gma500@ Fix backlight range error
[pohmelfs.git] / fs / btrfs / super.c
blob0bb4ebbb71b7b0bf6861b7a5efde6f5cf2f5b97e
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include "compat.h"
44 #include "delayed-inode.h"
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "ioctl.h"
50 #include "print-tree.h"
51 #include "xattr.h"
52 #include "volumes.h"
53 #include "version.h"
54 #include "export.h"
55 #include "compression.h"
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/btrfs.h>
60 static const struct super_operations btrfs_super_ops;
62 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
63 char nbuf[16])
65 char *errstr = NULL;
67 switch (errno) {
68 case -EIO:
69 errstr = "IO failure";
70 break;
71 case -ENOMEM:
72 errstr = "Out of memory";
73 break;
74 case -EROFS:
75 errstr = "Readonly filesystem";
76 break;
77 default:
78 if (nbuf) {
79 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
80 errstr = nbuf;
82 break;
85 return errstr;
88 static void __save_error_info(struct btrfs_fs_info *fs_info)
91 * today we only save the error info into ram. Long term we'll
92 * also send it down to the disk
94 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
97 /* NOTE:
98 * We move write_super stuff at umount in order to avoid deadlock
99 * for umount hold all lock.
101 static void save_error_info(struct btrfs_fs_info *fs_info)
103 __save_error_info(fs_info);
106 /* btrfs handle error by forcing the filesystem readonly */
107 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
109 struct super_block *sb = fs_info->sb;
111 if (sb->s_flags & MS_RDONLY)
112 return;
114 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
115 sb->s_flags |= MS_RDONLY;
116 printk(KERN_INFO "btrfs is forced readonly\n");
121 * __btrfs_std_error decodes expected errors from the caller and
122 * invokes the approciate error response.
124 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
125 unsigned int line, int errno)
127 struct super_block *sb = fs_info->sb;
128 char nbuf[16];
129 const char *errstr;
132 * Special case: if the error is EROFS, and we're already
133 * under MS_RDONLY, then it is safe here.
135 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
136 return;
138 errstr = btrfs_decode_error(fs_info, errno, nbuf);
139 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
140 sb->s_id, function, line, errstr);
141 save_error_info(fs_info);
143 btrfs_handle_error(fs_info);
146 static void btrfs_put_super(struct super_block *sb)
148 struct btrfs_root *root = btrfs_sb(sb);
149 int ret;
151 ret = close_ctree(root);
152 sb->s_fs_info = NULL;
154 (void)ret; /* FIXME: need to fix VFS to return error? */
157 enum {
158 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
159 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
160 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
161 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
162 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
163 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
164 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
165 Opt_inode_cache, Opt_err,
168 static match_table_t tokens = {
169 {Opt_degraded, "degraded"},
170 {Opt_subvol, "subvol=%s"},
171 {Opt_subvolid, "subvolid=%d"},
172 {Opt_device, "device=%s"},
173 {Opt_nodatasum, "nodatasum"},
174 {Opt_nodatacow, "nodatacow"},
175 {Opt_nobarrier, "nobarrier"},
176 {Opt_max_inline, "max_inline=%s"},
177 {Opt_alloc_start, "alloc_start=%s"},
178 {Opt_thread_pool, "thread_pool=%d"},
179 {Opt_compress, "compress"},
180 {Opt_compress_type, "compress=%s"},
181 {Opt_compress_force, "compress-force"},
182 {Opt_compress_force_type, "compress-force=%s"},
183 {Opt_ssd, "ssd"},
184 {Opt_ssd_spread, "ssd_spread"},
185 {Opt_nossd, "nossd"},
186 {Opt_noacl, "noacl"},
187 {Opt_notreelog, "notreelog"},
188 {Opt_flushoncommit, "flushoncommit"},
189 {Opt_ratio, "metadata_ratio=%d"},
190 {Opt_discard, "discard"},
191 {Opt_space_cache, "space_cache"},
192 {Opt_clear_cache, "clear_cache"},
193 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
194 {Opt_enospc_debug, "enospc_debug"},
195 {Opt_subvolrootid, "subvolrootid=%d"},
196 {Opt_defrag, "autodefrag"},
197 {Opt_inode_cache, "inode_cache"},
198 {Opt_err, NULL},
202 * Regular mount options parser. Everything that is needed only when
203 * reading in a new superblock is parsed here.
