr
->addr2
);
1281 __skb_queue_purge(&entry
->skb_list
);
1284 __skb_queue_tail(&entry
->skb_list
, *skb
); /* no need for locking */
1286 entry
->first_frag_time
= jiffies
;
1288 entry
->rx_queue
= rx_queue
;
1289 entry
->last_frag
= frag
;
1291 entry
->extra_len
= 0;
1296 static inline struct ieee80211_fragment_entry
*
1297 ieee80211_reassemble_find(struct ieee80211_sub_if_data
*sdata
,
1298 unsigned int frag
, unsigned int seq
,
1299 int rx_queue
, struct ieee80211_hdr
*hdr
)
1301 struct ieee80211_fragment_entry
*entry
;
1304 idx
= sdata
->fragment_next
;
1305 for (i
= 0; i
< IEEE80211_FRAGMENT_MAX
; i
++) {
1306 struct ieee80211_hdr
*f_hdr
;
1310 idx
= IEEE80211_FRAGMENT_MAX
- 1;
1312 entry
= &sdata
->fragments
[idx
];
1313 if (skb_queue_empty(&entry
->skb_list
) || entry
->seq
!= seq
||
1314 entry
->rx_queue
!= rx_queue
||
1315 entry
->last_frag
+ 1 != frag
)
1318 f_hdr
= (struct ieee80211_hdr
*)entry
->skb_list
.next
->data
;
1321 * Check ftype and addresses are equal, else check next fragment
1323 if (((hdr
->frame_control
^ f_hdr
->frame_control
) &
1324 cpu_to_le16(IEEE80211_FCTL_FTYPE
)) ||
1325 compare_ether_addr(hdr
->addr1
, f_hdr
->addr1
) != 0 ||
1326 compare_ether_addr(hdr
->addr2
, f_hdr
->addr2
) != 0)
1329 if (time_after(jiffies
, entry
->first_frag_time
+ 2 * HZ
)) {
1330 __skb_queue_purge(&entry
->skb_list
);
1339 static ieee80211_rx_result debug_noinline
1340 ieee80211_rx_h_defragment(struct ieee80211_rx_data
*rx
)
1342 struct ieee80211_hdr
*hdr
;
1345 unsigned int frag
, seq
;
1346 struct ieee80211_fragment_entry
*entry
;
1347 struct sk_buff
*skb
;
1348 struct ieee80211_rx_status
*status
;
1350 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1351 fc
= hdr
->frame_control
;
1352 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1353 frag
= sc
& IEEE80211_SCTL_FRAG
;
1355 if (likely((!ieee80211_has_morefrags(fc
) && frag
== 0) ||
1356 (rx
->skb
)->len
< 24 ||
1357 is_multicast_ether_addr(hdr
->addr1
))) {
1358 /* not fragmented */
1361 I802_DEBUG_INC(rx
->local
->rx_handlers_fragments
);
1363 if (skb_linearize(rx
->skb
))
1364 return RX_DROP_UNUSABLE
;
1367 * skb_linearize() might change the skb->data and
1368 * previously cached variables (in this case, hdr) need to
1369 * be refreshed with the new data.
1371 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1372 seq
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
1375 /* This is the first fragment of a new frame. */
1376 entry
= ieee80211_reassemble_add(rx
->sdata
, frag
, seq
,
1377 rx
->queue
, &(rx
->skb
));
1378 if (rx
->key
&& rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP
&&
1379 ieee80211_has_protected(fc
)) {
1380 int queue
= ieee80211_is_mgmt(fc
) ?
1381 NUM_RX_DATA_QUEUES
: rx
->queue
;
1382 /* Store CCMP PN so that we can verify that the next
1383 * fragment has a sequential PN value. */
1385 memcpy(entry
->last_pn
,
1386 rx
->key
->u
.ccmp
.rx_pn
[queue
],
1392 /* This is a fragment for a frame that should already be pending in
1393 * fragment cache. Add this fragment to the end of the pending entry.
1395 entry
= ieee80211_reassemble_find(rx
->sdata
, frag
, seq
, rx
->queue
, hdr
);
1397 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
1398 return RX_DROP_MONITOR
;
1401 /* Verify that MPDUs within one MSDU have sequential PN values.
1402 * (IEEE 802.11i, 8.3.3.4.5) */
1405 u8 pn
[CCMP_PN_LEN
], *rpn
;
1407 if (!rx
->key
|| rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_CCMP
)
1408 return RX_DROP_UNUSABLE
;
1409 memcpy(pn
, entry
->last_pn
, CCMP_PN_LEN
);
1410 for (i
= CCMP_PN_LEN
- 1; i
>= 0; i
--) {
1415 queue
= ieee80211_is_mgmt(fc
) ?
1416 NUM_RX_DATA_QUEUES
: rx
->queue
;
1417 rpn
= rx
->key
->u
.ccmp
.rx_pn
[queue
];
1418 if (memcmp(pn
, rpn
, CCMP_PN_LEN
))
1419 return RX_DROP_UNUSABLE
;
1420 memcpy(entry
->last_pn
, pn
, CCMP_PN_LEN
);
1423 skb_pull(rx
->skb
, ieee80211_hdrlen(fc
));
1424 __skb_queue_tail(&entry
->skb_list
, rx
->skb
);
1425 entry
->last_frag
= frag
;
1426 entry
->extra_len
+= rx
->skb
->len
;
1427 if (ieee80211_has_morefrags(fc
)) {
1432 rx
->skb
= __skb_dequeue(&entry
->skb_list
);
1433 if (skb_tailroom(rx
->skb
) < entry
->extra_len
) {
1434 I802_DEBUG_INC(rx
->local
->rx_expand_skb_head2
);
1435 if (unlikely(pskb_expand_head(rx
->skb
, 0, entry
->extra_len
,
1437 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
1438 __skb_queue_purge(&entry
->skb_list
);
1439 return RX_DROP_UNUSABLE
;
1442 while ((skb
= __skb_dequeue(&entry
->skb_list
))) {
1443 memcpy(skb_put(rx
->skb
, skb
->len
), skb
->data
, skb
->len
);
1447 /* Complete frame has been reassembled - process it now */
1448 status
= IEEE80211_SKB_RXCB(rx
->skb
);
1449 status
->rx_flags
|= IEEE80211_RX_FRAGMENTED
;
1453 rx
->sta
->rx_packets
++;
1454 if (is_multicast_ether_addr(hdr
->addr1
))
1455 rx
->local
->dot11MulticastReceivedFrameCount
++;
1457 ieee80211_led_rx(rx
->local
);
1461 static ieee80211_rx_result debug_noinline
1462 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data
*rx
)
1464 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1465 __le16 fc
= ((struct ieee80211_hdr
*)rx
->skb
->data
)->frame_control
;
1466 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1468 if (likely(!rx
->sta
|| !ieee80211_is_pspoll(fc
) ||
1469 !(status
->rx_flags
& IEEE80211_RX_RA_MATCH
)))
1472 if ((sdata
->vif
.type
!= NL80211_IFTYPE_AP
) &&
1473 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
))
1474 return RX_DROP_UNUSABLE
;
1476 if (!test_sta_flags(rx
->sta
, WLAN_STA_PS_DRIVER
))
1477 ieee80211_sta_ps_deliver_poll_response(rx
->sta
);
1479 set_sta_flags(rx
->sta
, WLAN_STA_PSPOLL
);
1481 /* Free PS Poll skb here instead of returning RX_DROP that would
1482 * count as an dropped frame. */
1483 dev_kfree_skb(rx
->skb
);
1488 static ieee80211_rx_result debug_noinline
1489 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data
*rx
)
1491 u8
*data
= rx
->skb
->data
;
1492 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)data
;
1494 if (!ieee80211_is_data_qos(hdr
->frame_control
))
1497 /* remove the qos control field, update frame type and meta-data */
1498 memmove(data
+ IEEE80211_QOS_CTL_LEN
, data
,
1499 ieee80211_hdrlen(hdr
->frame_control
) - IEEE80211_QOS_CTL_LEN
);
1500 hdr
= (struct ieee80211_hdr
*)skb_pull(rx
->skb
, IEEE80211_QOS_CTL_LEN
);
1501 /* change frame type to non QOS */
1502 hdr
->frame_control
&= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA
);
1508 ieee80211_802_1x_port_control(struct ieee80211_rx_data
*rx
)
1510 if (unlikely(!rx
->sta
||
1511 !test_sta_flags(rx
->sta
, WLAN_STA_AUTHORIZED
)))
1518 ieee80211_drop_unencrypted(struct ieee80211_rx_data
*rx
, __le16 fc
)
1520 struct sk_buff
*skb
= rx
->skb
;
1521 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1524 * Pass through unencrypted frames if the hardware has
1525 * decrypted them already.
1527 if (status
->flag
& RX_FLAG_DECRYPTED
)
1530 /* Drop unencrypted frames if key is set. */
1531 if (unlikely(!ieee80211_has_protected(fc
) &&
1532 !ieee80211_is_nullfunc(fc
) &&
1533 ieee80211_is_data(fc
) &&
1534 (rx
->key
|| rx
->sdata
->drop_unencrypted
)))
1541 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data
*rx
)
1543 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1544 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1545 __le16 fc
= hdr
->frame_control
;
1548 * Pass through unencrypted frames if the hardware has
1549 * decrypted them already.
1551 if (status
->flag
& RX_FLAG_DECRYPTED
)
1554 if (rx
->sta
&& test_sta_flags(rx
->sta
, WLAN_STA_MFP
)) {
1555 if (unlikely(!ieee80211_has_protected(fc
) &&
1556 ieee80211_is_unicast_robust_mgmt_frame(rx
->skb
) &&
1558 if (ieee80211_is_deauth(fc
))
1559 cfg80211_send_unprot_deauth(rx
->sdata
->dev
,
1562 else if (ieee80211_is_disassoc(fc
))
1563 cfg80211_send_unprot_disassoc(rx
->sdata
->dev
,
1568 /* BIP does not use Protected field, so need to check MMIE */
1569 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx
->skb
) &&
1570 ieee80211_get_mmie_keyidx(rx
->skb
) < 0)) {
1571 if (ieee80211_is_deauth(fc
))
1572 cfg80211_send_unprot_deauth(rx
->sdata
->dev
,
1575 else if (ieee80211_is_disassoc(fc
))
1576 cfg80211_send_unprot_disassoc(rx
->sdata
->dev
,
1582 * When using MFP, Action frames are not allowed prior to
1583 * having configured keys.
1585 if (unlikely(ieee80211_is_action(fc
) && !rx
->key
&&
1586 ieee80211_is_robust_mgmt_frame(
1587 (struct ieee80211_hdr
*) rx
->skb
->data
)))
1595 __ieee80211_data_to_8023(struct ieee80211_rx_data
*rx
, bool *port_control
)
1597 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1598 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1599 bool check_port_control
= false;
1600 struct ethhdr
*ehdr
;
1603 *port_control
= false;
1604 if (ieee80211_has_a4(hdr
->frame_control
) &&
1605 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& !sdata
->u
.vlan
.sta
)
1608 if (sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
1609 !!sdata
->u
.mgd
.use_4addr
!= !!ieee80211_has_a4(hdr
->frame_control
)) {
1611 if (!sdata
->u
.mgd
.use_4addr
)
1614 check_port_control
= true;
1617 if (is_multicast_ether_addr(hdr
->addr1
) &&
1618 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& sdata
->u
.vlan
.sta
)
1621 ret
= ieee80211_data_to_8023(rx
->skb
, sdata
->vif
.addr
, sdata
->vif
.type
);
1625 ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1626 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
)
1627 *port_control
= true;
1628 else if (check_port_control
)
1635 * requires that rx->skb is a frame with ethernet header
1637 static bool ieee80211_frame_allowed(struct ieee80211_rx_data
*rx
, __le16 fc
)
1639 static const u8 pae_group_addr
[ETH_ALEN
] __aligned(2)
1640 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1641 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1644 * Allow EAPOL frames to us/the PAE group address regardless
1645 * of whether the frame was encrypted or not.