205 int btrfs_parse_options(struct btrfs_root *root, char *options)
207 struct btrfs_fs_info *info = root->fs_info;
208 substring_t args[MAX_OPT_ARGS];
209 char *p, *num, *orig;
210 int intarg;
211 int ret = 0;
212 char *compress_type;
213 bool compress_force = false;
215 if (!options)
216 return 0;
219 * strsep changes the string, duplicate it because parse_options
220 * gets called twice
222 options = kstrdup(options, GFP_NOFS);
223 if (!options)
224 return -ENOMEM;
226 orig = options;
228 while ((p = strsep(&options, ",")) != NULL) {
229 int token;
230 if (!*p)
231 continue;
233 token = match_token(p, tokens, args);
234 switch (token) {
235 case Opt_degraded:
236 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
237 btrfs_set_opt(info->mount_opt, DEGRADED);
238 break;
239 case Opt_subvol:
240 case Opt_subvolid:
241 case Opt_subvolrootid:
242 case Opt_device:
244 * These are parsed by btrfs_parse_early_options
245 * and can be happily ignored here.
247 break;
248 case Opt_nodatasum:
249 printk(KERN_INFO "btrfs: setting nodatasum\n");
250 btrfs_set_opt(info->mount_opt, NODATASUM);
251 break;
252 case Opt_nodatacow:
253 printk(KERN_INFO "btrfs: setting nodatacow\n");
254 btrfs_set_opt(info->mount_opt, NODATACOW);
255 btrfs_set_opt(info->mount_opt, NODATASUM);
256 break;
257 case Opt_compress_force:
258 case Opt_compress_force_type:
259 compress_force = true;
260 case Opt_compress:
261 case Opt_compress_type:
262 if (token == Opt_compress ||
263 token == Opt_compress_force ||
264 strcmp(args[0].from, "zlib") == 0) {
265 compress_type = "zlib";
266 info->compress_type = BTRFS_COMPRESS_ZLIB;
267 } else if (strcmp(args[0].from, "lzo") == 0) {
268 compress_type = "lzo";
269 info->compress_type = BTRFS_COMPRESS_LZO;
270 } else {
271 ret = -EINVAL;
272 goto out;
275 btrfs_set_opt(info->mount_opt, COMPRESS);
276 if (compress_force) {
277 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
278 pr_info("btrfs: force %s compression\n",
279 compress_type);
280 } else
281 pr_info("btrfs: use %s compression\n",
282 compress_type);
283 break;
284 case Opt_ssd:
285 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
286 btrfs_set_opt(info->mount_opt, SSD);
287 break;
288 case Opt_ssd_spread:
289 printk(KERN_INFO "btrfs: use spread ssd "
290 "allocation scheme\n");
291 btrfs_set_opt(info->mount_opt, SSD);
292 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
293 break;
294 case Opt_nossd:
295 printk(KERN_INFO "btrfs: not using ssd allocation "
296 "scheme\n");
297 btrfs_set_opt(info->mount_opt, NOSSD);
298 btrfs_clear_opt(info->mount_opt, SSD);
299 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
300 break;
301 case Opt_nobarrier:
302 printk(KERN_INFO "btrfs: turning off barriers\n");
303 btrfs_set_opt(info->mount_opt, NOBARRIER);
304 break;
305 case Opt_thread_pool:
306 intarg = 0;
307 match_int(&args[0], &intarg);
308 if (intarg) {
309 info->thread_pool_size = intarg;
310 printk(KERN_INFO "btrfs: thread pool %d\n",
311 info->thread_pool_size);
313 break;
314 case Opt_max_inline:
315 num = match_strdup(&args[0]);
316 if (num) {
317 info->max_inline = memparse(num, NULL);
318 kfree(num);
320 if (info->max_inline) {
321 info->max_inline = max_t(u64,
322 info->max_inline,
323 root->sectorsize);
325 printk(KERN_INFO "btrfs: max_inline at %llu\n",
326 (unsigned long long)info->max_inline);
328 break;
329 case Opt_alloc_start:
330 num = match_strdup(&args[0]);
331 if (num) {
332 info->alloc_start = memparse(num, NULL);
333 kfree(num);
334 printk(KERN_INFO
335 "btrfs: allocations start at %llu\n",
336 (unsigned long long)info->alloc_start);
338 break;
339 case Opt_noacl:
340 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
341 break;
342 case Opt_notreelog:
343 printk(KERN_INFO "btrfs: disabling tree log\n");
344 btrfs_set_opt(info->mount_opt, NOTREELOG);
345 break;
346 case Opt_flushoncommit:
347 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
348 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
349 break;
350 case Opt_ratio:
351 intarg = 0;
352 match_int(&args[0], &intarg);
353 if (intarg) {
354 info->metadata_ratio = intarg;
355 printk(KERN_INFO "btrfs: metadata ratio %d\n",
356 info->metadata_ratio);
358 break;
359 case Opt_discard:
360 btrfs_set_opt(info->mount_opt, DISCARD);
361 break;
362 case Opt_space_cache:
363 printk(KERN_INFO "btrfs: enabling disk space caching\n");
364 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
365 break;
366 case Opt_inode_cache:
367 printk(KERN_INFO "btrfs: enabling inode map caching\n");
368 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
369 break;
370 case Opt_clear_cache:
371 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
372 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
373 break;
374 case Opt_user_subvol_rm_allowed:
375 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
376 break;
377 case Opt_enospc_debug:
378 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
379 break;
380 case Opt_defrag:
381 printk(KERN_INFO "btrfs: enabling auto defrag");
382 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
383 break;
384 case Opt_err:
385 printk(KERN_INFO "btrfs: unrecognized mount option "
386 "'%s'\n", p);
387 ret = -EINVAL;
388 goto out;
389 default:
390 break;
393 out:
394 kfree(orig);
395 return ret;
399 * Parse mount options that are required early in the mount process.