1647 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
&&
1648 (compare_ether_addr(ehdr
->h_dest
, rx
->sdata
->vif
.addr
) == 0 ||
1649 compare_ether_addr(ehdr
->h_dest
, pae_group_addr
) == 0))
1652 if (ieee80211_802_1x_port_control(rx
) ||
1653 ieee80211_drop_unencrypted(rx
, fc
))
1660 * requires that rx->skb is a frame with ethernet header
1663 ieee80211_deliver_skb(struct ieee80211_rx_data
*rx
)
1665 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1666 struct net_device
*dev
= sdata
->dev
;
1667 struct sk_buff
*skb
, *xmit_skb
;
1668 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1669 struct sta_info
*dsta
;
1670 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1675 if ((sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1676 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) &&
1677 !(sdata
->flags
& IEEE80211_SDATA_DONT_BRIDGE_PACKETS
) &&
1678 (status
->rx_flags
& IEEE80211_RX_RA_MATCH
) &&
1679 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
|| !sdata
->u
.vlan
.sta
)) {
1680 if (is_multicast_ether_addr(ehdr
->h_dest
)) {
1682 * send multicast frames both to higher layers in
1683 * local net stack and back to the wireless medium
1685 xmit_skb
= skb_copy(skb
, GFP_ATOMIC
);
1686 if (!xmit_skb
&& net_ratelimit())
1687 printk(KERN_DEBUG
"%s: failed to clone "
1688 "multicast frame\n", dev
->name
);
1690 dsta
= sta_info_get(sdata
, skb
->data
);
1693 * The destination station is associated to
1694 * this AP (in this VLAN), so send the frame
1695 * directly to it and do not pass it to local
1705 int align __maybe_unused
;
1707 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1709 * 'align' will only take the values 0 or 2 here
1710 * since all frames are required to be aligned
1711 * to 2-byte boundaries when being passed to
1712 * mac80211. That also explains the __skb_push()
1715 align
= ((unsigned long)(skb
->data
+ sizeof(struct ethhdr
))) & 3;
1717 if (WARN_ON(skb_headroom(skb
) < 3)) {
1721 u8
*data
= skb
->data
;
1722 size_t len
= skb_headlen(skb
);
1724 memmove(skb
->data
, data
, len
);
1725 skb_set_tail_pointer(skb
, len
);
1731 /* deliver to local stack */
1732 skb
->protocol
= eth_type_trans(skb
, dev
);
1733 memset(skb
->cb
, 0, sizeof(skb
->cb
));
1734 netif_receive_skb(skb
);
1739 /* send to wireless media */
1740 xmit_skb
->protocol
= htons(ETH_P_802_3
);
1741 skb_reset_network_header(xmit_skb
);
1742 skb_reset_mac_header(xmit_skb
);
1743 dev_queue_xmit(xmit_skb
);
1747 static ieee80211_rx_result debug_noinline
1748 ieee80211_rx_h_amsdu(struct ieee80211_rx_data
*rx
)
1750 struct net_device
*dev
= rx
->sdata
->dev
;
1751 struct sk_buff
*skb
= rx
->skb
;
1752 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1753 __le16 fc
= hdr
->frame_control
;
1754 struct sk_buff_head frame_list
;
1755 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1757 if (unlikely(!ieee80211_is_data(fc
)))
1760 if (unlikely(!ieee80211_is_data_present(fc
)))
1761 return RX_DROP_MONITOR
;
1763 if (!(status
->rx_flags
& IEEE80211_RX_AMSDU
))
1766 if (ieee80211_has_a4(hdr
->frame_control
) &&
1767 rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1768 !rx
->sdata
->u
.vlan
.sta
)
1769 return RX_DROP_UNUSABLE
;
1771 if (is_multicast_ether_addr(hdr
->addr1
) &&
1772 ((rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1773 rx
->sdata
->u
.vlan
.sta
) ||
1774 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
1775 rx
->sdata
->u
.mgd
.use_4addr
)))
1776 return RX_DROP_UNUSABLE
;
1779 __skb_queue_head_init(&frame_list
);
1781 if (skb_linearize(skb
))
1782 return RX_DROP_UNUSABLE
;
1784 ieee80211_amsdu_to_8023s(skb
, &frame_list
, dev
->dev_addr
,
1785 rx
->sdata
->vif
.type
,
1786 rx
->local
->hw
.extra_tx_headroom
, true);
1788 while (!skb_queue_empty(&frame_list
)) {
1789 rx
->skb
= __skb_dequeue(&frame_list
);
1791 if (!ieee80211_frame_allowed(rx
, fc
)) {
1792 dev_kfree_skb(rx
->skb
);
1795 dev
->stats
.rx_packets
++;
1796 dev
->stats
.rx_bytes
+= rx
->skb
->len
;
1798 ieee80211_deliver_skb(rx
);
1804 #ifdef CONFIG_MAC80211_MESH
1805 static ieee80211_rx_result
1806 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data
*rx
)
1808 struct ieee80211_hdr
*hdr
;
1809 struct ieee80211s_hdr
*mesh_hdr
;
1810 unsigned int hdrlen
;
1811 struct sk_buff
*skb
= rx
->skb
, *fwd_skb
;
1812 struct ieee80211_local
*local
= rx
->local
;
1813 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1814 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1816 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1817 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
1818 mesh_hdr
= (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
);
1820 if (!ieee80211_is_data(hdr
->frame_control
))
1825 return RX_DROP_MONITOR
;
1827 if (mesh_hdr
->flags
& MESH_FLAGS_AE
) {
1828 struct mesh_path
*mppath
;
1832 if (is_multicast_ether_addr(hdr
->addr1
)) {
1833 mpp_addr
= hdr
->addr3
;
1834 proxied_addr
= mesh_hdr
->eaddr1
;
1836 mpp_addr
= hdr
->addr4
;
1837 proxied_addr
= mesh_hdr
->eaddr2
;
1841 mppath
= mpp_path_lookup(proxied_addr
, sdata
);
1843 mpp_path_add(proxied_addr
, mpp_addr
, sdata
);
1845 spin_lock_bh(&mppath
->state_lock
);
1846 if (compare_ether_addr(mppath
->mpp
, mpp_addr
) != 0)
1847 memcpy(mppath
->mpp
, mpp_addr
, ETH_ALEN
);
1848 spin_unlock_bh(&mppath
->state_lock
);
1853 /* Frame has reached destination. Don't forward */
1854 if (!is_multicast_ether_addr(hdr
->addr1
) &&
1855 compare_ether_addr(sdata
->vif
.addr
, hdr
->addr3
) == 0)
1860 if (status
->rx_flags
& IEEE80211_RX_RA_MATCH
) {
1862 IEEE80211_IFSTA_MESH_CTR_INC(&rx
->sdata
->u
.mesh
,
1863 dropped_frames_ttl
);
1865 struct ieee80211_hdr
*fwd_hdr
;
1866 struct ieee80211_tx_info
*info
;
1868 fwd_skb
= skb_copy(skb
, GFP_ATOMIC
);
1870 if (!fwd_skb
&& net_ratelimit())
1871 printk(KERN_DEBUG
"%s: failed to clone mesh frame\n",
1876 fwd_hdr
= (struct ieee80211_hdr
*) fwd_skb
->data
;
1877 memcpy(fwd_hdr
->addr2
, sdata
->vif
.addr
, ETH_ALEN
);
1878 info
= IEEE80211_SKB_CB(fwd_skb
);
1879 memset(info
, 0, sizeof(*info
));
1880 info
->flags
|= IEEE80211_TX_INTFL_NEED_TXPROCESSING
;
1881 info
->control
.vif
= &rx
->sdata
->vif
;
1882 skb_set_queue_mapping(skb
,
1883 ieee80211_select_queue(rx
->sdata
, fwd_skb
));
1884 ieee80211_set_qos_hdr(local
, skb
);
1885 if (is_multicast_ether_addr(fwd_hdr
->addr1
))
1886 IEEE80211_IFSTA_MESH_CTR_INC(&sdata
->u
.mesh
,
1891 * Save TA to addr1 to send TA a path error if a
1892 * suitable next hop is not found
1894 memcpy(fwd_hdr
->addr1
, fwd_hdr
->addr2
,
1896 err
= mesh_nexthop_lookup(fwd_skb
, sdata
);
1897 /* Failed to immediately resolve next hop:
1898 * fwded frame was dropped or will be added
1899 * later to the pending skb queue. */
1901 return RX_DROP_MONITOR
;
1903 IEEE80211_IFSTA_MESH_CTR_INC(&sdata
->u
.mesh
,
1906 IEEE80211_IFSTA_MESH_CTR_INC(&sdata
->u
.mesh
,
1908 ieee80211_add_pending_skb(local
, fwd_skb
);
1913 if (is_multicast_ether_addr(hdr
->addr1
) ||
1914 sdata
->dev
->flags
& IFF_PROMISC
)
1917 return RX_DROP_MONITOR
;
1921 static ieee80211_rx_result debug_noinline
1922 ieee80211_rx_h_data(struct ieee80211_rx_data
*rx
)
1924 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1925 struct ieee80211_local
*local
= rx
->local
;
1926 struct net_device
*dev
= sdata
->dev
;
1927 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1928 __le16 fc
= hdr
->frame_control
;
1932 if (unlikely(!ieee80211_is_data(hdr
->frame_control
)))
1935 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
1936 return RX_DROP_MONITOR
;
1939 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1940 * that a 4-addr station can be detected and moved into a separate VLAN
1942 if (ieee80211_has_a4(hdr
->frame_control
) &&
1943 sdata
->vif
.type
== NL80211_IFTYPE_AP
)
1944 return RX_DROP_MONITOR
;
1946 err
= __ieee80211_data_to_8023(rx
, &port_control
);
1948 return RX_DROP_UNUSABLE
;
1950 if (!ieee80211_frame_allowed(rx
, fc
))
1951 return RX_DROP_MONITOR
;
1953 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1954 unlikely(port_control
) && sdata
->bss
) {
1955 sdata
= container_of(sdata
->bss
, struct ieee80211_sub_if_data
,
1963 dev
->stats
.rx_packets
++;
1964 dev
->stats
.rx_bytes
+= rx
->skb
->len
;
1966 if (local
->ps_sdata
&& local
->hw
.conf
.dynamic_ps_timeout
> 0 &&
1967 !is_multicast_ether_addr(
1968 ((struct ethhdr
*)rx
->skb
->data
)->h_dest
) &&
1969 (!local
->scanning
&&
1970 !test_bit(SDATA_STATE_OFFCHANNEL
, &sdata
->state
))) {
1971 mod_timer(&local
->dynamic_ps_timer
, jiffies
+
1972 msecs_to_jiffies(local
->hw
.conf
.dynamic_ps_timeout
));
1975 ieee80211_deliver_skb(rx
);
1980 static ieee80211_rx_result debug_noinline
1981 ieee80211_rx_h_ctrl(struct ieee80211_rx_data
*rx
)
1983 struct ieee80211_local
*local
= rx
->local
;
1984 struct ieee80211_hw
*hw
= &local
->hw
;
1985 struct sk_buff
*skb
= rx
->skb
;
1986 struct ieee80211_bar
*bar
= (struct ieee80211_bar
*)skb
->data
;
1987 struct tid_ampdu_rx
*tid_agg_rx
;
1991 if (likely(!ieee80211_is_ctl(bar
->frame_control
)))
1994 if (ieee80211_is_back_req(bar
->frame_control
)) {
1996 __le16 control
, start_seq_num
;
1997 } __packed bar_data
;
2000 return RX_DROP_MONITOR
;
2002 if (skb_copy_bits(skb
, offsetof(struct ieee80211_bar
, control
),
2003 &bar_data
, sizeof(bar_data
)))
2004 return RX_DROP_MONITOR
;
2006 tid
= le16_to_cpu(bar_data
.control
) >> 12;
2008 tid_agg_rx
= rcu_dereference(rx
->sta
->ampdu_mlme
.tid_rx
[tid
]);
2010 return RX_DROP_MONITOR
;
2012 start_seq_num
= le16_to_cpu(bar_data
.start_seq_num
) >> 4;
2014 /* reset session timer */
2015 if (tid_agg_rx
->timeout
)
2016 mod_timer(&tid_agg_rx
->session_timer
,
2017 TU_TO_EXP_TIME(tid_agg_rx
->timeout
));
2019 spin_lock(&tid_agg_rx
->reorder_lock
);
2020 /* release stored frames up to start of BAR */
2021 ieee80211_release_reorder_frames(hw
, tid_agg_rx
, start_seq_num
);
2022 spin_unlock(&tid_agg_rx
->reorder_lock
);
2029 * After this point, we only want management frames,
2030 * so we can drop all remaining control frames to
2031 * cooked monitor interfaces.