401 * All other options will be parsed on much later in the mount process and
402 * only when we need to allocate a new super block.
404 static int btrfs_parse_early_options(const char *options, fmode_t flags,
405 void *holder, char **subvol_name, u64 *subvol_objectid,
406 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
408 substring_t args[MAX_OPT_ARGS];
409 char *opts, *orig, *p;
410 int error = 0;
411 int intarg;
413 if (!options)
414 goto out;
417 * strsep changes the string, duplicate it because parse_options
418 * gets called twice
420 opts = kstrdup(options, GFP_KERNEL);
421 if (!opts)
422 return -ENOMEM;
423 orig = opts;
425 while ((p = strsep(&opts, ",")) != NULL) {
426 int token;
427 if (!*p)
428 continue;
430 token = match_token(p, tokens, args);
431 switch (token) {
432 case Opt_subvol:
433 *subvol_name = match_strdup(&args[0]);
434 break;
435 case Opt_subvolid:
436 intarg = 0;
437 error = match_int(&args[0], &intarg);
438 if (!error) {
439 /* we want the original fs_tree */
440 if (!intarg)
441 *subvol_objectid =
442 BTRFS_FS_TREE_OBJECTID;
443 else
444 *subvol_objectid = intarg;
446 break;
447 case Opt_subvolrootid:
448 intarg = 0;
449 error = match_int(&args[0], &intarg);
450 if (!error) {
451 /* we want the original fs_tree */
452 if (!intarg)
453 *subvol_rootid =
454 BTRFS_FS_TREE_OBJECTID;
455 else
456 *subvol_rootid = intarg;
458 break;
459 case Opt_device:
460 error = btrfs_scan_one_device(match_strdup(&args[0]),
461 flags, holder, fs_devices);
462 if (error)
463 goto out_free_opts;
464 break;
465 default:
466 break;
470 out_free_opts:
471 kfree(orig);
472 out:
474 * If no subvolume name is specified we use the default one. Allocate
475 * a copy of the string "." here so that code later in the
476 * mount path doesn't care if it's the default volume or another one.
478 if (!*subvol_name) {
479 *subvol_name = kstrdup(".", GFP_KERNEL);
480 if (!*subvol_name)
481 return -ENOMEM;
483 return error;
486 static struct dentry *get_default_root(struct super_block *sb,
487 u64 subvol_objectid)
489 struct btrfs_root *root = sb->s_fs_info;
490 struct btrfs_root *new_root;
491 struct btrfs_dir_item *di;
492 struct btrfs_path *path;
493 struct btrfs_key location;
494 struct inode *inode;
495 struct dentry *dentry;
496 u64 dir_id;
497 int new = 0;
500 * We have a specific subvol we want to mount, just setup location and
501 * go look up the root.
503 if (subvol_objectid) {
504 location.objectid = subvol_objectid;
505 location.type = BTRFS_ROOT_ITEM_KEY;
506 location.offset = (u64)-1;
507 goto find_root;
510 path = btrfs_alloc_path();
511 if (!path)
512 return ERR_PTR(-ENOMEM);
513 path->leave_spinning = 1;
516 * Find the "default" dir item which points to the root item that we
517 * will mount by default if we haven't been given a specific subvolume
518 * to mount.
520 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
521 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
522 if (IS_ERR(di)) {
523 btrfs_free_path(path);
524 return ERR_CAST(di);
526 if (!di) {
528 * Ok the default dir item isn't there. This is weird since
529 * it's always been there, but don't freak out, just try and
530 * mount to root most subvolume.
532 btrfs_free_path(path);
533 dir_id = BTRFS_FIRST_FREE_OBJECTID;
534 new_root = root->fs_info->fs_root;
535 goto setup_root;
538 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
539 btrfs_free_path(path);
541 find_root:
542 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
543 if (IS_ERR(new_root))
544 return ERR_CAST(new_root);
546 if (btrfs_root_refs(&new_root->root_item) == 0)
547 return ERR_PTR(-ENOENT);
549 dir_id = btrfs_root_dirid(&new_root->root_item);
550 setup_root:
551 location.objectid = dir_id;
552 location.type = BTRFS_INODE_ITEM_KEY;
553 location.offset = 0;
555 inode = btrfs_iget(sb, &location, new_root, &new);
556 if (IS_ERR(inode))
557 return ERR_CAST(inode);
560 * If we're just mounting the root most subvol put the inode and return
561 * a reference to the dentry. We will have already gotten a reference
562 * to the inode in btrfs_fill_super so we're good to go.
564 if (!new && sb->s_root->d_inode == inode) {
565 iput(inode);
566 return dget(sb->s_root);
569 if (new) {
570 const struct qstr name = { .name = "/", .len = 1 };
573 * New inode, we need to make the dentry a sibling of s_root so
574 * everything gets cleaned up properly on unmount.
576 dentry = d_alloc(sb->s_root, &name);
577 if (!dentry) {
578 iput(inode);
579 return ERR_PTR(-ENOMEM);
581 d_splice_alias(inode, dentry);
582 } else {
584 * We found the inode in cache, just find a dentry for it and
585 * put the reference to the inode we just got.
587 dentry = d_find_alias(inode);
588 iput(inode);
591 return dentry;
594 static int btrfs_fill_super(struct super_block *sb,
595 struct btrfs_fs_devices *fs_devices,
596 void *data, int silent)
598 struct inode *inode;
599 struct dentry *root_dentry;
600 struct btrfs_root *tree_root;
601 struct btrfs_key key;
602 int err;
604 sb->s_maxbytes = MAX_LFS_FILESIZE;
605 sb->s_magic = BTRFS_SUPER_MAGIC;
606 sb->s_op = &btrfs_super_ops;
607 sb->s_d_op = &btrfs_dentry_operations;
608 sb->s_export_op = &btrfs_export_ops;
609 sb->s_xattr = btrfs_xattr_handlers;
610 sb->s_time_gran = 1;
611 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
612 sb->s_flags |= MS_POSIXACL;
613 #endif
615 tree_root = open_ctree(sb, fs_devices, (char *)data);
617 if (IS_ERR(tree_root)) {
618 printk("btrfs: open_ctree failed\n");
619 return PTR_ERR(tree_root);
621 sb->s_fs_info = tree_root;
623 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
624 key.type = BTRFS_INODE_ITEM_KEY;
625 key.offset = 0;
626 inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
627 if (IS_ERR(inode)) {
628 err = PTR_ERR(inode);
629 goto fail_close;
632 root_dentry = d_alloc_root(inode);
633 if (!root_dentry) {
634 iput(inode);
635 err = -ENOMEM;
636 goto fail_close;
639 sb->s_root = root_dentry;
641 save_mount_options(sb, data);
642 cleancache_init_fs(sb);
643 return 0;
645 fail_close:
646 close_ctree(tree_root);
647 return err;
650 int btrfs_sync_fs(struct super_block *sb, int wait)
652 struct btrfs_trans_handle *trans;
653 struct btrfs_root *root = btrfs_sb(sb);
654 int ret;
656 trace_btrfs_sync_fs(wait);
658 if (!wait) {
659 filemap_flush(root->fs_info->btree_inode->i_mapping);
660 return 0;
663 btrfs_start_delalloc_inodes(root, 0);
664 btrfs_wait_ordered_extents(root, 0, 0);
666 trans = btrfs_start_transaction(root, 0);
667 if (IS_ERR(trans))
668 return PTR_ERR(trans);
669 ret = btrfs_commit_transaction(trans, root);
670 return ret;
673 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
675 struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
676 struct btrfs_fs_info *info = root->fs_info;
677 char *compress_type;
679 if (btrfs_test_opt(root, DEGRADED))
680 seq_puts(seq, ",degraded");
681 if (btrfs_test_opt(root, NODATASUM))