2033 return RX_DROP_MONITOR
;
2036 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data
*sdata
,
2037 struct ieee80211_mgmt
*mgmt
,
2040 struct ieee80211_local
*local
= sdata
->local
;
2041 struct sk_buff
*skb
;
2042 struct ieee80211_mgmt
*resp
;
2044 if (compare_ether_addr(mgmt
->da
, sdata
->vif
.addr
) != 0) {
2045 /* Not to own unicast address */
2049 if (compare_ether_addr(mgmt
->sa
, sdata
->u
.mgd
.bssid
) != 0 ||
2050 compare_ether_addr(mgmt
->bssid
, sdata
->u
.mgd
.bssid
) != 0) {
2051 /* Not from the current AP or not associated yet. */
2055 if (len
< 24 + 1 + sizeof(resp
->u
.action
.u
.sa_query
)) {
2056 /* Too short SA Query request frame */
2060 skb
= dev_alloc_skb(sizeof(*resp
) + local
->hw
.extra_tx_headroom
);
2064 skb_reserve(skb
, local
->hw
.extra_tx_headroom
);
2065 resp
= (struct ieee80211_mgmt
*) skb_put(skb
, 24);
2066 memset(resp
, 0, 24);
2067 memcpy(resp
->da
, mgmt
->sa
, ETH_ALEN
);
2068 memcpy(resp
->sa
, sdata
->vif
.addr
, ETH_ALEN
);
2069 memcpy(resp
->bssid
, sdata
->u
.mgd
.bssid
, ETH_ALEN
);
2070 resp
->frame_control
= cpu_to_le16(IEEE80211_FTYPE_MGMT
|
2071 IEEE80211_STYPE_ACTION
);
2072 skb_put(skb
, 1 + sizeof(resp
->u
.action
.u
.sa_query
));
2073 resp
->u
.action
.category
= WLAN_CATEGORY_SA_QUERY
;
2074 resp
->u
.action
.u
.sa_query
.action
= WLAN_ACTION_SA_QUERY_RESPONSE
;
2075 memcpy(resp
->u
.action
.u
.sa_query
.trans_id
,
2076 mgmt
->u
.action
.u
.sa_query
.trans_id
,
2077 WLAN_SA_QUERY_TR_ID_LEN
);
2079 ieee80211_tx_skb(sdata
, skb
);
2082 static ieee80211_rx_result debug_noinline
2083 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data
*rx
)
2085 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2086 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2089 * From here on, look only at management frames.
2090 * Data and control frames are already handled,
2091 * and unknown (reserved) frames are useless.
2093 if (rx
->skb
->len
< 24)
2094 return RX_DROP_MONITOR
;
2096 if (!ieee80211_is_mgmt(mgmt
->frame_control
))
2097 return RX_DROP_MONITOR
;
2099 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
2100 return RX_DROP_MONITOR
;
2102 if (ieee80211_drop_unencrypted_mgmt(rx
))
2103 return RX_DROP_UNUSABLE
;
2108 static ieee80211_rx_result debug_noinline
2109 ieee80211_rx_h_action(struct ieee80211_rx_data
*rx
)
2111 struct ieee80211_local
*local
= rx
->local
;
2112 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2113 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2114 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2115 int len
= rx
->skb
->len
;
2117 if (!ieee80211_is_action(mgmt
->frame_control
))
2120 /* drop too small frames */
2121 if (len
< IEEE80211_MIN_ACTION_SIZE
)
2122 return RX_DROP_UNUSABLE
;
2124 if (!rx
->sta
&& mgmt
->u
.action
.category
!= WLAN_CATEGORY_PUBLIC
)
2125 return RX_DROP_UNUSABLE
;
2127 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
2128 return RX_DROP_UNUSABLE
;
2130 switch (mgmt
->u
.action
.category
) {
2131 case WLAN_CATEGORY_BACK
:
2133 * The aggregation code is not prepared to handle
2134 * anything but STA/AP due to the BSSID handling;
2135 * IBSS could work in the code but isn't supported
2136 * by drivers or the standard.
2138 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2139 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
2140 sdata
->vif
.type
!= NL80211_IFTYPE_AP
)
2143 /* verify action_code is present */
2144 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2147 switch (mgmt
->u
.action
.u
.addba_req
.action_code
) {
2148 case WLAN_ACTION_ADDBA_REQ
:
2149 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2150 sizeof(mgmt
->u
.action
.u
.addba_req
)))
2153 case WLAN_ACTION_ADDBA_RESP
:
2154 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2155 sizeof(mgmt
->u
.action
.u
.addba_resp
)))
2158 case WLAN_ACTION_DELBA
:
2159 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2160 sizeof(mgmt
->u
.action
.u
.delba
)))
2168 case WLAN_CATEGORY_SPECTRUM_MGMT
:
2169 if (local
->hw
.conf
.channel
->band
!= IEEE80211_BAND_5GHZ
)
2172 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2175 /* verify action_code is present */
2176 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2179 switch (mgmt
->u
.action
.u
.measurement
.action_code
) {
2180 case WLAN_ACTION_SPCT_MSR_REQ
:
2181 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2182 sizeof(mgmt
->u
.action
.u
.measurement
)))
2184 ieee80211_process_measurement_req(sdata
, mgmt
, len
);
2186 case WLAN_ACTION_SPCT_CHL_SWITCH
:
2187 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2188 sizeof(mgmt
->u
.action
.u
.chan_switch
)))
2191 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2194 if (memcmp(mgmt
->bssid
, sdata
->u
.mgd
.bssid
, ETH_ALEN
))
2200 case WLAN_CATEGORY_SA_QUERY
:
2201 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2202 sizeof(mgmt
->u
.action
.u
.sa_query
)))
2205 switch (mgmt
->u
.action
.u
.sa_query
.action
) {
2206 case WLAN_ACTION_SA_QUERY_REQUEST
:
2207 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2209 ieee80211_process_sa_query_req(sdata
, mgmt
, len
);
2213 case WLAN_CATEGORY_MESH_ACTION
:
2214 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
2217 case WLAN_CATEGORY_MESH_PATH_SEL
:
2218 if (!mesh_path_sel_is_hwmp(sdata
))
2226 status
->rx_flags
|= IEEE80211_RX_MALFORMED_ACTION_FRM
;
2227 /* will return in the next handlers */
2232 rx
->sta
->rx_packets
++;
2233 dev_kfree_skb(rx
->skb
);
2237 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
2238 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
2239 ieee80211_queue_work(&local
->hw
, &sdata
->work
);
2241 rx
->sta
->rx_packets
++;
2245 static ieee80211_rx_result debug_noinline
2246 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data
*rx
)
2248 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2250 /* skip known-bad action frames and return them in the next handler */
2251 if (status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
)
2255 * Getting here means the kernel doesn't know how to handle
2256 * it, but maybe userspace does ... include returned frames
2257 * so userspace can register for those to know whether ones
2258 * it transmitted were processed or returned.
2261 if (cfg80211_rx_mgmt(rx
->sdata
->dev
, status
->freq
,
2262 rx
->skb
->data
, rx
->skb
->len
,
2265 rx
->sta
->rx_packets
++;
2266 dev_kfree_skb(rx
->skb
);
2274 static ieee80211_rx_result debug_noinline
2275 ieee80211_rx_h_action_return(struct ieee80211_rx_data
*rx
)
2277 struct ieee80211_local
*local
= rx
->local
;
2278 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2279 struct sk_buff
*nskb
;
2280 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2281 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2283 if (!ieee80211_is_action(mgmt
->frame_control
))
2287 * For AP mode, hostapd is responsible for handling any action
2288 * frames that we didn't handle, including returning unknown
2289 * ones. For all other modes we will return them to the sender,
2290 * setting the 0x80 bit in the action category, as required by
2291 * 802.11-2007 7.3.1.11.