682 seq_puts(seq, ",nodatasum");
683 if (btrfs_test_opt(root, NODATACOW))
684 seq_puts(seq, ",nodatacow");
685 if (btrfs_test_opt(root, NOBARRIER))
686 seq_puts(seq, ",nobarrier");
687 if (info->max_inline != 8192 * 1024)
688 seq_printf(seq, ",max_inline=%llu",
689 (unsigned long long)info->max_inline);
690 if (info->alloc_start != 0)
691 seq_printf(seq, ",alloc_start=%llu",
692 (unsigned long long)info->alloc_start);
693 if (info->thread_pool_size != min_t(unsigned long,
694 num_online_cpus() + 2, 8))
695 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
696 if (btrfs_test_opt(root, COMPRESS)) {
697 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
698 compress_type = "zlib";
699 else
700 compress_type = "lzo";
701 if (btrfs_test_opt(root, FORCE_COMPRESS))
702 seq_printf(seq, ",compress-force=%s", compress_type);
703 else
704 seq_printf(seq, ",compress=%s", compress_type);
706 if (btrfs_test_opt(root, NOSSD))
707 seq_puts(seq, ",nossd");
708 if (btrfs_test_opt(root, SSD_SPREAD))
709 seq_puts(seq, ",ssd_spread");
710 else if (btrfs_test_opt(root, SSD))
711 seq_puts(seq, ",ssd");
712 if (btrfs_test_opt(root, NOTREELOG))
713 seq_puts(seq, ",notreelog");
714 if (btrfs_test_opt(root, FLUSHONCOMMIT))
715 seq_puts(seq, ",flushoncommit");
716 if (btrfs_test_opt(root, DISCARD))
717 seq_puts(seq, ",discard");
718 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
719 seq_puts(seq, ",noacl");
720 if (btrfs_test_opt(root, SPACE_CACHE))
721 seq_puts(seq, ",space_cache");
722 if (btrfs_test_opt(root, CLEAR_CACHE))
723 seq_puts(seq, ",clear_cache");
724 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
725 seq_puts(seq, ",user_subvol_rm_allowed");
726 return 0;
729 static int btrfs_test_super(struct super_block *s, void *data)
731 struct btrfs_root *test_root = data;
732 struct btrfs_root *root = btrfs_sb(s);
735 * If this super block is going away, return false as it
736 * can't match as an existing super block.
738 if (!atomic_read(&s->s_active))
739 return 0;
740 return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
743 static int btrfs_set_super(struct super_block *s, void *data)
745 s->s_fs_info = data;
747 return set_anon_super(s, data);
752 * Find a superblock for the given device / mount point.
754 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
755 * for multiple device setup. Make sure to keep it in sync.
757 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
758 const char *device_name, void *data)
760 struct block_device *bdev = NULL;
761 struct super_block *s;
762 struct dentry *root;
763 struct btrfs_fs_devices *fs_devices = NULL;
764 struct btrfs_root *tree_root = NULL;
765 struct btrfs_fs_info *fs_info = NULL;
766 fmode_t mode = FMODE_READ;
767 char *subvol_name = NULL;
768 u64 subvol_objectid = 0;
769 u64 subvol_rootid = 0;
770 int error = 0;
772 if (!(flags & MS_RDONLY))
773 mode |= FMODE_WRITE;
775 error = btrfs_parse_early_options(data, mode, fs_type,
776 &subvol_name, &subvol_objectid,
777 &subvol_rootid, &fs_devices);
778 if (error)
779 return ERR_PTR(error);
781 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
782 if (error)
783 goto error_free_subvol_name;
785 error = btrfs_open_devices(fs_devices, mode, fs_type);
786 if (error)
787 goto error_free_subvol_name;
789 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
790 error = -EACCES;
791 goto error_close_devices;
795 * Setup a dummy root and fs_info for test/set super. This is because
796 * we don't actually fill this stuff out until open_ctree, but we need
797 * it for searching for existing supers, so this lets us do that and
798 * then open_ctree will properly initialize everything later.