2292 * Newer versions of hostapd shall also use the management frame
2293 * registration mechanisms, but older ones still use cooked
2294 * monitor interfaces so push all frames there.
2296 if (!(status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
) &&
2297 (sdata
->vif
.type
== NL80211_IFTYPE_AP
||
2298 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
))
2299 return RX_DROP_MONITOR
;
2301 /* do not return rejected action frames */
2302 if (mgmt
->u
.action
.category
& 0x80)
2303 return RX_DROP_UNUSABLE
;
2305 nskb
= skb_copy_expand(rx
->skb
, local
->hw
.extra_tx_headroom
, 0,
2308 struct ieee80211_mgmt
*nmgmt
= (void *)nskb
->data
;
2310 nmgmt
->u
.action
.category
|= 0x80;
2311 memcpy(nmgmt
->da
, nmgmt
->sa
, ETH_ALEN
);
2312 memcpy(nmgmt
->sa
, rx
->sdata
->vif
.addr
, ETH_ALEN
);
2314 memset(nskb
->cb
, 0, sizeof(nskb
->cb
));
2316 ieee80211_tx_skb(rx
->sdata
, nskb
);
2318 dev_kfree_skb(rx
->skb
);
2322 static ieee80211_rx_result debug_noinline
2323 ieee80211_rx_h_mgmt(struct ieee80211_rx_data
*rx
)
2325 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2326 ieee80211_rx_result rxs
;
2327 struct ieee80211_mgmt
*mgmt
= (void *)rx
->skb
->data
;
2330 rxs
= ieee80211_work_rx_mgmt(rx
->sdata
, rx
->skb
);
2331 if (rxs
!= RX_CONTINUE
)
2334 stype
= mgmt
->frame_control
& cpu_to_le16(IEEE80211_FCTL_STYPE
);
2336 if (!ieee80211_vif_is_mesh(&sdata
->vif
) &&
2337 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
2338 sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2339 return RX_DROP_MONITOR
;
2342 case cpu_to_le16(IEEE80211_STYPE_BEACON
):
2343 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP
):
2344 /* process for all: mesh, mlme, ibss */
2346 case cpu_to_le16(IEEE80211_STYPE_DEAUTH
):
2347 case cpu_to_le16(IEEE80211_STYPE_DISASSOC
):
2348 if (is_multicast_ether_addr(mgmt
->da
) &&
2349 !is_broadcast_ether_addr(mgmt
->da
))
2350 return RX_DROP_MONITOR
;
2352 /* process only for station */
2353 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2354 return RX_DROP_MONITOR
;
2356 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ
):
2357 case cpu_to_le16(IEEE80211_STYPE_AUTH
):
2358 /* process only for ibss */
2359 if (sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
2360 return RX_DROP_MONITOR
;
2363 return RX_DROP_MONITOR
;
2366 /* queue up frame and kick off work to process it */
2367 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
2368 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
2369 ieee80211_queue_work(&rx
->local
->hw
, &sdata
->work
);
2371 rx
->sta
->rx_packets
++;
2376 /* TODO: use IEEE80211_RX_FRAGMENTED */
2377 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data
*rx
,
2378 struct ieee80211_rate
*rate
)
2380 struct ieee80211_sub_if_data
*sdata
;
2381 struct ieee80211_local
*local
= rx
->local
;
2382 struct ieee80211_rtap_hdr
{
2383 struct ieee80211_radiotap_header hdr
;
2389 struct sk_buff
*skb
= rx
->skb
, *skb2
;
2390 struct net_device
*prev_dev
= NULL
;
2391 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2394 * If cooked monitor has been processed already, then
2395 * don't do it again. If not, set the flag.
2397 if (rx
->flags
& IEEE80211_RX_CMNTR
)
2399 rx
->flags
|= IEEE80211_RX_CMNTR
;
2401 if (skb_headroom(skb
) < sizeof(*rthdr
) &&
2402 pskb_expand_head(skb
, sizeof(*rthdr
), 0, GFP_ATOMIC
))
2405 rthdr
= (void *)skb_push(skb
, sizeof(*rthdr
));
2406 memset(rthdr
, 0, sizeof(*rthdr
));
2407 rthdr
->hdr
.it_len
= cpu_to_le16(sizeof(*rthdr
));
2408 rthdr
->hdr
.it_present
=
2409 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS
) |
2410 (1 << IEEE80211_RADIOTAP_CHANNEL
));
2413 rthdr
->rate_or_pad
= rate
->bitrate
/ 5;
2414 rthdr
->hdr
.it_present
|=
2415 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE
);
2417 rthdr
->chan_freq
= cpu_to_le16(status
->freq
);
2419 if (status
->band
== IEEE80211_BAND_5GHZ
)
2420 rthdr
->chan_flags
= cpu_to_le16(IEEE80211_CHAN_OFDM
|
2421 IEEE80211_CHAN_5GHZ
);
2423 rthdr
->chan_flags
= cpu_to_le16(IEEE80211_CHAN_DYN
|
2424 IEEE80211_CHAN_2GHZ
);
2426 skb_set_mac_header(skb
, 0);
2427 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2428 skb
->pkt_type
= PACKET_OTHERHOST
;
2429 skb
->protocol
= htons(ETH_P_802_2
);
2431 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
2432 if (!ieee80211_sdata_running(sdata
))
2435 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
||
2436 !(sdata
->u
.mntr_flags
& MONITOR_FLAG_COOK_FRAMES
))
2440 skb2
= skb_clone(skb
, GFP_ATOMIC
);
2442 skb2
->dev
= prev_dev
;
2443 netif_receive_skb(skb2
);
2447 prev_dev
= sdata
->dev
;
2448 sdata
->dev
->stats
.rx_packets
++;
2449 sdata
->dev
->stats
.rx_bytes
+= skb
->len
;
2453 skb
->dev
= prev_dev
;
2454 netif_receive_skb(skb
);
2462 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data
*rx
,
2463 ieee80211_rx_result res
)
2466 case RX_DROP_MONITOR
:
2467 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
2469 rx
->sta
->rx_dropped
++;
2472 struct ieee80211_rate
*rate
= NULL
;
2473 struct ieee80211_supported_band
*sband
;
2474 struct ieee80211_rx_status
*status
;
2476 status
= IEEE80211_SKB_RXCB((rx
->skb
));
2478 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
2479 if (!(status
->flag
& RX_FLAG_HT
))
2480 rate
= &sband
->bitrates
[status
->rate_idx
];
2482 ieee80211_rx_cooked_monitor(rx
, rate
);
2485 case RX_DROP_UNUSABLE
:
2486 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
2488 rx
->sta
->rx_dropped
++;
2489 dev_kfree_skb(rx
->skb
);
2492 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_queued
);
2497 static void ieee80211_rx_handlers(struct ieee80211_rx_data
*rx
)
2499 ieee80211_rx_result res
= RX_DROP_MONITOR
;
2500 struct sk_buff
*skb
;
2502 #define CALL_RXH(rxh) \
2505 if (res != RX_CONTINUE) \
2509 spin_lock(&rx
->local
->rx_skb_queue
.lock
);
2510 if (rx
->local
->running_rx_handler
)
2513 rx
->local
->running_rx_handler
= true;
2515 while ((skb
= __skb_dequeue(&rx
->local
->rx_skb_queue
))) {
2516 spin_unlock(&rx
->local
->rx_skb_queue
.lock
);
2519 * all the other fields are valid across frames
2520 * that belong to an aMPDU since they are on the
2521 * same TID from the same station
2525 CALL_RXH(ieee80211_rx_h_decrypt
)
2526 CALL_RXH(ieee80211_rx_h_check_more_data
)
2527 CALL_RXH(ieee80211_rx_h_sta_process
)
2528 CALL_RXH(ieee80211_rx_h_defragment
)
2529 CALL_RXH(ieee80211_rx_h_ps_poll
)
2530 CALL_RXH(ieee80211_rx_h_michael_mic_verify
)
2531 /* must be after MMIC verify so header is counted in MPDU mic */
2532 CALL_RXH(ieee80211_rx_h_remove_qos_control
)
2533 CALL_RXH(ieee80211_rx_h_amsdu
)
2534 #ifdef CONFIG_MAC80211_MESH
2535 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
2536 CALL_RXH(ieee80211_rx_h_mesh_fwding
);
2538 CALL_RXH(ieee80211_rx_h_data
)
2539 CALL_RXH(ieee80211_rx_h_ctrl
);
2540 CALL_RXH(ieee80211_rx_h_mgmt_check
)
2541 CALL_RXH(ieee80211_rx_h_action
)
2542 CALL_RXH(ieee80211_rx_h_userspace_mgmt
)
2543 CALL_RXH(ieee80211_rx_h_action_return
)
2544 CALL_RXH(ieee80211_rx_h_mgmt
)
2547 ieee80211_rx_handlers_result(rx
, res
);
2548 spin_lock(&rx
->local
->rx_skb_queue
.lock
);
2552 rx
->local
->running_rx_handler
= false;
2555 spin_unlock(&rx
->local
->rx_skb_queue
.lock
);
2558 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data
*rx
)
2560 ieee80211_rx_result res
= RX_DROP_MONITOR
;
2562 #define CALL_RXH(rxh) \
2565 if (res != RX_CONTINUE) \
2569 CALL_RXH(ieee80211_rx_h_passive_scan
)
2570 CALL_RXH(ieee80211_rx_h_check
)
2572 ieee80211_rx_reorder_ampdu(rx
);
2574 ieee80211_rx_handlers(rx
);
2578 ieee80211_rx_handlers_result(rx
, res
);
2584 * This function makes calls into the RX path, therefore
2585 * it has to be invoked under RCU read lock.
2587 void ieee80211_release_reorder_timeout(struct sta_info
*sta
, int tid
)
2589 struct ieee80211_rx_data rx
= {
2591 .sdata
= sta
->sdata
,
2592 .local
= sta
->local
,
2596 struct tid_ampdu_rx
*tid_agg_rx
;
2598 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
2602 spin_lock(&tid_agg_rx
->reorder_lock
);
2603 ieee80211_sta_reorder_release(&sta
->local
->hw
, tid_agg_rx
);
2604 spin_unlock(&tid_agg_rx
->reorder_lock
);
2606 ieee80211_rx_handlers(&rx
);
2609 /* main receive path */
2611 static int prepare_for_handlers(struct ieee80211_rx_data
*rx
,
2612 struct ieee80211_hdr
*hdr
)
2614 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2615 struct sk_buff
*skb
= rx
->skb
;
2616 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2617 u8
*bssid
= ieee80211_get_bssid(hdr
, skb
->len
, sdata
->vif
.type
);
2618 int multicast
= is_multicast_ether_addr(hdr
->addr1
);
2620 switch (sdata
->vif
.type
) {
2621 case NL80211_IFTYPE_STATION
:
2622 if (!bssid
&& !sdata
->u
.mgd
.use_4addr
)
2625 compare_ether_addr(sdata
->vif
.addr
, hdr
->addr1
) != 0) {
2626 if (!(sdata
->dev
->flags
& IFF_PROMISC
) ||
2627 sdata
->u
.mgd
.use_4addr
)
2629 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2632 case NL80211_IFTYPE_ADHOC
:
2635 if (ieee80211_is_beacon(hdr
->frame_control
)) {
2638 else if (!ieee80211_bssid_match(bssid
, sdata
->u
.ibss
.bssid
)) {
2639 if (!(status
->rx_flags
& IEEE80211_RX_IN_SCAN
))
2641 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2642 } else if (!multicast
&&
2643 compare_ether_addr(sdata
->vif
.addr
,
2645 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
2647 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2648 } else if (!rx
->sta
) {
2650 if (status
->flag
& RX_FLAG_HT
)
2651 rate_idx
= 0; /* TODO: HT rates */
2653 rate_idx
= status
->rate_idx
;
2654 rx
->sta
= ieee80211_ibss_add_sta(sdata
, bssid
,
2655 hdr
->addr2
, BIT(rate_idx
), GFP_ATOMIC
);
2658 case NL80211_IFTYPE_MESH_POINT
:
2660 compare_ether_addr(sdata
->vif
.addr
,
2662 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
2665 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2668 case NL80211_IFTYPE_AP_VLAN
:
2669 case NL80211_IFTYPE_AP
:
2671 if (compare_ether_addr(sdata
->vif
.addr
,
2674 } else if (!ieee80211_bssid_match(bssid
,
2676 if (!(status
->rx_flags
& IEEE80211_RX_IN_SCAN
) &&
2677 !ieee80211_is_beacon(hdr
->frame_control
))
2679 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2682 case NL80211_IFTYPE_WDS
:
2683 if (bssid
|| !ieee80211_is_data(hdr
->frame_control
))
2685 if (compare_ether_addr(sdata
->u
.wds
.remote_addr
, hdr
->addr2
))
2689 /* should never get here */
2698 * This function returns whether or not the SKB
2699 * was destined for RX processing or not, which,
2700 * if consume is true, is equivalent to whether
2701 * or not the skb was consumed.