800 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
801 tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
802 if (!fs_info || !tree_root) {
803 error = -ENOMEM;
804 goto error_close_devices;
806 fs_info->tree_root = tree_root;
807 fs_info->fs_devices = fs_devices;
808 tree_root->fs_info = fs_info;
810 bdev = fs_devices->latest_bdev;
811 s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
812 if (IS_ERR(s))
813 goto error_s;
815 if (s->s_root) {
816 if ((flags ^ s->s_flags) & MS_RDONLY) {
817 deactivate_locked_super(s);
818 error = -EBUSY;
819 goto error_close_devices;
822 btrfs_close_devices(fs_devices);
823 kfree(fs_info);
824 kfree(tree_root);
825 } else {
826 char b[BDEVNAME_SIZE];
828 s->s_flags = flags | MS_NOSEC;
829 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
830 error = btrfs_fill_super(s, fs_devices, data,
831 flags & MS_SILENT ? 1 : 0);
832 if (error) {
833 deactivate_locked_super(s);
834 goto error_free_subvol_name;
837 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
838 s->s_flags |= MS_ACTIVE;
841 /* if they gave us a subvolume name bind mount into that */
842 if (strcmp(subvol_name, ".")) {
843 struct dentry *new_root;
845 root = get_default_root(s, subvol_rootid);
846 if (IS_ERR(root)) {
847 error = PTR_ERR(root);
848 deactivate_locked_super(s);
849 goto error_free_subvol_name;
852 mutex_lock(&root->d_inode->i_mutex);
853 new_root = lookup_one_len(subvol_name, root,
854 strlen(subvol_name));
855 mutex_unlock(&root->d_inode->i_mutex);
857 if (IS_ERR(new_root)) {
858 dput(root);
859 deactivate_locked_super(s);
860 error = PTR_ERR(new_root);
861 goto error_free_subvol_name;
863 if (!new_root->d_inode) {
864 dput(root);
865 dput(new_root);
866 deactivate_locked_super(s);
867 error = -ENXIO;
868 goto error_free_subvol_name;
870 dput(root);
871 root = new_root;
872 } else {
873 root = get_default_root(s, subvol_objectid);
874 if (IS_ERR(root)) {
875 error = PTR_ERR(root);
876 deactivate_locked_super(s);
877 goto error_free_subvol_name;
881 kfree(subvol_name);
882 return root;
884 error_s:
885 error = PTR_ERR(s);
886 error_close_devices:
887 btrfs_close_devices(fs_devices);
888 kfree(fs_info);
889 kfree(tree_root);
890 error_free_subvol_name:
891 kfree(subvol_name);
892 return ERR_PTR(error);
895 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
897 struct btrfs_root *root = btrfs_sb(sb);
898 int ret;
900 ret = btrfs_parse_options(root, data);
901 if (ret)
902 return -EINVAL;
904 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
905 return 0;
907 if (*flags & MS_RDONLY) {
908 sb->s_flags |= MS_RDONLY;
910 ret = btrfs_commit_super(root);
911 WARN_ON(ret);
912 } else {
913 if (root->fs_info->fs_devices->rw_devices == 0)
914 return -EACCES;
916 if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
917 return -EINVAL;
919 ret = btrfs_cleanup_fs_roots(root->fs_info);
920 WARN_ON(ret);
922 /* recover relocation */
923 ret = btrfs_recover_relocation(root);
924 WARN_ON(ret);
926 sb->s_flags &= ~MS_RDONLY;
929 return 0;
932 /* Used to sort the devices by max_avail(descending sort) */
933 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
934 const void *dev_info2)
936 if (((struct btrfs_device_info *)dev_info1)->max_avail >
937 ((struct btrfs_device_info *)dev_info2)->max_avail)
938 return -1;
939 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
940 ((struct btrfs_device_info *)dev_info2)->max_avail)
941 return 1;
942 else
943 return 0;
947 * sort the devices by max_avail, in which max free extent size of each device
948 * is stored.(Descending Sort)
950 static inline void btrfs_descending_sort_devices(
951 struct btrfs_device_info *devices,
952 size_t nr_devices)
954 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
955 btrfs_cmp_device_free_bytes, NULL);
959 * The helper to calc the free space on the devices that can be used to store
960 * file data.
962 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
964 struct btrfs_fs_info *fs_info = root->fs_info;
965 struct btrfs_device_info *devices_info;
966 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
967 struct btrfs_device *device;
968 u64 skip_space;
969 u64 type;
970 u64 avail_space;
971 u64 used_space;
972 u64 min_stripe_size;
973 int min_stripes = 1;
974 int i = 0, nr_devices;
975 int ret;
977 nr_devices = fs_info->fs_devices->rw_devices;
978 BUG_ON(!nr_devices);
980 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
981 GFP_NOFS);
982 if (!devices_info)
983 return -ENOMEM;
985 /* calc min stripe number for data space alloction */
986 type = btrfs_get_alloc_profile(root, 1);
987 if (type & BTRFS_BLOCK_GROUP_RAID0)
988 min_stripes = 2;
989 else if (type & BTRFS_BLOCK_GROUP_RAID1)
990 min_stripes = 2;
991 else if (type & BTRFS_BLOCK_GROUP_RAID10)
992 min_stripes = 4;
994 if (type & BTRFS_BLOCK_GROUP_DUP)
995 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
996 else
997 min_stripe_size = BTRFS_STRIPE_LEN;
999 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
1000 if (!device->in_fs_metadata)
1001 continue;
1003 avail_space = device->total_bytes - device->bytes_used;
1005 /* align with stripe_len */
1006 do_div(avail_space, BTRFS_STRIPE_LEN);
1007 avail_space *= BTRFS_STRIPE_LEN;
1010 * In order to avoid overwritting the superblock on the drive,
1011 * btrfs starts at an offset of at least 1MB when doing chunk
1012 * allocation.
1014 skip_space = 1024 * 1024;
1016 /* user can set the offset in fs_info->alloc_start. */
1017 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1018 device->total_bytes)
1019 skip_space = max(fs_info->alloc_start, skip_space);
1022 * btrfs can not use the free space in [0, skip_space - 1],
1023 * we must subtract it from the total. In order to implement
1024 * it, we account the used space in this range first.
1026 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1027 &used_space);
1028 if (ret) {
1029 kfree(devices_info);
1030 return ret;
1033 /* calc the free space in [0, skip_space - 1] */
1034 skip_space -= used_space;
1037 * we can use the free space in [0, skip_space - 1], subtract
1038 * it from the total.
1040 if (avail_space && avail_space >= skip_space)
1041 avail_space -= skip_space;
1042 else
1043 avail_space = 0;
1045 if (avail_space < min_stripe_size)
1046 continue;
1048 devices_info[i].dev = device;
1049 devices_info[i].max_avail = avail_space;
1051 i++;
1054 nr_devices = i;
1056 btrfs_descending_sort_devices(devices_info, nr_devices);
1058 i = nr_devices - 1;
1059 avail_space = 0;
1060 while (nr_devices >= min_stripes) {
1061 if (devices_info[i].max_avail >= min_stripe_size) {
1062 int j;
1063 u64 alloc_size;
1065 avail_space += devices_info[i].max_avail * min_stripes;
1066 alloc_size = devices_info[i].max_avail;
1067 for (j = i + 1 - min_stripes; j <= i; j++)
1068 devices_info[j].max_avail -= alloc_size;
1070 i--;
1071 nr_devices--;
1074 kfree(devices_info);
1075 *free_bytes = avail_space;
1076 return 0;
1079 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1081 struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1082 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1083 struct list_head *head = &root->fs_info->space_info;
1084 struct btrfs_space_info *found;
1085 u64 total_used = 0;
1086 u64 total_free_data = 0;
1087 int bits = dentry->d_sb->s_blocksize_bits;
1088 __be32 *fsid = (__be32 *)root->fs_info->fsid;
1089 int ret;
1091 /* holding chunk_muext to avoid allocating new chunks */
1092 mutex_lock(&root->fs_info->chunk_mutex);
1093 rcu_read_lock();
1094 list_for_each_entry_rcu(found, head, list) {
1095 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1096 total_free_data += found->disk_total - found->disk_used;
1097 total_free_data -=
1098 btrfs_account_ro_block_groups_free_space(found);
1101 total_used += found->disk_used;
1103 rcu_read_unlock();
1105 buf->f_namelen = BTRFS_NAME_LEN;
1106 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1107 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1108 buf->f_bsize = dentry->d_sb->s_blocksize;
1109 buf->f_type = BTRFS_SUPER_MAGIC;
1110 buf->f_bavail = total_free_data;
1111 ret = btrfs_calc_avail_data_space(root, &total_free_data);
1112 if (ret) {
1113 mutex_unlock(&root->fs_info->chunk_mutex);
1114 return ret;
1116 buf->f_bavail += total_free_data;
1117 buf->f_bavail = buf->f_bavail >> bits;
1118 mutex_unlock(&root->fs_info->chunk_mutex);
1120 /* We treat it as constant endianness (it doesn't matter _which_)
1121 because we want the fsid to come out the same whether mounted
1122 on a big-endian or little-endian host */
1123 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1124 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1125 /* Mask in the root object ID too, to disambiguate subvols */
1126 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1127 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1129 return 0;
1132 static struct file_system_type btrfs_fs_type = {
1133 .owner = THIS_MODULE,
1134 .name = "btrfs",
1135 .mount = btrfs_mount,
1136 .kill_sb = kill_anon_super,
1137 .fs_flags = FS_REQUIRES_DEV,