2703 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data
*rx
,
2704 struct sk_buff
*skb
, bool consume
)
2706 struct ieee80211_local
*local
= rx
->local
;
2707 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2708 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2709 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
2713 status
->rx_flags
|= IEEE80211_RX_RA_MATCH
;
2714 prepares
= prepare_for_handlers(rx
, hdr
);
2720 skb
= skb_copy(skb
, GFP_ATOMIC
);
2722 if (net_ratelimit())
2723 wiphy_debug(local
->hw
.wiphy
,
2724 "failed to copy skb for %s\n",
2732 ieee80211_invoke_rx_handlers(rx
);
2737 * This is the actual Rx frames handler. as it blongs to Rx path it must
2738 * be called with rcu_read_lock protection.
2740 static void __ieee80211_rx_handle_packet(struct ieee80211_hw
*hw
,
2741 struct sk_buff
*skb
)
2743 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2744 struct ieee80211_local
*local
= hw_to_local(hw
);
2745 struct ieee80211_sub_if_data
*sdata
;
2746 struct ieee80211_hdr
*hdr
;
2748 struct ieee80211_rx_data rx
;
2749 struct ieee80211_sub_if_data
*prev
;
2750 struct sta_info
*sta
, *tmp
, *prev_sta
;
2753 fc
= ((struct ieee80211_hdr
*)skb
->data
)->frame_control
;
2754 memset(&rx
, 0, sizeof(rx
));
2758 if (ieee80211_is_data(fc
) || ieee80211_is_mgmt(fc
))
2759 local
->dot11ReceivedFragmentCount
++;
2761 if (unlikely(test_bit(SCAN_HW_SCANNING
, &local
->scanning
) ||
2762 test_bit(SCAN_SW_SCANNING
, &local
->scanning
)))
2763 status
->rx_flags
|= IEEE80211_RX_IN_SCAN
;
2765 if (ieee80211_is_mgmt(fc
))
2766 err
= skb_linearize(skb
);
2768 err
= !pskb_may_pull(skb
, ieee80211_hdrlen(fc
));
2775 hdr
= (struct ieee80211_hdr
*)skb
->data
;
2776 ieee80211_parse_qos(&rx
);
2777 ieee80211_verify_alignment(&rx
);
2779 if (ieee80211_is_data(fc
)) {
2782 for_each_sta_info(local
, hdr
->addr2
, sta
, tmp
) {
2789 rx
.sdata
= prev_sta
->sdata
;
2790 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
2797 rx
.sdata
= prev_sta
->sdata
;
2799 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
2807 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
2808 if (!ieee80211_sdata_running(sdata
))
2811 if (sdata
->vif
.type
== NL80211_IFTYPE_MONITOR
||
2812 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
2816 * frame is destined for this interface, but if it's
2817 * not also for the previous one we handle that after
2818 * the loop to avoid copying the SKB once too much
2826 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
2828 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
2834 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
2837 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
2846 * This is the receive path handler. It is called by a low level driver when an
2847 * 802.11 MPDU is received from the hardware.
2849 void ieee80211_rx(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
2851 struct ieee80211_local
*local
= hw_to_local(hw
);
2852 struct ieee80211_rate
*rate
= NULL
;
2853 struct ieee80211_supported_band
*sband
;
2854 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2856 WARN_ON_ONCE(softirq_count() == 0);
2858 if (WARN_ON(status
->band
< 0 ||
2859 status
->band
>= IEEE80211_NUM_BANDS
))
2862 sband
= local
->hw
.wiphy
->bands
[status
->band
];
2863 if (WARN_ON(!sband
))
2867 * If we're suspending, it is possible although not too likely
2868 * that we'd be receiving frames after having already partially
2869 * quiesced the stack. We can't process such frames then since
2870 * that might, for example, cause stations to be added or other
2871 * driver callbacks be invoked.
2873 if (unlikely(local
->quiescing
|| local
->suspended
))
2877 * The same happens when we're not even started,
2878 * but that's worth a warning.
2880 if (WARN_ON(!local
->started
))
2883 if (likely(!(status
->flag
& RX_FLAG_FAILED_PLCP_CRC
))) {
2885 * Validate the rate, unless a PLCP error means that
2886 * we probably can't have a valid rate here anyway.
2889 if (status
->flag
& RX_FLAG_HT
) {
2891 * rate_idx is MCS index, which can be [0-76]
2894 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2896 * Anything else would be some sort of driver or
2897 * hardware error. The driver should catch hardware
2900 if (WARN((status
->rate_idx
< 0 ||
2901 status
->rate_idx
> 76),
2902 "Rate marked as an HT rate but passed "
2903 "status->rate_idx is not "
2904 "an MCS index [0-76]: %d (0x%02x)\n",
2909 if (WARN_ON(status
->rate_idx
< 0 ||
2910 status
->rate_idx
>= sband
->n_bitrates
))
2912 rate
= &sband
->bitrates
[status
->rate_idx
];
2916 status
->rx_flags
= 0;
2919 * key references and virtual interfaces are protected using RCU
2920 * and this requires that we are in a read-side RCU section during
2921 * receive processing
2926 * Frames with failed FCS/PLCP checksum are not returned,
2927 * all other frames are returned without radiotap header
2928 * if it was previously present.
2929 * Also, frames with less than 16 bytes are dropped.
2931 skb
= ieee80211_rx_monitor(local
, skb
, rate
);
2937 ieee80211_tpt_led_trig_rx(local
,
2938 ((struct ieee80211_hdr
*)skb
->data
)->frame_control
,
2940 __ieee80211_rx_handle_packet(hw
, skb
);
2948 EXPORT_SYMBOL(ieee80211_rx
);
2950 /* This is a version of the rx handler that can be called from hard irq
2951 * context. Post the skb on the queue and schedule the tasklet */
2952 void ieee80211_rx_irqsafe(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
2954 struct ieee80211_local
*local
= hw_to_local(hw
);
2956 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status
) > sizeof(skb
->cb
));
2958 skb
->pkt_type
= IEEE80211_RX_MSG
;
2959 skb_queue_tail(&local
->skb_queue
, skb
);
2960 tasklet_schedule(&local
->tasklet
);
2962 EXPORT_SYMBOL(ieee80211_rx_irqsafe
);