1141 * used by btrfsctl to scan devices when no FS is mounted
1143 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1144 unsigned long arg)
1146 struct btrfs_ioctl_vol_args *vol;
1147 struct btrfs_fs_devices *fs_devices;
1148 int ret = -ENOTTY;
1150 if (!capable(CAP_SYS_ADMIN))
1151 return -EPERM;
1153 vol = memdup_user((void __user *)arg, sizeof(*vol));
1154 if (IS_ERR(vol))
1155 return PTR_ERR(vol);
1157 switch (cmd) {
1158 case BTRFS_IOC_SCAN_DEV:
1159 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1160 &btrfs_fs_type, &fs_devices);
1161 break;
1164 kfree(vol);
1165 return ret;
1168 static int btrfs_freeze(struct super_block *sb)
1170 struct btrfs_root *root = btrfs_sb(sb);
1171 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1172 mutex_lock(&root->fs_info->cleaner_mutex);
1173 return 0;
1176 static int btrfs_unfreeze(struct super_block *sb)
1178 struct btrfs_root *root = btrfs_sb(sb);
1179 mutex_unlock(&root->fs_info->cleaner_mutex);
1180 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1181 return 0;
1184 static const struct super_operations btrfs_super_ops = {
1185 .drop_inode = btrfs_drop_inode,
1186 .evict_inode = btrfs_evict_inode,
1187 .put_super = btrfs_put_super,
1188 .sync_fs = btrfs_sync_fs,
1189 .show_options = btrfs_show_options,
1190 .write_inode = btrfs_write_inode,
1191 .dirty_inode = btrfs_dirty_inode,
1192 .alloc_inode = btrfs_alloc_inode,
1193 .destroy_inode = btrfs_destroy_inode,
1194 .statfs = btrfs_statfs,
1195 .remount_fs = btrfs_remount,
1196 .freeze_fs = btrfs_freeze,
1197 .unfreeze_fs = btrfs_unfreeze,
1200 static const struct file_operations btrfs_ctl_fops = {
1201 .unlocked_ioctl = btrfs_control_ioctl,
1202 .compat_ioctl = btrfs_control_ioctl,
1203 .owner = THIS_MODULE,
1204 .llseek = noop_llseek,
1207 static struct miscdevice btrfs_misc = {
1208 .minor = BTRFS_MINOR,
1209 .name = "btrfs-control",
1210 .fops = &btrfs_ctl_fops
1213 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1214 MODULE_ALIAS("devname:btrfs-control");
1216 static int btrfs_interface_init(void)
1218 return misc_register(&btrfs_misc);
1221 static void btrfs_interface_exit(void)
1223 if (misc_deregister(&btrfs_misc) < 0)
1224 printk(KERN_INFO "misc_deregister failed for control device");
1227 static int __init init_btrfs_fs(void)
1229 int err;
1231 err = btrfs_init_sysfs();
1232 if (err)
1233 return err;
1235 err = btrfs_init_compress();
1236 if (err)
1237 goto free_sysfs;
1239 err = btrfs_init_cachep();
1240 if (err)
1241 goto free_compress;
1243 err = extent_io_init();
1244 if (err)
1245 goto free_cachep;
1247 err = extent_map_init();
1248 if (err)
1249 goto free_extent_io;
1251 err = btrfs_delayed_inode_init();
1252 if (err)
1253 goto free_extent_map;
1255 err = btrfs_interface_init();
1256 if (err)
1257 goto free_delayed_inode;
1259 err = register_filesystem(&btrfs_fs_type);
1260 if (err)
1261 goto unregister_ioctl;
1263 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1264 return 0;
1266 unregister_ioctl:
1267 btrfs_interface_exit();
1268 free_delayed_inode:
1269 btrfs_delayed_inode_exit();
1270 free_extent_map:
1271 extent_map_exit();
1272 free_extent_io:
1273 extent_io_exit();
1274 free_cachep:
1275 btrfs_destroy_cachep();
1276 free_compress:
1277 btrfs_exit_compress();
1278 free_sysfs:
1279 btrfs_exit_sysfs();
1280 return err;
1283 static void __exit exit_btrfs_fs(void)
1285 btrfs_destroy_cachep();
1286 btrfs_delayed_inode_exit();
1287 extent_map_exit();
1288 extent_io_exit();
1289 btrfs_interface_exit();
1290 unregister_filesystem(&btrfs_fs_type);
1291 btrfs_exit_sysfs();
1292 btrfs_cleanup_fs_uuids();
1293 btrfs_exit_compress();
1296 module_init(init_btrfs_fs)
1297 module_exit(exit_btrfs_fs)
1299 MODULE_LICENSE("GPL");